WorldWideScience

Sample records for solvated geminate proton

  1. Proton solvation and proton transfer in chemical and electrochemical processes

    International Nuclear Information System (INIS)

    Lengyel, S.; Conway, B.E.

    1983-01-01

    This chapter examines the proton solvation and characterization of the H 3 O + ion, proton transfer in chemical ionization processes in solution, continuous proton transfer in conductance processes, and proton transfer in electrode processes. Topics considered include the condition of the proton in solution, the molecular structure of the H 3 O + ion, thermodynamics of proton solvation, overall hydration energy of the proton, hydration of H 3 O + , deuteron solvation, partial molal entropy and volume and the entropy of proton hydration, proton solvation in alcoholic solutions, analogies to electrons in semiconductors, continuous proton transfer in conductance, definition and phenomenology of the unusual mobility of the proton in solution, solvent structure changes in relation to anomalous proton mobility, the kinetics of the proton-transfer event, theories of abnormal proton conductance, and the general theory of the contribution of transfer reactions to overall transport processes

  2. Two-state model of excess electron relaxation and geminate recombination in water and aqueous solutions

    International Nuclear Information System (INIS)

    Fedorenko, S.G.

    2010-01-01

    Graphical abstract: After photo-induced ionization a free electron suffers a quick conversion to a solvated state, and then recombines with the parent atom or ion. However, high mobility and reactivity of a free electron can allow the electron to delocalize and recombine in the free state. The theory of two channel processes of geminate electron recombination is developed and applied to the experiment of three-pulse generation of excess electrons in water. - Abstract: After photo-induced ionization a free electron suffers a quick conversion to a solvated state, and then can recombine with the parent atom or ion. However, high mobility and reactivity of a free electron can allow the electron to delocalize and recombine in the free state. The theory of two channel processes of geminate electron recombination is developed here for the general type of the Markovian motion of reactants. A contact model is used for analytical solution of the problem of geminate recombination of neutral and charged reactants. The theory is applied to the experiment of three-pulse generation of excess electrons in water.

  3. Drosophila SMN complex proteins Gemin2, Gemin3, and Gemin5 are components of U bodies

    International Nuclear Information System (INIS)

    Cauchi, Ruben J.; Sanchez-Pulido, Luis; Liu, Ji-Long

    2010-01-01

    Uridine-rich small nuclear ribonucleoproteins (U snRNPs) play key roles in pre-mRNA processing in the nucleus. The assembly of most U snRNPs takes place in the cytoplasm and is facilitated by the survival motor neuron (SMN) complex. Discrete cytoplasmic RNA granules called U bodies have been proposed to be specific sites for snRNP assembly because they contain U snRNPs and SMN. U bodies invariably associate with P bodies, which are involved in mRNA decay and translational control. However, it remains unknown whether other SMN complex proteins also localise to U bodies. In Drosophila there are four SMN complex proteins, namely SMN, Gemin2/CG10419, Gemin3 and Gemin5/Rigor mortis. Drosophila Gemin3 was originally identified as the Drosophila orthologue of human and yeast Dhh1, a component of P bodies. Through an in silico analysis of the DEAD-box RNA helicases we confirmed that Gemin3 is the bona fide Drosophila orthologue of vertebrate Gemin3 whereas the Drosophila orthologue of Dhh1 is Me31B. We then made use of the Drosophila egg chamber as a model system to study the subcellular distribution of the Gemin proteins as well as Me31B. Our cytological investigations show that Gemin2, Gemin3 and Gemin5 colocalise with SMN in U bodies. Although they are excluded from P bodies, as components of U bodies, Gemin2, Gemin3 and Gemin5 are consistently found associated with P bodies, wherein Me31B resides. In addition to a role in snRNP biogenesis, SMN complexes residing in U bodies may also be involved in mRNP assembly and/or transport.

  4. Drosophila SMN complex proteins Gemin2, Gemin3, and Gemin5 are components of U bodies

    Energy Technology Data Exchange (ETDEWEB)

    Cauchi, Ruben J.; Sanchez-Pulido, Luis [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX (United Kingdom); Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX (United Kingdom)

    2010-08-15

    Uridine-rich small nuclear ribonucleoproteins (U snRNPs) play key roles in pre-mRNA processing in the nucleus. The assembly of most U snRNPs takes place in the cytoplasm and is facilitated by the survival motor neuron (SMN) complex. Discrete cytoplasmic RNA granules called U bodies have been proposed to be specific sites for snRNP assembly because they contain U snRNPs and SMN. U bodies invariably associate with P bodies, which are involved in mRNA decay and translational control. However, it remains unknown whether other SMN complex proteins also localise to U bodies. In Drosophila there are four SMN complex proteins, namely SMN, Gemin2/CG10419, Gemin3 and Gemin5/Rigor mortis. Drosophila Gemin3 was originally identified as the Drosophila orthologue of human and yeast Dhh1, a component of P bodies. Through an in silico analysis of the DEAD-box RNA helicases we confirmed that Gemin3 is the bona fide Drosophila orthologue of vertebrate Gemin3 whereas the Drosophila orthologue of Dhh1 is Me31B. We then made use of the Drosophila egg chamber as a model system to study the subcellular distribution of the Gemin proteins as well as Me31B. Our cytological investigations show that Gemin2, Gemin3 and Gemin5 colocalise with SMN in U bodies. Although they are excluded from P bodies, as components of U bodies, Gemin2, Gemin3 and Gemin5 are consistently found associated with P bodies, wherein Me31B resides. In addition to a role in snRNP biogenesis, SMN complexes residing in U bodies may also be involved in mRNP assembly and/or transport.

  5. Radiative lifetime of geminate and non-geminate pairs in amorphous semiconductors: a-Ge:H

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [Faculty of Technology, Charles Darwin University, Darwin, NT 0909 (Australia)

    2006-07-01

    Lifetimes of radiative recombination of geminate and non-geminate pairs in amorphous semiconductors are calculated at thermal equilibrium. The theory is applied to calculate the radiative lifetimes of type I and II geminate pairs and non-geminate pairs in hydrogenated amorphous germanium (a-Ge:H) and compared with the experimental results. The type II geminate pairs can exist in singlet and triplet spin states, only singlet is considered here, whereas the type I geminate pairs do not have spin dependence. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Preferential solvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous organic mixed solvents

    Science.gov (United States)

    Farajtabar, Ali; Jaberi, Fatemeh; Gharib, Farrokh

    2011-12-01

    The solvatochromic properties of the free base and the protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) were studied in pure water, methanol, ethanol (protic solvents), dimethylsulfoxide, DMSO, (non-protic solvent), and their corresponding aqueous-organic binary mixed solvents. The correlation of the empirical solvent polarity scale ( ET) values of TPPS with composition of the solvents was analyzed by the solvent exchange model of Bosch and Roses to clarify the preferential solvation of the probe dyes in the binary mixed solvents. The solvation shell composition and the synergistic effects in preferential solvation of the solute dyes were investigated in terms of both solvent-solvent and solute-solvent interactions and also, the local mole fraction of each solvent composition was calculated in cybotactic region of the probe. The effective mole fraction variation may provide significant physico-chemical insights in the microscopic and molecular level of interactions between TPPS species and the solvent components and therefore, can be used to interpret the solvent effect on kinetics and thermodynamics of TPPS. The obtained results from the preferential solvation and solvent-solvent interactions have been successfully applied to explain the variation of equilibrium behavior of protonation of TPPS occurring in aqueous organic mixed solvents of methanol, ethanol and DMSO.

  7. [Experimental and computation studies of polar solvation

    International Nuclear Information System (INIS)

    1990-01-01

    This report from the Pennsylvania State University contains seven sections: (1) radiative rate effects in solvatlvatochromic probes; (2) intramolecular charge transfer reactions; (3) Solvation dynamics in low temperature alcohols; (4) Ionic solvation dynamics; (5) solvation and proton-transfer dynamics in 7-azaindole; (6) computer simulations of solvation dynamics; (7) solvation in supercritical fluids. 20 refs., 11 figs

  8. Protonic charge defect structures in floating water bridges observed as Zundel and Eigen solvation arrangements

    Science.gov (United States)

    Teschke, Omar; de Castro, Jose Roberto; Valente Filho, Juracyr Ferraz; Soares, David Mendez

    2017-10-01

    Protonic arrangements were detected in water bridge structures using confocal Raman microscopy, and the spectra show two formed structures. The measured Raman spectra were modified using the voltage applied to the bridge structure, which changed the proportion of these two species. Initially, for a 6.3 kV applied voltage, there was a measurable increase in the bridge current above the Ohmic contribution and the observed Raman spectrum of this new injected specie corresponded to the computed spectrum for the Zundel protonic arrangement. As the voltage further increases a contribution from the Eigen proton solvation specie is added to the measured spectrum.

  9. Geminated tooth : case report and review of literature

    International Nuclear Information System (INIS)

    Bolanos Lopez, Violeta; Rojas Tabash, Fabiola

    2013-01-01

    A review of literature is presented about gemination. The case expounded has been of a female patient 8 years of age, with a geminated maxillary temporal canine, asymptomatic and without treatment. Topics such as definitions, clinical and radiographic characteristics, complications and treatment in the gemination are focussed [es

  10. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer

    Science.gov (United States)

    Chen, Mohan; Zheng, Lixin; Santra, Biswajit; Ko, Hsin-Yu; DiStasio, Robert A., Jr.; Klein, Michael L.; Car, Roberto; Wu, Xifan

    2018-03-01

    Proton transfer via hydronium and hydroxide ions in water is ubiquitous. It underlies acid-base chemistry, certain enzyme reactions, and even infection by the flu. Despite two centuries of investigation, the mechanism underlying why hydroxide diffuses slower than hydronium in water is still not well understood. Herein, we employ state-of-the-art density-functional-theory-based molecular dynamics—with corrections for non-local van der Waals interactions, and self-interaction in the electronic ground state—to model water and hydrated water ions. At this level of theory, we show that structural diffusion of hydronium preserves the previously recognized concerted behaviour. However, by contrast, proton transfer via hydroxide is less temporally correlated, due to a stabilized hypercoordination solvation structure that discourages proton transfer. Specifically, the latter exhibits non-planar geometry, which agrees with neutron-scattering results. Asymmetry in the temporal correlation of proton transfer leads to hydroxide diffusing slower than hydronium.

  11. A Radiographic Study of Fused and Geminated Tooth

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chul Jae; Lee, Sang Rae [Dept. of Oral Radiology, College of Dentistry, Kyunhee University, Seoul (Korea, Republic of)

    1990-02-15

    The incidence and several characteristic features of fused and geminated teeth were studied radiographically, with full mouth periapical radiogram and pantomogram, in 4201 patients of mixed dentition and 5358 patients of permanent dentition. The obtained results were as follows: 1. The prevalence was revealed to 2.86%, 0.32%, 0.33%, and 0.06% in deciduous fused tooth, permanent fused tooth, deciduous geminated tooth and permanent geminated tooth respectively, and these anomalies were occurred in female more than male. 2. Fused teeth were observed predominantly in lower anterior teeth area, especially in lateral incisor and canine region, and many cases of deciduous geminated tooth were observed in upper central incisor region. 3. Congenital missing rates of succedaneous tooth in deciduous fused teeth were 57.1%, 85.7%, 71.0%, 69.0% in upper right and left central-lateral incisor regions, lower right and left lateral incisor-canine regions, respectively. 4. Prevalence of dental caries was 42.3%, 18.8% and 5.6% in deciduous fused, deciduous geminated and permanent fused tooth, respectively. 5. In classifying of fused and geminated teeth into 9 type, by following appearance such as number of crown, root, pulp chamber and pulp canal of those teeth, it was more favorable that Type I (2 crown, 2 root, 2 pulp chamber, 2 pulp canal) in deciduous fused tooth and Type IX (1 crown, 1 root, 1 pulp chamber, 1 pulp canal) in permanent used tooth, deciduous and permanent geminated tooth.

  12. A Radiographic Study of Fused and Geminated Tooth

    International Nuclear Information System (INIS)

    Park, Chul Jae; Lee, Sang Rae

    1990-01-01

    The incidence and several characteristic features of fused and geminated teeth were studied radiographically, with full mouth periapical radiogram and pantomogram, in 4201 patients of mixed dentition and 5358 patients of permanent dentition. The obtained results were as follows: 1. The prevalence was revealed to 2.86%, 0.32%, 0.33%, and 0.06% in deciduous fused tooth, permanent fused tooth, deciduous geminated tooth and permanent geminated tooth respectively, and these anomalies were occurred in female more than male. 2. Fused teeth were observed predominantly in lower anterior teeth area, especially in lateral incisor and canine region, and many cases of deciduous geminated tooth were observed in upper central incisor region. 3. Congenital missing rates of succedaneous tooth in deciduous fused teeth were 57.1%, 85.7%, 71.0%, 69.0% in upper right and left central-lateral incisor regions, lower right and left lateral incisor-canine regions, respectively. 4. Prevalence of dental caries was 42.3%, 18.8% and 5.6% in deciduous fused, deciduous geminated and permanent fused tooth, respectively. 5. In classifying of fused and geminated teeth into 9 type, by following appearance such as number of crown, root, pulp chamber and pulp canal of those teeth, it was more favorable that Type I (2 crown, 2 root, 2 pulp chamber, 2 pulp canal) in deciduous fused tooth and Type IX (1 crown, 1 root, 1 pulp chamber, 1 pulp canal) in permanent used tooth, deciduous and permanent geminated tooth.

  13. Quantum treatment of protons with the reduced explicitly correlated Hartree-Fock approach

    Energy Technology Data Exchange (ETDEWEB)

    Sirjoosingh, Andrew; Pak, Michael V.; Brorsen, Kurt R.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave., Urbana, Illinois 61801 (United States)

    2015-06-07

    The nuclear-electronic orbital (NEO) approach treats select nuclei quantum mechanically on the same level as the electrons and includes nonadiabatic effects between the electrons and the quantum nuclei. The practical implementation of this approach is challenging due to the significance of electron-nucleus dynamical correlation. Herein, we present a general extension of the previously developed reduced NEO explicitly correlated Hartree-Fock (RXCHF) approach, in which only select electronic orbitals are explicitly correlated to each quantum nuclear orbital via Gaussian-type geminal functions. Approximations of the electronic exchange between the geminal-coupled electronic orbitals and the other electronic orbitals are also explored. This general approach enables computationally tractable yet accurate calculations on molecular systems with quantum protons. The RXCHF method is applied to the hydrogen cyanide (HCN) and FHF{sup −} systems, where the proton and all electrons are treated quantum mechanically. For the HCN system, only the two electronic orbitals associated with the CH covalent bond are geminal-coupled to the proton orbital. For the FHF{sup −} system, only the four electronic orbitals associated with the two FH covalent bonds are geminal-coupled to the proton orbital. For both systems, the RXCHF method produces qualitatively accurate nuclear densities, in contrast to mean field-based NEO approaches. The development and implementation of the RXCHF method provide the framework to perform calculations on systems such as proton-coupled electron transfer reactions, where electron-proton nonadiabatic effects are important.

  14. Language Specific Listening of Japanese Geminate Consonants: Cross-linguistic study

    Directory of Open Access Journals (Sweden)

    Makiko eSadakata

    2014-12-01

    Full Text Available Various aspects of linguistic experience influence the way we segment, represent, and process speech signals. The Japanese phonetic and orthographic systems represent geminate consonants (double consonants, e.g. /ss/, /kk/ in a unique way compared to other languages: one abstract representation is used to characterize the first part of geminate consonants despite the acoustic difference between two distinct realizations of geminate consonants (silence in the case of e.g. stop consonants and elongation in the case of fricative consonants. The current study tests this discrepancy between abstract representations and acoustic realizations influences how native speakers of Japanese perceive geminate consonants. The experiments used pseudo words containing either the geminate consonant /ss/ or a manipulated version in which the first part was replaced by silence /_s/. The sound /_s/ is acoustically similar to /ss/, yet does not occur in everyday speech. Japanese listeners demonstrated a bias to group these two types into the same category while Italian and Dutch listeners distinguished them. The results thus confirmed that distinguishing fricative geminate consonants with silence from those with sustained frication is not crucial for Japanese native listening. Based on this observation, we propose that native speakers of Japanese tend to segment geminated consonants into two parts and that the first portion of fricative geminates is perceptually similar to a silent duration. This representation is compatible with both Japanese orthography and phonology. Unlike previous studies that were inconclusive in how native speakers segment geminate consonants, our study demonstrated relatively strong effect of Japanese specific listening. Thus the current experimental methods may open up new lines of investigation into the relationship between development of phonological representation, orthography and speech perception.

  15. Identification and characterisation of a nuclear localisation signal in the SMN associated protein, Gemin4

    International Nuclear Information System (INIS)

    Lorson, Monique A.; Dickson, Alexa M.; Shaw, Debra J.; Todd, Adrian G.; Young, Elizabeth C.; Morse, Robert; Wolstencroft, Catherine; Lorson, Christian L.; Young, Philip J.

    2008-01-01

    Gemin4 is a ubiquitously expressed multifunctional protein that is involved in U snRNP assembly, apoptosis, nuclear/cytoplasmic transportation, transcription, and RNAi pathways. Gemin4 is one of the core components of the Gemin-complex, which also contains survival motor neuron (SMN), the seven Gemin proteins (Gemin2-8), and Unrip. Mutations in the SMN1 gene cause the autosomal recessive disorder spinal muscular atrophy (SMA). Although the functions assigned to Gemin4 predominantly occur in the nucleus, the mechanisms that mediate the nuclear import of Gemin4 remain unclear. Here, using a novel panel of Gemin4 constructs we identify a canonical nuclear import sequence (NLS) in the N-terminus of Gemin4. The Gemin4 NLS is necessary and independently sufficient to mediate nuclear import of Gemin4. This is the first functional NLS identified within the SMN-Gemin complex

  16. Acquisition of L2 Japanese Geminates: Training with Waveform Displays

    Directory of Open Access Journals (Sweden)

    Miki Motohashi-Saigo

    2009-06-01

    Full Text Available The value of waveform displays as visual feedback was explored in a training study involving perception and production of L2 Japanese by beginning-level L1 English learners. A pretest-posttest design compared auditory-visual (AV and auditory-only (A-only Web-based training. Stimuli were singleton and geminate /t,k,s/ followed by /a,u/ in two conditions (isolated words, carrier sentences. Fillers with long vowels were included. Participants completed a forced-choice identification task involving minimal triplets: singletons, geminates, long vowels (e.g., sasu, sassu, saasu. Results revealed a significant improvement in geminate identification following training, especially for AV; b significant effect of geminate (lowest scores for /s/; c no significant effect of condition; and d no significant improvement for the control group. Most errors were misperceptions of geminates as long vowels. Test of generalization revealed 5% decline in accuracy for AV and 14% for A-only. Geminate production improved significantly (especially for AV based on rater judgments; improvement was greatest for /k/ and smallest for /s/. Most production errors involved substitution of a singleton for a geminate. Post-study interviews produced positive comments on Web-based training. Waveforms increased awareness of durational differences. Results support the effectiveness of auditory-visual input in L2 perception training with transfer to novel stimuli and improved production.

  17. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    International Nuclear Information System (INIS)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-01-01

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism

  18. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-06-01

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  19. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Madeline H.; Williams, Holly L. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Neumark, Daniel M. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-21

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  20. High-dimensional neural network potentials for solvation: The case of protonated water clusters in helium

    Science.gov (United States)

    Schran, Christoph; Uhl, Felix; Behler, Jörg; Marx, Dominik

    2018-03-01

    The design of accurate helium-solute interaction potentials for the simulation of chemically complex molecules solvated in superfluid helium has long been a cumbersome task due to the rather weak but strongly anisotropic nature of the interactions. We show that this challenge can be met by using a combination of an effective pair potential for the He-He interactions and a flexible high-dimensional neural network potential (NNP) for describing the complex interaction between helium and the solute in a pairwise additive manner. This approach yields an excellent agreement with a mean absolute deviation as small as 0.04 kJ mol-1 for the interaction energy between helium and both hydronium and Zundel cations compared with coupled cluster reference calculations with an energetically converged basis set. The construction and improvement of the potential can be performed in a highly automated way, which opens the door for applications to a variety of reactive molecules to study the effect of solvation on the solute as well as the solute-induced structuring of the solvent. Furthermore, we show that this NNP approach yields very convincing agreement with the coupled cluster reference for properties like many-body spatial and radial distribution functions. This holds for the microsolvation of the protonated water monomer and dimer by a few helium atoms up to their solvation in bulk helium as obtained from path integral simulations at about 1 K.

  1. NMR Study of Solvation Effect on Geometry of Proton-Bound Homodimers of Increasing Size

    KAUST Repository

    Gurinov, Andrei A.

    2017-10-24

    Hydrogen bond geometries in the proton-bound homodimers of quinoline and acridine derivatives in an aprotic polar solution have been experimentally studied using 1H NMR at 120 K. The reported results show that increase of the dielec-tric permittivity of the medium results in contraction of the N…N distance. The degree of contraction depends on the homodimer\\'s size and its substituent-specific solvation features. Neither of these effects can be reproduced using conven-tional implicit solvent models employed in computational studies. In general, the N…N distance in the homodimers of pyridine, quinoline, and acridine derivatives decreases in the sequence gas phase > solid state > polar solvent.

  2. NMR Study of Solvation Effect on Geometry of Proton-Bound Homodimers of Increasing Size

    KAUST Repository

    Gurinov, Andrei A.; Denisov, Gleb S.; Borissova, Alexandra O.; Goloveshkin, Alexander S.; Greindl, Julian; Limbach, Hans-Heinrich; Shenderovich, Ilya G.

    2017-01-01

    Hydrogen bond geometries in the proton-bound homodimers of quinoline and acridine derivatives in an aprotic polar solution have been experimentally studied using 1H NMR at 120 K. The reported results show that increase of the dielec-tric permittivity of the medium results in contraction of the N…N distance. The degree of contraction depends on the homodimer's size and its substituent-specific solvation features. Neither of these effects can be reproduced using conven-tional implicit solvent models employed in computational studies. In general, the N…N distance in the homodimers of pyridine, quinoline, and acridine derivatives decreases in the sequence gas phase > solid state > polar solvent.

  3. The Gemin associates of survival motor neuron are required for motor function in Drosophila.

    Science.gov (United States)

    Borg, Rebecca; Cauchi, Ruben J

    2013-01-01

    Membership of the survival motor neuron (SMN) complex extends to nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2-8 and Unrip. The best-characterised function of this macromolecular machine is the assembly of the Sm-class of uridine-rich small nuclear ribonucleoprotein (snRNP) particles and each SMN complex member has a key role during this process. So far, however, only little is known about the function of the individual Gemin components in vivo. Here, we make use of the Drosophila model organism to uncover loss-of-function phenotypes of Gemin2, Gemin3 and Gemin5, which together with SMN form the minimalistic fly SMN complex. We show that ectopic overexpression of the dead helicase Gem3(ΔN) mutant or knockdown of Gemin3 result in similar motor phenotypes, when restricted to muscle, and in combination cause lethality, hence suggesting that Gem3(ΔN) overexpression mimics a loss-of-function. Based on the localisation pattern of Gem3(ΔN), we predict that the nucleus is the primary site of the antimorphic or dominant-negative mechanism of Gem3(ΔN)-mediated interference. Interestingly, phenotypes induced by human SMN overexpression in Drosophila exhibit similarities to those induced by overexpression of Gem3(ΔN). Through enhanced knockdown we also uncover a requirement of Gemin2, Gemin3 and Gemin5 for viability and motor behaviour, including locomotion as well as flight, in muscle. Notably, in the case of Gemin3 and Gemin5, such function also depends on adequate levels of the respective protein in neurons. Overall, these findings lead us to speculate that absence of any one member is sufficient to arrest the SMN-Gemins complex function in a nucleocentric pathway, which is critical for motor function in vivo.

  4. Study of the effect hydrogen binding in the solvation of alkaline earth cations with MeOH in nitromethane using 1 H NMR technique and determination of ionic solvation number

    CERN Document Server

    Alizadeh, N

    2001-01-01

    A proton NMR method for the study of the effect hydrogen binding and determination of solvation numbers of alkaline earth cations with methanol (MeOH) in in tromethane (NM) as diluent is described. The method is based on monitoring the resonance frequency of MeOH protons as a function of MeOH to metal ion mole ratio at constant metal ion concentration. the average solvation number of cation, n, at any MeOH/ metal ion mole ration was calculated from the NMR chemical shift-mole ration data and was plotted against the mole ration values. The solvation numbers of alkaline earth cations were obtained from the limiting values of the corresponding n, vs. mole ratio plots.

  5. Study of the effect hydrogen binding in the solvation of alkaline earth cations with MeOH in nitromethane using 1 H NMR technique and determination of ionic solvation number

    International Nuclear Information System (INIS)

    Alizadeh, N.

    2001-01-01

    A proton NMR method for the study of the effect hydrogen binding and determination of solvation numbers of alkaline earth cations with methanol (MeOH) in in tromethane (NM) as diluent is described. The method is based on monitoring the resonance frequency of MeOH protons as a function of MeOH to metal ion mole ratio at constant metal ion concentration. the average solvation number of cation, n, at any MeOH/ metal ion mole ration was calculated from the NMR chemical shift-mole ration data and was plotted against the mole ration values. The solvation numbers of alkaline earth cations were obtained from the limiting values of the corresponding n, vs. mole ratio plots

  6. Fusion or gemination? An unusual mandibular second molar

    Directory of Open Access Journals (Sweden)

    Angela Jordão Camargo

    2016-01-01

    Full Text Available Fusion and gemination is not an uncommon finding and affected most primary dentition and the permanent maxillary incisors. These changes can develop a series of complication. A 11-year-old male presented radiography finding: an unusual mandibular second molar. A well-documented case brings a challenge for radiologists classify between fusion and gemination. In conclusion, this alteration although common in other regions, there are no case in the literature involving “second and third” molar.

  7. Unique case of a geminated supernumerary tooth with trifid crown

    International Nuclear Information System (INIS)

    Ather, Amber; Ather, Hunaiza; Sheth, Sanket Milan; Muliya, Vidya Saraswathi

    2012-01-01

    Gemination, a relatively uncommon dental anomaly, is characterized by its peculiar representation as a tooth with a bifid crown and a common root and root canal. It usually occurs in primary dentition. To come across gemination in a supernumerary tooth is a rare phenomenon. The purpose of this paper is to present a unique case of hyperdontia wherein gemination in an impacted supernumerary tooth resulted in a trifid crown unlike the usual bifid crown. The role of conventional radiographs as well as computed tomography, to accurately determine the morphology and spatial location, and to arrive at a diagnosis, is also emphasized in this paper.

  8. Endodontic and periodontal treatments of a geminated mandibular first premolar.

    Science.gov (United States)

    Aryanpour, S; Bercy, P; Van Nieuwenhuysen, J-P

    2002-02-01

    To describe a rare case of gemination involving a mandibular first premolar. The complex morphology of geminated teeth renders their endodontic and periodontal management difficult. Root canal and periodontal treatments were performed on a geminated mandibular first premolar with three canals. Clinical examination showed two separated crowns with united roots. Radiographically, two distinct pulp chambers with two joined and a third independent canal were seen. Conventional root canal treatment resulted in complete healing of the apical lesion. However, the occurrence of a vertical fracture led to the extraction of the mesial segment. At the follow-up visit, the distal segment was clinically healthy and continued to satisfy functional demands.

  9. Bilateral gemination of maxillary permanent incisors: a case report

    OpenAIRE

    Singh, Pooja; Jha, Manish; Mutha, Animesh; Bahar, Kirti

    2016-01-01

    Developmental dental disorders may be due to anomalies in tooth number, size, shape and structure. Gemination and fusion are anomalies of shape with close similarity but with different etiology. Gemination and fusion are anomalies of shape with close similarity but with different etiology. The etiology of germination is not fully understood environmental factors such as trauma, vitamin deficiencies, systemic diseases and certain genetic predisposition have been suggested as possible causes. A...

  10. Gemin5: A Multitasking RNA-Binding Protein Involved in Translation Control

    Directory of Open Access Journals (Sweden)

    David Piñeiro

    2015-04-01

    Full Text Available Gemin5 is a RNA-binding protein (RBP that was first identified as a peripheral component of the survival of motor neurons (SMN complex. This predominantly cytoplasmic protein recognises the small nuclear RNAs (snRNAs through its WD repeat domains, allowing assembly of the SMN complex into small nuclear ribonucleoproteins (snRNPs. Additionally, the amino-terminal end of the protein has been reported to possess cap-binding capacity and to interact with the eukaryotic initiation factor 4E (eIF4E. Gemin5 was also shown to downregulate translation, to be a substrate of the picornavirus L protease and to interact with viral internal ribosome entry site (IRES elements via a bipartite non-canonical RNA-binding site located at its carboxy-terminal end. These features link Gemin5 with translation control events. Thus, beyond its role in snRNPs biogenesis, Gemin5 appears to be a multitasking protein cooperating in various RNA-guided processes. In this review, we will summarise current knowledge of Gemin5 functions. We will discuss the involvement of the protein on translation control and propose a model to explain how the proteolysis fragments of this RBP in picornavirus-infected cells could modulate protein synthesis.

  11. Surface Protonation at the Rutile (110) Interface: Explicit Incorporation of Solvation Structure within the Refined MUSIC Model Framework

    Energy Technology Data Exchange (ETDEWEB)

    Machesky, Michael L. [Illinois State Water Survey, Champaign, IL; Predota, M. [University of South Bohemia, Czech Republic; Wesolowski, David J [ORNL

    2008-01-01

    The detailed solvation structure at the (110) surface of rutile ({alpha}-TiO{sub 2}) in contact with bulk liquid water has been obtained primarily from experimentally verified classical molecular dynamics (CMD) simulations of the ab initio-optimized surface in contact with SPC/E water. The results are used to explicitly quantify H-bonding interactions, which are then used within the refined MUSIC model framework to predict surface oxygen protonation constants. Quantum mechanical molecular dynamics (QMD) simulations in the presence of freely dissociable water molecules produced H-bond distributions around deprotonated surface oxygens very similar to those obtained by CMD with nondissociable SPC/E water, thereby confirming that the less computationally intensive CMD simulations provide accurate H-bond information. Utilizing this H-bond information within the refined MUSIC model, along with manually adjusted Ti-O surface bond lengths that are nonetheless within 0.05 {angstrom} of those obtained from static density functional theory (DFT) calculations and measured in X-ray reflectivity experiments (as well as bulk crystal values), give surface protonation constants that result in a calculated zero net proton charge pH value (pHznpc) at 25 C that agrees quantitatively with the experimentally determined value (5.4 {+-} 0.2) for a specific rutile powder dominated by the (110) crystal face. Moreover, the predicted pH{sub znpc} values agree to within 0.1 pH unit with those measured at all temperatures between 10 and 250 C. A slightly smaller manual adjustment of the DFT-derived Ti-O surface bond lengths was sufficient to bring the predicted pH{sub znpc} value of the rutile (110) surface at 25 C into quantitative agreement with the experimental value (4.8 {+-} 0.3) obtained from a polished and annealed rutile (110) single crystal surface in contact with dilute sodium nitrate solutions using second harmonic generation (SHG) intensity measurements as a function of ionic

  12. Surface Protonation at the Rutile (110) Interface: Explicit Incorporation of Solvation Structure within the Refined MUSIC Model Framework

    International Nuclear Information System (INIS)

    Machesky, Michael L.; Predota, M.; Wesolowski, David J.

    2008-01-01

    The detailed solvation structure at the (110) surface of rutile (α-TiO 2 ) in contact with bulk liquid water has been obtained primarily from experimentally verified classical molecular dynamics (CMD) simulations of the ab initio-optimized surface in contact with SPC/E water. The results are used to explicitly quantify H-bonding interactions, which are then used within the refined MUSIC model framework to predict surface oxygen protonation constants. Quantum mechanical molecular dynamics (QMD) simulations in the presence of freely dissociable water molecules produced H-bond distributions around deprotonated surface oxygens very similar to those obtained by CMD with nondissociable SPC/E water, thereby confirming that the less computationally intensive CMD simulations provide accurate H-bond information. Utilizing this H-bond information within the refined MUSIC model, along with manually adjusted Ti-O surface bond lengths that are nonetheless within 0.05 (angstrom) of those obtained from static density functional theory (DFT) calculations and measured in X-ray reflectivity experiments (as well as bulk crystal values), give surface protonation constants that result in a calculated zero net proton charge pH value (pHznpc) at 25 C that agrees quantitatively with the experimentally determined value (5.4 ± 0.2) for a specific rutile powder dominated by the (110) crystal face. Moreover, the predicted pH znpc values agree to within 0.1 pH unit with those measured at all temperatures between 10 and 250 C. A slightly smaller manual adjustment of the DFT-derived Ti-O surface bond lengths was sufficient to bring the predicted pH znpc value of the rutile (110) surface at 25 C into quantitative agreement with the experimental value (4.8 ± 0.3) obtained from a polished and annealed rutile (110) single crystal surface in contact with dilute sodium nitrate solutions using second harmonic generation (SHG) intensity measurements as a function of ionic strength. Additionally, the H

  13. Epstein-Barr virus nuclear antigen 3C stabilizes Gemin3 to block p53-mediated apoptosis.

    Directory of Open Access Journals (Sweden)

    Qiliang Cai

    2011-12-01

    Full Text Available The Epstein-Barr nuclear antigen 3C (EBNA3C, one of the essential latent antigens for Epstein-Barr virus (EBV-induced immortalization of primary human B lymphocytes in vitro, has been implicated in regulating cell proliferation and anti-apoptosis via interaction with several cellular and viral factors. Gemin3 (also named DDX20 or DP103 is a member of DEAD RNA helicase family which exhibits diverse cellular functions including DNA transcription, recombination and repair, and RNA metabolism. Gemin3 was initially identified as a binding partner to EBNA2 and EBNA3C. However, the mechanism by which EBNA3C regulates Gemin3 function remains unclear. Here, we report that EBNA3C directly interacts with Gemin3 through its C-terminal domains. This interaction results in increased stability of Gemin3 and its accumulation in both B lymphoma cells and EBV transformed lymphoblastoid cell lines (LCLs. Moreover, EBNA3C promotes formation of a complex with p53 and Gemin3 which blocks the DNA-binding affinity of p53. Small hairpin RNA based knockdown of Gemin3 in B lymphoma or LCL cells remarkably attenuates the ability of EBNA3C to inhibit the transcription activity of p53 on its downstream genes p21 and Bax, as well as apoptosis. These findings provide the first evidence that Gemin3 may be a common target of oncogenic viruses for driving cell proliferation and anti-apoptotic activities.

  14. I Jornada Internacional GEMInIS (JIG/2014

    Directory of Open Access Journals (Sweden)

    GEMInIS Grupo de Estudos sobre Mídias Interativas em Imagem e Som

    2013-12-01

    Full Text Available A I Jornada Internacional GEMInIS (JIG/2014 terá como tema central os processos da convergência midiática que transformam o “entretenimento transmídia” na base da economia criativa. O ‘entretenimento transmídia’ ocupa um lugar central na esfera da produção e consumo, porém, é uma noção que permanece relativamente inédita no campo acadêmico. Historicamente, entretenimento é um conceito que aparece associado ao que é ‘alegre, divertido, emocionante e prazeroso’. Na I Jornada Internacional GEMInIS, pretende-se debater os processos de compartilhamento da propriedade intelectual e comercial das marcas, visando um maior entendimento sobre o modo como o conteúdo audiovisual é concebido e distribuído nas redes culturais e comunicacionais.

  15. Geminate recombination in liquid argon

    International Nuclear Information System (INIS)

    Freeman, G.R.

    1984-01-01

    The extended Onsager model for geminate neutralization is supported by the field dependence of the ionization yield in liquid argon irradiated by high energy electrons or x rays. Attempts to employ the model fail unless the distribution of initial separation distances between the thermalized electrons and their sibling ions (secondary electron thermalization ranges) is included. Data of Scalettar and co-workers are reanalyzed

  16. Solvable model with an extreme AGP ground state: relationships among fermion pairs, pairons, and natural spin geminals

    International Nuclear Information System (INIS)

    Larson, E.G.

    1986-01-01

    A model many-fermion Hamiltonian is presented for which the ground state is asymptotically an Antisymmetrized Geminal Powers (AGP) wave function with largest possible greatest eigenvalue for its two-particle reduced density matrix. Closed analytical expressions and plane-wave expansions are presented for the generating geminal of the AGP ground state and for its one-particle reduced density matrix. The natural orbitals for this generating geminal are plane waves. The generating geminal shows intensely local character in its intracule and corresponds to the formation of a quasi-boson from two fermions. One may appropriately modify this generating geminal to introduce zero occupation numbers of its one-particle reduced density matrix and to make all the nonzero occupation numbers of its one-particle reduced density matrix equal, thus making this geminal a generator of an extreme AGP wave function, with an extreme large eigenvalue for its two-particle reduced density matrix. Closed analytical expressions are also given for this modified geminal and for its one-particle reduced density matrix. The similarities and differences of the features of this model and the accepted models of the superconducting ground state of electrons in metals, and the superfluid ground state of liquid He 4 are mentioned

  17. Gemination or fusion? - challenge for dental practitioners (case study).

    Science.gov (United States)

    Chipashvili, N; Vadachkoria, D; Beshkenadze, E

    2011-05-01

    Gemination and fusion are anomalies in size, shape and structure of teeth. Gemination more frequently affects the primary teeth, but it may occur in permanent dentitions, usually in the incisor region. Geminated teeth are typically disfigured in appearance due to irregularities of the enamel. Fused teeth can have separated pulpal space, one pulp chamber and two canals or take the form of a large bifid crown with one pulpal space. It is hard to differentiate between fusion and gemination, especially if the supernumerary tooth bud is fused with the adjacent one. Usually, fusion may be differentiated from germination by a reduced number of teeth. An exception is in the unusual case in which the fusion is between a supernumerary tooth and normal tooth. A 20-year-old male referred to us at - "UniDent" - Dental Clinic, Training and Research Center. The patient complained about the large, unusual maxillary central incisors, lip irritation and aesthetic problems. According clinical examination and radiological findings, clinical diagnose was - bilateral germination of central incisors. Several treatment methods have been described in the literature with respect to the different types and morphological variations of fused and geminated teeth, including endodontic, direct\\indirect restorative, surgical, periodontal and/or orthodontic treatment. Our patient has demanded for better aesthetics and he choose the treatment option to make two separate PFM crowns. In the beginning of treatment, the length of tooth 11 was 9.5mm, after prosthodontic treatment it has become 11.5mm. For tooth 21, it was 9.9 millimeter and became - 10.8 mm, while the primary width of right central incisor appeared 13.2 millimeter and was narrowed until 10.8 mm. 12.8 mm was the - width of left central incisor, which finally became - 10.4 mm. Despite the considerable number of cases reported in the literature, the differential diagnosis between these abnormalities is very difficult, as well as, to find

  18. Co-occurrence of gemination and dens invaginatus: a case report

    Directory of Open Access Journals (Sweden)

    Sonika Achalli

    2016-03-01

    Full Text Available Gemination is a developmental anomaly where a single tooth bud attempts to split into two. It is also sometimes called as double tooth or twinning. Dens invaginatus is another developmental anomaly caused due to invagination of a portion of crown. These anomalies occur as separate entities. Co-occurrence of these two anomalies have been only reported four times in the literature. Here we present an extremely rare case of simultaneous occurrence of gemination and dens invaginatus in the same tooth. [Cukurova Med J 2016; 41(1.000: 175-177

  19. Picosecond pulse radiolysis studies on geminate ion recombination in saturated hydrocarbon

    International Nuclear Information System (INIS)

    Tagawa, S.; Washio, M.; Kobayashi, H.; Katsumura, Y.; Tabata, Y.

    1983-01-01

    The geminate recombination kinetics of the excess electron and the electron hole are discussed, based on time-resolved data on picosecond and nanosecond time scales. The recombination times of the excess electron and the electron hole are evaluated to be 3 ps for cyclohexane on the basis of the comparison between the experimental and the calculated results. The spin correlation decay of the geminate ion pairs and the triplet state formation before the spin correlation loss have also been discussed. The rapidly decaying species with very broad absorption spectra, which are similar to the absorption spectra of the cation radicals of saturated hydrocarbons, have been observed in neat saturated hydrocarbons in the sub-nanosecond and a few nanosecond time regions. The identification of the rapidly decaying species were not definitely made but those species are tentatively assigned to the excited states and/or the tail of the geminate cation radicals of saturated hydrocarbons. (author)

  20. The hydrolysis of geminal ethers: a kinetic appraisal of orthoesters and ketals

    Directory of Open Access Journals (Sweden)

    Sonia L. Repetto

    2016-07-01

    Full Text Available A novel approach to protecting jet fuel against the effects of water contamination is predicated upon the coupling of the rapid hydrolysis reactions of lipophilic cyclic geminal ethers, with the concomitant production of a hydrophilic acyclic hydroxyester with de-icing properties (Fuel Dehydrating Icing Inhibitors - FDII. To this end, a kinetic appraisal of the hydrolysis reactions of representative geminal ethers was undertaken using a convenient surrogate for the fuel–water interface (D2O/CD3CN 1:4. We present here a library of acyclic and five/six-membered cyclic geminal ethers arranged according to their hydroxonium catalytic coefficients for hydrolysis, providing for the first time a framework for the development of FDII. A combination of 1H NMR, labelling and computational studies was used to assess the effects that may govern the observed relative rates of hydrolyses.

  1. Febuxostat-Minoxidil Salt Solvates: Crystal Structures, Characterization, Interconversion and Solubility Performance

    Directory of Open Access Journals (Sweden)

    Li-Yang Li

    2018-02-01

    Full Text Available Three febuxostat-minoxidil salt solvates with acetone (ACE, tetrahydrofuran (THF and isopropanol (IPA are synthesized by solvent-assisted grinding and characterized by infrared (IR, nuclear magnetic resonance (1H-NMR, single crystal and powder X-ray diffraction (PXRD, thermogravimetry (TG and differential scanning calorimetry (DSC. These febuxostat-minoxidil salt solvates feature isostructural with the same stoichiometries (1:1:1 molecule ratio. The proton transfers from the carboxylic group of febuxostat (FEB to imino N atom of minoxidil (MIN, which forms the motif with combined R 2 2 (9 R 4 2 (8 R 2 2 (9 graph set in the three solvates. The solvents occupy the different positions related to the motif, which results in the apparent differences in PXRD patterns before/after desolvation although they are isostructures. The FEB-MIN·THF was more thermostable than FEB-MIN·ACE and FEB-MIN·IPA relative to solvent removal from DSC patterns, which is different from the results from the solvent-exchange experiments in chemical kinetics. All three salt solvates exhibit increased equilibrium solubility compared to FEB in aqueous medium.

  2. A non-JKL density matrix functional for intergeminal correlation between closed-shell geminals from analysis of natural orbital configuration interaction expansions.

    Science.gov (United States)

    van Meer, R; Gritsenko, O V; Baerends, E J

    2018-03-14

    Almost all functionals that are currently used in density matrix functional theory have been created by some a priori ansatz that generates approximations to the second-order reduced density matrix (2RDM). In this paper, a more consistent approach is used: we analyze the 2RDMs (in the natural orbital basis) of rather accurate multi-reference configuration interaction expansions for several small molecules (CH 4 , NH 3 , H 2 O, FH, and N 2 ) and use the knowledge gained to generate new functionals. The analysis shows that a geminal-like structure is present in the 2RDMs, even though no geminal theory has been applied from the onset. It is also shown that the leading non-geminal dynamical correlation contributions are generated by a specific set of double excitations. The corresponding determinants give rise to non-JKL (non Coulomb/Exchange like) multipole-multipole dispersive attractive terms between geminals. Due to the proximity of the geminals, these dispersion terms are large and cannot be omitted, proving pure JKL functionals to be essentially deficient. A second correction emerges from the observation that the "normal" geminal-like exchange between geminals breaks down when one breaks multiple bonds. This problem can be fixed by doubling the exchange between bond broken geminals, effectively restoring the often physically correct high-spin configurations on the bond broken fragments. Both of these corrections have been added to the commonly used antisymmetrized product of strongly orthogonal geminals functional. The resulting non-JKL functional Extended Löwdin-Shull Dynamical-Multibond is capable of reproducing complete active space self-consistent field curves, in which one active orbital is used for each valence electron.

  3. A non-JKL density matrix functional for intergeminal correlation between closed-shell geminals from analysis of natural orbital configuration interaction expansions

    Science.gov (United States)

    van Meer, R.; Gritsenko, O. V.; Baerends, E. J.

    2018-03-01

    Almost all functionals that are currently used in density matrix functional theory have been created by some a priori ansatz that generates approximations to the second-order reduced density matrix (2RDM). In this paper, a more consistent approach is used: we analyze the 2RDMs (in the natural orbital basis) of rather accurate multi-reference configuration interaction expansions for several small molecules (CH4, NH3, H2O, FH, and N2) and use the knowledge gained to generate new functionals. The analysis shows that a geminal-like structure is present in the 2RDMs, even though no geminal theory has been applied from the onset. It is also shown that the leading non-geminal dynamical correlation contributions are generated by a specific set of double excitations. The corresponding determinants give rise to non-JKL (non Coulomb/Exchange like) multipole-multipole dispersive attractive terms between geminals. Due to the proximity of the geminals, these dispersion terms are large and cannot be omitted, proving pure JKL functionals to be essentially deficient. A second correction emerges from the observation that the "normal" geminal-like exchange between geminals breaks down when one breaks multiple bonds. This problem can be fixed by doubling the exchange between bond broken geminals, effectively restoring the often physically correct high-spin configurations on the bond broken fragments. Both of these corrections have been added to the commonly used antisymmetrized product of strongly orthogonal geminals functional. The resulting non-JKL functional Extended Löwdin-Shull Dynamical-Multibond is capable of reproducing complete active space self-consistent field curves, in which one active orbital is used for each valence electron.

  4. Restrained Proton Indicator in Combined Quantum-Mechanics/Molecular-Mechanics Dynamics Simulations of Proton Transfer through a Carbon Nanotube.

    Science.gov (United States)

    Duster, Adam W; Lin, Hai

    2017-09-14

    Recently, a collective variable "proton indicator" was purposed for tracking an excess proton solvated in bulk water in molecular dynamics simulations. In this work, we demonstrate the feasibility of utilizing the position of this proton indicator as a reaction coordinate to model an excess proton migrating through a hydrophobic carbon nanotube in combined quantum-mechanics/molecular-mechanics simulations. Our results indicate that applying a harmonic restraint to the proton indicator in the bulk solvent near the nanotube pore entrance leads to the recruitment of water molecules into the pore. This is consistent with an earlier study that employed a multistate empirical valence bond potential and a different representation (center of excess charge) of the proton. We attribute this water recruitment to the delocalized nature of the solvated proton, which prefers to be in high-dielectric bulk solvent. While water recruitment into the pore is considered an artifact in the present simulations (because of the artificially imposed restraint on the proton), if the proton were naturally restrained, it could assist in building water wires prior to proton transfer through the pore. The potential of mean force for a proton translocation through the water-filled pore was computed by umbrella sampling, where the bias potentials were applied to the proton indicator. The free energy curve and barrier heights agree reasonably with those in the literature. The results suggest that the proton indicator can be used as a reaction coordinate in simulations of proton transport in confined environments.

  5. Acoustic cue weighting in the singleton vs geminate contrast in Lebanese Arabic: The case of fricative consonants.

    Science.gov (United States)

    Al-Tamimi, Jalal; Khattab, Ghada

    2015-07-01

    This paper is the first reported investigation of the role of non-temporal acoustic cues in the singleton-geminate contrast in Lebanese Arabic, alongside the more frequently reported temporal cues. The aim is to explore the extent to which singleton and geminate consonants show qualitative differences in a language where phonological length is prominent and where moraic structure governs segment timing and syllable weight. Twenty speakers (ten male, ten female) were recorded producing trochaic disyllables with medial singleton and geminate fricatives preceded by phonologically short and long vowels. The following acoustic measures were applied on the medial fricative and surrounding vowels: absolute duration; intensity; fundamental frequency; spectral peak and shape, dynamic amplitude, and voicing patterns of medial fricatives; and vowel quality and voice quality correlates of surrounding vowels. Discriminant analysis and receiver operating characteristics (ROC) curves were used to assess each acoustic cue's contribution to the singleton-geminate contrast. Classification rates of 89% and ROC curves with an area under the curve rate of 96% confirmed the major role played by temporal cues, with non-temporal cues contributing to the contrast but to a much lesser extent. These results confirm that the underlying contrast for gemination in Arabic is temporal, but highlight [+tense] (fortis) as a secondary feature.

  6. Four-body correlation embedded in antisymmetrized geminal power wave function.

    Science.gov (United States)

    Kawasaki, Airi; Sugino, Osamu

    2016-12-28

    We extend the Coleman's antisymmetrized geminal power (AGP) to develop a wave function theory that can incorporate up to four-body correlation in a region of strong correlation. To facilitate the variational determination of the wave function, the total energy is rewritten in terms of the traces of geminals. This novel trace formula is applied to a simple model system consisting of one dimensional Hubbard ring with a site of strong correlation. Our scheme significantly improves the result obtained by the AGP-configuration interaction scheme of Uemura et al. and also achieves more efficient compression of the degrees of freedom of the wave function. We regard the result as a step toward a first-principles wave function theory for a strongly correlated point defect or adsorbate embedded in an AGP-based mean-field medium.

  7. Absolute single-ion solvation free energy scale in methanol determined by the lithium cluster-continuum approach.

    Science.gov (United States)

    Pliego, Josefredo R; Miguel, Elizabeth L M

    2013-05-02

    Absolute solvation free energy of the lithium cation in methanol was calculated by the cluster-continuum quasichemical theory of solvation. Clusters with up to five methanol molecules were investigated using X3LYP, MP2, and MP4 methods with DZVP, 6-311+G(2df,2p), TZVPP+diff, and QZVPP+diff basis sets and including the cluster solvation through the PCM and SMD continuum models. Our calculations have determined a value of -118.1 kcal mol(-1) for the solvation free energy of the lithium, in close agreement with a value of -116.6 kcal mol(-1) consistent with the TATB assumption. Using data of solvation and transfer free energy of a pair of ions, electrode potentials and pKa, we have obtained the solvation free energy of 25 ions in methanol. Our analysis leads to a value of -253.6 kcal mol(-1) for the solvation free energy of the proton, which can be compared with the value of -263.5 kcal mol(-1) obtained by Kelly et al. using the cluster pair approximation. Considering that this difference is due to the methanol surface potential, we have estimated that it corresponds to -0.429 V.

  8. Endodontic treatment of developmental anomalies in posterior teeth: treatment of geminated/fused teeth--report of two cases.

    Science.gov (United States)

    Tsesis, I; Steinbock, N; Rosenberg, E; Kaufman, A Y

    2003-05-01

    Gemination or fusion is a rare occurrence in the mandibular posterior teeth. Endodontic treatment of these teeth needs special care and attention to the bizarre anatomy. The aim of this article is to describe the problems encountered and the strategy in treating such cases. Two cases of complex endodontic treatment of fused/geminated teeth are presented. The first is an 11-year-old girl with an anomalous 'double' first mandibular molar and premolar diagnosed as having necrotic pulp with chronic apical abscess of endodontic origin; the second is a 16-year-old boy with 'double' second and supernumerary mandibular molars, who was diagnosed with irreversible pulpitis. Both cases were treated successfully in multiple appointments. The common features and treatment modalities are discussed. Failure to diagnose fused/geminated teeth leads to misdiagnosis and a treatment plan that could cause permanent damage and tooth loss. Generally, there is communication between root canal systems of fused/geminated teeth which should be treated as one entity. Use of magnification is an important aid during treatment.

  9. Synthesis and Chemistry of Organic Geminal Di- and Triazides.

    Science.gov (United States)

    Häring, Andreas P; Kirsch, Stefan F

    2015-11-06

    This review recapitulates all available literature dealing with the synthesis and reactivity of geminal organic di- and triazides. These compound classes are, to a large extent, unexplored despite their promising chemical properties and their simple preparation. In addition, the chemistry of carbonyl diazide (2) and tetraazidomethane (105) is described in separate sections.

  10. The Role of Perception in the Typology of Geminate Consonants: Effects of Manner of Articulation, Segmental Environment, Position, and Stress.

    Science.gov (United States)

    Dmitrieva, Olga

    2018-03-01

    The present study seeks to answer the question of whether consonant duration is perceived differently across consonants of different manners of articulation and in different contextual environments and whether such differences may be related to the typology of geminates. The results of the cross-linguistic identification experiment suggest higher perceptual acuity in labeling short and long consonants in sonorants than in obstruents. Duration categories were also more consistently and clearly labeled in the intervocalic than in the preconsonantal environment, in the word-initial than in the word-final position, and after stressed vowels than between unstressed vowels. These perceptual asymmetries are in line with some typological tendencies, such as the cross-linguistic preference for intervocalic and post-stress geminates, but contradict other proposed cross-linguistic patterns, such as the preference for obstruent geminates and the abundance of word-final geminates.

  11. Solvation thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    1987-01-01

    This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen­ tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther­ modynamics alone. However, solvation is inherently a molecular pro­ cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 b...

  12. Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

    Directory of Open Access Journals (Sweden)

    Pavel V. Komarov

    2013-09-01

    Full Text Available Atomistic and first-principles molecular dynamics simulations are employed to investigate the structure formation in a hydrated Nafion membrane and the solvation and transport of protons in the water channel of the membrane. For the water/Nafion systems containing more than 4 million atoms, it is found that the observed microphase-segregated morphology can be classified as bicontinuous: both majority (hydrophobic and minority (hydrophilic subphases are 3D continuous and organized in an irregular ordered pattern, which is largely similar to that known for a bicontinuous double-diamond structure. The characteristic size of the connected hydrophilic channels is about 25–50 Å, depending on the water content. A thermodynamic decomposition of the potential of mean force and the calculated spectral densities of the hindered translational motions of cations reveal that ion association observed with decreasing temperature is largely an entropic effect related to the loss of low-frequency modes. Based on the results from the atomistic simulation of the morphology of Nafion, we developed a realistic model of ion-conducting hydrophilic channel within the Nafion membrane and studied it with quantum molecular dynamics. The extensive 120 ps-long density functional theory (DFT-based simulations of charge migration in the 1200-atom model of the nanochannel consisting of Nafion chains and water molecules allowed us to observe the bimodality of the van Hove autocorrelation function, which provides the direct evidence of the Grotthuss bond-exchange (hopping mechanism as a significant contributor to the proton conductivity.

  13. Rotation and solvation of ammonium ion

    International Nuclear Information System (INIS)

    Perrin, C.L.; Gipe, R.K.

    1987-01-01

    From nitrogen-15 spin-lattice relaxation times and nuclear Overhauser enhancements, the rotational correlations time tau/sub c/ for 15 NH 4 + was determined in s series of solvents. Values of tau/sub c/ range from 0.46 to 20 picoseconds. The solvent dependent of tau/sub c/ cannot be explained in terms of solvent polarity, molecular dipole moment, solvent basicity, solvent dielectric relaxation, or solvent viscosity. The rapid rotation and the variation with solvent can be accounted for by a model that involves hydrogen bonding of an NH proton to more than one solvent molecule in a disordered solvation environment. 25 references, 1 table

  14. Kinetics of proton migration in liquid water.

    Science.gov (United States)

    Chen, Hanning; Voth, Gregory A; Agmon, Noam

    2010-01-14

    We have utilized multistate empirical valence bond (MS-EVB3) simulations of protonated liquid water to calculate the relative mean-square displacement (MSD) and the history-independent time correlation function, c(t), of the hydrated proton center of excess charge (CEC) with respect to the water molecule on which it has initially resided. The MSD is nonlinear for the first 15 ps, suggesting that the relative diffusion coefficient increases from a small value, D(0), at short separations to its larger bulk value, D(infinity), at large separations. With the ensuing distance-dependent diffusion coefficient, D(r), the time dependence of both the MSD and c(t) agrees quantitatively with the solution of a diffusion equation for reversible geminate recombination. This suggests that the relative motion of the CEC is not independent from the nearby water molecules, in agreement with theoretical and experimental observations that large water clusters participate in the mechanism of proton mobility.

  15. Where do ions solvate?

    Indian Academy of Sciences (India)

    We study a simple model of ionic solvation inside a water cluster. The cluster is modeled as a spherical dielectric continuum. It is found that unpolarizable ions always prefer the bulk solvation. On the other hand, for polarizable ions, there exists a critical value of polarization above which surface solvation becomes ...

  16. Acquisition of L2 Japanese Geminates: Training with Waveform Displays

    Science.gov (United States)

    Motohashi-Saigo, Miki; Hardison, Debra M.

    2009-01-01

    The value of waveform displays as visual feedback was explored in a training study involving perception and production of L2 Japanese by beginning-level L1 English learners. A pretest-posttest design compared auditory-visual (AV) and auditory-only (A-only) Web-based training. Stimuli were singleton and geminate /t,k,s/ followed by /a,u/ in two…

  17. What and where in speech recognition: Geminates and singletons in spoken Italian

    NARCIS (Netherlands)

    Tagliapietra, L.; McQueen, J.M.

    2010-01-01

    Four cross-modal repetition priming experiments examined whether consonant duration in Italian provides listeners with information not only for segmental identification ("what" information: whether the consonant is a geminate or a singleton) but also for lexical segmentation ("where" information:

  18. Quantitative proteomics identifies Gemin5, a scaffolding protein involved in ribonucleoprotein assembly, as a novel partner for eukaryotic initiation factor 4E

    DEFF Research Database (Denmark)

    Fierro-Monti, Ivo; Mohammed, Shabaz; Matthiesen, Rune

    2006-01-01

    Protein complexes are dynamic entities; identification and quantitation of their components is critical in elucidating functional roles under specific cellular conditions. We report the first quantitative proteomic analysis of the human cap-binding protein complex. Components and proteins......-starved tumorigenic human mesenchymal stromal cells, attested to their activated translational states. The WD-repeat, scaffolding-protein Gemin5 was identified as a novel eIF4E binding partner, which interacted directly with eIF4E through a motif (YXXXXLPhi) present in a number of eIF4E-interacting partners. Elevated...... levels of Gemin5:eIF4E complexes were found in phorbol ester treated HEK293 cells. Gemin5 and eIF4E co-localized to cytoplasmic P-bodies in human osteosarcoma U2OS cells. Interaction between eIF4E and Gemin5 and their co-localization to the P-bodies, may serve to recruit capped mRNAs to these RNP...

  19. Quantum-chemical investigation of the 1,2-proton shift in protonated five-membered aromatic heterocycles

    International Nuclear Information System (INIS)

    Abronin, I.A.; Gorb, L.G.; Litvinov, V.P.

    1985-01-01

    Calculations of the energetics of the 1,2-proton shift in protonated five-membered aromatic heterocycles - pyrrole, furan, and thiophene - have been carried out by the SCF MO LCAO method in the MINDO/3 approximation and nonempirically on the OST-3GF (OST-3GF) basis. The general features of this process, and also the influence of solvation and of taking into account the vacant d-AOs of the sulfur atom in the protonated form of thiophene on the results of the calculation are considered. The results obtained have been used for a discussion of the activity and selectivity of the heterocycles considered in aromatic electrophilic substitution reactions

  20. Effects of solvation shells and cluster size on the reaction of aluminum clusters with water

    Directory of Open Access Journals (Sweden)

    Weiwei Mou

    2011-12-01

    Full Text Available Reaction of aluminum clusters, Aln (n = 16, 17 and 18, with liquid water is investigated using quantum molecular dynamics simulations, which show rapid production of hydrogen molecules assisted by proton transfer along a chain of hydrogen bonds (H-bonds between water molecules, i.e. Grotthuss mechanism. The simulation results provide answers to two unsolved questions: (1 What is the role of a solvation shell formed by non-reacting H-bonds surrounding the H-bond chain; and (2 whether the high size-selectivity observed in gas-phase Aln-water reaction persists in liquid phase? First, the solvation shell is found to play a crucial role in facilitating proton transfer and hence H2 production. Namely, it greatly modifies the energy barrier, generally to much lower values (< 0.1 eV. Second, we find that H2 production by Aln in liquid water does not depend strongly on the cluster size, in contrast to the existence of magic numbers in gas-phase reaction. This paper elucidates atomistic mechanisms underlying these observations.

  1. Geminal difunctionalization of α-diazo arylmethylphosphonates: synthesis of fluorinated phosphonates.

    Science.gov (United States)

    Zhou, Yujing; Zhang, Yan; Wang, Jianbo

    2016-11-08

    A general approach towards diverse fluorinated phosphonates via geminal difunctionalization reactions of α-diazo arylmethylphosphonates is described. The diazo functionality (RR'C[double bond, length as m-dash]N 2 ) is successfully converted to RR'CF 2 , RR'CHF, RR'CFBr or RR'CFNR'' 2 groups by employing different fluorination reagents. A variety of fluorinated organophosphorus compounds were readily accessed in good to excellent yields from a common type of precursor.

  2. Proton transfer to charged platinum electrodes. A molecular dynamics trajectory study.

    Science.gov (United States)

    Wilhelm, Florian; Schmickler, Wolfgang; Spohr, Eckhard

    2010-05-05

    A recently developed empirical valence bond (EVB) model for proton transfer on Pt(111) electrodes (Wilhelm et al 2008 J. Phys. Chem. C 112 10814) has been applied in molecular dynamics (MD) simulations of a water film in contact with a charged Pt surface. A total of seven negative surface charge densities σ between -7.5 and -18.9 µC cm(-2) were investigated. For each value of σ, between 30 and 84 initial conditions of a solvated proton within a water slab were sampled, and the trajectories were integrated until discharge of a proton occurred on the charged surfaces. We have calculated the mean rates for discharge and for adsorption of solvated protons within the adsorbed water layer in contact with the metal electrode as a function of surface charge density. For the less negative values of σ we observe a Tafel-like exponential increase of discharge rate with decreasing σ. At the more negative values this exponential increase levels off and the discharge process is apparently transport limited. Mechanistically, the Tafel regime corresponds to a stepwise proton transfer: first, a proton is transferred from the bulk into the contact water layer, which is followed by transfer of a proton to the charged surface and concomitant discharge. At the more negative surface charge densities the proton transfer into the contact water layer and the transfer of another proton to the surface and its discharge occur almost simultaneously.

  3. Thermal Annealing Reduces Geminate Recombination in TQ1:N2200 All-Polymer Solar Cells

    KAUST Repository

    Karuthedath, Safakath; Melianas, Armantas; Kan, Zhipeng; Pranculis, Vytenis; Wohlfahrt, Markus; Khan, Jafar Iqbal; Gorenflot, Julien; Xia, Yuxin; Inganä s, Olle; Gulbinas, Vidmantas; Kemerink, Martijn; Laquai, Fré dé ric

    2018-01-01

    -geminate recombination competing with charge extraction, causing low FFs, our results demonstrate that the donor/acceptor interface in all-polymer solar cells can be favourably altered to enhance charge separation, without compromising charge transport and extraction.

  4. Preferential solvation of fluorenone and 4-hydroxyfluorenone in binary solvent mixtures

    International Nuclear Information System (INIS)

    Jozefowicz, Marek; Heldt, Janina R.

    2003-01-01

    Preferential solvation of fluorenone and 4-hydroxyfluorenone in binary solvent mixtures has been studied using steady-state spectroscopic measurements. This study concerns the solvent-induced shift of the absorption and fluorescence spectra of both molecules in two solvent mixtures, i.e., cyclohexane-tetrahydrofuran and cyclohexane-ethanol. The first system contains polar solute molecules, fluorenone and 4-hydroxyfluorenone, in a mixture of polar aprotic (tetrahydrofuran) and non-polar (cyclohexane) solvents. In the second solvents mixture, hydrogen bonding with solute molecules (ethanol) may occur. The results of spectroscopic measurements are analysed using theoretical models of Bakshiev, Mazurenko and Suppan which describe preferential solvation phenomena. In the case of cyclohexane-tetrahydrofuran mixtures, the deviation from linearity in the absorption and fluorescence solvatochromic shifts vs. the solution polarity is due to non-specific dipolar solvent-solute interactions. For cyclohexane-ethanol binary mixtures, both non-specific and specific (hydrogen bond and proton-relay tautomerization) interactions contribute to the observed solvatochromism

  5. Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water

    Energy Technology Data Exchange (ETDEWEB)

    Soniat, Marielle; Rick, Steven W., E-mail: srick@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148 (United States); Kumar, Revati [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70808 (United States)

    2015-07-28

    The role of the solvated excess proton and hydroxide ions in interfacial properties is an interesting scientific question with applications in a variety of aqueous behaviors. The role that charge transfer (CT) plays in interfacial behavior is also an unsettled question. Quantum calculations are carried out on clusters of water with an excess proton or a missing proton (hydroxide) to determine their CT. The quantum results are applied to analysis of multi-state empirical valence bond trajectories. The polyatomic nature of the solvated excess proton and hydroxide ion results in directionally dependent CT, depending on whether a water molecule is a hydrogen bond donor or acceptor in relation to the ion. With polyatomic molecules, CT also depends on the intramolecular bond distances in addition to intermolecular distances. The hydrated proton and hydroxide affect water’s liquid/vapor interface in a manner similar to monatomic ions, in that they induce a hydrogen-bonding imbalance at the surface, which results in charged surface waters. This hydrogen bond imbalance, and thus the charged waters at the surface, persists until the ion is at least 10 Å away from the interface.

  6. Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water

    International Nuclear Information System (INIS)

    Soniat, Marielle; Rick, Steven W.; Kumar, Revati

    2015-01-01

    The role of the solvated excess proton and hydroxide ions in interfacial properties is an interesting scientific question with applications in a variety of aqueous behaviors. The role that charge transfer (CT) plays in interfacial behavior is also an unsettled question. Quantum calculations are carried out on clusters of water with an excess proton or a missing proton (hydroxide) to determine their CT. The quantum results are applied to analysis of multi-state empirical valence bond trajectories. The polyatomic nature of the solvated excess proton and hydroxide ion results in directionally dependent CT, depending on whether a water molecule is a hydrogen bond donor or acceptor in relation to the ion. With polyatomic molecules, CT also depends on the intramolecular bond distances in addition to intermolecular distances. The hydrated proton and hydroxide affect water’s liquid/vapor interface in a manner similar to monatomic ions, in that they induce a hydrogen-bonding imbalance at the surface, which results in charged surface waters. This hydrogen bond imbalance, and thus the charged waters at the surface, persists until the ion is at least 10 Å away from the interface

  7. Relationships among Egg Size, Composition, and Energy: A Comparative Study of Geminate Sea Urchins

    Science.gov (United States)

    McAlister, Justin S.; Moran, Amy L.

    2012-01-01

    Egg size is one of the fundamental parameters in the life histories of marine organisms. However, few studies have examined the relationships among egg size, composition, and energetic content in a phylogenetically controlled context. We investigated the associations among egg size, composition, and energy using a comparative system, geminate species formed by the closure of the Central American Seaway. We examined western Atlantic (WA) and eastern Pacific (EP) species in three echinoid genera, Echinometra, Eucidaris, and Diadema. In the genus with the largest difference in egg size between geminates (Echinometra), the eggs of WA species were larger, lipid rich and protein poor compared to the smaller eggs of their EP geminate. In addition, the larger WA eggs had significantly greater total egg energy and summed biochemical constituents yet significantly lower egg energy density (energy-per-unit-volume). However, the genera with smaller (Eucidaris) or no (Diadema) differences in egg size were not significantly different in summed biochemical constituents, total egg energy, or energy density. Theoretical models generally assume a strong tradeoff between egg size and fecundity that limits energetic investment and constrains life history evolution. We show that even among closely-related taxa, large eggs cannot be assumed to be scaled-up small eggs either in terms of energy or composition. Although our data comes exclusively from echinoid echinoderms, this pattern may be generalizable to other marine invertebrate taxa. Because egg composition and egg size do not necessarily evolve in lockstep, selective factors such as sperm limitation could act on egg volume without necessarily affecting maternal or larval energetics. PMID:22911821

  8. Structural and dynamical properties of solvated electrons; a study of kinetic spectroscopy using pulse radiolysis

    International Nuclear Information System (INIS)

    Huis, C. van

    1977-01-01

    In this thesis the pulse radiolysis experiments of hexamethyl-phosphortriamide (HMPA), propanol-1, 3-methylpentane and mixtures of propanol-1 and 3-methylpentane are reported. In the pulse radiolysis of HMPA, carried out at room temperature, the high yield of esub(s) - (G=2) and the very high wavelength of the maximum absorption (max= 2200 nm) in the esub(s) - absorption spectrum are explained by considering the aprotic nature and the molecular structure of this compound. In the experiment with propanol-1 (temperature range 93deg-123degK) a temporal shift to lower wavelengths in the time range of 10 s-10 ms is observed. In further experiments biphenyl was used as electron scavenger. It was concluded that after the electron pulse the following sequence of events takes place: 1) electron redistribution in times shorter than 1 s; 2) dipole reorientation during 10 s-10 ms; 3) recombination of a part of the solvated electrons; 4) a reaction of the solvated electrons with the neighbouring propanol-1 molecules. In the experiments with 3-methylpentane at 103deg-113degK an esub(s) - absorption band with third order decay kinetics was observed. This is attributed to geminate recombination. The activation energy of the recombination process was 0.4 eV. The experiments with mixtures of propanol-1 and 3-methylpentane were carried out at 103degK. At low propanol-1 concentrations the build-up at 500 nm obeys first order kinetics, whereas at high concentrations this build-up can be split up into three first order components, as was measured in pure propanol-1. The half-lives of the three components were in the ratio of 1:10:100. In the last chapter theoretical models for the electron redistribution and the matric relaxation are discussed and compared with the experiments

  9. The Role of Geminates in Infants' Early Word Production and Word-Form Recognition

    Science.gov (United States)

    Vihman, Marilyn; Majoran, Marinella

    2017-01-01

    Infants learning languages with long consonants, or geminates, have been found to "overselect" and "overproduce" these consonants in early words and also to commonly omit the word-initial consonant. A production study with thirty Italian children recorded at 1;3 and 1;9 strongly confirmed both of these tendencies. To test the…

  10. Proton-Induced Plasticity in Hydrogen Clusters

    International Nuclear Information System (INIS)

    Stich, I.; Marx, D.; Parrinello, M.; Terakura, K.; Terakura, K.

    1997-01-01

    The effect of protonation of pure hydrogen clusters is investigated at low temperature using a combination of path-integral simulations and first-principles electronic structure calculations. The added proton gets trapped as a very localized H 3 + impurity in the cluster core, and is surrounded by stable shells of solvating H 2 molecules. These clusters are frozen with respect to the translational degrees of freedom, while the H 2 ligands undergo large-amplitude rotations. The classical approximation for the nuclei fails to account for this effect which is akin to plastic behavior in crystals. copyright 1997 The American Physical Society

  11. Proton transfer through hydrogen bonds in two-dimensional water layers: A theoretical study based on ab initio and quantum-classical simulations

    International Nuclear Information System (INIS)

    Bankura, Arindam; Chandra, Amalendu

    2015-01-01

    The dynamics of proton transfer (PT) through hydrogen bonds in a two-dimensional water layer confined between two graphene sheets at room temperature are investigated through ab initio and quantum-classical simulations. The excess proton is found to be mostly solvated as an Eigen cation where the hydronium ion donates three hydrogen bonds to the neighboring water molecules. In the solvation shell of the hydronium ion, the three coordinated water molecules with two donor hydrogen bonds are found to be properly presolvated to accept a proton. Although no hydrogen bond needs to be broken for transfer of a proton to such presolvated water molecules from the hydronium ion, the PT rate is still found to be not as fast as it is for one-dimensional chains. Here, the PT is slowed down as the probability of finding a water with two donor hydrogen bonds in the solvation shell of the hydronium ion is found to be only 25%-30%. The hydroxide ion is found to be solvated mainly as a complex anion where it accepts four H-bonds through its oxygen atom and the hydrogen atom of the hydroxide ion remains free all the time. Here, the presolvation of the hydroxide ion to accept a proton requires that one of its hydrogen bonds is broken and the proton comes from a neighboring water molecule with two acceptor and one donor hydrogen bonds. The coordination number reduction by breaking of a hydrogen bond is a slow process, and also the population of water molecules with two acceptor and one donor hydrogen bonds is only 20%-25% of the total number of water molecules. All these factors together tend to slow down the hydroxide ion migration rate in two-dimensional water layers compared to that in three-dimensional bulk water

  12. Examination of hydrogen-bonding interactions between dissolved solutes and alkylbenzene solvents based on Abraham model correlations derived from measured enthalpies of solvation

    Energy Technology Data Exchange (ETDEWEB)

    Varfolomeev, Mikhail A.; Rakipov, Ilnaz T. [Chemical Institute, Kazan Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation); Acree, William E., E-mail: acree@unt.edu [Department of Chemistry, 1155 Union Circle # 305070, University of North Texas, Denton, TX 76203-5017 (United States); Brumfield, Michela [Department of Chemistry, 1155 Union Circle # 305070, University of North Texas, Denton, TX 76203-5017 (United States); Abraham, Michael H. [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2014-10-20

    Highlights: • Enthalpies of solution measured for 48 solutes dissolved in mesitylene. • Enthalpies of solution measured for 81 solutes dissolved in p-xylene. • Abraham model correlations derived for enthalpies of solvation of solutes in mesitylene. • Abraham model correlations derived for enthalpies of solvation of solutes in p-xylene. • Hydrogen-bonding enthalpies reported for interactions of aromatic hydrocarbons with hydrogen-bond acidic solutes. - Abstract: Enthalpies of solution at infinite dilution of 48 organic solutes in mesitylene and 81 organic solutes in p-xylene were measured using isothermal solution calorimeter. Enthalpies of solvation for 92 organic vapors and gaseous solutes in mesitylene and for 130 gaseous compounds in p-xylene were determined from the experimental and literature data. Abraham model correlations are determined from the experimental enthalpy of solvation data. The derived correlations describe the experimental gas-to-mesitylene and gas-to-p-xylene solvation enthalpies to within average standard deviations of 1.87 kJ mol{sup −1} and 2.08 kJ mol{sup −1}, respectively. Enthalpies of X-H⋯π (X-O, N, and C) hydrogen bond formation of proton donor solutes (alcohols, amines, chlorinated hydrocarbons etc.) with mesitylene and p-xylene were calculated based on the Abraham solvation equation. Obtained values are in good agreement with the results determined using conventional methods.

  13. Solvates of silico-12-molybdic acid with alcohols

    International Nuclear Information System (INIS)

    Punchuk, I.N.; Chuvaev, V.F.

    1984-01-01

    With the aim of investigating interaction processes of solid heteropolyacids and organic compounds, solvates are prepared. Solvates are products of adding gaseous methanol, ethanol and isopropanol to silico-12-molybdic acid. The compounds are studied by IR and PMR spectroscopy methods. Possible models for solvate structure are considered, as well as their connection with solvate properties and thermal decomposition

  14. Monte-Carlo simulations of geminate electron-hole pair dissociation in a molecular heterojunction: a two-step dissociation mechanism

    International Nuclear Information System (INIS)

    Offermans, Ton; Meskers, Stefan C.J.; Janssen, Rene A.J.

    2005-01-01

    The Monte-Carlo simulations are used to investigate the dissociation of a Coulomb correlated charge pair at an idealized interface between an electron accepting and an electron donating molecular material. In the simulations the materials are represented by cubic lattices of sites, with site the energies spread according to Gaussian distributions. The influence of temperature, applied external fields, and the width of the Gaussian densities of states distribution for both the electron and the hole transporting material are investigated. The results show that the dissociation of geminate charge pairs is assisted by disorder and the results can be understood in terms of a two-step model. In the first step, the slow carrier in the most disordered material jumps away from the interface. In the following, second step, the reduced Coulombic attraction allows the faster carrier in the less disordered material to escape from the interface by thermally activated hopping. When the rate for geminate recombination at the interface is very low ( -1 ) the simulations predict a high yield for carrier collection, as observed experimentally. Comparison of the simulated and experimentally observed temperature dependence of the collection efficiency indicates that at low temperature dissociation of the geminate charge pairs may be one of the factors limiting the device performance

  15. Treatment Plan and Clinical Management of a Geminated Maxillary Lateral Incisor: A Case Report

    Directory of Open Access Journals (Sweden)

    Siavash Moushekhian

    2014-06-01

    Full Text Available The anatomic anomalies detection is important for an attentive clinician. Asuccessful treatment of an endodontically involved tooth should make itfunctional and aesthetically acceptable for the patient. The following articlepresented a case of gemination and the endodontic, prosthetic and periodontaltreatments which were done to keep a complicated tooth in aesthetic zone

  16. Proton-Induced Plasticity in Hydrogen Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Stich, I. [JRCAT, Angstrom Technology Partnership, 1-1-4 Higashi, Tsukuba, Ibaraki 305 (Japan); Marx, D.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Terakura, K. [NAIR, Angstrom Technology Partnership, 1-1-4 Higashi, Tsukuba, Ibaraki 305 (Japan); Terakura, K. [CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332 (Japan)

    1997-05-01

    The effect of protonation of pure hydrogen clusters is investigated at low temperature using a combination of path-integral simulations and first-principles electronic structure calculations. The added proton gets trapped as a very localized H{sub 3}{sup +} impurity in the cluster core, and is surrounded by stable shells of solvating H{sub 2} molecules. These clusters are frozen with respect to the translational degrees of freedom, while the H{sub 2} ligands undergo large-amplitude rotations. The classical approximation for the nuclei fails to account for this effect which is akin to plastic behavior in crystals. {copyright} {ital 1997} {ital The American Physical Society}

  17. Geminal embedding scheme for optimal atomic basis set construction in correlated calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sorella, S., E-mail: sorella@sissa.it [International School for Advanced Studies (SISSA), Via Beirut 2-4, 34014 Trieste, Italy and INFM Democritos National Simulation Center, Trieste (Italy); Devaux, N.; Dagrada, M., E-mail: mario.dagrada@impmc.upmc.fr [Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Université Pierre et Marie Curie, Case 115, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Mazzola, G., E-mail: gmazzola@phys.ethz.ch [Theoretische Physik, ETH Zurich, 8093 Zurich (Switzerland); Casula, M., E-mail: michele.casula@impmc.upmc.fr [CNRS and Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Université Pierre et Marie Curie, Case 115, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2015-12-28

    We introduce an efficient method to construct optimal and system adaptive basis sets for use in electronic structure and quantum Monte Carlo calculations. The method is based on an embedding scheme in which a reference atom is singled out from its environment, while the entire system (atom and environment) is described by a Slater determinant or its antisymmetrized geminal power (AGP) extension. The embedding procedure described here allows for the systematic and consistent contraction of the primitive basis set into geminal embedded orbitals (GEOs), with a dramatic reduction of the number of variational parameters necessary to represent the many-body wave function, for a chosen target accuracy. Within the variational Monte Carlo method, the Slater or AGP part is determined by a variational minimization of the energy of the whole system in presence of a flexible and accurate Jastrow factor, representing most of the dynamical electronic correlation. The resulting GEO basis set opens the way for a fully controlled optimization of many-body wave functions in electronic structure calculation of bulk materials, namely, containing a large number of electrons and atoms. We present applications on the water molecule, the volume collapse transition in cerium, and the high-pressure liquid hydrogen.

  18. Protonic and Electronic Charge Carriers in Solvated Biomacromolecules

    Science.gov (United States)

    1989-01-01

    was less than 1% of that expected from Couloub’s law]. When dryer samples (less than 5% water ), were electrolysed , the amount of oxygen could only be...2. The methodology involved the adsorption of water and other organic liquids on biomacromolecules and subsequent solid-state electrolysis. 3. The...in contrast, was not found in an electrolysis product even when water was the adsorbate., 6. -The conclusion is that protonic conductance in

  19. Solvent, isotope, and magnetic field effects in the geminate recombination of radical ion pairs

    International Nuclear Information System (INIS)

    Werner, H.; Staerk, H.; Weller, A.

    1978-01-01

    The magnetic field dependence of the geminate recombination triplet yield of radical ion pairs generated via photoinduced electron transfer in polar solvents is investigated for the systems pyrene/N,N-dimethylaniline (Py/DMA), pyrene/3,5-dimethoxy-N,N-dimethylaniline (Py/DMDMA), and the perdeuterated system Py-d 10 /DMA-d 11 . The magnetic field dependence characterized through its B/sub 1/2/ value is found to be dependent on the sum of the hyperfine coupling constants in the radical pair in agreement with previous theoretical predictions. A drastic reduction of the B/sub 1/2/ value is observed with the perdeuterated system. By means of measurements of the radical ion and triplet absorption signals with nanosecond time resolution, the influence of the solvent on the geminate singlet and triplet recombination yields is investigated. Complementary measurements of exciplex lifetimes and quantum yields are carried out in a series of solvents with different polarities in order to determine the rate constants of fluorescence emission and intersystem crossing in the exciplexes

  20. Establishing linear solvation energy relationships between VOCs and monolayer-protected gold nanoclusters using quartz crystal microbalance.

    Science.gov (United States)

    Li, Chi-Lin; Lu, Chia-Jung

    2009-08-15

    Linear solvation energy relationships (LSERs) have been recognized as a useful model for investigating the chemical forces behind the partition coefficients between vapor molecules and absorbents. This study is the first to determine the solvation properties of monolayer-protected gold nanoclusters (MPCs) with different surface ligands. The ratio of partition coefficients/MPC density (K/rho) of 18 volatile organic compounds (VOCs) for four different MPCs obtained through quartz crystal microbalance (QCM) experiments were used for the LSER model calculations. LSER modeling results indicate that all MPC surfaces showed a statistically significant (pattraction, 4-methoxythiophenol-capped MPCs can also interact with polar organics (s=1.04). Showing a unique preference for the hydrogen bond basicity of vapors (b=1.11), 2-benzothiazolethiol-capped MPCs provide evidence of an intra-molecular, proton-shift mechanism on surface of nano-gold.

  1. Solvation of hydrocarbons in aqueous-organic mixtures

    International Nuclear Information System (INIS)

    Sedov, I.A.; Magsumov, T.I.; Solomonov, B.N.

    2016-01-01

    Highlights: • Thermodynamic functions of solvation in mixtures of water with acetone and acetonitrile are measured at T = 298.15 K. • Solvation of n-octane and toluene in aqueous-organic mixtures is studied. • When increasing water content, Gibbs free energies grow up steadily, while enthalpies have a maximum. • Hydrocarbons are preferentially solvated with organic cosolvent even in mixtures with rather high water content. • Acetonitrile suppresses the hydrophobic effect less than acetone. - Abstract: We study the solvation of two hydrocarbons, n-octane and toluene, in binary mixtures of water with organic cosolvents. Two polar aprotic cosolvents that are miscible with water in any proportions, acetonitrile and acetone, were considered. We determine the magnitudes of thermodynamic functions of dissolution and solvation at T = 298.15 K in the mixtures with various compositions. Solution calorimetry was used to measure the enthalpies of solution, and GC headspace analysis was applied to obtain limiting activity coefficients of solutes in the studied systems. For the first time, the enthalpies of solution of alkane in the mixtures with high water content were measured directly. We observed well-pronounced maxima of the dependencies of enthalpies of solvation from the composition of solvent and no maxima for the Gibbs free energies of solvation. Two factors are concluded to be important to explain the observed tendencies: high energy cost of reorganization of binary solvent upon insertion of solute molecules and preferential surrounding of hydrocarbons with the molecules of organic cosolvent. Enthalpy-entropy compensation leads to a steady growth of the Gibbs free energies with increasing water content. On the other hand, consideration of the plots of the Gibbs free energy against enthalpy of solvation clearly shows that the solvation properties are changed dramatically after addition of a rather small amount of organic cosolvents. It is shown that they

  2. Geminal phosphorus/aluminum-based frustrated Lewis pairs: C-H versus C≡C activation and CO2 fixation

    NARCIS (Netherlands)

    Appelt, C.; Westenberg, H.; Bertini, F.; Ehlers, A.W.; Slootweg, J.C.; Lammertsma, K.; Uhl, W.

    2011-01-01

    Catch it! Geminal phosphorus/aluminum-based frustrated Lewis pairs (FLPs) are easily obtained by hydroalumination of alkynylphosphines. These FLPs can activate terminal acetylenes by two competitive pathways, which were analyzed by DFT calculations, and they can bind carbon dioxide reversibly.

  3. Biomolecular electrostatics and solvation: a computational perspective.

    Science.gov (United States)

    Ren, Pengyu; Chun, Jaehun; Thomas, Dennis G; Schnieders, Michael J; Marucho, Marcelo; Zhang, Jiajing; Baker, Nathan A

    2012-11-01

    An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view toward describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and non-polar behavior) in order to provide a background to understand the different types of solvation models.

  4. MTS-MD of Biomolecules Steered with 3D-RISM-KH Mean Solvation Forces Accelerated with Generalized Solvation Force Extrapolation.

    Science.gov (United States)

    Omelyan, Igor; Kovalenko, Andriy

    2015-04-14

    We developed a generalized solvation force extrapolation (GSFE) approach to speed up multiple time step molecular dynamics (MTS-MD) of biomolecules steered with mean solvation forces obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model with the Kovalenko-Hirata closure). GSFE is based on a set of techniques including the non-Eckart-like transformation of coordinate space separately for each solute atom, extension of the force-coordinate pair basis set followed by selection of the best subset, balancing the normal equations by modified least-squares minimization of deviations, and incremental increase of outer time step in motion integration. Mean solvation forces acting on the biomolecule atoms in conformations at successive inner time steps are extrapolated using a relatively small number of best (closest) solute atomic coordinates and corresponding mean solvation forces obtained at previous outer time steps by converging the 3D-RISM-KH integral equations. The MTS-MD evolution steered with GSFE of 3D-RISM-KH mean solvation forces is efficiently stabilized with our optimized isokinetic Nosé-Hoover chain (OIN) thermostat. We validated the hybrid MTS-MD/OIN/GSFE/3D-RISM-KH integrator on solvated organic and biomolecules of different stiffness and complexity: asphaltene dimer in toluene solvent, hydrated alanine dipeptide, miniprotein 1L2Y, and protein G. The GSFE accuracy and the OIN efficiency allowed us to enlarge outer time steps up to huge values of 1-4 ps while accurately reproducing conformational properties. Quasidynamics steered with 3D-RISM-KH mean solvation forces achieves time scale compression of conformational changes coupled with solvent exchange, resulting in further significant acceleration of protein conformational sampling with respect to real time dynamics. Overall, this provided a 50- to 1000-fold effective speedup of conformational sampling for these systems, compared to conventional MD

  5. Solvation effect on isomer stability and electronic structures of protonated serotonin

    Science.gov (United States)

    Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan

    2017-07-01

    Microsolvation effect on geometry and transition energies of protonated serotonin has been investigated by MP2 and CC2 quantum chemical methods. Also, conductor-like screening model, implemented recently in the MP2 and ADC(2) methods, was examined to address the bulk water environment's effect on the isomer stability and electronic transition energies of protonated serotonin. It has been predicted that the dipole moment of gas phase isomers plays the main role on the isomer stabilization in water solution and electronic transition shifts. Also, both red- and blue-shift effects have been predicted to take place on electronic transition energies, upon hydration.

  6. Perception and Production of Singleton and Geminate Stops in Japanese: Implications for the Theory of Acoustic Invariance.

    Science.gov (United States)

    Amano, Shigeaki; Hirata, Y

    2015-01-01

    The theory of relational acoustic invariance claims that there are stable acoustic properties in speech signals that correspond to a phonological feature, and that the perception system utilizes these acoustic properties for stable perception of a phoneme. The present study examines whether such an invariance exists in native listeners' perception of Japanese singleton and geminate stops despite variability in speaking rate and word length, and whether this perception corresponds to production. Native Japanese listeners identified singleton and geminate stops in continua of 3- and 4-mora words spoken at different speaking rates. Results indicated that the perception boundary is well predicted by a linear function with two variables: durations of stop closure and the (C)V(C)CV portion (with the contrasting stops underlined) of the 3- and 4-mora words. In addition, these two variables were in a consistent relationship for both perception and production of words containing 2-4 moras. The results support the relational acoustic invariance theory. © 2015 S. Karger AG, Basel.

  7. Solvated protein–DNA docking using HADDOCK

    International Nuclear Information System (INIS)

    Dijk, Marc van; Visscher, Koen M.; Kastritis, Panagiotis L.; Bonvin, Alexandre M. J. J.

    2013-01-01

    Interfacial water molecules play an important role in many aspects of protein–DNA specificity and recognition. Yet they have been mostly neglected in the computational modeling of these complexes. We present here a solvated docking protocol that allows explicit inclusion of water molecules in the docking of protein–DNA complexes and demonstrate its feasibility on a benchmark of 30 high-resolution protein–DNA complexes containing crystallographically-determined water molecules at their interfaces. Our protocol is capable of reproducing the solvation pattern at the interface and recovers hydrogen-bonded water-mediated contacts in many of the benchmark cases. Solvated docking leads to an overall improvement in the quality of the generated protein–DNA models for cases with limited conformational change of the partners upon complex formation. The applicability of this approach is demonstrated on real cases by docking a representative set of 6 complexes using unbound protein coordinates, model-built DNA and knowledge-based restraints. As HADDOCK supports the inclusion of a variety of NMR restraints, solvated docking is also applicable for NMR-based structure calculations of protein–DNA complexes.

  8. Solvated protein-DNA docking using HADDOCK

    Energy Technology Data Exchange (ETDEWEB)

    Dijk, Marc van; Visscher, Koen M.; Kastritis, Panagiotis L.; Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands)

    2013-05-15

    Interfacial water molecules play an important role in many aspects of protein-DNA specificity and recognition. Yet they have been mostly neglected in the computational modeling of these complexes. We present here a solvated docking protocol that allows explicit inclusion of water molecules in the docking of protein-DNA complexes and demonstrate its feasibility on a benchmark of 30 high-resolution protein-DNA complexes containing crystallographically-determined water molecules at their interfaces. Our protocol is capable of reproducing the solvation pattern at the interface and recovers hydrogen-bonded water-mediated contacts in many of the benchmark cases. Solvated docking leads to an overall improvement in the quality of the generated protein-DNA models for cases with limited conformational change of the partners upon complex formation. The applicability of this approach is demonstrated on real cases by docking a representative set of 6 complexes using unbound protein coordinates, model-built DNA and knowledge-based restraints. As HADDOCK supports the inclusion of a variety of NMR restraints, solvated docking is also applicable for NMR-based structure calculations of protein-DNA complexes.

  9. Effects of stereochemistry on the rates of hydrogen--deuterium exchange of protons α to the nitrosamino group

    International Nuclear Information System (INIS)

    Fraser, R.R.; Ng, L.K.

    1976-01-01

    Measurement of the rates of exchange of four benzylic protons of rigid dibenzazepine were made in tert-butyl alcohol-O-d containing potassium tert-butoxide at several concentrations. Each pseudoaxial proton exchanged 100-fold faster than its geminal partner (pseudoequatorial), likely as a result of a stereoelectronic effect. Each syn proton exchanged 1000-fold faster than the anti proton in the same biaryl environment. The lack of any significant effect of added crown either on the rate of exchange of either a syn or an antiproton indicates lack of involvement of the counterion. A suggested explanation for the unusual preference for syn exchange in this work is based on the symmetry properties of the anionic intermediate. This intermediate, like butadiene dianion, has an attractive interaction between the terminal atoms of the four-atom π system in the highest occupied molecular orbital (HOMO). This explanation is similar to that of Epiotis and co-workers, which accounts for the well-established preferential stability of cis over trans dihalo and dialkoxy ethylenes

  10. Updated Abraham solvation parameters for polychlorinated biphenyls

    NARCIS (Netherlands)

    van Noort, P.C.M.; Haftka, J.J.H.; Parsons, J.R.

    2010-01-01

    This study shows that the recently published polychlorinated biphenyl (PCB) Abraham solvation parameters predict PCB air−n-hexadecane and n-octanol−water partition coefficients very poorly, especially for highly ortho-chlorinated congeners. Therefore, an updated set of PCB solvation parameters was

  11. Updated Abraham solvation parameters for polychlorinated biphenyls

    NARCIS (Netherlands)

    Noort, van P.C.M.; Haftka, J.J.H.; Parsons, J.R.

    2010-01-01

    This study shows that the recently published polychlorinated biphenyl (PCB) Abraham solvation parameters predict PCB air-n-hexadecane and n-octanol-water partition coefficients very poorly, especially for highly ortho-chlorinated congeners. Therefore, an updated set of PCB solvation parameters was

  12. Effects of geminate and bimolecular recombination on the performance of polymeric-small molecular solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Marcel; Yin, Chunhong; Castellani, Mauro; Neher, Dieter [University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam-Golm (Germany); Sellinger, Alan [IMRE, 3 Research Link, 117602 Singapore (Singapore)

    2009-07-01

    Many physical properties of organic photovoltaics are related to the nature of the geminate pair, an intermediate state that forms after dissociation of photogenerated excitons and prior to free charge carrier generation. Whereas it was found that photocurrent generation is dominated by the strong field dependent process of geminate pair dissociation, the recombination of uncorrelated free charge carriers and the formation of space charge seem to play a minor role in the prominent P3HT/PCBM combination. The situation may change, when using different D/A combinations or other soluble acceptor molecules. We present organic solar cells comprising a novel small molecule based on 2-vinyl-4,5-dicyanoimidazole (Vinazene) as acceptor and M3EH-PPV as donor. While bilayer devices show promising results with a fill factor up to 57 %, the IU-characteristics of bulk heterojunction devices are dominated by bimolecular recombination and space charge effects even at moderate illumination intensities. Photo-CELIV measurements were performed to study the bimolecular recombination in detail. By combining photo-CELIV results with PL and IU measurements we are able to analyze the interrelation of recombination losses, free charge carrier generation and exciplex formation.

  13. Directly relating gas-phase cluster measurements to solution-phase hydrolysis, the absolute standard hydrogen electrode potential, and the absolute proton solvation energy.

    Science.gov (United States)

    Donald, William A; Leib, Ryan D; O'Brien, Jeremy T; Williams, Evan R

    2009-06-08

    Solution-phase, half-cell potentials are measured relative to other half-cell potentials, resulting in a thermochemical ladder that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of 0 V. A new method for measuring the absolute SHE potential is demonstrated in which gaseous nanodrops containing divalent alkaline-earth or transition-metal ions are reduced by thermally generated electrons. Energies for the reactions 1) M(H(2)O)(24)(2+)(g) + e(-)(g)-->M(H(2)O)(24)(+)(g) and 2) M(H(2)O)(24)(2+)(g) + e(-)(g)-->MOH(H(2)O)(23)(+)(g) + H(g) and the hydrogen atom affinities of MOH(H(2)O)(23)(+)(g) are obtained from the number of water molecules lost through each pathway. From these measurements on clusters containing nine different metal ions and known thermochemical values that include solution hydrolysis energies, an average absolute SHE potential of +4.29 V vs. e(-)(g) (standard deviation of 0.02 V) and a real proton solvation free energy of -265 kcal mol(-1) are obtained. With this method, the absolute SHE potential can be obtained from a one-electron reduction of nanodrops containing divalent ions that are not observed to undergo one-electron reduction in aqueous solution.

  14. Reactivity of the geminal phosphinoborane tBu2PCH2BPh2 towards alkynes, nitriles, and nitrilium triflates

    NARCIS (Netherlands)

    Habraken, E.R.M.; Mens, L.C.; Nieger, M.; Lutz, M.; Ehlers, A.W.; Slootweg, J.C.

    2017-01-01

    The reactivity of the geminal phosphinoborane tBu2PCH2BPh2 towards terminal alkynes, nitriles and nitrilium salts is investigated. Terminal alkynes react via C–H bond splitting (deprotonation) resulting in the formation of phosphonium borates. In contrast, both nitriles and nitrilium salts undergo

  15. Differential geometry based solvation model II: Lagrangian formulation.

    Science.gov (United States)

    Chen, Zhan; Baker, Nathan A; Wei, G W

    2011-12-01

    Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation models. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The optimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and PB equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for the purpose of

  16. Partial solvation parameters and LSER molecular descriptors

    International Nuclear Information System (INIS)

    Panayiotou, Costas

    2012-01-01

    Graphical abstract: The one-to-one correspondence of LSER molecular descriptors and partial solvation parameters (PSPs) for propionic acid. Highlights: ► Quantum-mechanics based development of a new QSPR predictive method. ► One-to-one correspondence of partial solvation parameters and LSER molecular descriptors. ► Development of alternative routes for the determination of partial solvation parameters and solubility parameters. ► Expansion and enhancement of solubility parameter approach. - Abstract: The partial solvation parameters (PSP) have been defined recently, on the basis of the insight derived from modern quantum chemical calculations, in an effort to overcome some of the inherent restrictions of the original definition of solubility parameter and expand its range of applications. The present work continues along these lines and introduces two new solvation parameters, the van der Waals and the polarity/refractivity ones, which may replace both of the former dispersion and polar PSPs. Thus, one may use either the former scheme of PSPs (dispersion, polar, acidic, and basic) or, equivalently, the new scheme (van der Waals, polarity/refractivity, acidic, basic). The new definitions are made in a simple and straightforward manner and, thus, the strength and appeal of the widely accepted concept of solubility parameter is preserved. The inter-relations of the various PSPs are critically discussed and their values are tabulated for a variety of common substances. The advantage of the new scheme of PSPs is the bridge that makes with the corresponding Abraham’s LSER descriptors. With this bridge, one may exchange information between PSPs, LSER experimental scales, and quantum mechanics calculations such as via the COSMO-RS theory. The proposed scheme is a predictive one and it is applicable to, both, homo-solvated and hetero-solvated compounds. The new scheme is tested for the calculation of activity coefficients at infinite dilution, for octanol

  17. On the relation between Marcus theory and ultrafast spectroscopy of solvation kinetics

    Science.gov (United States)

    Roy, Santanu; Galib, Mirza; Schenter, Gregory K.; Mundy, Christopher J.

    2018-01-01

    The phenomena of solvent exchange control the process of solvating ions, protons, and charged molecules. Building upon our extension of Marcus' philosophy of electron transfer, we provide a new perspective of ultrafast solvent exchange mechanism around ions measurable by two-dimensional infrared (2DIR) spectroscopy. In this theory, solvent rearrangement drives an ion-bound water to an activated state of higher coordination number, triggering ion-water separation that leads to the solvent-bound state of the water molecule. This ion-bound to solvent-bound transition rate for a BF4--water system is computed using ab initio molecular dynamics and Marcus theory, and is found to be in excellent agreement with the 2DIR measurement.

  18. An analysis of hydrated proton diffusion in ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tse, Ying-Lung Steve; Voth, Gregory A., E-mail: gavoth@uchicago.edu [Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, Chicago, Illinois 60637 (United States); Knight, Chris [Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-01-07

    A detailed understanding of the inherently multiscale proton transport process raises a number of scientifically challenging questions. For example, there remain many (partially addressed) questions on the molecular mechanism for long-range proton migration and the potential for the formation of long-lived traps giving rise to burst-and-rest proton dynamics. Using results from a sizeable collection of ab initio molecular dynamics (AIMD) simulations (totaling ∼2.7 ns) with various density functional approximations (Becke-Lee-Yang-Parr (BLYP), BLYP–D3, Hamprecht-Cohen-Tozer-Handy, B3LYP) and temperatures (300–330 K), equilibrium and dynamical properties of one excess proton and 128 water molecules are studied. Two features in particular (concerted hops and weak hydrogen-bond donors) are investigated to identify modes in the system that are strongly correlated with the onset of periods of burst-and-rest dynamics. The question of concerted hops seeks to identify those time scales over which long-range proton transport can be classified as a series of sequential water hopping events or as a near-simultaneous concerted process along compressed water wires. The coupling of the observed burst-and-rest dynamics with motions of a fourth neighboring water molecule (a weak hydrogen-bond donor) solvating the protonated water molecule is also investigated. The presence (absence) of hydrogen bonds involving this fourth water molecule before and after successful proton hopping events is found to be strongly correlated with periods of burst (rest) dynamics (and consistent with pre-solvation concepts). By analyzing several realizations of the AIMD trajectories on the 100-ps time scale, convergence of statistics can be assessed. For instance, it was observed that the probability for a fourth water molecule to approach the hydronium, if not already proximal at the beginning of the lifetime of the hydronium, is very low, indicative of the formation of stable void regions

  19. Barbiturate End-Capped Non-Fullerene Acceptors for Organic Solar Cells: Tuning Acceptor Energetics to Suppress Geminate Recombination Losses

    KAUST Repository

    Tan, Ching-Hong

    2018-01-10

    We report the synthesis of two barbiturate end-capped non-fullerene acceptors and demonstrate their efficient function in high voltage output organic solar cells. The acceptor with the lower LUMO level is shown to exhibit suppressed geminate recombination losses, resulting in enhanced photocurrent generation and higher overall device efficiency.

  20. Barbiturate End-Capped Non-Fullerene Acceptors for Organic Solar Cells: Tuning Acceptor Energetics to Suppress Geminate Recombination Losses

    KAUST Repository

    Tan, Ching-Hong; Gorman, Jeffrey; Wadsworth, Andrew; Holliday, Sarah; Subramaniyan, Selvam; Jenekhe, Samson A.; Baran, Derya; McCulloch, Iain; Durrant, James

    2018-01-01

    We report the synthesis of two barbiturate end-capped non-fullerene acceptors and demonstrate their efficient function in high voltage output organic solar cells. The acceptor with the lower LUMO level is shown to exhibit suppressed geminate recombination losses, resulting in enhanced photocurrent generation and higher overall device efficiency.

  1. Proton Transfer in Nucleobases is Mediated by Water

    Energy Technology Data Exchange (ETDEWEB)

    Khistyaev, Kirill; Golan, Amir; Bravaya, Ksenia B.; Orms, Natalie; Krylov, Anna I.; Ahmed, Musahid

    2013-08-08

    Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy proles along reaction coordinates, and facilitating ecient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very ecient in dry clusters. Instead, a new pathway opens up in which protonated nucleo bases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy prole along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed, i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, while energetically accessible at lower energies, is not ecient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations.

  2. Conductometric determination of solvation numbers of alkali metal cations

    International Nuclear Information System (INIS)

    Fialkov, Yu.Ya.; Gorbachev, V.Yu.; Chumak, V.L.

    1997-01-01

    Theories describing the interrelation of ion mobility with their effective radii in solutions are considered. Possibility of using these theories for determination the solvation numbers n s of some ions is estimated. According to conductometric data values of n s are calculated for alkali metal ions in propylene carbonate. The data obtained are compared with solvation numbers determined with the use of entropies of ions solvation. Change of n s values within temperature range 273.15-323.15 K is considered. Using literature data the effect of crystallographic radii of cations and medium permittivity on the the values of solvation numbers of cations are analyzed. (author)

  3. Tuning the intermolecular proton bond in the H5O2+ `Zundel ion' scaffold

    DEFF Research Database (Denmark)

    Olesen, S. G.; Guasco, T. L.; Roscioli, J. R.

    2011-01-01

    a remarkably similar trend as the exterior OH groups are sequentially solvated or are replaced by methyl substituents. In effect, solvents H-bonding to exterior OH groups act to increase the proton affinity of the water to which they are bound in a roughly additive fashion. We discuss this behavior...

  4. Thermal Annealing Reduces Geminate Recombination in TQ1:N2200 All-Polymer Solar Cells

    KAUST Repository

    Karuthedath, Safakath

    2018-03-27

    A combination of steady-state and time-resolved spectroscopic measurements is used to investigate the photophysics of the all-polymer bulk heterojunction system TQ1:N2200. Upon thermal annealing a doubling of the external quantum efficiency and an improved fill factor (FF) is observed, resulting in an increase in the power conversion efficiency. Carrier extraction is similar for both blends, as demonstrated by time-resolved electric-field-induced second harmonic generation experiments in conjunction with transient photocurrent studies, spanning the ps-µs time range. Complementary transient absorption spectroscopy measurements reveal that the different quantum efficiencies originate from differences in charge carrier separation and recombination at the polymer-polymer interface: in as-spun samples ~35 % of the charges are bound in interfacial charge-transfer states and recombine geminately, while this pool is reduced to ~7 % in thermally-annealed sample, resulting in higher short-circuit currents. Time-delayed collection field experiments demonstrate a field-dependent charge generation process in as-spun samples, which reduces the FF. In contrast, field-dependence of charge generation is weak in annealed films. While both devices exhibit significant non-geminate recombination competing with charge extraction, causing low FFs, our results demonstrate that the donor/acceptor interface in all-polymer solar cells can be favourably altered to enhance charge separation, without compromising charge transport and extraction.

  5. Multiple time step molecular dynamics in the optimized isokinetic ensemble steered with the molecular theory of solvation: Accelerating with advanced extrapolation of effective solvation forces

    International Nuclear Information System (INIS)

    Omelyan, Igor; Kovalenko, Andriy

    2013-01-01

    We develop efficient handling of solvation forces in the multiscale method of multiple time step molecular dynamics (MTS-MD) of a biomolecule steered by the solvation free energy (effective solvation forces) obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model complemented with the Kovalenko-Hirata closure approximation). To reduce the computational expenses, we calculate the effective solvation forces acting on the biomolecule by using advanced solvation force extrapolation (ASFE) at inner time steps while converging the 3D-RISM-KH integral equations only at large outer time steps. The idea of ASFE consists in developing a discrete non-Eckart rotational transformation of atomic coordinates that minimizes the distances between the atomic positions of the biomolecule at different time moments. The effective solvation forces for the biomolecule in a current conformation at an inner time step are then extrapolated in the transformed subspace of those at outer time steps by using a modified least square fit approach applied to a relatively small number of the best force-coordinate pairs. The latter are selected from an extended set collecting the effective solvation forces obtained from 3D-RISM-KH at outer time steps over a broad time interval. The MTS-MD integration with effective solvation forces obtained by converging 3D-RISM-KH at outer time steps and applying ASFE at inner time steps is stabilized by employing the optimized isokinetic Nosé-Hoover chain (OIN) ensemble. Compared to the previous extrapolation schemes used in combination with the Langevin thermostat, the ASFE approach substantially improves the accuracy of evaluation of effective solvation forces and in combination with the OIN thermostat enables a dramatic increase of outer time steps. We demonstrate on a fully flexible model of alanine dipeptide in aqueous solution that the MTS-MD/OIN/ASFE/3D-RISM-KH multiscale method of molecular dynamics

  6. Solvated electron structure in glassy matrices

    International Nuclear Information System (INIS)

    Kevan, L.

    1981-01-01

    Current knowledge of the detailed geometrical structure of solvated electrons in aqueous and organic media is summarized. The geometry of solvated electrons in glassy methanol, ethanol, and 2-methyltetrahydrofuran is discussed. Advanced electron magnetic resonance methods and development of new methods of analysis of electron spin echo modulation patterns, second moment line shapes, and forbidden photon spin-flip transitions for paramagnetic species in these disordered systems are discussed. 66 references are cited

  7. Geminate free radical processes and magnetic field effects

    International Nuclear Information System (INIS)

    Eveson, Robert W.

    2000-01-01

    This thesis is concerned with the study of the dynamics of radical pair recombination reactions in solution by flash photolysis Electron Spin Resonance (ESR) and the influence of low static external magnetic fields upon them (MFE). An outline of the concepts of ESR is presented, followed by the theories of Chemically Induced Dynamic Electron Polarisation (CIDEP) of transient radical pairs. This is then followed by a brief review of the flash photolysis ESR apparatus and application of the Bloch equations to solve the equations of time-resolved ESR. Completing the theory section is an overview of the mechanisms by which magnetic fields alter the course of a geminate radical pair reaction in solution. Experimental CIDEP observations of the radical pair produced on photolysis of 1,3-dihydroxypropanone are simulated using polarisation theory and applied to a random-walk diffusion model to find, for the first time, the geminate reaction probability in solutions of varying viscosity. CIDEP spectra of the radical pair formed on photolysis of hydroxypropanone in contrast are not accounted for by current polarisation theory. The discrepancy is due to moderately fast relaxation of the acyl radical, CH 3 CO·, which alters the relative intensities in the ST 0 RPM pattern of the counter radical. Calculations taking into account this now provide an adequate basis for simulation of the spectrum. This method also, in principle, represents a new method for the measurement of phase relaxation times. Concluding the ESR work is a CIDEP study of 2,4,6-trimethylbenzoyl diphenylphosphine oxide. Unusual spin polarisation phenomena are found. The time-resolved optical absorption spectroscopy technique used for detecting low magnetic field effects on neutral radical pair reactions is described. Various improvements to the experiment are discussed which result in the observation of the low field effect for a neutral radical pair produced by Norrish type II chemistry. This is followed by an

  8. Theories of the solvated electron

    International Nuclear Information System (INIS)

    Kestner, N.R.

    1987-01-01

    In this chapter the authors address only the final state of the electron, that is, the solvated state, which, if no chemical reaction would occur, is a stable entity with well-defined characteristics. Except for some metal-ammonia solutions, and possible a few other cases, such stable species, in reality, exist but a short time (often as short as microseconds). Nevertheless, this chapter only deals with this final time-independent,'' completely solvated,'' equilibrium species. The last statement is added to indicate that the solvent around the electron has also come to thermal equilibrium with the field of the charge

  9. Geminate electron--cation recombination in disordered solids

    International Nuclear Information System (INIS)

    Berlin, Y.A.; Chekunaev, N.I.; Goldanskii, V.I.

    1990-01-01

    A theory of a geminate electron--cation recombination has been developed using the percolation approach to the description of the electron transport in disordered solids. Following this approach all trapping sites are separated into two groups. The first group forms a diffusion cluster responsible for the macroscopic charge transfer in disordered media whilethe second group consists of isolated traps playing the role of origins and sinks for mobile electrons. In the framework of such a model an equation has been derived describing the electron motion in the Coulomb field of a parent cation. The solution of this equation in the long time limit shows that the recombination rate decreases vs time as t -(1+α/2) with α being a positive constant or a very weak function of t. In the particular case of Gaussian diffusion α=1 and the kinetic law obtained reduces to that predicted by the well-known Onsager--Smoluchowski theory. However for the dispersive (non-Gaussian) transport in highly disordered systems α<1 and its value depends on the type of disorder, on the energy level structure of trapped electrons and on the specific mechanism of electron migration through the medium

  10. Zero-point energy effects in anion solvation shells.

    Science.gov (United States)

    Habershon, Scott

    2014-05-21

    By comparing classical and quantum-mechanical (path-integral-based) molecular simulations of solvated halide anions X(-) [X = F, Cl, Br and I], we identify an ion-specific quantum contribution to anion-water hydrogen-bond dynamics; this effect has not been identified in previous simulation studies. For anions such as fluoride, which strongly bind water molecules in the first solvation shell, quantum simulations exhibit hydrogen-bond dynamics nearly 40% faster than the corresponding classical results, whereas those anions which form a weakly bound solvation shell, such as iodide, exhibit a quantum effect of around 10%. This observation can be rationalized by considering the different zero-point energy (ZPE) of the water vibrational modes in the first solvation shell; for strongly binding anions, the ZPE of bound water molecules is larger, giving rise to faster dynamics in quantum simulations. These results are consistent with experimental investigations of anion-bound water vibrational and reorientational motion.

  11. Theory of competitive solvation of polymers by two solvents and entropy-enthalpy compensation in the solvation free energy upon dilution with the second solvent.

    Science.gov (United States)

    Dudowicz, Jacek; Freed, Karl F; Douglas, Jack F

    2015-06-07

    We develop a statistical mechanical lattice theory for polymer solvation by a pair of relatively low molar mass solvents that compete for binding to the polymer backbone. A theory for the equilibrium mixture of solvated polymer clusters {AiBCj} and free unassociated molecules A, B, and C is formulated in the spirit of Flory-Huggins mean-field approximation. This theoretical framework enables us to derive expressions for the boundaries for phase stability (spinodals) and other basic properties of these polymer solutions: the internal energy U, entropy S, specific heat CV, extent of solvation Φsolv, average degree of solvation 〈Nsolv〉, and second osmotic virial coefficient B2 as functions of temperature and the composition of the mixture. Our theory predicts many new phenomena, but the current paper applies the theory to describe the entropy-enthalpy compensation in the free energy of polymer solvation, a phenomenon observed for many years without theoretical explanation and with significant relevance to liquid chromatography and other polymer separation methods.

  12. Breaking the polar-nonpolar division in solvation free energy prediction.

    Science.gov (United States)

    Wang, Bao; Wang, Chengzhang; Wu, Kedi; Wei, Guo-Wei

    2018-02-05

    Implicit solvent models divide solvation free energies into polar and nonpolar additive contributions, whereas polar and nonpolar interactions are inseparable and nonadditive. We present a feature functional theory (FFT) framework to break this ad hoc division. The essential ideas of FFT are as follows: (i) representability assumption: there exists a microscopic feature vector that can uniquely characterize and distinguish one molecule from another; (ii) feature-function relationship assumption: the macroscopic features, including solvation free energy, of a molecule is a functional of microscopic feature vectors; and (iii) similarity assumption: molecules with similar microscopic features have similar macroscopic properties, such as solvation free energies. Based on these assumptions, solvation free energy prediction is carried out in the following protocol. First, we construct a molecular microscopic feature vector that is efficient in characterizing the solvation process using quantum mechanics and Poisson-Boltzmann theory. Microscopic feature vectors are combined with macroscopic features, that is, physical observable, to form extended feature vectors. Additionally, we partition a solvation dataset into queries according to molecular compositions. Moreover, for each target molecule, we adopt a machine learning algorithm for its nearest neighbor search, based on the selected microscopic feature vectors. Finally, from the extended feature vectors of obtained nearest neighbors, we construct a functional of solvation free energy, which is employed to predict the solvation free energy of the target molecule. The proposed FFT model has been extensively validated via a large dataset of 668 molecules. The leave-one-out test gives an optimal root-mean-square error (RMSE) of 1.05 kcal/mol. FFT predictions of SAMPL0, SAMPL1, SAMPL2, SAMPL3, and SAMPL4 challenge sets deliver the RMSEs of 0.61, 1.86, 1.64, 0.86, and 1.14 kcal/mol, respectively. Using a test set of 94

  13. Gas-phase water-mediated equilibrium between methylglyoxal and its geminal diol

    Science.gov (United States)

    Axson, Jessica L.; Takahashi, Kaito; De Haan, David O.; Vaida, Veronica

    2010-01-01

    In aqueous solution, aldehydes, and to a lesser extent ketones, hydrate to form geminal diols. We investigate the hydration of methylglyoxal (MG) in the gas phase, a process not previously considered to occur in water-restricted environments. In this study, we spectroscopically identified methylglyoxal diol (MGD) and obtained the gas-phase partial pressures of MG and MGD. These results, in conjunction with the relative humidity, were used to obtain the equilibrium constant, KP, for the water-mediated hydration of MG in the gas phase. The Gibbs free energy for this process, ΔG°, obtained as a result, suggests a larger than expected gas-phase diol concentration. This may have significant implications for understanding the role of organics in atmospheric chemistry. PMID:20142510

  14. Geminal-spanning orbitals make explicitly correlated reduced-scaling coupled-cluster methods robust, yet simple

    Science.gov (United States)

    Pavošević, Fabijan; Neese, Frank; Valeev, Edward F.

    2014-08-01

    We present a production implementation of reduced-scaling explicitly correlated (F12) coupled-cluster singles and doubles (CCSD) method based on pair-natural orbitals (PNOs). A key feature is the reformulation of the explicitly correlated terms using geminal-spanning orbitals that greatly reduce the truncation errors of the F12 contribution. For the standard S66 benchmark of weak intermolecular interactions, the cc-pVDZ-F12 PNO CCSD F12 interaction energies reproduce the complete basis set CCSD limit with mean absolute error cost compared to the conventional CCSD F12.

  15. Density matrix embedding in an antisymmetrized geminal power bath

    International Nuclear Information System (INIS)

    Tsuchimochi, Takashi; Welborn, Matthew; Van Voorhis, Troy

    2015-01-01

    Density matrix embedding theory (DMET) has emerged as a powerful tool for performing wave function-in-wave function embedding for strongly correlated systems. In traditional DMET, an accurate calculation is performed on a small impurity embedded in a mean field bath. Here, we extend the original DMET equations to account for correlation in the bath via an antisymmetrized geminal power (AGP) wave function. The resulting formalism has a number of advantages. First, it allows one to properly treat the weak correlation limit of independent pairs, which DMET is unable to do with a mean-field bath. Second, it associates a size extensive correlation energy with a given density matrix (for the models tested), which AGP by itself is incapable of providing. Third, it provides a reasonable description of charge redistribution in strongly correlated but non-periodic systems. Thus, AGP-DMET appears to be a good starting point for describing electron correlation in molecules, which are aperiodic and possess both strong and weak electron correlation

  16. Effect of halogen substitution on the enthalpies of solvation and hydrogen bonding of organic solutes in chlorobenzene and 1,2-dichlorobenzene derived using multi-parameter correlations

    Energy Technology Data Exchange (ETDEWEB)

    Varfolomeev, Mikhail A.; Rakipov, Ilnaz T.; Khachatrian, Artashes A. [Department of Physical Chemistry, Kazan Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation); Acree, William E., E-mail: acree@unt.edu [Department of Chemistry, 1155 Union Circle # 305070, University of North Texas, Denton, TX 76203-5017 (United States); Brumfield, Michela [Department of Chemistry, 1155 Union Circle # 305070, University of North Texas, Denton, TX 76203-5017 (United States); Abraham, Michael H. [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2015-10-10

    Graphical abstract: - Highlights: • Enthalpies of solution measured for 43 solutes dissolved in chlorobenzene. • Enthalpies of solution measured for 72 solutes dissolved in 1,2-dichlorobenzene. • Mathematical expressions derived for predicting enthalpies of solvation of solutes in chlorobenzene. • Mathematical expressions derived for predicting enthalpies of solvation of solutes in 1,2-chlorobenzene. - Abstract: Enthalpies of solution at infinite dilution at 298 K, Δ{sub soln}H{sup A/Solvent}, have been measured by isothermal solution calorimetry for 43 and 72 organic solutes dissolved in chlorobenzene and 1,2-dichlorobenzene, respectively. The measured Δ{sub soln}H{sup A/Solvent} data, along with published Δ{sub soln}H{sup A/Solvent} values taken from the published literature for solutes dissolved in both chlorobenzene solvents, were converted to enthalpies of solvation, Δ{sub solv}H{sup A/Solvent}, using standard thermodynamic equations. Abraham model correlations were developed from the experimental Δ{sub solv}H{sup A/Solvent} data. The best derived correlations describe the experimental gas-to-chlorobenzene and gas-to-1,2-dichlorobenzene enthalpies of solvation to within standard deviations of 1.5 kJ mol{sup −1} and 1.9 kJ mol{sup −1}, respectively. Enthalpies of X−H…π (X – O, N, and C) hydrogen bond formation of proton donor solutes (alcohols, amines, chlorinated hydrocarbons, etc.) with chlorobenzene and 1,2-dichlorobenzene were calculated based on the Abraham solvation equation. Obtained values are in good agreement with the results determined using conventional methods.

  17. Solvation of lithium ion in dimethoxyethane and propylene carbonate

    Science.gov (United States)

    Chaban, Vitaly

    2015-07-01

    Solvation of the lithium ion (Li+) in dimethoxyethane (DME) and propylene carbonate (PC) is of scientific significance and urgency in the context of lithium-ion batteries. I report PM7-MD simulations on the composition of Li+ solvation shells (SH) in a few DME/PC mixtures. The equimolar mixture features preferential solvation by PC, in agreement with classical MD studies. However, one DME molecule is always present in the first SH, supplementing the cage formed by five PC molecules. As PC molecules get removed, DME gradually substitutes vacant places. In the PC-poor mixtures, an entire SH is populated by five DME molecules.

  18. Solvation structures of lithium halides in methanol–water mixtures

    International Nuclear Information System (INIS)

    Sarkar, Atanu; Dixit, Mayank Kumar; Tembe, B.L.

    2015-01-01

    Highlights: • Potentials of mean force for Li + -halides are calculated in methanol–water mixtures. • Stable CIP for x methanol = 1.0 becomes unstable at and below x methanol = 0.75. • The Li + ion is preferentially solvated by methanol molecules. • The halide ions are preferentially solvated by water molecules. - Abstract: The potentials of mean force (PMFs) for the ion pairs, Li + −Cl − , Li + −Br − and Li + −I − have been calculated in five methanol–water compositions. The results obtained are verified by trailing the trajectories and calculating the ion pair distance residence times. Local structures around the ions are studied using the radial distribution functions, density profiles, orientational correlation functions, running coordination numbers and excess coordination numbers. The major change in PMF is observed as the methanol mole fraction (x methanol ) is changed from 1.0 to 0.75. The stable contact ion pair occurring for x methanol = 1.0 becomes unstable at and below x methanol = 0.75. The preferential solvation data show that the halide ions are always preferentially solvated by water molecules. Although the lithium ion is preferentially solvated by methanol molecules, there is significant affinity towards water molecules as well

  19. Standard electrode potential, Tafel equation, and the solvation thermodynamics.

    Science.gov (United States)

    Matyushov, Dmitry V

    2009-06-21

    Equilibrium in the electronic subsystem across the solution-metal interface is considered to connect the standard electrode potential to the statistics of localized electronic states in solution. We argue that a correct derivation of the Nernst equation for the electrode potential requires a careful separation of the relevant time scales. An equation for the standard metal potential is derived linking it to the thermodynamics of solvation. The Anderson-Newns model for electronic delocalization between the solution and the electrode is combined with a bilinear model of solute-solvent coupling introducing nonlinear solvation into the theory of heterogeneous electron transfer. We therefore are capable of addressing the question of how nonlinear solvation affects electrochemical observables. The transfer coefficient of electrode kinetics is shown to be equal to the derivative of the free energy, or generalized force, required to shift the unoccupied electronic level in the bulk. The transfer coefficient thus directly quantifies the extent of nonlinear solvation of the redox couple. The current model allows the transfer coefficient to deviate from the value of 0.5 of the linear solvation models at zero electrode overpotential. The electrode current curves become asymmetric in respect to the change in the sign of the electrode overpotential.

  20. Advanced dielectric continuum model of preferential solvation

    Science.gov (United States)

    Basilevsky, Mikhail; Odinokov, Alexey; Nikitina, Ekaterina; Grigoriev, Fedor; Petrov, Nikolai; Alfimov, Mikhail

    2009-01-01

    A continuum model for solvation effects in binary solvent mixtures is formulated in terms of the density functional theory. The presence of two variables, namely, the dimensionless solvent composition y and the dimensionless total solvent density z, is an essential feature of binary systems. Their coupling, hidden in the structure of the local dielectric permittivity function, is postulated at the phenomenological level. Local equilibrium conditions are derived by a variation in the free energy functional expressed in terms of the composition and density variables. They appear as a pair of coupled equations defining y and z as spatial distributions. We consider the simplest spherically symmetric case of the Born-type ion immersed in the benzene/dimethylsulfoxide (DMSO) solvent mixture. The profiles of y(R ) and z(R ) along the radius R, which measures the distance from the ion center, are found in molecular dynamics (MD) simulations. It is shown that for a given solute ion z(R ) does not depend significantly on the composition variable y. A simplified solution is then obtained by inserting z(R ), found in the MD simulation for the pure DMSO, in the single equation which defines y(R ). In this way composition dependences of the main solvation effects are investigated. The local density augmentation appears as a peak of z(R ) at the ion boundary. It is responsible for the fine solvation effects missing when the ordinary solvation theories, in which z =1, are applied. These phenomena, studied for negative ions, reproduce consistently the simulation results. For positive ions the simulation shows that z ≫1 (z =5-6 at the maximum of the z peak), which means that an extremely dense solvation shell is formed. In such a situation the continuum description fails to be valid within a consistent parametrization.

  1. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    International Nuclear Information System (INIS)

    Wishart, J.F.

    2011-01-01

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs generally have low volatilities and are combustion-resistant, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of primary radiation chemistry, charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of reactions and product distributions. We study these issues by characterization of primary radiolysis products and measurements of their yields and reactivity, quantification of electron solvation dynamics and scavenging of electrons in different states of solvation. From this knowledge we wish to learn how to predict radiolytic mechanisms and control them or mitigate their effects on the properties of materials used in nuclear fuel processing, for example, and to apply IL radiation chemistry to answer questions about general chemical reactivity in ionic liquids that will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that the slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increase the importance of pre-solvated electron reactivity and consequently alter product distributions and subsequent chemistry. This difference from conventional solvents has profound effects on predicting and controlling radiolytic yields

  2. Time-resolved EPR studies of the H atom: A stable heavy isotope of muonium

    International Nuclear Information System (INIS)

    Bartels, D.M.

    1994-01-01

    Muonium physicists and chemists, when they talk about ''primary processes,'' are probably concerned mostly about end-of-track phenomena in the slowing down of a many-MeV charged particle, analogous to the proton. The author's experience is with electron accelerators and radiolysis; hence, he will comment briefly on the differences and relative advantages of electron and proton radiolysis for the study of H atoms, as opposed to muonium. Then, he will take the liberty of defining primary processes to include the recombination reactions that may occur between geminate or quasi-geminate free radicals within radiolysis spurs

  3. Thermodynamic functions of ion solvation in normal alcohols of aliphatic series

    International Nuclear Information System (INIS)

    Sergeeva, I.A.

    1978-01-01

    Thermodynamic functions of ion solvation of alkali, alkaline earth metals and halogenides in 9 alcohols are calculated using the earlier suggested method. It is shown that summary values are in good accord with experimental ones, the deviations do not surpass 0-5%, solvation energies of one and the same electrolyte in the series of n-alcohols do not change, enthalpy and entropy of solvation increase from lower alcohols to higher ones

  4. Nonpolar solvation dynamics for a nonpolar solute in room ...

    Indian Academy of Sciences (India)

    Sandipa Indra

    2018-01-30

    Jan 30, 2018 ... Keywords. Solvation dynamics; nonpolar solvation; ionic liquid; molecular dynamics; linear response theory. 1. ... J. Chem. Sci. (2018) 130:3 spectrum of the excited probe molecule for imida- .... Therefore, the solute and the RTIL ions interact only ... interval of 30 ps from a long equilibrium trajectory of dura-.

  5. Order and correlation contributions to the entropy of hydrophobic solvation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Maoyuan; Besford, Quinn Alexander; Mulvaney, Thomas; Gray-Weale, Angus, E-mail: gusgw@gusgw.net [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)

    2015-03-21

    The entropy of hydrophobic solvation has been explained as the result of ordered solvation structures, of hydrogen bonds, of the small size of the water molecule, of dispersion forces, and of solvent density fluctuations. We report a new approach to the calculation of the entropy of hydrophobic solvation, along with tests of and comparisons to several other methods. The methods are assessed in the light of the available thermodynamic and spectroscopic information on the effects of temperature on hydrophobic solvation. Five model hydrophobes in SPC/E water give benchmark solvation entropies via Widom’s test-particle insertion method, and other methods and models are tested against these particle-insertion results. Entropies associated with distributions of tetrahedral order, of electric field, and of solvent dipole orientations are examined. We find these contributions are small compared to the benchmark particle-insertion entropy. Competitive with or better than other theories in accuracy, but with no free parameters, is the new estimate of the entropy contributed by correlations between dipole moments. Dipole correlations account for most of the hydrophobic solvation entropy for all models studied and capture the distinctive temperature dependence seen in thermodynamic and spectroscopic experiments. Entropies based on pair and many-body correlations in number density approach the correct magnitudes but fail to describe temperature and size dependences, respectively. Hydrogen-bond definitions and free energies that best reproduce entropies from simulations are reported, but it is difficult to choose one hydrogen bond model that fits a variety of experiments. The use of information theory, scaled-particle theory, and related methods is discussed briefly. Our results provide a test of the Frank-Evans hypothesis that the negative solvation entropy is due to structured water near the solute, complement the spectroscopic detection of that solvation structure by

  6. Preferential Solvation of an Asymmetric Redox Molecule

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kee Sung; Rajput, Nav Nidhi; Vijayakumar, M.; Wei, Xiaoliang; Wang, Wei; Hu, Jian Z.; Persson, Kristin A.; Mueller, Karl T.

    2016-12-15

    The fundamental correlations between inter-molecular interactions, solvation structure and functionality of electrolytes are in many cases unknown, particularly for multi-component liquid systems. In this work, we explore such correlations by investigating the complex interplay between solubility and solvation structure for the electrolyte system comprising N-(ferrocenylmethyl)-N,N-dimethyl-N-ethylammonium bistrifluoromethylsulfonimide (Fc1N112-TFSI) dissolved in a ternary carbonate solvent mixture using combined NMR relaxation and computational analyses. Probing the evolution of the solvent-solvent, ion-solvent and ion-ion interactions with an increase in solute concentration provides a molecular level understanding of the solubility limit of the Fc1N112-TFSI system. An increase in solute con-centration leads to pronounced Fc1N112-TFSI contact-ion pair formation by diminishing solvent-solvent and ion-solvent type interactions. At the solubility limit, the precipitation of solute is initiated through agglomeration of contact-ion pairs due to overlapping solvation shells.

  7. Solvation of graphite oxide in water-methanol binary polar solvents

    Energy Technology Data Exchange (ETDEWEB)

    You, Shujie; Yu, Junchun; Sundqvist, Bertil; Talyzin, Alexandr V. [Department of Physics, Umeaa University, SE-901 87 Umeaa (Sweden)

    2012-12-15

    The phase transition between two solvated phases was studied by DSC for graphite oxide (GO) powders immersed in water-methanol mixtures of various compositions. GO forms solid solvates with two different compositions when immersed in methanol. Reversible phase transition between two solvate states due to insertion/desertion of methanol monolayer occurs upon temperature variations. The temperature point and the enthalpy ({Delta}H) of the phase transition are maximal for pure methanol and decrease linearly with increase of water fraction up to 30%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Proton location in (CH3)3N-H+-(CH3OH)n: A theoretical and infrared spectroscopic study

    International Nuclear Information System (INIS)

    Bing, Dan; Hamashima, Toru; Tsai, Chen-Wei; Fujii, Asuka; Kuo, Jer-Lai

    2013-01-01

    Highlights: • Preferential location of the excess proton in the trimethylamine-methanol clusters. • Collaboration between DFT calculations and IR spectroscopy. • The excess proton prefers the protonation to the trimethylamine moiety. - Abstract: The dependence of the preferential protonated site in (CH 3 ) 3 N-H + -(CH 3 OH) n on the cluster size was investigated using theoretical calculations and infrared spectroscopy measurements. While simple estimation from the magnitude of proton affinity suggested that the excess proton prefers the methanol site in n ⩾ 4, density functional theory calculations of the stabilization energy indicated the clear preference as protonation of the trimethylamine site, even for n = 9. Infrared spectra of the clusters were observed for n = 3–7. Spectral simulations were also performed using the quantum harmonic superposition approximation. The observed (CH 3 ) 3 N-H + -(CH 3 OH) n spectra were well interpreted by simulations of the isomers with the protonated trimethylamine ion core. It was shown that both the proton affinity and the mutual solvation energy govern the preferential location of the excess proton in binary component clusters

  9. How the shape of an H-bonded network controls proton-coupled water activation in HONO formation.

    Science.gov (United States)

    Relph, Rachael A; Guasco, Timothy L; Elliott, Ben M; Kamrath, Michael Z; McCoy, Anne B; Steele, Ryan P; Schofield, Daniel P; Jordan, Kenneth D; Viggiano, Albert A; Ferguson, Eldon E; Johnson, Mark A

    2010-01-15

    Many chemical reactions in atmospheric aerosols and bulk aqueous environments are influenced by the surrounding solvation shell, but the precise molecular interactions underlying such effects have rarely been elucidated. We exploited recent advances in isomer-specific cluster vibrational spectroscopy to explore the fundamental relation between the hydrogen (H)-bonding arrangement of a set of ion-solvating water molecules and the chemical activity of this ensemble. We find that the extent to which the nitrosonium ion (NO+)and water form nitrous acid (HONO) and a hydrated proton cluster in the critical trihydrate depends sensitively on the geometrical arrangement of the water molecules in the network. Theoretical analysis of these data details the role of the water network in promoting charge delocalization.

  10. Recent results on solvation dynamics of electron and spur reactions of solvated electron in polar solvents studied by femtosecond laser spectroscopy and picosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Mostafavi, M.

    2006-01-01

    Here, we report several studies done recently at ELYSE laboratory on the solvation dynamics of electron and on the kinetics of solvated electron in the spur reactions, performed by femtosecond laser spectroscopy and picosecond pulse radiolysis, respectively. Solvated electrons have been produced in polyol (1,2-Etanediol, 1,2-Propanediol and 1,3-Propanediol) by two-photon ionization of the solvent with 263 nm femtosecond laser pulses at room temperature. The two-photon absorption coefficient of these solvents at 263 nm has been determined. The dynamics of electron solvation in polyols has been studied by pump-probe transient absorption spectroscopy. So, time resolved absorption spectra ranging from 430 to 720 nm have been measured (Figure 1). A blue shift of the spectra is observed for the first tens of picoseconds. Using Bayesian data analysis method, the observed solvation dynamics are reconstructed with different models: stepwise mechanisms, continuous relaxation models or combinations of stepwise and continuous relaxation. That analysis clearly indicates that it is not obvious to select a unique model to describe the solvation dynamics of electron in diols. We showed that several models are able to reproduce correctly the data: a two-step model, a heterogeneous or bi-exponential continuous relaxation model and even a hybrid model with a stepwise transition and homogeneous continuous relaxation. Nevertheless, the best fits are given by the continuous spectral relaxation models. The fact that the time-evolution of the absorption spectrum of the solvated electron in diols can be accurately described by the temperature dependent absorption spectrum of the ground state solvated electron suggests that the spectral blue shift is mostly caused by the continuous relaxation of the electron trapped in a large distribution of solvent cages. Similar trends on electron solvation dynamics are observed in the cases of 1,2-ethanediol, 1,3-propanediol and 1,2 propanediol

  11. Solvation of the electron in alcohols studied using the Argonne picosecond pulse radiolysis system

    International Nuclear Information System (INIS)

    Jonah, C.D.; Kenney-Wallace, G.A.

    1979-01-01

    With a stroboscopic pulse radiolysis system, it is possible to measure the reactions of solvated electrons and dry electrons and the solvation time of electrons in alcohols from 20 psec to 350 psec. The solvation in alcohol and alcohol-alkane solutions is a complex process which depends on the microscopic structure of the fluid, so that the studies of solvation in alcohols as a function of temperature or as a function of the concentration of the alcohols must take into account the structure of the fluid being studied. The relaxation processes may not be dominant at low temperature. However, in room temperature alcohols, pre-existing traps are the dominant means of electron trapping. The extrapolation to water may be reasonable since water and alcohols both give similar final species. To obtain such idea of the solvation process in alcohols, the change of the absorption of electrons at 500 nm was measured. At very low concentration of alcohols in alkanes, electrons form a complex with a cluster of alcohol molecules, and the most probable size of this cluster is two alcohols (C 4 , C 10 ). The species formed is not solvated electrons, since the characteristic spectrum of solvated electrons is absent, and the conductivity of the species is far above that of solvated electrons. (Yamashita, S.)

  12. Preferential solvation: dividing surface vs excess numbers.

    Science.gov (United States)

    Shimizu, Seishi; Matubayasi, Nobuyuki

    2014-04-10

    How do osmolytes affect the conformation and configuration of supramolecular assembly, such as ion channel opening and actin polymerization? The key to the answer lies in the excess solvation numbers of water and osmolyte molecules; these numbers are determinable solely from experimental data, as guaranteed by the phase rule, as we show through the exact solution theory of Kirkwood and Buff (KB). The osmotic stress technique (OST), in contrast, purposes to yield alternative hydration numbers through the use of the dividing surface borrowed from the adsorption theory. However, we show (i) OST is equivalent, when it becomes exact, to the crowding effect in which the osmolyte exclusion dominates over hydration; (ii) crowding is not the universal driving force of the osmolyte effect (e.g., actin polymerization); (iii) the dividing surface for solvation is useful only for crowding, unlike in the adsorption theory which necessitates its use due to the phase rule. KB thus clarifies the true meaning and limitations of the older perspectives on preferential solvation (such as solvent binding models, crowding, and OST), and enables excess number determination without any further assumptions.

  13. SO2 Solvation in the 1-Ethyl-3-Methylimidazolium Thiocyanate Ionic Liquid by Incorporation into the Extended Cation-Anion Network.

    Science.gov (United States)

    Firaha, Dzmitry S; Kavalchuk, Mikhail; Kirchner, Barbara

    We have carried out an ab initio molecular dynamics study on the sulfur dioxide (SO 2 ) solvation in 1-ethyl-3-methylimidazolium thiocyanate for which we have observed that both cations and anions play an essential role in the solvation of SO 2 . Whereas, the anions tend to form a thiocyanate- and much less often an isothiocyanate-SO 2 adduct, the cations create a "cage" around SO 2 with those groups of atoms that donate weak interactions like the alkyl hydrogen atoms as well as the heavy atoms of the [Formula: see text]-system. Despite these similarities between the solvation of SO 2 and CO 2 in ionic liquids, an essential difference was observed with respect to the acidic protons. Whereas CO 2 avoids accepting hydrogen bonds form the acidic hydrogen atoms of the cations, SO 2 can from O(SO 2 )-H(cation) hydrogen bonds and thus together with the strong anion-adduct it actively integrates in the hydrogen bond network of this particular ionic liquid. The fact that SO 2 acts in this way was termed a linker effect by us, because the SO 2 can be situated between cation and anion operating as a linker between them. The particular contacts are the H(cation)[Formula: see text]O(SO 2 ) hydrogen bond and a S(anion)-S(SO 2 ) sulfur bridge. Clearly, this observation provides a possible explanation for the question of why the SO 2 solubility in these ionic liquids is so high.

  14. Solvation pressure as real pressure: I. Ethanol and starch under negative pressure

    CERN Document Server

    Uden, N W A V; Faux, D A; Tanczos, A C; Howlin, B; Dunstan, D J

    2003-01-01

    The reality of the solvation pressure generated by the cohesive energy density of liquids is demonstrated by three methods. Firstly, the Raman spectrum of ethanol as a function of cohesive energy density (solvation pressure) in ethanol-water and ethanol-chloroform mixtures is compared with the Raman spectrum of pure ethanol under external hydrostatic pressure and the solvation pressure and hydrostatic pressure are found to be equivalent for some transitions. Secondly, the bond lengths of ethanol are calculated by molecular dynamics modelling for liquid ethanol under pressure and for ethanol vapour. The difference in bond lengths between vapour and liquid are found to be equivalent to the solvation pressure for the C-H sub 3 , C-H sub 2 and O-H bond lengths, with discrepancies for the C-C and C-O bond lengths. Thirdly, the pressure-induced gelation of potato starch is measured in pure water and in mixtures of water and ethanol. The phase transition pressure varies in accordance with the change in solvation pre...

  15. Solvation thermodynamics and heat capacity of polar and charged solutes in water

    Science.gov (United States)

    Sedlmeier, Felix; Netz, Roland R.

    2013-03-01

    The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F- and a Na+ ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na+ and F- ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity ΔCp stays positive and even increases slightly upon charging the Na+ ion, it decreases upon charging the F- ion and becomes negative beyond an ion charge of q = -0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.

  16. Hydrophilic Solvation Dominates the Terahertz Fingerprint of Amino Acids in Water.

    Science.gov (United States)

    Esser, Alexander; Forbert, Harald; Sebastiani, Federico; Schwaab, Gerhard; Havenith, Martina; Marx, Dominik

    2018-02-01

    Spectroscopy in the terahertz frequency regime is a sensitive tool to probe solvation-induced effects in aqueous solutions. Yet, a systematic understanding of spectral lineshapes as a result of distinct solvation contributions remains terra incognita. We demonstrate that modularization of amino acids in terms of functional groups allows us to compute their distinct contributions to the total terahertz response. Introducing the molecular cross-correlation analysis method provides unique access to these site-specific contributions. Equivalent groups in different amino acids lead to look-alike spectral contributions, whereas side chains cause characteristic but additive complexities. Specifically, hydrophilic solvation of the zwitterionic groups in valine and glycine leads to similar terahertz responses which are fully decoupled from the side chain. The terahertz response due to H-bonding within the large hydrophobic solvation shell of valine turns out to be nearly indistinguishable from that in bulk water in direct comparison to the changes imposed by the charged functional groups that form strong H-bonds with their hydration shells. Thus, the hydrophilic groups and their solvation shells dominate the terahertz absorption difference, while on the same intensity scale, the influence of hydrophobic water can be neglected.

  17. Solvation of ions in the gas-phase: a molecular dynamics simulation

    Science.gov (United States)

    Cabarcos, Orlando M.; Lisy, James M.

    1996-07-01

    Molecular dynamics simulations have been performed on the collision between a cesium ion and a cluster of twenty methanol molecules. This process, generating a solvated ion, was studied over a range (1 to 25 eV) of eight collision energies. Preliminary analysis of this gas phase solvation has included the distribution of final ion cluster sizes, fragmentation patterns, solvation timescales and energetics. Two distinct patterns have emerged: a ballistic penetration of the neutral cluster at the higher collision energies and an evaporative evolution of the cluster ion at lower collision energies.

  18. Absolute Hydration Free Energy of Proton from First Principles Electronic Structure Calculations

    International Nuclear Information System (INIS)

    Zhan, Chang-Guo; Dixon, David A.

    2001-01-01

    The absolute hydration free energy of the proton, DGhyd298(H+), is one of the fundamental quantities for the thermodynamics of aqueous systems. Its exact value remains unknown despite extensive experimental and computational efforts. We report a first-principles determination of DGhyd298(H+) by using the latest developments in electronic structure theory and massively parallel computers. DGhyd298(H+) is accurately predicted to be -262.4 kcal/mol based on high-level, first-principles solvation-included electronic structure calculations. The absolute hydration free energies of other cations can be obtained by using appropriate available thermodynamic data in combination with this value. The high accuracy of the predicted absolute hydration free energy of proton is confirmed by applying the same protocol to predict DGhyd298(Li+)

  19. Ultrafast transient-absorption of the solvated electron in water

    International Nuclear Information System (INIS)

    Kimura, Y.; Alfano, J.C.; Walhout, P.K.; Barbara, P.F.

    1994-01-01

    Ultrafast near infrared (NIR)-pump/variable wavelength probe transient-absorption spectroscopy has been performed on the aqueous solvated electron. The photodynamics of the solvated electron excited to its p-state are qualitatively similar to previous measurements of the dynamics of photoinjected electrons at high energy. This result confirms the previous interpretation of photoinjected electron dynamics as having a rate-limiting bottleneck at low energies presumably involving the p-state

  20. The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model

    Energy Technology Data Exchange (ETDEWEB)

    Sundararaman, Ravishankar; Goddard, William A. [Joint Center for Artificial Photosynthesis, Pasadena, California 91125 (United States)

    2015-02-14

    Many important applications of electronic structure methods involve molecules or solid surfaces in a solvent medium. Since explicit treatment of the solvent in such methods is usually not practical, calculations often employ continuum solvation models to approximate the effect of the solvent. Previous solvation models either involve a parametrization based on atomic radii, which limits the class of applicable solutes, or based on solute electron density, which is more general but less accurate, especially for charged systems. We develop an accurate and general solvation model that includes a cavity that is a nonlocal functional of both solute electron density and potential, local dielectric response on this nonlocally determined cavity, and nonlocal approximations to the cavity-formation and dispersion energies. The dependence of the cavity on the solute potential enables an explicit treatment of the solvent charge asymmetry. With four parameters per solvent, this “CANDLE” model simultaneously reproduces solvation energies of large datasets of neutral molecules, cations, and anions with a mean absolute error of 1.8 kcal/mol in water and 3.0 kcal/mol in acetonitrile.

  1. Theory of optical spectra of solvated electrons

    International Nuclear Information System (INIS)

    Kestner, N.R.

    1975-01-01

    During the last few years better theoretical models of solvated electron have been developed. These models allow one to calculate a priori the observable properties of the trapped electron. One of the most important and most widely determined properties is the optical spectrum. In this paper we consider the predictions of the theories not only as to the band maximum but line shape and width. In addition we will review how the theories predict these will depend on the solvent, pressure, temperature, and solvent density. In all cases extensive comparisons will be made with experimental work. In addition four new areas will be explored and recent results will be presented. These concern electrons in dense polar gases, the time development of the solvated electron spectrum, solvated electrons in mixed solvents, and photoelectron emission spectra (PEE) as it relates to higher excited states. This paper will review all recent theoretical calculations and present a critical review of the present status and future developments which are anticipated. The best theories are quite successful in predicting trends, and qualitative agreement concerning band maximum. The theory is still weak in predicting line shape and line width

  2. Femtosecond spectroscopic study of the solvation of amphiphilic molecules by water

    NARCIS (Netherlands)

    Rezus, Y.L.A.; Bakker, H.J.

    2008-01-01

    We use polarization-resolved mid-infrared pump-probe spectroscopy to study the aqueous solvation of proline and N-methylacetamide. These molecules serve as models to study the solvation of proteins. We monitor the orientational dynamics of partly deuterated water molecules (HDO) that are present at

  3. Competitive solvation of (bis)(trifluoromethanesulfonyl)imide anion by acetonitrile and water

    DEFF Research Database (Denmark)

    Chaban, Vitaly

    2014-01-01

    Competitive solvation of an ion by two or more solvents is one of the key phenomena determining the identity of our world. Solvation in polar solvents frequently originates from non-additive non-covalent interactions. Pre-parametrized potentials poorly capture these interactions, unless the force...

  4. Thermodynamics of solvation and solvophobic effect in formamide

    International Nuclear Information System (INIS)

    Sedov, I.A.; Stolov, M.A.; Solomonov, B.N.

    2013-01-01

    Highlights: • Enthalpies of solution of apolar organic compounds in formamide were measured. • Gibbs free energies of solution were experimentally determined. • Influence of the solvophobic effect on solvation thermodynamics was studied. • Thermodynamic features of solutions in formamide resemble those of aqueous solutions. -- Abstract: Using semi-adiabatic calorimetry, we measured the enthalpies of solution for various low-polar compounds including alkanes, aromatic hydrocarbons and their halogenated derivatives in formamide at temperature of 298 K. For the same compounds, the values of limiting activity coefficients in formamide were determined using GC headspace analysis at 298 K, and Gibbs free energies of solution and solvation were calculated. Based on these data and the available literature values of the Gibbs free energy of solvation in formamide for a number of other low-polar solutes, a study of the solvophobic effect in this solvent is performed, and its resemblance to the hydrophobic effect in aqueous solutions is demonstrated. It is shown that the contribution of the solvophobic effect into the solvation Gibbs free energy in formamide is much higher than that in aliphatic alcohols, but lower than that in water. Like in water, the magnitude of this contribution for different solutes linearly increases with the solute molecular volume. Solvophobic effect also significantly affects the enthalpies of dissolution in formamide, causing them to be more negative in the case of alkanes and more positive in the case of arenes

  5. Difference rule-a new thermodynamic principle: prediction of standard thermodynamic data for inorganic solvates.

    Science.gov (United States)

    Jenkins, H Donald Brooke; Glasser, Leslie

    2004-12-08

    We present a quite general thermodynamic "difference" rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt: [P[n-solvate] - P[parent

  6. Anomalous maximum and minimum for the dissociation of a geminate pair in energetically disordered media

    Science.gov (United States)

    Govatski, J. A.; da Luz, M. G. E.; Koehler, M.

    2015-01-01

    We study the geminated pair dissociation probability φ as function of applied electric field and temperature in energetically disordered nD media. Regardless nD, for certain parameters regions φ versus the disorder degree (σ) displays anomalous minimum (maximum) at low (moderate) fields. This behavior is compatible with a transport energy which reaches a maximum and then decreases to negative values as σ increases. Our results explain the temperature dependence of the persistent photoconductivity in C60 single crystals going through order-disorder transitions. They also indicate how an energetic disorder spatial variation may contribute to higher exciton dissociation in multicomponent donor/acceptor systems.

  7. The SAMPL5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous p$K_a$, and cyclohexane–water log D

    CERN Document Server

    Tielker, Nicolas; Heil, Jochen; Kloss, Thomas; Ehrhart, Sebastian; Güssregen, Stefan; Schmidt, K. Friedemann; Kast, Stefan M.

    2016-01-01

    We predict cyclohexane–water distribution coefficients (log D7.4) for drug-like molecules taken from the SAMPL5 blind prediction challenge by the “embedded cluster reference interaction site model” (EC-RISM) integral equation theory. This task involves the coupled problem of predicting both partition coefficients (log P) of neutral species between the solvents and aqueous acidity constants (pKa) in order to account for a change of protonation states. The first issue is addressed by calibrating an EC-RISM-based model for solvation free energies derived from the “Minnesota Solvation Database” (MNSOL) for both water and cyclohexane utilizing a correction based on the partial molar volume, yielding a root mean square error (RMSE) of 2.4 kcal mol−1 for water and 0.8–0.9 kcal mol−1 for cyclohexane depending on the parametrization. The second one is treated by employing on one hand an empirical pKa model (MoKa) and, on the other hand, an EC-RISM-derived regression of published acidity constants (RMSE...

  8. Proton-bound cluster ions in ion mobility spectrometry

    Science.gov (United States)

    Ewing, R. G.; Eiceman, G. A.; Stone, J. A.

    1999-01-01

    Gaseous oxygen and nitrogen bases, both singly and as binary mixtures, have been introduced into ion mobility spectrometers to study the appearance of protonated molecules, and proton-bound dimers and trimers. At ambient temperature it was possible to simultaneously observe, following the introduction of molecule A, comparable intensities of peaks ascribable to the reactant ion (H2O)nH+, the protonated molecule AH+ and AH+ H2O, and the symmetrical proton bound dimer A2H+. Mass spectral identification confirmed the identifications and also showed that the majority of the protonated molecules were hydrated and that the proton-bound dimers were hydrated to a much lesser extent. No significant peaks ascribable to proton-bound trimers were obtained no matter how high the sample concentration. Binary mixtures containing molecules A and B, in some cases gave not only the peaks unique to the individual compounds but also peaks due to asymmetrical proton bound dimers AHB+. Such ions were always present in the spectra of mixtures of oxygen bases but were not observed for several mixtures of oxygen and nitrogen bases. The dimers, which were not observable, notable for their low hydrogen bond strengths, must have decomposed in their passage from the ion source to the detector, i.e. in a time less than approximately 5 ms. When the temperature was lowered to -20 degrees C, trimers, both homogeneous and mixed, were observed with mixtures of alcohols. The importance of hydrogen bond energy, and hence operating temperature, in determining the degree of solvation of the ions that will be observed in an ion mobility spectrometer is stressed. The possibility is discussed that a displacement reaction involving ambient water plays a role in the dissociation.

  9. Dipole moments of molecules solvated in helium nanodroplets

    International Nuclear Information System (INIS)

    Stiles, Paul L.; Nauta, Klaas; Miller, Roger E.

    2003-01-01

    Stark spectra are reported for hydrogen cyanide and cyanoacetylene solvated in helium nanodroplets. The goal of this study is to understand the influence of the helium solvent on measurements of the permanent electric dipole moment of a molecule. We find that the dipole moments of the helium solvated molecules, calculated assuming the electric field is the same as in vacuum, are slightly smaller than the well-known gas-phase dipole moments of HCN and HCCCN. A simple elliptical cavity model quantitatively accounts for this difference, which arises from the dipole-induced polarization of the helium

  10. Ionic liquids: radiation chemistry, solvation dynamics and reactivity patterns

    International Nuclear Information System (INIS)

    Wishart, J.F.; Funston, A.M.; Szreder, T.

    2006-01-01

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of energy production, chemical industry and environmental applications. Pulse radiolysis of [R 4 N][NTf 2 ] [R 4 N][N(CN) 2 ], and [R 4 P][N(CN) 2 ] ionic liquids produces solvated electrons that absorb over a broad range in the near infrared and persisting for hundreds of nanoseconds. Systematic cation variation shows that solvated electron's spectroscopic properties depend strongly on the lattice structure of the ionic liquid. Very early in our radiolysis studies it became evident that

  11. Unusual solvation through both p-orbital lobes of a carbene carbon

    Energy Technology Data Exchange (ETDEWEB)

    Hadad, C. Z., E-mail: cacier.hadad@udea.edu.co [Grupo de Química-Física Teórica, Instituto de Química, Universidad de Antioquia, A. A. 1226 Medellín (Colombia); Jenkins, Samantha [College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081 (China); Flórez, Elizabeth [Departamento de Ciencias Básicas, Universidad de Medellín, Carrera 87 N° 30-65, Medellín (Colombia)

    2015-03-07

    As a result of a configurational space search done to explain the experimental evidence of transient specific solvation of singlet fluorocarbene amide with tetrahydrofuran, we found that the most stable structures consist in a group in which each oxygen of two tetrahydrofuran molecules act as electron donor to its respective empty p-orbital lobe of the carbene carbon atom, located at each side of the carbene molecular plane. This kind of species, which to our knowledge has not been reported before, explains very well the particular experimental characteristics observed for the transient solvation of this system. We postulate that the simultaneous interaction to both p-orbital lobes seems to confer a special stability to the solvation complexes, because this situation moves away the systems from the proximity of the corresponding transition states for the ylide products. Additionally, we present an analysis of other solvation complexes and a study of the nature of the involved interactions.

  12. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    International Nuclear Information System (INIS)

    Wishart, J.F.

    2008-01-01

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate

  13. IONIC LIQUIDS: RADIATION CHEMISTRY, SOLVATION DYNAMICS AND REACTIVITY PATTERNS

    International Nuclear Information System (INIS)

    WISHART, J.F.

    2007-01-01

    energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Methods. Picosecond pulse radiolysis studies at BNL

  14. 1 SUPPLEMENTARY INFORMATION Nonpolar Solvation Dynamics ...

    Indian Academy of Sciences (India)

    IITP

    . S. NP. ( t. ) ( )t. SNeqm. NP. (a). (b). Figure S2. (a) Nonequilibrium solvation response functions calculated after averaging over different number of nonequilibrium trajectories. The response function converges after averaging over more than ...

  15. Analysis of biomolecular solvation sites by 3D-RISM theory.

    Science.gov (United States)

    Sindhikara, Daniel J; Hirata, Fumio

    2013-06-06

    We derive, implement, and apply equilibrium solvation site analysis for biomolecules. Our method utilizes 3D-RISM calculations to quickly obtain equilibrium solvent distributions without either necessity of simulation or limits of solvent sampling. Our analysis of these distributions extracts highest likelihood poses of solvent as well as localized entropies, enthalpies, and solvation free energies. We demonstrate our method on a structure of HIV-1 protease where excellent structural and thermodynamic data are available for comparison. Our results, obtained within minutes, show systematic agreement with available experimental data. Further, our results are in good agreement with established simulation-based solvent analysis methods. This method can be used not only for visual analysis of active site solvation but also for virtual screening methods and experimental refinement.

  16. Improvements to the APBS biomolecular solvation software suite.

    Science.gov (United States)

    Jurrus, Elizabeth; Engel, Dave; Star, Keith; Monson, Kyle; Brandi, Juan; Felberg, Lisa E; Brookes, David H; Wilson, Leighton; Chen, Jiahui; Liles, Karina; Chun, Minju; Li, Peter; Gohara, David W; Dolinsky, Todd; Konecny, Robert; Koes, David R; Nielsen, Jens Erik; Head-Gordon, Teresa; Geng, Weihua; Krasny, Robert; Wei, Guo-Wei; Holst, Michael J; McCammon, J Andrew; Baker, Nathan A

    2018-01-01

    The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that have provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses the three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this article, we discuss the models and capabilities that have recently been implemented within the APBS software package including a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory-based algorithm for determining pK a values, and an improved web-based visualization tool for viewing electrostatics. © 2017 The Protein Society.

  17. Improving accuracy of electrochemical capacitance and solvation energetics in first-principles calculations

    Science.gov (United States)

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.

    2018-04-01

    Reliable first-principles calculations of electrochemical processes require accurate prediction of the interfacial capacitance, a challenge for current computationally efficient continuum solvation methodologies. We develop a model for the double layer of a metallic electrode that reproduces the features of the experimental capacitance of Ag(100) in a non-adsorbing, aqueous electrolyte, including a broad hump in the capacitance near the potential of zero charge and a dip in the capacitance under conditions of low ionic strength. Using this model, we identify the necessary characteristics of a solvation model suitable for first-principles electrochemistry of metal surfaces in non-adsorbing, aqueous electrolytes: dielectric and ionic nonlinearity, and a dielectric-only region at the interface. The dielectric nonlinearity, caused by the saturation of dipole rotational response in water, creates the capacitance hump, while ionic nonlinearity, caused by the compactness of the diffuse layer, generates the capacitance dip seen at low ionic strength. We show that none of the previously developed solvation models simultaneously meet all these criteria. We design the nonlinear electrochemical soft-sphere solvation model which both captures the capacitance features observed experimentally and serves as a general-purpose continuum solvation model.

  18. Electrical resistivities and solvation enthalpies for solutions of salts in liquid alkali metals

    International Nuclear Information System (INIS)

    Hubberstey, P.; Dadd, A.T.

    1982-01-01

    An empirical correlation is shown to exist between the resistivity coefficients drho/dc for solutes in liquid alkali metals and the corresponding solvation enthalpies Usub(solvn) of the neutral gaseous solute species. Qualitative arguments based on an electrostatic solvation model in which the negative solute atom is surrounded by a solvation sphere of positive solvent ion cores are used to show that both parameters are dependent on the charge density of the solute atom and hence on the extent of charge transfer from solvent to solute. Thus as the charge density of the solute increases, the solvation enthalpy increases regularly and the resistivity coefficients pass through a maximum to give the observed approximately parabolic drho/dc versus Usub(solvn) relationship. (Auth.)

  19. Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins

    International Nuclear Information System (INIS)

    Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune

    2012-01-01

    NOEs between the β-protons of cysteine residues across disulfide bonds in proteins provide direct information on the connectivities and conformations of these important cross-links, which are otherwise difficult to investigate. With conventional [U- 13 C, 15 N]-proteins, however, fast spin diffusion processes mediated by strong dipolar interactions between geminal β-protons prohibit the quantitative measurements and thus the analyses of long-range NOEs across disulfide bonds. We describe a robust approach for alleviating such difficulties, by using proteins selectively labeled with an equimolar mixture of (2R, 3S)-[β- 13 C; α,β- 2 H 2 ] Cys and (2R, 3R)-[β- 13 C; α,β- 2 H 2 ] Cys, but otherwise fully deuterated. Since either one of the prochiral methylene protons, namely β2 (proS) or β3 (proR), is always replaced with a deuteron and no other protons remain in proteins prepared by this labeling scheme, all four of the expected NOEs for the β-protons across disulfide bonds could be measured without any spin diffusion interference, even with long mixing times. Therefore, the NOEs for the β2 and β3 pairs across each of the disulfide bonds could be observed at high sensitivity, even though they are 25% of the theoretical maximum for each pair. With the NOE information, the disulfide bond connectivities can be unambiguously established for proteins with multiple disulfide bonds. In addition, the conformations around disulfide bonds, namely χ 2 and χ 3 , can be determined based on the precise proton distances of the four β-proton pairs, by quantitative measurements of the NOEs across the disulfide bonds. The feasibility of this method is demonstrated for bovine pancreatic trypsin inhibitor, which has three disulfide bonds.

  20. Competitive solvation of (bis)(trifluoromethanesulfonyl)imide anion by acetonitrile and water

    Science.gov (United States)

    Chaban, Vitaly

    2014-10-01

    Competitive solvation of an ion by two or more solvents is one of the key phenomena determining the identity of our world. Solvation in polar solvents frequently originates from non-additive non-covalent interactions. Pre-parametrized potentials poorly capture these interactions, unless the force field derivation is repeated for every new system. Development cost increases drastically as new chemical species are supplied. This work represents an alternative simulation approach, PM7-MD, by coupling the latest semiempirical parametrization, PM7, with equation-of-motion propagation scheme and temperature coupling. Using a competitive solvation of (bis)(trifluoromethanesulfonyl)imide anion in acetonitrile and water, the work demonstrates efficiency and robustness of PM7-MD.

  1. Heat Effect of the Protonation of Glycine and the Enthalpies of Resolvation of Participating Chemical Species in Water-Dimethylsulfoxide Solvent Mixtures

    Science.gov (United States)

    Isaeva, V. A.; Sharnin, V. A.

    2018-02-01

    Enthalpies of the protonation of glycine in water‒dimethylsulfoxide (DMSO) mixed solvents are determined calorimetrically in the range of DMSO mole fractions of 0.0 to 0.9, at T = 298.15 K and an ionic strength μ = 0.3 (NaClO4). It is established that the protonation of glycine becomes more exothermic with an increasing mole fraction of DMSO, and the enthalpies of resolvation of glycine and glycinium ions in water‒DMSO solvent mixtures are calculated. It is shown that the small changes in the enthalpy of protonation observed at low mole fractions of DMSO are caused by the contributions from the solvation of proton and protonated glycine cancelling each other out. The enthalpy term of the Gibbs energy of the reaction leading to the formation of glycinium ion is estimated along with the enthalpy of resolvation of the reacting species in the water‒DMSO mixed solvent.

  2. Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions.

    Science.gov (United States)

    Paredes, Jose M; Garzon, Andres; Crovetto, Luis; Orte, Angel; Lopez, Sergio G; Alvarez-Pez, Jose M

    2012-04-28

    The proton-transfer ground-state rate constants of the xanthenic dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II), recovered by Fluorescence Lifetime Correlation Spectroscopy (FLCS), have proven to be useful to quantitatively reflect specific cation effects in aqueous solutions (J. M. Paredes, L. Crovetto, A. Orte, J. M. Alvarez-Pez and E. M. Talavera, Phys. Chem. Chem. Phys., 2011, 13, 1685-1694). Since these phenomena are more sensitive to anions than to cations, in this paper we have accounted for the influence of salts with the sodium cation in common, and the anion classified according to the empirical Hofmeister series, on the proton transfer rate constants of TG-II. We demonstrate that the presence of ions accelerates the rate of the ground-state proton-exchange reaction in the same order than ions that affect ion solvation in water. The combination of FLCS with a fluorophore undergoing proton transfer reactions in the ground state, along with the desirable feature of a pseudo-dark state when the dye is protonated, allows one unique direct determination of kinetic rate constants of the proton exchange chemical reaction. This journal is © the Owner Societies 2012

  3. A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells

    International Nuclear Information System (INIS)

    Sharma, Aarti; Lambrechts, Anja; Le thi Hao; Le, Thanh T.; Sewry, Caroline A.; Ampe, Christophe; Burghes, Arthur H.M.; Morris, Glenn E.

    2005-01-01

    Spinal muscular atrophy (SMA) is caused by reduced levels of SMN (survival of motor neurons protein) and consequent loss of motor neurons. SMN is involved in snRNP transport and nuclear RNA splicing, but axonal transport of SMN has also been shown to occur in motor neurons. SMN also binds to the small actin-binding protein, profilin. We now show that SMN and profilin II co-localise in the cytoplasm of differentiating rat PC12 cells and in neurite-like extensions, especially at their growth cones. Many components of known SMN complexes were also found in these extensions, including gemin2 (SIP-1), gemin6, gemin7 and unrip (unr-interacting protein). Coilin p80 and Sm core protein immunoreactivity, however, were seen only in the nucleus. SMN is known to associate with β-actin mRNA and specific hnRNPs in axons and in neurite extensions of cultured nerve cells, and SMN also stimulates neurite outgrowth in cultures. Our results are therefore consistent with SMN complexes, rather than SMN alone, being involved in the transport of actin mRNPs along the axon as in the transport of snRNPs into the nucleus by similar SMN complexes. Antisense knockdown of profilin I and II isoforms inhibited neurite outgrowth of PC12 cells and caused accumulation of SMN and its associated proteins in cytoplasmic aggregates. BIAcore studies demonstrated a high affinity interaction of SMN with profilin IIa, the isoform present in developing neurons. Pathogenic missense mutations in SMN, or deletion of exons 5 and 7, prevented this interaction. The interaction is functional in that SMN can modulate actin polymerisation in vitro by reducing the inhibitory effect of profilin IIa. This suggests that reduced SMN in SMA might cause axonal pathfinding defects by disturbing the normal regulation of microfilament growth by profilins

  4. Studies of base pair sequence effects on DNA solvation based on all

    Indian Academy of Sciences (India)

    Detailed analyses of the sequence-dependent solvation and ion atmosphere of DNA are presented based on molecular dynamics (MD) simulations on all the 136 unique tetranucleotide steps obtained by the ABC consortium using the AMBER suite of programs. Significant sequence effects on solvation and ion localization ...

  5. Benzonitrile: Electron affinity, excited states, and anion solvation

    Science.gov (United States)

    Dixon, Andrew R.; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-01

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X ˜ 1 A 1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, a ˜ 3 A 1 , is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet A ˜ 1 A 1 , is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  6. Water Evaporation and Conformational Changes from Partially Solvated Ubiquitin

    Directory of Open Access Journals (Sweden)

    Saravana Prakash Thirumuruganandham

    2010-01-01

    Full Text Available Using molecular dynamics simulation, we study the evaporation of water molecules off partially solvated ubiquitin. The evaporation and cooling rates are determined for a molecule at the initial temperature of 300 K. The cooling rate is found to be around 3 K/ns, and decreases with water temperature in the course of the evaporation. The conformation changes are monitored by studying a variety of intermediate partially solvated ubiquitin structures. We find that ubiquitin shrinks with decreasing hydration shell and exposes more of its hydrophilic surface area to the surrounding.

  7. Are mixed explicit/implicit solvation models reliable for studying phosphate hydrolysis? A comparative study of continuum, explicit and mixed solvation models.

    Energy Technology Data Exchange (ETDEWEB)

    Kamerlin, Shina C. L.; Haranczyk, Maciej; Warshel, Arieh

    2009-05-01

    Phosphate hydrolysis is ubiquitous in biology. However, despite intensive research on this class of reactions, the precise nature of the reaction mechanism remains controversial. In this work, we have examined the hydrolysis of three homologous phosphate diesters. The solvation free energy was simulated by means of either an implicit solvation model (COSMO), hybrid quantum mechanical / molecular mechanical free energy perturbation (QM/MM-FEP) or a mixed solvation model in which N water molecules were explicitly included in the ab initio description of the reacting system (where N=1-3), with the remainder of the solvent being implicitly modelled as a continuum. Here, both COSMO and QM/MM-FEP reproduce Delta Gobs within an error of about 2kcal/mol. However, we demonstrate that in order to obtain any form of reliable results from a mixed model, it is essential to carefully select the explicit water molecules from short QM/MM runs that act as a model for the true infinite system. Additionally, the mixed models tend to be increasingly inaccurate the more explicit water molecules are placed into the system. Thus, our analysis indicates that this approach provides an unreliable way for modelling phosphate hydrolysis in solution.

  8. Solvated protein-DNA docking using HADDOCK

    NARCIS (Netherlands)

    van Dijk, Marc; Visscher, Koen M; Bonvin, Alexandre M.J.J; Kastritis, Panagiotis L.

    2013-01-01

    Interfacial water molecules play an important role in many aspects of protein-DNA specificity and recognition. Yet they have been mostly neglected in the computational modeling of these complexes. We present here a solvated docking protocol that allows explicit inclusion of water molecules in the

  9. Influence of temperature and molecular structure on ionic liquid solvation layers.

    Science.gov (United States)

    Wakeham, Deborah; Hayes, Robert; Warr, Gregory G; Atkin, Rob

    2009-04-30

    Atomic force microscopy (AFM) force profiling is used to investigate the structure of adsorbed and solvation layers formed on a mica surface by various room temperature ionic liquids (ILs) ethylammonium nitrate (EAN), ethanolammonium nitrate (EtAN), ethylammonium formate (EAF), propylammonium formate (PAF), ethylmethylammonium formate (EMAF), and dimethylethylammonium formate (DMEAF). At least seven layers are observed for EAN at 14 degrees C (melting point 13 degrees C), decreasing as the temperature is increased to 30 degrees C due to thermal energy disrupting solvophobic forces that lead to segregation of cation alkyl tails from the charged ammonium and nitrate moieties. The number and properties of the solvation layers can also be controlled by introducing an alcohol moiety to the cation's alkyl tail (EtAN), or by replacing the nitrate anion with formate (EAF and PAF), even leading to the detection of distinct cation and anion sublayers. Substitution of primary by secondary or tertiary ammonium cations reduces the number of solvation layers formed, and also weakens the cation layer adsorbed onto mica. The observed solvation and adsorbed layer structures are discussed in terms of the intermolecular cohesive forces within the ILs.

  10. Relaxation dynamics following transition of solvated electrons

    International Nuclear Information System (INIS)

    Barnett, R.B.; Landman, U.; Nitzan, A.

    1989-01-01

    Relaxation dynamics following an electronic transition of an excess solvated electron in clusters and in bulk water is studied using an adiabatic simulation method. In this method the solvent evolves classically and the electron is constrained to a specified state. The coupling between the solvent and the excess electron is evaluated via the quantum expectation value of the electron--water molecule interaction potential. The relaxation following excitation (or deexcitation) is characterized by two time scales: (i) a very fast (/similar to/20--30 fs) one associated with molecular rotations in the first solvation shell about the electron, and (ii) a slower stage (/similar to/200 fs), which is of the order of the longitudinal dielectric relaxation time. The fast relaxation stage exhibits an isotope effect. The spectroscopical consequences of the relaxation dynamics are discussed

  11. Quantum structural approach to high-Tc superconductivity theory: Herzberg-Teller, Renner-Teller, Jahn-Teller effects and intervalent geminal charge transfer

    International Nuclear Information System (INIS)

    Chiu, Y.

    1997-01-01

    We use quantum molecular structure and spectroscopic thoughts of various possible vibronic interactions for the position space of two-electron geminal orbitals with Bloch sums. Our geminals have different degeneracy from one-electron molecular orbitals and are different from the momentum space of BCS free electrons. Based on Herzberg-Teller expansions, our consideration of the aspect of the Renner-Teller effect for cyclic boundary crystals (instead of the usual linear molecules) involves first-order vibronic interaction with isotope effects different from the second-order electron-phonon energy of BCS theory, bipolaron theory, etc. Our consideration of the Jahn-Teller effect with equal-minimum double-well potential leads to the intervalent charge transfer between two degenerate vibrationally affected electronic structures. Our considerations of different style vibrations other than the antisymmetric vibration for the nearest neighbor (e.g., displaced oscillator, etc.) may possibly be related to the case of special chemical structures with special doping and special coherence length. Our simple structural illustrations of such different vibronic Renner-Teller, Jahn-Teller effects and intervalent charge transfer (of La 2-x Sr x CuO 4 and YBa 2 Cu 3 O 7-x ) may promote some possible thoughts of quantum chemical structures compared and mixed with the physical treatments of special high-T c superconductors. copyright 1997 The American Physical Society

  12. Strong Stretching of Poly(ethylene glycol) Brushes Mediated by Ionic Liquid Solvation.

    Science.gov (United States)

    Han, Mengwei; Espinosa-Marzal, Rosa M

    2017-09-07

    We have measured forces between mica surfaces coated with a poly(ethylene glycol) (PEG) brush solvated by a vacuum-dry ionic liquid, 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, with a surface forces apparatus. At high grafting density, the solvation mediated by the ionic liquid causes the brush to stretch twice as much as in water. Modeling of the steric repulsion indicates that PEG behaves as a polyelectrolyte; the hydrogen bonding between ethylene glycol and the imidazolium cation seems to effectively charge the polymer brush, which justifies the strong stretching. Importantly, under strong polymer compression, solvation layers are squeezed out at a higher rate than for the neat ionic liquid. We propose that the thermal fluctuations of the PEG chains, larger in the brush than in the mushroom configuration, maintain the fluidity of the ionic liquid under strong compression, in contrast to the solid-like squeezing-out behavior of the neat ionic liquid. This is the first experimental study of the behavior of a polymer brush solvated by an ionic liquid under nanoconfinement.

  13. Role of Dispersive Fluorous Interaction in the Solvation Dynamics of the Perfluoro Group Containing Molecules.

    Science.gov (United States)

    Mondal, Saptarsi; Chaterjee, Soumit; Halder, Ritaban; Jana, Biman; Singh, Prashant Chandra

    2017-08-17

    Perfluoro group containing molecules possess an important self-aggregation property through the fluorous (F···F) interaction which makes them useful for diverse applications such as medicinal chemistry, separation techniques, polymer technology, and biology. In this article, we have investigated the solvation dynamics of coumarin-153 (C153) and coumarin-6H (C6H) in ethanol (ETH), 2-fluoroethanol (MFE), and 2,2,2-trifluoroethanol (TFE) using the femtosecond upconversion technique and molecular dynamics (MD) simulation to understand the role of fluorous interaction between the solute and solvent molecules in the solvation dynamics of perfluoro group containing molecules. The femtosecond upconversion data show that the time scales of solvation dynamics of C6H in ETH, MFE, and TFE are approximately the same whereas the solvation dynamics of C153 in TFE is slow as compared to that of ETH and MFE. It has also been observed that the time scale of solvation dynamics of C6H in ETH and MFE is higher than that of C153 in the same solvents. MD simulation results show a qualitative agreement with the experimental data in terms of the time scale of the slow components of the solvation for all the systems. The experimental and simulation studies combined lead to the conclusion that the solvation dynamics of C6H in all solvents as well as C153 in ETH and MFE is mostly governed by the charge distribution of ester moieties (C═O and O) of dye molecules whereas the solvation of C153 in TFE is predominantly due to the dispersive fluorous interaction (F···F) between the perfluoro groups of the C153 and solvent molecules.

  14. Cluster expansion of the solvation free energy difference: Systematic improvements in the solvation of single ions

    Science.gov (United States)

    Pliego, Josefredo R.

    2017-07-01

    The cluster expansion method has been used in the imperfect gas theory for several decades. This paper proposes a cluster expansion of the solvation free energy difference. This difference, which results from a change in the solute-solvent potential energy, can be written as the logarithm of a finite series. Similar to the Mayer function, the terms in the series are related to configurational integrals, which makes the integrand relevant only for configurations of the solvent molecules close to the solute. In addition, the terms involve interaction of solute with one, two, and so on solvent molecules. The approach could be used for hybrid quantum mechanical and molecular mechanics methods or mixed cluster-continuum approximation. A simple form of the theory was applied for prediction of pKa in methanol; the results indicated that three explicit methanol molecules and the dielectric continuum lead to a root of mean squared error (RMSE) of only 1.3 pKa units, whereas the pure continuum solvation model based on density method leads to a RMSE of 6.6 pKa units.

  15. Synthesis of mono- and geminal dimetalated carbanions of bis(phenylsulfonyl)methane using alkali metal bases and structural comparisons with lithiated bis(phenylsulfonyl)imides.

    Science.gov (United States)

    MacDougall, Dugald J; Kennedy, Alan R; Noll, Bruce C; Henderson, Kenneth W

    2005-06-21

    The alpha,alpha'-stabilized carbanion complexes [(PhSO2)2CHLi.THF]1, [(PhSO2)2CHNa.THF]2 and [(PhSO2)2CHK]3 were prepared by the direct deprotonation of bis(phenylsulfonyl)methane I in THF with one molar equivalent of MeLi, BuNa and BnK respectively. The geminal dianionic complexes [(PhSO2)2CLi2.THF]4, [(PhSO2)2CNa2.0.55THF]5 and [(PhSO2)2CK2]6 were similarly prepared by the reaction of I with two molar equivalents of MeLi, BuNa and BnK respectively in THF. NMR and MS solution studies of 1-3 are consistent with the formation of charge-separated species in DMSO media. Solutions studies of 4-6, in conjunction with trapping experiments, indicate that the dianions deprotonate DMSO and regenerate the monoanions 1-3. Crystallographic analysis of 1 revealed a 1D chain polymer in which the metal centers are chelated by the bis(sulfonyl) ligands and connect to neighboring units through Li-O(S) interactions. An unexpected feature of 1 is that the polymeric chains are homochiral, since the chelating ligands of the backbone adopt the same relative configuration. Also, the phenyl substituents of each chelate in 1 are oriented in a cisoid manner. The sodium derivative 2 adopts a related solid-state structure, where enantiomeric pairs of chains combine to give a 1D ribbon motif. The lithium bis(phenylsulfonyl)imides [(PhSO2)2NLi.THF]9 and [(PhSO2)2NLi.Pyr2]10 were also prepared and structurally characterized. In the solid state 9 has a similar connectivity to that found for 1 but with heterochiral chains. In comparison, the more highly solvated complex 10 forms a 1D polymeric arrangement without chelation of the ligands and with the phenyl substituents oriented in a transoid fashion.

  16. Entropic solvation force between surfaces modified by grafted chains: a density functional approach

    Directory of Open Access Journals (Sweden)

    O. Pizio

    2010-01-01

    Full Text Available The behavior of a hard sphere fluid in slit-like pores with walls modified by grafted chain molecules composed of hard sphere segments is studied using density functional theory. The chains are grafted to opposite walls via terminating segments forming pillars. The effects of confinement and of "chemical" modification of pore walls on the entropic solvation force are investigated in detail. We observe that in the absence of adsorbed fluid the solvation force is strongly repulsive for narrow pores and attractive for wide pores. In the presence of adsorbed fluid both parts of the curve of the solvation force may develop oscillatory behavior dependent on the density of pillars, the number of segments and adsorption conditions. Also, the size ratio between adsorbed fluid species and chain segments is of importance for the development of oscillations. The choice of these parameters is crucial for efficient manipulation of the solvation force as desired for pores of different width.

  17. Comparative assessment of computational methods for the determination of solvation free energies in alcohol-based molecules.

    Science.gov (United States)

    Martins, Silvia A; Sousa, Sergio F

    2013-06-05

    The determination of differences in solvation free energies between related drug molecules remains an important challenge in computational drug optimization, when fast and accurate calculation of differences in binding free energy are required. In this study, we have evaluated the performance of five commonly used polarized continuum model (PCM) methodologies in the determination of solvation free energies for 53 typical alcohol and alkane small molecules. In addition, the performance of these PCM methods, of a thermodynamic integration (TI) protocol and of the Poisson-Boltzmann (PB) and generalized Born (GB) methods, were tested in the determination of solvation free energies changes for 28 common alkane-alcohol transformations, by the substitution of an hydrogen atom for a hydroxyl substituent. The results show that the solvation model D (SMD) performs better among the PCM-based approaches in estimating solvation free energies for alcohol molecules, and solvation free energy changes for alkane-alcohol transformations, with an average error below 1 kcal/mol for both quantities. However, for the determination of solvation free energy changes on alkane-alcohol transformation, PB and TI yielded better results. TI was particularly accurate in the treatment of hydroxyl groups additions to aromatic rings (0.53 kcal/mol), a common transformation when optimizing drug-binding in computer-aided drug design. Copyright © 2013 Wiley Periodicals, Inc.

  18. Estimation of abraham solvation equation coefficients for hydrogen bond formation from abraham solvation parameters for solute activity and basicity

    NARCIS (Netherlands)

    Noort, van P.C.M.

    2013-01-01

    Abraham solvation equations find widespread use in environmental chemistry and pharmaco-chemistry. The coefficients in these equations, which are solvent (system) descriptors, are usually determined by fitting experimental data. To simplify the determination of these coefficients in Abraham

  19. Selective solvation extraction of gold from alkaline cyanide solution by alkyl phosphorus esters

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.D.; Wan, R.Y.; Mooiman, M.B.; Sibrell, P.L.

    1987-01-01

    Research efforts have shown that solvation extraction of gold from alkaline cyanide solution is possible by alkyl phosphorus esters. Both tributyl phosphate (TBP) and dibutyl butyl phosphonate (DBBP) appear to be effective extractants for gold and exhibit high loading capacities exceeding 30 gpl. Selective solvation extraction of gold from alkaline cyanide solution can be achieved with selectivity factors relative to other cyanoanions as high as 1000 under certain circumstances. Variables influencing the selectivity such as ionic strength, temperature, and extractant structure, are discussed in terms of the extraction chemistry, which seems to involve the solvation of a M dot, dot, dot Au(CN)2 ion pair.

  20. Understanding Lithium Solvation and Diffusion through Topological Analysis of First-Principles Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, Harsh [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gyulassy, Attila [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ong, Mitchell [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lordi, Vincenzo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Draeger, Erik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pask, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pascucci, Valerio [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bremer, Peer -Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-27

    The performance of lithium-ion batteries is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact, both, the solvation and diffusivity of Li ions. In this work, we present our application of the topological techniques to extract and predict such behavior in the data generated by the first-principles molecular dynamics simulation of Li ions in an important organic solvent -ethylene carbonate. More specifically, we use the scalar topology of the electron charge density field to analyze the evolution of the solvation structures. This allows us to derive a parameter-free bond definition for lithium-oxygen bonds, to provide a quantitative measure for bond strength, and to understand the regions of influence of each atom in the simulation. This has provided new insights into how and under what conditions certain bonds may form and break. As a result, we can identify and, more importantly, predict, unstable configurations in solvation structures. This can be very useful in understanding when small changes to the atoms' movements can cause significantly different bond structures to evolve. Ultimately, this promises to allow scientists to explore lithium ion solvation and diffusion more systematically, with the aim of new insights and potentially accelerating the calculations themselves.

  1. Interfacial solvation thermodynamics

    International Nuclear Information System (INIS)

    Ben-Amotz, Dor

    2016-01-01

    Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air–water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute–solvent) and indirect (solvent–solvent) contributions to adsorption thermodynamics, of relevance to solvation at air–water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies. (paper)

  2. Generalized Born Models of Macromolecular Solvation Effects

    Science.gov (United States)

    Bashford, Donald; Case, David A.

    2000-10-01

    It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.

  3. Enthalpy-entropy compensation: the role of solvation.

    Science.gov (United States)

    Dragan, Anatoliy I; Read, Christopher M; Crane-Robinson, Colyn

    2017-05-01

    Structural modifications to interacting systems frequently lead to changes in both the enthalpy (heat) and entropy of the process that compensate each other, so that the Gibbs free energy is little changed: a major barrier to the development of lead compounds in drug discovery. The conventional explanation for such enthalpy-entropy compensation (EEC) is that tighter contacts lead to a more negative enthalpy but increased molecular constraints, i.e., a compensating conformational entropy reduction. Changes in solvation can also contribute to EEC but this contribution is infrequently discussed. We review long-established and recent cases of EEC and conclude that the large fluctuations in enthalpy and entropy observed are too great to be a result of only conformational changes and must result, to a considerable degree, from variations in the amounts of water immobilized or released on forming complexes. Two systems exhibiting EEC show a correlation between calorimetric entropies and local mobilities, interpreted to mean conformational control of the binding entropy/free energy. However, a substantial contribution from solvation gives the same effect, as a consequence of a structural link between the amount of bound water and the protein flexibility. Only by assuming substantial changes in solvation-an intrinsically compensatory process-can a more complete understanding of EEC be obtained. Faced with such large, and compensating, changes in the enthalpies and entropies of binding, the best approach to engineering elevated affinities must be through the addition of ionic links, as they generate increased entropy without affecting the enthalpy.

  4. Applications of the solvation parameter model in reversed-phase liquid chromatography.

    Science.gov (United States)

    Poole, Colin F; Lenca, Nicole

    2017-02-24

    The solvation parameter model is widely used to provide insight into the retention mechanism in reversed-phase liquid chromatography, for column characterization, and in the development of surrogate chromatographic models for biopartitioning processes. The properties of the separation system are described by five system constants representing all possible intermolecular interactions for neutral molecules. The general model can be extended to include ions and enantiomers by adding new descriptors to encode the specific properties of these compounds. System maps provide a comprehensive overview of the separation system as a function of mobile phase composition and/or temperature for method development. The solvation parameter model has been applied to gradient elution separations but here theory and practice suggest a cautious approach since the interpretation of system and compound properties derived from its use are approximate. A growing application of the solvation parameter model in reversed-phase liquid chromatography is the screening of surrogate chromatographic systems for estimating biopartitioning properties. Throughout the discussion of the above topics success as well as known and likely deficiencies of the solvation parameter model are described with an emphasis on the role of the heterogeneous properties of the interphase region on the interpretation and understanding of the general retention mechanism in reversed-phase liquid chromatography for porous chemically bonded sorbents. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Quantitative measurement of solvation shells using frequency modulated atomic force microscopy

    Science.gov (United States)

    Uchihashi, T.; Higgins, M.; Nakayama, Y.; Sader, J. E.; Jarvis, S. P.

    2005-03-01

    The nanoscale specificity of interaction measurements and additional imaging capability of the atomic force microscope make it an ideal technique for measuring solvation shells in a variety of liquids next to a range of materials. Unfortunately, the widespread use of atomic force microscopy for the measurement of solvation shells has been limited by uncertainties over the dimensions, composition and durability of the tip during the measurements, and problems associated with quantitative force calibration of the most sensitive dynamic measurement techniques. We address both these issues by the combined use of carbon nanotube high aspect ratio probes and quantifying the highly sensitive frequency modulation (FM) detection technique using a recently developed analytical method. Due to the excellent reproducibility of the measurement technique, additional information regarding solvation shell size as a function of proximity to the surface has been obtained for two very different liquids. Further, it has been possible to identify differences between chemical and geometrical effects in the chosen systems.

  6. Spectral luminescence studies of eosin solvation in water-alcohol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Ketsle, G.A.; Levshin, L.V.; Mel' nikov, G.V.; Saletskii, A.M.

    1987-11-01

    The authors investigate the effects of solvation of eosin molecules in binary water-propanol mixtures with the goal of assessing eosin as a candidate dye laser material. The fluorescence was measured with a Hitachi spectrofluorimeter and the absorption spectra were taken on a Specord spectrophotometer. Absorption and fluorescence were measured for different amounts of propanol in the solvent. Data are also given on excitation and de-excitation kinetics between ground and excited states. Values for quantum yields of fluorescence and phosphorescence, average excited state lifetime, and molecular volume of the dye with the solvated shell are tabulated.

  7. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne, E-mail: egarand@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706 (United States)

    2015-11-28

    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ions having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D{sub 2}-tagged GlyGlyH{sup +} ⋅ (H{sub 2}O){sub 1−4} are presented. They display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.

  8. Generalized Møller-Plesset Multiconfiguration Perturbation Theory Applied to an Open-Shell Antisymmetric Product of Strongly Orthogonal Geminals Reference Wave Function.

    Science.gov (United States)

    Tarumi, Moto; Kobayashi, Masato; Nakai, Hiromi

    2012-11-13

    The antisymmetric product of strongly orthogonal geminals (APSG) method is a wave function theory that can effectively treat the static electron correlation. Recently, we proposed the open-shell APSG method using one-electron orbitals for open-shell parts. In this paper, we have extended the perturbation correction to the open-shell APSG calculations through Møller-Plesset-type multiconfiguration perturbation theory (MP-MCPT). Numerical applications demonstrate that the present open-shell MP-MCPT can reasonably reproduce the dissociation energies or equilibrium distances for open-shell systems.

  9. Molecular dynamics study of the solvation of an alpha-helical transmembrane peptide by DMSO

    NARCIS (Netherlands)

    Duarte, A.M.; Mierlo, van C.P.M.; Hemminga, M.A.

    2008-01-01

    10-ns molecular dynamics study of the solvation of a hydrophobic transmembrane helical peptide in dimethyl sulfoxide (DMSO) is presented. The objective is to analyze how this aprotic polar solvent is able to solvate three groups of amino acid residues (i.e., polar, apolar, and charged) that are

  10. Pulse radiolysis study in ethanol and N-propanol of the solvated electron formation and reactivity at low temperatures

    International Nuclear Information System (INIS)

    Bono Merino, M.R.

    1978-01-01

    The electron solvation process in polar media has been studied in liquid ethanol and n-propanol at temperatures near their melting points. The results show that using the change of absorption at a given wavelength to determine the solvation time leads to a value which varies with the wavelength considered. Furthermore, for n-propanol it appears that the process occurs without a definite order. Studies of the spectral shifts show that the passage from the initial to the final spectrum (solvated electron spectrum) involves intermediate transient spectra which probably correspond to partly solvated states of the electron. The interpretation of these various results points out the ambiguity of the kinetic measurements: the simultaneous existence of several partly solvated states of the electron is not consistent with the hypothesis previously admitted that the molar extinction coefficient at a given wavelength is unique and does not vary with time. The reaction of the solvated electron with acetone has been studied in ethanol in the temperature range from +25 to -105 0 C: this reaction is diffusion controlled [fr

  11. Gas-phase structure and fragmentation pathways of singly protonated peptides with N-terminal arginine.

    Science.gov (United States)

    Bythell, Benjamin J; Csonka, István P; Suhai, Sándor; Barofsky, Douglas F; Paizs, Béla

    2010-11-25

    The gas-phase structures and fragmentation pathways of the singly protonated peptide arginylglycylaspartic acid (RGD) are investigated by means of collision-induced-dissociation (CID) and detailed molecular mechanics and density functional theory (DFT) calculations. It is demonstrated that despite the ionizing proton being strongly sequestered at the guanidine group, protonated RGD can easily be fragmented on charge directed fragmentation pathways. This is due to facile mobilization of the C-terminal or aspartic acid COOH protons thereby generating salt-bridge (SB) stabilized structures. These SB intermediates can directly fragment to generate b(2) ions or facilely rearrange to form anhydrides from which both b(2) and b(2)+H(2)O fragments can be formed. The salt-bridge stabilized and anhydride transition structures (TSs) necessary to form b(2) and b(2)+H(2)O are much lower in energy than their traditional charge solvated counterparts. These mechanisms provide compelling evidence of the role of SB and anhydride structures in protonated peptide fragmentation which complements and supports our recent findings for tryptic systems (Bythell, B. J.; Suhai, S.; Somogyi, A.; Paizs, B. J. Am. Chem. Soc. 2009, 131, 14057-14065.). In addition to these findings we also report on the mechanisms for the formation of the b(1) ion, neutral loss (H(2)O, NH(3), guanidine) fragment ions, and the d(3) ion.

  12. Solvation in atomic liquids: connection between Gaussian field theory and density functional theory

    Directory of Open Access Journals (Sweden)

    V. Sergiievskyi

    2017-12-01

    Full Text Available For the problem of molecular solvation, formulated as a liquid submitted to the external potential field created by a molecular solute of arbitrary shape dissolved in that solvent, we draw a connection between the Gaussian field theory derived by David Chandler [Phys. Rev. E, 1993, 48, 2898] and classical density functional theory. We show that Chandler's results concerning the solvation of a hard core of arbitrary shape can be recovered by either minimising a linearised HNC functional using an auxiliary Lagrange multiplier field to impose a vanishing density inside the core, or by minimising this functional directly outside the core — indeed a simpler procedure. Those equivalent approaches are compared to two other variants of DFT, either in the HNC, or partially linearised HNC approximation, for the solvation of a Lennard-Jones solute of increasing size in a Lennard-Jones solvent. Compared to Monte-Carlo simulations, all those theories give acceptable results for the inhomogeneous solvent structure, but are completely out-of-range for the solvation free-energies. This can be fixed in DFT by adding a hard-sphere bridge correction to the HNC functional.

  13. Modelos contínuos do solvente: fundamentos Continuum solvation models: fundamentals

    Directory of Open Access Journals (Sweden)

    Josefredo R. Pliego Jr

    2006-06-01

    Full Text Available Continuum solvation models are nowadays widely used in the modeling of solvent effects and the range of applications goes from the calculation of partition coefficients to chemical reactions in solution. The present work presents a detailed explanation of the physical foundations of continuum models. We discuss the polarization of a dielectric and its representation through the volume and surface polarization charges. The Poisson equation for a dielectric was obtained and we have also derived and discuss the apparent surface charge method and its application for free energy of solvation calculations.

  14. Preferential Solvation of Silver (I) Bromate in Methanol-Dimethylsulfoxide Mixtures

    Science.gov (United States)

    Janardhanan, S.; Kalidas, C.

    1984-06-01

    The solubiltiy of silver bromate, the Gibbs transfer energy of Ag+ and BrO3- and the solvent transport number in methanol-dimethyl sulfoxide mixtures are reported. The solubility of silver bromate increases with addition of DMSO. The Gibbs energy of transfer of the silver ion (based on the ferrocene reference method) decreases, while that of the bromate ion becomes slightly negative with the addition of DMSO. The solvent transport number A passes through a maximum (⊿ = 1.0 at XDMSO = 0.65. From these results, it is concluded that the silver ion is preferentially solvated by DMSO whereas the bromate ion shows no preferential solvation.

  15. Solvation of monovalent anions in formamide and methanol: Parameterization of the IEF-PCM model

    International Nuclear Information System (INIS)

    Boees, Elvis S.; Bernardi, Edson; Stassen, Hubert; Goncalves, Paulo F.B.

    2008-01-01

    The thermodynamics of solvation for a series of monovalent anions in formamide and methanol has been studied using the polarizable continuum model (PCM). The parameterization of this continuum model was guided by molecular dynamics simulations. The parameterized PCM model predicts the Gibbs free energies of solvation for 13 anions in formamide and 16 anions in methanol in very good agreement with experimental data. Two sets of atomic radii were tested in the definition of the solute cavities in the PCM and their performances are evaluated and discussed. Mean absolute deviations of the calculated free energies of solvation from the experimental values are in the range of 1.3-2.1 kcal/mol

  16. Comparison of solvation dynamics of electrons in four polyols

    Energy Technology Data Exchange (ETDEWEB)

    Lampre, I.; Pernot, P.; Bonin, J. [Laboratoire de Chimie Physique/ELYSE, Universite Paris-Sud 11, UMR 8000, Bat. 349, Orsay F-91405 (France); CNRS, Orsay F-91405 (France); Mostafavi, M. [Laboratoire de Chimie Physique/ELYSE, Universite Paris-Sud 11, UMR 8000, Bat. 349, Orsay F-91405 (France); CNRS, Orsay F-91405 (France)], E-mail: mehran.mostafavi@lcp.u-psud.fr

    2008-10-15

    Using pump-probe transient absorption spectroscopy, we studied the solvation dynamics of the electron in liquid polyalcohols: ethane-1,2-diol, propane-1,2-diol, propane-1,3-diol and propane-1,2,3-triol. Time-resolved absorption spectra ranging from 440 to 720 nm were measured. Our study shows that the excess electron in the diols presents an intense and wide absorption band in the visible and near-IR spectral domain at early time after two-photon ionization of the neat solvent. Then, for the first tens of picoseconds, the electron spectrum shifts toward the blue domain and its bandwidth decreases as the red part of the initial spectrum rapidly drops, while the blue part hardly evolves. In contrast, in the triol, the absorption spectrum of the electron is early situated in the visible range after the pump pulse and then solely evolves in the red part. The Bayesian data analysis of the observed picosecond solvation dynamics with different models is in favor of a heterogeneous continuous relaxation. That is corroborated by the analogy between the change in the absorption band with increasing time or decreasing temperature. That tends to indicate a similar organization disorder of the solvent. Moreover, the electron solvation dynamics is very fast in propane-1,2,3-triol despite its high viscosity and highlight the role of the OH-group in that process.

  17. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions

    Science.gov (United States)

    Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Chistopher J.

    2017-10-01

    Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.

  18. Significance of solvated electrons (e(aq)-) as promoters of life on earth.

    Science.gov (United States)

    Getoff, Nikola

    2014-01-01

    Based on the present state of knowledge a new hypothesis concerning the origin of life on Earth is presented, and emphasizes the particular significance of solvated electrons (e(aq)(-)). Solvated electrons are produced in seawater, mainly by (40)K radiation and in atmospheric moisture by VUV light, electrical discharges and cosmic ray. Solvated electrons are involved in primary chemical processes and in biological processes. The conversion of aqueous CO2 and CO into simple organic substances, the generation of ammonia from N2 and water, the formation of amines, amino acids and simple proteins under the action of e(aq)(-) has been experimentally proven. Furthermore, it is supposed that the generation of the primitive cell and equilibria of primitive enzymes are also realized due to the strong reducing property of e(aq)(-). The presented hypothesis is mainly founded on recently obtained experimental results. The involvement of e(aq)(-) in such mechanisms, as well as their action as an initiator of life is also briefly discussed.

  19. Solvation behavior of carbonate-based electrolytes in sodium ion batteries.

    Science.gov (United States)

    Cresce, Arthur V; Russell, Selena M; Borodin, Oleg; Allen, Joshua A; Schroeder, Marshall A; Dai, Michael; Peng, Jing; Gobet, Mallory P; Greenbaum, Steven G; Rogers, Reginald E; Xu, Kang

    2016-12-21

    Sodium ion batteries are on the cusp of being a commercially available technology. Compared to lithium ion batteries, sodium ion batteries can potentially offer an attractive dollar-per-kilowatt-hour value, though at the penalty of reduced energy density. As a materials system, sodium ion batteries present a unique opportunity to apply lessons learned in the study of electrolytes for lithium ion batteries; specifically, the behavior of the sodium ion in an organic carbonate solution and the relationship of ion solvation with electrode surface passivation. In this work the Li + and Na + -based solvates were characterized using electrospray mass spectrometry, infrared and Raman spectroscopy, 17 O, 23 Na and pulse field gradient double-stimulated-echo pulse sequence nuclear magnetic resonance (NMR), and conductivity measurements. Spectroscopic evidence demonstrate that the Li + and Na + cations share a number of similar ion-solvent interaction trends, such as a preference in the gas and liquid phase for a solvation shell rich in cyclic carbonates over linear carbonates and fluorinated carbonates. However, quite different IR spectra due to the PF 6 - anion interactions with the Na + and Li + cations were observed and were rationalized with the help of density functional theory (DFT) calculations that were also used to examine the relative free energies of solvates using cluster - continuum models. Ion-solvent distances for Na + were longer than Li + , and Na + had a greater tendency towards forming contact pairs compared to Li + in linear carbonate solvents. In tests of hard carbon Na-ion batteries, performance was not well correlated to Na + solvent preference, leading to the possibility that Na + solvent preference may play a reduced role in the passivation of anode surfaces and overall Na-ion battery performance.

  20. Polarizability and Aqueous Solvation of the Sulfate Dianion

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Pavel; Curtis, J. E.; Tobias, D. J.

    2003-01-01

    Roč. 367, - (2003), s. 704-710 ISSN 0009-2614 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : polarizability * aqueous solvation * dianion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.438, year: 2003

  1. Sub-ns triplet state formation by non-geminate recombination in PSBTBT:PC 70 BM and PCPDTBT:PC 60 BM organic solar cells

    KAUST Repository

    Etzold, Fabian; Howard, Ian A.; Forler, Nina; Melnyk, Anton; Andrienko, Denis; Hansen, Michael Ryan; Laquai, Fré dé ric

    2015-01-01

    The solid-state morphology and photo-generated charge carrier dynamics in low-bandgap polymer:fullerene bulk heterojunction photovoltaic blends using the donor–acceptor type copolymers PCPDTBT or its silicon-substituted analogue PSBTBT as donors are compared by two-dimensional (2D) solid-state nuclear magnetic resonance (NMR) and femto-to microsecond broadband Vis-NIR transient absorption (TA) pump–probe spectroscopy. The 2D solid-state NMR experiments demonstrate that the film morphology of PCPDTBT:PC60BM blends processed with additives such as octanedithiol (ODT) are similar to those of PSBTBT:PC60BM blends in terms of crystallinity, phase segregation, and interfacial contacts. The TA experiments and analysis of the TA data by multivariate curve resolution (MCR) reveal that after exciton dissociation and free charge formation, fast sub-nanosecond non-geminate recombination occurs which leads to a substantial population of the polymer's triplet state. The extent to which triplet states are formed depends on the initial concentration of free charges, which itself is controlled by the microstructure of the blend, especially in case of PCPDTBT:PC60BM. Interestingly, PSBTBT:PC70BM blends show a higher charge generation efficiency, but less triplet state formation at similar free charge carrier concentrations. This indicates that the solid-state morphology and interfacial structures of PSBTBT:PC70BM blends reduces non-geminate recombination, leading to superior device performance compared to optimized PCPDTBT:PC60BM blends.

  2. Sub-ns triplet state formation by non-geminate recombination in PSBTBT:PC 70 BM and PCPDTBT:PC 60 BM organic solar cells

    KAUST Repository

    Etzold, Fabian

    2015-03-02

    The solid-state morphology and photo-generated charge carrier dynamics in low-bandgap polymer:fullerene bulk heterojunction photovoltaic blends using the donor–acceptor type copolymers PCPDTBT or its silicon-substituted analogue PSBTBT as donors are compared by two-dimensional (2D) solid-state nuclear magnetic resonance (NMR) and femto-to microsecond broadband Vis-NIR transient absorption (TA) pump–probe spectroscopy. The 2D solid-state NMR experiments demonstrate that the film morphology of PCPDTBT:PC60BM blends processed with additives such as octanedithiol (ODT) are similar to those of PSBTBT:PC60BM blends in terms of crystallinity, phase segregation, and interfacial contacts. The TA experiments and analysis of the TA data by multivariate curve resolution (MCR) reveal that after exciton dissociation and free charge formation, fast sub-nanosecond non-geminate recombination occurs which leads to a substantial population of the polymer\\'s triplet state. The extent to which triplet states are formed depends on the initial concentration of free charges, which itself is controlled by the microstructure of the blend, especially in case of PCPDTBT:PC60BM. Interestingly, PSBTBT:PC70BM blends show a higher charge generation efficiency, but less triplet state formation at similar free charge carrier concentrations. This indicates that the solid-state morphology and interfacial structures of PSBTBT:PC70BM blends reduces non-geminate recombination, leading to superior device performance compared to optimized PCPDTBT:PC60BM blends.

  3. Silver atom solvation and desolvation in ice matrices: study of solvation shell geometry by electron spin resonance and electron spin echo methods

    Energy Technology Data Exchange (ETDEWEB)

    Kevan, L; Narayana, P A

    1978-01-01

    Results of studies of the solvation shell structure of silver atoms in ice matrix at 4/sup 0/K by electron spin resonance (ESR) and electron spin echo spectrometry are reported. Drastic change in the hyperfine coupling constant of the silver atom was noted when the silver atom initially produced at 4/sup 0/K was warmed to 77/sup 0/K and reexamined by ESR at 4/sup 0/K. This suggested a very drastic rearrangement of the water molecules surrounding the silver atom. The geometric arrangement of water molecules around the silver atom produced at 4/sup 0/K was what would be expected for a solvated silver ion, indicating that no rearrangement had occurred after the silver atom formed. The addition of a little thermal excitation (heating to 77/sup 0/K) results in the geometry changes than can be explained by assuming either that a water molecule rotates around one of its OH bands or by the development of a hydrogen bond between the silver atom and one of the first solvation shell water molecules. Optical excitation in the absorption band of the silver atom in the ice matrix at 400nm resulted in desolvation of the silver ion or a reversion to the structure originally obtained by reaction of solver salts in ic matrix with radiation produced electrons. This was best explained by a charge transfer mechanism. (BLM)

  4. Evidence for Reduced Hydrogen-Bond Cooperativity in Ionic Solvation Shells from Isotope-Dependent Dielectric Relaxation

    Science.gov (United States)

    Cota, Roberto; Ottosson, Niklas; Bakker, Huib J.; Woutersen, Sander

    2018-05-01

    We find that the reduction in dielectric response (depolarization) of water caused by solvated ions is different for H2O and D2O . This isotope dependence allows us to reliably determine the kinetic contribution to the depolarization, which is found to be significantly smaller than predicted by existing theory. The discrepancy can be explained from a reduced hydrogen-bond cooperativity in the solvation shell: we obtain quantitative agreement between theory and experiment by reducing the Kirkwood correlation factor of the solvating water from 2.7 (the bulk value) to ˜1.6 for NaCl and ˜1 (corresponding to completely uncorrelated motion of water molecules) for CsCl.

  5. Selective nonspecific solvation under dielectric saturation and fluorescence spectra of dye solutions in binary solvents.

    Science.gov (United States)

    Bakhshiev, N G; Kiselev, M B

    1991-09-01

    The influence of selective nonspecific solvation on the fluorescence spectra of three substitutedN-methylphthalimides in a binary solvent system consisting of a nonpolar (n-heptane) and a polar (pyridine) component has been studied under conditions close to dielectric saturation. The substantially nonlinearity of the effect is confirmation that the spectral shifts of fluorescence bands depend on the number of polar solvent molecules involved in solvating the dye molecule. The measured fluorescence spectral shifts determined by substituting one nonpolar solvent molecula with a polar one in the proximity of the dye molecule agree quantitatively with the forecasts of the previously proposed semiempirical theory which describes this nonlinear solvation phenomenon.

  6. Phase Equilibria and Ionic Solvation in the Lithium Tetrafluoroborate-Dimethylsulfoxide System

    Science.gov (United States)

    Gafurov, M. M.; Kirillov, S. A.; Gorobets, M. I.; Rabadanov, K. Sh.; Ataev, M. B.; Tretyakov, D. O.; Aydemirov, K. M.

    2015-01-01

    The phase diagram and electrical conductivity isotherms for the lithium tetrafluoroborate (LiBF4)-dimethylsulfoxide (DMSO) system and Raman spectra of DMSO and the LiBF4-DMSO solution were studied. Spectroscopic signatures of a H-bond between DMSO and BF4 - ions were found. The bonds of Li+ ions to the solvent were stronger than the bonds in DMSO dimers because formation of the solvate destroyed dimeric DMSO molecules. The τω values for DMSO molecules in the Li+-ion solvate shell of the LiBF4-DMSO system were similar to those for associated solvent molecules.

  7. Gibbs energies of protonation and complexation of platinum and vanadate metal ions with naringenin and phenolic acids: Theoretical calculations associated with experimental values

    International Nuclear Information System (INIS)

    Fazary, Ahmed E.; Alshihri, Ayed S.; Alfaifi, Mohammad Y.; Saleh, Kamel A.; Elbehairi, Serag Eldin I.; Fawy, Khaled F.; Abd-Rabboh, Hisham S.M.

    2016-01-01

    Highlights: • The experimental thermodynamic equilibrium and stability constants of vanadium and platinum complexes involving naringin, ferulic acid, p-coumaric acid, caffeic acid, vanillic acid, sinapic acid, and gallic acid were determined. • The theoretical calculations of the free energy changes associated with the ligand protonation, and metal ion–ligand complex formation equilibria using density function theory calculations, providing a complete picture of the microscopic equilibria of the studied complex systems. - Abstract: The Experimental thermodynamic equilibrium (pK_a values) and stability (log β) constants of vanadium and platinum binary and mixed ligand complexes involving naringenin, ferulic acid, p-coumaric acid, caffeic acid, vanillic acid, sinapic acid, and gallic acid were determined at 310.15 K in 0.16 mol·dm"−"3 KCl aqueous solutions using pH-potentiometric technique and by means of two estimation models (HYPERQUAD 2008 and Bjerrum–Calvin). The theoretical calculations of overall protonation and stability constants of the metal complex species in solution were predicted as the free energy change associated with the ligand protonation, and metal ion–ligand complex formation equilibria (species solvation/de-solvation) using ab initio and density function theory (DFT) calculations. The usage of the experimental potentiometry technique and theoretical predictions provides a complete picture of the microscopic equilibria of the studied systems (vanadium/platinum–naringenin–phenolic acid). Specifically, this theoretically DFT predications would be useful to determine the most real protonation constants of the studied bioligands in which the binding sites changes due to the ligand protonation/deprotonation equilibria. Also, the complexing capacities of vanadium and platinum towards naringenin, ferulic acid, p-coumaric acid, caffeic acid, vanillic acid, sinapic acid, and gallic acid in solutions were evaluated and discussed. From the

  8. Fluorescent probe studies of polarity and solvation within room temperature ionic liquids: a review.

    Science.gov (United States)

    Pandey, Shubha; Baker, Sheila N; Pandey, Siddharth; Baker, Gary A

    2012-09-01

    Ionic liquids display an array of useful and sometimes unconventional, solvent features and have attracted considerable interest in the field of green chemistry for the potential they hold to significantly reduce environmental emissions. Some of these points have a bearing on the chemical reactivity of these systems and have also generated interest in the physical and theoretical aspects of solvation in ionic liquids. This review presents an introduction to the field of ionic liquids, followed by discussion of investigations into the solvation properties of neat ionic liquids or mixed systems including ionic liquids as a major or minor component. The ionic liquid based multicomponent systems discussed are composed of other solvents, other ionic liquids, carbon dioxide, surfactants or surfactant solutions. Although we clearly focus on fluorescence spectroscopy as a tool to illuminate ionic liquid systems, the issues discussed herein are of general relevance to discussions of polarity and solvent effects in ionic liquids. Transient solvation measurements carried out by means of time-resolved fluorescence measurements are particularly powerful for their ability to parameterize the kinetics of the solvation process in ionic liquids and are discussed as well.

  9. Computing pKa Values in Different Solvents by Electrostatic Transformation.

    Science.gov (United States)

    Rossini, Emanuele; Netz, Roland R; Knapp, Ernst-Walter

    2016-07-12

    We introduce a method that requires only moderate computational effort to compute pKa values of small molecules in different solvents with an average accuracy of better than 0.7 pH units. With a known pKa value in one solvent, the electrostatic transform method computes the pKa value in any other solvent if the proton solvation energy is known in both considered solvents. To apply the electrostatic transform method to a molecule, the electrostatic solvation energies of the protonated and deprotonated molecular species are computed in the two considered solvents using a dielectric continuum to describe the solvent. This is demonstrated for 30 molecules belonging to 10 different molecular families by considering 77 measured pKa values in 4 different solvents: water, acetonitrile, dimethyl sulfoxide, and methanol. The electrostatic transform method can be applied to any other solvent if the proton solvation energy is known. It is exclusively based on physicochemical principles, not using any empirical fetch factors or explicit solvent molecules, to obtain agreement with measured pKa values and is therefore ready to be generalized to other solute molecules and solvents. From the computed pKa values, we obtained relative proton solvation energies, which agree very well with the proton solvation energies computed recently by ab initio methods, and used these energies in the present study.

  10. Mutagenicity of Tween 80-solvated mild gasification products in the Ames salmonella microsomal assay system

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-13

    The results of the Tween 80-solvated Ames testing of six mild gasification samples indicate significant mutagenic activity only in the composite materials (MG-119 and MG-120), previously suspected from the DMSO-solvated assays, which had shown some variable but ultimately insignificant mutagenic responses. The activity of these samples from the Tween 80-solvated assays was quite low when compared to either the positive controls or the SRC-II HD coal-liquefaction reference material. The class of mutagenic activity expressed by these samples solvated in Tween 80 was that of an indirect-acting, frameshift mutagen(s) since significant activity was found only on tester strain TA98 in the presence of the metabolic activation fraction (S9). Because DMSO and other solvents have been shown to affect the mutagenic activity of certain pure chemicals, the possibility of solvent/mutagen interactions in complex mixtures such as coal-derived liquids exists. Thus, the testing of the genotoxic activity of undefined, chemically complex compounds may require the use of at least two solvent systems to reduce the possibility of artifactual findings. 10 refs., 4 tabs.

  11. A sensitive fluorescent probe for the polar solvation dynamics at protein-surfactant interfaces.

    Science.gov (United States)

    Singh, Priya; Choudhury, Susobhan; Singha, Subhankar; Jun, Yongwoong; Chakraborty, Sandipan; Sengupta, Jhimli; Das, Ranjan; Ahn, Kyo-Han; Pal, Samir Kumar

    2017-05-17

    Relaxation dynamics at the surface of biologically important macromolecules is important taking into account their functionality in molecular recognition. Over the years it has been shown that the solvation dynamics of a fluorescent probe at biomolecular surfaces and interfaces account for the relaxation dynamics of polar residues and associated water molecules. However, the sensitivity of the dynamics depends largely on the localization and exposure of the probe. For noncovalent fluorescent probes, localization at the region of interest in addition to surface exposure is an added challenge compared to the covalently attached probes at the biological interfaces. Here we have used a synthesized donor-acceptor type dipolar fluorophore, 6-acetyl-(2-((4-hydroxycyclohexyl)(methyl)amino)naphthalene) (ACYMAN), for the investigation of the solvation dynamics of a model protein-surfactant interface. A significant structural rearrangement of a model histone protein (H1) upon interaction with anionic surfactant sodium dodecyl sulphate (SDS) as revealed from the circular dichroism (CD) studies is nicely corroborated in the solvation dynamics of the probe at the interface. The polarization gated fluorescence anisotropy of the probe compared to that at the SDS micellar surface clearly reveals the localization of the probe at the protein-surfactant interface. We have also compared the sensitivity of ACYMAN with other solvation probes including coumarin 500 (C500) and 4-(dicyanomethylene)-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran (DCM). In comparison to ACYMAN, both C500 and DCM fail to probe the interfacial solvation dynamics of a model protein-surfactant interface. While C500 is found to be delocalized from the protein-surfactant interface, DCM becomes destabilized upon the formation of the interface (protein-surfactant complex). The timescales obtained from this novel probe have also been compared with other femtosecond resolved studies and molecular dynamics simulations.

  12. Comparison between implicit and hybrid solvation methods for the ...

    Indian Academy of Sciences (India)

    Administrator

    Both implicit solvation method (dielectric polarizable continuum model, DPCM) and hybrid ... the free energy change (ΔGsol) as per the PCM ... Here the gas phase change is written as ΔGg = ΔEelec + ..... bution to the field of electrochemistry.

  13. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination.

    Science.gov (United States)

    Baran, Derya; Gasparini, Nicola; Wadsworth, Andrew; Tan, Ching Hong; Wehbe, Nimer; Song, Xin; Hamid, Zeinab; Zhang, Weimin; Neophytou, Marios; Kirchartz, Thomas; Brabec, Christoph J; Durrant, James R; McCulloch, Iain

    2018-05-25

    Nonfullerene solar cells have increased their efficiencies up to 13%, yet quantum efficiencies are still limited to 80%. Here we report efficient nonfullerene solar cells with quantum efficiencies approaching unity. This is achieved with overlapping absorption bands of donor and acceptor that increases the photon absorption strength in the range from about 570 to 700 nm, thus, almost all incident photons are absorbed in the active layer. The charges generated are found to dissociate with negligible geminate recombination losses resulting in a short-circuit current density of 20 mA cm -2 along with open-circuit voltages >1 V, which is remarkable for a 1.6 eV bandgap system. Most importantly, the unique nano-morphology of the donor:acceptor blend results in a substantially improved stability under illumination. Understanding the efficient charge separation in nonfullerene acceptors can pave the way to robust and recombination-free organic solar cells.

  14. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination

    KAUST Repository

    Baran, Derya

    2018-05-21

    Nonfullerene solar cells have increased their efficiencies up to 13%, yet quantum efficiencies are still limited to 80%. Here we report efficient nonfullerene solar cells with quantum efficiencies approaching unity. This is achieved with overlapping absorption bands of donor and acceptor that increases the photon absorption strength in the range from about 570 to 700 nm, thus, almost all incident photons are absorbed in the active layer. The charges generated are found to dissociate with negligible geminate recombination losses resulting in a short-circuit current density of 20 mA cm-2 along with open-circuit voltages >1 V, which is remarkable for a 1.6 eV bandgap system. Most importantly, the unique nano-morphology of the donor:acceptor blend results in a substantially improved stability under illumination. Understanding the efficient charge separation in nonfullerene acceptors can pave the way to robust and recombination-free organic solar cells.

  15. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination

    KAUST Repository

    Baran, Derya; Gasparini, Nicola; Wadsworth, Andrew; Tan, Ching Hong; Wehbe, Nimer; Song, Xin; Hamid, Zeinab; Zhang, Weimin; Neophytou, Marios; Kirchartz, Thomas; Brabec, Christoph J.; Durrant, James R.; McCulloch, Iain

    2018-01-01

    Nonfullerene solar cells have increased their efficiencies up to 13%, yet quantum efficiencies are still limited to 80%. Here we report efficient nonfullerene solar cells with quantum efficiencies approaching unity. This is achieved with overlapping absorption bands of donor and acceptor that increases the photon absorption strength in the range from about 570 to 700 nm, thus, almost all incident photons are absorbed in the active layer. The charges generated are found to dissociate with negligible geminate recombination losses resulting in a short-circuit current density of 20 mA cm-2 along with open-circuit voltages >1 V, which is remarkable for a 1.6 eV bandgap system. Most importantly, the unique nano-morphology of the donor:acceptor blend results in a substantially improved stability under illumination. Understanding the efficient charge separation in nonfullerene acceptors can pave the way to robust and recombination-free organic solar cells.

  16. Recombination yield of geminate radical pairs in low magnetic fields - A Green's function method

    International Nuclear Information System (INIS)

    Doktorov, A.B.; Hansen, M.J.; Pedersen, J. Boiden

    2006-01-01

    An analytic expression for the recombination yield of a geminate radical pair with a single spin one half nuclei is derived. The expression is valid for any field strength of the static magnetic field. It is assumed that the spin mixing is caused solely by the hyperfine interaction of the nuclear spin and the difference in Zeeman energies of the two radical partners, that the recombination occurs at the distance of closest approach, and that there is a locally strong dephasing at contact. This is a special result of a new general approach where a Green's function technique is used to recast the stochastic Liouville equation into a low dimensional matrix equation that is particularly convenient for locally strong dephasing systems. The equation is expressed in terms of special values (determined by the magnetic parameters) of the Green's function for the relative motion of the radicals and it is therefore valid for any motional model, e.g. diffusion, one and two site models. The applicability of the strong dephasing approximation is illustrated by comparison with numerical exact results

  17. Photoinduced electron transfer and solvation in iodide-doped acetonitrile clusters.

    Science.gov (United States)

    Ehrler, Oli T; Griffin, Graham B; Young, Ryan M; Neumark, Daniel M

    2009-04-02

    We have used ultrafast time-resolved photoelectron imaging to measure charge transfer dynamics in iodide-doped acetonitrile clusters I(-)(CH(3)CN)(n) with n = 5-10. Strong modulations of vertical detachment energies were observed following charge transfer from the halide, allowing interpretation of the ongoing dynamics. We observe a sharp drop in the vertical detachment energy (VDE) within 300-400 fs, followed by a biexponential increase that is complete by approximately 10 ps. Comparison to theory suggests that the iodide is internally solvated and that photodetachment results in formation of a diffuse electron cloud in a confined cavity. We interpret the initial drop in VDE as a combination of expansion of the cavity and localization of the excess electron on one or two solvent molecules. The subsequent increase in VDE is attributed to a combination of the I atom leaving the cavity and rearrangement of the acetonitrile molecules to solvate the electron. The n = 5-8 clusters then show a drop in VDE of around 50 meV on a much longer time scale. The long-time VDEs are consistent with those of (CH(3)CN)(n)(-) clusters with internally solvated electrons. Although the excited-state created by the pump pulse decays by emission of a slow electron, no such decay is seen by 200 ps.

  18. Solvation of the fluorine containing anions and their lithium salts in propylene carbonate and dimethoxyethane.

    Science.gov (United States)

    Chaban, Vitaly

    2015-07-01

    Electrolyte solutions based on the propylene carbonate (PC)-dimethoxyethane (DME) mixtures are of significant importance and urgency due to emergence of lithium-ion batteries. Solvation and coordination of the lithium cation in these systems have been recently attended in detail. However, analogous information concerning anions (tetrafluoroborate, hexafluorophosphate) is still missed. This work reports PM7-MD simulations (electronic-structure level of description) to include finite-temperature effects on the anion solvation regularities in the PC-DME mixture. The reported result evidences that the anions appear weakly solvated. This observation is linked to the absence of suitable coordination sites in the solvent molecules. In the concentrated electrolyte solutions, both BF4(-) and PF6(-) prefer to exist as neutral ion pairs (LiBF4, LiPF6).

  19. Solvation of decane and benzene in mixtures of 1-octanol and N, N-dimethylformamide

    Science.gov (United States)

    Kustov, A. V.; Smirnova, N. L.

    2016-09-01

    The heats of dissolution of decane and benzene in a model system of octanol-1 (OctOH) and N, N-dimethylformamide (DMF) at 308 K are measured using a variable temperature calorimeter equipped with an isothermal shell. Standard enthalpies are determined and standard heat capacities of dissolution in the temperature range of 298-318 K are calculated using data obtained in [1, 2]. The state of hydrocarbon molecules in a binary mixture is studied in terms of the enhanced coordination model (ECM). Benzene is shown to be preferentially solvated by DMF over the range of physiological temperatures. The solvation shell of decane is found to be strongly enriched with 1-octanol. It is obvious that although both hydrocarbons are nonpolar, the presence of the aromatic π-system in benzene leads to drastic differences in their solvation in a lipid-protein medium.

  20. Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures

    International Nuclear Information System (INIS)

    Delgado, Daniel R.; Almanza, Ovidio A.; Martínez, Fleming; Peña, María A.; Jouyban, Abolghasem; Acree, William E.

    2016-01-01

    Highlights: • Solubility of sulfamethazine (SMT) was measured in (methanol + water) mixtures. • SMT solubility was correlated with Jouyban–Acree model. • Gibbs energy, enthalpy, and entropy of dissolution of SMT were calculated. • Non-linear enthalpy–entropy relationship was observed for SMT. • Preferential solvation of SMT by methanol was analyzed by using the IKBI method. - Abstract: The solubility of sulfamethazine (SMT) in {methanol (1) + water (2)} co-solvent mixtures was determined at five different temperatures from (293.15 to 313.15) K. The sulfonamide exhibited its highest mole fraction solubility in pure methanol (δ 1 = 29.6 MPa 1/2 ) and its lowest mole fraction solubility in water (δ 2 = 47.8 MPa 1/2 ) at each of the five temperatures studied. The Jouyban–Acree model was used to correlate/predict the solubility values. The respective apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution were obtained from the solubility data through the van’t Hoff and Gibbs equations. Apparent thermodynamic quantities of mixing were also calculated for this drug using values of the ideal solubility reported in the literature. A non-linear enthalpy–entropy relationship was noted for SMT in plots of both the enthalpy vs. Gibbs energy of mixing and the enthalpy vs. entropy of mixing. These plots suggest two different trends according to the slopes obtained when the composition of the mixtures changes. Accordingly, the mechanism for SMT transfer processes in water-rich mixtures from water to the mixture with 0.70 in mass fraction of methanol is entropy driven. Conversely, the mechanism is enthalpy driven in mixtures whenever the methanol composition exceeds 0.70 mol fraction. An inverse Kirkwood–Buff integral analysis of the preferential solvation of SMT indicated that the drug is preferentially solvated by water in water-rich mixtures but is preferentially solvated by methanol in methanol-rich mixtures.

  1. Solvation phenomena in association theories with applications to oil & gas and chemical industries

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Folas, Georgios; Muro Sunè, Nuria

    2008-01-01

    Association theories e.g. those belonging to the SAFT family account explicitly for self- and cross-association (solvation) phenomena. Such phenomena are of great practical importance as they affect, often dramatically, the phase behaviour of many mixtures of industrial relevance. From the scient......Association theories e.g. those belonging to the SAFT family account explicitly for self- and cross-association (solvation) phenomena. Such phenomena are of great practical importance as they affect, often dramatically, the phase behaviour of many mixtures of industrial relevance. From...

  2. Electron spin resonance of the solvation of radiation-produced silver atoms in alcohol-water mixtures

    International Nuclear Information System (INIS)

    Li, A.S.W.; Kevan, L.

    1982-01-01

    Frozen solutions of silver salts exposed to 60 Co γ-irradiation form silver atoms by reaction of radiation-produced electrons with the silver ion. At 4 K the silver atoms are initially produced in a nonequilibrium or presolvated state and upon brief thermal excitation to 77 K the first solvation shell geometry changes towards an equilibrium or solvated silver atom. This is most pronounced in water but also occurs in methanol, ethanol and n-propanol matrices. The changes in the electron spin resonance magnetic parameters upon silver atom solvation have been determined. In alcohol-water mixtures Ag 0 is preferentially solvated by polycrystalline water at low alcohol concentration. Above a particular alcohol mole percent Ag 0 suddenly changes its environment to a glassy alcohol one. This sudden change occurs at 17, 13 and 6 mol % methanol, ethanol and n-propanol, respectively. These mole percents correlate with the minimum of the excess enthalpy of mixing and with the hydrogen atom trapping ability of these alcohol-water mixtures. The results also suggest that the local environmental disorder around Ag 0 increases with alcohol chain length in alcohol-water frozen solutions. (author)

  3. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts

    Science.gov (United States)

    Yadav, Sushma; Chandra, Amalendu

    2017-12-01

    We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 lead to the presence of substantial dynamical heterogeneity in these solutions of strongly interacting ions. The current study helps us to understand the molecular details of hydration structure, ion pairing, and dynamics of water in the solvation shells and also of ion diffusion in aqueous solutions of divalent metal nitrate salts.

  4. Abacavir methanol 2.5-solvate

    Directory of Open Access Journals (Sweden)

    Phuong-Truc T. Pham

    2009-08-01

    Full Text Available The structure of abacavir (systematic name: {(1S,4R-4-[2-amino-6-(cyclopropylamino-9H-purin-9-yl]cyclopent-2-en-1-yl}methanol, C14H18N6O·2.5CH3OH, consists of hydrogen-bonded ribbons which are further held together by additional hydrogen bonds involving the hydroxyl group and two N atoms on an adjacent purine. The asymmetric unit also contains 2.5 molecules of methanol solvate which were grossly disordered and were excluded using SQUEEZE subroutine in PLATON [Spek, (2009. Acta Cryst. D65, 148–155].

  5. Continuous registration of optical absorption spectra of periodically produced solvated electrons

    International Nuclear Information System (INIS)

    Krebs, P.

    1975-01-01

    Absorption spectra of unstable intermediates, such as solvated electrons, were usually taken point by point, recording the time-dependent light absorption after their production by a flash. The experimental arrangement for continuous recording of the spectra consists of a conventional one beam spectral photometer with a stabilized white light source, a monochromator, and a light detector. By periodic production of light absorbing intermediates such as solvated electrons, e.g., by ac uv light, a small ac signal is modulated on the light detector output which after amplification can be continuously recorded as a function of wavelength. This method allows the detection of absorption spectra when disturbances from the outside provide a signal-to-noise ratio smaller than 1

  6. Microscopic picture of the aqueous solvation of glutamic acid

    NARCIS (Netherlands)

    Leenders, E.J.M.; Bolhuis, P.G.; Meijer, E.J.

    2008-01-01

    We present molecular dynamics simulations of glutamic acid and glutamate solvated in water, using both density functional theory (DFT) and the Gromos96 force field. We focus on the microscopic aspects of the solvation−particularly on the hydrogen bond structures and dynamics−and investigate the

  7. Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes.

    Science.gov (United States)

    Zhang, Xue-Qiang; Chen, Xiang; Cheng, Xin-Bing; Li, Bo-Quan; Shen, Xin; Yan, Chong; Huang, Jia-Qi; Zhang, Qiang

    2018-05-04

    Safe and rechargeable lithium metal batteries have been difficult to achieve because of the formation of lithium dendrites. Herein an emerging electrolyte based on a simple solvation strategy is proposed for highly stable lithium metal anodes in both coin and pouch cells. Fluoroethylene carbonate (FEC) and lithium nitrate (LiNO 3 ) were concurrently introduced into an electrolyte, thus altering the solvation sheath of lithium ions, and forming a uniform solid electrolyte interphase (SEI), with an abundance of LiF and LiN x O y on a working lithium metal anode with dendrite-free lithium deposition. Ultrahigh Coulombic efficiency (99.96 %) and long lifespans (1000 cycles) were achieved when the FEC/LiNO 3 electrolyte was applied in working batteries. The solvation chemistry of electrolyte was further explored by molecular dynamics simulations and first-principles calculations. This work provides insight into understanding the critical role of the solvation of lithium ions in forming the SEI and delivering an effective route to optimize electrolytes for safe lithium metal batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Internal energy effects on the solvation and reactivity of multiply charged biomolecules for electrospray ionization mass spectroscopy. [Bovine ubiquitin

    Energy Technology Data Exchange (ETDEWEB)

    Light-Wahl, K.J.; Winger, B.E.; Rockwood, A.L.; Smith, R.D.

    1992-06-01

    Mild (capillary) interface conditions which do not completely desolvate the ions of proteins in electrospray ionization mass spectrometry (ESI-MS) may be required to probe the higher order structures and weak associations. For the small protein bovine ubiquitin, two ion distributions (unsolvated ions and unresolved solvated ions) were observed. The resolvable solvation for leucine-enkephalin with methanol and water shows that the use of countercurrent N{sub 2} flow at the capillary affects the solvation observed. 2 figs. (DLC)

  9. Incorporation of Hydrogen Bond Angle Dependency into the Generalized Solvation Free Energy Density Model.

    Science.gov (United States)

    Ma, Songling; Hwang, Sungbo; Lee, Sehan; Acree, William E; No, Kyoung Tai

    2018-04-23

    To describe the physically realistic solvation free energy surface of a molecule in a solvent, a generalized version of the solvation free energy density (G-SFED) calculation method has been developed. In the G-SFED model, the contribution from the hydrogen bond (HB) between a solute and a solvent to the solvation free energy was calculated as the product of the acidity of the donor and the basicity of the acceptor of an HB pair. The acidity and basicity parameters of a solute were derived using the summation of acidities and basicities of the respective acidic and basic functional groups of the solute, and that of the solvent was experimentally determined. Although the contribution of HBs to the solvation free energy could be evenly distributed to grid points on the surface of a molecule, the G-SFED model was still inadequate to describe the angle dependency of the HB of a solute with a polarizable continuum solvent. To overcome this shortcoming of the G-SFED model, the contribution of HBs was formulated using the geometric parameters of the grid points described in the HB coordinate system of the solute. We propose an HB angle dependency incorporated into the G-SFED model, i.e., the G-SFED-HB model, where the angular-dependent acidity and basicity densities are defined and parametrized with experimental data. The G-SFED-HB model was then applied to calculate the solvation free energies of organic molecules in water, various alcohols and ethers, and the log P values of diverse organic molecules, including peptides and a protein. Both the G-SFED model and the G-SFED-HB model reproduced the experimental solvation free energies with similar accuracy, whereas the distributions of the SFED on the molecular surface calculated by the G-SFED and G-SFED-HB models were quite different, especially for molecules having HB donors or acceptors. Since the angle dependency of HBs was included in the G-SFED-HB model, the SFED distribution of the G-SFED-HB model is well described

  10. Solvation dynamics of lithium salts in wet nitrobenzene

    Czech Academy of Sciences Publication Activity Database

    Moakes, G.; Gelbaum, L. T.; Leisen, J.; Janata, J.; Mareček, Vladimír

    2006-01-01

    Roč. 593, 1-2 (2006), s. 111-118 ISSN 0022-0728 R&D Projects: GA ČR GA203/03/0822 Grant - others:Georgia Research Alliance(US) GRA.CG06.D Institutional research plan: CEZ:AV0Z40400503 Keywords : solvation * NMR * FTIR * nitrobenzene/water * solvatomers Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.339, year: 2006

  11. Solvated electrons at elevated temperatures in different alcohols: Temperature and molecular structure effects

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yu [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Lin, Mingzhang [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Katsumura, Yosuke, E-mail: katsu@n.t.u-tokyo.ac.j [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Fu, Haiying; Muroya, Yusa [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan)

    2010-12-15

    The absorption spectra of solvated electrons in pentanol, hexanol and octanol are measured from 22 to 200, 22 to 175 and 50 to150 {sup o}C, respectively, at a fixed pressure of 15 MPa, using nanosecond pulse radiolysis technique. The results show that the peak positions of the absorption spectra have a red-shift (shift to longer wavelengths) as temperature increases, similar to water and other alcohols. Including the above mentioned data, a compilation of currently available experimental data on the energy of absorption maximum (E{sub max}) of solvated electrons changed with temperature in monohydric alcohols, diols and triol is presented. E{sub max} of solvated electron is larger in those alcohols that have more OH groups at all the temperatures. The molecular structure effect, including OH numbers, OH position and carbon chain length, is investigated. For the primary alcohols with same OH group number and position, the temperature coefficient increases with increase in chain length. For the alcohols with same chain length and OH numbers, temperature coefficient is larger for the symmetric alcohols than the asymmetric ones.

  12. Proton Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2009-04-10

    Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expanding to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK{sub a} units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization

  13. Proton-Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host

    International Nuclear Information System (INIS)

    Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2009-01-01

    Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expanding to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK a units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization of

  14. Solvent density inhomogeneities and solvation free energies in supercritical diatomic fluids: a density functional approach.

    Science.gov (United States)

    Husowitz, B; Talanquer, V

    2007-02-07

    Density functional theory is used to explore the solvation properties of a spherical solute immersed in a supercritical diatomic fluid. The solute is modeled as a hard core Yukawa particle surrounded by a diatomic Lennard-Jones fluid represented by two fused tangent spheres using an interaction site approximation. The authors' approach is particularly suitable for thoroughly exploring the effect of different interaction parameters, such as solute-solvent interaction strength and range, solvent-solvent long-range interactions, and particle size, on the local solvent structure and the solvation free energy under supercritical conditions. Their results indicate that the behavior of the local coordination number in homonuclear diatomic fluids follows trends similar to those reported in previous studies for monatomic fluids. The local density augmentation is particularly sensitive to changes in solute size and is affected to a lesser degree by variations in the solute-solvent interaction strength and range. The associated solvation free energies exhibit a nonmonotonous behavior as a function of density for systems with weak solute-solvent interactions. The authors' results suggest that solute-solvent interaction anisotropies have a major influence on the nature and extent of local solvent density inhomogeneities and on the value of the solvation free energies in supercritical solutions of heteronuclear molecules.

  15. Solvation quantities from a COSMO-RS equation of state

    International Nuclear Information System (INIS)

    Panayiotou, C.; Tsivintzelis, I.; Aslanidou, D.; Hatzimanikatis, V.

    2015-01-01

    Highlights: • Extension of the successful COSMO-RS model to an equation-of-state model. • Two scaling constants, obtained from atom-specific contributions. • Overall estimation of the solvation quantities and contributions. - Abstract: This work focuses on the extension of the successful COSMO-RS model of mixtures into an equation-of-state model of fluids and its application for the estimation of solvation/hydration quantities of a variety of chemical substances. These quantities include free-energies, enthalpies and entropies of hydration as well as the separate contributions to each of them. Emphasis is given on the estimation of contributions from the conformational changes of solutes upon solvation and the associated restructuring of solvent in its immediate neighborhood. COSMO-RS is a quantum-mechanics based group/segment contribution model in which the Quasi-Chemical (QC) approach is used for the description of the non-random distribution of interacting segments in the system. Thus, the equation-of-state development is done through such a QC framework. The new model will not need any adjustable parameters for the strong specific interactions, such as hydrogen bonds, since they will be provided by the quantum-mechanics based cosmo-files – a key feature of COSMO-RS model. It will need, however, one volumetric and one energy parameter per fluid, which are scaling constants or molecular descriptors of the fluid and are obtained from rather easily available data such as densities, boiling points, vapor pressures, heats of vaporization or second virial coefficients. The performance and the potential of the new equation-of-state model to become a fully predictive model are critically discussed

  16. Corrosion Thermodynamics of Magnesium and Alloys from First Principles as a Function of Solvation

    Science.gov (United States)

    Limmer, Krista; Williams, Kristen; Andzelm, Jan

    Thermodynamics of corrosion processes occurring on magnesium surfaces, such as hydrogen evolution and water dissociation, have been examined with density functional theory (DFT) to evaluate the effect of impurities and dilute alloying additions. The modeling of corrosion thermodynamics requires examination of species in a variety of chemical and electronic states in order to accurately represent the complex electrochemical corrosion process. In this study, DFT calculations for magnesium corrosion thermodynamics were performed with two DFT codes (VASP and DMol3), with multiple exchange-correlation functionals for chemical accuracy, as well as with various levels of implicit and explicit solvation for surfaces and solvated ions. The accuracy of the first principles calculations has been validated against Pourbaix diagrams constructed from solid, gas and solvated charged ion calculations. For aqueous corrosion, it is shown that a well parameterized implicit solvent is capable of accurately representing all but the first coordinating layer of explicit water for charged ions.

  17. The solvation of carbohydrates in dimethylsulfoxide and water

    International Nuclear Information System (INIS)

    Berger, S.; Diaz, M.D.; Horwat, Ch.

    1999-01-01

    The solvation of sucrose and other carbohydrates in DMSO and water is probed by intermolecular NOE measurements. The NOE effects are interpreted in terms of specific binding of the solvent to certain sites of the molecules. It is shown that DMSO attaches to specific sites of the sucrose molecule, whereas for water such a clear differentiation cannot be proven. (author)

  18. On the coupling between molecular diffusion and solvation shell exchange

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Rey, Rossend; Masia, Marco

    2005-01-01

    The connection between diffusion and solvent exchanges between first and second solvation shells is studied by means of molecular dynamics simulations and analytic calculations, with detailed illustrations for water exchange for the Li+ and Na+ ions, and for liquid argon. First, two methods...

  19. Thermodynamics of sublimation and solvation for bicyclo-derivatives of 1,3-thiazine

    International Nuclear Information System (INIS)

    Ol’khovich, Marina V.; Blokhina, Svetlana V.; Sharapova, Angelica V.; Perlovich, German L.; Proshin, Alexey N.

    2013-01-01

    Highlights: • Temperature dependencies of saturated vapor pressure of new bicyclo-derivatives were obtained. • Thermodynamic functions of sublimation and solvation were calculated. • The correlations between thermodynamic functions and molecular descriptors are discussed. - Abstract: Temperature dependencies of saturated vapor pressure of novel bicyclo-derivatives of 1,3-thiazine with methoxy- and carbonyl-substituents have been obtained by method of transference by means of an inert gas carrier. Thermodynamic functions of sublimation have been calculated. Correlations between thermodynamic functions of sublimation and thermophysical properties of the substances and molecular descriptors have been established. The enthalpies of solvation of compounds were calculated using the measured values of enthalpies of sublimation and of standard enthalpies of solution in hexane and buffer

  20. Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Curtiss, Larry A.; Zavadil, Kevin R.; Gewirth, Andrew A.; Shao, Yuyan; Gallagher, Kevin

    2016-07-11

    Moving to lighter and less expensive battery chemistries compared to lithium-ion requires the control of energy storage mechanisms based on chemical transformations rather than intercalation. Lithium sulfur (Li/S) has tremendous theoretical specific energy, but contemporary approaches to control this solution-mediated, precipitation-dissolution chemistry requires using large excesses of electrolyte to fully solubilize the polysulfide intermediate. Achieving reversible electrochemistry under lean electrolyte operation is the only path for Li/S to move beyond niche applications to potentially transformational performance. An emerging topic for Li/S research is the use of sparingly solvating electrolytes and the creation of design rules for discovering new electrolyte systems that fundamentally decouple electrolyte volume from reaction mechanism. This perspective presents an outlook for sparingly solvating electrolytes as the key path forward for longer-lived, high-energy density Li/S batteries including an overview of this promising new concept and some strategies for accomplishing it.

  1. Solvation of excess electrons trapped in charge pockets on molecular surfaces

    Science.gov (United States)

    Jalbout, Abraham F.

    This work considers the ability of hydrogen fluoride (HF) to solvate excess electrons located on cyclic hydrocarbon surfaces. The principle applied involves the formation of systems in which excess electrons can be stabilized not only on concentrated molecular surface charge pockets but also by HF. Recent studies have shown that OH groups can form stable hydrogen-bonded networks on one side of a hydrocarbon surface (i.e. cyclohexane sheets), at the same time, the hydrogen atoms on the opposite side of this surface form a pocket of positive charge can attract the excess electron. This density can be further stabilized by the addition of an HF molecule that can form an 'anion with an internally solvated electron' (AISE) state. These systems are shown to be stable with respect to vertical electron detachment (VDE).

  2. Infrared spectroscopy of model electrochemical interfaces in ultrahigh vacuum: some implications for ionic and chemisorbate solvation at electrode surfaces

    Science.gov (United States)

    Villegas, Ignacio; Kizhakevariam, Naushad; Weaver, Michael J.

    1995-07-01

    The utility of infrared reflection-absorption spectroscopy (IRAS) for examining structure and bonding for model electrochemical interfaces in ultrahigh vacuum (UHV) is illustrated, focusing specifically on the solvation of cations and chemisorbed carbon monoxide on Pt(111). These systems were chosen partly in view of the availability of IRAS data (albeit limited to chemisorbate vibrations) for the corresponding in-situ metal-solution interfaces, enabling direct spectral comparisons to be made with the "UHV electrochemical model" systems. Kelvin probe measurements of the metal-UHV surface potential changes (ΔΦ) attending alterations in the interfacial composition are also described: these provide the required link to the in-situ electrode potentials as well as yielding additional insight into surface solvation. Variations in the negative electronic charge density and, correspondingly, in the cation surface concentration (thereby mimicking charge-induced alterations in the electrode potential below the potential of zero charge) are achieved by potassium atom dosage onto Pt(111). Of the solvents selected for discussion here — deuterated water, methanol, and acetonitrile — the first two exhibit readily detectable vibrational bands which provide information on the ionic solvation structure. Progressively dosing these solvents onto Pt(111) in the presence of low potassium coverages yields marked alterations in the solvent vibrational bands which can be understood in terms of sequential cation solvation. Comparison between these spectra for methanol with analogous data for sequential methanol solvation of gas-phase alkali cations enables the influence of the interfacial environment to be assessed. The effects of solvating chemisorbed CO are illustrated for acetonitrile; the markedly larger shifts in CO frequencies and binding sites for dilute CO adlayers can be accounted for in terms of short-range coadsorbate interactions in addition to longer-range Stark effects

  3. Modifying Poisson equation for near-solute dielectric polarization and solvation free energy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pei-Kun, E-mail: peikun@isu.edu.tw

    2016-06-15

    Highlights: • We modify the Poisson equation. • The dielectric polarization was calculated from the modified Poisson equation. • The solvation free energies of the solutes were calculated from the dielectric polarization. • The calculated solvation free energies were similar to those obtained from MD simulations. - Abstract: The dielectric polarization P is important for calculating the stability of protein conformation and the binding affinity of protein–protein/ligand interactions and for exploring the nonthermal effect of an external electric field on biomolecules. P was decomposed into the product of the electric dipole moment per molecule p; bulk solvent density N{sub bulk}; and relative solvent molecular density g. For a molecular solute, 4πr{sup 2}p(r) oscillates with the distance r to the solute, and g(r) has a large peak in the near-solute region, as observed in molecular dynamics (MD) simulations. Herein, the Poisson equation was modified for computing p based on the modified Gauss’s law of Maxwell’s equations, and the potential of the mean force was used for computing g. For one or two charged atoms in a water cluster, the solvation free energies of the solutes obtained by these equations were similar to those obtained from MD simulations.

  4. Ultrafast dynamics of solvation and charge transfer in a DNA-based biomaterial.

    Science.gov (United States)

    Choudhury, Susobhan; Batabyal, Subrata; Mondol, Tanumoy; Sao, Dilip; Lemmens, Peter; Pal, Samir Kumar

    2014-05-01

    Charge migration along DNA molecules is a key factor for DNA-based devices in optoelectronics and biotechnology. The association of a significant amount of water molecules in DNA-based materials for the intactness of the DNA structure and their dynamic role in the charge-transfer (CT) dynamics is less documented in contemporary literature. In the present study, we have used a genomic DNA-cetyltrimethyl ammonium chloride (CTMA) complex, a technological important biomaterial, and Hoechest 33258 (H258), a well-known DNA minor groove binder, as fluorogenic probe for the dynamic solvation studies. The CT dynamics of CdSe/ZnS quantum dots (QDs; 5.2 nm) embedded in the as-prepared and swollen biomaterial have also been studied and correlated with that of the timescale of solvation. We have extended our studies on the temperature-dependent CT dynamics of QDs in a nanoenvironment of an anionic, sodium bis(2-ethylhexyl)sulfosuccinate reverse micelle (AOT RMs), whereby the number of water molecules and their dynamics can be tuned in a controlled manner. A direct correlation of the dynamics of solvation and that of the CT in the nanoenvironments clearly suggests that the hydration barrier within the Arrhenius framework essentially dictates the charge-transfer dynamics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Solvation thermodynamics of L-cystine, L-tyrosine, and L-leucine in aqueous-electrolyte media

    Science.gov (United States)

    Roy, Sanjay; Guin, Partha Sarathi; Mahali, Kalachand; Dolui, Bijoy Krishna

    2017-12-01

    Solubilities of L-cystine, L-tyrosine, and L-leucine in aqueous NaCl media at 298.15 K have been studied. Indispensable and related solvent parameters such as molar mass, molar volume, etc., were also determined. The results are used to evaluate the standard transfer Gibbs free energy, cavity forming enthalpy of transfer, cavity forming transfer Gibbs free energy and dipole-dipole interaction effects during the course of solvation. Various weak interactions involving solute-solvent or solvent-solvent molecules were characterized in order to find their role on the solvation of these amino acids.

  6. Additive scheme for calculation of solvation enthalpies of heterocyclic aromatic compounds. Sublimation/vaporization enthalpy at 298.15 K

    International Nuclear Information System (INIS)

    Solomonov, Boris N.; Nagrimanov, Ruslan N.; Mukhametzyanov, Timur A.

    2016-01-01

    Highlights: • Additivity scheme for solvation enthalpies estimation of heteroaromatic compounds was proposed. • Method for determination of vaporization/sublimation enthalpies directly at 298.15 K was developed. • Solution enthalpies of 25 heteroaromatic compounds were measured. • Vaporization/sublimation enthalpies of 44 heteroaromatic compounds were determined. • Obtained values are in good agreement with the results of conventional methods. - Abstract: Hereby we propose a method for determination of vaporization and sublimation enthalpies of heterocyclic and carbonyl-containing aromatic compounds at 298.15 K. According to this method vaporization and sublimation enthalpies at 298.15 K are determined based on enthalpies of solvation and solution. Solvation enthalpies of heteroatomatic and carbonyl-containing compounds are calculated using an additive scheme from the solvation enthalpy of closest aromatic hydrocarbon and contributions related to the exchange of CH-groups of hydrocarbon with corresponding substituent atoms or groups. Measured solution enthalpies together with calculated solvation enthalpies allowed to calculate corresponding vaporization and sublimation enthalpies at 298.15 K for a large number of heterocyclic and carbonyl-containing compounds. We have also found that in a number of cases instead of solution enthalpy in benzene at 298.15 K fusion enthalpy at the melting temperature can be used. Comparison between literature data and calculated vaporization and sublimation enthalpies demonstrates satisfactory performance of the proposed method.

  7. Additive scheme for calculation of solvation enthalpies of heterocyclic aromatic compounds. Sublimation/vaporization enthalpy at 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, Boris N., E-mail: boris.solomonov@kpfu.ru; Nagrimanov, Ruslan N.; Mukhametzyanov, Timur A.

    2016-06-10

    Highlights: • Additivity scheme for solvation enthalpies estimation of heteroaromatic compounds was proposed. • Method for determination of vaporization/sublimation enthalpies directly at 298.15 K was developed. • Solution enthalpies of 25 heteroaromatic compounds were measured. • Vaporization/sublimation enthalpies of 44 heteroaromatic compounds were determined. • Obtained values are in good agreement with the results of conventional methods. - Abstract: Hereby we propose a method for determination of vaporization and sublimation enthalpies of heterocyclic and carbonyl-containing aromatic compounds at 298.15 K. According to this method vaporization and sublimation enthalpies at 298.15 K are determined based on enthalpies of solvation and solution. Solvation enthalpies of heteroatomatic and carbonyl-containing compounds are calculated using an additive scheme from the solvation enthalpy of closest aromatic hydrocarbon and contributions related to the exchange of CH-groups of hydrocarbon with corresponding substituent atoms or groups. Measured solution enthalpies together with calculated solvation enthalpies allowed to calculate corresponding vaporization and sublimation enthalpies at 298.15 K for a large number of heterocyclic and carbonyl-containing compounds. We have also found that in a number of cases instead of solution enthalpy in benzene at 298.15 K fusion enthalpy at the melting temperature can be used. Comparison between literature data and calculated vaporization and sublimation enthalpies demonstrates satisfactory performance of the proposed method.

  8. Negative ion photoelectron spectroscopy of solvated electron cluster anions, (H2O)n- and (NH3)n-

    International Nuclear Information System (INIS)

    Lee, G.H.; Arnold, S.T.; Eaton, J.G; Sarkas, H.W.; Bowen, K.H.; Ludewigt, C.; Haberland, H.

    1991-01-01

    The photodetachment spectra of (H 2 O) - n=2-69 and (NH 3 ) - n=41-1100 have been recorded, and vertical detachment energies (VDEs) were obtained from the spectra. For both systems, the cluster anion VDEs increase smoothly with increasing sizes and most species plot linearly with n -1/3 , extrapolating to a VDE (n = ∞) value which is very close to the photoelectric threshold energy for the corresponding condensed phase solvated electron system. The linear extrapolation of this data to the analogous condensed phase property suggests that these cluster anions are gas phase counterparts to solvated electrons, i.e. they are embryonic forms of hydrated and ammoniated electrons which mature with increasing cluster size toward condensed phase solvated electrons. (orig.)

  9. Negative ion photoelectron spectroscopy of solvated electron cluster anions, (H2O){/n -} and (NH3){/n -}

    Science.gov (United States)

    Lee, G. H.; Arnold, S. T.; Eaton, J. G.; Sarkas, H. W.; Bowen, K. H.; Ludewigt, C.; Haberland, H.

    1991-03-01

    The photodetachment spectra of (H2O){/n =2-69/-} and (NH3){/n =41-1100/-} have been recorded, and vertical detachment energies (VDEs) were obtained from the spectra. For both systems, the cluster anion VDEs increase smoothly with increasing sizes and most species plot linearly with n -1/3, extrapolating to a VDE ( n=∞) value which is very close to the photoelectric threshold energy for the corresponding condensed phase solvated electron system. The linear extrapolation of this data to the analogous condensed phase property suggests that these cluster anions are gas phase counterparts to solvated electrons, i.e. they are embryonic forms of hydrated and ammoniated electrons which mature with increasing cluster size toward condensed phase solvated electrons.

  10. Origin of parameter degeneracy and molecular shape relationships in geometric-flow calculations of solvation free energies

    Energy Technology Data Exchange (ETDEWEB)

    Daily, Michael D. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Chun, Jaehun [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Heredia-Langner, Alejandro [National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Wei, Guowei [Department of Mathematics, Michigan State University, East Lansing, Michigan 48824 (United States); Baker, Nathan A. [Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2013-11-28

    Implicit solvent models are important tools for calculating solvation free energies for chemical and biophysical studies since they require fewer computational resources but can achieve accuracy comparable to that of explicit-solvent models. In past papers, geometric flow-based solvation models have been established for solvation analysis of small and large compounds. In the present work, the use of realistic experiment-based parameter choices for the geometric flow models is studied. We find that the experimental parameters of solvent internal pressure p = 172 MPa and surface tension γ = 72 mN/m produce solvation free energies within 1 RT of the global minimum root-mean-squared deviation from experimental data over the expanded set. Our results demonstrate that experimental values can be used for geometric flow solvent model parameters, thus eliminating the need for additional parameterization. We also examine the correlations between optimal values of p and γ which are strongly anti-correlated. Geometric analysis of the small molecule test set shows that these results are inter-connected with an approximately linear relationship between area and volume in the range of molecular sizes spanned by the data set. In spite of this considerable degeneracy between the surface tension and pressure terms in the model, both terms are important for the broader applicability of the model.

  11. Improvements to the APBS biomolecular solvation software suite: Improvements to the APBS Software Suite

    Energy Technology Data Exchange (ETDEWEB)

    Jurrus, Elizabeth [Pacific Northwest National Laboratory, Richland Washington; Engel, Dave [Pacific Northwest National Laboratory, Richland Washington; Star, Keith [Pacific Northwest National Laboratory, Richland Washington; Monson, Kyle [Pacific Northwest National Laboratory, Richland Washington; Brandi, Juan [Pacific Northwest National Laboratory, Richland Washington; Felberg, Lisa E. [University of California, Berkeley California; Brookes, David H. [University of California, Berkeley California; Wilson, Leighton [University of Michigan, Ann Arbor Michigan; Chen, Jiahui [Southern Methodist University, Dallas Texas; Liles, Karina [Pacific Northwest National Laboratory, Richland Washington; Chun, Minju [Pacific Northwest National Laboratory, Richland Washington; Li, Peter [Pacific Northwest National Laboratory, Richland Washington; Gohara, David W. [St. Louis University, St. Louis Missouri; Dolinsky, Todd [FoodLogiQ, Durham North Carolina; Konecny, Robert [University of California San Diego, San Diego California; Koes, David R. [University of Pittsburgh, Pittsburgh Pennsylvania; Nielsen, Jens Erik [Protein Engineering, Novozymes A/S, Copenhagen Denmark; Head-Gordon, Teresa [University of California, Berkeley California; Geng, Weihua [Southern Methodist University, Dallas Texas; Krasny, Robert [University of Michigan, Ann Arbor Michigan; Wei, Guo-Wei [Michigan State University, East Lansing Michigan; Holst, Michael J. [University of California San Diego, San Diego California; McCammon, J. Andrew [University of California San Diego, San Diego California; Baker, Nathan A. [Pacific Northwest National Laboratory, Richland Washington; Brown University, Providence Rhode Island

    2017-10-24

    The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that has provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this manuscript, we discuss the models and capabilities that have recently been implemented within the APBS software package including: a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory based algorithm for determining pKa values, and an improved web-based visualization tool for viewing electrostatics.

  12. Solvated protein-protein docking using Kyte-Doolittle-based water preferences

    NARCIS (Netherlands)

    Kastritis, P.; Visscher, K.M.; van Dijk, A.D.J.; Bonvin, A.M.J.J.

    2013-01-01

    HADDOCK is one of the few docking programs that can explicitly account for water molecules in the docking process. Its solvated docking protocol starts from hydrated molecules and a fraction of the resulting interfacial waters is subsequently removed in a biased Monte Carlo procedure based on

  13. Solvated protein-protein docking using Kyte-Doolittle-based water preferences

    NARCIS (Netherlands)

    Kastritis, Panagiotis L.; Visscher, Koen M.; van Dijk, Aalt D.J.; Bonvin, Alexandre M.J.J.

    HADDOCK is one of the few docking programs that can explicitly account for water molecules in the docking process. Its solvated docking protocol starts from hydrated molecules and a fraction of the resulting interfacial waters is subsequently removed in a biased Monte Carlo procedure based on

  14. Effect of solvation on reactions of aluminium, gallium, indium, zinc and cadmium with azo compounds

    International Nuclear Information System (INIS)

    Savvin, S.B.

    1985-01-01

    Colour reactions have been examined between Al, Ga, In, Zn, Cd and reagents of a group of chromotropic acid 2.7-bisazo derivatives (Picramin B, Picramin M, Methanyl B, sulphonitrophenol M, sulphonitrophenol B) in organo-aqueous solutions containing acetone, propanol, DMFA, DMSO and acetic acid. Sensitive colour reactions occur in all the cases in aceton- or propanol-containing solutions: more sensitive than in water for Al, Ga, In; new reactions for Zn and Cd which are specific for organo-aqueous media and not observed in aqueous solutions. Sensitive reactions are observed only for Al and Ga in DMSO or DMFA solutions. Zn, Cd and In do not give colour reactions in such solutions. Differences in colour reactions for the elements in DMFA- and DMSO-containing media are connected with different solvation effects of the solvents on certain cations. Preferable solvation of some cations has been confirmed by infrared studies and is in agreement with the data reported on selective solvation

  15. Qualitative assessment of ultra-fast non-Grotthuss proton dynamics in S1 excited state of liquid H2O from ab initio time-dependent density functional theory★

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-11-01

    We study qualitatively ultra-fast proton transfer (PT) in the first singlet (S1) state of liquid water (absorption onset) through excited-state dynamics by means of time-dependent density functional theory and ab initio Born-Oppenheimer molecular dynamics. We find that after the initial excitation, a PT occurs in S1 in form of a rapid jump to a neighboring water molecule, on which the proton either may rest for a relatively long period of time (as a consequence of possible defect in the hydrogen bond network) followed by back and forth hops to its neighboring water molecule or from which it further moves to the next water molecule accompanied by back and forth movements. In this way, the proton may become delocalized over a long water wire branch, followed again by back and forth jumps or short localization on a water molecule for some femtoseconds. As a result, the mechanism of PT in S1 is in most cases highly non-Grotthuss-like, delayed and discrete. Furthermore, upon PT an excess charge is ejected to the solvent trap, the so-called solvated electron. The spatial extent of the ejected solvated electron is mainly localized within one solvent shell with overlappings on the nearest neighbor water molecules and delocalizing (diffuse) tails extending beyond the first solvent sphere. During the entire ultra-short excited-state dynamics the remaining OH radical from the initially excited water molecule exhibits an extremely low mobility and is non-reactive. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80329-7.

  16. Modelling the Preferential Solvation of Ferulic Acid in {2-Propanol (1 + Water (2} Mixtures at 298.15 K

    Directory of Open Access Journals (Sweden)

    Abolghasem Jouyban 1,2, Fleming Martínez 3 *

    2017-12-01

    Full Text Available Background: Recently Haq et al. reported the equilibrium solubility in {2-propanol (1 + water (2} mixtures at several temperatures with some numerical correlation analysis. Nevertheless, no attempt was made to evaluate the preferential solvation of this compound by the solvents. Methods: Preferential solvation of ferulic acid in the saturated mixtures at 298.15 K was analyzed based on the inverse Kirkwood-Buff integrals as described in the literature. Results: Ferulic acid is preferentially solvated by water in water-rich mixtures (0.00 < x1 < 0.19 but preferentially solvated by 2-propanol in mixtures with composition 0.19 < x1 < 1.00. Conclusion: These results could be interpreted as a consequence of hydrophobic hydration around the non-polar groups of the solute in the former case (0.00 < x1 < 0.19. Moreover, in the last case (0.19 < x1 < 1.00, the observed trend could be a consequence of the acid behavior of ferulic acid in front to 2-propanol molecules because this cosolvent is more basic than water as described by the respective solvatochromic parameters.

  17. 6,6'-Dimethoxygossypol: molecular structure, crystal polymorphism, and solvate formation

    Science.gov (United States)

    6,6´-Dimethoxygossypol (DMG) is a naturally produced derivative of gossypol that is found in relatively high concentration in some Gossypium barbadense cotton varieties. Like gossypol, DMG forms an equimolar solvate with acetic acid, but it was not clear if, like gossypol, the compound would form c...

  18. Octanol-Water Partition Coefficient from 3D-RISM-KH Molecular Theory of Solvation with Partial Molar Volume Correction.

    Science.gov (United States)

    Huang, WenJuan; Blinov, Nikolay; Kovalenko, Andriy

    2015-04-30

    The octanol-water partition coefficient is an important physical-chemical characteristic widely used to describe hydrophobic/hydrophilic properties of chemical compounds. The partition coefficient is related to the transfer free energy of a compound from water to octanol. Here, we introduce a new protocol for prediction of the partition coefficient based on the statistical-mechanical, 3D-RISM-KH molecular theory of solvation. It was shown recently that with the compound-solvent correlation functions obtained from the 3D-RISM-KH molecular theory of solvation, the free energy functional supplemented with the correction linearly related to the partial molar volume obtained from the Kirkwood-Buff/3D-RISM theory, also called the "universal correction" (UC), provides accurate prediction of the hydration free energy of small compounds, compared to explicit solvent molecular dynamics [ Palmer , D. S. ; J. Phys.: Condens. Matter 2010 , 22 , 492101 ]. Here we report that with the UC reparametrized accordingly this theory also provides an excellent agreement with the experimental data for the solvation free energy in nonpolar solvent (1-octanol) and so accurately predicts the octanol-water partition coefficient. The performance of the Kovalenko-Hirata (KH) and Gaussian fluctuation (GF) functionals of the solvation free energy, with and without UC, is tested on a large library of small compounds with diverse functional groups. The best agreement with the experimental data for octanol-water partition coefficients is obtained with the KH-UC solvation free energy functional.

  19. A molecular dynamics study for the isomerization of Ar solvated (benzene){sub 2}-K{sup +} heteroclusters

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, M. [CERQT, Departament de Quimica Fisica Parc Cientific, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona (Spain); Pacifici, L. [Department of Mathematics and Computer Science, University of Perugia, via Vanvitelli, 1 06123 Perugia (Italy); Lagana, A. [Department of Chemistry, University of Perugia, via Elce di Sotto, 8 06123 Perugia (Italy)], E-mail: lag@dyn.unipg.it; Aguilar, A. [CERQT, Departament de Quimica Fisica Parc Cientific, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona (Spain)

    2006-08-21

    A dynamical study of the (benzene){sub 2}-K{sup +} heteroclusters solvated by Ar atoms has been performed using an analytical force field of the atom (ion)-bond type. An analysis of the relevant calculated structural and energetic properties of these systems is made to understand involved molecular processes. The key effect found in the calculations is the tieing up of the two rings to sandwich K{sup +} and the weaking of this effect by solvation.

  20. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction.

    Science.gov (United States)

    Zhu, Di; Zhang, Linghong; Ruther, Rose E; Hamers, Robert J

    2013-09-01

    The photocatalytic reduction of N₂ to NH₃ is typically hampered by poor binding of N₂ to catalytic materials and by the very high energy of the intermediates involved in this reaction. Solvated electrons directly introduced into the reactant solution can provide an alternative pathway to overcome such limitations. Here we demonstrate that illuminated hydrogen-terminated diamond yields facile electron emission into water, thus inducing reduction of N₂ to NH₃ at ambient temperature and pressure. Transient absorption measurements at 632 nm reveal the presence of solvated electrons adjacent to the diamond after photoexcitation. Experiments using inexpensive synthetic diamond samples and diamond powder show that photocatalytic activity is strongly dependent on the surface termination and correlates with the production of solvated electrons. The use of diamond to eject electrons into a reactant liquid represents a new paradigm for photocatalytic reduction, bringing electrons directly to reactants without requiring molecular adsorption to the surface.

  1. A solvated electron lithium electrode for secondary batteries

    Science.gov (United States)

    Sammells, A. F.; Semkow, K. W.

    1986-09-01

    Attention is given to a novel method for the achievement of high electro-chemical reversibility in Li-based nonaqueous cells, using a liquid negative electrode that consists of Li dissolved in liquid ammonia as a solvated electron Li electrode. The containment of this liquid negative active material from direct contact to a liquid nonaqueous electrolyte in the positive electrode compartment was realized through the use of a Li-intercalated, electronically conducting ceramic membrane.

  2. Performance of the SMD and SM8 models for predicting solvation free energy of neutral solutes in methanol, dimethyl sulfoxide and acetonitrile

    Science.gov (United States)

    Zanith, Caroline C.; Pliego, Josefredo R.

    2015-03-01

    The continuum solvation models SMD and SM8 were developed using 2,346 solvation free energy values for 318 neutral molecules in 91 solvents as reference. However, no solvation data of neutral solutes in methanol was used in the parametrization, while only few solvation free energy values of solutes in dimethyl sulfoxide and acetonitrile were used. In this report, we have tested the performance of the models for these important solvents. Taking data from literature, we have generated solvation free energy, enthalpy and entropy values for 37 solutes in methanol, 21 solutes in dimethyl sulfoxide and 19 solutes in acetonitrile. Both SMD and SM8 models have presented a good performance in methanol and acetonitrile, with mean unsigned error equal or less than 0.66 and 0.55 kcal mol-1 in methanol and acetonitrile, respectively. However, the correlation is worse in dimethyl sulfoxide, where the SMD and SM8 methods present mean unsigned error of 1.02 and 0.95 kcal mol-1, respectively. Our results point out the SMx family of models need be improved for dimethyl sulfoxide solvent.

  3. Molecular Design of Sulfonated Triblock Copolymer Permselective Membranes

    Science.gov (United States)

    2008-07-03

    on DNA solvation in water [39] and simulations of polyacrylic acid with calcium counterion.[40] Mesoscale approaches to polyelectrolyte modeling...interacts strongly with both proton and potassium cation. Addition of three extra DMMP molecules does not change the nature of proton solvation. The ion...the potassium ion with K-O distance of 0.22nm. This does not mean a coordination of DMMP molecules by the ion. However, this result suggests a very

  4. Enhancement of proton transfer in ion channels by membrane phosphate headgroups.

    Science.gov (United States)

    Wyatt, Debra L; de Godoy, Carlos Marcelo G; Cukierman, Samuel

    2009-05-14

    The transfer of protons (H+) in gramicidin (gA) channels is markedly distinct in monoglyceride and phospholipid membranes. In this study, the molecular groups that account for those differences were investigated using a new methodology. The rates of H+ transfer were measured in single gA channels reconstituted in membranes made of plain ceramides or sphingomyelins and compared to those in monoglyceride and phospholipid bilayers. Single-channel conductances to protons (gH) were significantly larger in sphingomyelin than in ceramide membranes. A novel and unsuspected finding was that H+ transfer was heavily attenuated or completely blocked in ceramide (but not in sphingomyelin) membranes in low-ionic-strength solutions. It is reasoned that H-bond dynamics at low ionic strengths between membrane ceramides and gA makes channels dysfunctional. The rate of H+ transfer in gA channels in ceramide membranes is significantly higher than that in monoglyceride bilayers. This suggests that solvation of the hydrophobic surface of gA channels by two acyl chains in ceramides stabilizes the gA channels and the water wire inside the pore, leading to an enhancement of H+ transfer in relation to that occurring in monoglyceride membranes. gH values in gA channels are similar in ceramide and monoglyceride bilayers and in sphingomyelin and phospholipid membranes. It is concluded that phospho headgroups in membranes have significant effects on the rate of H+ transfer at the membrane gA channel/solution interfaces, enhancing the entry and exit rates of protons in channels.

  5. Quantitative prediction of solvation free energy in octanol of organic compounds.

    Science.gov (United States)

    Delgado, Eduardo J; Jaña, Gonzalo A

    2009-03-01

    The free energy of solvation, DeltaGS0, in octanol of organic compounds is quantitatively predicted from the molecular structure. The model, involving only three molecular descriptors, is obtained by multiple linear regression analysis from a data set of 147 compounds containing diverse organic functions, namely, halogenated and non-halogenated alkanes, alkenes, alkynes, aromatics, alcohols, aldehydes, ketones, amines, ethers and esters; covering a DeltaGS0 range from about -50 to 0 kJ.mol(-1). The model predicts the free energy of solvation with a squared correlation coefficient of 0.93 and a standard deviation, 2.4 kJ.mol(-1), just marginally larger than the generally accepted value of experimental uncertainty. The involved molecular descriptors have definite physical meaning corresponding to the different intermolecular interactions occurring in the bulk liquid phase. The model is validated with an external set of 36 compounds not included in the training set.

  6. The role of solvation in the binding selectivity of the L-type calcium channel.

    Science.gov (United States)

    Boda, Dezső; Henderson, Douglas; Gillespie, Dirk

    2013-08-07

    We present grand canonical Monte Carlo simulation results for a reduced model of the L-type calcium channel. While charged residues of the protein amino acids in the selectivity filter are treated explicitly, most of the degrees of freedom (including the rest of the protein and the solvent) are represented by their dielectric response, i.e., dielectric continua. The new aspect of this paper is that the dielectric coefficient in the channel is different from that in the baths. The ions entering the channel, thus, cross a dielectric boundary at the entrance of the channel. Simulating this case has been made possible by our recent methodological development [D. Boda, D. Henderson, B. Eisenberg, and D. Gillespie, J. Chem. Phys. 135, 064105 (2011)]. Our main focus is on the effect of solvation energy (represented by the Born energy) on monovalent vs. divalent ion selectivity in the channel. We find no significant change in selectivity by changing the dielectric coefficient in the channel because the larger solvation penalty is counterbalanced by the enhanced Coulomb attraction inside the channel as soon as we use the Born radii (fitted to experimental hydration energies) to compute the solvation penalty from the Born equation.

  7. Tris[2-(deuteriomethylsulfanylphenyl]phosphine deuteriochloroform 0.125-solvate

    Directory of Open Access Journals (Sweden)

    Seik Weng Ng

    2008-05-01

    Full Text Available The title deuterated tripodal phosphine, C21H12D9PS3·0.125CDCl3, crystallizes as two independent molecules, one of which lies on a general position and the other about a threefold rotation axis, and as a deuteriochloroform solvate. The solvent molecule is disordered about a site of symmetry 3, so that the ratio of phosphine to solvent is 8:1. The P atom adopts a pyramidal coordination geometry.

  8. Isotope effect in enthalpy of solvation of the lithium ion

    International Nuclear Information System (INIS)

    Krestov, G.A.; Egorov, G.I.; Korolev, V.P.

    1989-01-01

    At 298.15 K, the authors determined the standard enthalpies of solution for 6 LiCl and 7 LiCl in water, heavy water, dimethylsulfoxide (DMSO) and aqueous solutions of DMSO. The authors have established that solvation of 6 Li + is differentiated in water and DMSO to a greater degree than for 7 Li +

  9. Interface of the polarizable continuum model of solvation with semi-empirical methods in the GAMESS program

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Blædel, Kristoffer L.; Christensen, Anders Steen

    2013-01-01

    An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules such as ubiq......An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules...

  10. Water-enhanced solvation of organics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jane H. [Univ. of California, Berkeley, CA (United States)

    1993-07-01

    Water-enhanced solvation (WES) was explored for Lewis acid solutes in Lewis base organic solvents, to develop cheap extract regeneration processes. WES for solid solutes was determined from ratios of solubilities of solutes in water-sat. and low-water solvent; both were determined from solid-liquid equilibrium. Vapor-headspace analysis was used to determine solute activity coefficients as function of organic phase water concentration. WES magnitudes of volatile solutes were normalized, set equal to slope of log γs vs xw/xs curve. From graph shape Δ(log γs) represents relative change in solute activity coefficient. Solutes investigated by vapor-headspace analysis were acetic acid, propionic acid, ethanol, 1,2-propylene glycol, 2,3-butylene glycol. Monocarboxylic acids had largest decrease in activity coefficient with water addition followed by glycols and alcohols. Propionic acid in cyclohexanone showed greatest water-enhancement Δ(log γacid)/Δ(xw/xacid) = -0.25. In methylcyclohexanone, the decrease of the activity coefficient of propionic acid was -0.19. Activity coefficient of propionic acid in methylcyclohexanone stopped decreasing once the water reached a 2:1 water to acid mole ratio, implying a stoichiometric relation between water, ketone, and acid. Except for 2,3-butanediol, activity coefficients of the solutes studied decreased monotonically with water content. Activity coefficient curves of ethanol, 1,2-propanediol and 2,3-butanediol did not level off at large water/solute mole ratio. Solutes investigated by solid-liquid equilibrium were citric acid, gallic acid, phenol, xylenols, 2-naphthol. Saturation concentration of citric acid in anhydrous butyl acetate increased from 0.0009 to 0.087 mol/L after 1.3 % (g/g) water co-dissolved into organic phase. Effect of water-enhanced solvation for citric acid is very large but very small for phenol and its derivatives.

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Both implicit solvation method (dielectric polarizable continuum model, DPCM) and hybrid solvation method (cluster-continuum model) were adopted to calculate the of mono-protonated form of 132-(demethoxycarbonyl) pheophytin (Pheo) in methanol. In the cluster-continuum model calculations, we considered ...

  12. Solvated Positron Chemistry. Competitive Positron Reactions with Halide Ions in Water

    DEFF Research Database (Denmark)

    Christensen, Palle; Pedersen, Niels Jørgen; Andersen, J. R.

    1979-01-01

    It is shown by means of the angular correlation technique that the binding of positrons to halides is strongly influenced by solvation effects. For aqueous solutions we find increasing values for the binding energies between the halide and the positron with increasing mass of the halide...

  13. Solvation dynamics in triton-X-100 and triton-X-165 micelles: Effect of micellar size and hydration

    Science.gov (United States)

    Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas

    2004-09-01

    Dynamic Stokes' shift measurements using coumarin 153 as the fluorescence probe have been carried out to study solvation dynamics in two nonionic micelles, viz., triton-X-100 (TX-100) and triton-X-165 (TX-165). In both the micelles, the solvent relaxation dynamics is biexponential in nature. While the fast solvation time τs1 is seen to be almost similar for both the micelles, the slow solvation time τs2 is found to be appreciably smaller in TX-165 than in TX-100 micelle. Dynamic light scattering measurements indicate that the TX-165 micelles are substantially smaller in size than that of TX-100. Assuming similar core size for both the micelles, as expected from the similar chemical structures of the nonpolar ends for both the surfactants, the Palisade layer is also indicated to be substantially thinner for TX-165 micelles than that of TX-100. The aggregation number of TX-165 micelles is also found to be substantially smaller than that of TX-100 micelles. Fluorescence spectral studies of C153 dye in the two micelles indicate that the Palisade layer of TX-165 micelles is more polar than that of TX-100 micelles. Fluorescence anisotropy measurements indicate that the microviscosity in the Palisade layer of TX-165 micelles is also lower than that of TX-100 micelles. Based on these results it is inferred that the structure of the Palisade layer of TX-165 micelles is quite loose and have higher degree hydration in comparison to that of TX-100 micelles. Due to these structural differences in the Palisade layers of TX-165 and TX-100 micelles the solvation dynamics is faster in the former micelles than in the latter. It has been further inferred that in the present systems the collective response of the water molecules at somewhat away from the probes is responsible for the faster component of the solvation time, which does not reflect much of the structural changes of the micellar Palisade layer. On the contrary, the slower solvation time component, which is mainly due to

  14. Quantitative Prediction of Solvation Free Energy in Octanol of Organic Compounds

    Directory of Open Access Journals (Sweden)

    Eduardo J. Delgado

    2009-03-01

    Full Text Available The free energy of solvation, ΔGS0 , in octanol of organic compunds is quantitatively predicted from the molecular structure. The model, involving only three molecular descriptors, is obtained by multiple linear regression analysis from a data set of 147 compounds containing diverse organic functions, namely, halogenated and non-halogenated alkanes, alkenes, alkynes, aromatics, alcohols, aldehydes, ketones, amines, ethers and esters; covering a ΔGS0 range from about –50 to 0 kJ·mol-1. The model predicts the free energy of solvation with a squared correlation coefficient of 0.93 and a standard deviation, 2.4 kJ·mol-1, just marginally larger than the generally accepted value of experimental uncertainty. The involved molecular descriptors have definite physical meaning corresponding to the different intermolecular interactions occurring in the bulk liquid phase. The model is validated with an external set of 36 compounds not included in the training set.

  15. Solvation of o-hydroxybenzoic acid in pure and modified supercritical carbon dioxide, according to numerical modeling data

    Science.gov (United States)

    Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.; Petrenko, V. E.

    2015-08-01

    The dissolution of an elementary fragment of crystal structure (an o-hydroxybenzoic acid ( o-HBA) dimer) in both pure and modified supercritical (SC) carbon dioxide by adding methanol (molar fraction, 0.035) at T = 318 K, ρ = 0.7 g/cm3 is simulated. Features of the solvation mechanism in each solvent are revealed. The solvation of o-HBA in pure SC CO2 is shown to occur via electron donor-acceptor interactions. o-HBA forms a solvate complex in modified SC CO2 through hydrogen bonds between the carboxyl group and methanol. The hydroxyl group of o-HBA participates in the formation of an intramolecular hydrogen bond, and not in interactions with the solvent. It is concluded that the o-HBA-methanol complex is a stable molecular structure, and its lifetime is one order of magnitude higher than those of other hydrogen bonds in fluids.

  16. General theory of the multistage geminate reactions of the isolated pairs of reactants. II. Detailed balance and universal asymptotes of kinetics.

    Science.gov (United States)

    Kipriyanov, Alexey A; Doktorov, Alexander B

    2014-10-14

    The analysis of general (matrix) kinetic equations for the mean survival probabilities of any of the species in a sample (or mean concentrations) has been made for a wide class of the multistage geminate reactions of the isolated pairs. These kinetic equations (obtained in the frame of the kinetic approach based on the concept of "effective" particles in Paper I) take into account various possible elementary reactions (stages of a multistage reaction) excluding monomolecular, but including physical and chemical processes of the change in internal quantum states carried out with the isolated pairs of reactants (or isolated reactants). The general basic principles of total and detailed balance have been established. The behavior of the reacting system has been considered on macroscopic time scales, and the universal long-term kinetics has been determined.

  17. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  18. Enthalpies of solution, enthalpies of fusion and enthalpies of solvation of polyaromatic hydrocarbons: Instruments for determination of sublimation enthalpy at 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, Boris N., E-mail: boris.solomonov@ksu.ru; Varfolomeev, Mikhail A.; Nagrimanov, Ruslan N.; Mukhametzyanov, Timur A.; Novikov, Vladimir B.

    2015-12-20

    Graphical abstract: - Highlights: • Solution enthalpies of aromatic hydrocarbons were measured at 298.15 K. • Solution enthalpy of aromatic hydrocarbons in benzene is equal to their fusion enthalpy. • Method for calculation of solvation enthalpy of aromatic hydrocarbons was proposed. • Approach for estimation of aromatic hydrocarbons sublimation enthalpy was developed. • Obtained sublimation enthalpies coincide well with the recommended literature data. - Abstract: In this work a simple method for calculation of solvation enthalpies of polyaromatic hydrocarbons (PAHs) in various solvents at 298.15 K was proposed. According to this method the enthalpy of solvation of any polyaromatic hydrocarbon in a particular solvent can be calculated on the basis of the general formula of the compound, the solvation enthalpy of benzene in the same solvent and parameter related to the contribution of hydrogen atom into solvation enthalpy. The validity of the proposed method was confirmed by the comparison of calculated and experimentally measured values of solvation enthalpies of PAHs in benzene, tetrahydrofuran and acetonitrile. This method was used for determination of the sublimation enthalpy of PAHs at 298.15 K based on the general relationship between the enthalpy of sublimation/vaporization of the compound of interest and its enthalpies of solution and solvation in the same solvent at 298.15 K. Enthalpies of solution at infinite dilution of several PAHs were measured in acetonitrile, benzene and tetrahydrofuran at 298.15 K. It was shown that solution enthalpies of PAHs in benzene at 298.15 K are approximately equal to their fusion enthalpies at the melting temperature. Solvation enthalpies of 15 PAHs at 298.15 K calculated according to the proposed method together with corresponding fusion enthalpy values (at the melting temperature) were used to calculate the sublimation enthalpy values at 298.15 K. Comparison of the obtained results with recommended values of

  19. Computational Study of Geometry, Solvation Free Energy, Dipole Moment, Polarizability, Hyperpolarizability and Molecular Properties of 2-Methylimidazole

    Directory of Open Access Journals (Sweden)

    Mohammad Firoz Khan

    2016-12-01

    Full Text Available Ab initio calculations were carried out to study the geometry, solvation free energy, dipole moment, molecular electrostatic potential (MESP, Mulliken and Natural charge distribution, polarizability, hyperpolarizability, Natural Bond Orbital (NBO energetic and different molecular properties like global reactivity descriptors (chemical hardness, softness, chemical potential, electronegativity, electrophilicity index of 2-methylimidazole. B3LYP/6-31G(d,p level of theory was used to optimize the structure both in the gas phase and in solution. The solvation free energy, dipole moment and molecular properties were calculated by applying the Solvation Model on Density (SMD in four solvent systems, namely water, dimethylsulfoxide (DMSO, n-octanol and chloroform. The computed bond distances, bond angles and dihedral angles of 2-methylimidazole agreed reasonably well with the experimental data except for C(2-N(1, C(4-C(5 and N(1-H(7 bond lengths and N(1-C(5-C(4 bond angle. The solvation free energy, dipole moment, polarizability, first order hyperpolarizability, chemical potential, electronegativity and electrophilicity index of 2-methylimidazole increased on going from non-polar to polar solvents. Chemical hardness also increased with increasing polarity of the solvent and the opposite relation was found in the case of softness. These results provide better understanding of the stability and reactivity of 2-methylimidazole in different solvent systems.

  20. Photophysical properties of 1-acetoxy-8-hydroxy-1,4,4a,9a-tetrahydroanthraquinone: Evidence for excited state proton transfer reaction

    International Nuclear Information System (INIS)

    Singh, Rupashree Balia; Mahanta, Subrata; Guchhait, Nikhil

    2007-01-01

    The photophysical properties of 1-acetoxy-8-hydroxy-1,4,4a,9a-tetrahydroanthraquinone (HTHQ) have been investigated by steady state and time resolved spectroscopy in combination with quantum chemical calculations. The effects of various parameters such as the nature of solvent and pH of the medium on the spectral properties confirm the existence of different neutral and ionic species in the ground and excited states. In the ground state, HTHQ exists as intramolecularly hydrogen bonded closed conformer in non-polar and polar aprotic solvents. Apart from the closed conformer, the intermolecular hydrogen bonded solvated species and the anion of HTHQ are present in hydroxylic solvents. The closed conformer shows excited state intramolecular proton transfer in all solvents and the solvent polarity independent red shifted emission indicates only keto-enol tautomerism. Evaluation of the potential energy surfaces by quantum chemical calculation using density functional theory point towards the possibility of proton transfer reaction in the first excited state but not in the ground state

  1. Mutagenicity of Tween 80-solvated mild gasification products in the Ames salmonella microsomal assay system. [Quarterly report, October--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-13

    The results of the Tween 80-solvated Ames testing of six mild gasification samples indicate significant mutagenic activity only in the composite materials (MG-119 and MG-120), previously suspected from the DMSO-solvated assays, which had shown some variable but ultimately insignificant mutagenic responses. The activity of these samples from the Tween 80-solvated assays was quite low when compared to either the positive controls or the SRC-II HD coal-liquefaction reference material. The class of mutagenic activity expressed by these samples solvated in Tween 80 was that of an indirect-acting, frameshift mutagen(s) since significant activity was found only on tester strain TA98 in the presence of the metabolic activation fraction (S9). Because DMSO and other solvents have been shown to affect the mutagenic activity of certain pure chemicals, the possibility of solvent/mutagen interactions in complex mixtures such as coal-derived liquids exists. Thus, the testing of the genotoxic activity of undefined, chemically complex compounds may require the use of at least two solvent systems to reduce the possibility of artifactual findings. 10 refs., 4 tabs.

  2. Solvation free energies and partition coefficients with the coarse-grained and hybrid all-atom/coarse-grained MARTINI models.

    Science.gov (United States)

    Genheden, Samuel

    2017-10-01

    We present the estimation of solvation free energies of small solutes in water, n-octanol and hexane using molecular dynamics simulations with two MARTINI models at different resolutions, viz. the coarse-grained (CG) and the hybrid all-atom/coarse-grained (AA/CG) models. From these estimates, we also calculate the water/hexane and water/octanol partition coefficients. More than 150 small, organic molecules were selected from the Minnesota solvation database and parameterized in a semi-automatic fashion. Using either the CG or hybrid AA/CG models, we find considerable deviations between the estimated and experimental solvation free energies in all solvents with mean absolute deviations larger than 10 kJ/mol, although the correlation coefficient is between 0.55 and 0.75 and significant. There is also no difference between the results when using the non-polarizable and polarizable water model, although we identify some improvements when using the polarizable model with the AA/CG solutes. In contrast to the estimated solvation energies, the estimated partition coefficients are generally excellent with both the CG and hybrid AA/CG models, giving mean absolute deviations between 0.67 and 0.90 log units and correlation coefficients larger than 0.85. We analyze the error distribution further and suggest avenues for improvements.

  3. Solvation free energies and partition coefficients with the coarse-grained and hybrid all-atom/coarse-grained MARTINI models

    Science.gov (United States)

    Genheden, Samuel

    2017-10-01

    We present the estimation of solvation free energies of small solutes in water, n-octanol and hexane using molecular dynamics simulations with two MARTINI models at different resolutions, viz. the coarse-grained (CG) and the hybrid all-atom/coarse-grained (AA/CG) models. From these estimates, we also calculate the water/hexane and water/octanol partition coefficients. More than 150 small, organic molecules were selected from the Minnesota solvation database and parameterized in a semi-automatic fashion. Using either the CG or hybrid AA/CG models, we find considerable deviations between the estimated and experimental solvation free energies in all solvents with mean absolute deviations larger than 10 kJ/mol, although the correlation coefficient is between 0.55 and 0.75 and significant. There is also no difference between the results when using the non-polarizable and polarizable water model, although we identify some improvements when using the polarizable model with the AA/CG solutes. In contrast to the estimated solvation energies, the estimated partition coefficients are generally excellent with both the CG and hybrid AA/CG models, giving mean absolute deviations between 0.67 and 0.90 log units and correlation coefficients larger than 0.85. We analyze the error distribution further and suggest avenues for improvements.

  4. Lieb-Liniger-like model of quantum solvation in CO-4HeN clusters

    Science.gov (United States)

    Farrelly, D.; Iñarrea, M.; Lanchares, V.; Salas, J. P.

    2016-05-01

    Small 4He clusters doped with various molecules allow for the study of "quantum solvation" as a function of cluster size. A peculiarity of quantum solvation is that, as the number of 4He atoms is increased from N = 1, the solvent appears to decouple from the molecule which, in turn, appears to undergo free rotation. This is generally taken to signify the onset of "microscopic superfluidity." Currently, little is known about the quantum mechanics of the decoupling mechanism, mainly because the system is a quantum (N + 1)-body problem in three dimensions which makes computations difficult. Here, a one-dimensional model is studied in which the 4He atoms are confined to revolve on a ring and encircle a rotating CO molecule. The Lanczos algorithm is used to investigate the eigenvalue spectrum as the number of 4He atoms is varied. Substantial solvent decoupling is observed for as few as N = 5 4He atoms. Examination of the Hamiltonian matrix, which has an almost block diagonal structure, reveals increasingly weak inter-block (solvent-molecule) coupling as the number of 4He atoms is increased. In the absence of a dopant molecule the system is similar to a Lieb-Liniger (LL) gas and we find a relatively rapid transition to the LL limit as N is increased. In essence, the molecule initially—for very small N—provides a central, if relatively weak, attraction to organize the cluster; as more 4He atoms are added, the repulsive interactions between the identical bosons start to dominate as the solvation ring (shell) becomes more crowded which causes the molecule to start to decouple. For low N, the molecule pins the atoms in place relative to itself; as N increases the atom-atom repulsion starts to dominate the Hamiltonian and the molecule decouples. We conclude that, while the notion of superfluidity is a useful and correct description of the decoupling process, a molecular viewpoint provides complementary insights into the quantum mechanism of the transition from a molecular

  5. Ejection of solvated ions from electrosprayed methanol/water nanodroplets studied by molecular dynamics simulations.

    Science.gov (United States)

    Ahadi, Elias; Konermann, Lars

    2011-06-22

    The ejection of solvated small ions from nanometer-sized droplets plays a central role during electrospray ionization (ESI). Molecular dynamics (MD) simulations can provide insights into the nanodroplet behavior. Earlier MD studies have largely focused on aqueous systems, whereas most practical ESI applications involve the use of organic cosolvents. We conduct simulations on mixed water/methanol droplets that carry excess NH(4)(+) ions. Methanol is found to compromise the H-bonding network, resulting in greatly increased rates of ion ejection and solvent evaporation. Considerable differences in the water and methanol escape rates cause time-dependent changes in droplet composition. Segregation occurs at low methanol concentration, such that layered droplets with a methanol-enriched periphery are formed. This phenomenon will enhance the partitioning of analyte molecules, with possible implications for their ESI efficiencies. Solvated ions are ejected from the tip of surface protrusions. Solvent bridging prior to ion secession is more extensive for methanol/water droplets than for purely aqueous systems. The ejection of solvated NH(4)(+) is visualized as diffusion-mediated escape from a metastable basin. The process involves thermally activated crossing of a ~30 kJ mol(-1) free energy barrier, in close agreement with the predictions of the classical ion evaporation model.

  6. Pulse radiolysis study on solvated electrons in ionic liquid with controlling water content

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, T.; Yoshida, Y.; Nagaishi, R.

    2006-01-01

    Room-temperature ionic liquids, which are nonvolatile and nonflammable, have been proposed as 'green solvents' for new applications in chemical synthesis, separation chemistry, electrochemistry and other areas. In the separation chemistry, the hydrophobic ionic liquids have been practically expected to be alternative to traditional organic solvents for solvent extraction of 4f and 5f elements from the viewpoints of the immiscibility in water, especially in the spent nuclear fuel reprocessing. However, the chemical reaction or kinetics studies are important to apply the ionic liquids for various processes. To understand the effects of ionic liquids on chemical reactions, pulse radiolysis studies of ionic liquid have been carried out on nanosecond scale by using a 27 MeV electron beam and an analyzing light source of xenon lamp. In the experiment, a hydrophobic ionic liquid of diethylmethyl(2-methoxy)ammonium-bis(trifluoromethanesulfonyl)imide (DEMMA-TFSI) salt was used. The ionic liquid of DEMMA-TFSI was prepared by reacting equimolar amounts of diethylmethyl(2-methoxy)ammonium chloride (C 10 H 20 F 6 N 2 O 5 S 2 Cl, >98%, Nisshinbo) with lithium bis(trifluoromethanesulfonyl)imide (LiN(SO 2 CF 3 ) 2 , SynQuest Labs., Inc.) in aqueous solutions at room temperature. The ionic liquid was separated from the aqueous phase, purified by repeated extractions with water to LiCl and excess reagent, and finally dried at 110 degree C under vacuum. The transient absorptions of the ionic liquid were measured at wavelengths from 350 to 1400 nm, in which two photodiodes of silicon ( 1000 nm) were used. The spectrum of solvated electrons in the ionic liquid of DEMMA-TFSI was obtained with an absorption peak of 1060 nm and a wide bandwidth of about 600 nm (FWHM). The decay constant of the solvated electrons in the ionic liquid was 1.54 x 10 7 s -1 , which is independent on the wavelength. The absorption peak of the spectrum was blue-shifted from 1060 to 780 nm with increasing water

  7. SAMPL4, a blind challenge for computational solvation free energies: the compounds considered

    Science.gov (United States)

    Guthrie, J. Peter

    2014-03-01

    For the fifth time I have provided a set of solvation energies (1 M gas to 1 M aqueous) for a SAMPL challenge. In this set there are 23 blind compounds and 30 supplementary compounds of related structure to one of the blind sets, but for which the solvation energy is readily available. The best current values of each compound are presented along with complete documentation of the experimental origins of the solvation energies. The calculations needed to go from reported data to solvation energies are presented, with particular attention to aspects which are new to this set. For some compounds the vapor pressures (VP) were reported for the liquid compound, which is solid at room temperature. To correct from VPsubcooled liquid to VPsublimation requires ΔSfusion, which is only known for mannitol. Estimated values were used for the others, all but one of which were benzene derivatives and expected to have very similar values. The final compound for which ΔSfusion was estimated was menthol, which melts at 42 °C so that modest errors in ΔSfusion will have little effect. It was also necessary to look into the effects of including estimated values of ΔCp on this correction. The approximate sizes of the effects of inclusion of ΔCp in the correction from VPsubcooled liquid to VPsublimation were estimated and it was noted that inclusion of ΔCp invariably makes ΔGS more positive. To extend the set of compounds for which the solvation energy could be calculated we explored the use of boiling point (b.p.) data from Reaxys/Beilstein as a substitute for studies of the VP as a function of temperature. B.p. data are not always reliable so it was necessary to develop a criterion for rejecting outliers. For two compounds (chlorinated guaiacols) it became clear that inclusion represented overreach; for each there were only two independent pressure, temperature points, which is too little for a trustworthy extrapolation. For a number of compounds the extrapolation from lowest

  8. Solvation-based vapour pressure model for (solvent + salt) systems in conjunction with the Antoine equation

    International Nuclear Information System (INIS)

    Senol, Aynur

    2013-01-01

    Highlights: • Vapour pressures of (solvent + salt) systems have been estimated through a solvation-based model. • Two structural forms of the generalized solvation model using the Antoine equation have been performed. • A simplified concentration-dependent vapour pressure model has been also processed. • The model reliability analysis has been performed in terms of a log-ratio objective function. • The reliability of the models has been interpreted in terms of the statistical design factors. -- Abstract: This study deals with modelling the vapour pressure of a (solvent + salt) system on the basis of the principles of LSER. The solvation model framework clarifies the simultaneous impact of several physical variables such as the vapour pressure of a pure solvent estimated by the Antoine equation, the solubility and solvatochromic parameters of the solvent and the physical properties of the ionic salt. It has been analyzed independently the performance of two structural forms of the generalized model, i.e., a relation depending on an integration of the properties of the solvent and the ionic salt and a relation on a reduced property-basis. A simplified concentration-dependent vapour pressure model has been also explored and implemented on the relevant systems. The vapour pressure data of sixteen (solvent + salt) systems have been processed to analyze statistically the reliability of existing models in terms of a log–ratio objective function. The proposed vapour pressure models match relatively well the observed performance, yielding the overall design factors of 1.066 and 1.073 for the solvation-based models with the integrated and reduced properties, and 1.008 for the concentration-based model, respectively

  9. Characterization of solvated electrons in hydrogen cyanide clusters: (HCN)n- (n=3, 4)

    Science.gov (United States)

    Wu, Di; Li, Ying; Li, Zhuo; Chen, Wei; Li, Zhi-Ru; Sun, Chia-Chung

    2006-02-01

    Theoretical studies of the solvated electrons (HCN)n- (n =3, 4) reveal a variety of electron trapping possibilities in the (HCN)n (n =3, 4) clusters. Two isomers for (HCN)3- and four isomers for (HCN)4- are obtained at the MP2/aug -cc-pVDZ+dBF (diffusive bond functions) level of theory. In view of vertical electron detachment energies (VDEs) at the CCSD(T) level, the excess electron always "prefers" locating in the center of the system, i.e., the isomer with higher coordination number shows larger VDE value. However, the most stable isomers of the solvated electron state (HCN)3- and (HCN)4- are found to be the linear C∞ν and D∞h structures, respectively, but not the fullyl symmetric structures which have the largest VDE values.

  10. Proton-proton bremsstrahlung

    International Nuclear Information System (INIS)

    Fearing, H.W.

    1990-01-01

    We summarize some of the information about the nucleon-nucleon force which has been obtained by comparing recent calculations of proton-proton bremsstrahlung with cross section and analyzing power data from the new TRIUMF bremsstrahlung experiment. Some comments are made as to how these results can be extended to neutron-proton bremsstrahlung. (Author) 17 refs., 6 figs

  11. Intensity of f-f bands of neodymium chloride alcohol solvates

    International Nuclear Information System (INIS)

    Bukietynska, K.; Jezowski-Trzebiatowska, B.; Keller, B.

    1981-01-01

    Recent results revealed that in alcohol solutions of lanthanide chlorides, at least in the case of Eu 3+ and Yb 3+ ions, there exist mixed solvates, i.e. both chloride ions and solvent molecules are present in the Ln 3+ ion first coordination sphere. This conclusion was drawn from an analysis of the charge transfer transitions in the spectra of Eu 3+ and Yb 3+ chlorides in alcohols (methyl, ethyl, n-propyl), where two separate C.T.bands were observed and identified as C.T. transitions from the alcohol molecule and chloride ion to the Ln 3+ ion. In our previous paper we have reported that the energy of the first f-d transition in the Pr 3+ chloride alcohol solvates varied for different alcohols. These data also confirmed our suggestion that alcohol molecules are present in the first coordination sphere of the lanthanide ion. In the work reported here, we have tried to apply the intensity analysis method to the solution spectra of neodymium chloride dissolved in simple aliphatic alcohols like methanol, ethanol and n-propanol. Experimental details are given. Results are presented and discussed. (author)

  12. Ni(salen): a system that forms many solvates with interacting Ni atoms

    NARCIS (Netherlands)

    Siegler, M.A.M.; Lutz, M.

    2009-01-01

    Recrystallization of [N,N’-Ethylene-bis(salicylideneiminato)]-nickel(II) [Ni(salen)] has been carried out from a large selection of solvents. Crystals can be either solvent free or solvates. This study is based on X-ray crystal structure determinations, which include the redetermination of Ni(salen)

  13. Ion solvation in polymer blends and block copolymer melts: effects of chain length and connectivity on the reorganization of dipoles.

    Science.gov (United States)

    Nakamura, Issei

    2014-05-29

    We studied the thermodynamic properties of ion solvation in polymer blends and block copolymer melts and developed a dipolar self-consistent field theory for polymer mixtures. Our theory accounts for the chain connectivity of polymerized monomers, the compressibility of the liquid mixtures under electrostriction, the permanent and induced dipole moments of monomers, and the resultant dielectric contrast among species. In our coarse-grained model, dipoles are attached to the monomers and allowed to rotate freely in response to electrostatic fields. We demonstrate that a strong electrostatic field near an ion reorganizes dipolar monomers, resulting in nonmonotonic changes in the volume fraction profile and the dielectric function of the polymers with respect to those of simple liquid mixtures. For the parameter sets used, the spatial variations near an ion can be in the range of 1 nm or larger, producing significant differences in the solvation energy among simple liquid mixtures, polymer blends, and block copolymers. The solvation energy of an ion depends substantially on the chain length in block copolymers; thus, our theory predicts the preferential solvation of ions arising from differences in chain length.

  14. Wave–particle interactions in a resonant system of photons and ion-solvated water

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Eiji, E-mail: konishi.eiji.27c@st.kyoto-u.ac.jp

    2017-02-26

    Highlights: • We consider a QED model of rotating water molecules with ion solvation effects. • The equations of motion are cast in terms of a conventional free electron laser. • We offer a new quantum coherence mechanism induced by collective instability. - Abstract: We investigate a laser model for a resonant system of photons and ion cluster-solvated rotating water molecules in which ions in the cluster are identical and have very low, non-relativistic velocities and direction of motion parallel to a static electric field induced in a single direction. This model combines Dicke superradiation with wave–particle interaction. As the result, we find that the equations of motion of the system are expressed in terms of a conventional free electron laser system. This result leads to a mechanism for dynamical coherence, induced by collective instability in the wave–particle interaction.

  15. Protein proton-proton dynamics from amide proton spin flip rates

    International Nuclear Information System (INIS)

    Weaver, Daniel S.; Zuiderweg, Erik R. P.

    2009-01-01

    Residue-specific amide proton spin-flip rates K were measured for peptide-free and peptide-bound calmodulin. K approximates the sum of NOE build-up rates between the amide proton and all other protons. This work outlines the theory of multi-proton relaxation, cross relaxation and cross correlation, and how to approximate it with a simple model based on a variable number of equidistant protons. This model is used to extract the sums of K-rates from the experimental data. Error in K is estimated using bootstrap methodology. We define a parameter Q as the ratio of experimental K-rates to theoretical K-rates, where the theoretical K-rates are computed from atomic coordinates. Q is 1 in the case of no local motion, but decreases to values as low as 0.5 with increasing domination of sidechain protons of the same residue to the amide proton flips. This establishes Q as a monotonous measure of local dynamics of the proton network surrounding the amide protons. The method is applied to the study of proton dynamics in Ca 2+ -saturated calmodulin, both free in solution and bound to smMLCK peptide. The mean Q is 0.81 ± 0.02 for free calmodulin and 0.88 ± 0.02 for peptide-bound calmodulin. This novel methodology thus reveals the presence of significant interproton disorder in this protein, while the increase in Q indicates rigidification of the proton network upon peptide binding, confirming the known high entropic cost of this process

  16. Polymorphisms in GEMIN4 and AGO1 Genes Are Associated with the Risk of Lung Cancer: A Case-Control Study in Chinese Female Non-Smokers

    Directory of Open Access Journals (Sweden)

    Xue Fang

    2016-09-01

    Full Text Available MicroRNA biosynthesis genes can affect the regulatory effect of global microRNAs to target mRNA and hence influence the genesis and development of human cancer. Here, we selected five single nucleotide polymorphisms (SNPs (rs7813, rs2740349, rs2291778, rs910924, rs595961 in two key microRNA biosynthesis genes (GEMIN4 and AGO1 and systematically evaluated the association between these SNPs, the gene-environment interaction and lung cancer risk. To control the impact of cigarette smoking on lung cancer, we recruited Chinese female non-smokers for the study. The total number of lung cancer cases and cancer-free controls were 473 and 395 in the case-control study. Four SNPs showed statistically significant associations with lung cancer risk. After Bonferroni correction, rs7813 and rs595961 were evidently still associated with lung cancer risk. In the stratified analysis, our results revealed that all five SNPs were associated with the risk of lung adenocarcinoma; after Bonferroni correction, significant association was maintained for rs7813, rs910924 and rs595961. Haplotype analysis showed GEMIN4 haplotype C-A-G-T was a protective haplotype for lung cancer. In the combined unfavorable genotype analysis, with the increasing number of unfavorable genotypes, a progressively increased gene-dose effect was observed in lung adenocarcinoma. We also found that individuals exposed to cooking oil fumes showed a relatively high risk of lung cancer, but no interactions were found between cooking oil fume exposure or passive smoking exposure with these SNPs, either on an additive scale or a multiplicative scale. Overall, this is the first study showing that rs7813 and rs595961 could be meaningful as genetic markers for lung cancer risk.

  17. Molecular dynamics study of thermodynamic stability and dynamics of [Li(glyme)]+ complex in lithium-glyme solvate ionic liquids

    Science.gov (United States)

    Shinoda, Wataru; Hatanaka, Yuta; Hirakawa, Masashi; Okazaki, Susumu; Tsuzuki, Seiji; Ueno, Kazuhide; Watanabe, Masayoshi

    2018-05-01

    Equimolar mixtures of glymes and organic lithium salts are known to produce solvate ionic liquids, in which the stability of the [Li(glyme)]+ complex plays an important role in determining the ionic dynamics. Since these mixtures have attractive physicochemical properties for application as electrolytes, it is important to understand the dependence of the stability of the [Li(glyme)]+ complex on the ion dynamics. A series of microsecond molecular dynamics simulations has been conducted to investigate the dynamic properties of these solvate ionic liquids. Successful solvate ionic liquids with high stability of the [Li(glyme)]+ complex have been shown to have enhanced ion dynamics. Li-glyme pair exchange rarely occurs: its characteristic time is longer than that of ion diffusion by one or two orders of magnitude. Li-glyme pair exchange most likely occurs through cluster formation involving multiple [Li(glyme)]+ pairs. In this process, multiple exchanges likely take place in a concerted manner without the production of energetically unfavorable free glyme or free Li+ ions.

  18. Preferential solvation of ions in mixed solvents. 6: Univalent anions in aqueous organic solvents according to the inverse Kirkwood-Buff integral (IKBI) approach

    International Nuclear Information System (INIS)

    Marcus, Yizhak

    2007-01-01

    The inverse Kirkwood-Buff integral (IKBI) approach is applied to the preferential solvation of F - , Cl - , Br - , I - , and ClO 4 - in aqueous mixtures of the co-solvents (S) methanol (MeOH), ethanol (EtOH), t-butanol (t-BuOH), 1,2-ethanediol (EG), glycerol (Gly), acetone (Me 2 CO), acetonitrile (MeCN), formamide (FA), N,N-dimethylformamide (DMF), N,N,N',N',N'',N''-hexamethyl phosphoric triamide (HMPT), and dimethylsulfoxide (DMSO), as far as the relevant data exist in the literature. Fluoride anions are selectively solvated by the water up to large mole fractions (x S ≥ 0.4) of S = EtOH, t-BuOH, Me 2 CO, MeCN, and DMF, and up to lower contents (x S ∼ 0.1) of MeOH, EG, FA, and DMSO. The other anions are preferentially solvated by water to diminishing extent as their sizes become larger, and the largest ones show some preference for S in water-rich mixtures of MeOH and FA, whereas in aqueous Gly even chloride is preferentially solvated by the Gly. The competition between the co-solvent and the anion for the hydrogen bonds that water molecules donate is the main cause for the observed preferential solvation behaviour

  19. Solvatochromism and preferential solvation of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone by UV-vis absorption and laser-induced fluorescence measurements

    Science.gov (United States)

    Sasirekha, V.; Vanelle, P.; Terme, T.; Ramakrishnan, V.

    2008-12-01

    Solvation characteristics of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone ( 1) in pure and binary solvent mixtures have been studied by UV-vis absorption spectroscopy and laser-induced fluorescence techniques. The binary solvent mixtures used as CCl 4 (tetrachloromethane)-DMF ( N, N-dimethylformamide), AN (acetonitrile)-DMSO (dimethylsulfoxide), CHCl 3 (chloroform)-DMSO, CHCl 3-MeOH (methanol), and MeOH-DMSO. The longest wavelength band of 1 has been studied in pure solvents as well as in binary solvent mixtures as a function of the bulk mole fraction. The Vis absorption band maxima show an unusual blue shift with increasing solvent polarity. The emission maxima of 1 show changes with varying the pure solvents and the composition in the case of binary solvent mixtures. Non-ideal solvation characteristics are observed in all binary solvent mixtures. It has been observed that the quantity [ ν-(Xν+Xν)] serves as a measure of the extent of preferential solvation, where ν˜ and X are the position of band maximum in wavenumbers (cm -1) and the bulk mole fraction values, respectively. The preferential solvation parameters local mole fraction ( X2L), solvation index ( δs2), and exchange constant ( k12) are evaluated.

  20. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson–Boltzmann electrostatics

    Science.gov (United States)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew

    2015-01-01

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson–Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum–Chandler–Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods. PMID:26723595

  1. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.

    Science.gov (United States)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew

    2015-12-28

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  2. Effective interactions between nanoparticles: Creating temperature-independent solvation environments for self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Hari O. S., E-mail: cyz108802@chemistry.iitd.ac.in, E-mail: hariyadav.iitd@gmail.com; Shrivastav, Gourav; Agarwal, Manish; Chakravarty, Charusita [Department of Chemistry, Indian Institute of Technology-Delhi, New Delhi 110016 (India)

    2016-06-28

    The extent to which solvent-mediated effective interactions between nanoparticles can be predicted based on structure and associated thermodynamic estimators for bulk solvents and for solvation of single and pairs of nanoparticles is studied here. As a test of the approach, we analyse the strategy for creating temperature-independent solvent environments using a series of homologous chain fluids as solvents, as suggested by an experimental paper [M. I. Bodnarchuk et al., J. Am. Chem. Soc. 132, 11967 (2010)]. Our conclusions are based on molecular dynamics simulations of Au{sub 140}(SC{sub 10}H{sub 21}){sub 62} nanoparticles in n-alkane solvents, specifically hexane, octane, decane and dodecane, using the TraPPE-UA potential to model the alkanes and alkylthiols. The 140-atom gold core of the nanocrystal is held rigid in a truncated octahedral geometry and the gold-thiolate interaction is modeled using a Morse potential. The experimental observation was that the structural and rheological properties of n-alkane solvents are constant over a temperature range determined by equivalent solvent vapour pressures. We show that this is a consequence of the fact that long chain alkane liquids behave to a good approximation as simple liquids formed by packing of monomeric methyl/methylene units. Over the corresponding temperature range (233–361 K), the solvation environment is approximately constant at the single and pair nanoparticle levels under good solvent conditions. However, quantitative variations of the order of 10%–20% do exist in various quantities, such as molar volume of solute at infinite dilution, entropy of solvation, and onset distance for soft repulsions. In the opposite limit of a poor solvent, represented by vacuum in this study, the effective interactions between nanoparticles are no longer temperature-independent with attractive interactions increasing by up to 50% on decreasing the temperature from 361 K to 290 K, accompanied by an increase in

  3. Solubility and preferential solvation of some n-alkyl-parabens in methanol + water mixtures at 298.15 K

    International Nuclear Information System (INIS)

    Cárdenas, Zaira J.; Jiménez, Daniel M.; Delgado, Daniel R.; Almanza, Ovidio A.; Jouyban, Abolghasem; Martínez, Fleming; Acree, William E.

    2017-01-01

    Highlights: • Parabens equilibrium solubility was determined in methanol + water binary mixtures at 298.15 K. • Solubility values were correlated with the Jouyban-Acree model. • Preferential solvation parameters were derived by using the IKBI method. • δx 1,3 values are negative in water-rich mixtures but positive in the other mixtures. - Abstract: Methyl, ethyl and propyl parabens equilibrium solubility was determined in (methanol + water) binary mixtures at 298.15 K. The mole fraction solubility of these compounds increased in 503 (from 2.40 × 10 −4 to 0.121), 1377 (from 9.86 × 10 −5 to 0.136) and 4597 (from 3.73 × 10 −5 to 0.171) times when passing from neat water to neat methanol, for methyl, ethyl and propyl parabens, respectively. All these solubility values were correlated with the Jouyban-Acree model. Preferential solvation parameters by methanol (δx 1,3 ) of these parabens were derived from their thermodynamic solution properties using the inverse Kirkwood-Buff integrals (IKBI) method. For all compounds δx 1,3 values are negative in water-rich mixtures but positive in mixtures with methanol mole fraction greater than 0.32. It is conjecturable that in the former case the hydrophobic hydration around non-polar groups of parabens plays a relevant role in the solvation. Besides, the preferential solvation of these solutes by methanol in mixtures of similar co-solvent compositions and in methanol-rich mixtures could be explained in terms of the higher basic behaviour of methanol.

  4. Kinetics and mechanism of the dissociation of chlorophyll and its metalloanalogues in proton-donating media

    International Nuclear Information System (INIS)

    Berezin, B.D.; Drobysheva, A.N.; Karmanova, L.P.

    1976-01-01

    The kinetics of the dissociation of chlorophyll a and its metalloanalogues (Zn 2+ and Cd 2+ complexes of chlorophyllic acid) have been investigated in t-butyl alcohol-trichloracetic acid mixtures. The dissociation reaction is kinetically firts-order with respect to the complex. The rate constants and the activation energies and entropies for the dissociation reaction have been calculated. In order to determine the order of the reaction with respect to the protogenic species, a study was made of the ionisation of m-nitroaniline in t-butyl alcohol at 25 0 C in the trichloroacetic acid concentration range from 0.15 to 4.75 M. The dissociation reaction of chlorophyll and its zinc-containing metalloanalogue has been shown to be of second order with respect to the solvated proton. The cadmium complex dissociates by a second-order reaction with respect to trichloroacetic acid

  5. Time-dependent friction and solvation time correlation function

    International Nuclear Information System (INIS)

    Samanta, Alok; Ali, Sk Musharaf; Ghosh, Swapan K

    2005-01-01

    We have derived a new relation between the time-dependent friction and solvation time correlation function (STCF) for non-polar fluids. The friction values calculated using this relation and simulation results on STCF for a Lennard-Jones fluid are shown to have excellent agreement with the same obtained through mode-coupling theory. Also derived is a relation between the time-dependent dielectric friction and STCF for polar fluids. Routes are thus provided to obtain the time-dependent friction (non-polar as well as dielectric) from an experimentally measured quantity like STCF, even if the interparticle interaction potential is not known

  6. Preferential solvation of ions in mixed solvents. 6: Univalent anions in aqueous organic solvents according to the inverse Kirkwood-Buff integral (IKBI) approach

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Yizhak [Department of Inorganic and Analytical Chemistry, Hebrew University of Jerusalem, Jerusalem 91904 (Israel)], E-mail: ymarcus@vms.huji.ac.il

    2007-10-15

    The inverse Kirkwood-Buff integral (IKBI) approach is applied to the preferential solvation of F{sup -}, Cl{sup -}, Br{sup -}, I{sup -}, and ClO{sub 4}{sup -} in aqueous mixtures of the co-solvents (S) methanol (MeOH), ethanol (EtOH), t-butanol (t-BuOH), 1,2-ethanediol (EG), glycerol (Gly), acetone (Me{sub 2}CO), acetonitrile (MeCN), formamide (FA), N,N-dimethylformamide (DMF), N,N,N',N',N'',N''-hexamethyl phosphoric triamide (HMPT), and dimethylsulfoxide (DMSO), as far as the relevant data exist in the literature. Fluoride anions are selectively solvated by the water up to large mole fractions (x{sub S} {>=} 0.4) of S = EtOH, t-BuOH, Me{sub 2}CO, MeCN, and DMF, and up to lower contents (x{sub S} {approx} 0.1) of MeOH, EG, FA, and DMSO. The other anions are preferentially solvated by water to diminishing extent as their sizes become larger, and the largest ones show some preference for S in water-rich mixtures of MeOH and FA, whereas in aqueous Gly even chloride is preferentially solvated by the Gly. The competition between the co-solvent and the anion for the hydrogen bonds that water molecules donate is the main cause for the observed preferential solvation behaviour.

  7. Preferential solvation of single ions in mixed solvents: Part 1. New experimental approach and solvation of monovalent ions in methanol-water and acetonitrile-water mixture. Part 2. Theoretical computation and comparison with experimental data

    International Nuclear Information System (INIS)

    Rege, Aarti C.; Venkataramani, B.; Gupta, A.R.

    1999-06-01

    Preferential solvation of single ion solutions has been studied with Li + , Na + , K + and Ag +- forms of Dowex 50W resins of different cross-linkings in methanol-water and acetonitrile (AN)- water mixtures. The solvent uptake by this alkali metal ionic forms of Dowex 50W resins was studied in an isopiestic set-up using 2,4,6 and 8 m LiCl solutions in 11.0, 20.8, 44.3 and 70.2 % (w/w) methanol-water mixtures and that of Na +- and Ag +- forms using 14.6 to 94.3 % (w/w) AN - water mixtures. The solvent sorbed in the resin phase was extracted by Rayleigh-type distillation and analysed gas chromatographically. The data were analysed by the N s (mole fraction of the organic solvent in the resin phase) vs n t au (total solvent content in the resin phase) plots and separation factor, alpha(ratio of mole fraction of the solvents in the resin and solution phases) or N s vs m (molality in the resin phase) plots. The limiting values of these plots gave the composition of the solvent in the primary solvation shell around the single ion. The compositions of the primary solvation shell around Li + , Na + , and K + in methanol-water mixtures and Na + and Ag + in acetonitrile (AN) - water mixtures have been computed using Franks equation and the approach of Marcus and compared with the experimental results obtained with the above mentioned ionic forms of Dowex 50W resins in different mixed solvents. The experimental results for Li + showed good agreement with the values computed using Franks equation for all methanol-water composition. However, in the case of Na + and K + in methanol-water mixtures and Na + in AN-water mixtures, there was agreement only at lower organic solvent content and the Franks equation predicted higher values for the organic solvent in the primary solvation shell around the cation at higher organic solvent content as compared to experimental results

  8. Electrochemical redox reactions in solvated silica sol-gel glass

    International Nuclear Information System (INIS)

    Opallo, M.

    2002-01-01

    The studies of electrochemical redox reactions in solvated silica sol-gel glass were reviewed. The methodology of the experiments with emphasis on the direct preparation of the solid electrolyte and the application ultra microelectrodes was described. Generally, the level of the electrochemical signal is not much below that observed in liquid electrolyte. The current depends on time elapsed after gelation, namely the longer time, the smaller current. The differences between electrochemical behaviour of the redox couples in monoliths and thin layers were described. (author)

  9. Interface of the polarizable continuum model of solvation with semi-empirical methods in the GAMESS program

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Blædel, Kristoffer; Christensen, Anders S

    2013-01-01

    An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules such as ubiq......An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules...... such as ubiquitin a reasonable speedup (up to a factor of six) is observed for up to 16 cores. The SCF convergence is greatly improved by PCM for proteins compared to the gas phase....

  10. The initial stages of NaCl dissolution: Ion or ion pair solvation?

    Science.gov (United States)

    Klimes, Jiri; Michaelides, Angelos

    2009-03-01

    The interaction of water with rock salt (NaCl) is important in a wide variety of natural processes and human activities. A lot is known about NaCl dissolution at the macroscopic level but we do not yet have a detailed atomic scale picture of how salt crystals dissolve. Here we report an extensive series of density functional theory, forcefield and molecular dynamics studies of water clusters at flat and defective NaCl surfaces and NaCl clusters. The focus is on answering seemingly elementary questions such as how many water molecules are needed before it becomes favorable to extract an ion or a pair of ions from the crystal or the cluster. It turns out, however, that the answers to these questions are not so straightforward: below a certain number of water molecules (˜ 12) solvation of individual ions is less costly and above this number solvation of ion pairs is favored. These results reveal a hitherto unknown complexity in the NaCl dissolution process born out of a subtle interplay between water-water and water-ion interactions.

  11. Modeling solvation effects in real-space and real-time within density functional approaches

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Alain [Istituto Nanoscienze - CNR, Centro S3, via Campi 213/A, 41125 Modena (Italy); Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Calle 30 # 502, 11300 La Habana (Cuba); Corni, Stefano; Pittalis, Stefano; Rozzi, Carlo Andrea [Istituto Nanoscienze - CNR, Centro S3, via Campi 213/A, 41125 Modena (Italy)

    2015-10-14

    The Polarizable Continuum Model (PCM) can be used in conjunction with Density Functional Theory (DFT) and its time-dependent extension (TDDFT) to simulate the electronic and optical properties of molecules and nanoparticles immersed in a dielectric environment, typically liquid solvents. In this contribution, we develop a methodology to account for solvation effects in real-space (and real-time) (TD)DFT calculations. The boundary elements method is used to calculate the solvent reaction potential in terms of the apparent charges that spread over the van der Waals solute surface. In a real-space representation, this potential may exhibit a Coulomb singularity at grid points that are close to the cavity surface. We propose a simple approach to regularize such singularity by using a set of spherical Gaussian functions to distribute the apparent charges. We have implemented the proposed method in the OCTOPUS code and present results for the solvation free energies and solvatochromic shifts for a representative set of organic molecules in water.

  12. Time-dependent radiolytic yields at room temperature and temperature-dependent absorption spectra of the solvated electrons in polyols

    International Nuclear Information System (INIS)

    Lin Mingzhang; Mostafavi, M.; Lampre, I.; Muroya, Y.; Katsumura, Y.

    2007-01-01

    The molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900, 970, and 1000 mol -1 ·m 2 for 1,2-ethanediol (12ED), 1,2-propanediol (12PD), and 1,3-propanediol (13PD), respectively. These values are two-third or three-fourth of the value usually reported in the published report. Picosecond pulse radiolysis studies have aided in depicting the radiolytic yield of the solvated electron in these solvents as a function of time from picosecond to microsecond. The radiolytic yield in these viscous solvents is found to be strongly different from that of the water solution. The temperature dependent absorption spectra of the solvated electron in 12ED, 12PD, and 13PD have been also investigated. In all the three solvents, the optical spectra shift to the red with increasing temperature. While the shape of the spectra does not change in 13PD, a widening on the blue side of the absorption band is observed in 12ED and 12PD at elevated temperatures. (authors)

  13. Proton dynamics in lithium-ammonia solutions and expanded metals.

    Science.gov (United States)

    Thompson, Helen; Skipper, Neal T; Wasse, Jonathan C; Spencer Howells, W; Hamilton, Myles; Fernandez-Alonso, Felix

    2006-01-14

    Quasielastic neutron scattering has been used to study proton dynamics in the system lithium-ammonia at concentrations of 0, 4, 12, and 20 mole percent metal (MPM) in both the liquid and solid (expanded metal) phases. At 230 K, in the homogenous liquid state, we find that the proton self-diffusion coefficient first increases with metal concentration, from 5.6x10(-5) cm2 s(-1) in pure ammonia to 7.8x10(-5) cm2 s(-1) at 12 MPM. At higher concentrations we note a small decrease to a value of 7.0x10(-5) cm2 s(-1) at 20 MPM (saturation). These results are consistent with NMR data, and can be explained in terms of the competing influences of the electron and ion solvation. At saturation, the solution freezes to form a series of expanded metal compounds of composition Li(NH3)4. Above the melting point, at 100 K, we are able to fit our data to a jump-diffusion model, with a mean jump length (l) of 2.1 A and residence time (tau) of 3.1 ps. This model gives a diffusion coefficient of 2.3x10(-5) cm2 s(-1). In solid phase I (cubic, stable from 88.8 to 82.2 K) we find that the protons are still undergoing this jump diffusion, with l=2.0 A and tau=3.9 ps giving a diffusion coefficient of 1.8x10(-5) cm2 s(-1). Such motion gives way to purely localized rotation in solid phases IIa (from 82.2 to 69 K) and IIb (stable from 69 to 25 K). We find rotational correlation times (tau(rot)) of the order of 2.0 and 7.3 ps in phases IIa and IIb, respectively. These values can be compared with a rotational mode in solid ammonia with tau(rot) approximately 2.4 ps at 150 K.

  14. Fulltext PDF

    Indian Academy of Sciences (India)

    RAJIB Biswas

    Empirical valence bond; reactive molecular dynamics; pre-solvation; proton transfer; proton transport. 1. Introduction. The aqueous transfer or “shuttle” of a hydrated excess proton between water molecules is extremely important to explore many important processes involved in biolog- ical1–4 and energy systems.5–8 In ...

  15. Mode coupling theory analysis of electrolyte solutions: Time dependent diffusion, intermediate scattering function, and ion solvation dynamics.

    Science.gov (United States)

    Roy, Susmita; Yashonath, Subramanian; Bagchi, Biman

    2015-03-28

    A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times-the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies.

  16. Electrochemical behaviours of Eu(III/E(II and Ce(IV/Ce(III in H3PO4-H2O media : solvation and complexation reactions

    Directory of Open Access Journals (Sweden)

    Belqat B.

    2018-01-01

    Full Text Available Many kinds of rare earth elements (REE such as europium and cerium have been make them essential elements in many high-tech components. The electrochemical studies can be presented as an interesting indication for europium and cerium extraction from phosphoric solutions, including solvation and complexation reactions. The normal redox potentials of Eu3+/Eu2+ and Ce4+/Ce3+ systems have been determined in H3PO4-H2O media with various phosphoric acid concentration. The solvation of these elements in phosphoric media is characterized by their transfer activity coefficients "f" calculated from the corresponding normal redox potentials. The corresponding solvation increases with increasing the H3PO4 concentration. For each REE, the electrochemical properties depend on its number of charges and on its basic properties. Results suggest that solvation and complexation of REE phosphates are important in controlling REE concentration.

  17. Proton transfer dynamics in a polar nanodroplet: ESIPT of 4'-n,n-dimethylamino-3-hydroxyflavone in AOT/alkane/water reverse micelles

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Deborin [Department of Chemistry, University College of Science & Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009 (India); Batuta, Shaikh; Begum, Naznin Ara [Bio-Organic Chemistry Lab, Department of Chemistry, Visva-Bharati University, Santiniketan 731 235 (India); Mandal, Debabrata, E-mail: dmandal.chemistry@gmail.com [Department of Chemistry, University College of Science & Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009 (India)

    2017-04-15

    The excited state intramolecular proton transfer (ESIPT) of the well-known fluorophore 4'-N,N-Dimethylamino-3-hydroxyflavone (DMA3HF) was studied in AOT/n-heptane/water reverse micelle solutions. For DMA3HF molecules located inside the AOT encapsulated polar nanodroplets, ESIPT from excited enol (E*) to tautomer (T*) forms was markedly inhibited, yielding time-constants of ≥100 ps, and followed the same trend as solvent relaxation when the ratio W= [H{sub 2}O]/[AOT] was varied. At W=0, the DMA3HF molecules were attached to the ionic AOT headgroups via strong intermolecular H-bonding, which hindered ESIPT. Addition of water changes the situation radically: water molecules form stronger H-bonds with AOT headgroups, displacing the DMA3HF, which are instead engaged in intermolecular H-bonded complexes of the type [DMA3HF···water]. ESIPT of these complex-bound fluorophores involves substantial rearrangement of H-bonding, and is coupled to solvation dynamics. With increasing W-value, solvation becomes faster, and so does ESIPT, reducing the yield of E* species. At the same time, the local environment within the nanodroplets become more more polar with gradual accumulation of water, which causes a monotonic red-shift of the E* emission peak.

  18. Optically Controlled Electron-Transfer Reaction Kinetics and Solvation Dynamics : Effect of Franck-Condon States

    NARCIS (Netherlands)

    Gupta, Kriti; Patra, Aniket; Dhole, Kajal; Samanta, Alok Kumar; Ghosh, Swapan K.

    2017-01-01

    Experimental results for optically controlled electron-transfer reaction kinetics (ETRK) and nonequilibrium solvation dynamics (NESD) of Coumarin 480 in DMPC vesicle show their dependence on excitation wavelength λex. However, the celebrated Marcus theory and linear-response-theory-based approaches

  19. Systematic solvate screening of trospium chloride: discovering hydrates of a long-established pharmaceutical

    Czech Academy of Sciences Publication Activity Database

    Sládková, V.; Skalická, T.; Skořepová, E.; Čejka, J.; Eigner, Václav; Kratochvíl, B.

    2015-01-01

    Roč. 17, č. 25 (2015), s. 4712-4721 ISSN 1466-8033 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : trospium chloride * solvate screening * x-ray crystallography * Jana2006 Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.849, year: 2015

  20. Pulse radiolyses of anthraquinone and anthraquinone-triethylamine in acetonitrile and toluene at room temperature

    International Nuclear Information System (INIS)

    Nakayama, Toshihiro; Ushida, Kiminori; Hamanoue, Kumao; Washio, Masakazu; Tagawa, Seiichi; Tabata, Yoneho

    1990-01-01

    Nanosecond pulse radiolysis of anthraquinone (AQ) in several solvents has been performed at room temperature, and the following results are obtained: (1) in acetonitrile (CH 3 CN), the formation of triplet AQ and a free-radical anion (AQ .- ) of AQ is observed. The former is produced by energy transfer from an excited neutral of CH 3 CN which may be produced via the geminate recombination of a radical cation and a radical anion of CH 3 CN in a spur, while the latter is produced by electron transfer from anionic species such as a solvated electron, a monomeric and/or a dimeric radical anion of CH 3 CN. In CH 3 CN-triethylamine (TEA), both free AQ .- and triplet AQ mentioned above are also produced; however, the latter reacts with TEA, giving rise to the formation of free AQ .- (from the second triplet state of AQ) and an exciplex of the lowest triplet state of AQ with ground-state TEA. This exciplex decomposes to free AQ .- and the radical cation of TEA. (2) In toluene, only triplet AQ is produced by energy transfer from triplet toluene to AQ, and, in the presence of TEA, the formation of the triplet exciplex of AQ-TEA is observed. On a microsecond timescale, however, this exciplex changes to a contact ion pair followed by proton transfer, generating anthrasemiquinone radical and triethylamine radical in accordance with the result of photolysis. (author)

  1. Proton radiography to improve proton therapy treatment

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E. R.; van Goethem, Marc-Jan; van Beuzekom, M.; Klaver, T.; Visser, Jan; Brandenburg, S.; Biegun, A. K.

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT)

  2. Proton radioactivity from proton-rich nuclei

    International Nuclear Information System (INIS)

    Guzman, F.; Goncalves, M.; Tavares, O.A.P.; Duarte, S.B.; Garcia, F.; Rodriguez, O.

    1999-03-01

    Half-lives for proton emission from proton-rich nuclei have been calculated by using the effective liquid drop model of heavy-particle decay of nuclei. It is shown that this model is able to offer results or spontaneous proton-emission half-life-values in excellent agreement with the existing experimental data. Predictions of half-life-values for other possible proton-emission cases are present for null orbital angular momentum. (author)

  3. Equilibrium and nonequilibrium solvation and solute electronic structure

    International Nuclear Information System (INIS)

    Kim, H.J.; Hynes, J.T.

    1990-01-01

    When a molecular solute is immersed in a polar and polarizable solvent, the electronic wave function of the solute system is altered compared to its vacuum value; the solute electronic structure is thus solvent-dependent. Further, the wave function will be altered depending upon whether the polarization of the solvent is or is not in equilibrium with the solute charge distribution. More precisely, while the solvent electronic polarization should be in equilibrium with the solute electronic wave function, the much more sluggish solvent orientational polarization need not be. We call this last situation non-equilibrium solvation. We outline a nonlinear Schroedinger equation approach to these issues

  4. Effect of the composition of a solution on the enthalpies of solvation of piperidine in methanol-acetonitrile and dimethylsulfoxide-acetonitrile mixed solvents

    Science.gov (United States)

    Kuz'mina, I. A.; Volkova, M. A.; Sitnikova, K. A.; Sharnin, V. A.

    2014-01-01

    Heat effects of dissolution of piperidine (ppd) are measured by calorimetry at 298.15 K over the range of composition of acetonitrile-methanol (AN-MeOH) mixed solvents. Based on the Δsol H ○(ppd)AN-MeOH values obtained using the literature data on Δsol H ○ (ppd) in acetonitrile-dimethylsulfoxide (AN-DMSO) mixed solvents and the vaporization enthalpy of ppd, the enthalpies of solvation of amine in AN-MeOH and AN-DMSO binary mixtures are calculated. A rise in the exothermicity of solvation of piperidine is observed upon the transition from AN to DMSO and MeOH, due mainly to the enhanced solvation of the amino group of ppd as a result of changes in the acid-base properties of the mixed solvent.

  5. Proton Radiography to Improve Proton Radiotherapy : Simulation Study at Different Proton Beam Energies

    NARCIS (Netherlands)

    Biegun, Aleksandra; Takatsu, Jun; van Goethem, Marc-Jan; van der Graaf, Emiel; van Beuzekom, Martin; Visser, Jan; Brandenburg, Sijtze

    To improve the quality of cancer treatment with protons, a translation of X-ray Computed Tomography (CT) images into a map of the proton stopping powers needs to be more accurate. Proton stopping powers determined from CT images have systematic uncertainties in the calculated proton range in a

  6. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Nissen, Poul

    2008-01-01

    molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...... proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK (a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires....

  7. Elucidating the Solvation Structure and Dynamics of Lithium Polysulfides Resulting from Competitive Salt and Solvent Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Rajput, Nav Nidhi; Murugesan, Vijayakumar; Shin, Yongwoo; Han, Kee Sung; Lau, Kah Chun; Chen, Junzheng; Liu, Jun; Curtiss, Larry A.; Mueller, Karl T.; Persson, Kristin A.

    2017-04-10

    Fundamental molecular level understanding of functional properties of liquid solutions provides an important basis for designing optimized electrolytes for numerous applica-tions. In particular, exhaustive knowledge of solvation structure, stability and transport properties is critical for developing stable electrolytes for fast charging and high energy density next-generation energy storage systems. Here we report the correlation between solubility, solvation structure and translational dynamics of a lithium salt (Li-TFSI) and polysulfides species using well-benchmarked classical molecular dynamics simulations combined with nuclear magnetic resonance (NMR). It is observed that the polysulfide chain length has a significant effect on the ion-ion and ion-solvent interaction as well as on the diffusion coefficient of the ionic species in solution. In particular, extensive cluster formation is observed in lower order poly-sulfides (Sx2-; x≤4), whereas the longer polysulfides (Sx2-; x>4) show high solubility and slow dynamics in the solu-tion. It is observed that optimal solvent/salt ratio is essen-tial to control the solubility and conductivity as the addi-tion of Li salt increases the solubility but decreases the mo-bility of the ionic species. This work provides a coupled theoretical and experimental study of bulk solvation struc-ture and transport properties of multi-component electro-lyte systems, yielding design metrics for developing optimal electrolytes with improved stability and solubility.

  8. Molecular modeling of nucleic Acid structure: electrostatics and solvation.

    Science.gov (United States)

    Bergonzo, Christina; Galindo-Murillo, Rodrigo; Cheatham, Thomas E

    2014-12-19

    This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand its structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as a way of sampling conformational space for a better understanding of the relevance of a given model. This discussion highlighted the major limitations with modeling in general. When sampling conformational space effectively, difficult issues are encountered, such as multiple minima or conformational sampling problems, and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These subjects are discussed in detail in this unit. Copyright © 2014 John Wiley & Sons, Inc.

  9. Enthalpies of fusion and enthalpies of solvation of aromatic hydrocarbons derivatives: Estimation of sublimation enthalpies at 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, Boris N., E-mail: boris.solomonov@kpfu.ru; Nagrimanov, Ruslan N.; Varfolomeev, Mikhail A.; Buzyurov, Aleksey V.; Mukhametzyanov, Timur A.

    2016-03-20

    Graphical abstract: - Highlights: • Solution enthalpies of aromatic hydrocarbons derivatives (ArHD) were measured at 298.15 K. • Solution enthalpies of ArHD in benzene at 298.15 K are equal to their fusion enthalpy at melting point. • Sublimation enthalpies of 80 ArHD were calculated as a sum of fusion and solvation enthalpies. • Obtained sublimation enthalpies are in good agreement with the recommended literature data. - Abstract: Enthalpy of sublimation of solid compound can be found using the values of solution enthalpy and solvation enthalpy in any solvent. In this work enthalpies of solution at infinite dilution of a number of aromatic hydrocarbons derivatives in benzene were measured at 298.15 K. Comparison between experimental and literature solution enthalpies in benzene at 298.15 K and fusion enthalpies at melting temperature of aromatic hydrocarbon derivatives showed, that these values are approximately equal. Thereby, fusion enthalpies at melting temperature can be used instead of their solution enthalpies in benzene at 298.15 K for calculation of sublimation enthalpies at 298.15 K. Solvation enthalpies in benzene at 298.15 K required for this procedure were calculated using group additivity scheme. The sublimation enthalpies of 80 aromatic hydrocarbons derivatives at 298.15 K were evaluated as a difference between fusion enthalpies at melting temperature and solvation enthalpies in benzene at 298.15 K. Obtained in this work values of sublimation enthalpy at 298.15 K for studied compounds were in a good agreement with available literature data.

  10. Thermodynamics of coproportionation reactions of homogeneous samarium (3) and yttrium (3) nitrates solvates with neutral organic phosphorus compounds

    International Nuclear Information System (INIS)

    Pyartman, A.K.

    1995-01-01

    Reaction heats of homogeneous samarium (3) and yttrium (3) nitrate solvates coproportionation with neutral organophosphoric compounds (tri-n.-butylphosphate, diisooctylmethylphosphonate, diisoamylmethylphosphonate) at T=298.15 K in hexane have been measured by thermochemical method. It has been ascertained that enthalpies of coproportionation reactions practically do not depend on the nature, concentration of rare earth metal (3) nitrate solvates in hexane, nature of neutral organophosphoric compound and constitute 1.1±-.2 kJ/mol. The Gibbs free energy of coproportionation reactions is -5.43 kJ/mol, while entropy of the reactions in 14.5±0.7 J/mol·K. 8 refs., 1 tab

  11. Impact of structural modification of 1,2,4-thiadiazole derivatives on thermodynamics of solubility and solvation processes in 1-octanol and n-hexane

    International Nuclear Information System (INIS)

    Surov, Artem O.; Bui, Cong Trinh; Volkova, Tatyana V.; Proshin, Alexey N.; Perlovich, German L.

    2016-01-01

    Highlights: • Solubility processes of some 1,2,4-thiadiazoles in n-hexane and 1-octanol were investigated. • Solvation processes of some 1,2,4-thiadiazoles in n-hexane and 1-octanol were studied. • Transfer processes from n-hexane to 1-octanol were evaluated. • Impact of various substituents in 1,2,4-thiadiazoles on the mentioned processes was studied. - Abstract: Influence of a structural modification on thermodynamic aspects of solubility and solvation processes of the 1,2,4-thiadiazole drug-like compounds in pharmaceutically relevant solvents n-hexane and 1-octanol was investigated. The solubility of the compounds in 1-octanol does not substantially depend on the nature and position of the substituent in the phenyl moiety. In n-hexane, however, the introduction of any substituent in the phenyl ring of the 1,2,4-thiadiazole molecule reduces the solubility in the solvent. In order to rationalize the relationships between the structure of 1,2,4-thiadiazoles and their solubility, the latter was considered in terms of two fundamental processes: sublimation and solvation. It was found that for the most of the compounds the solubility change in both solvents is a consequence of competition between the sublimation and solvation contributions, i.e. the introduction of substituents leads to growth of the sublimation Gibbs energy and increase in the solvation Gibbs energy. Thermodynamic parameters of the transfer process of the compounds from n-hexane to 1-octanol, which is a model of the blood–brain barrier (BBB), were also analyzed.

  12. A conductivity study of preferential solvation of lithium ion in acetonitrile-dimethyl sulfoxide mixtures

    International Nuclear Information System (INIS)

    Mozhzhukhina, Nataliia; Longinotti, M. Paula; Corti, Horacio R.; Calvo, Ernesto J.

    2015-01-01

    The electrical mobility of LiPF 6 in acetonitrile–dimethyl sulfoxide (ACN–DMSO) mixtures, a potential electrolyte in oxygen cathodes of lithium-air batteries, has been studied using a very precise conductance technique, which allowed the determination of the infinite dilution molar conductivity and association constant of the salt in the whole composition range. In the search for preferential Li + ion solvation, we also measured the electrical conductivity of tetrabutylammonium hexafluorophosphate (TBAPF 6 ), a salt formed by a bulky cation, over the same composition range. The results show a qualitative change in the curvature of the LiPF 6 molar conductivity composition dependence for ACN molar fraction (x ACN ) ∼ 0.95, which was not observed for TBAPF 6 . The dependence of the measured Li/Li + couple potential with solvent composition also showed a pronounced change around the same composition. We suggest that these observations can be explained by Li + ion preferential solvation by DMSO in ACN–DMSO mixtures with very low molar fractions of DMSO

  13. A shell-resolved analysis of preferential solvation of coffee ingredients in aqueous mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate

    Science.gov (United States)

    Zeindlhofer, Veronika; Berger, Magdalena; Steinhauser, Othmar; Schröder, Christian

    2018-05-01

    Ionic liquids increase the solubility of various coffee ingredients in aqueous solution but little is known about the underlying mechanism. Kirkwood-Buff integrals as well as the potential of mean force indicate that the imidazolium cations are accumulated at the surface of the solutes, removing water molecules from the solute surface. Although hydrogen bonding of the anions to hydroxy groups of the solutes can be detected, their concentration at the surface is less enhanced compared to the cations. The decomposition into solvation shells by Voronoi tessellation reveals that structural features are only observed in the first solvation shell. Nevertheless, the depletion of water and the excess concentration of the ions and, in particular, of the cations are visible in the next solvation shells as well. Therefore, classical arguments of hydrotropic theory fail to explain this behavior.

  14. Ionic association and solvation in solutions of magnesium and nickel perchlorates in acetonitrile

    Science.gov (United States)

    Kalugin, O. N.; Agieienko, V. N.; Otroshko, N. A.; Moroz, V. V.

    2009-02-01

    The paper presents the conductometric data on solutions of Mg(ClO4)2 and Ni(ClO4)2 in acetonitrile over the temperature ranges 5-55°C for Mg(ClO4)2 and 25-75°C for Ni(ClO4)2. The extended Lee-Wheaton equation for unsymmetrical electrolytes was used to determine the limiting equivalent conductivities of the Mg2+, Ni2+, and ClO{4/-} ions and first-step ionic association constants with the formation of [KtClO4]+ ion pairs. Lower ionic association constants for Ni(ClO4)2 compared with Mg(ClO4)2 were a consequence of stronger non-Coulomb repulsion in the formation of [KtClO4]+ ion pairs because of the formation of a firmer solvation shell by the nickel compared with magnesium cation. The structure-dynamic parameter of ionic solvation was estimated. It was found that spatial-time correlations in the nearest environment of ions increased in the series ClO{4/-} > Mg2+ > Ni2+.

  15. Freezing hot electrons. Electron transfer and solvation dynamics at D{sub 2}O and NH{sub 3}-metal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Staehler, A.J.

    2007-05-15

    The present work investigates the electron transfer and solvation dynamics at the D{sub 2}O/Cu(111), D{sub 2}O/Ru(001), and NH{sub 3}/Cu(111) interfaces using femtosecond time-resolved two-photon photoelectron spectroscopy. Within this framework, the influence of the substrate, adsorbate structure and morphology, solvation site, coverage, temperature, and solvent on the electron dynamics are studied, yielding microscopic insight into the underlying fundamental processes. Transitions between different regimes of ET, substrate-dominated, barrier-determined, strong, and weak coupling are observed by systematic variation of the interfacial properties and development of empirical model descriptions. It is shown that the fundamental steps of the interfacial electron dynamics are similar for all investigated systems: Metal electrons are photoexcited to unoccupied metal states and transferred into the adlayer via the adsorbate's conduction band. The electrons localize at favorable sites and are stabilized by reorientations of the surrounding polar solvent molecules. Concurrently, they decay back two the metal substrate, as it offers a continuum of unoccupied states. However, the detailed characteristics vary for the different investigated interfaces: For amorphous ice-metal interfaces, the electron transfer is initially, right after photoinjection, dominated by the substrate's electronic surface band structure. With increasing solvation, a transient barrier evolves at the interface that increasingly screens the electrons from the substrate. Tunneling through this barrier becomes the rate-limiting step for ET. The competition of electron decay and solvation leads to lifetimes of the solvated electrons in the order of 100 fs. Furthermore, it is shown that the electrons bind in the bulk of the ice layers, but on the edges of adsorbed D{sub 2}O clusters and that the ice morphology strongly influences the electron dynamics. For the amorphous NH{sub 3}/Cu(111

  16. A hybrid neutron diffraction and computer simulation study on the solvation of N-methylformamide in dimethylsulfoxide

    Science.gov (United States)

    Cordeiro, João M. M.; Soper, Alan K.

    2013-01-01

    The solvation of N-methylformamide (NMF) by dimethylsulfoxide (DMSO) in a 20% NMF/DMSO liquid mixture is investigated using a combination of neutron diffraction augmented with isotopic substitution and Monte Carlo simulations. The aim is to investigate the solute-solvent interactions and the structure of the solution. The results point to the formation of a hydrogen bond (H-bond) between the H bonded to the N of the amine group of NMF and the O of DMSO particularly strong when compared with other H-bonded liquids. Moreover, a second cooperative H-bond is identified with the S atom of DMSO. As a consequence of these H-bonds, molecules of NMF and DMSO are rather rigidly connected, establishing very stable dimmers in the mixture and very well organized first and second solvation shells.

  17. Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril.

    Science.gov (United States)

    Nguyen, Crystal N; Young, Tom Kurtzman; Gilson, Michael K

    2012-07-28

    The displacement of perturbed water upon binding is believed to play a critical role in the thermodynamics of biomolecular recognition, but it is nontrivial to unambiguously define and answer questions about this process. We address this issue by introducing grid inhomogeneous solvation theory (GIST), which discretizes the equations of inhomogeneous solvation theory (IST) onto a three-dimensional grid situated in the region of interest around a solute molecule or complex. Snapshots from explicit solvent simulations are used to estimate localized solvation entropies, energies, and free energies associated with the grid boxes, or voxels, and properly summing these thermodynamic quantities over voxels yields information about hydration thermodynamics. GIST thus provides a smoothly varying representation of water properties as a function of position, rather than focusing on hydration sites where solvent is present at high density. It therefore accounts for full or partial displacement of water from sites that are highly occupied by water, as well as for partly occupied and water-depleted regions around the solute. GIST can also provide a well-defined estimate of the solvation free energy and therefore enables a rigorous end-states analysis of binding. For example, one may not only use a first GIST calculation to project the thermodynamic consequences of displacing water from the surface of a receptor by a ligand, but also account, in a second GIST calculation, for the thermodynamics of subsequent solvent reorganization around the bound complex. In the present study, a first GIST analysis of the molecular host cucurbit[7]uril is found to yield a rich picture of hydration structure and thermodynamics in and around this miniature receptor. One of the most striking results is the observation of a toroidal region of high water density at the center of the host's nonpolar cavity. Despite its high density, the water in this toroidal region is disfavored energetically and

  18. Effect of Preferential Solvation of Polymer Chains on Vapor-Pressure Osmometry Results. Computer Simulation Study.

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Martin; Lísal, Martin; Limpouchová, Z.; Procházka, Karel

    2018-01-01

    Roč. 23, č. 3 (2018), s. 244-251 ISSN 1023-666X R&D Projects: GA ČR GA15-19542S Institutional support: RVO:67985858 Keywords : vapor-pressure osmometry * simulation * solvatation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry

  19. Proton transfer in a short hydrogen bond caused by solvation shell fluctuations: an ab initio MD and NMR/UV study of an (OHO)(-) bonded system.

    Science.gov (United States)

    Pylaeva, Svetlana; Allolio, Christoph; Koeppe, Benjamin; Denisov, Gleb S; Limbach, Hans-Heinrich; Sebastiani, Daniel; Tolstoy, Peter M

    2015-02-14

    We present a joint experimental and quantum chemical study on the influence of solvent dynamics on the protonation equilibrium in a strongly hydrogen bonded phenol-acetate complex in CD2Cl2. Particular attention is given to the correlation of the proton position distribution with the internal conformation of the complex itself and with fluctuations of the aprotic solvent. Specifically, we have focused on a complex formed by 4-nitrophenol and tetraalkylammonium-acetate in CD2Cl2. Experimentally we have used combined low-temperature (1)H and (13)C NMR and UV-vis spectroscopy and showed that a very strong OHO hydrogen bond is formed with proton tautomerism (PhOH···(-)OAc and PhO(-)···HOAc forms, both strongly hydrogen bonded). Computationally, we have employed ab initio molecular dynamics (70 and 71 solvent molecules, with and without the presence of a counter-cation, respectively). We demonstrate that the relative motion of the counter-cation and the "free" carbonyl group of the acid plays the major role in the OHO bond geometry and causes proton "jumps", i.e. interconversion of PhOH···(-)OAc and PhO(-)···HOAc tautomers. Weak H-bonds between CH(CD) groups of the solvent and the oxygen atom of carbonyl stabilize the PhOH···(-)OAc type of structures. Breaking of CH···O bonds shifts the equilibrium towards PhO(-)···HOAc form.

  20. Theoretical Study of the Effects of Di-Muonic Molecules on Muon-Catalyzed Fusion

    Science.gov (United States)

    2012-03-01

    Pyramid of the Sun," Revista Méxicana de Física, vol. 49, no. 4, pp. 54-59, 2003. [19] V. Grabski, A. Morales, R. Reche and O. Orozco, "Feasibility...34 Inclusion of Explicit Electron- Proton Correlation in the Nuclear-Electronic Orbital Approach Using Gaussian-Type Geminal Functions," Journal of...energy levels calculated without including nuclear volume effects looks almost identical on this scale. Inclusion of nuclear volume effects in the

  1. Proton decay: spectroscopic probe beyond the proton drip line

    International Nuclear Information System (INIS)

    Seweryniak, D; Davids, C N; Robinson, A; Woods, P J; Blank, B; Carpenter, M P; Davinson, T; Freeman, S J; Hammond, N; Hoteling, N; Janssens, R V F; Khoo, T L; Liu, Z; Mukherjee, G; Shergur, J; Sinha, S; Sonzogni, A A; Walters, W B; Woehr, A

    2005-01-01

    Proton decay has been transformed in recent years from an exotic phenomenon into a powerful spectroscopic tool. The frontiers of experimental and theoretical proton-decay studies will be reviewed. Different aspects of proton decay will be illustrated with recent results on the deformed proton emitter 135 Tb, the odd-odd deformed proton emitter 130 Eu, the complex fine structure in the odd-odd 146 Tm nucleus and on excited states in the transitional proton emitter 145 Tm

  2. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Sipala, V.; Lo Presti, D.; Brianzi, M.; Civinini, C.; Bruzzi, M.; Scaringella, M.; Talamonti, C.; Bucciolini, M.; Cirrone, G.A.P.; Cuttone, G.; Randazzo, N.; Stancampiano, C.; Tesi, M.

    2011-01-01

    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  3. Solvation of carbonaceous molecules by para-H{sub 2} and ortho-D{sub 2} clusters. I. Polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, F., E-mail: florent.calvo@univ-grenoble-alpes.fr [Univ. Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble (France); Yurtsever, E. [Koç University, Rumelifeneriyolu, Sariyer, Istanbul 34450 (Turkey)

    2016-06-14

    This work theoretically examines the progressive coating of planar polycyclic aromatic hydrocarbon (PAH) molecules ranging from benzene to circumcoronene (C{sub 54}H{sub 18}) by para-hydrogen and ortho-deuterium. The coarse-grained Silvera-Goldman potential has been extended to model the interactions between hydrogen molecules and individual atoms of the PAH and parametrized against quantum chemical calculations for benzene-H{sub 2}. Path-integral molecular dynamics simulations at 2 K were performed for increasingly large amounts of hydrogen coating the PAH up to the first solvation shell and beyond. From the simulations, various properties were determined such as the size of the first shell and its thickness as well as the solvation energy. The degree of delocalization was notably quantified from an energy landscape perspective, by monitoring the fluctuations among inherent structures sampled by the trajectories. Our results generally demonstrate a high degree of localization owing to relatively strong interactions between hydrogen and the PAH, and qualitatively minor isotopic effects. In the limit of large hydrogen amounts, the shell size and solvation energy both follow approximate linear relations with the numbers of carbon and hydrogen in the PAH.

  4. Atomistic characterization of the active-site solvation dynamics of a model photocatalyst

    DEFF Research Database (Denmark)

    Brandt van Driel, Tim; Kjær, Kasper Skov; Hartsock, Robert W.

    2016-01-01

    The interactions between the reactive excited state of molecular photocatalysts and surrounding solvent dictate reaction mechanisms and pathways, but are not readily accessible to conventional optical spectroscopic techniques. Here we report an investigation of the structural and solvation dynami...... of the iridium atoms by the acetonitrile solvent and demonstrate the viability of using diffuse X-ray scattering at free-electron laser sources for studying the dynamics of photocatalysis....

  5. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Veierskov, Bjarke

    2008-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells...... of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic...... molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...

  6. Solvation of actinide salts in water using a polarizable continuum model.

    Science.gov (United States)

    Kumar, Narendra; Seminario, Jorge M

    2015-01-29

    In order to determine how actinide atoms are dressed when solvated in water, density functional theory calculations have been carried out to study the equilibrium structure of uranium plutonium and thorium salts (UO2(2+), PuO2(2+), Pu(4+), and Th(4+)) both in vacuum as well as in solution represented by a conductor-like polarizable continuum model. This information is of paramount importance for the development of sensitive nanosensors. Both UO2(2+) and PuO2(2+) ions show coordination number of 4-5 with counterions replacing one or two water molecules from the first coordination shell. On the other hand, Pu(4+), has a coordination number of 8 both when completely solvated and also in the presence of chloride and nitrate ions with counterions replacing water molecules in the first shell. Nitrates were found to bind more strongly to Pu(IV) than chloride anions. In the case of the Th(IV) ion, the coordination number was found to be 9 or 10 in the presence of chlorides. Moreover, the Pu(IV) ion shows greater affinity for chlorides than the Th(IV) ion. Adding dispersion and ZPE corrections to the binding energy does not alter the trends in relative stability of several conformers because of error cancelations. All structures and energetics of these complexes are reported.

  7. Control of Geminate Recombination by the Material Composition and Processing Conditions in Novel Polymer: Nonfullerene Acceptor Photovoltaic Devices.

    Science.gov (United States)

    Zhang, Jiangbin; Gu, Qinying; Do, Thu Trang; Rundel, Kira; Sonar, Prashant; Friend, Richard H; McNeill, Christopher R; Bakulin, Artem A

    2018-02-08

    Herein, we report on the charge dynamics of photovoltaic devices based on two novel small-molecule nonfullerene acceptors featuring a central ketone unit. Using ultrafast near-infrared spectroscopy with optical and photocurrent detection methods, we identify one of the key loss channels in the devices as geminate recombination (GR) of interfacial charge transfer states (CTSs). We find that the magnitude of GR is highly sensitive to the choice of solvent and annealing conditions. Interestingly, regardless of these processing conditions, the same lifetime for GR (∼130 ps) is obtained by both detection methods upon decomposing the complex broadband transient optical spectra, suggesting this time scale is inherent and independent of morphology. These observations suggest that the CTSs in the studied material blends are mostly strongly bound, and that charge generation from these states is highly inefficient. We further rationalize our results by considering the impact of the processing on the morphology of the mixed donor and acceptor domains and discuss the potential consequences of the early charge dynamics on the performance of emerging nonfullerene photovoltaic devices. Our results demonstrate that careful choice of processing conditions enables enhanced exciton harvesting and suppression of GR by more than 3 orders of magnitude.

  8. 17O NMR Studies of the Solvation State of cissolidustrans Isomers of Amides and Model Protected Peptides

    Science.gov (United States)

    Gerothanassis; Vakka; Troganis

    1996-06-01

    17O shielding constants have been utilized to investigate solvation differences of the cissolidustrans isomers of N-methylformamide (NMF), N-ethylformamide (NEF), and tert-butylformamide (TBF) in a variety of solvents with particular emphasis on aqueous solution. Comparisons are also made with protected peptides of the formulas CH3CO-YOH, CH3CO-Y-NHR (Y = Pro, Sar), and CH3CO-Y-Z-NHR (Y = Pro; Z = D-Ala) selectively enriched in 17O at the acetyl oxygen atom. Hydration at the amide oxygen induces large and specific modifications of the 17O shielding constants, which are practically the same for the cis and trans isomers of NMF, NEF, and the protected peptides. For tert-butylformamide, the strong deshielding of the trans isomer compared to that of the cis isomer may be attributed to an out-of-plane (torsion-angle) deformation of the amide bond andsolidusor a significant reduction of solvation of the trans isomer due to steric inhibition of the bulky tert-butyl group. Good linear correlation between delta(17O) of amides and delta(17O) of acetone was found for different solvents which have varying dielectric constants and solvation abilities. Sum-over-states calculations, within the solvaton model, underestimate effects of the dielectric constant of the medium on 17O shielding, while finite-perturbation-theory calculations give good agreement with the experiment.

  9. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  10. First crystal structures of pharmaceutical ibrutinib: systematic solvate screening and characterization

    Czech Academy of Sciences Publication Activity Database

    Zvoníček, V.; Skořepová, E.; Dušek, Michal; Babor, M.; Zvatora, P.; Šoós, M.

    2017-01-01

    Roč. 17, č. 6 (2017), s. 3116-3127 ISSN 1528-7483 R&D Projects: GA MŠk LO1603; GA ČR GA17-23196S EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : Ibrutinib solvates * anticancer drug * Raman spectroscopy * powder X-ray diffraction * crystal structure Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.055, year: 2016

  11. On proton CT reconstruction using MVCT-converted virtual proton projections

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dongxu; Mackie, T. Rockwell; Tome, Wolfgang A. [Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242 (United States); Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Morgridge Institute of Research, University of Wisconsin, Madison, Wisconsin 53715 (United States); Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Oncophysics Institute, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461 (United States)

    2012-06-15

    Purpose: To describe a novel methodology of converting megavoltage x-ray projections into virtual proton projections that are otherwise missing due to the proton range limit. These converted virtual proton projections can be used in the reconstruction of proton computed tomography (pCT). Methods: Relations exist between proton projections and multispectral megavoltage x-ray projections for human tissue. Based on these relations, these tissues can be categorized into: (a) adipose tissue; (b) nonadipose soft tissues; and (c) bone. These three tissue categories can be visibly identified on a regular megavoltage x-ray computed tomography (MVCT) image. With an MVCT image and its projection data available, the x-ray projections through heterogeneous anatomy can be converted to the corresponding proton projections using predetermined calibration curves for individual materials, aided by a coarse segmentation on the x-ray CT image. To show the feasibility of this approach, mathematical simulations were carried out. The converted proton projections, plotted on a proton sinogram, were compared to the simulated ground truth. Proton stopping power images were reconstructed using either the virtual proton projections only or a blend of physically available proton projections and virtual proton projections that make up for those missing due to the range limit. These images were compared to a reference image reconstructed from theoretically calculated proton projections. Results: The converted virtual projections had an uncertainty of {+-}0.8% compared to the calculated ground truth. Proton stopping power images reconstructed using a blend of converted virtual projections (48%) and physically available projections (52%) had an uncertainty of {+-}0.86% compared with that reconstructed from theoretically calculated projections. Reconstruction solely from converted virtual proton projections had an uncertainty of {+-}1.1% compared with that reconstructed from theoretical projections

  12. On proton CT reconstruction using MVCT-converted virtual proton projections

    International Nuclear Information System (INIS)

    Wang Dongxu; Mackie, T. Rockwell; Tomé, Wolfgang A.

    2012-01-01

    Purpose: To describe a novel methodology of converting megavoltage x-ray projections into virtual proton projections that are otherwise missing due to the proton range limit. These converted virtual proton projections can be used in the reconstruction of proton computed tomography (pCT). Methods: Relations exist between proton projections and multispectral megavoltage x-ray projections for human tissue. Based on these relations, these tissues can be categorized into: (a) adipose tissue; (b) nonadipose soft tissues; and (c) bone. These three tissue categories can be visibly identified on a regular megavoltage x-ray computed tomography (MVCT) image. With an MVCT image and its projection data available, the x-ray projections through heterogeneous anatomy can be converted to the corresponding proton projections using predetermined calibration curves for individual materials, aided by a coarse segmentation on the x-ray CT image. To show the feasibility of this approach, mathematical simulations were carried out. The converted proton projections, plotted on a proton sinogram, were compared to the simulated ground truth. Proton stopping power images were reconstructed using either the virtual proton projections only or a blend of physically available proton projections and virtual proton projections that make up for those missing due to the range limit. These images were compared to a reference image reconstructed from theoretically calculated proton projections. Results: The converted virtual projections had an uncertainty of ±0.8% compared to the calculated ground truth. Proton stopping power images reconstructed using a blend of converted virtual projections (48%) and physically available projections (52%) had an uncertainty of ±0.86% compared with that reconstructed from theoretically calculated projections. Reconstruction solely from converted virtual proton projections had an uncertainty of ±1.1% compared with that reconstructed from theoretical projections. If

  13. Variation of the solvation number of Eu(III) in mixed system of methanol and water

    International Nuclear Information System (INIS)

    Suganuma, H.; Arisaka, M.; Omori, T.; Satoh, I.; Choppin, G.R.

    1999-01-01

    The stability constants (β 1 ) of the monofluoride complex of Eu(III) have been determined in mixed solvents of methanol and water at a 0.10 M ionic strength using a solvent extraction technique. The values of ln β 1 increase as the mole fraction of methanol in the mixed solvent system increases. The variation in the stability constants can be correlated with both the large effect due to the solvation of F and the small effect due to both (1) the solvation of cations in connection with complexation and (2) the electrostatic attraction between Eu 3+ and F - . Based on the variation in the sum of (1) and (2) in water and the mixed solvent solutions, it was determined that the coordination number (CN) of Eu(III) varied from a mixture of CN = 9 and 8 to CN = 8 at about a 0.03 mole fraction of methanol in the mixed solvent. (orig.)

  14. Solvation in supercritical water

    International Nuclear Information System (INIS)

    Cochran, H.D.; Cummings, P.T.; Karaborni, S.

    1991-01-01

    The aim of this work is to determine the solvation structure in supercritical water composed with that in ambient water and in simple supercritical solvents. Molecular dynamics studies have been undertaken of systems that model ionic sodium and chloride, atomic argon, and molecular methanol in supercritical aqueous solutions using the simple point charge model of Berendsen for water. Because of the strong interactions between water and ions, ionic solutes are strongly attractive in supercritical water, forming large clusters of water molecules around each ion. Methanol is found to be a weakly-attractive solute in supercritical water. The cluster of excess water molecules surrounding a dissolved ion or polar molecule in supercritical aqueous solutions is comparable to the solvent clusters surrounding attractive solutes in simple supercritical fluids. Likewise, the deficit of water molecules surrounding a dissolved argon atom in supercritical aqueous solutions is comparable to that surrounding repulsive solutes in simple supercritical fluids. The number of hydrogen bonds per water molecule in supercritical water was found to be about one third the number in ambient water. The number of hydrogen bonds per water molecule surrounding a central particle in supercritical water was only mildly affected by the identify of the central particle--atom, molecule, or ion. These results should be helpful in developing a qualitative understanding of important processes that occur in supercritical water. 29 refs., 6 figs

  15. Phospholipid bilayer affinities and solvation characteristics by electrokinetic chromatography with a nanodisc pseudostationary phase.

    Science.gov (United States)

    Penny, William M; Steele, Harmen B; Ross, J B Alexander; Palmer, Christopher P

    2017-03-01

    Phospholipid bilayer nanodiscs composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and synthetic maleic acid-styrene copolymer belts have been introduced as a pseudostationary phase (PSP) in electrokinetic chromatography and demonstrated good performance. The nanodiscs provide a suitable migration range and high theoretical plate counts. Using this nanodisc pseudostationary phase, the affinity of the bilayer structure for probe solutes was determined and characterized. Good correlation is observed between retention factors and octanol water partition coefficients for particular categories of solutes, but the general correlation is weak primarily because the nanodiscs show stronger affinity than octanol for hydrogen bond donors. This suggests that a more appropriate application of this technology is to measure and characterize interactions between solutes and lipid bilayers directly. Linear solvation energy relationship analysis of the nanodisc-solute interactions in this study demonstrates that the nanodiscs provide a solvation environment with low cohesivity and weak hydrogen bond donating ability, and provide relatively strong hydrogen bond acceptor strength. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.

    Science.gov (United States)

    Kipka, Undine; Di Toro, Dominic M

    2011-09-01

    Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.

  17. Affine-response model of molecular solvation of ions: Accurate predictions of asymmetric charging free energies

    Czech Academy of Sciences Publication Activity Database

    Bardhan, J. P.; Jungwirth, Pavel; Makowski, L.

    Roč. 137, č. 12 ( 2012 ), 124101/1-124101/6 ISSN 0021-9606 R&D Projects: GA MŠk LH12001 Institutional research plan: CEZ:AV0Z40550506 Keywords : ion solvation * continuum models * linear response Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.164, year: 2012

  18. N.M.R. study of organo-phosphorus compounds: non equivalence of methylenic protons in the {alpha} position of an asymmetric phosphorus atom. Application to study of coupling constants J{sub P,H} and J{sub H,H}; R.M.N. de composes organo-phosphores: non equivalence de protons methyleniques en {alpha} d'un phosphore asymetrique. Application a l'etude des constantes de couplage J{sub P,H} et J{sub H,H}

    Energy Technology Data Exchange (ETDEWEB)

    Albrand, J P [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Non-equivalent methylenic protons, with respect to an asymmetric center, have been observed in the n.m.r. spectra of some three- and tetra-coordinated phosphorus compounds. The analysis of these spectra yield the following results: in the studied secondary phosphines, the inversion rate at the phosphorus atom is slow on the n.m.r. time scale; the geminal coupling constant, for a free-rotating methylene group attached to a phosphorus atom, is negative; in phosphines the non equivalence of methylenic protons reveals two {sup 2}J{sub P-C-H} coupling constants which differ by about 5 Hz. This result is in agreement with previous studies on cyclic phosphines. In phosphine oxides, the {sup 2}J{sub P-C-H} values are negative. The {sup 3}J{sub H-P-C-H} coupling constant is positive in both phosphines and phosphine oxides. In phosphines, the non-equivalent methylenic protons exhibit two nearly equal values for this coupling constant. (author) [French] La non-equivalence de protons methyleniques observee dans quelques composes phosphores tricoordines et tetracoordines a apporte les resultats suivants, concernant la stereochimie et les constantes de couplage dans ces composes: dans les phosphines secondaires, la structure pyramidale des liaisons issues du phosphore est fixe a l'echelle de temps de mesure de la R.M.N.; la constante de couplage {sup 2}J{sub H-C-H}, pour un methylene en libre rotation en {alpha} d'un atome de phosphore, est negative; dans les phosphines etudiees, la non-equivalence. observee pour les protons methyleniques s'accompagne d'une difference importante (5 Hz) entre les deux constantes de couplage {sup 2}J{sub P-C-H} determinees par l'analyse; ce resultat est en accord avec la stereospecificite deja observee pour ce couplage dans les phosphines cycliques. Les valeurs observees pour {sup 2}J{sub P-C-H} dans les oxydes de phosphines sont negatives. Les valeurs de la constante de couplage {sup 3}J{sub H-P-C-H}, dans les phosphines et oxydes de phosphine

  19. Contribution to the study of solvated electrons in water and alcohols and of radiolytic processes in organic carbonates by picosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Torche, Faycal

    2012-01-01

    This work is part of the study area of the interaction of radiation with polar liquids. Using the picosecond electron accelerator ELYSE, studies were conducted using the techniques of pulse radiolysis combined with absorption spectrophotometry Time-resolved in the field of a picosecond. This work is divided into two separate chapters. The first study addresses the temporal variation of the radiolytic yield of solvated electron in water and simple alcohols. Due to original detection system mounted on the accelerator ELYSE, composed of a flash lamp specifically designed for the detection and a streak-camera used for the first time in absorption spectroscopy, it was possible to record the time-dependent radiolytic yields of the solvated electron from ten picoseconds to a few hundred nanoseconds. The scavenging of the electron solvated by methyl viologen, was utilized to reevaluate the molar extinction coefficient of the absorption spectrum of solvated electron in water and ethanol from isobestic points which corresponds to the intersection of the absorption spectra of solvated electron which disappears and methyl viologen which is formed during the reaction. The second chapter is devoted to the study of liquid organic carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC) and propylene carbonate (PC). This family of carbonate which compose the electrolytes lithium batteries, has never been investigated by pulse radiolysis. The studies were focused on the PC in the light of these physicochemical characteristics, including its very high dielectric constant and its strong dipole moment of 4.9 D. The first results were obtained on aqueous solutions containing propylene carbonate to observe the reactions of reduction and oxidation of PC by radiolytic species of water (solvated electron and OH radicals). Then, after the identification (spectral and kinetic) of the species formed by interaction with the OH radical as the PC* radical resulting from the

  20. Development and application of QM/MM methods to study the solvation effects and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dibya, Pooja Arora [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Quantum mechanical (QM) calculations have the advantage of attaining high-level accuracy, however QM calculations become computationally inefficient as the size of the system grows. Solving complex molecular problems on large systems and ensembles by using quantum mechanics still poses a challenge in terms of the computational cost. Methods that are based on classical mechanics are an inexpensive alternative, but they lack accuracy. A good trade off between accuracy and efficiency is achieved by combining QM methods with molecular mechanics (MM) methods to use the robustness of the QM methods in terms of accuracy and the MM methods to minimize the computational cost. Two types of QM combined with MM (QM/MM) methods are the main focus of the present dissertation: the application and development of QM/MM methods for solvation studies and reactions on the Si(100) surface. The solvation studies were performed using a discreet solvation model that is largely based on first principles called the effective fragment potential method (EFP). The main idea of combining the EFP method with quantum mechanics is to accurately treat the solute-solvent and solvent-solvent interactions, such as electrostatic, polarization, dispersion and charge transfer, that are important in correctly calculating solvent effects on systems of interest. A second QM/MM method called SIMOMM (surface integrated molecular orbital molecular mechanics) is a hybrid QM/MM embedded cluster model that mimics the real surface.3 This method was employed to calculate the potential energy surfaces for reactions of atomic O on the Si(100) surface. The hybrid QM/MM method is a computationally inexpensive approach for studying reactions on larger surfaces in a reasonably accurate and efficient manner. This thesis is comprised of four chapters: Chapter 1 describes the general overview and motivation of the dissertation and gives a broad background of the computational methods that have been employed in this work

  1. Comparison of the Marcus and Pekar partitions in the context of non-equilibrium, polarizable-continuum solvation models

    International Nuclear Information System (INIS)

    You, Zhi-Qiang; Herbert, John M.; Mewes, Jan-Michael; Dreuw, Andreas

    2015-01-01

    The Marcus and Pekar partitions are common, alternative models to describe the non-equilibrium dielectric polarization response that accompanies instantaneous perturbation of a solute embedded in a dielectric continuum. Examples of such a perturbation include vertical electronic excitation and vertical ionization of a solution-phase molecule. Here, we provide a general derivation of the accompanying polarization response, for a quantum-mechanical solute described within the framework of a polarizable continuum model (PCM) of electrostatic solvation. Although the non-equilibrium free energy is formally equivalent within the two partitions, albeit partitioned differently into “fast” versus “slow” polarization contributions, discretization of the PCM integral equations fails to preserve certain symmetries contained in these equations (except in the case of the conductor-like models or when the solute cavity is spherical), leading to alternative, non-equivalent matrix equations. Unlike the total equilibrium solvation energy, however, which can differ dramatically between different formulations, we demonstrate that the equivalence of the Marcus and Pekar partitions for the non-equilibrium solvation correction is preserved to high accuracy. Differences in vertical excitation and ionization energies are <0.2 eV (and often <0.01 eV), even for systems specifically selected to afford a large polarization response. Numerical results therefore support the interchangeability of the Marcus and Pekar partitions, but also caution against relying too much on the fast PCM charges for interpretive value, as these charges differ greatly between the two partitions, especially in polar solvents

  2. Comparison of the Marcus and Pekar partitions in the context of non-equilibrium, polarizable-continuum solvation models

    Energy Technology Data Exchange (ETDEWEB)

    You, Zhi-Qiang; Herbert, John M., E-mail: herbert@chemistry.ohio-state.edu [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 (United States); Mewes, Jan-Michael; Dreuw, Andreas [Interdisciplinary Center for Scientific Computing, Ruprechts-Karls University, Im Neuenheimer Feld 368, 69120 Heidelberg (Germany)

    2015-11-28

    The Marcus and Pekar partitions are common, alternative models to describe the non-equilibrium dielectric polarization response that accompanies instantaneous perturbation of a solute embedded in a dielectric continuum. Examples of such a perturbation include vertical electronic excitation and vertical ionization of a solution-phase molecule. Here, we provide a general derivation of the accompanying polarization response, for a quantum-mechanical solute described within the framework of a polarizable continuum model (PCM) of electrostatic solvation. Although the non-equilibrium free energy is formally equivalent within the two partitions, albeit partitioned differently into “fast” versus “slow” polarization contributions, discretization of the PCM integral equations fails to preserve certain symmetries contained in these equations (except in the case of the conductor-like models or when the solute cavity is spherical), leading to alternative, non-equivalent matrix equations. Unlike the total equilibrium solvation energy, however, which can differ dramatically between different formulations, we demonstrate that the equivalence of the Marcus and Pekar partitions for the non-equilibrium solvation correction is preserved to high accuracy. Differences in vertical excitation and ionization energies are <0.2 eV (and often <0.01 eV), even for systems specifically selected to afford a large polarization response. Numerical results therefore support the interchangeability of the Marcus and Pekar partitions, but also caution against relying too much on the fast PCM charges for interpretive value, as these charges differ greatly between the two partitions, especially in polar solvents.

  3. 17O NMR Studies of the Solvation State of cis/trans Isomers of Amides and Model Protected Peptides

    Science.gov (United States)

    Gerothanassis, Ioannis P.; Vakka, Constantina; Troganis, Anastasios

    1996-06-01

    17O shielding constants have been utilized to investigate solvation differences of the cis/trans isomers ofN-methylformamide (NMF),N-ethylformamide (NEF), andtert-butylformamide (TBF) in a variety of solvents with particular emphasis on aqueous solution. Comparisons are also made with protected peptides of the formulas CH3CO-YOH, CH3CO-Y-NHR (Y = Pro, Sar), and CH3CO-Y-Z-NHR (Y = Pro; Z =D-Ala) selectively enriched in17O at the acetyl oxygen atom. Hydration at the amide oxygen induces large and specific modifications of the17O shielding constants, which are practically the same for the cis and trans isomers of NMF, NEF, and the protected peptides. Fortert-butylformamide, the strong deshielding of the trans isomer compared to that of the cis isomer may be attributed to an out-of-plane (torsion-angle) deformation of the amide bond and/or a significant reduction of solvation of the trans isomer due to steric inhibition of the bulkytert-butyl group. Good linear correlation between δ(17O) of amides and δ(17O) of acetone was found for different solvents which have varying dielectric constants and solvation abilities. Sum-over-states calculations, within the solvaton model, underestimate effects of the dielectric constant of the medium on17O shielding, while finite-perturbation-theory calculations give good agreement with the experiment.

  4. Electron detachment energies in high-symmetry alkali halide solvated-electron anions

    Science.gov (United States)

    Anusiewicz, Iwona; Berdys, Joanna; Simons, Jack; Skurski, Piotr

    2003-07-01

    We decompose the vertical electron detachment energies (VDEs) in solvated-electron clusters of alkali halides in terms of (i) an electrostatic contribution that correlates with the dipole moment (μ) of the individual alkali halide molecule and (ii) a relaxation component that is related to the polarizability (α) of the alkali halide molecule. Detailed numerical ab initio results for twelve species (MX)n- (M=Li,Na; X=F,Cl,Br; n=2,3) are used to construct an interpolation model that relates the clusters' VDEs to their μ and α values as well as a cluster size parameter r that we show is closely related to the alkali cation's ionic radius. The interpolation formula is then tested by applying it to predict the VDEs of four systems [i.e., (KF)2-, (KF)3-, (KCl)2-, and (KCl)3-] that were not used in determining the parameters of the model. The average difference between the model's predicted VDEs and the ab initio calculated electron binding energies is less than 4% (for the twelve species studied). It is concluded that one can easily estimate the VDE of a given high-symmetry solvated electron system by employing the model put forth here if the α, μ and cation ionic radii are known. Alternatively, if VDEs are measured for an alkali halide cluster and the α and μ values are known, one can estimate the r parameter, which, in turn, determines the "size" of the cluster anion.

  5. Role of trapped and solvated electrons in Ps formation

    International Nuclear Information System (INIS)

    Stepanov, S.V.; Byakov, V.M.; Mikhin, K.V.; He, C.; Hirade, T.

    2005-01-01

    Role of trapped and solvated electrons in Ps formation is discussed. Combination of thermalized positron with such electrons is possible from the view point of the energy balance and may results in Ps formation. This process proceeds during all e = lifetime matter. Fitting of raw experimental e + -e - annihilation spectra has to be based on an adequate physical input, which often leads to necessity of nonexponential deconvolution of the spectra. We have interpreted the Ps formation data in polyethylene, ethylene-methylmethacrylate and polymethylmethacrylate in dark and in light vs. tome of the measurement and temperature. parameters characterized accumulation of trapped electrons and their recombination with counter ions and positrons are obtained. (author)

  6. Proton therapy

    International Nuclear Information System (INIS)

    Smith, Alfred R

    2006-01-01

    Proton therapy has become a subject of considerable interest in the radiation oncology community and it is expected that there will be a substantial growth in proton treatment facilities during the next decade. I was asked to write a historical review of proton therapy based on my personal experiences, which have all occurred in the United States, so therefore I have a somewhat parochial point of view. Space requirements did not permit me to mention all of the existing proton therapy facilities or the names of all of those who have contributed to proton therapy. (review)

  7. Proton-proton bremsstrahlung in a relativistic covariant model

    NARCIS (Netherlands)

    Martinus, Gerard Henk

    1998-01-01

    Proton-proton bremsstrahlung is one of the simplest processes involving the half off-shell NN interaction. Since protons are equally-charged particles with the same mass, electric-dipole radiation is suppressed and higher-order effects play an important role. Thus it is possible to get information

  8. Proton-Proton and Proton-Antiproton Colliders

    CERN Document Server

    Scandale, Walter

    2014-01-01

    In the last five decades, proton–proton and proton–antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion–ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  9. Dynamics of Anti-Proton -- Protons and Anti-Proton -- Nucleus Reactions

    CERN Document Server

    Galoyan, A; Uzhinsky, V

    2016-01-01

    A short review of simulation results of anti-proton-proton and anti-proton-nucleus interactions within the framework of Geant4 FTF (Fritiof) model is presented. The model uses the main assumptions of the Quark-Gluon-String Model or Dual Parton Model. The model assumes production and fragmentation of quark-anti-quark and diquark-anti-diquark strings in the mentioned interactions. Key ingredients of the model are cross sections of string creation processes and an usage of the LUND string fragmentation algorithm. They allow one to satisfactory describe a large set of experimental data, especially, a strange particle production, Lambda hyperons and K mesons.

  10. Computational solvation analysis of biomolecules in aqueous ionic liquid mixtures : From large flexible proteins to small rigid drugs.

    Science.gov (United States)

    Zeindlhofer, Veronika; Schröder, Christian

    2018-06-01

    Based on their tunable properties, ionic liquids attracted significant interest to replace conventional, organic solvents in biomolecular applications. Following a Gartner cycle, the expectations on this new class of solvents dropped after the initial hype due to the high viscosity, hydrolysis, and toxicity problems as well as their high cost. Since not all possible combinations of cations and anions can be tested experimentally, fundamental knowledge on the interaction of the ionic liquid ions with water and with biomolecules is mandatory to optimize the solvation behavior, the biodegradability, and the costs of the ionic liquid. Here, we report on current computational approaches to characterize the impact of the ionic liquid ions on the structure and dynamics of the biomolecule and its solvation layer to explore the full potential of ionic liquids.

  11. Theoretical Analysis of Proton Relays in Electrochemical Proton-Coupled Electron Transfer

    International Nuclear Information System (INIS)

    Auer, Benjamin; Fernandez, Laura; Hammes-Schiffer, Sharon

    2011-01-01

    The coupling of long-range electron transfer to proton transport over multiple sites plays a vital role in many biological and chemical processes. Recently a molecule with a hydrogen-bond relay inserted between the proton donor and acceptor sites in a proton-coupled electron transfer (PCET) system was studied electrochemically. The standard rate constants and kinetic isotope effects (KIEs) were measured experimentally for this system and a related single proton transfer system. In the present paper, these systems are studied theoretically using vibronically nonadiabatic rate constant expressions for electrochemical PCET. Application of this approach to proton relays requires the calculation of multidimensional proton vibrational wavefunctions and incorporation of multiple proton donor-acceptor motions. The calculated KIEs and relative standard rate constants for the single and double proton transfer systems are in agreement with the experimental data. The calculations indicate that the standard rate constant is lower for the double proton transfer system because of the smaller overlap integral between the ground state reduced and oxidized proton vibrational wavefunctions for this system, resulting in greater contributions from excited electron-proton vibronic states with higher free energy barriers. The decrease in proton donor-acceptor distances due to thermal fluctuations and the contributions from excited electron-proton vibronic states play important roles in proton relay systems. The theory suggests that the PCET rate constant may be increased by decreasing the equilibrium proton donor-acceptor distances or modifying the thermal motions of the molecule to facilitate the concurrent decrease of these distances. The submission of this journal article in ERIA is a requirement of the EFRC subcontract with Pennsylvania State University collaborators to get publications to OSTI.

  12. Extending the Solvation-Layer Interface Condition Continum Electrostatic Model to a Linearized Poisson-Boltzmann Solvent.

    Science.gov (United States)

    Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Cooper, Christopher D; Knepley, Matthew G; Bardhan, Jaydeep P

    2017-06-13

    We extend the linearized Poisson-Boltzmann (LPB) continuum electrostatic model for molecular solvation to address charge-hydration asymmetry. Our new solvation-layer interface condition (SLIC)/LPB corrects for first-shell response by perturbing the traditional continuum-theory interface conditions at the protein-solvent and the Stern-layer interfaces. We also present a GPU-accelerated treecode implementation capable of simulating large proteins, and our results demonstrate that the new model exhibits significant accuracy improvements over traditional LPB models, while reducing the number of fitting parameters from dozens (atomic radii) to just five parameters, which have physical meanings related to first-shell water behavior at an uncharged interface. In particular, atom radii in the SLIC model are not optimized but uniformly scaled from their Lennard-Jones radii. Compared to explicit-solvent free-energy calculations of individual atoms in small molecules, SLIC/LPB is significantly more accurate than standard parametrizations (RMS error 0.55 kcal/mol for SLIC, compared to RMS error of 3.05 kcal/mol for standard LPB). On parametrizing the electrostatic model with a simple nonpolar component for total molecular solvation free energies, our model predicts octanol/water transfer free energies with an RMS error 1.07 kcal/mol. A more detailed assessment illustrates that standard continuum electrostatic models reproduce total charging free energies via a compensation of significant errors in atomic self-energies; this finding offers a window into improving the accuracy of Generalized-Born theories and other coarse-grained models. Most remarkably, the SLIC model also reproduces positive charging free energies for atoms in hydrophobic groups, whereas standard PB models are unable to generate positive charging free energies regardless of the parametrized radii. The GPU-accelerated solver is freely available online, as is a MATLAB implementation.

  13. Proton: the particle.

    Science.gov (United States)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. Copyright © 2013 Elsevier Inc. All

  14. Proton: The Particle

    Energy Technology Data Exchange (ETDEWEB)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created at 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  15. Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis

    DEFF Research Database (Denmark)

    Aili, David; Wright, Andrew G.; Kraglund, Mikkel Rykær

    2017-01-01

    Advanced alkaline water electrolysis using ion-solvating polymer membranes as electrolytes represents a new direction in the field of electrochemical hydrogen production. Polybenzimidazole membranes equilibrated in aqueous KOH combine the mechanical robustness and gas-tightness of a polymer...... stability in alkaline environments. The novel electrolytes are extensively characterized with respect to physicochemical and electrochemical properties and the chemical stability is assessed in 0-50 wt% aqueous KOH for more than 6 months at 88 degrees C. In water electrolysis tests using porous 3...

  16. Ligand Conformational and Solvation/Desolvation Free Energy in Protein-Ligand Complex Formation

    Czech Academy of Sciences Publication Activity Database

    Kolář, Michal; Fanfrlík, Jindřich; Hobza, Pavel

    2011-01-01

    Roč. 115, č. 16 (2011), s. 4718-4724 ISSN 1520-6106 R&D Projects: GA MŠk LC512; GA ČR GAP208/11/0295 Grant - others:Korea Science and Engineering Foundation(KR) R32-2008-000-10180-0; European Science Fund(XE) CZ.1.05/2.1.00/03.0058 Institutional research plan: CEZ:AV0Z40550506 Keywords : solvation free energy * SMD * HIV protease inhibitors Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.696, year: 2011

  17. Conformational Behavior of Polymer Chains of Different Architectures in Strongly Endothermic Solvent Mixtures: Specific Solvation Effects.

    Czech Academy of Sciences Publication Activity Database

    Suchá, L.; Limpouchová, Z.; Procházka, Karel

    2017-01-01

    Roč. 295, č. 8 (2017), s. 1391-1403 ISSN 0303-402X R&D Projects: GA ČR GA15-19542S Institutional support: RVO:67985858 Keywords : cononsolvency * preferential solvation * star polymer Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.723, year: 2016

  18. Antiproton-proton and proton-proton elastic scattering at 100 and 200 GeV/c

    International Nuclear Information System (INIS)

    Kaplan, D.H.; Karchin, P.; Orear, J.; Kalbach, R.M.; Krueger, K.W.; Pifer, A.E.; Baker, W.F.; Eartly, D.P.; Klinger, J.S.; Lennox, A.J.; Rubinstein, R.; McHugh, S.F.

    1982-01-01

    Antiproton-proton elastic scattering has been measured at 100 GeV/c for 0.5 2 and at 200 GeV/c for 0.9 2 . The data show that the -tapprox. =1.4 (GeV/c) 2 dip recently observed at 50 GeV/c persists to higher incident momenta. Proton-proton measurements made at the same beam momenta show similar structure

  19. Differential solvation of intrinsically disordered linkers drives the formation of spatially organized droplets in ternary systems of linear multivalent proteins

    Science.gov (United States)

    Harmon, Tyler S.; Holehouse, Alex S.; Pappu, Rohit V.

    2018-04-01

    Intracellular biomolecular condensates are membraneless organelles that encompass large numbers of multivalent protein and nucleic acid molecules. The bodies assemble via a combination of liquid–liquid phase separation and gelation. A majority of condensates included multiple components and show multilayered organization as opposed to being well-mixed unitary liquids. Here, we put forward a simple thermodynamic framework to describe the emergence of spatially organized droplets in multicomponent systems comprising of linear multivalent polymers also known as associative polymers. These polymers, which mimic proteins and/or RNA have the architecture of domains or motifs known as stickers that are interspersed by flexible spacers known as linkers. Using a minimalist numerical model for a four-component system, we have identified features of linear multivalent molecules that are necessary and sufficient for generating spatially organized droplets. We show that differences in sequence-specific effective solvation volumes of disordered linkers between interaction domains enable the formation of spatially organized droplets. Molecules with linkers that are preferentially solvated are driven to the interface with the bulk solvent, whereas molecules that have linkers with negligible effective solvation volumes form cores in the core–shell architectures that emerge in the minimalist four-component systems. Our modeling has relevance for understanding the physical determinants of spatially organized membraneless organelles.

  20. Proton decay theory

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay

  1. Solvation analysis of some Solvatochromic probes in binary mixtures of reline, ethaline, and glyceline with DMSO

    Czech Academy of Sciences Publication Activity Database

    Harifi-Mood, A.R.; Ghobadi, R.; Matić, S.; Minofar, Babak; Řeha, David

    2016-01-01

    Roč. 22, OCT 2016 (2016), s. 845-853 ISSN 0167-7322 R&D Projects: GA ČR GA13-21053S; GA MŠk(CZ) LM2015055 Institutional support: RVO:61388971 Keywords : Deep eutectic solvents * Solvatochromic parameters * Preferential solvation Subject RIV: EE - Microbiology, Virology Impact factor: 3.648, year: 2016

  2. Baryon production in proton-proton collisions

    International Nuclear Information System (INIS)

    Liu, F.M.; Werner, K.

    2002-01-01

    Motivated by the recent rapidity spectra of baryons and antibaryons in pp collisions at 158 GeV and the Ω-bar/Ω ratio discussion, we reviewed string formation mechanism and some string models. This investigation told us how color strings are formed in ultrarelativistic proton-proton collisions

  3. Quarkonium production in high energy proton-proton and proton-nucleus collisions

    International Nuclear Information System (INIS)

    Conesa del Valle, Z.; Corcella, G.; Fleuret, F.; Ferreiro, E.G.; Kartvelishvili, V.; Kopeliovich, B.; Lansberg, J.P.; Lourenco, C.; Martinez, G.; Papadimitriou, V.; Satz, H.; Scomparin, E.; Ullrich, T.; Teryaev, O.; Vogt, R.; Wang, J.X.

    2011-01-01

    We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarisation studies. Afterwards, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in broader perpectives, we emphasize the need for new observables to investigate the quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics.

  4. Compound forming extractants, solvating solvents and inert solvents IUPAC chemical data series

    CERN Document Server

    Marcus, Y; Kertes, A S

    2013-01-01

    Equilibrium Constants of Liquid-Liquid Distribution Reactions, Part III: Compound Forming Extractants, Solvating Solvents, and Inert Solvents focuses on the compilation of equilibrium constants of various compounds, such as acids, ions, salts, and aqueous solutions. The manuscript presents tables that show the distribution reactions of carboxylic and sulfonic acid extractants and their dimerization and other reactions in the organic phase and extraction reactions of metal ions from aqueous solutions. The book also states that the inorganic anions in these solutions are irrelevant, since they d

  5. The underlying event in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, F.

    2009-05-15

    In this thesis, studies of the underlying event in proton-proton collisions at a center-of-mass energy of {radical}(s) = 10 TeV are presented. Crucial ingredient to underlying event models are multiple parton-parton scatters in single proton-proton collisions. The feasibility of measuring the underlying event was investigated with the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) using charged particles and charged-particle jets. Systematic uncertainties of the underlying event measurement due to detector misalignment and imperfect track reconstruction are found to be negligible after {integral}Ldt=1 pb{sup -1} of data are available. Different model predictions are compared with each other using fully simulated Monte Carlo samples. It is found, that distinct models differ strongly enough to tell them apart with early data. (orig.)

  6. Expanding the structural landscape of niclosamide: a high Z ' polymorph, two new solvates and monohydrate HA

    DEFF Research Database (Denmark)

    Sovago, Ioana; Bond, Andrew D.

    2015-01-01

    to be twinned by twofold rotation around that axis. The acetonitrile molecules occupy channels in the structure. A complete structure is provided for niclosamide monohydrate, C13H8Cl2N2O4·H2O, polymorph HA, obtained by Rietveld refinement against laboratory powder X-ray diffraction data. It has been suggested...... that this compound is related to the methanol solvate of niclosamide [Harriss, Wilson & Radosevljevic Evans (2014). Acta Cryst. C70, 758-763], but it is found that the two are not fully isostructural: they contain isostructural two-dimensional layers, but the layers are arranged differently in the two structures....... This suggests that HA may have the potential for polytypism, and features in the Rietveld difference curve indicate that a polytype fully isostructural with the methanol solvate might be present....

  7. Thermodynamic aspects of solubility, solvation and partitioning processes of some sulfonamides

    Energy Technology Data Exchange (ETDEWEB)

    Perlovich, German L., E-mail: glp@isc-ras.r [Department of Computer-Aided Molecular Design, Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka (Russian Federation); Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo (Russian Federation); Ryzhakov, Alex M. [Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo (Russian Federation); Strakhova, Nadezda N.; Kazachenko, Vladimir P. [Department of Computer-Aided Molecular Design, Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka (Russian Federation); Schaper, Klaus-Juergen [Research Center Borstel, Leibniz Center for Medicine and Biosciences, D-23845 Borstel (Germany); Raevsky, Oleg A. [Department of Computer-Aided Molecular Design, Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka (Russian Federation)

    2011-05-15

    Research highlights: {yields} The thermodynamic aspects of sublimation processes of some sulfonamides were studied by investigating the temperature dependence of vapor pressure using the transpiration method. {yields} Solubility processes of the compounds in water, phosphate buffer with pH 7.4 and n-octanol were investigated and corresponding thermodynamic functions were calculated as well. {yields} Thermodynamic characteristics of the sulfonamides solvation were evaluated. - Abstract: The thermodynamic aspects of sublimation processes of three sulfonamides with the general structures C{sub 6}H{sub 5}-SO{sub 2}NH-C{sub 6}H{sub 4}-R (R = 4-NO{sub 2}) and 4-NH{sub 2}-C{sub 6}H{sub 4}-SO{sub 2}NH-C{sub 6}H{sub 4}-R (R = 4-NO{sub 2}; 4-CN) were studied by investigating the temperature dependence of vapor pressure using the transpiration method. These data together with those obtained earlier for C{sub 6}H{sub 5}-SO{sub 2}NH-C{sub 6}H{sub 4}-R (R = 4-Cl) and 4-NH{sub 2}-C{sub 6}H{sub 4}-SO{sub 2}NH-C{sub 6}H{sub 4}-R (R = 4-Cl; 4-OMe; 4-C{sub 2}H{sub 5}) were analyzed and compared. A correlation was derived between sublimation Gibbs free energies and the sum of H-bond acceptor factors of the molecules. Solubility processes of the compounds in water, phosphate buffer with pH 7.4 and n-octanol (as phases modeling various drug delivery pathways) were investigated and corresponding thermodynamic functions were calculated as well. Thermodynamic characteristics of the sulfonamides solvation were evaluated. Also in this case a correlation between solubility/solvation Gibbs free energy values and the sum of H-bond acceptor factors was observed. For the sulfonamides with various substituents at para-position the processes of transfer from one solvent (water or buffer) to n-octanol were studied by a diagram method combined with analysis of enthalpic and entropic terms. Distinguishing between enthalpy and entropy, as is possible through the present approach, leads to the insight

  8. MUSE: Measuring the proton radius with muon-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Jan Christopher [Massachusetts Institute of Technology, Cambridge (United States)

    2014-07-01

    The proton radius has been measured so far using electron-proton scattering, electronic Hydrogen spectroscopy and muonic Hydrogen spectroscopy, the latter producing a much more accurate, but seven sigma different, result, leading to the now famous proton radius puzzle. The MUSE collaboration aims to complete the set of measurements by using muon scattering to determine the proton radius and to shed light on possible explanations of the discrepancy. The talk gives an overview of the experiment motivation and design and a status report on the progress.

  9. Proton therapy device

    International Nuclear Information System (INIS)

    Tronc, D.

    1994-01-01

    The invention concerns a proton therapy device using a proton linear accelerator which produces a proton beam with high energies and intensities. The invention lies in actual fact that the proton beam which is produced by the linear accelerator is deflected from 270 deg in its plan by a deflecting magnetic device towards a patient support including a bed the longitudinal axis of which is parallel to the proton beam leaving the linear accelerator. The patient support and the deflecting device turn together around the proton beam axis while the bed stays in an horizontal position. The invention applies to radiotherapy. 6 refs., 5 figs

  10. Solvation numbers and hydration constant for thorium(IV) in ethanol-water medium

    International Nuclear Information System (INIS)

    Sedaira, H.; Idriss, K.A.; Hashem, E.Y.

    1996-01-01

    The solvation number and hydration constant of Th 4+ in ethanol-water medium were determined at 25 degrees C using UV-spectral and electrochemical measurements. A solvate formation equilibrium is demonstrated and characterized. Three molecules of ethanol (S) can bond to the metal cation with strengths comparable to that for H 2 O to form ThS 3 (H 2 O) 3 4+ . Formation of thorium monochelate with lawsone (2-hydroxy-1.4-naphthoquinone) eliminates bonding with alcohol molecules. The dissociation constant of the chelating agent s K a and the formation contant of the monochelated metal ion s K f * that are essentially independent of the solution composition are evaluated. Hydration titrations involving thorium-lawsone monochlate are performed and the data obtained from the changes of pH with solvent composition are analyzed. The solution independent constant, s K f * for thorium-lawsone complex formation in mixed aqueous ethanol is given by log x K f * =vpK a + log s K h - log [LH] - vpH + 3 log v where vpK a is the dissociation constant of the chelating agent LH in the solvent system of v volume fraction of water and s K h is the solution-independent hydration constant of thorium (IV) in the solvent system. Log-values for the constants s K h , s K f * and s K z * are found to be 7.8 ±0.02, 11.38±0.04 and -0.753, respectively

  11. Delayed protons and properties of proton-rich nuclei

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.

    1976-01-01

    The object of the investigation is to study the properties of proton-rich nuclei. The emphasis in the proposed survey is made on investigations in the range of Z > 50. Measurement of the total energy in emission of delayed protons (DP) enables one to determine the difference between the masses of initial and final isotopes. The statistical model of the DP emission is used for describing the proton spectrum. A comparison of the DP experimental and theoretical spectra shows that the presence of local resonances in the strength functions of the β dacay is rather a rule than an exception. Studies into the fine structure of the proton spectra supply information of the density of nuclei considerably removed from the β-stability line at the excitation energies of 3-7 MeV. The aproaches for retrieval of nuclear information with the aid of proton radiators developed so far can serve as a good basis for systematic investigation over a wide range of A and Z

  12. Trimesic acid dimethyl sulfoxide solvate: space group revision

    Directory of Open Access Journals (Sweden)

    Sylvain Bernès

    2008-07-01

    Full Text Available The structure of the title solvate, C9H6O6·C2H6OS, was determined 30 years ago [Herbstein, Kapon & Wasserman (1978. Acta Cryst. B34, 1613–1617], with data collected at room temperature, and refined in the space group P21. The present redetermination, based on high-resolution diffraction data, shows that the actual space group is more likely to be P21/m. The crystal structure contains layers of trimesic acid molecules lying on mirror planes. A mirror plane also passes through the S and O atoms of the solvent molecule. The molecules in each layer are interconnected through strong O—H...O hydrogen bonds, forming a two-dimensional supramolecular network within each layer. The donor groups are the hydroxyls of the trimesic acid molecules, while the acceptors are the carbonyl or the sulfoxide O atoms.

  13. Predictions of diffractive cross sections in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Goulianos, Konstantin [Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States)

    2013-04-15

    We review our pre-LHC predictions of the total, elastic, total-inelastic, and diffractive components of proton-proton cross sections at high energies, expressed in the form of unitarized expressions based on a special parton-model approach to diffraction employing inclusive proton parton distribution functions and QCD color factors and compare with recent LHC results.

  14. Spherical proton emitters

    International Nuclear Information System (INIS)

    Berg, S.; Semmes, P.B.; Nazarewicz, W.

    1997-01-01

    Various theoretical approaches to proton emission from spherical nuclei are investigated, and it is found that all the methods employed give very similar results. The calculated decay widths are found to be qualitatively insensitive to the parameters of the proton-nucleus potential, i.e., changing the potential parameters over a fairly large range typically changes the decay width by no more than a factor of ∼3. Proton half-lives of observed heavy proton emitters are, in general, well reproduced by spherical calculations with the spectroscopic factors calculated in the independent quasiparticle approximation. The quantitative agreement with experimental data obtained in our study requires that the parameters of the proton-nucleus potential be chosen carefully. It also suggests that deformed proton emitters will provide invaluable spectroscopic information on the angular momentum decomposition of single-proton orbitals in deformed nuclei. copyright 1997 The American Physical Society

  15. Proton therapy physics

    CERN Document Server

    2012-01-01

    Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also exami...

  16. Luminescence study on solvation of americium(III), curium(III) and several lanthanide(III) ions in nonaqueous and binary mixed solvents

    International Nuclear Information System (INIS)

    Kimura, T.; Nagaishi, R.; Kato, Y.; Yoshida, Z.

    2001-01-01

    The luminescence lifetimes of An(III) and Ln(III) ions [An=Am and Cm; Ln=Nd, Sm, Eu, Tb and Dy] were measured in dimethyl sulfoxide(DMSO), N,N-dimethylformamide(DMF), methanol(MeOH), water and their perdeuterated solvents. Nonradiative decay rates of the ions were in the order of H 2 O > MeOH > DMF > DMSO, indicating that O-H vibration is more effective quencher than C-H, C=O, and S=O vibrations in the solvent molecules. Maximal lifetime ratios τ D /τ H were observed for Eu(III) in H 2 O, for Sm(III) in MeOH and DMF, and for Sm(III) and Dy(III) in DMSO. The solvent composition in the first coordination sphere of Cm(III) and Ln(III) in binary mixed solvents was also studied by measuring the luminescence lifetime. Cm(III) and Ln(III) were preferentially solvated by DMSO in DMSO-H 2 O, by DMF in DMF-H 2 O, and by H 2 O in MeOH-H 2 O over the whole range of the solvent composition. The order of the preferential solvation, i.e., DMSO > DMF > H 2 O > MeOH, correlates with the relative basicity of these solvents. The Gibbs free energy of transfer of ions from water to nonaqueous solvents was further estimated from the degree of the preferential solvation. (orig.)

  17. Elastic proton-proton scattering at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  18. The effects of temperature and alkyl chain length on the density and surface tension of the imidazolium-based geminal dicationic ionic liquids

    International Nuclear Information System (INIS)

    Moosavi, Majid; Khashei, Fatemeh; Sharifi, Ali; Mirzaei, Mojtaba

    2017-01-01

    Highlights: • Surface tension and density of three GDILs were measured at different temperatures. • Surface entropy and surface enthalpy indicate the surface ordering in these GDILs. • Parachors and critical temperatures of these systems were estimated. • Results of GDILs were compared with the results of corresponding traditional MILs. • Relations between surface tension, density and viscosity of GDILs were demonstrated. - Abstract: Surface tensions and densities of three imidazolium-based geminal dicationic ionic liquids (GDILs) with the bis(trifluoromethylsulfonyl)imide, [NTf 2 ] − , as a common anion, have been measured at ambient pressure at different temperatures in the range from 296.00 to 353.15 K. The surface thermodynamic functions such as surface entropy and surface enthalpy were derived from the temperature dependence of surface tension which indicated the surface ordering in these GDILs. As well as the parachor, the critical temperatures of these systems have been estimated using the Guggenheim and Eotvos correlations. In each case, the results of GDILs have been compared with the results of corresponding traditional monocationic ILs (MILs). Also, the relations between the surface tension and density and also surface tension and viscosity data have been demonstrated and discussed.

  19. A CGC/saturation approach for angular correlations in proton-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria, Departamento de Fisica, Valparaiso (Chile); Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile); Potashnikova, I. [Universidad Tecnica Federico Santa Maria, Departamento de Fisica, Valparaiso (Chile); Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile)

    2017-09-15

    We generalized our model for the description of hard processes, and calculate the value of the azimuthal angular correlations (Fourier harmonics v{sub n}), for proton-proton scattering. The energy and multiplicity independence, as well as the value of v{sub n}, turns out to be in accord with the experimental data, or slightly larger. Therefore, before making extreme assumptions on proton-proton collisions, such as the production of a quark-gluon plasma in large multiplicity events, we need to understand how these affect the Bose-Einstein correlations, which have to be taken into account since the Bose-Einstein correlations are able to describe the angular correlations in proton-proton collisions, without including final state interactions. (orig.)

  20. Proton-proton elastic scattering measurements at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Bagdasarian, Zara [Forschungszentrum Juelich, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia); Collaboration: ANKE-Collaboration

    2014-07-01

    To construct the reliable phase shift analysis (PSA) that can successfully describe the nucleon-nucleon (NN) interaction it is necessary to measure variety of experimental observables for both proton-proton (pp) and neutron-proton (np) elastic scattering. The polarized beams and targets at COSY-ANKE facility allow a substantial contribution to the existing database. The experiment was carried out in April 2013 at ANKE using a transversely polarized proton beam incident on an unpolarized hydrogen cluster target. Six beam energies of T{sub p}=0.8,1.6,1.8,2.0,2.2,2.4 GeV were used. The aim of this talk is to present the preliminary results for the analyzing power (A{sub y}) for the pp elastic scattering in the so-far unexplored 5 <θ{sub cm}<30 angular range. Our measurements are also compared to the world data and current partial wave solutions.

  1. Correlations associated with small angle protons produced in proton- proton collisions at 31 GeV total energy

    CERN Document Server

    Albrow, M G; Barber, D P; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C

    1973-01-01

    High energy inelastic protons with x=2 p/sub L//s/sup 1/2/>0.99 observed in 15.3/15.3 GeV proton-proton collisions at the CERN ISR are accompanied by particles whose angular distribution is confined to a narrow cone in the opposite direction. In contrast, lower energy protons (0.72

  2. Synthesis and IR spectroscopic investigation of solvated complexes of dioxomolybdenum (6) with salicylal-S-methyl isothiosemicarbazone

    International Nuclear Information System (INIS)

    Abramenko, V.L.; Sergienko, V.S.

    1996-01-01

    The complex of MoO 2 L (H 2 L-S-methylizothiosemicarbazone of salicyl aldehyde) and its seven solvated derivatives MoO 2 LxSolv, have been synthesized, their IR spectroscopic study being conducted. The conclusions on the structure of the complexes studied are confirmed by ata of x-ray diffraction analysis. Refs. 4, tabs. 1

  3. Proton-proton reaction rates at extreme energies

    International Nuclear Information System (INIS)

    Nagano, Motohiko

    1993-01-01

    Results on proton-antiproton reaction rates (total cross-section) at collision energies of 1.8 TeV from experiments at Fermilab have suggested a lower rate of increase with energy compared to the extrapolation based on results previously obtained at CERN's proton-antiproton collider (CERN Courier, October 1991). Now an independent estimate of the values for the proton-proton total cross-section for collision energies from 5 to 30 TeV has been provided by the analysis of cosmic ray shower data collected over ten years at the Akeno Observatory operated by the Institute for Cosmic Ray Research of University of Tokyo. These results are based on the inelastic cross-section for collisions of cosmic ray protons with air nuclei at energies in the range10 16-18 eV. A new extensive air shower experiment was started at Akeno, 150 km west of Tokyo, in 1979 with a large array of detectors, both on the ground and under a 1-metre concrete absorber. This measured the total numbers of electrons and muons of energies above 1GeV for individual showers with much better accuracy than before. Data collection was almost continuous for ten years without any change in the triggering criteria for showers above10 16 eV. The mean free path for proton-air nuclei collisions has been determined from the zenith angle of the observed frequency of air showers which have the same effective path length for development in the atmosphere and the same primary energy

  4. Structural aspects of the solvation shell of lysine and acetylated lysine: A Car-Parrinello and classical molecular dynamics investigation

    International Nuclear Information System (INIS)

    Carnevale, V.; Raugei, S.

    2009-01-01

    Lysine acetylation is a post-translational modification, which modulates the affinity of protein-protein and/or protein-DNA complexes. Its crucial role as a switch in signaling pathways highlights the relevance of charged chemical groups in determining the interactions between water and biomolecules. A great effort has been recently devoted to assess the reliability of classical molecular dynamics simulations in describing the solvation properties of charged moieties. In the spirit of these investigations, we performed classical and Car-Parrinello molecular dynamics simulations on lysine and acetylated-lysine in aqueous solution. A comparative analysis between the two computational schemes is presented with a focus on the first solvation shell of the charged groups. An accurate structural analysis unveils subtle, yet statistically significant, differences which are discussed in connection to the significant electronic density charge transfer occurring between the solute and the surrounding water molecules.

  5. Estimate of electrostatic solvation free energy of electron in various polar solvents by using modified born equation

    International Nuclear Information System (INIS)

    Yamashita, Kazuo; Kitamura, Mitsutaka; Imai, Hideo

    1976-01-01

    The modified Born equation was tentatively applied to estimate the electrostatic free energies of solvation of the electron in various polar solvents. The related data of halide ions and a datum of the hydration free energy of the electron obtained by radiation chemical studies were used for the numerical calculations. (auth.)

  6. Hydroxamic acid interactions with solvated cerium hydroxides in the flotation of monazite and bastnäsite—Experiments and DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Sarvaramini, A., E-mail: amin.sarvaramini.1@ulaval.ca; Azizi, D., E-mail: dariush.azizi.1@ulaval.ca; Larachi, F., E-mail: faical.larachi@gch.ulaval.ca

    2016-11-30

    Highlights: • Experimental and DFT studies of hydroxamic acid adsorption on monazite and bastnäsite. • Highest bastnäsite and monazite floatability observed at pH 7–9. • First solvation layer of cerium hydroxides consisted of up to 10 water molecules. • Solvated Ce(OH){sub 2}{sup +} and Ce(OH){sup 2+} cations interact with up to 3 collector anions. • Interaction of zero-charge solvated Ce(OH){sub 3} involves up to 2 collector anions. - Abstract: Density functional theory (DFT) simulations and experiments were performed to clarify the interaction mechanisms between hydroxamic acid collectors and cerium hydroxides during the flotation of bastnäsite and monazite minerals. These minerals showed considerable floatability at moderately alkaline pH which was related to the adsorption of hydroxamic acids on their surfaces as confirmed by vibrational spectroscopic and zeta potential measurements. DFT simulations showed that at moderately alkaline pH, the interactions between solvated Ce(OH){sup 2+} and Ce(OH){sub 2}{sup +} and heptyl-hydroxamic acid (HHA) anions resulted in the formation of, respectively, [Ce(OH)(HHA){sub x}(H{sub 2}O){sub y}]{sup 2−x} (x[y = ] = 1[6],2[3],3[1]) and [Ce(OH){sub 2}(HHA){sub x}(H{sub 2}O){sub y}]{sup 1−x} (x[y = ] = 1[5],2[1],3[0]) complexes. The collector anions were found to interact directly through formation of two covalent bonds between their two polar-head oxygen atoms and cerium in the hydroxide complexes. However, formation of such new bonds resulted in breakage of a few covalent/electrostatic bonds between cerium and water molecules initially present in the first hydration shell of the rare-earth metal cation. Building up in the electric double layer of the semi-soluble minerals, these complexes, and by extension, those from other rare-earth elements belonging to monazite and bastnäsite, are speculated to play a role in the interactions between rare-earth minerals and hydroxamic acid collectors.

  7. Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases

    KAUST Repository

    Munir, Rahim

    2016-11-07

    Solution-processed hybrid perovskite semiconductors attract a great deal of attention, but little is known about their formation process. The one-step spin-coating process of perovskites is investigated in situ, revealing that thin-film formation is mediated by solid-state precursor solvates and their nature. The stability of these intermediate phases directly impacts the quality and reproducibility of thermally converted perovskite films and their photovoltaic performance.

  8. Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases

    KAUST Repository

    Munir, Rahim; Sheikh, Arif D.; Abdelsamie, Maged; Hu, Hanlin; Yu, Liyang; Zhao, Kui; Kim, Taesoo; El Tall, Omar; Li, Ruipeng; Smilgies, Detlef M.; Amassian, Aram

    2016-01-01

    Solution-processed hybrid perovskite semiconductors attract a great deal of attention, but little is known about their formation process. The one-step spin-coating process of perovskites is investigated in situ, revealing that thin-film formation is mediated by solid-state precursor solvates and their nature. The stability of these intermediate phases directly impacts the quality and reproducibility of thermally converted perovskite films and their photovoltaic performance.

  9. Study of proton radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Back, B.B.; Henderson, D.J. [and others

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  10. Radiation Chemistry 2008 Gordon Research Conference - July 6-11, 2008

    International Nuclear Information System (INIS)

    Bartels, David M.

    2009-01-01

    Radiation Chemistry is chemistry initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create charge pairs and/or free radicals in a medium. The important transients include conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. Effects of radiation span timescales from the energy deposition in femtoseconds, through geminate recombination in picoseconds and nanoseconds, to fast radical chemistry in microseconds and milliseconds, and ultimately to processes like cancer occurring decades later. The radiation sources used to study these processes likewise run from femtosecond lasers to nanosecond accelerators to years of gamma irradiation. As a result the conference has a strong interdisciplinary flavor ranging from fundamental physics to clinical biology. While the conference focuses on fundamental science, application areas highlighted in the present conference will include nuclear power, polymer processing, and extraterrestrial chemistry.

  11. Parametric Model for Astrophysical Proton-Proton Interactions and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Niklas [KTH Royal Institute of Technology, Stockholm (Sweden)

    2007-01-01

    Observations of gamma-rays have been made from celestial sources such as active galaxies, gamma-ray bursts and supernova remnants as well as the Galactic ridge. The study of gamma rays can provide information about production mechanisms and cosmic-ray acceleration. In the high-energy regime, one of the dominant mechanisms for gamma-ray production is the decay of neutral pions produced in interactions of ultra-relativistic cosmic-ray nuclei and interstellar matter. Presented here is a parametric model for calculations of inclusive cross sections and transverse momentum distributions for secondary particles--gamma rays, e±, ve, $\\bar{v}$e, vμ and $\\bar{μ}$e--produced in proton-proton interactions. This parametric model is derived on the proton-proton interaction model proposed by Kamae et al.; it includes the diffraction dissociation process, Feynman-scaling violation and the logarithmically rising inelastic proton-proton cross section. To improve fidelity to experimental data for lower energies, two baryon resonance excitation processes were added; one representing the Δ(1232) and the other multiple resonances with masses around 1600 MeV/c2. The model predicts the power-law spectral index for all secondary particle to be about 0.05 lower in absolute value than that of the incident proton and their inclusive cross sections to be larger than those predicted by previous models based on the Feynman-scaling hypothesis. The applications of the presented model in astrophysics are plentiful. It has been implemented into the Galprop code to calculate the contribution due to pion decays in the Galactic plane. The model has also been used to estimate the cosmic-ray flux in the Large Magellanic Cloud based on HI, CO and gamma-ray observations. The transverse momentum distributions enable calculations when the proton distribution is anisotropic. It is shown that the gamma-ray spectrum and flux due to a

  12. Crystal structure and packing analysis of nitrofurantoin N,N-dimethylformamide solvate

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovski, A., E-mail: aleksandar.cvetkovski@ugd.edu.mk [University Goce Delcev, Faculty of Medical Sciences, Krste Misirkov bb (Macedonia, The Former Yugoslav Republic of); Ferretti, V. [University of Ferrara, Department of Chemical and Pharmaceutical Sciences (Italy)

    2016-07-15

    The N, N′-dimethylformamide solvated crystal of the drug nitrofurantoin has been prepared and analysed by single-crystal X-ray diffraction. The two co-crystallized molecules, in the 1 : 1 stoichiometric ratio, are linked by a medium/strong N–H···O hydrogen bond (N···O is 2.759 (3) Å) and a weaker C–H···O interaction to form isolated supramolecular adducts, that in turn are packed into the lattice framework mainly through C–H···O hydrogen bonds. Two-dimensional fingerprint plots of Hirshfeld surfaces are used to visualize, analyze and compare intermolecular interactions found in the title compound and in similar structures.

  13. Search for Sphalerons in Proton-Proton Collisions

    CERN Document Server

    Ellis, John

    2016-04-14

    In a recent paper, Tye and Wong (TW) have argued that sphaleron-induced transitions in high-energy proton-proton collisions should be enhanced compared to previous calculations, based on a construction of a Bloch wave function in the periodic sphaleron potential and the corresponding pass band structure. Here we convolute the calculations of TW with parton distribution functions and simulations of final states to explore the signatures of sphaleron transitions at the LHC and possible future colliders. We calculate the increase of sphaleron transition rates in proton-proton collisions at centre-of-mass energies of 13/14/33/100 TeV for different sphaleron barrier heights, while recognising that the rates have large overall uncertainties. We use a simulation to show that LHC searches for microscopic black holes should have good efficiency for detecting sphaleron-induced final states, and discuss their experimental signatures and observability in Run 2 of the LHC and beyond. We recast the early ATLAS Run-2 search...

  14. From 2D to 3D: Proton Radiography and Proton CT in proton therapy: A simulation study

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E.R.; van Goethem, M.-J.; Brandenburg, S.; Biegun, Aleksandra

    (1) Purpose In order to reduce the uncertainty in translation of the X-ray Computed Tomography (CT) image into a map of proton stopping powers (3-4% and even up to 10% in regions containing bones [1-8]), proton radiography is being studied as an alternative imaging technique in proton therapy. We

  15. Vibrational spectroscopy on protons and deuterons in proton conducting perovskites

    DEFF Research Database (Denmark)

    Glerup, M.; Poulsen, F.W.; Berg, R.W.

    2002-01-01

    A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR-microscopy exper......A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR...

  16. Stereochemistry-Dependent Proton Conduction in Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Tiwari, Omshanker; Gaikwad, Pramod; Paswan, Bhuneshwar; Thotiyl, Musthafa Ottakam

    2016-01-12

    Graphene oxide (GO) is impermeable to H2 and O2 fuels while permitting H(+) shuttling, making it a potential candidate for proton exchange membrane fuel cells (PEMFC), albeit with a large anisotropy in their proton transport having a dominant in plane (σIP) contribution over the through plane (σTP). If GO-based membranes are ever to succeed in PEMFC, it inevitably should have a dominant through-plane proton shuttling capability (σTP), as it is the direction in which proton gets transported in a real fuel-cell configuration. Here we show that anisotropy in proton conduction in GO-based fuel cell membranes can be brought down by selectively tuning the geometric arrangement of functional groups around the dopant molecules. The results show that cis isomer causes a selective amplification of through-plane proton transport, σTP, pointing to a very strong geometry angle in ionic conduction. Intercalation of cis isomer causes significant expansion of GO (001) planes involved in σTP transport due to their mutual H-bonding interaction and efficient bridging of individual GO planes, bringing down the activation energy required for σTP, suggesting the dominance of a Grotthuss-type mechanism. This isomer-governed amplification of through-plane proton shuttling resulted in the overall boosting of fuel-cell performance, and it underlines that geometrical factors should be given prime consideration while selecting dopant molecules for bringing down the anisotropy in proton conduction and enhancing the fuel-cell performance in GO-based PEMFC.

  17. Spectroscopic and computational studies of ionic clusters as models of solvation and atmospheric reactions

    Science.gov (United States)

    Kuwata, Keith T.

    Ionic clusters are useful as model systems for the study of fundamental processes in solution and in the atmosphere. Their structure and reactivity can be studied in detail using vibrational predissociation spectroscopy, in conjunction with high level ab initio calculations. This thesis presents the applications of infrared spectroscopy and computation to a variety of gas-phase cluster systems. A crucial component of the process of stratospheric ozone depletion is the action of polar stratospheric clouds (PSCs) to convert the reservoir species HCl and chlorine nitrate (ClONO2) to photochemically labile compounds. Quantum chemistry was used to explore one possible mechanism by which this activation is effected: Cl- + ClONO2 /to Cl2 + NO3- eqno(1)Correlated ab initio calculations predicted that the direct reaction of chloride ion with ClONO2 is facile, which was confirmed in an experimental kinetics study. In the reaction a weakly bound intermediate Cl2-NO3- is formed, with ~70% of the charge localized on the nitrate moiety. This enables the Cl2-NO3- cluster to be well solvated even in bulk solution, allowing (1) to be facile on PSCs. Quantum chemistry was also applied to the hydration of nitrosonium ion (NO+), an important process in the ionosphere. The calculations, in conjunction with an infrared spectroscopy experiment, revealed the structure of the gas-phase clusters NO+(H2O)n. The large degree of covalent interaction between NO+ and the lone pairs of the H2O ligands is contrasted with the weak electrostatic bonding between iodide ion and H2O. Finally, the competition between ion solvation and solvent self-association is explored for the gas-phase clusters Cl/-(H2O)n and Cl-(NH3)n. For the case of water, vibrational predissociation spectroscopy reveals less hydrogen bonding among H2O ligands than predicted by ab initio calculations. Nevertheless, for n /ge 5, cluster structure is dominated by water-water interactions, with Cl- only partially solvated by the

  18. Review of inelastic proton-proton reactions

    CERN Document Server

    Morrison, Douglas Robert Ogston

    1973-01-01

    The most important new results on inelastic proton-proton scattering obtained with the new machines, I.S.R. and N.A.L., are: (1) The inelastic cross-section increases monotonically with energy from threshold to 1500 GeV/c. Above 6 GeV/c the energy variation has a s /sup +0.04/ behaviour. (2) Scaling is observed at I.S.R. energies in pion production. Confirmation is obtained of the hypothesis of limiting fragmentation. (3) The results are in general, consistent with the two-component model-one class of events being produced by diffraction dissociation and the other by a short-range-order process (e.g. the multiperipheral model). (4) There are indications that the protons have a granular structure; this from observation of secondaries of large transverse momenta. (33 refs).

  19. Electron Cloud Simulations of a Proton Storage Ring Using Cold Proton Bunches

    International Nuclear Information System (INIS)

    Sato, Y.; Holmes, Jeffrey A.; Lee, S.Y.; Macek, R.

    2008-01-01

    Using the ORBIT code we study the sensitivity of electron cloud properties with respect to different proton beam profiles, the secondary electron yield (SEY) parameter, and the proton loss rate. Our model uses a cold proton bunch to generate primary electrons and electromagnetic field for electron cloud dynamics. We study the dependence of the prompt and swept electron signals vs the bunch charge and the recovery of electron clouds after sweeping on the beam loss rate and the SEY. The simulation results are compared with the experimental data measured at the proton storage ring at the Los Alamos National Laboratory. Our simulations indicate that the fractional proton loss rate in the field-free straight section may be an exponential function of proton beam charge and may also be lower than the averaged fractional proton loss rate over the whole ring.

  20. The effect of solvation on the radiation damage rate constants for adenine

    DEFF Research Database (Denmark)

    Milhøj, Birgitte Olai; Sauer, Stephan P. A.

    2016-01-01

    in calculations of Gibbs free energies and reaction rates for the reaction between the OH radical and the DNA nucleobase adenine using Density Functional Theory at the ωB97X-D/6-311++G(2df,2pd) level with the Eckart tunneling correction. The solvent, water, has been included through either the implicit...... polarizable continuum model (PCM) or through explicit modelling of micro-solvation by a single water molecule at the site of reaction as well as the combination of both. Scrutiny of the thermodynamics and kinetics of the individual sub-reactions suggests that the qualitative differences introduced...

  1. Current-current interaction picture for proton-proton scattering

    International Nuclear Information System (INIS)

    Clarke, D.J.; Lo, S.Y.

    1979-01-01

    The authors propose that color current - color current interaction is reponsible for small angle elastic proton proton scattering at asymptotic energy. Excellent fits are obtained for all data above 12 GeV/c which covers twelve orders of magnitude

  2. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yuki, E-mail: ynagao@jaist.ac.jp; Kubo, Takahiro

    2014-12-30

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  3. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    International Nuclear Information System (INIS)

    Nagao, Yuki; Kubo, Takahiro

    2014-01-01

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system

  4. Proton-proton bremsstrahlung towards the elastic limit

    Science.gov (United States)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H. R.; Bacelar, J. C. S.; Castelijns, R.; Ermisch, K.; van Garderen, E.; Gašparić, I.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Kiš, M.; Löhner, H.

    2005-05-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed.

  5. Proton-proton bremsstrahlung towards the elastic limit

    International Nuclear Information System (INIS)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H.R.; Bacelar, J.C.S.; Castelijns, R.; Ermisch, K.; Garderen, E. van; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Kis, M.; Loehner, H.; Gasparic, I.

    2005-01-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed

  6. Proton-proton and deuteron-deuteron correlations in interactions of relativistic helium nuclei with protons

    International Nuclear Information System (INIS)

    Galazka-Friedman, J.; Sobczak, T.; Stepaniak, J.; Zielinski, I.P.; Bano, M.; Hlavacova, J.; Martinska, G.; Patocka, J.; Seman, M.; Sandor, L.; Urban, J.

    1993-01-01

    The reactions 4 Hep→pp+X, 3 Hep→pp+X and 4 Hep→ddp have been investigated and the correlation function has been measured for protons and deuterons with small relative momenta. Strong positive correlation has been observed for protons related mainly to the final state interactions in 1 S 0 state. The root mean square radius of the proton source calculated from the correlation function has been found to be equal to (1.7±0.3) fm and (2.1±0.3) fm for 4 He and 3 He respectively. It agrees with the known radii of these nuclei. (orig.)

  7. Computational 17O-NMR spectroscopy of organic acids and peracids: comparison of solvation models

    International Nuclear Information System (INIS)

    Baggioli, Alberto; Castiglione, Franca; Raos, Guido; Crescenzi, Orlando; Field, Martin J.

    2013-01-01

    We examine several computational strategies for the prediction of the 17 O-NMR shielding constants for a selection of organic acids and peracids in aqueous solution. In particular, we consider water (the solvent and reference for the chemical shifts), hydrogen peroxide, acetic acid, lactic acid and peracetic acid. First of all, we demonstrate that the PBE0 density functional in combination with the 6-311+G(d,p) basis set provides an excellent compromise between computational cost and accuracy in the calculation of the shielding constants. Next, we move on to the problem of the solvent representation. Our results confirm the shortcomings of the Polarizable Continuum Model (PCM) in the description of systems susceptible to strong hydrogen bonding interactions, while at the same time they demonstrate its usefulness within a molecular-continuum approach, whereby PCM is applied to describe the solvation of the solute surrounded by some explicit solvent molecules. We examine different models of the solvation shells, sampling their configurations using both energy minimizations of finite clusters and molecular dynamics simulations of bulk systems. Hybrid molecular dynamics simulations, in which the solute is described at the PM6 semiempirical level and the solvent by the TIP3P model, prove to be a promising sampling method for medium-to-large sized systems. The roles of solvent shell size and structure are also briefly discussed. (authors)

  8. Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.

    Science.gov (United States)

    Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha

    2015-09-03

    Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.

  9. Organic solvation of intercalated cations in V/sub 2/O/sub 5/ xerogels

    International Nuclear Information System (INIS)

    Lemordant, D.; Bouhaouss, A.; Aldbert, P.; Baffier, N.

    1986-01-01

    V/sub 2/O/sub 5/ xerogels (V/sub 2/O/sub 5/, 1.6H/sub 2/O) undergo a topotactic reversible exchange reaction at room temperature in organic solvents containing monovalent alkali or divalent (Mn/sup 2+/) cations. Basal spacing are dependent on solvent type and charge-to-radius ratio of guest cations. From the interlayer distances, two solvation stages have been inferred, depending on the nature of the solvent and of the cation, except with Cs/sup +/ for which no intracrystalline swelling by organic solvents is observed

  10. Watching the Solvation of Atoms in Liquids One Solvent Molecule at a Time

    Science.gov (United States)

    Bragg, Arthur E.; Glover, William J.; Schwartz, Benjamin J.

    2010-06-01

    We use mixed quantum-classical molecular dynamics simulations and ultrafast transient hole-burning spectroscopy to build a molecular-level picture of the motions of solvent molecules around Na atoms in liquid tetrahydrofuran. We find that even at room temperature, the solvation of Na atoms occurs in discrete steps, with the number of solvent molecules nearest the atom changing one at a time. This explains why the rate of solvent relaxation differs for different initial nonequilibrium states, and reveals how the solvent helps determine the identity of atomic species in liquids.

  11. Pair angular correlations for pions, kaons and protons in proton-proton collisions in ALICE

    CERN Document Server

    Zaborowska, Anna

    2014-01-01

    This thesis presents the correlation functions in $\\Delta\\eta\\, \\Delta\\phi$ space for pairs of pions, kaons and protons. The studies were carried out on the set of proton-proton collisions at the centre-of-mass energy $\\sqrt{s}$ = 7 TeV, obtained in ALICE, A Large Ion Collider Experiment at CERN, the European Organization for Nuclear Research. The analysis was performed for two charge combinations (like-sign pairs and unlike-sign pairs) as well as for three multiplicity ranges. Angular correlations are a rich source of information about the elementary particles behaviour. They result in from the interplay of numerous effects, including resonances’ decays, Coulomb interactions and energy and momentum conservation. In case of identical particles quantum statistics needs to be taken into account. Moreover, particles differ in terms of quark content. Kaons, carrying the strange quark obey the strangeness conservation law. In the production of protons baryon number must be conserved. These features are reflected...

  12. Cold, Gas-Phase UV and IR Spectroscopy of Protonated Leucine Enkephalin and its Analogues

    Science.gov (United States)

    Burke, Nicole L.; Redwine, James; Dean, Jacob C.; McLuckey, Scott A.; Zwier, Timothy S.

    2014-06-01

    The conformational preferences of peptide backbones and the resulting hydrogen bonding patterns provide critical biochemical information regarding the structure-function relationship of peptides and proteins. The spectroscopic study of cryogenically-cooled peptide ions in a mass spectrometer probes these H-bonding arrangements and provides information regarding the influence of a charge site. Leucine enkephalin, a biologically active endogenous opiod peptide, has been extensively studied as a model peptide in mass spectrometry. This talk will present a study of the UV and IR spectroscopy of protonated leucine enkephalin [YGGFL+H]+ and two of its analogues: the sodiated [YGGFL+Na]+ and C-terminally methyl esterified [YGGFL-OMe+H]+ forms. All experiments were performed in a recently completed multi-stage mass spectrometer outfitted with a cryocooled ion trap. Ions are generated via nano-electrospray ionization and the analyte of interest is isolated in a linear ion trap. The analyte ions are trapped in a 22-pole ion trap held at 5 K by a closed cycle helium cryostat and interrogated via UV and IR lasers. Photofragments are trapped and isolated in a second LIT and mass analyzed. Double-resonance UV and IR methods were used to assign the conformation of [YGGFL+H]+, using the NH/OH stretch, Amide I, and Amide II regions of the infrared spectrum. The assigned structure contains a single backbone conformation at vibrational/rotational temperatures of 10 K held together with multiple H-bonds that self-solvate the NH3+ site. A "proton wire" between the N and C termini reinforces the H-bonding activity of the COO-H group to the F-L peptide bond, whose cleavage results in formation of the b4 ion, which is a prevalent, low-energy fragmentation pathway for [YGGFL+H]+. The reinforced H-bonding network in conjunction with the mobile proton theory may help explain the prevalence of the b4 pathway. In order to elucidate structural changes caused by modifying this H-bonding activity

  13. Proton Fast Ignition

    International Nuclear Information System (INIS)

    Key, M H; Freeman, R R; Hatchett, S P; MacKinnon, A J; Patel, P K; Snavely, R A; Stephens, R B

    2006-04-01

    Fast ignition (FI) by a laser generated ballistically focused proton beam is a more recently proposed alternative to the original concept of FI by a laser generated beam of relativistic electrons. It has potential advantages in less complex energy transport into dense plasma. Recent successful target heating experiments motivate further investigation of the feasibility of proton fast ignition. The concept, the physics and characteristics of the proton beams, the recent experimental work on focusing of the beams and heating of solid targets and the overall prospects for proton FI are discussed

  14. The isobutylene-isobutane alkylation process in liquid HF revisited.

    Science.gov (United States)

    Esteves, P M; Araújo, C L; Horta, B A C; Alvarez, L J; Zicovich-Wilson, C M; Ramírez-Solís, A

    2005-07-07

    Details on the mechanism of HF catalyzed isobutylene-isobutane alkylation were investigated. On the basis of available experimental data and high-level quantum chemical calculations, a detailed reaction mechanism is proposed taking into account solvation effects of the medium. On the basis of our computational results, we explain why the density of the liquid media and stirring rates are the most important parameters to achieve maximum yield of alkylate, in agreement with experimental findings. The ab initio Car-Parrinello molecular dynamics calculations show that isobutylene is irreversibly protonated in the liquid HF medium at higher densities, leading to the ion pair formation, which is shown to be a minimum on the potential energy surface after optimization using periodic boundary conditions. The HF medium solvates preferentially the fluoride anion, which is found as solvated [FHF](-) or solvated F(-.)(HF)(3). On the other hand, the tert-butyl cation is weakly solvated, where the closest HF molecules appear at a distance of about 2.9 Angstrom with the fluorine termination of an HF chain.

  15. Revealing the Solvation Structure and Dynamics of Carbonate Electrolytes in Lithium-Ion Batteries by Two-Dimensional Infrared Spectrum Modeling.

    Science.gov (United States)

    Liang, Chungwen; Kwak, Kyungwon; Cho, Minhaeng

    2017-12-07

    Carbonate electrolytes in lithium-ion batteries play a crucial role in conducting lithium ions between two electrodes. Mixed solvent electrolytes consisting of linear and cyclic carbonates are commonly used in commercial lithium-ion batteries. To understand how the linear and cyclic carbonates introduce different solvation structures and dynamics, we performed molecular dynamics simulations of two representative electrolyte systems containing either linear or cyclic carbonate solvents. We then modeled their two-dimensional infrared (2DIR) spectra of the carbonyl stretching mode of these carbonate molecules. We found that the chemical exchange process involving formation and dissociation of lithium-ion/carbonate complexes is responsible for the growth of 2DIR cross peaks with increasing waiting time. In addition, we also found that cyclic carbonates introduce faster dynamics of dissociation and formation of lithium-ion/carbonate complexes than linear carbonates. These findings provide new insights into understanding the lithium-ion mobility and its interplay with solvation structure and ultrafast dynamics in carbonate electrolytes used in lithium-ion batteries.

  16. Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    Science.gov (United States)

    Pettersen, H. E. S.; Alme, J.; Biegun, A.; van den Brink, A.; Chaar, M.; Fehlker, D.; Meric, I.; Odland, O. H.; Peitzmann, T.; Rocco, E.; Ullaland, K.; Wang, H.; Yang, S.; Zhang, C.; Röhrich, D.

    2017-07-01

    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2-3% of the range, uncertainties that are contributing to an increase of the necessary planning margins added to the target volume in a patient. Imaging methods and modalities, such as Dual Energy CT and proton CT, have come into consideration in the pursuit of obtaining an as good as possible estimate of the proton stopping power. In this study, a Digital Tracking Calorimeter is benchmarked for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeter was originally designed for the reconstruction of high-energy electromagnetic showers for the ALICE-FoCal project. The presented prototype forms the basis for a proton CT system using a single technology for tracking and calorimetry. This advantage simplifies the setup and reduces the cost of a proton CT system assembly, and it is a unique feature of the Digital Tracking Calorimeter concept. Data from the AGORFIRM beamline at KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are used to in order to develop a tracking algorithm for the estimation of the residual ranges of a high number of concurrent proton tracks. High energy protons traversing the detector leave a track through the sensor layers. These tracks are spread out through charge diffusion processes. A charge diffusion model is applied for acquisition of estimates of the deposited energy of the protons in each sensor layer by using the size of the charge diffused area. A model fit of the Bragg Curve is applied to each reconstructed track and through this, estimating the residual range of each proton. The range of the individual protons can at present be estimated with a resolution of 4%. The readout system for this prototype is able to

  17. Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, H.E.S., E-mail: helge.pettersen@helse-bergen.no [Department of Oncology and Medical Physics, Haukeland University Hospital, Postbox 1400, 5021 Bergen (Norway); Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway); Alme, J. [Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway); Biegun, A. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747 AA Groningen (Netherlands); Brink, A. van den [Nikhef, Utrecht University, Postbox 41882, 1009 DB Amsterdam (Netherlands); Chaar, M.; Fehlker, D. [Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway); Meric, I. [Department of Electrical Engineering, Bergen University College, Postbox 7030, 5020 Bergen (Norway); Odland, O.H. [Department of Oncology and Medical Physics, Haukeland University Hospital, Postbox 1400, 5021 Bergen (Norway); Peitzmann, T.; Rocco, E. [Nikhef, Utrecht University, Postbox 41882, 1009 DB Amsterdam (Netherlands); Ullaland, K. [Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway); Wang, H. [Nikhef, Utrecht University, Postbox 41882, 1009 DB Amsterdam (Netherlands); Yang, S. [Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway); Zhang, C. [Nikhef, Utrecht University, Postbox 41882, 1009 DB Amsterdam (Netherlands); Röhrich, D. [Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen (Norway)

    2017-07-11

    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2–3% of the range, uncertainties that are contributing to an increase of the necessary planning margins added to the target volume in a patient. Imaging methods and modalities, such as Dual Energy CT and proton CT, have come into consideration in the pursuit of obtaining an as good as possible estimate of the proton stopping power. In this study, a Digital Tracking Calorimeter is benchmarked for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeter was originally designed for the reconstruction of high-energy electromagnetic showers for the ALICE-FoCal project. The presented prototype forms the basis for a proton CT system using a single technology for tracking and calorimetry. This advantage simplifies the setup and reduces the cost of a proton CT system assembly, and it is a unique feature of the Digital Tracking Calorimeter concept. Data from the AGORFIRM beamline at KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are used to in order to develop a tracking algorithm for the estimation of the residual ranges of a high number of concurrent proton tracks. High energy protons traversing the detector leave a track through the sensor layers. These tracks are spread out through charge diffusion processes. A charge diffusion model is applied for acquisition of estimates of the deposited energy of the protons in each sensor layer by using the size of the charge diffused area. A model fit of the Bragg Curve is applied to each reconstructed track and through this, estimating the residual range of each proton. The range of the individual protons can at present be estimated with a resolution of 4%. The readout system for this prototype is able to

  18. Solvation thermodynamics of phenylalcohols in lamellar phase surfactant dispersions

    International Nuclear Information System (INIS)

    Martyniak, A.; Scheuermann, R.; Dilger, H.; Tucker, I.M.; Burkert, T.; Hashmi, A.S.K.; Vujosevic', D.; Roduner, E.

    2006-01-01

    The distribution and the stability of five phenylalcohols in a lamellar phase composed of simple bilayers separated by water at 298 and 348K is explored using avoided-level-crossing muon-spin resonance (ALC-μSR). The dependence of the alignment of the bilayer chains on temperature appears to be a crucial factor determining the phenylalcohol partitioning: increasing order of the surfactant tails leads to expulsion of the solute. Moreover, we observed a systematic trend, the longer the chain the deeper the phenyl group dips into the lipid bilayer. Recent studies have shown that the hydrophobic effect is adequate to describe membrane partitioning of small amphiphilic molecules. The solvation thermodynamic properties ΔG sol , ΔH sol , and ΔS sol which determine the solute transfer from the double layer into water prove that the distribution also strongly depends on shape, chemical nature and different structure of phenylalcohols

  19. Solvation thermodynamics of phenylalcohols in lamellar phase surfactant dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Martyniak, A. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Scheuermann, R. [Laboratory for muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Dilger, H. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Tucker, I.M. [Unilever Research and Development, Port Sunlight, Wirral CH63 3JW (United Kingdom); Burkert, T. [Institut fuer Organische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Hashmi, A.S.K. [Institut fuer Organische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Vujosevic' , D. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Roduner, E. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)]. E-mail: e.roduner@ipc.uni-stuttgart.de

    2006-03-31

    The distribution and the stability of five phenylalcohols in a lamellar phase composed of simple bilayers separated by water at 298 and 348K is explored using avoided-level-crossing muon-spin resonance (ALC-{mu}SR). The dependence of the alignment of the bilayer chains on temperature appears to be a crucial factor determining the phenylalcohol partitioning: increasing order of the surfactant tails leads to expulsion of the solute. Moreover, we observed a systematic trend, the longer the chain the deeper the phenyl group dips into the lipid bilayer. Recent studies have shown that the hydrophobic effect is adequate to describe membrane partitioning of small amphiphilic molecules. The solvation thermodynamic properties {delta}G{sub sol}, {delta}H{sub sol}, and {delta}S{sub sol} which determine the solute transfer from the double layer into water prove that the distribution also strongly depends on shape, chemical nature and different structure of phenylalcohols.

  20. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Mamta [Nuclear Science Centre, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India)

    2006-07-15

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line.

  1. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2006-01-01

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line

  2. Solvation of a Small Metal-Binding Peptide in Room-Temperature Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Youngseon; Jung, Younjoon [Seoul National Univ., Seoul (Korea, Republic of); Kim, Hyung J. [Carnegie Mellon Univ., Pittsburgh (United States)

    2012-11-15

    Structural properties of a small hexapeptide molecule modeled after metal-binding siderochrome immersed in a room-temperature ionic liquid (RTIL) are studied via molecular dynamics simulations. We consider two different RTILs, each of which is made up of the same cationic species, 1-butyl-3-methylimidazolium (BMI{sup +}), but different anions, hexafluorophosphate (PF{sub 6}{sup -}) and chloride (Cl{sup -}). We investigate how anionic properties such as hydrophobicity/hydrophilicity or hydrogen bonding capability affect the stabilization of the peptide in RTILs. To examine the effect of peptide-RTIL electrostatic interactions on solvation, we also consider a hypothetical solvent BMI{sup 0}Cl{sup 0}, a non-ionic counter-part of BMI{sup +}Cl{sup -}. For reference, we investigate solvation structures in common polar solvents, water and dimethylsulfoxide (DMSO). Comparison of BMI{sup +}Cl{sup -} and BMI{sup 0}Cl{sup 0} shows that electrostatic interactions of the peptide and RTIL play a significant role in the conformational fluctuation of the peptide. For example, strong electrostatic interactions between the two favor an extended conformation of the peptide by reducing its structural fluctuations. The hydrophobicity/hydrophilicity of RTIL anions also exerts a notable influence; specifically, structural fluctuations of the peptide become reduced in more hydrophilic BMI{sup +}Cl{sup -}, compared with those in more hydrophobic BMI{sup +}PF{sub 6}{sup -}. This is ascribed to the good hydrogen-bond accepting power of chloride anions, which enables them to bind strongly to hydroxyl groups of the peptide and to stabilize its structure. Transport properties of the peptide are examined briefly. Translations of the peptide significantly slow down in highly viscous RTILs.

  3. Biological effect of 20 keV N+ ion implantation on Stevia rebaudianum

    International Nuclear Information System (INIS)

    Su Tingting; Yang Tingting; Ji Guohong; Xiang Xingjia; Chen Xuetao; Wang Yu; Wu Yaojin

    2010-01-01

    The germinability and gemination rate of Stevia rebaudianum seeds implanted with 20 keV N + ions in doses of 0 (CK), 100 x 2500, 400 x 2500 and 1000 x 2500 N + /cm 2 were studied by analyzing the differences in seed germinability and gemination rate between the groups. By statistical analysis, the germinability and gemination rate were affected at the level of α=0.05 by the implantation dose. The results showed that the germinability and gemination rate increased with the dose first and then decreased. At 400 x 2500 N + /cm 2 , the seeds had the largest germinability and the gemination rate. (authors)

  4. The influence of the Coulomb-distortion effect on proton-proton observables

    International Nuclear Information System (INIS)

    Plessas, W.; Mathelitsch, L.

    1980-01-01

    The effect of the Coulomb distortion of the strong interaction is studied on the basis of nucleon-nucleon observables. In particular, cross sections, polarizations, spin-correlation parameters, and spin-transfer coefficients are considered for proton-proton as well as neutron-neutron scattering at laboratory kinetic energies Esub(Lab) = 10, 20, and 50 MeV. The calculations are performed for the meson-theoretical PARIS potential, the nonlocal separable GRAZ potential and also using the Arndt-Hackman-Roper parametrization of proton-proton scattering phase shifts. Important conclusions are drawn with respect to phenomenological phase-shift analyses. (Auth.)

  5. Quantum Chemical Benchmarking, Validation, and Prediction of Acidity Constants for Substituted Pyridinium Ions and Pyridinyl Radicals.

    Science.gov (United States)

    Keith, John A; Carter, Emily A

    2012-09-11

    Sensibly modeling (photo)electrocatalytic reactions involving proton and electron transfer with computational quantum chemistry requires accurate descriptions of protonated, deprotonated, and radical species in solution. Procedures to do this are generally nontrivial, especially in cases that involve radical anions that are unstable in the gas phase. Recently, pyridinium and the corresponding reduced neutral radical have been postulated as key catalysts in the reduction of CO2 to methanol. To assess practical methodologies to describe the acid/base chemistry of these species, we employed density functional theory (DFT) in tandem with implicit solvation models to calculate acidity constants for 22 substituted pyridinium cations and their corresponding pyridinyl radicals in water solvent. We first benchmarked our calculations against experimental pyridinium deprotonation energies in both gas and aqueous phases. DFT with hybrid exchange-correlation functionals provide chemical accuracy for gas-phase data and allow absolute prediction of experimental pKas with unsigned errors under 1 pKa unit. The accuracy of this economical pKa calculation approach was further verified by benchmarking against highly accurate (but very expensive) CCSD(T)-F12 calculations. We compare the relative importance and sensitivity of these energies to selection of solvation model, solvation energy definitions, implicit solvation cavity definition, basis sets, electron densities, model geometries, and mixed implicit/explicit models. After determining the most accurate model to reproduce experimentally-known pKas from first principles, we apply the same approach to predict pKas for radical pyridinyl species that have been proposed relevant under electrochemical conditions. This work provides considerable insight into the pitfalls using continuum solvation models, particularly when used for radical species.

  6. Proton-proton Scattering Above 3 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    A. Sibirtsev, J. Haidenbauer, H.-W. Hammer S. Krewald ,Ulf-G. Meissner

    2010-01-01

    A large set of data on proton-proton differential cross sections, analyzing powers and the double-polarization parameter A{sub NN} is analyzed employing the Regge formalism. We find that the data available at proton beam momenta from 3 GeV/c to 50 GeV/c exhibit features that are very well in line with the general characteristics of Regge phenomenology and can be described with a model that includes the {rho}, {omega}, f{sub 2}, and a{sub 2} trajectories and single-Pomeron exchange. Additional data, specifically for spin-dependent observables at forward angles, would be very helpful for testing and refining our Regge model.

  7. High intensity proton accelerator and its application (Proton Engineering Center)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, Spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  8. Inter- and intra-annular proton exchange in gaseous benzylbenzenium ions (protonated diphenylmethane)

    OpenAIRE

    Kuck, Dietmar; Bäther, Wolfgang

    1986-01-01

    Two distinct proton exchange reactions occur in metastable gaseous benzylbenzenium ions, generated by isobutane chemical ionization of diphenylmethane and four deuterium-labelled analogues. Whereas the proton ring-walk at the benzenium moiety is fast giving rise to a completely random intraannular proton exchange, the interannular proton exchange is surprisingly slow and competes with the elimination of benzene. A kinetic isotope effect of kH/kD= 5 has been determined for the interannular pro...

  9. Relativistic total and differential cross section proton--proton electron--positron pair production calculation

    International Nuclear Information System (INIS)

    Rubinstein, J.E.

    1976-01-01

    Circle Feynman diagrams for a specific permutation of variables along with their corresponding algebraic expressions are presented to evaluate [H] 2 for proton-proton electron-positron pair production. A Monte Carlo integration technique is introduced and is used to set up the multiple integral expression for the total pair production cross section. The technique is first applied to the Compton scattering problem and then to an arbitrary multiple integral. The relativistic total cross section for proton-proton electron-positron pair production was calculated for eight different values of incident proton energy. A variety of differential cross sections were calculated for the above energies. Angular differential cross section distributions are presented for the electron, positron, and proton. Invariant mass differential cross section distributions are done both with and without the presence of [H] 2 . Both WGHT and log 10 (TOTAL) distributions were also obtained. The general behavioral trends of the total and differential cross sections for proton-proton electron-positron pair production are presented. The range of validity for this calculation is from 0 to about 200 MeV

  10. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Science.gov (United States)

    Nagao, Yuki; Kubo, Takahiro

    2014-12-01

    Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  11. Lieb-Liniger-like model of quantum solvation in CO-{sup 4}He{sub N} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Farrelly, D. [Departamento de Matemáticas y Computación, Universidad de La Rioja, 26006 Logroño (Spain); Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300 (United States); Iñarrea, M.; Salas, J. P. [Área de Física Aplicada, Universidad de La Rioja, 26006 Logroño (Spain); Lanchares, V. [Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300 (United States)

    2016-05-28

    Small {sup 4}He clusters doped with various molecules allow for the study of “quantum solvation” as a function of cluster size. A peculiarity of quantum solvation is that, as the number of {sup 4}He atoms is increased from N = 1, the solvent appears to decouple from the molecule which, in turn, appears to undergo free rotation. This is generally taken to signify the onset of “microscopic superfluidity.” Currently, little is known about the quantum mechanics of the decoupling mechanism, mainly because the system is a quantum (N + 1)-body problem in three dimensions which makes computations difficult. Here, a one-dimensional model is studied in which the {sup 4}He atoms are confined to revolve on a ring and encircle a rotating CO molecule. The Lanczos algorithm is used to investigate the eigenvalue spectrum as the number of {sup 4}He atoms is varied. Substantial solvent decoupling is observed for as few as N = 5 {sup 4}He atoms. Examination of the Hamiltonian matrix, which has an almost block diagonal structure, reveals increasingly weak inter-block (solvent-molecule) coupling as the number of {sup 4}He atoms is increased. In the absence of a dopant molecule the system is similar to a Lieb-Liniger (LL) gas and we find a relatively rapid transition to the LL limit as N is increased. In essence, the molecule initially—for very small N—provides a central, if relatively weak, attraction to organize the cluster; as more {sup 4}He atoms are added, the repulsive interactions between the identical bosons start to dominate as the solvation ring (shell) becomes more crowded which causes the molecule to start to decouple. For low N, the molecule pins the atoms in place relative to itself; as N increases the atom-atom repulsion starts to dominate the Hamiltonian and the molecule decouples. We conclude that, while the notion of superfluidity is a useful and correct description of the decoupling process, a molecular viewpoint provides complementary insights into the

  12. Dispersion and Solvation Effects on the Structure and Dynamics of N719 Adsorbed to Anatase Titania (101) Surfaces in Room-Temperature Ionic Liquids: An ab Initio Molecular Simulation Study

    KAUST Repository

    Byrne, Aaron

    2015-12-24

    Ab initio, density functional theory (DFT)-based molecular dynamics (MD) has been carried out to investigate the effect of explicit solvation on the dynamical and structural properties of a [bmim][NTf2] room-temperature ionic liquid (RTIL), solvating a N719 sensitizing dye adsorbed onto an anatase titania (101) surface. The effect of explicit dispersion on the properties of this dye-sensitized solar cell (DSC) interface has also been studied. Upon inclusion of dispersion interactions in simulations of the solvated system, the average separation between the cations and anions decreases by 0.6 Å; the mean distance between the cations and the surface decreases by about 0.5 Å; and the layering of the RTIL is significantly altered in the first layer surrounding the dye, with the cation being on average 1.5 Å further from the center of the dye. Inclusion of dispersion effects when a solvent is not explicitly included (to dampen longer-range interactions) can result in unphysical "kinking" of the adsorbed dye\\'s configuration. The inclusion of solvent shifts the HOMO and LUMO levels of the titania surface by +3 eV. At this interface, the interplay between the effects of dispersion and solvation combines in ways that are often subtle, such as enhancement or inhibition of specific vibrational modes. © 2015 American Chemical Society.

  13. Pulse radiolysis study on temperature and pressure dependence of the yield of solvated electron in methanol from room temperature to supercritical condition

    International Nuclear Information System (INIS)

    Han, Zhenhui; He, Hui; Lin, Mingzhang; Muroya, Yusa; Katsumura, Yosuke

    2012-09-01

    A new concept of nuclear reactor, supercritical water-cooled reactor (SCWR), has been proposed, which is based on the success of the use of supercritical water (SCW) in fossil fuel power plants for more than three decades. This new concept reactor has advantages of higher thermal conversion efficiency, simplicity in structure, safety, etc, and it has been selected as one of the reactor concepts for the next generation nuclear reactor systems. In these reactors, the same as in boiling water reactors (BWR) and pressurized water reactors (PWR), water is used not only as a coolant but also as a moderator. It is very important to understand the behavior of the radiolysis products of water under the supercritical condition, since the water is exposed to a strong radiation field under very high temperature condition. Usually, in order to predict the concentrations of water decomposition products with carrying out some kinds of computer simulations, knowledge of the temperature and/or pressure dependent G-values (denoting the experimentally measured radiolytic yields) as well as of the rate constants of a set of reactions becomes very important. Therefore, in recent years, two groups from Argonne National Laboratory and The University of Tokyo, simultaneously conducted two projects aimed at obtaining basic data on radiolysis of SCW. However, it is still lack of reliable radiolytic yields of water decomposition products in very high temperature region. As we known, the properties of solvated electrons in polar liquid are very helpful for our understanding how they play a central role in many processes, such as solvation and reducing reactions. The solvated electron can also be used as a probe to determine the dynamic nature of the polar liquid systems. Comparing to water, the primary alcohols have much milder critical points, for example, for water and methanol, the critical temperature and pressure are 374 deg. C and 22.1 MPa and 239.5 deg. C and 8.1 MPa, respectively

  14. The mechanism for enhanced oxidation degradation of dioxin-like PCBs (PCB-77) in the atmosphere by the solvation effect.

    Science.gov (United States)

    Xin, Mei-Ling; Yang, Jia-Wen; Li, Yu

    2017-07-11

    The reaction pathways of PCB-77 in the atmosphere with ·OH, O 2 , NO x , and 1 O 2 were inferred based on density functional theory calculations with the 6-31G* basis set. The structures the reactants, transition states, intermediates, and products were optimized. The energy barriers and reaction heats were obtained to determine the energetically favorable reaction pathways. To study the solvation effect, the energy barriers and reaction rates for PCB-77 with different polar and nonpolar solvents (cyclohexane, benzene, carbon tetrachloride, chloroform, acetone, dichloromethane, ethanol, methanol, acetonitrile, dimethylsulfoxide, and water) were calculated. The results showed that ·OH preferentially added to the C5 atom of PCB-77, which has no Cl atom substituent, to generate the intermediate IM5. This intermediate subsequently reacted with O 2 via pathway A to generate IM5a, with an energy barrier of 7.27 kcal/mol and total reaction rate of 8.45 × 10 -8  cm 3 /molecule s. Pathway B involved direct dehydrogenation of IM5 to produce the OH-PCBs intermediate IM5b, with an energy barrier of 28.49 kcal/mol and total reaction rate of 1.15 × 10 -5  cm 3 /molecule s. The most likely degradation pathway of PCB-77 in the atmosphere is pathway A to produce IM5a. The solvation effect results showed that cyclohexane, carbon tetrachloride, and benzene could reduce the reaction energy barrier of pathway A. Among these solvents, the solvation effect of benzene was the largest, and could reduce the total reaction energy barrier by 25%. Cyclohexane, carbon tetrachloride, benzene, dichloromethane, acetone, and ethanol could increase the total reaction rate of pathway A. The increase in the reaction rate of pathway A with benzene was 8%. The effect of solvents on oxidative degradation of PCB-77 in the atmosphere is important. Graphical abstract The reaction pathways of PCB-77 in the atmosphere with •OH, O2, NOx, and 1O2 were inferred based on density functional theory

  15. PS proton source

    CERN Multimedia

    1959-01-01

    The first proton source used at CERN's Proton Synchrotron (PS) which started operation in 1959. This is CERN's oldest accelerator still functioning today (2018). It is part of the accelerator chain that supplies proton beams to the Large Hadron Collider. The source is a Thonemann type. In order to extract and accelerate the protons at high energy, a high frequency electrical field is used (140Mhz). The field is transmitted by a coil around a discharge tube in order to maintain the gas hydrogen in an ionised state. An electrical field pulse, in the order of 15kV, is then applied via an impulse transformer between anode and cathode of the discharge tube. The electrons and protons of the plasma formed in the ionised gas in the tube, are then separated. Currents in the order of 200mA during 100 microseconds have benn obtained with this type of source.

  16. Location of protons in N-H···N hydrogen-bonded systems: a theoretical study on intramolecular pyridine-dihydropyridine and pyridine-pyridinium pairs.

    Science.gov (United States)

    Mori, Yukie; Takano, Keiko

    2012-08-21

    Two-dimensional potential energy surfaces (PESs) were calculated for the degenerate intramolecular proton transfer (PT) in two N-H···N hydrogen-bonded systems, (Z)-2-(2-pyridylmethylidene)-1,2-dihydropyridine (1) and monoprotonated di(2-pyridyl) ether (2), at the MP2/cc-pVDZ level of theory. The calculated PES had two minima in both cases. The energy barrier in 1 was higher than the zero-point energy (ZPE) level, while that in 2 was close to the ZPE. Vibrational wavefunctions were obtained by solving time-independent Schrödinger equations with the calculated PESs. The maximum points of the probability density were shifted from the energy minima towards the region where the covalent N-H bond was elongated and the N···N distance shortened. The effects of a polar solvent on the PES were investigated with the continuum or cluster models in such a way that the solute-solvent electrostatic interactions could be taken into account under non-equilibrated conditions. A solvated contact ion-pair was modelled by a cluster consisting of one cation 2, one chloride ion and 26 molecules of acetonitrile. The calculation with this model suggested that the bridging proton is localised in the deeper well due to the significant asymmetry of the PES and the high potential barrier.

  17. Effect of temperature on solvation behaviour of diclofenac sodium salt in aqueous glycine and L-proline solutions

    International Nuclear Information System (INIS)

    Ryshetti, Suresh; Gardas, Ramesh L; Tangeda, Savitha Jyostna

    2015-01-01

    Highlights: • Solvation behaviour of diclofenac drug studied in aqueous solutions. • Density and speed of sound of drug in aq. glycine and L-proline are measured. • Hydrophobic nature of diclofenac sodium salt is studied. • Effect of temperature on solvation of diclofenac sodium salt is analysed. - Abstract: Apparent molar volume (V 2,ϕ ) and apparent molar isentropic compressibility (K s,2,ϕ ) of diclofenac sodium salt (DSS) drug within the concentration range of (0.001 to 0.008) mol · kg −1 in (0.01, 0.03 and 0.05) mol · kg −1 aqueous glycine and L-proline solutions are computed from the experimental density (ρ) and speed of sound (u) values at T = (293.15 to 313.15) K and atmospheric pressure. Derived parameters such as partial molar properties, transfer partial molar properties, hydration numbers and Hepler’s constant are computed from the data of V 2,ϕ and K s,2,ϕ . These parameters have been used to understand the effect of temperature on interactions between DSS drug and aqueous glycine/L-proline solution. Furthermore, the structure making and breaking ability of DSS drug in probed solutions are analysed at experimental conditions

  18. Energetic aspects of diclofenac acid in crystal modifications and in solutions--mechanism of solvation, partitioning and distribution.

    Science.gov (United States)

    Perlovich, German L; Surov, Artem O; Hansen, Lars Kr; Bauer-Brandl, Annette

    2007-05-01

    Temperature dependency of saturated vapor pressure and heat capacity for the diclofenac acid (Form II) were measured and thermodynamic functions of sublimation calculated (DeltaG(sub)(298) = 49.3 kJ x mol(-1); DeltaH(sub)(298) = 115.6 +/- 1.3 kJ x mol(-1); DeltaS(sub)(298) = 222 +/- 4 J x mol(-1) x K(-1)). Crystal polymorphic Forms I (P2(1)/c) and II (C2/c) of diclofenac acid have been prepared and characterized by X-ray diffraction experiments. The difference between crystal lattice energies of the two forms were obtained by solution calorimetry: DeltaDeltaH(sol)(I --> II) = 1.6 +/- 0.4 kJ x mol(-1). Temperature dependencies of the solubility in buffers with pH 2.0 and 7.4, n-octanol and n-hexane were measured. The thermodynamic functions of solubility, solvation, and transfer processes were deduced. Specific and non-specific solvation terms were distinguished using the transfer from the "inert" n-hexane to the other solvents. The transfer of diclofenac acid molecules from the buffers to n-octanol (partitioning and distribution) is an entropy driven process. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  19. First Extraction of Transversity from a Global Analysis of Electron-Proton and Proton-Proton Data

    Science.gov (United States)

    Radici, Marco; Bacchetta, Alessandro

    2018-05-01

    We present the first extraction of the transversity distribution in the framework of collinear factorization based on the global analysis of pion-pair production in deep-inelastic scattering and in proton-proton collisions with a transversely polarized proton. The extraction relies on the knowledge of dihadron fragmentation functions, which are taken from the analysis of electron-positron annihilation data. For the first time, the transversity is extracted from a global analysis similar to what is usually done for the spin-averaged and helicity distributions. The knowledge of transversity is important for, among other things, detecting possible signals of new physics in high-precision low-energy experiments.

  20. Dynamics of solvation and desolvation of rubidium attached to He nanodroplets

    International Nuclear Information System (INIS)

    Vangerow, J. von; John, O.; Stienkemeier, F.; Mudrich, M.

    2015-01-01

    The real-time dynamics of photoexcited and photoionized rubidium (Rb) atoms attached to helium (He) nanodroplets is studied by femtosecond pump-probe mass spectrometry. While excited Rb atoms in the perturbed 6p-state (Rb * ) desorb off the He droplets, Rb + photoions tend to sink into the droplet interior when created near the droplet surface. The transition from Rb + solvation to full Rb * desorption is found to occur at a delay time τ ∼ 600 fs for Rb * in the 6pΣ-state and τ ∼ 1200 fs for the 6pΠ-state. Rb + He ions are found to be created by directly exciting bound Rb * He exciplex states as well as by populating bound Rb + He-states in a photoassociative ionization process

  1. Dynamics of solvation and desolvation of rubidium attached to He nanodroplets

    Science.gov (United States)

    von Vangerow, J.; John, O.; Stienkemeier, F.; Mudrich, M.

    2015-07-01

    The real-time dynamics of photoexcited and photoionized rubidium (Rb) atoms attached to helium (He) nanodroplets is studied by femtosecond pump-probe mass spectrometry. While excited Rb atoms in the perturbed 6p-state (Rb*) desorb off the He droplets, Rb+ photoions tend to sink into the droplet interior when created near the droplet surface. The transition from Rb+ solvation to full Rb* desorption is found to occur at a delay time τ ˜ 600 fs for Rb* in the 6pΣ-state and τ ˜ 1200 fs for the 6pΠ-state. Rb+He ions are found to be created by directly exciting bound Rb*He exciplex states as well as by populating bound Rb+He-states in a photoassociative ionization process.

  2. PREFACE: Transport phenomena in proton conducting media Transport phenomena in proton conducting media

    Science.gov (United States)

    Eikerling, Michael

    2011-06-01

    Proton transport phenomena are of paramount importance for acid-base chemistry, energy transduction in biological organisms, corrosion processes, and energy conversion in electrochemical systems such as polymer electrolyte fuel cells. The relevance for such a plethora of materials and systems, and the ever-lasting fascination with the highly concerted nature of underlying processes drive research across disciplines in chemistry, biology, physics and chemical engineering. A proton never travels alone. Proton motion is strongly correlated with its environment, usually comprised of an electrolyte and a solid or soft host material. For the transport in nature's most benign proton solvent and shuttle, water that is, insights from ab initio simulations, matured over the last 15 years, have furnished molecular details of the structural diffusion mechanism of protons. Excess proton movement in water consists of sequences of Eigen-Zundel-Eigen transitions, triggered by hydrogen bond breaking and making in the surrounding water network. Nowadays, there is little debate about the validity of this mechanism in water, which bears a stunning resemblance to the basic mechanistic picture put forward by de Grotthuss in 1806. While strong coupling of an excess proton with degrees of freedom of solvent and host materials facilitates proton motion, this coupling also creates negative synergies. In general, proton mobility in biomaterials and electrochemical proton conducting media is highly sensitive to the abundance and structure of the proton solvent. In polymer electrolyte membranes, in which protons are bound to move in nano-sized water-channels, evaporation of water or local membrane dehydration due to electro-osmotic coupling are well-known phenomena that could dramatically diminish proton conductivity. Contributions in this special issue address various vital aspects of the concerted nature of proton motion and they elucidate important structural and dynamic effects of solvent

  3. Proton transfer events in GFP.

    Science.gov (United States)

    Di Donato, Mariangela; van Wilderen, Luuk J G W; Van Stokkum, Ivo H M; Stuart, Thomas Cohen; Kennis, John T M; Hellingwerf, Klaas J; van Grondelle, Rienk; Groot, Marie Louise

    2011-09-28

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton transfer through a 'proton-wire', formed by the chromophore (the proton donor), water molecule W22, Ser205 and Glu222 (the acceptor), on a picosecond time scale. To obtain a more refined view of this process, we have used a combined approach of time resolved mid-infrared spectroscopy and visible pump-dump-probe spectroscopy to resolve with atomic resolution how and how fast protons move through this wire. Our results indicate that absorption of light by GFP induces in 3 ps (10 ps in D(2)O) a shift of the equilibrium positions of all protons in the H-bonded network, leading to a partial protonation of Glu222 and to a so-called low barrier hydrogen bond (LBHB) for the chromophore's proton, giving rise to dual emission at 475 and 508 nm. This state is followed by a repositioning of the protons on the wire in 10 ps (80 ps in D(2)O), ultimately forming the fully deprotonated chromophore and protonated Glu222.

  4. Accurate calculation of conformational free energy differences in explicit water: the confinement-solvation free energy approach.

    Science.gov (United States)

    Esque, Jeremy; Cecchini, Marco

    2015-04-23

    The calculation of the free energy of conformation is key to understanding the function of biomolecules and has attracted significant interest in recent years. Here, we present an improvement of the confinement method that was designed for use in the context of explicit solvent MD simulations. The development involves an additional step in which the solvation free energy of the harmonically restrained conformers is accurately determined by multistage free energy perturbation simulations. As a test-case application, the newly introduced confinement/solvation free energy (CSF) approach was used to compute differences in free energy between conformers of the alanine dipeptide in explicit water. The results are in excellent agreement with reference calculations based on both converged molecular dynamics and umbrella sampling. To illustrate the general applicability of the method, conformational equilibria of met-enkephalin (5 aa) and deca-alanine (10 aa) in solution were also analyzed. In both cases, smoothly converged free-energy results were obtained in agreement with equilibrium sampling or literature calculations. These results demonstrate that the CSF method may provide conformational free-energy differences of biomolecules with small statistical errors (below 0.5 kcal/mol) and at a moderate computational cost even with a full representation of the solvent.

  5. Sparse-view proton computed tomography using modulated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiseoc; Kim, Changhwan; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejon 305-701 (Korea, Republic of); Min, Byungjun [Department of Radiation Oncology, Kangbuk Samsung Hospital, 110–746 (Korea, Republic of); Kwak, Jungwon [Department of Radiation Oncology, Asan Medical Center, 138–736 (Korea, Republic of); Park, Seyjoon; Lee, Se Byeong [Proton Therapy Center, National Cancer Center, 410–769 (Korea, Republic of); Park, Sungyong [Proton Therapy Center, McLaren Cancer Institute, Flint, Michigan 48532 (United States)

    2015-02-15

    Purpose: Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Methods: Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method–projection onto convex sets (SM-POCS), superiorization method–expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Results: Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed

  6. Inelastic and diffraction dissociation cross-sections in proton-proton collisions with ALICE

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    ALICE results on proton-proton inelastic and diffractive cross-section measurements performed at $\\sqrt{s}$ = 0.9 TeV, 2.76 TeV and 7 TeV are presented. The relative rates of single- and double- diffractive processes are measured by studying properties of gaps in the pseudorapidity distribution of charged particles. ALICE trigger efficiencies are determined for various classes of events, using a detector simulation validated with experimental data. The results are presented together with earlier measurements at proton-antiproton and proton-proton colliders at lower energies and with the measurements by other LHC experiments. Predictions by different theoretical models are compared to the data. We will also discuss the main theoretical problems in the field and present some of the recent developments.

  7. Anisotropy enhanced X-ray scattering from solvated transition metal complexes

    DEFF Research Database (Denmark)

    Biasin, Elisa; van Driel, Tim B.; Levi, Gianluca

    2018-01-01

    Time-resolved X-ray scattering patterns from photoexcited molecules in solution are in many cases anisotropic at the ultrafast time scales accessible at X-ray free-electron lasers (XFELs). This anisotropy arises from the interaction of a linearly polarized UV-Vis pump laser pulse with the sample......, which induces anisotropic structural changes that can be captured by femtosecond X-ray pulses. In this work, a method for quantitative analysis of the anisotropic scattering signal arising from an ensemble of molecules is described, and it is demonstrated how its use can enhance the structural...... sensitivity of the time-resolved X-ray scattering experiment. This method is applied on time-resolved X-ray scattering patterns measured upon photoexcitation of a solvated di-platinum complex at an XFEL, and the key parameters involved are explored. It is shown that a combined analysis of the anisotropic...

  8. Generalized linear solvation energy model applied to solute partition coefficients in ionic liquid-supercritical carbon dioxide systems

    Czech Academy of Sciences Publication Activity Database

    Planeta, Josef; Karásek, Pavel; Hohnová, Barbora; Šťavíková, Lenka; Roth, Michal

    2012-01-01

    Roč. 1250, SI (2012), s. 54-62 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GAP206/11/0138; GA ČR(CZ) GAP106/12/0522; GA ČR(CZ) GPP503/11/P523 Institutional research plan: CEZ:AV0Z40310501 Keywords : ionic liquid * supercritical carbon dioxide * solvation energy model Subject RIV: BJ - Thermodynamics Impact factor: 4.612, year: 2012

  9. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  10. Film Thickness Formation in Nanoscale due to Effects of Elastohydrodynamic, Electrostatic and Surface force of Solvation and Van der Waals

    Directory of Open Access Journals (Sweden)

    M.F. Abd Al-Samieh

    2017-03-01

    Full Text Available The mechanism of oil film with a thickness in the nanoscale is discussed in this paper. A polar lubricant of propylene carbonate is used as the intervening liquid between contiguous bodies in concentrated contacts. A pressure caused by the hydrodynamic viscous action in addition to double layer electrostatic force, Van der Waals inter-molecular forces, and solvation pressure due to inter-surface forces is considered in calculating the ultrathin lubricating films. The numerical solution has been carried out, using the Newton-Raphson iteration technique, applied for the convergence of the hydrodynamic pressure. The results show that, at separations beyond about five molecular diameters of the intervening liquid, the formation of a lubricant film thickness is governed by combined effects of viscous action and surface force of an attractive Van der Waals force and a repulsive double layer force. At smaller separations below about five molecular diameters of the intervening liquid, the effect of solvation force is dominant in determining the oil film thickness

  11. Solvation Structure and Thermodynamic Mapping (SSTMap): An Open-Source, Flexible Package for the Analysis of Water in Molecular Dynamics Trajectories.

    Science.gov (United States)

    Haider, Kamran; Cruz, Anthony; Ramsey, Steven; Gilson, Michael K; Kurtzman, Tom

    2018-01-09

    We have developed SSTMap, a software package for mapping structural and thermodynamic water properties in molecular dynamics trajectories. The package introduces automated analysis and mapping of local measures of frustration and enhancement of water structure. The thermodynamic calculations are based on Inhomogeneous Fluid Solvation Theory (IST), which is implemented using both site-based and grid-based approaches. The package also extends the applicability of solvation analysis calculations to multiple molecular dynamics (MD) simulation programs by using existing cross-platform tools for parsing MD parameter and trajectory files. SSTMap is implemented in Python and contains both command-line tools and a Python module to facilitate flexibility in setting up calculations and for automated generation of large data sets involving analysis of multiple solutes. Output is generated in formats compatible with popular Python data science packages. This tool will be used by the molecular modeling community for computational analysis of water in problems of biophysical interest such as ligand binding and protein function.

  12. WE-EF-303-09: Proton-Acoustic Range Verification in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M; Xing, L [Stanford University School of Medicine, Stanford, CA (United States); Xiang, L [University of Oklahoma (OK), Norman, OK (United States)

    2015-06-15

    Purpose: We investigated proton-acoustic signals detection for range verification with current ultrasound instruments in typical clinical scenarios. Using simulations that included a realistic noise model, we determined the theoretical minimum dose required to generate detectable proton-acoustic signals. Methods: An analytical model was used to calculate the dose distributions and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. The acoustic waves propagating from the Bragg peak were modeled by the general 3D pressure wave equation and convolved with Gaussian kernels to simulate various proton pulse widths (0.1 – 10 ms). A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth band-pass filter, and ii) randomly generated noise based on a model of thermal noise in the transducer. The signal-to-noise ratio was calculated, determining the minimum number of protons and dose required per pulse. The maximum spatial resolution was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer center frequency (70–380 kHz). The minimum number of protons were on the order of 0.6–6 million per pulse, leading to 3–110 mGy dose per pulse at the Bragg peak, depending on the spot size. The acoustic signal consisted of lower frequencies for wider pulses, leading to lower noise levels, but also worse spatial resolution. The resolution was 1-mm for a 0.1-µs pulse width, but increased to 5-mm for a 10-µs pulse width. Conclusion: We have established minimum dose detection limits for proton-acoustic range validation. These limits correspond to a best case scenario with a large detector with no losses and only detector thermal noise. Feasible proton-acoustic range detection will require at least 10{sup 7} protons per pulse and pulse widths ≤ 1-µs.

  13. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye [Sanford-Burnham-Prebys Medical Discovery Institute (United States); Schwieters, Charles D. [National Institutes of Health, Center for Information Technology (United States); Opella, Stanley J. [University of California San Diego, Department of Chemistry and Biochemistry (United States); Marassi, Francesca M., E-mail: fmarassi@sbmri.org [Sanford-Burnham-Prebys Medical Discovery Institute (United States)

    2017-01-15

    Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision

  14. Proton computed tomography

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1978-01-01

    The use of protons or other heavy charged particles instead of x rays in computed tomography (CT) is explored. The results of an experimental implementation of proton CT are presented. High quality CT reconstructions are obtained at an average dose reduction factor compared with an EMI 5005 x-ray scanner of 10:1 for a 30-cm-diameter phantom and 3.5:1 for a 20-cm diameter. The spatial resolution is limited by multiple Coulomb scattering to about 3.7 mm FWHM. Further studies are planned in which proton and x-ray images of fresh human specimens will be compared. Design considerations indicate that a clinically useful proton CT scanner is eminently feasible

  15. Correlated stopping, proton clusters and higher order proton cumulants

    Energy Technology Data Exchange (ETDEWEB)

    Bzdak, Adam [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Koch, Volker [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Skokov, Vladimir [RIKEN/BNL, Brookhaven National Laboratory, Upton, NY (United States)

    2017-05-15

    We investigate possible effects of correlations between stopped nucleons on higher order proton cumulants at low energy heavy-ion collisions. We find that fluctuations of the number of wounded nucleons N{sub part} lead to rather nontrivial dependence of the correlations on the centrality; however, this effect is too small to explain the large and positive four-proton correlations found in the preliminary data collected by the STAR collaboration at √(s) = 7.7 GeV. We further demonstrate that, by taking into account additional proton clustering, we are able to qualitatively reproduce the preliminary experimental data. We speculate that this clustering may originate either from collective/multi-collision stopping which is expected to be effective at lower energies or from a possible first-order phase transition, or from (attractive) final state interactions. To test these ideas we propose to measure a mixed multi-particle correlation between stopped protons and a produced particle (e.g. pion, antiproton). (orig.)

  16. Proton-90Zr interaction at sub-coulomb proton energies

    International Nuclear Information System (INIS)

    Laird, C.E.; Flynn, D.; Hershberger, R.L.; Gabbard, F.

    1985-01-01

    Measurements have been made of proton elastic scattering differential cross sections for proton scattering at 135 0 and 165 0 from 2 to 7 MeV, of inelastic scattering cross sections for proton scattering from 3.9 to 5.7 MeV, and of the radiative capture cross sections from 1.9 to 5.7 MeV detecting primary and cascade gamma rays. Optical potentials with Hauser-Feshbach and coupled-channel models have been used to analyze the data. This analysis yields an energy dependent absorptive potential of W = 2.63+.73 whose mean value of 5 MeV at E/sub p/ = 4 MeV is consistent with previously reported, but anomalously small values. The diffuseness of the real potential is .54 fm, which is consistent with values found for 92 Zr and 94 Zr. The adopted model values are used to deduce a total proton strength function which displays the features of both the 3s and the 3p single particle resonances

  17. Proton beam therapy how protons are revolutionizing cancer treatment

    CERN Document Server

    Yajnik, Santosh

    2013-01-01

    Proton beam therapy is an emerging technology with promise of revolutionizing the treatment of cancer. While nearly half of all patients diagnosed with cancer in the US receive radiation therapy, the majority is delivered via electron accelerators, where photons are used to irradiate cancerous tissue. Because of the physical properties of photon beams, photons may deposit energy along their entire path length through the body. On the other hand, a proton beam directed at a tumor travels in a straight trajectory towards its target, gives off most of its energy at a defined depth called the Bragg peak, and then stops. While photons often deposit more energy within the healthy tissues of the body than within the cancer itself, protons can deposit most of their cancer-killing energy within the area of the tumor. As a result, in the properly selected patients, proton beam therapy has the ability to improve cure rates by increasing the dose delivered to the tumor and simultaneously reduce side-effects by decreasing...

  18. Proton-rich nuclear statistical equilibrium

    International Nuclear Information System (INIS)

    Seitenzahl, I.R.; Timmes, F.X.; Marin-Lafleche, A.; Brown, E.; Magkotsios, G.; Truran, J.

    2008-01-01

    Proton-rich material in a state of nuclear statistical equilibrium (NSE) is one of the least studied regimes of nucleosynthesis. One reason for this is that after hydrogen burning, stellar evolution proceeds at conditions of an equal number of neutrons and protons or at a slight degree of neutron-richness. Proton-rich nucleosynthesis in stars tends to occur only when hydrogen-rich material that accretes onto a white dwarf or a neutron star explodes, or when neutrino interactions in the winds from a nascent proto-neutron star or collapsar disk drive the matter proton-rich prior to or during the nucleosynthesis. In this Letter we solve the NSE equations for a range of proton-rich thermodynamic conditions. We show that cold proton-rich NSE is qualitatively different from neutron-rich NSE. Instead of being dominated by the Fe-peak nuclei with the largest binding energy per nucleon that have a proton-to-nucleon ratio close to the prescribed electron fraction, NSE for proton-rich material near freezeout temperature is mainly composed of 56Ni and free protons. Previous results of nuclear reaction network calculations rely on this nonintuitive high-proton abundance, which this Letter explains. We show how the differences and especially the large fraction of free protons arises from the minimization of the free energy as a result of a delicate competition between the entropy and nuclear binding energy.

  19. Measurement of the inelastic proton-proton cross section with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Zenis, Tibor [Comenius University Bratislava (Slovakia); Collaboration: ATLAS Collaboration

    2013-04-15

    A measurement of the inelastic proton-proton cross-section at centre-of-mass energy of Central diffraction in proton-proton collisions at {radical}(s) = 7TeV using the ATLAS detector at the Large Hadron Collider is presented. Events are selected by requiring hits in scintillator counters mounted in the forward region of the ATLAS detector and the dataset corresponding to an integrated luminosity of 20{mu}b{sup -1}. In addition, the total cross-section is studied as a function of the rapidity gap size measured with the inner detector and calorimetry.

  20. ISABELLE: a proposal for construction of a proton--proton storage accelerator facility

    International Nuclear Information System (INIS)

    1976-05-01

    The construction of an Intersecting Storage Accelerator Facility (ISA or ISABELLE) at Brookhaven National Laboratory is proposed. ISABELLE will permit the exploration of proton-proton collisions at center-of-mass energies continuously variable from 60 to 400 GeV and with luminosities of 10 32 to 10 33 cm -2 sec -1 over the entire range. An overview of the physics potential of this machine is given, covering the production of charged and neutral intermediate vector bosons, the hadron production at high transverse momentum, searches for new, massive particles, and the energy dependence of the strong interactions. The facility consists of two interlaced rings of superconducting magnets in a common tunnel about 3 km in circumference. The proton beams will collide at eight intersection regions where particle detectors will be arranged for studying the collision processes. Protons of approximately 30 GeV from the AGS will be accumulated to obtain the design current of 10A prior to acceleration to final energy. The design and performance of existing full-size superconducting dipoles and quadrupoles is described. The conceptual design of the accelerator systems and the conventional structures and buildings is presented. A preliminary cost estimate and construction schedule are given. Possible future options such as proton-antiproton, proton-deuteron and electron-proton collisions are discussed

  1. SU-E-J-63: Feasibility Study of Proton Digital Tomosynthesis in Proton Beam Therapy.

    Science.gov (United States)

    Min, B; Kwak, J; Lee, J; Cho, S; Park, S; Yoo, S; Chung, K; Cho, S; Lim, Y; Shin, D; Lee, S; Kim, J

    2012-06-01

    We investigated the feasibility of proton tomosynthesis as daily positioning of patients and compared the results with photon tomosynthesis as an alternative to conventional portal imaging or on-board cone-beam computed tomography. Dedicated photon-like proton beam using the passively scattered proton beams by the cyclotron was generated for proton imaging. The eleven projections were acquired over 30 degree with 3 degree increment in order to investigate the performance of proton tomosynthesis. The cylinder blocks and resolution phantom were used to evaluate imaging performance. Resolution phantom of a cylinder of diameter 12 cm was used to investigate the reconstructed imaging characteristics. Electron density cylinder blocks with diameter of 28 mm and height of 70 mm were employed to assess the imaging quality. The solid water, breast, bone, adipose, lung, muscle, and liver, which were tissue equivalent inserts, were positioned around the resolution phantom. The images were reconstructed by projection onto convex sets (POCS) algorithm and total variation minimization (TVM) methods. The Gafchromic EBT films were utilized for measuring the photon-like proton beams as a proton detector. In addition, the photon tomosynthesis images were obtained for a comparison with proton tomosynthesis images. The same angular sampling data were acquired for both proton and photon tomosynthesis. In the resolution phantom image obtained proton tomosynthesis, down to 1.6 mm diameter rods were resolved visually, although the separation between adjacent rods was less distinct. In contrast, down to 1.2 mm diameter rods were resolved visually in the reconstructed image obtained photon tomosynthesis. Both proton and photon tomosynthesis images were similar in intensities of different density blocks. Our results demonstrated that proton tomosynthesis could make it possible to provide comparable tomography imaging to photon tomosynthesis for positioning as determined by manual registration

  2. Proton-proton elastic scattering at ultrahigh energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)

    1981-05-30

    Recent experimental results on proton-proton elastic scattering at high energies are discussed in the context of the comments by Chou and Yang. There does not appear to be any tendency that the experimental results would agree with the predictions of the geometrical model even at ultrahigh energies. The angular distribution structure as described by using the dipole pomeron is consistent with the experimental data at presently available high energies and predicts results quite different from the geometrical model.

  3. Two proton decay in 12O

    International Nuclear Information System (INIS)

    Kumawat, M.; Singh, U.K.; Jain, S.K.; Saxena, G.; Kaushik, M.; Aggarwal, Mamta

    2017-01-01

    Two-proton radioactivity was observed experimentally in the decay of 45 Fe, 54 Zn and 48 Ni. From then many theoretical studies of one and two-proton radioactivity have been carried out within the framework of different models including RMF+BCS approach for medium mass region. Towards light mass region proton-proton correlations were observed in two-proton decay of 19 Mg and 16 Ne. Recently, different mechanism of two-proton emission from proton-rich nuclei 23 Al and 22 Mg has been investigated and transition from direct to sequential two-proton decay in sd shell nuclei is observed. Encouraged with these recent studies of two proton emission in light mass nuclei, we have applied our RMF+BCS approach for the study of two proton emission in light mass region and in this paper we present our result of two proton emission in 12 O

  4. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen.

    Science.gov (United States)

    O'Hagan, Molly; Shaw, Wendy J; Raugei, Simone; Chen, Shentan; Yang, Jenny Y; Kilgore, Uriah J; DuBois, Daniel L; Bullock, R Morris

    2011-09-14

    Proton transport is ubiquitous in chemical and biological processes, including the reduction of dioxygen to water, the reduction of CO(2) to formate, and the production/oxidation of hydrogen. In this work we describe intramolecular proton transfer between Ni and positioned pendant amines for the hydrogen oxidation electrocatalyst [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+) (P(Cy)(2)N(Bn)(2) = 1,5-dibenzyl-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane). Rate constants are determined by variable-temperature one-dimensional NMR techniques and two-dimensional EXSY experiments. Computational studies provide insight into the details of the proton movement and energetics of these complexes. Intramolecular proton exchange processes are observed for two of the three experimentally observable isomers of the doubly protonated Ni(0) complex, [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+), which have N-H bonds but no Ni-H bonds. For these two isomers, with pendant amines positioned endo to the Ni, the rate constants for proton exchange range from 10(4) to 10(5) s(-1) at 25 °C, depending on isomer and solvent. No exchange is observed for protons on pendant amines positioned exo to the Ni. Analysis of the exchange as a function of temperature provides a barrier for proton exchange of ΔG(‡) = 11-12 kcal/mol for both isomers, with little dependence on solvent. Density functional theory calculations and molecular dynamics simulations support the experimental observations, suggesting metal-mediated intramolecular proton transfers between nitrogen atoms, with chair-to-boat isomerizations as the rate-limiting steps. Because of the fast rate of proton movement, this catalyst may be considered a metal center surrounded by a cloud of exchanging protons. The high intramolecular proton mobility provides information directly pertinent to the ability of pendant amines to accelerate proton transfers during catalysis of hydrogen oxidation. These results may also have broader implications for proton movement in

  5. Theoretical Investigation of the Effect of the Rare Gas Matrices on the Vibrational Spectra of Solvated Molecular Ions: Cu+CO

    Czech Academy of Sciences Publication Activity Database

    Bludský, Ota; Šilhan, Martin; Nachtigall, Petr

    2002-01-01

    Roč. 117, č. 20 (2002), s. 9298-9305 ISSN 0021-9606 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : vibrational spectra * solvated molecular ions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.998, year: 2002

  6. Proton Radiography with CR-39 by Using the Protons from High Power Femto-second Laser System

    International Nuclear Information System (INIS)

    Choi, Chang Il; Lee, Dong Hoon; Kang, Byoung Hwi; Kim, Yong Kyun; Choi, Il Woo; Ko, Do Kyeong; Lee, Jong Min

    2008-01-01

    Proton radiography techniques are useful to obtain a high quality image of a thin object, because protons travel straight in matter. Generation of the high energy proton using conventional accelerator costs high and requires large accelerating facility. But proton radiography using high power femto-second(10-15 second) laser has been interested, because it can generate high energy protons at lower price than the conventional accelerator like a cyclotron. For this study, we used the CR-39 SSNTD (Solid State Nuclear Track Detector) as the proton radiography screen. Commonly, CR-39 is used to detect the tracks of energetic charged particles. Incident energetic charged particles left latent tracks in the CR-39, in the form of broken molecular chains and free radicals. These latent tracks show high chemical reactivity. After chemical etching with the caustic alkali solution such as NaOH or KOH, tracks are appeared to forms of hole. If protons with various energies enter the two targets with another thickness, number of protons passed through the target per unit area is different each other. Using this feature of protons, we can a proton radiographic image with CR-39. We studied proton radiography with CR-39 by using energetic protons from high power femto-second laser and evaluated potentiality of femto-second laser as new energetic proton generator for radiography

  7. Linear solvation energy relationships: "rule of thumb" for estimation of variable values

    Science.gov (United States)

    Hickey, James P.; Passino-Reader, Dora R.

    1991-01-01

    For the linear solvation energy relationship (LSER), values are listed for each of the variables (Vi/100, π*, &betam, αm) for fundamental organic structures and functional groups. We give the guidelines to estimate LSER variable values quickly for a vast array of possible organic compounds such as those found in the environment. The difficulty in generating these variables has greatly discouraged the application of this quantitative structure-activity relationship (QSAR) method. This paper present the first compilation of molecular functional group values together with a utilitarian set of the LSER variable estimation rules. The availability of these variable values and rules should facilitate widespread application of LSER for hazard evaluation of environmental contaminants.

  8. Halide anion solvation and recognition by a macro tri-cyclic tetra-ammonium host in an ionic liquid: a molecular dynamics stud

    International Nuclear Information System (INIS)

    Chaumont, A.; Wipff, G.

    2006-01-01

    We report a molecular dynamics study of halide anions X - and their inclusion complexes X - - L 4+ with a macro-tri-cyclic tetrahedral host L 4+ built from four quaternary ammonium sites, in an ionic liquid (IL) based on the 1-butyl-3-methyl-imidazolium (BMI + ) cation and the PF 6 - anion. The 'dry' and 'humid' forms of the [BMI][PF 6 ] IL are compared, showing the importance of IL ions in the 'dry' IL and, in some cases, of water molecules in the 'humid' IL. In the 'dry' IL the F - , Cl - , Br - and I - un-complexed halides are surrounded by 4-5 BMI + cations whose binding mode evolves from hydrogen bonding to facial coordination along this series. Solvent humidity has the largest impact on the solvation of F - whose first shell BMI + cations are all displaced by H 2 O molecules, while the first solvation shell of Cl - , Br - and I - comprises 3-4 BMI + cations plus ca. 4 H 2 O molecules. The solvation of the L 4+ host and of its X - - L 4+ complex mainly involves PF 6 - anions in the 'dry' IL, and additional H 2 O molecules in the 'humid' IL. The question of anion binding selectivity is addressed by free energy perturbation calculations which predict that, in the 'dry' liquid, F - is preferred over Cl - , Br - and I - , which contrasts with the aqueous solution where L 4+ is selective for Cl - . In the 'humid' liquid however, there is no F - /Cl - discrimination, showing the importance of small amounts of water on the complexation selectivity. (authors)

  9. Proton permeation of lipid bilayers.

    Science.gov (United States)

    Deamer, D W

    1987-10-01

    Proton permeation of the lipid bilayer barrier has two unique features. First, permeability coefficients measured at neutral pH ranges are six to seven orders of magnitude greater than expected from knowledge of other monovalent cations. Second, proton conductance across planar lipid bilayers varies at most by a factor of 10 when pH is varied from near 1 to near 11. Two mechanisms have been proposed to account for this anomalous behavior: proton conductance related to contaminants of lipid bilayers, and proton translocation along transient hydrogen-bonded chains (tHBC) of associated water molecules in the membrane. The weight of evidence suggests that trace contaminants may contribute to proton conductance across planar lipid membranes at certain pH ranges, but cannot account for the anomalous proton flux in liposome systems. Two new results will be reported here which were designed to test the tHBC model. These include measurements of relative proton/potassium permeability in the gramicidin channel, and plots of proton flux against the magnitude of pH gradients. (1) The relative permeabilities of protons and potassium through the gramicidin channel, which contains a single strand of hydrogen-bonded water molecules, were found to differ by at least four orders of magnitude when measured at neutral pH ranges. This result demonstrates that a hydrogen-bonded chain of water molecules can provide substantial discrimination between protons and other cations. It was also possible to calculate that if approximately 7% of bilayer water was present in a transient configuration similar to that of the gramicidin channel, it could account for the measured proton flux. (2) The plot of proton conductance against pH gradient across liposome membranes was superlinear, a result that is consistent with one of three alternative tHBC models for proton conductance described by Nagle elsewhere in this volume.

  10. Proton beam characterization by proton-induced acoustic emission: simulation studies

    International Nuclear Information System (INIS)

    Jones, K C; Witztum, A; Avery, S; Sehgal, C M

    2014-01-01

    Due to their Bragg peak, proton beams are capable of delivering a targeted dose of radiation to a narrow volume, but range uncertainties currently limit their accuracy. One promising beam characterization technique, protoacoustic range verification, measures the acoustic emission generated by the proton beam. We simulated the pressure waves generated by proton radiation passing through water. We observed that the proton-induced acoustic signal consists of two peaks, labeled α and γ, with two originating sources. The α acoustic peak is generated by the pre-Bragg peak heated region whereas the source of the γ acoustic peak is the proton Bragg peak. The arrival time of the α and γ peaks at a transducer reveals the distance from the beam propagation axis and Bragg peak center, respectively. The maximum pressure is not observed directly above the Bragg peak due to interference of the acoustic signals. Range verification based on the arrival times is shown to be more effective than determining the Bragg peak position based on pressure amplitudes. The temporal width of the α and γ peaks are linearly proportional to the beam diameter and Bragg peak width, respectively. The temporal separation between compression and rarefaction peaks is proportional to the spill time width. The pressure wave expected from a spread out Bragg peak dose is characterized. The simulations also show that acoustic monitoring can verify the proton beam dose distribution and range by characterizing the Bragg peak position to within ∼1 mm. (paper)

  11. Generalized z-scaling in proton-proton collisions at high energies

    International Nuclear Information System (INIS)

    Zborovsky, I.; Tokarev, M.

    2006-01-01

    New generalization of z-scaling in inclusive particle production is proposed. The scaling variable z is a fractal measure which depends on kinematical characteristics of the underlying subprocess expressed in terms of the momentum fractions x 1 and x 2 of the incoming protons. In the generalized approach, the x 1 and x 2 are functions of the momentum fractions y a and y b of the scattered and recoil constituents carried out by the inclusive particle and recoil object, respectively. The scaling function ψ(z) for charged and identified hadrons produced in proton-proton collisions is constructed. The fractal dimensions and heat capacity of the produced medium entering definition of the z are established to obtain energy, angular and multiplicity independence of the ψ(z). The scheme allows unique description of data on inclusive cross sections of charged particles, pions, kaons, antiprotons, and lambdas at high energies. The obtained results are of interest to use z-scaling as a tool for searching for new physics phenomena of particle production in high transverse momentum and high multiplicity region at the proton-proton colliders RHIC and LHC

  12. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James A.; Curtiss, Larry A.

    2012-02-14

    The conversion of furfuryl alcohol (FAL) to levulinic acid over Amberlyst TM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5- trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  13. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Maldonado, Gretchen; Assary, Rajeev S.; Dumesic, James A; Curtiss, Larry A

    2012-01-01

    The conversion of furfuryl alcohol (FAL) to levulinic acid over AmberlystTM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5-trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  14. Proton-proton, anti-proton-anti-proton, proton-anti-proton correlations in Au+Au collisions measured by STAR at RHIC

    International Nuclear Information System (INIS)

    Gos, H.P.

    2007-01-01

    The analysis of two-particle correlations provides a powerful tool to study the properties of hot and dense matter created in heavy-ion collisions at ultra-relativistic energies. Applied to identical and non-identical hadron pairs, it makes the study of space-time evolution of the source in femtoscopic scale possible. Baryon femtoscopy allows extraction of the radii of produced sources which can be compared to those deduced from identical pion studies, providing complete information about the source characteristics. In this paper we present the correlation functions obtained for identical and non-identical baryon pairs of protons and anti-protons. The data were collected recently in Au+Au collisions at √(s NN )=62 GeV and √(s NN )=200 GeV by the STAR detector at the RHIC accelerator. We introduce corrections to the baryon-baryon correlations taking into account: residual correlations from weak decays, particle identification probability and the fraction of primary baryons. Finally we compare our results to theoretical predictions. (orig.)

  15. Solar proton fluxes since 1956

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1977-01-01

    The fluxes of protons emitted during solar flares since 1956 were evaluated. The depth-versus-activity profiles of 56 Co in several lunar rocks are consistent with the solar-proton fluxes detected by experiments on several satellites. Only about 20% of the solar-proton-induced activities of 22 Na and 55 Fe in lunar rocks from early Apollo missions were produced by protons emitted from the sun during solar cycle 20 (1965--1975). The depth-versus-activity data for these radionuclides in several lunar rocks were used to determine the fluxes of protons during solar cycle 19 (1954--1964). The average proton fluxes for cycle 19 are about five times those for both the last million years and for cycle 20. These solar-proton flux variations correlate with changes in sunspot activity

  16. External proton and Li beams; Haces externos de protones y litios

    Energy Technology Data Exchange (ETDEWEB)

    Schuff, Juan A; Burlon, Alejandro A; Debray, Mario E; Kesque, Jose M; Kreiner, Andres J; Stoliar, Pablo A; Naab, Fabian; Ozafran, Mabel J; Vazquez, Monica E [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Fisica; Policastro, Lucia L; Duran, Hebe; Molinari, Beatriz L; O' Connor, Silvia E; Saint-Martin, Maria L.G.; Palmieri, Monica; Bernaola, Omar A; Opezzo, Oscar J [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Radiobiologia; Mazal, A; Favaudon, F; Henry, Y [Institut Curie, 75 - Paris (France); Perez de la Hoz, A.; Somacal, Hector; Valda, Alejandro; Canevas, S; Ruffolo, M; Tasat, D R [Universidad Nacional de General San Martin, Villa Ballester (Argentina). Escuela de Ciencia y Tecnologia; Davidson, Miguel; Davidson, Jorge [Buenos Aires Univ. (Argentina). Dept. de Fisica; Delacroix, S; Nauraye, C; Brune, E; Gautier, C; Habrand, J L [Centre de Protontherapie, 91 - Orsay (France); Muhlmann, M C [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina)

    2000-07-01

    In the frame of a feasibility study to introduce proton therapy in Argentina in a collaborative agreement between the Physics and Radiobiology Departments of the National Atomic Energy Commission or Argentina and the Centre de Protontherapie de Orsay, France, external proton and Li beams were produced at the TANDAR accelerator in Buenos Aires. The specific aim of this work was to start radiobiology studies on cell cultures and small laboratory animals. In particular we seek to determine here the relative biological effectiveness, RBE, for proton and Li beams as a function of energy for different tumor and normal cell lines. The 24 MeV proton beam was diffused using a 25 {mu}m gold foil and extracted through a Kapton window to obtain a homogeneous field (constant to 95%) of about 7 cm in diameter. Measurements were carried out with quasi-monoenergetic beams (of 20.2 {+-} 0.07 MeV, 2.9 {+-} 0.10 MeV y 1.5 {+-} 0.1 MeV for protons and 21.4 {+-} 0.4 MeV for Lithium). Proton fluence and Bragg peaks were measured. The dose delivered in each case was monitored on-line with a calibrated transmission ionization chamber. Three cell lines PDV, PDVC 57 and V 79 (as a reference) were irradiated with {gamma}-rays, proton and lithium beams with linear energy transfer (LET) from 2 to 100 keV/{mu}m. RBE values in the range of 1.2-5.9 were obtained. In addition preliminary studies on chromosomal aberrations and viability of alveolar macrophages were carried out. (author)

  17. Studies of base pair sequence effects on DNA solvation based on all-atom molecular dynamics simulations.

    Science.gov (United States)

    Dixit, Surjit B; Mezei, Mihaly; Beveridge, David L

    2012-07-01

    Detailed analyses of the sequence-dependent solvation and ion atmosphere of DNA are presented based on molecular dynamics (MD) simulations on all the 136 unique tetranucleotide steps obtained by the ABC consortium using the AMBER suite of programs. Significant sequence effects on solvation and ion localization were observed in these simulations. The results were compared to essentially all known experimental data on the subject. Proximity analysis was employed to highlight the sequence dependent differences in solvation and ion localization properties in the grooves of DNA. Comparison of the MD-calculated DNA structure with canonical A- and B-forms supports the idea that the G/C-rich sequences are closer to canonical A- than B-form structures, while the reverse is true for the poly A sequences, with the exception of the alternating ATAT sequence. Analysis of hydration density maps reveals that the flexibility of solute molecule has a significant effect on the nature of observed hydration. Energetic analysis of solute-solvent interactions based on proximity analysis of solvent reveals that the GC or CG base pairs interact more strongly with water molecules in the minor groove of DNA that the AT or TA base pairs, while the interactions of the AT or TA pairs in the major groove are stronger than those of the GC or CG pairs. Computation of solvent-accessible surface area of the nucleotide units in the simulated trajectories reveals that the similarity with results derived from analysis of a database of crystallographic structures is excellent. The MD trajectories tend to follow Manning's counterion condensation theory, presenting a region of condensed counterions within a radius of about 17 A from the DNA surface independent of sequence. The GC and CG pairs tend to associate with cations in the major groove of the DNA structure to a greater extent than the AT and TA pairs. Cation association is more frequent in the minor groove of AT than the GC pairs. In general, the

  18. Proton-proton elastic scattering at ultrahigh energies

    International Nuclear Information System (INIS)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem

    1981-01-01

    Recent experimental results on proton-proton elastic scattering at high energies are discussed in the context of the comments by Chou and Yang. There does not appear to be any tendency that the experimental results would agree with the predictions of the geometrical model even at ultrahigh energies. The angular distribution structure as described by using the dipole pomeron is consistent with the experimental data at presently available high energies and predicts results quite different from the geometrical model. (author)

  19. On Distributions of Emission Sources and Speed-of-Sound in Proton-Proton (Proton-Antiproton Collisions

    Directory of Open Access Journals (Sweden)

    Li-Na Gao

    2015-01-01

    Full Text Available The revised (three-source Landau hydrodynamic model is used in this paper to study the (pseudorapidity distributions of charged particles produced in proton-proton and proton-antiproton collisions at high energies. The central source is assumed to contribute with a Gaussian function which covers the rapidity distribution region as wide as possible. The target and projectile sources are assumed to emit isotropically particles in their respective rest frames. The model calculations obtained with a Monte Carlo method are fitted to the experimental data over an energy range from 0.2 to 13 TeV. The values of the squared speed-of-sound parameter in different collisions are then extracted from the width of the rapidity distributions.

  20. Evaluation of the Induced Activity in Air by the External Proton Beam in the Target Room of the Proton Accelerator Facility of Proton Engineering Frontier Project

    International Nuclear Information System (INIS)

    Lee, Cheol Woo; Lee, Young Ouk; Cho, Young Sik; Ahn, So Hyun

    2007-01-01

    One of the radiological concerns is the worker's exposure level and the concentration of the radionuclides in the air after shutdown, for the safety analysis on the proton accelerator facility. Although, the primary radiation source is the protons accelerated up to design value, all of the radio-nuclide is produced from the secondary neutron and photon induced reaction in air. Because, the protons don't penetrate the acceleration equipment like the DTL tank wall or BTL wall, secondary neutrons or photons are only in the air in the accelerator tunnel building because of the short range of the proton in the materials. But, for the case of the target rooms, external proton beams are occasionally used in the various experiments. When these external proton beams travel through air from the end of the beam transport line to the target, they interact directly with air and produce activation products from the proton induced reaction. The external proton beam will be used in the target rooms in the accelerator facility of the Proton Accelerator Frontier Project (PEFP). In this study, interaction characteristics of the external proton beam with air and induced activity in air from the direct interaction of the proton beam were evaluated