Geometrical aspects of solvable two dimensional models
International Nuclear Information System (INIS)
Tanaka, K.
1989-01-01
It was noted that there is a connection between the non-linear two-dimensional (2D) models and the scalar curvature r, i.e., when r = -2 the equations of motion of the Liouville and sine-Gordon models were obtained. Further, solutions of various classical nonlinear 2D models can be obtained from the condition that the appropriate curvature two form Ω = 0, which suggests that these models are closely related. This relation is explored further in the classical version by obtaining the equations of motion from the evolution equations, the infinite number of conserved quantities, and the common central charge. The Poisson brackets of the solvable 2D models are specified by the Virasoro algebra. 21 refs
Gauge dependence and new kind of two-dimensional gravity theory with trivial quantum corrections
International Nuclear Information System (INIS)
Banin, A.T.; Shapiro, I.L.
1993-12-01
We search for the new kinds of classical potentials in two-dimensional induced gravity, which provide the triviality of the one-loop quantum corrections. First of all the gauge dependence of the effective potential is studied. The unique effective potential, introduced by Vilkovisly in 1984 is found to manifest the gauge dependence due to some unusual properties of the theory under consideration. Then we take the gauge of harmonical type, which provides the one-loop finiteness off shell, and then the solution for the required classical potential is found. (author). 35 refs
Two-dimensional quantum-corrected black hole in a finite size cavity
International Nuclear Information System (INIS)
Zaslavskii, O.B.
2004-01-01
We consider the gravitation-dilaton theory (not necessarily exactly solvable), whose potentials represent a generic linear combination of an exponential and linear functions of the dilaton. A black hole, arising in such theories, is supposed to be enclosed in a cavity, where it attains thermal equilibrium, whereas outside the cavity the field is in the Boulware state. We calculate quantum corrections to the Hawking temperature T H , with the contribution from the boundary taken into account. Vacuum polarization outside the shell tends to cool the system. We find that, for the shell to be in thermal equilibrium, it cannot be placed too close to the horizon. The quantum corrections to the mass due to vacuum polarization vanish in spite of nonzero quantum stresses. We discuss also the canonical boundary conditions and show that accounting for the finiteness of the system plays a crucial role in some theories (e.g., Callan-Giddings-Harvey-Strominger), where it enables us to define the stable canonical ensemble, whereas consideration in an infinite space would predict instability
g Algebra and two-dimensional quasiexactly solvable Hamiltonian ...
Indian Academy of Sciences (India)
Keywords. g2 algebra; quasiexactly solvable Hamiltonian; hidden algebra; Poschl–Teller potential. ... space of the polynomials, restricting to a linear transformation on this space, the associ- .... The operators L6 and L7 are the positive root.
Exactly solvable models of two-dimensional dilaton cosmology with quantum backreaction
International Nuclear Information System (INIS)
Zaslavskii, O B
2003-01-01
We consider a general approach to exactly solvable 2D dilaton cosmology with one-loop backreaction from conformal fields taken into account. It includes as particular cases previous models discussed in the literature. We list different types of solutions and investigate their properties for simple models, typical for string theory. We find a rather rich class of everywhere-regular solutions, which exist practically in every type of analysed solution. They exhibit different kinds of asymptotic behaviour in the past and future, including inflation, superinflation, deflation, power expansion or contraction. In particular, for some models the dS spacetime with a time-dependent dilaton field is the exact solution of the field equations. For some kinds of solution the weak-energy condition is violated independently of a specific model. We also find the solutions with a singularity which is situated in an infinite past (or future), so at any finite moment of a comoving time the universe is singularity-free. It is pointed out that for some models the spacetime may be everywhere regular even in spite of infinitely large quantum backreaction in an infinite past
Exactly solvable model of the two-dimensional electrical double layer.
Samaj, L; Bajnok, Z
2005-12-01
We consider equilibrium statistical mechanics of a simplified model for the ideal conductor electrode in an interface contact with a classical semi-infinite electrolyte, modeled by the two-dimensional Coulomb gas of pointlike unit charges in the stability-against-collapse regime of reduced inverse temperatures 0layer) carries some nonzero surface charge density. The model is mappable onto an integrable semi-infinite sine-Gordon theory with Dirichlet boundary conditions. The exact form-factor and boundary state information gained from the mapping provide asymptotic forms of the charge and number density profiles of electrolyte particles at large distances from the interface. The result for the asymptotic behavior of the induced electric potential, related to the charge density via the Poisson equation, confirms the validity of the concept of renormalized charge and the corresponding saturation hypothesis. It is documented on the nonperturbative result for the asymptotic density profile at a strictly nonzero beta that the Debye-Hückel beta-->0 limit is a delicate issue.
Czech Academy of Sciences Publication Activity Database
Kiguradze, I.; Šremr, Jiří
2011-01-01
Roč. 74, č. 17 (2011), s. 6537-6552 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear differential system * non-local boundary value problem * solvability Subject RIV: BA - General Mathematics Impact factor: 1.536, year: 2011 http://www.sciencedirect.com/science/article/pii/S0362546X11004573
Czech Academy of Sciences Publication Activity Database
Šremr, Jiří
2007-01-01
Roč. 132, č. 3 (2007), s. 263-295 ISSN 0862-7959 R&D Projects: GA ČR GP201/04/P183 Institutional research plan: CEZ:AV0Z10190503 Keywords : system of functional differential equations with monotone operators * initial value problem * unique solvability Subject RIV: BA - General Mathematics
Leading quantum correction to the Newtonian potential
International Nuclear Information System (INIS)
Donoghue, J.F.
1994-01-01
I argue that the leading quantum corrections, in powers of the energy or inverse powers of the distance, may be computed in quantum gravity through knowledge of only the low-energy structure of the theory. As an example, I calculate the leading quantum corrections to the Newtonian gravitational potential
Metrics with vanishing quantum corrections
International Nuclear Information System (INIS)
Coley, A A; Hervik, S; Gibbons, G W; Pope, C N
2008-01-01
We investigate solutions of the classical Einstein or supergravity equations that solve any set of quantum corrected Einstein equations in which the Einstein tensor plus a multiple of the metric is equated to a symmetric conserved tensor T μν (g αβ , ∂ τ g αβ , ∂ τ ∂ σ g αβ , ...,) constructed from sums of terms, the involving contractions of the metric and powers of arbitrary covariant derivatives of the curvature tensor. A classical solution, such as an Einstein metric, is called universal if, when evaluated on that Einstein metric, T μν is a multiple of the metric. A Ricci flat classical solution is called strongly universal if, when evaluated on that Ricci flat metric, T μν vanishes. It is well known that pp-waves in four spacetime dimensions are strongly universal. We focus attention on a natural generalization; Einstein metrics with holonomy Sim(n - 2) in which all scalar invariants are zero or constant. In four dimensions we demonstrate that the generalized Ghanam-Thompson metric is weakly universal and that the Goldberg-Kerr metric is strongly universal; indeed, we show that universality extends to all four-dimensional Sim(2) Einstein metrics. We also discuss generalizations to higher dimensions
Erratum: Quantum corrections and black hole spectroscopy
Jiang, Qing-Quan; Han, Yan; Cai, Xu
2012-06-01
In my paper [Qing-Quan Jiang, Yan Han, Xu Cai, Quantum corrections and black hole spectroscopy, JHEP 08 (2010) 049], there was an error in deriving the black hole spectroscopy. In this erratum, we attempt to rectify them.
Quantum corrections to Schwarzschild black hole
Energy Technology Data Exchange (ETDEWEB)
Calmet, Xavier; El-Menoufi, Basem Kamal [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)
2017-04-15
Using effective field theory techniques, we compute quantum corrections to spherically symmetric solutions of Einstein's gravity and focus in particular on the Schwarzschild black hole. Quantum modifications are covariantly encoded in a non-local effective action. We work to quadratic order in curvatures simultaneously taking local and non-local corrections into account. Looking for solutions perturbatively close to that of classical general relativity, we find that an eternal Schwarzschild black hole remains a solution and receives no quantum corrections up to this order in the curvature expansion. In contrast, the field of a massive star receives corrections which are fully determined by the effective field theory. (orig.)
International Nuclear Information System (INIS)
Anon.
1991-01-01
This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements
Quantum corrections to holographic mutual information
International Nuclear Information System (INIS)
Agón, Cesar A.; Faulkner, Thomas
2016-01-01
We compute the leading contribution to the mutual information (MI) of two disjoint spheres in the large distance regime for arbitrary conformal field theories (CFT) in any dimension. This is achieved by refining the operator product expansion method introduced by Cardy http://dx.doi.org/10.1088/1751-8113/46/28/285402. For CFTs with holographic duals the leading contribution to the MI at long distances comes from bulk quantum corrections to the Ryu-Takayanagi area formula. According to the FLM proposal http://dx.doi.org/10.1007/JHEP11(2013)074 this equals the bulk MI between the two disjoint regions spanned by the boundary spheres and their corresponding minimal area surfaces. We compute this quantum correction and provide in this way a non-trivial check of the FLM proposal.
Quantum corrections to holographic mutual information
Energy Technology Data Exchange (ETDEWEB)
Agón, Cesar A. [Martin Fisher School of Physics, Brandeis University,Waltham, MA 02453 (United States); Faulkner, Thomas [University of Illinois, Urbana-Champaign,Urbana, IL 61801-3080 (United States)
2016-08-22
We compute the leading contribution to the mutual information (MI) of two disjoint spheres in the large distance regime for arbitrary conformal field theories (CFT) in any dimension. This is achieved by refining the operator product expansion method introduced by Cardy http://dx.doi.org/10.1088/1751-8113/46/28/285402. For CFTs with holographic duals the leading contribution to the MI at long distances comes from bulk quantum corrections to the Ryu-Takayanagi area formula. According to the FLM proposal http://dx.doi.org/10.1007/JHEP11(2013)074 this equals the bulk MI between the two disjoint regions spanned by the boundary spheres and their corresponding minimal area surfaces. We compute this quantum correction and provide in this way a non-trivial check of the FLM proposal.
Quantum Corrections to the 'Atomistic' MOSFET Simulations
Asenov, Asen; Slavcheva, G.; Kaya, S.; Balasubramaniam, R.
2000-01-01
We have introduced in a simple and efficient manner quantum mechanical corrections in our 3D 'atomistic' MOSFET simulator using the density gradient formalism. We have studied in comparison with classical simulations the effect of the quantum mechanical corrections on the simulation of random dopant induced threshold voltage fluctuations, the effect of the single charge trapping on interface states and the effect of the oxide thickness fluctuations in decanano MOSFETs with ultrathin gate oxides. The introduction of quantum corrections enhances the threshold voltage fluctuations but does not affect significantly the amplitude of the random telegraph noise associated with single carrier trapping. The importance of the quantum corrections for proper simulation of oxide thickness fluctuation effects has also been demonstrated.
Quantum corrections to inflaton and curvaton dynamics
Energy Technology Data Exchange (ETDEWEB)
Markkanen, Tommi [Helsinki Institute of Physics and Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki (Finland); Tranberg, Anders, E-mail: tommi.markkanen@helsinki.fi, E-mail: anders.tranberg@nbi.dk [Niels Bohr International Academy and Discovery Center, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen (Denmark)
2012-11-01
We compute the fully renormalized one-loop effective action for two interacting and self-interacting scalar fields in FRW space-time. We then derive and solve the quantum corrected equations of motion both for fields that dominate the energy density (such as an inflaton) and fields that do not (such as a subdominant curvaton). In particular, we introduce quantum corrected Friedmann equations that determine the evolution of the scale factor. We find that in general, gravitational corrections are negligible for the field dynamics. For the curvaton-type fields this leaves only the effect of the flat-space Coleman-Weinberg-type effective potential, and we find that these can be significant. For the inflaton case, both the corrections to the potential and the Friedmann equations can lead to behaviour very different from the classical evolution. Even to the point that inflation, although present at tree level, can be absent at one-loop order.
Electromagnetic fields with vanishing quantum corrections
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello; Pravda, Vojtěch
2018-01-01
Roč. 779, 10 April (2018), s. 393-395 ISSN 0370-2693 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : nonlinear electrodynamics * quantum corrections Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.807, year: 2016 https://www. science direct.com/ science /article/pii/S0370269318300327?via%3Dihub
Electromagnetic fields with vanishing quantum corrections
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello; Pravda, Vojtěch
2018-01-01
Roč. 779, 10 April (2018), s. 393-395 ISSN 0370-2693 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : nonlinear electrodynamics * quantum corrections Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.807, year: 2016 https://www.sciencedirect.com/science/article/pii/S0370269318300327?via%3Dihub
Quantum corrections to the gravitational backreaction
Energy Technology Data Exchange (ETDEWEB)
Kuntz, Ibere [University of Sussex, Physics and Astronomy, Brighton (United Kingdom)
2018-01-15
Effective field theory techniques are used to study the leading order quantum corrections to the gravitational wave backreaction. The effective stress-energy tensor is calculated and it is shown that it has a non-vanishing trace that contributes to the cosmological constant. By comparing the result obtained with LIGO's data, the first bound on the amplitude of the massive mode is found: ε < 1.4 x 10{sup -33}. (orig.)
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
International Nuclear Information System (INIS)
Schroer, Bert; Freie Universitaet, Berlin
2005-02-01
It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)
Two-dimensional ferroelectrics
Energy Technology Data Exchange (ETDEWEB)
Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)
2000-03-31
The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)
International Nuclear Information System (INIS)
Ushveridze, A.G.
1992-01-01
This paper reports that quasi-exactly solvable (QES) models realize principally new type of exact solvability in quantum physics. These models are distinguished by the fact that the Schrodinger equations for them can be solved exactly only for certain limited parts of the spectrum, but not for the whole spectrum. They occupy an intermediate position between the exactly the authors solvable (ES) models and all the others. The number of energy levels for which the spectral problems can be solved exactly refer below to as the order of QES model. From the mathematical point of view the existence of QES models is not surprising. Indeed, if the term exact solvability expresses the possibility of total explicit diagonalization of infinite Hamiltonian matrix, then the term quasi-exact solvability implies the situation when the Hamiltonian matrix can be reduced explicitly to the block-diagonal form with one of the appearing blocks being finite
Quasi-integrability and two-dimensional QCD
International Nuclear Information System (INIS)
Abdalla, E.; Mohayaee, R.
1996-10-01
The notion of integrability in two-dimensional QCD is discussed. We show that in spite of an infinite number of conserved charges, particle production is not entirely suppressed. This phenomenon, which we call quasi-integrability, is explained in terms of quantum corrections to the combined algebra of higher-conserved and spectrum-generating currents. We predict the qualitative form of particle production probabilities and verify that they are in agreement with numerical data. We also discuss four-dimensional self-dual Yang-Mills theory in the light of our results. (author). 25 refs, 4 figs, 1 tab
Semiclassical analysis of quasiexact solvability
International Nuclear Information System (INIS)
Bender, C.M.; Dunne, G.V.; Moshe, M.
1997-01-01
Higher-order WKB methods are used to investigate the border between the solvable and insolvable portions of the spectrum of quasiexactly solvable quantum-mechanical potentials. The analysis reveals scaling and factorization properties that are central to quasiexact solvability. These two properties define a new class of semiclassically quasiexactly solvable potentials. copyright 1997 The American Physical Society
Quantum-corrected transient analysis of plasmonic nanostructures
Uysal, Ismail Enes; Ulku, Huseyin Arda; Sajjad, Muhammad; Singh, Nirpendra; Schwingenschlö gl, Udo; Bagci, Hakan
2017-01-01
A time domain surface integral equation (TD-SIE) solver is developed for quantum-corrected analysis of transient electromagnetic field interactions on plasmonic nanostructures with sub-nanometer gaps. “Quantum correction” introduces an auxiliary
Two-dimensional gauge model with vector U(1) and axial-vector U(1) symmetries
International Nuclear Information System (INIS)
Watabiki, Y.
1989-01-01
We have succeeded in constructing a two-dimensional gauge model with both vector U(1) and axial-vector U(1) symmetries. This model is exactly solvable. The Schwinger term vanishes in this model as a consequence of the above symmetries, and negative-norm states appear. However, the norms of physical states are always positive semidefinite due to the gauge symmetries
Two-Dimensional One-Component Plasma on Flamm's Paraboloid
Fantoni, Riccardo; Téllez, Gabriel
2008-11-01
We study the classical non-relativistic two-dimensional one-component plasma at Coulomb coupling Γ=2 on the Riemannian surface known as Flamm's paraboloid which is obtained from the spatial part of the Schwarzschild metric. At this special value of the coupling constant, the statistical mechanics of the system are exactly solvable analytically. The Helmholtz free energy asymptotic expansion for the large system has been found. The density of the plasma, in the thermodynamic limit, has been carefully studied in various situations.
Two-dimensional NMR spectrometry
International Nuclear Information System (INIS)
Farrar, T.C.
1987-01-01
This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2
Quasi-two-dimensional holography
International Nuclear Information System (INIS)
Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.
1980-01-01
The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de
Quasinormal Modes of a Quantum-Corrected Schwarzschild Black ...
Indian Academy of Sciences (India)
Chunyan Wang
2017-11-27
Nov 27, 2017 ... Abstract. In this work, we investigate the electromagnetic perturbation around a quantum-corrected. Schwarzschild black hole. The complex frequencies of the quasinormal modes are evaluated by the third- order WKB approximation. The numerical results obtained showed that the complex frequencies ...
Quantum corrections to nonlinear ion acoustic wave with Landau damping
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)
2014-07-15
Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.
Two-dimensional metamaterial optics
International Nuclear Information System (INIS)
Smolyaninov, I I
2010-01-01
While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes
Two-dimensional flexible nanoelectronics
Akinwande, Deji; Petrone, Nicholas; Hone, James
2014-12-01
2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.
Two-dimensional topological photonics
Khanikaev, Alexander B.; Shvets, Gennady
2017-12-01
Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.
Two-dimensional thermofield bosonization
International Nuclear Information System (INIS)
Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.
2005-01-01
The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized
Two-dimensional critical phenomena
International Nuclear Information System (INIS)
Saleur, H.
1987-09-01
Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
International Nuclear Information System (INIS)
Silagadze, Z.K.
2007-01-01
Two-dimensional generalization of the original peak finding algorithm suggested earlier is given. The ideology of the algorithm emerged from the well-known quantum mechanical tunneling property which enables small bodies to penetrate through narrow potential barriers. We merge this 'quantum' ideology with the philosophy of Particle Swarm Optimization to get the global optimization algorithm which can be called Quantum Swarm Optimization. The functionality of the newborn algorithm is tested on some benchmark optimization problems
Quantum-corrected transient analysis of plasmonic nanostructures
Uysal, Ismail Enes
2017-03-08
A time domain surface integral equation (TD-SIE) solver is developed for quantum-corrected analysis of transient electromagnetic field interactions on plasmonic nanostructures with sub-nanometer gaps. “Quantum correction” introduces an auxiliary tunnel to support the current path that is generated by electrons tunneled between the nanostructures. The permittivity of the auxiliary tunnel and the nanostructures is obtained from density functional theory (DFT) computations. Electromagnetic field interactions on the combined structure (nanostructures plus auxiliary tunnel connecting them) are computed using a TD-SIE solver. Time domain samples of the permittivity and the Green function required by this solver are obtained from their frequency domain samples (generated from DFT computations) using a semi-analytical method. Accuracy and applicability of the resulting quantum-corrected solver scheme are demonstrated via numerical examples.
GUP parameter from quantum corrections to the Newtonian potential
Energy Technology Data Exchange (ETDEWEB)
Scardigli, Fabio, E-mail: fabio@phys.ntu.edu.tw [Dipartimento di Matematica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy); Department of Applied Mathematics, University of Waterloo, Ontario N2L 3G1 (Canada); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Lambiase, Gaetano, E-mail: lambiase@sa.infn.it [Dipartimento di Fisica “E.R. Caianiello”, Universita' di Salerno, I-84084 Fisciano (Italy); INFN – Gruppo Collegato di Salerno (Italy); Vagenas, Elias C., E-mail: elias.vagenas@ku.edu.kw [Theoretical Physics Group, Department of Physics, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait)
2017-04-10
We propose a technique to compute the deformation parameter of the generalized uncertainty principle by using the leading quantum corrections to the Newtonian potential. We just assume General Relativity as theory of Gravitation, and the thermal nature of the GUP corrections to the Hawking spectrum. With these minimal assumptions our calculation gives, to first order, a specific numerical result. The physical meaning of this value is discussed, and compared with the previously obtained bounds on the generalized uncertainty principle deformation parameter.
Quantum corrections for spinning particles in de Sitter
Energy Technology Data Exchange (ETDEWEB)
Fröb, Markus B. [Department of Mathematics, University of York, Heslington, York, YO10 5DD (United Kingdom); Verdaguer, Enric, E-mail: mbf503@york.ac.uk, E-mail: enric.verdaguer@ub.edu [Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICC), Universitat de Barcelona (UB), C/ Martí i Franquès 1, 08028 Barcelona (Spain)
2017-04-01
We compute the one-loop quantum corrections to the gravitational potentials of a spinning point particle in a de Sitter background, due to the vacuum polarisation induced by conformal fields in an effective field theory approach. We consider arbitrary conformal field theories, assuming only that the theory contains a large number N of fields in order to separate their contribution from the one induced by virtual gravitons. The corrections are described in a gauge-invariant way, classifying the induced metric perturbations around the de Sitter background according to their behaviour under transformations on equal-time hypersurfaces. There are six gauge-invariant modes: two scalar Bardeen potentials, one transverse vector and one transverse traceless tensor, of which one scalar and the vector couple to the spinning particle. The quantum corrections consist of three different parts: a generalisation of the flat-space correction, which is only significant at distances of the order of the Planck length; a constant correction depending on the undetermined parameters of the renormalised effective action; and a term which grows logarithmically with the distance from the particle. This last term is the most interesting, and when resummed gives a modified power law, enhancing the gravitational force at large distances. As a check on the accuracy of our calculation, we recover the linearised Kerr-de Sitter metric in the classical limit and the flat-space quantum correction in the limit of vanishing Hubble constant.
Two dimensional infinite conformal symmetry
International Nuclear Information System (INIS)
Mohanta, N.N.; Tripathy, K.C.
1993-01-01
The invariant discontinuous (discrete) conformal transformation groups, namely the Kleinian and Fuchsian groups Gamma (with an arbitrary signature) of H (the Poincare upper half-plane l) and the unit disc Delta are explicitly constructed from the fundamental domain D. The Riemann surface with signatures of Gamma and conformally invariant automorphic forms (functions) with Peterson scalar product are discussed. The functor, where the category of complex Hilbert spaces spanned by the space of cusp forms constitutes the two dimensional conformal field theory. (Author) 7 refs
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
-dimensional separation space. Optimization of gradients in online RP×RP is more difficult than in normal HPLC as a result of the increased number of parameters and their influence on each other. Modeling the coverage of the compounds across the two-dimensional chromatogram as a result of a change in gradients could...... be used for optimization purposes, and reduce the time spend on optimization. In this thesis (chapter 6), and manuscript B, a measure of the coverage of the compounds in the twodimensional separation space is defined. It is then shown that this measure can be modeled for changes in the gradient in both...
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two-dimensional capillary origami
International Nuclear Information System (INIS)
Brubaker, N.D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two dimensional solid state NMR
International Nuclear Information System (INIS)
Kentgens, A.P.M.
1987-01-01
This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs
Two-dimensional turbulent convection
Mazzino, Andrea
2017-11-01
We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].
Quantum theory of two-dimensional generalized Toda lattice on bounded spatial interval
International Nuclear Information System (INIS)
Leznov, A.N.
1982-01-01
The quantization method of exactly solvable dynamical systems worked out in another paper is applied to a two-dimensional model described by the equations of generalized Toda lattice with a periodicity condition over spatial variable. The Heisenberg operators of the model are finite polynomials over the coupling constant g 2 , whose coefficients functionally depend on operators of noninteracting fields. The model has a direct relation with the string theories and reduces formally when L→infinity to two-dimensional quantum field theory described by the equations of generalized Toda lattice the formal solution of which has been found in Refs
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
GUP parameter from quantum corrections to the Newtonian potential
Directory of Open Access Journals (Sweden)
Fabio Scardigli
2017-04-01
Full Text Available We propose a technique to compute the deformation parameter of the generalized uncertainty principle by using the leading quantum corrections to the Newtonian potential. We just assume General Relativity as theory of Gravitation, and the thermal nature of the GUP corrections to the Hawking spectrum. With these minimal assumptions our calculation gives, to first order, a specific numerical result. The physical meaning of this value is discussed, and compared with the previously obtained bounds on the generalized uncertainty principle deformation parameter.
Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material
DEFF Research Database (Denmark)
Christensen, Thomas; Yan, Wei; Jauho, Antti-Pekka
2017-01-01
The classical treatment of plasmonics is insufficient at the nanometer-scale due to quantum mechanical surface phenomena. Here, an extension of the classical paradigm is reported which rigorously remedies this deficiency through the incorporation of first-principles surface response functions......-the Feibelman d parameters-in general geometries. Several analytical results for the leading-order plasmonic quantum corrections are obtained in a first-principles setting; particularly, a clear separation of the roles of shape, scale, and material is established. The utility of the formalism is illustrated...
Hall Conductivity in a Quasi-Two-Dimensional Disordered Electron System
Institute of Scientific and Technical Information of China (English)
YANG Yong-Hong; WANG Yong-Gang; LIU Mei
2002-01-01
By making use of the diagrammatic techniques in perturbation theory,we have investigated the Hall effect in a quasi-two-dimensional disordered electron system.In the weakly localized regime,the analytical expression for quantum correction to Hall conductivity has been obtained using the Kubo formalism and quasiclassical approximation.The relevant dimensional crossover behavior from three dimensions to two dimensions with decreasing the interlayer hopping energy is discussed.The quantum interference effect is shown to have a vanishing correction t,o the Hall coefficient.
Equilibrium: two-dimensional configurations
International Nuclear Information System (INIS)
Anon.
1987-01-01
In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7
Beyond WKB quantum corrections to Hamilton-Jacobi theory
International Nuclear Information System (INIS)
Jurisch, Alexander
2007-01-01
In this paper, we develop quantum mechanics of quasi-one-dimensional systems upon the framework of the quantum-mechanical Hamilton-Jacobi theory. We will show that the Schroedinger point of view and the Hamilton-Jacobi point of view are fully equivalent in their description of physical systems, but differ in their descriptive manner. As a main result of this, a wavefunction in Hamilton-Jacobi theory can be decomposed into travelling waves in any point in space, not only asymptotically. Using the quasi-linearization technique, we derive quantum correction functions in every order of h-bar. The quantum correction functions will remove the turning-point singularity that plagues the WKB-series expansion already in zeroth order and thus provide an extremely good approximation to the full solution of the Schroedinger equation. In the language of quantum action it is also possible to elegantly solve the connection problem without asymptotic approximations. The use of quantum action further allows us to derive an equation by which the Maslov index is directly calculable without any approximations. Stationary quantum trajectories will also be considered and thoroughly discussed
The Conical Singularity and Quantum Corrections to Entropy of Black Hole
International Nuclear Information System (INIS)
Solodukhin, S.N.
1994-01-01
It is well known that at the temperature different from the Hawking temperature there appears a conical singularity in the Euclidean classical solution of gravitational equations. The method of regularizing the cone by regular surface is used to determine the curvature tensors for such metrics. It allows to calculate the one-loop matter effective action and the corresponding one-loop quantum corrections to the entropy in the framework of the path integral approach of Gibbons and Hawking. The two-dimensional and four-dimensional cases are considered. The entropy of the Rindler space is shown to be divergent logarithmically in two dimensions and quadratically in four dimensions. It corresponds to the results obtained earlier. For the eternal 2D black hole we observe finite, dependent on the mass, correction to the entropy. The entropy of the 4D Schwarzschild black hole is shown to possess an additional (in comparison to the 4D Rindler space) logarithmically divergent correction which does not vanish in the limit of infinite mass of the black hole. We argue that infinities of the entropy in four dimensions are renormalized with the renormalization of the gravitational coupling. (author). 35 refs
Quantum corrections for the cubic Galileon in the covariant language
Energy Technology Data Exchange (ETDEWEB)
Saltas, Ippocratis D. [Institute of Astrophysics and Space Sciences, Faculty of Sciences, Campo Grande, PT1749-016 Lisboa (Portugal); Vitagliano, Vincenzo, E-mail: isaltas@fc.ul.pt, E-mail: vincenzo.vitagliano@ist.utl.pt [Multidisciplinary Center for Astrophysics and Department of Physics, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2017-05-01
We present for the first time an explicit exposition of quantum corrections within the cubic Galileon theory including the effect of quantum gravity, in a background- and gauge-invariant manner, employing the field-reparametrisation approach of the covariant effective action at 1-loop. We show that the consideration of gravitational effects in combination with the non-linear derivative structure of the theory reveals new interactions at the perturbative level, which manifest themselves as higher-operators in the associated effective action, which' relevance is controlled by appropriate ratios of the cosmological vacuum and the Galileon mass scale. The significance and concept of the covariant approach in this context is discussed, while all calculations are explicitly presented.
On quantum corrected Kahler potentials in F-theory
García-Etxebarria, Iñaki; Savelli, Raffaele; Shiu, Gary
2013-01-01
We work out the exact in string coupling and perturbatively exact in \\alpha' result for the vector multiplet moduli K\\"ahler potential in a specific N=2 compactification of F-theory. The well-known correction cubic in {\\alpha}' is absent, but there is a rich structure of corrections at all even orders in \\alpha'. Moreover, each of these orders independently displays an SL(2,Z) invariant set of corrections in the string coupling. This generalizes earlier findings to the case of a non-trivial elliptic fibration. Our results pave the way for the analysis of quantum corrections in the more complicated N=1 context, and may have interesting implications for the study of moduli stabilization in string theory.
Quantum corrections to conductivity in graphene with vacancies
Araujo, E. N. D.; Brant, J. C.; Archanjo, B. S.; Medeiros-Ribeiro, G.; Alves, E. S.
2018-06-01
In this work, different regions of a graphene device were exposed to a 30 keV helium ion beam creating a series of alternating strips of vacancy-type defects and pristine graphene. From magnetoconductance measurements as function of temperature, density of carriers and density of strips we show that the electron-electron interaction is important to explain the logarithmic quantum corrections to the Drude conductivity in graphene with vacancies. It is known that vacancies in graphene behave as local magnetic moments that interact with the conduction electrons and leads to a logarithmic correction to the conductance through the Kondo effect. However, our work shows that it is necessary to account for the non-homogeneity of the sample to avoid misinterpretations about the Kondo physics due the difficulties in separating the electron-electron interaction from the Kondo effect.
Separation of attractors in 1-modulus quantum corrected special geometry
Bellucci, S; Marrani, A; Shcherbakov, A
2008-01-01
We study the solutions to the N=2, d=4 Attractor Equations in a dyonic, extremal, static, spherically symmetric and asymptotically flat black hole background, in the simplest case of perturbative quantum corrected cubic Special Kahler geometry consistent with continuous axion-shift symmetry, namely in the 1-modulus Special Kahler geometry described (in a suitable special symplectic coordinate) by the holomorphic Kahler gauge-invariant prepotential F=t^3+i*lambda, with lambda real. By performing computations in the ``magnetic'' charge configuration, we find evidence for interesting phenomena (absent in the classical limit of vanishing lambda). Namely, for a certain range of the quantum parameter lambda we find a ``splitting'' of attractors, i.e. the existence of multiple solutions to the Attractor Equations for fixed supporting charge configuration. This corresponds to the existence of ``area codes'' in the radial evolution of the scalar t, determined by the various disconnected regions of the moduli space, wh...
Loop quantum corrected Einstein Yang-Mills black holes
Protter, Mason; DeBenedictis, Andrew
2018-05-01
In this paper, we study the homogeneous interiors of black holes possessing SU(2) Yang-Mills fields subject to corrections inspired by loop quantum gravity. The systems studied possess both magnetic and induced electric Yang-Mills fields. We consider the system of equations both with and without Wilson loop corrections to the Yang-Mills potential. The structure of the Yang-Mills Hamiltonian, along with the restriction to homogeneity, allows for an anomaly-free effective quantization. In particular, we study the bounce which replaces the classical singularity and the behavior of the Yang-Mills fields in the quantum corrected interior, which possesses topology R ×S2 . Beyond the bounce, the magnitude of the Yang-Mills electric field asymptotically grows monotonically. This results in an ever-expanding R sector even though the two-sphere volume is asymptotically constant. The results are similar with and without Wilson loop corrections on the Yang-Mills potential.
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Gravitational quantum corrections in warped supersymmetric brane worlds
International Nuclear Information System (INIS)
Gregoire, T.; Rattazzi, R.; Scrucca, C.A.; Strumia, A.; Trincherini, E.
2005-01-01
We study gravitational quantum corrections in supersymmetric theories with warped extra dimensions. We develop for this a superfield formalism for linearized gauged supergravity. We show that the 1-loop effective Kahler potential is a simple functional of the KK spectrum in the presence of generic localized kinetic terms at the two branes. We also present a simple understanding of our results by showing that the leading matter effects are equivalent to suitable displacements of the branes. We then apply this general result to compute the gravity-mediated universal soft mass m 0 2 in models where the visible and the hidden sectors are sequestered at the two branes. We find that the contributions coming from radion mediation and brane-to-brane mediation are both negative in the minimal set-up, but the former can become positive if the gravitational kinetic term localized at the hidden brane has a sizable coefficient. We then compare the features of the two extreme cases of flat and very warped geometry, and give an outlook on the building of viable models
Piezoelectricity in Two-Dimensional Materials
Wu, Tao; Zhang, Hua
2015-01-01
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards
Construction of two-dimensional quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Klimek, S.; Kondracki, W.
1987-12-01
We present a sketch of the construction of the functional measure for the SU(2) quantum chromodynamics with one generation of fermions in two-dimensional space-time. The method is based on a detailed analysis of Wilson loops.
Development of Two-Dimensional NMR
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...
Phase transitions in two-dimensional systems
International Nuclear Information System (INIS)
Salinas, S.R.A.
1983-01-01
Some experiences are related using synchrotron radiation beams, to characterize solid-liquid (fusion) and commensurate solid-uncommensurate solid transitions in two-dimensional systems. Some ideas involved in the modern theories of two-dimensional fusion are shortly exposed. The systems treated consist of noble gases (Kr,Ar,Xe) adsorbed in the basal plane of graphite and thin films formed by some liquid crystal shells. (L.C.) [pt
Conditionally solvable path integral problems
International Nuclear Information System (INIS)
Grosche, C.
1995-05-01
Some specific conditionally exactly solvable potentials are discussed within the path integral formalism. They generalize the usually known potentials by the incorporation of a fractional power behaviour and strongly anharmonic terms. We find four different kinds of such potentials, the first is related to the Coulomb potential, the second is an anharmonic confinement potential, and the third and the fourth are related to the Manning-Rosen potential. (orig.)
Non-perturbative treatment of relativistic quantum corrections in large Z atoms
International Nuclear Information System (INIS)
Dietz, K.; Weymans, G.
1983-09-01
Renormalised g-Hartree-Dirac equations incorporating Dirac sea contributions are derived. Their implications for the non-perturbative, selfconsistent calculation of quantum corrections in large Z atoms are discussed. (orig.)
Two-dimensional nuclear magnetic resonance spectroscopy
International Nuclear Information System (INIS)
Bax, A.; Lerner, L.
1986-01-01
Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Equivalence of two-dimensional gravities
International Nuclear Information System (INIS)
Mohammedi, N.
1990-01-01
The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given
Analytical simulation of two dimensional advection dispersion ...
African Journals Online (AJOL)
The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...
Analytical Simulation of Two Dimensional Advection Dispersion ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly...
Stability of two-dimensional vorticity filaments
International Nuclear Information System (INIS)
Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.
2004-01-01
We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability
Two-Dimensional Motions of Rockets
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Conformal invariance and two-dimensional physics
International Nuclear Information System (INIS)
Zuber, J.B.
1993-01-01
Actually, physicists and mathematicians are very interested in conformal invariance: geometric transformations which keep angles. This symmetry is very important for two-dimensional systems as phase transitions, string theory or node mathematics. In this article, the author presents the conformal invariance and explains its usefulness
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar...
Two-dimensional membranes in motion
Davidovikj, D.
2018-01-01
This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research
Extended Polymorphism of Two-Dimensional Material
Yoshida, Masaro; Ye, Jianting; Zhang, Yijin; Imai, Yasuhiko; Kimura, Shigeru; Fujiwara, Akihiko; Nishizaki, Terukazu; Kobayashi, Norio; Nakano, Masaki; Iwasa, Yoshihiro
When controlling electronic properties of bulk materials, we usually assume that the basic crystal structure is fixed. However, in two-dimensional (2D) materials, atomic structure or to functionalize their properties. Various polymorphs can exist in transition metal dichalcogenides (TMDCs) from
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Universality class of the two-dimensional polymer collapse transition
Nahum, Adam
2016-05-01
The nature of the θ point for a polymer in two dimensions has long been debated, with a variety of candidates put forward for the critical exponents. This includes those derived by Duplantier and Saleur for an exactly solvable model. We use a representation of the problem via the CPN -1σ model in the limit N →1 to determine the stability of this critical point. First we prove that the Duplantier-Saleur (DS) critical exponents are robust, so long as the polymer does not cross itself: They can arise in a generic lattice model and do not require fine-tuning. This resolves a longstanding theoretical question. We also address an apparent paradox: Two different lattice models, apparently both in the DS universality class, show different numbers of relevant perturbations, apparently leading to contradictory conclusions about the stability of the DS exponents. We explain this in terms of subtle differences between the two models, one of which is fine-tuned (and not strictly in the DS universality class). Next we allow the polymer to cross itself, as appropriate, e.g., to the quasi-two-dimensional case. This introduces an additional independent relevant perturbation, so we do not expect the DS exponents to apply. The exponents in the case with crossings will be those of the generic tricritical O (n ) model at n =0 and different from the case without crossings. We also discuss interesting features of the operator content of the CPN -1 model. Simple geometrical arguments show that two operators in this field theory, with very different symmetry properties, have the same scaling dimension for any value of N (or, equivalently, any value of the loop fugacity). Also we argue that for any value of N the CPN -1 model has a marginal odd-parity operator that is related to the winding angle.
Marinescu, D. C.
2017-09-01
We evaluate the quantum corrections to the conductivity of a two-dimensional electron system with competing Rashba (R) and linear and cubic Dresselhaus (D) spin-orbit interactions in the presence of an in-plane magnetic field B . Within a perturbative approximation, we investigate the interplay between the spin-orbit coupling and the magnetic field in determining the transport regime in two different limiting scenarios: when only one of the linear terms, either Rashba or Dresselhaus, dominates, and at equal linear couplings, when the cubic Dresselhaus breaks the spin symmetry. In each instance, we find that for B higher than a critical value, the antilocalization correction is suppressed and the effective dephasing time saturates to a constant value determined only by the spin-orbit interaction. At equal R-D linear couplings, this value is directly proportional with the cubic Dresselhaus contribution. In the same regime, the magnetoconductivity is expressed as a simple logarithmic function dependent only on the cubic Dresselhaus constant.
Two-dimensional confinement of heavy fermions
International Nuclear Information System (INIS)
Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito
2010-01-01
Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)
Two-dimensional sensitivity calculation code: SENSETWO
International Nuclear Information System (INIS)
Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.
1979-05-01
A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Toward two-dimensional search engines
International Nuclear Information System (INIS)
Ermann, L; Shepelyansky, D L; Chepelianskii, A D
2012-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)
Acoustic phonon emission by two dimensional plasmons
International Nuclear Information System (INIS)
Mishonov, T.M.
1990-06-01
Acoustic wave emission of the two dimensional plasmons in a semiconductor or superconductor microstructure is investigated by using the phenomenological deformation potential within the jellium model. The plasmons are excited by the external electromagnetic (e.m.) field. The power conversion coefficient of e.m. energy into acoustic wave energy is also estimated. It is shown, the coherent transformation has a sharp resonance at the plasmon frequency of the two dimensional electron gas (2DEG). The incoherent transformation of the e.m. energy is generated by ohmic dissipation of 2DEG. The method proposed for coherent phonon beam generation can be very effective for high mobility 2DEG and for thin superconducting layers if the plasmon frequency ω is smaller than the superconducting gap 2Δ. (author). 21 refs, 1 fig
Confined catalysis under two-dimensional materials
Li, Haobo; Xiao, Jianping; Fu, Qiang; Bao, Xinhe
2017-01-01
Small spaces in nanoreactors may have big implications in chemistry, because the chemical nature of molecules and reactions within the nanospaces can be changed significantly due to the nanoconfinement effect. Two-dimensional (2D) nanoreactor formed under 2D materials can provide a well-defined model system to explore the confined catalysis. We demonstrate a general tendency for weakened surface adsorption under the confinement of graphene overlayer, illustrating the feasible modulation of su...
Two-Dimensional Extreme Learning Machine
Directory of Open Access Journals (Sweden)
Bo Jia
2015-01-01
(BP networks. However, like many other methods, ELM is originally proposed to handle vector pattern while nonvector patterns in real applications need to be explored, such as image data. We propose the two-dimensional extreme learning machine (2DELM based on the very natural idea to deal with matrix data directly. Unlike original ELM which handles vectors, 2DELM take the matrices as input features without vectorization. Empirical studies on several real image datasets show the efficiency and effectiveness of the algorithm.
Superintegrability on the two dimensional hyperboloid
International Nuclear Information System (INIS)
Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr
1998-01-01
This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
Mechanical exfoliation of two-dimensional materials
Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping
2018-06-01
Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.
The effect of quantum correction on plasma electron heating in ultraviolet laser interaction
Energy Technology Data Exchange (ETDEWEB)
Zare, S.; Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir; Anvari, A. [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Yazdani, E. [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)
2015-04-14
The interaction of the sub-picosecond UV laser in sub-relativistic intensities with deuterium is investigated. At high plasma temperatures, based on the quantum correction in the collision frequency, the electron heating and the ion block generation in plasma are studied. It is found that due to the quantum correction, the electron heating increases considerably and the electron temperature uniformly reaches up to the maximum value of 4.91 × 10{sup 7 }K. Considering the quantum correction, the electron temperature at the laser initial coupling stage is improved more than 66.55% of the amount achieved in the classical model. As a consequence, by the modified collision frequency, the ion block is accelerated quicker with higher maximum velocity in comparison with the one by the classical collision frequency. This study proves the necessity of considering a quantum mechanical correction in the collision frequency at high plasma temperatures.
Exactly solvable birth and death processes
International Nuclear Information System (INIS)
Sasaki, Ryu
2009-01-01
Many examples of exactly solvable birth and death processes, a typical stationary Markov chain, are presented together with the explicit expressions of the transition probabilities. They are derived by similarity transforming exactly solvable 'matrix' quantum mechanics, which is recently proposed by Odake and the author [S. Odake and R. Sasaki, J. Math. Phys. 49, 053503 (2008)]. The (q-) Askey scheme of hypergeometric orthogonal polynomials of a discrete variable and their dual polynomials play a central role. The most generic solvable birth/death rates are rational functions of q x (with x being the population) corresponding to the q-Racah polynomial.
Vector (two-dimensional) magnetic phenomena
International Nuclear Information System (INIS)
Enokizono, Masato
2002-01-01
In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)
Two-dimensional Semiconductor-Superconductor Hybrids
DEFF Research Database (Denmark)
Suominen, Henri Juhani
This thesis investigates hybrid two-dimensional semiconductor-superconductor (Sm-S) devices and presents a new material platform exhibiting intimate Sm-S coupling straight out of the box. Starting with the conventional approach, we investigate coupling superconductors to buried quantum well....... To overcome these issues we integrate the superconductor directly into the semiconducting material growth stack, depositing it in-situ in a molecular beam epitaxy system under high vacuum. We present a number of experiments on these hybrid heterostructures, demonstrating near unity interface transparency...
Optimized two-dimensional Sn transport (BISTRO)
International Nuclear Information System (INIS)
Palmiotti, G.; Salvatores, M.; Gho, C.
1990-01-01
This paper reports on an S n two-dimensional transport module developed for the French fast reactor code system CCRR to optimize algorithms in order to obtain the best performance in terms of computational time. A form of diffusion synthetic acceleration was adopted, and a special effort was made to solve the associated diffusion equation efficiently. The improvements in the algorithms, along with the use of an efficient programming language, led to a significant gain in computational time with respect to the DOT code
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Airy beams on two dimensional materials
Imran, Muhammad; Li, Rujiang; Jiang, Yuyu; Lin, Xiao; Zheng, Bin; Dehdashti, Shahram; Xu, Zhiwei; Wang, Huaping
2018-05-01
We propose that quasi-transverse-magnetic (quasi-TM) Airy beams can be supported on two dimensional (2D) materials. By taking graphene as a typical example, the solution of quasi-TM Airy beams is studied under the paraxial approximation. The analytical field intensity in a bilayer graphene-based planar plasmonic waveguide is confirmed by the simulation results. Due to the tunability of the chemical potential of graphene, the self-accelerating behavior of the quasi-TM Airy beam can be steered effectively. 2D materials thus provide a good platform to investigate the propagation of Airy beams.
Two-dimensional heat flow apparatus
McDougall, Patrick; Ayars, Eric
2014-06-01
We have created an apparatus to quantitatively measure two-dimensional heat flow in a metal plate using a grid of temperature sensors read by a microcontroller. Real-time temperature data are collected from the microcontroller by a computer for comparison with a computational model of the heat equation. The microcontroller-based sensor array allows previously unavailable levels of precision at very low cost, and the combination of measurement and modeling makes for an excellent apparatus for the advanced undergraduate laboratory course.
Decoherence in two-dimensional quantum walks
International Nuclear Information System (INIS)
Oliveira, A. C.; Portugal, R.; Donangelo, R.
2006-01-01
We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-link-type noise. In this type of decoherence, the links of the lattice are randomly broken with some given constant probability. We obtain the evolution equation for a quantum walker moving on two-dimensional (2D) lattices subject to this noise, and we point out how to generalize for lattices in more dimensions. In the nonsymmetric case, when the probability of breaking links in one direction is different from the probability in the perpendicular direction, we have obtained a nontrivial result. If one fixes the link-breaking probability in one direction, and gradually increases the probability in the other direction from 0 to 1, the decoherence initially increases until it reaches a maximum value, and then it decreases. This means that, in some cases, one can increase the noise level and still obtain more coherence. Physically, this can be explained as a transition from a decoherent 2D walk to a coherent 1D walk
Study of two-dimensional interchange turbulence
International Nuclear Information System (INIS)
Sugama, Hideo; Wakatani, Masahiro.
1990-04-01
An eddy viscosity model describing enstrophy transfer in two-dimensional turbulence is presented. This model is similar to that of Canuto et al. and provides an equation for the energy spectral function F(k) as a function of the energy input rate to the system per unit wavenumber, γ s (k). In the enstrophy-transfer inertial range, F(k)∝ k -3 is predicted by the model. The eddy viscosity model is applied to the interchange turbulence of a plasma in shearless magnetic field. Numerical simulation of the two-dimensional interchange turbulence demonstrates that the energy spectrum in the high wavenumber region is well described by this model. The turbulent transport driven by the interchange turbulence is expressed in terms of the Nusselt number Nu, the Rayleigh number Ra and Prantl number Pr in the same manner as that of thermal convection problem. When we use the linear growth rate for γ s (k), our theoretical model predicts that Nu ∝ (Ra·Pr) 1/2 for a constant background pressure gradient and Nu ∝ (Ra·Pr) 1/3 for a self-consistent background pressure profile with the stress-free slip boundary conditions. The latter agrees with our numerical result showing Nu ∝ Ra 1/3 . (author)
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
International Nuclear Information System (INIS)
Yeon, Kyu Hwang; Hong, Suc Kyoung; Um, Chung In; George, Thomas F.
2006-01-01
With quantum operators corresponding to functions of the canonical variables, Schroedinger equations are constructed for systems corresponding to classical systems connected by a general point canonical transformation. Using the operator connecting quantum states between systems before and after the transformation, the quantum correction term and ordering parameter are obtained
International Nuclear Information System (INIS)
Lubuma, M.S.
1991-05-01
The applicability of the Neumann indirect method of potentials to the Dirichlet and Neumann problems for the two-dimensional Stokes operator on a non smooth boundary Γ is subject to two kinds of sufficient and/or necessary conditions on Γ. The first one, occurring in electrostatic, is equivalent to the boundedness on C(Γ) of the velocity double layer potential W as well as to the existence of jump relations of potentials. The second condition, which forces Γ to be a simple rectifiable curve and which, compared to the Laplacian, is a stronger restriction on the corners of Γ, states that the Fredholm radius of W is greater than 2. Under these conditions, the Radon boundary integral equations defined by the above mentioned jump relations are solvable by the Fredholm theory; the double (for Dirichlet) and the single (for Neumann) layer potentials corresponding to their solutions are classical solutions of the Stokes problems. (author). 48 refs
Two-dimensional simulation of sintering process
International Nuclear Information System (INIS)
Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.
1996-01-01
The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)
Two dimensional generalizations of the Newcomb equation
International Nuclear Information System (INIS)
Dewar, R.L.; Pletzer, A.
1989-11-01
The Bineau reduction to scalar form of the equation governing ideal, zero frequency linearized displacements from a hydromagnetic equilibrium possessing a continuous symmetry is performed in 'universal coordinates', applicable to both the toroidal and helical cases. The resulting generalized Newcomb equation (GNE) has in general a more complicated form than the corresponding one dimensional equation obtained by Newcomb in the case of circular cylindrical symmetry, but in this cylindrical case , the equation can be transformed to that of Newcomb. In the two dimensional case there is a transformation which leaves the form of the GNE invariant and simplifies the Frobenius expansion about a rational surface, especially in the limit of zero pressure gradient. The Frobenius expansions about a mode rational surface is developed and the connection with Hamiltonian transformation theory is shown. 17 refs
Pressure of two-dimensional Yukawa liquids
International Nuclear Information System (INIS)
Feng, Yan; Wang, Lei; Tian, Wen-de; Goree, J; Liu, Bin
2016-01-01
A simple analytic expression for the pressure of a two-dimensional Yukawa liquid is found by fitting results from a molecular dynamics simulation. The results verify that the pressure can be written as the sum of a potential term which is a simple multiple of the Coulomb potential energy at a distance of the Wigner–Seitz radius, and a kinetic term which is a multiple of the one for an ideal gas. Dimensionless coefficients for each of these terms are found empirically, by fitting. The resulting analytic expression, with its empirically determined coefficients, is plotted as isochores, or curves of constant area. These results should be applicable to monolayer dusty plasmas. (paper)
Two dimensional nanomaterials for flexible supercapacitors.
Peng, Xu; Peng, Lele; Wu, Changzheng; Xie, Yi
2014-05-21
Flexible supercapacitors, as one of most promising emerging energy storage devices, are of great interest owing to their high power density with great mechanical compliance, making them very suitable as power back-ups for future stretchable electronics. Two-dimensional (2D) nanomaterials, including the quasi-2D graphene and inorganic graphene-like materials (IGMs), have been greatly explored to providing huge potential for the development of flexible supercapacitors with higher electrochemical performance. This review article is devoted to recent progresses in engineering 2D nanomaterials for flexible supercapacitors, which survey the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors. Furthermore, a brief discussion on future directions, challenges and opportunities in this fascinating area is also provided.
Two-dimensional materials for ultrafast lasers
International Nuclear Information System (INIS)
Wang Fengqiu
2017-01-01
As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)
Two-dimensional phase fraction charts
International Nuclear Information System (INIS)
Morral, J.E.
1984-01-01
A phase fraction chart is a graphical representation of the amount of each phase present in a system as a function of temperature, composition or other variable. Examples are phase fraction versus temperature charts used to characterize specific alloys and as a teaching tool in elementary texts, and Schaeffler diagrams used to predict the amount of ferrite in stainless steel welds. Isothermal-transformation diagrams (TTT diagrams) are examples that give phase (or microconstituent) amount versus temperature and time. The purpose of this communication is to discuss the properties of two-dimensional phase fraction charts in more general terms than have been reported before. It is shown that they can represent multi-component, multiphase equilibria in a way which is easier to read and which contains more information than the isotherms and isopleths of multi-component phase diagrams
Two-dimensional motions of rockets
International Nuclear Information System (INIS)
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the descending parts of the trajectories tend to be gentler and straighter slopes than the ascending parts for relatively large launching angles due to the non-vanishing thrusts. We discuss the ranges, the maximum altitudes and the engine performances of the rockets. It seems that the exponential fuel exhaustion can be the most potent engine for the longest and highest flights
Two dimensional NMR studies of polysaccharides
International Nuclear Information System (INIS)
Byrd, R.A.; Egan, W.; Summers, M.F.
1987-01-01
Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides
Two-Dimensional Homogeneous Fermi Gases
Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning
2018-02-01
We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.
Two-dimensional electroacoustic waves in silicene
Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.
2018-01-01
In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell's equations supplemented with the wave equation for the medium's displacement vector, we obtain the effective governing equation for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially offer promising prospects for the development of amplification devices for the optoelectronics industry.
Versatile two-dimensional transition metal dichalcogenides
DEFF Research Database (Denmark)
Canulescu, Stela; Affannoukoué, Kévin; Döbeli, Max
), a strategy for the fabrication of 2D heterostructures must be developed. Here we demonstrate a novel approach for the bottom-up synthesis of TMDC monolayers, namely Pulsed Laser Deposition (PLD) combined with a sulfur evaporation beam. PLD relies on the use of a pulsed laser (ns pulse duration) to induce...... material transfer from a solid source (such as a sintered target of MoS2) to a substrate (such as Si or sapphire). The deposition rate in PLD is typically much less than a monolayer per pulse, meaning that the number of MLs can be controlled by a careful selection of the number of laser pulses......Two-dimensional transition metal dichalcogenides (2D-TMDCs), such as MoS2, have emerged as a new class of semiconducting materials with distinct optical and electrical properties. The availability of 2D-TMDCs with distinct band gaps allows for unlimited combinations of TMDC monolayers (MLs...
Two-dimensional heterostructures for energy storage
Energy Technology Data Exchange (ETDEWEB)
Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)
2017-06-12
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Equivalency of two-dimensional algebras
International Nuclear Information System (INIS)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.
2011-01-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Espejo, Elio; Winkler, Michael
2018-04-01
The interplay of chemotaxis, convection and reaction terms is studied in the particular framework of a refined model for coral broadcast spawning, consisting of three equations describing the population densities of unfertilized sperms and eggs and the concentration of a chemical released by the latter, coupled to the incompressible Navier-Stokes equations. Under mild assumptions on the initial data, global existence of classical solutions to an associated initial-boundary value problem in bounded planar domains is established. Moreover, all these solutions are shown to approach a spatially homogeneous equilibrium in the large time limit.
Electronic Transport in Two-Dimensional Materials
Sangwan, Vinod K.; Hersam, Mark C.
2018-04-01
Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, because prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials, with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport, including band structure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.
Stress distribution in two-dimensional silos
Blanco-Rodríguez, Rodolfo; Pérez-Ángel, Gabriel
2018-01-01
Simulations of a polydispersed two-dimensional silo were performed using molecular dynamics, with different numbers of grains reaching up to 64 000, verifying numerically the model derived by Janssen and also the main assumption that the walls carry part of the weight due to the static friction between grains with themselves and those with the silo's walls. We vary the friction coefficient, the radii dispersity, the silo width, and the size of grains. We find that the Janssen's model becomes less relevant as the the silo width increases since the behavior of the stresses becomes more hydrostatic. Likewise, we get the normal and tangential stress distribution on the walls evidencing the existence of points of maximum stress. We also obtained the stress matrix with which we observe zones of concentration of load, located always at a height around two thirds of the granular columns. Finally, we observe that the size of the grains affects the distribution of stresses, increasing the weight on the bottom and reducing the normal stress on the walls, as the grains are made smaller (for the same total mass of the granulate), giving again a more hydrostatic and therefore less Janssen-type behavior for the weight of the column.
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Seismic isolation of two dimensional periodic foundations
International Nuclear Information System (INIS)
Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.
2014-01-01
Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.
Two-dimensional transport of tokamak plasmas
International Nuclear Information System (INIS)
Hirshman, S.P.; Jardin, S.C.
1979-01-01
A reduced set of two-fluid transport equations is obtained from the conservation equations describing the time evolution of the differential particle number, entropy, and magnetic fluxes in an axisymmetric toroidal plasma with nested magnetic surfaces. Expanding in the small ratio of perpendicular to parallel mobilities and thermal conductivities yields as solubility constraints one-dimensional equations for the surface-averaged thermodynamic variables and magnetic fluxes. Since Ohm's law E +u x B =R', where R' accounts for any nonideal effects, only determines the particle flow relative to the diffusing magnetic surfaces, it is necessary to solve a single two-dimensional generalized differential equation, (partial/partialt) delpsi. (delp - J x B) =0, to find the absolute velocity of a magnetic surface enclosing a fixed toroidal flux. This equation is linear but nonstandard in that it involves flux surface averages of the unknown velocity. Specification of R' and the cross-field ion and electron heat fluxes provides a closed system of equations. A time-dependent coordinate transformation is used to describe the diffusion of plasma quantities through magnetic surfaces of changing shape
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Turbulent equipartitions in two dimensional drift convection
International Nuclear Information System (INIS)
Isichenko, M.B.; Yankov, V.V.
1995-01-01
Unlike the thermodynamic equipartition of energy in conservative systems, turbulent equipartitions (TEP) describe strongly non-equilibrium systems such as turbulent plasmas. In turbulent systems, energy is no longer a good invariant, but one can utilize the conservation of other quantities, such as adiabatic invariants, frozen-in magnetic flux, entropy, or combination thereof, in order to derive new, turbulent quasi-equilibria. These TEP equilibria assume various forms, but in general they sustain spatially inhomogeneous distributions of the usual thermodynamic quantities such as density or temperature. This mechanism explains the effects of particle and energy pinch in tokamaks. The analysis of the relaxed states caused by turbulent mixing is based on the existence of Lagrangian invariants (quantities constant along fluid-particle or other orbits). A turbulent equipartition corresponds to the spatially uniform distribution of relevant Lagrangian invariants. The existence of such turbulent equilibria is demonstrated in the simple model of two dimensional electrostatically turbulent plasma in an inhomogeneous magnetic field. The turbulence is prescribed, and the turbulent transport is assumed to be much stronger than the classical collisional transport. The simplicity of the model makes it possible to derive the equations describing the relaxation to the TEP state in several limits
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Buckled two-dimensional Xene sheets.
Molle, Alessandro; Goldberger, Joshua; Houssa, Michel; Xu, Yong; Zhang, Shou-Cheng; Akinwande, Deji
2017-02-01
Silicene, germanene and stanene are part of a monoelemental class of two-dimensional (2D) crystals termed 2D-Xenes (X = Si, Ge, Sn and so on) which, together with their ligand-functionalized derivatives referred to as Xanes, are comprised of group IVA atoms arranged in a honeycomb lattice - similar to graphene but with varying degrees of buckling. Their electronic structure ranges from trivial insulators, to semiconductors with tunable gaps, to semi-metallic, depending on the substrate, chemical functionalization and strain. More than a dozen different topological insulator states are predicted to emerge, including the quantum spin Hall state at room temperature, which, if realized, would enable new classes of nanoelectronic and spintronic devices, such as the topological field-effect transistor. The electronic structure can be tuned, for example, by changing the group IVA element, the degree of spin-orbit coupling, the functionalization chemistry or the substrate, making the 2D-Xene systems promising multifunctional 2D materials for nanotechnology. This Perspective highlights the current state of the art and future opportunities in the manipulation and stability of these materials, their functions and applications, and novel device concepts.
Uysal, Ismail Enes
2015-10-26
Analysis of electromagnetic interactions on nanodevices can oftentimes be carried out accurately using “traditional” electromagnetic solvers. However, if a gap of sub-nanometer scale exists between any two surfaces of the device, quantum-mechanical effects including tunneling should be taken into account for an accurate characterization of the device\\'s response. Since the first-principle quantum simulators can not be used efficiently to fully characterize a typical-size nanodevice, a quantum corrected electromagnetic model has been proposed as an efficient and accurate alternative (R. Esteban et al., Nat. Commun., 3(825), 2012). The quantum correction is achieved through an effective layered medium introduced into the gap between the surfaces. The dielectric constant of each layer is obtained using a first-principle quantum characterization of the gap with a different dimension.
Quantum-corrected drift-diffusion models for transport in semiconductor devices
International Nuclear Information System (INIS)
De Falco, Carlo; Gatti, Emilio; Lacaita, Andrea L.; Sacco, Riccardo
2005-01-01
In this paper, we propose a unified framework for Quantum-corrected drift-diffusion (QCDD) models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical drift-diffusion (DD) system, each particular model being identified by the constitutive relation for the quantum-correction to the electric potential. We examine two special, and relevant, examples of QCDD models; the first one is the modified DD model named Schroedinger-Poisson-drift-diffusion, and the second one is the quantum-drift-diffusion (QDD) model. For the decoupled solution of the two models, we introduce a functional iteration technique that extends the classical Gummel algorithm widely used in the iterative solution of the DD system. We discuss the finite element discretization of the various differential subsystems, with special emphasis on their stability properties, and illustrate the performance of the proposed algorithms and models on the numerical simulation of nanoscale devices in two spatial dimensions
On polynormality in finite solvable groups
Mamadou-Sadialiou-Bah
2003-01-01
In the study of the arrangement of intermediate subgroups a wide use has been made of certain properties describing the way conjugacy classes of subgroups are embedded in the groups: abnormality, pronormality, paranormality, and their weak analogues. It was proved that pronormality and abnormality coincide with their weak analogues for solvable groups. This was a generalisation of known results of Peng and Taunt for finite solvable groups. In this paper we prove a conjecture of Borevich asserting a similar result for paranormality and polynormality (which is a sort of weak paranormality). Further we show that we get a stronger result when the given subgroup is nilpotent: In a finite solvable group any nilpotent polynormal subgroup is pronormal.
On polynormality in finite solvable groups
International Nuclear Information System (INIS)
Mamadou Sadialiou Bah
2003-05-01
In the study of the arrangement of intermediate subgroups a wide use has been made of certain properties describing the way conjugacy classes of subgroups are embedded in the groups: abnormality, pronormality, paranormality, and their weak analogues. It was proved that pronormality and abnormality coincide with their weak analogues for solvable groups. This was a generalisation of known results of Peng and Taunt for finite solvable groups. In this paper we prove a conjecture of Borevich asserting a similar result for paranormality and polynormality (which is a sort of weak paranormality). Further we show that we get a stronger result when the given subgroup is nilpotent: In a finite solvable group any nilpotent polynormal subgroup is pronormal. (author)
Quantum Corrected Non-Thermal Radiation Spectrum from the Tunnelling Mechanism
Directory of Open Access Journals (Sweden)
Subenoy Chakraborty
2015-06-01
Full Text Available The tunnelling mechanism is today considered a popular and widely used method in describing Hawking radiation. However, in relation to black hole (BH emission, this mechanism is mostly used to obtain the Hawking temperature by comparing the probability of emission of an outgoing particle with the Boltzmann factor. On the other hand, Banerjee and Majhi reformulated the tunnelling framework deriving a black body spectrum through the density matrix for the outgoing modes for both the Bose-Einstein distribution and the Fermi-Dirac distribution. In contrast, Parikh and Wilczek introduced a correction term performing an exact calculation of the action for a tunnelling spherically symmetric particle and, as a result, the probability of emission of an outgoing particle corresponds to a non-strictly thermal radiation spectrum. Recently, one of us (C. Corda introduced a BH effective state and was able to obtain a non-strictly black body spectrum from the tunnelling mechanism corresponding to the probability of emission of an outgoing particle found by Parikh and Wilczek. The present work introduces the quantum corrected effective temperature and the corresponding quantum corrected effective metric is written using Hawking’s periodicity arguments. Thus, we obtain further corrections to the non-strictly thermal BH radiation spectrum as the final distributions take into account both the BH dynamical geometry during the emission of the particle and the quantum corrections to the semiclassical Hawking temperature.
Quantum corrections to Bekenstein–Hawking black hole entropy and gravity partition functions
International Nuclear Information System (INIS)
Bytsenko, A.A.; Tureanu, A.
2013-01-01
Algebraic aspects of the computation of partition functions for quantum gravity and black holes in AdS 3 are discussed. We compute the sub-leading quantum corrections to the Bekenstein–Hawking entropy. It is shown that the quantum corrections to the classical result can be included systematically by making use of the comparison with conformal field theory partition functions, via the AdS 3 /CFT 2 correspondence. This leads to a better understanding of the role of modular and spectral functions, from the point of view of the representation theory of infinite-dimensional Lie algebras. Besides, the sum of known quantum contributions to the partition function can be presented in a closed form, involving the Patterson–Selberg spectral function. These contributions can be reproduced in a holomorphically factorized theory whose partition functions are associated with the formal characters of the Virasoro modules. We propose a spectral function formulation for quantum corrections to the elliptic genus from supergravity states
International Nuclear Information System (INIS)
Chowdhury, A.M.; Elias, V.; McKeon, D.G.C.; Mann, R.B.
1986-01-01
The anomaly in the supercurrent amplitude S/sub μ//sub ν/ is analyzed to one-loop order for N = 1 supersymmetry in the Wess-Zumino gauge within the framework of preregularization, in which loop-momentum-routing ambiguities percolate into shift-of-integration-variable surface terms peculiar to exactly four space-time dimensions. We find the supercurrent anomaly to be a consequence of the inability of such ambiguities (within a demonstrably finite set of quantum corrections) to absorb violations of gauge invariance (q/sup ν/S/sub μ//sub ν/not =0) and supersymmetry (partial/sup μ/S/sub μ//sub ν/equivalentpartialxSnot =0) simultaneously, a feature quite similar to the inability of VVA-triangle ambiguities to absorb violations of gauge invariance and the axial-vector-current Ward identity simultaneously. We also find that if gauge invariance is preserved, the contribution to the supercurrent anomaly obtained from O(g 2 ) quantum corrections to the supercurrent involves no infrared or ultraviolet infinities and resides in partialxS rather than γxS. This last result is a consequence of maintaining exactly four space-time dimensions, as is necessary for momentum-routing ambiguities to appear at all in the quantum corrections. The connection between our results and similar results obtained from an Adler-Rosenberg symmetry argument is examined in detail
International Nuclear Information System (INIS)
Boyanovsky, D.; Vega, H.J. de; Sanchez, N.G.
2005-01-01
We obtain the effective inflaton potential during slow-roll inflation by including the one-loop quantum corrections to the energy momentum tensor from scalar curvature and tensor perturbations as well as from light scalars and Dirac fermions coupled to the inflaton. During slow-roll inflation there is an unambiguous separation between super- and subhorizon contributions to the energy momentum tensor. The superhorizon part is determined by the curvature perturbations and scalar field fluctuations: both feature infrared enhancements as the inverse of a combination of slow-roll parameters which measure the departure from scale invariance in each case. Fermions and gravitons do not exhibit infrared divergences. The subhorizon part is completely specified by the trace anomaly of the fields with different spins and is solely determined by the space-time geometry. The one-loop corrections to the amplitude of curvature and tensor perturbations are obtained to leading order in slow roll and in the (H/M Pl ) 2 expansion. A complete assessment of the backreaction problem up to one loop including bosons and fermions is provided. The result validates the effective field theory description of inflation and confirms the robustness of the inflationary paradigm to quantum fluctuations. Quantum corrections to the power spectra are expressed in terms of the CMB observables: n s , r and dn s /dlnk. Trace anomalies (especially the graviton part) dominate these quantum corrections in a definite direction: they enhance the scalar curvature fluctuations and reduce the tensor fluctuations
Two-dimensional vibrational-electronic spectroscopy
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira
2015-10-01
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.
Two-dimensional silica opens new perspectives
Büchner, Christin; Heyde, Markus
2017-12-01
In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science
Two-dimensional vibrational-electronic spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)
2015-10-21
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a
A conditionally exactly solvable generalization of the inverse square root potential
Energy Technology Data Exchange (ETDEWEB)
Ishkhanyan, A.M., E-mail: aishkhanyan@gmail.com [Institute for Physical Research, NAS of Armenia, Ashtarak 0203 (Armenia); Armenian State Pedagogical University, Yerevan 0010 (Armenia); Institute of Physics and Technology, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation)
2016-11-25
We present a conditionally exactly solvable singular potential for the one-dimensional Schrödinger equation which involves the exactly solvable inverse square root potential. Each of the two fundamental solutions that compose the general solution of the problem is given by a linear combination with non-constant coefficients of two confluent hypergeometric functions. Discussing the bound-state wave functions vanishing both at infinity and in the origin, we derive the exact equation for the energy spectrum which is written using two Hermite functions of non-integer order. In specific auxiliary variables this equation becomes a mathematical equation that does not refer to a specific physical context discussed. In the two-dimensional space of these auxiliary variables the roots of this equation draw a countable infinite set of open curves with hyperbolic asymptotes. We present an analytic description of these curves by a transcendental algebraic equation for the involved variables. The intersections of the curves thus constructed with a certain cubic curve provide a highly accurate description of the energy spectrum. - Highlights: • We present a conditionally exactly solvable singular potential for 1D Schrödinger equation. • Each of the two fundamental solutions is given by a linear combination with non-constant coefficients of two confluent hypergeometric functions. • The exact equation for the energy spectrum is written using two Hermite functions that do not reduce to polynomials.
Exactly solvable energy-dependent potentials
International Nuclear Information System (INIS)
Garcia-Martinez, J.; Garcia-Ravelo, J.; Pena, J.J.; Schulze-Halberg, A.
2009-01-01
We introduce a method for constructing exactly-solvable Schroedinger equations with energy-dependent potentials. Our method is based on converting a general linear differential equation of second order into a Schroedinger equation with energy-dependent potential. Particular examples presented here include harmonic oscillator, Coulomb and Morse potentials with various types of energy dependence.
Perturbations of normally solvable nonlinear operators, I
Directory of Open Access Journals (Sweden)
William O. Ray
1985-01-01
Full Text Available Let X and Y be Banach spaces and let ℱ and be Gateaux differentiable mappings from X to Y In this note we study when the operator ℱ+ is surjective for sufficiently small perturbations of a surjective operator ℱ The methods extend previous results in the area of normal solvability for nonlinear operators.
General Reducibility and Solvability of Polynomial Equations ...
African Journals Online (AJOL)
General Reducibility and Solvability of Polynomial Equations. ... Unlike quadratic, cubic, and quartic polynomials, the general quintic and higher degree polynomials cannot be solved algebraically in terms of finite number of additions, ... Galois Theory, Solving Polynomial Systems, Polynomial factorization, Polynomial Ring ...
Child abduction murder: the impact of forensic evidence on solvability.
Brown, Katherine M; Keppel, Robert D
2012-03-01
This study examined 733 child abduction murders (CAMs) occurring from 1968 to 2002 to explore the influence of forensic evidence on case solvability in CAM investigations. It was hypothesized that the presence of forensic evidence connecting the offender to the crime would enhance case solvability in murder investigations of abducted children. This study examined the impact of CAM of different types of forensic evidence and the impact of the summed total of forensic evidence items on case solvability by controlling for victim age, victim race, victim gender, and victim-offender relationship. Time and distance theoretical predictors were also included. Binomial logistic regression models were used to determine whether forensic evidence was a critical solvability factor in murder investigations of abducted children. This research indicated that, while forensic evidence increased case solvability, the impact of forensic evidence on solvability was not as important as other solvability factors examined. © 2011 American Academy of Forensic Sciences.
Lie algebra contractions on two-dimensional hyperboloid
International Nuclear Information System (INIS)
Pogosyan, G. S.; Yakhno, A.
2010-01-01
The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E 2 and eight on E 1,1 . The text was submitted by the authors in English.
Beginning Introductory Physics with Two-Dimensional Motion
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Two-dimensional black holes and non-commutative spaces
International Nuclear Information System (INIS)
Sadeghi, J.
2008-01-01
We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon
Solution of the two-dimensional spectral factorization problem
Lawton, W. M.
1985-01-01
An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.
Two-dimensional Navier-Stokes turbulence in bounded domains
Clercx, H.J.H.; van Heijst, G.J.F.
In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the
Two-dimensional Navier-Stokes turbulence in bounded domains
Clercx, H.J.H.; Heijst, van G.J.F.
2009-01-01
In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the
Solvable potentials derived from supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Levai, G.
1994-01-01
The introduction of supersymmetric quantum mechanics has generated renewed interest in solvable problems of non-relativistic quantum mechanics. This approach offers an elegant way to describe different, but isospectral potentials by interpreting the degeneracy of their energy levels in terms of supersymmetry. The original ideas of supersymmetric quantum mechanics have been developed further in many respects in the past ten years, and have been applied to a large variety of physical problems. The purpose of this contribution is to give a survey of supersymmetric quantum mechanics and its applications to solvable quantum mechanical potentials. Its relation to other models describing isospectral potentials is also discussed here briefly, as well as some of its practical applications in various branches of physics. (orig.)
Harmonic analysis on exponential solvable Lie groups
Fujiwara, Hidenori
2015-01-01
This book is the first one that brings together recent results on the harmonic analysis of exponential solvable Lie groups. There still are many interesting open problems, and the book contributes to the future progress of this research field. As well, various related topics are presented to motivate young researchers. The orbit method invented by Kirillov is applied to study basic problems in the analysis on exponential solvable Lie groups. This method tells us that the unitary dual of these groups is realized as the space of their coadjoint orbits. This fact is established using the Mackey theory for induced representations, and that mechanism is explained first. One of the fundamental problems in the representation theory is the irreducible decomposition of induced or restricted representations. Therefore, these decompositions are studied in detail before proceeding to various related problems: the multiplicity formula, Plancherel formulas, intertwining operators, Frobenius reciprocity, and associated alge...
Quantum corrections for the phase diagram of systems with competing order
Silva, N. L., Jr.; Continentino, Mucio A.; Barci, Daniel G.
2018-06-01
We use the effective potential method of quantum field theory to obtain the quantum corrections to the zero temperature phase diagram of systems with competing order parameters. We are particularly interested in two different scenarios: regions of the phase diagram where there is a bicritical point, at which both phases vanish continuously, and the case where both phases coexist homogeneously. We consider different types of couplings between the order parameters, including a bilinear one. This kind of coupling breaks time-reversal symmetry and it is only allowed if both order parameters transform according to the same irreducible representation. This occurs in many physical systems of actual interest like competing spin density waves, different types of orbital antiferromagnetism, elastic instabilities of crystal lattices, vortices in a multigap SC and also applies to describe the unusual magnetism of the heavy fermion compound URu2Si2. Our results show that quantum corrections have an important effect on the phase diagram of systems with competing orders.
Quantum corrections for the phase diagram of systems with competing order.
Silva, N L; Continentino, Mucio A; Barci, Daniel G
2018-06-06
We use the effective potential method of quantum field theory to obtain the quantum corrections to the zero temperature phase diagram of systems with competing order parameters. We are particularly interested in two different scenarios: regions of the phase diagram where there is a bicritical point, at which both phases vanish continuously, and the case where both phases coexist homogeneously. We consider different types of couplings between the order parameters, including a bilinear one. This kind of coupling breaks time-reversal symmetry and it is only allowed if both order parameters transform according to the same irreducible representation. This occurs in many physical systems of actual interest like competing spin density waves, different types of orbital antiferromagnetism, elastic instabilities of crystal lattices, vortices in a multigap SC and also applies to describe the unusual magnetism of the heavy fermion compound URu 2 Si 2 . Our results show that quantum corrections have an important effect on the phase diagram of systems with competing orders.
Quantum corrections to scalar field dynamics in a slow-roll space-time
Energy Technology Data Exchange (ETDEWEB)
Herranen, Matti [Niels Bohr International Academy and Discovery Center, Niels Bohr Institute,University of Copenhagen,Blegdamsvej 17, 2100 Copenhagen (Denmark); Markkanen, Tommi [Helsinki Institute of Physics and Department of Physics,P.O. Box 64, FI-00014, University of Helsinki (Finland); Tranberg, Anders [Faculty of Science and Technology, University of Stavanger, 4036 Stavanger (Norway)
2014-05-07
We consider the dynamics of a quantum scalar field in the background of a slow-roll inflating Universe. We compute the one-loop quantum corrections to the field and Friedmann equation of motion, in both a 1PI and a 2PI expansion, to leading order in slow-roll. Generalizing the works of http://dx.doi.org/10.1016/j.nuclphysb.2006.04.029, http://dx.doi.org/10.1103/PhysRevLett.107.191103, http://dx.doi.org/10.1103/PhysRevD.76.103507 and http://dx.doi.org/10.1016/j.nuclphysb.2006.04.010, we then solve these equations to compute the effect on the primordial power spectrum, for the case of a self-interacting inflaton and a self-interacting spectator field. We find that for the inflaton the corrections are negligible due to the smallness of the coupling constant despite the large IR enhancement of the loop contributions. For a curvaton scenario, on the other hand, we find tension in using the 1PI loop corrections, which may indicate that the quantum corrections could be non-perturbatively large in this case, thus requiring resummation.
Optimizing separations in online comprehensive two-dimensional liquid chromatography.
Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J
2018-01-01
Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.
Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Paul, J.; Dey, P.; Karaiskaj, D., E-mail: karaiskaj@usf.edu [Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620 (United States); Tokumoto, T.; Hilton, D. J. [Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294 (United States); Reno, J. L. [CINT, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)
2014-10-07
The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 10{sup 11} cm{sup −2} was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent “rephasing” (S{sub 1}) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S{sub 1} 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The “two-quantum coherence” (S{sub 3}) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.
Three-body problem in d-dimensional space: Ground state, (quasi)-exact-solvability
Turbiner, Alexander V.; Miller, Willard; Escobar-Ruiz, M. A.
2018-02-01
As a straightforward generalization and extension of our previous paper [A. V. Turbiner et al., "Three-body problem in 3D space: Ground state, (quasi)-exact-solvability," J. Phys. A: Math. Theor. 50, 215201 (2017)], we study the aspects of the quantum and classical dynamics of a 3-body system with equal masses, each body with d degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. The quantum (and classical) Hamiltonian for which these states are eigenfunctions is derived. It corresponds to a three-dimensional quantum particle moving in a curved space with special d-dimension-independent metric in a certain d-dependent singular potential, while at d = 1, it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is d-independent; it has a hidden sl(4, R) Lie (Poisson) algebra structure, alternatively, the hidden algebra h(3) typical for the H3 Calogero model as in the d = 3 case. We find an exactly solvable three-body S3-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly solvable three-body sextic polynomial type potential with singular terms. For both models, an extra first order integral exists. For d = 1, the whole family of 3-body (two-dimensional) Calogero-Moser-Sutherland systems as well as the Tremblay-Turbiner-Winternitz model is reproduced. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to d > 1 leads to two primitive quasi
Functional inks and printing of two-dimensional materials.
Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique
2018-05-08
Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.
Third sound in one and two dimensional modulated structures
International Nuclear Information System (INIS)
Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.
1996-01-01
An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
International Nuclear Information System (INIS)
Kucheryavij, V.Yi.
1994-01-01
The explicit form of nontrivial quantum corrections to Ward identities for AVV- and AAA-current correlators in the four-dimensional world for nondegenerate many-fermion systems of general type is obtained. The characteristics of all nontrivial quantum corrections for nondegenerate two-flavour fermion systems are classified and described. In particular, the well-known results follow from ours for the trivial quantum corrections (anomalies) in the case of the degenerate spectrum of fermion masses
International Nuclear Information System (INIS)
Lubuma, M.S.
1991-05-01
The non uniquely solvable Radon boundary integral equation for the two-dimensional Stokes-Dirichlet problem on a non smooth domain is transformed into a well posed one by a suitable compact perturbation of the velocity double layer potential operator. The solution to the modified equation is decomposed into a regular part and a finite linear combination of intrinsic singular functions whose coefficients are computed from explicit formulae. Using these formulae, the classical collocation method, defined by continuous piecewise linear vector-valued basis functions, which converges slowly because of the lack of regularity of the solution, is improved into a collocation dual singular function method with optimal rates of convergence for the solution and for the coefficients of singularities. (author). 34 refs
Two numerical methods for the solution of two-dimensional eddy current problems
International Nuclear Information System (INIS)
Biddlecombe, C.S.
1978-07-01
A general method for the solution of eddy current problems in two dimensions - one component of current density and two of magnetic field, is reported. After examining analytical methods two numerical methods are presented. Both solve the two dimensional, low frequency limit of Maxwell's equations for transient eddy currents in conducting material, which may be permeable, in the presence of other non-conducting permeable material. Both solutions are expressed in terms of the magnetic vector potential. The first is an integral equation method, using zero order elements in the discretisation of the unknown source regions. The other is a differential equation method, using a first order finite element mesh, and the Galerkin weighted residual procedure. The resulting equations are solved as initial-value problems. Results from programs based on each method are presented showing the power and limitations of the methods and the range of problems solvable. The methods are compared and recommendations are made for choosing between them. Suggestions are made for improving both methods, involving boundary integral techniques. (author)
Multisoliton formula for completely integrable two-dimensional systems
International Nuclear Information System (INIS)
Chudnovsky, D.V.; Chudnovsky, G.V.
1979-01-01
For general two-dimensional completely integrable systems, the exact formulae for multisoliton type solutions are given. The formulae are obtained algebrically from solutions of two linear partial differential equations
Two-dimensional electronic femtosecond stimulated Raman spectroscopy
Directory of Open Access Journals (Sweden)
Ogilvie J.P.
2013-03-01
Full Text Available We report two-dimensional electronic spectroscopy with a femtosecond stimulated Raman scattering probe. The method reveals correlations between excitation energy and excited state vibrational structure following photoexcitation. We demonstrate the method in rhodamine 6G.
Micromachined two dimensional resistor arrays for determination of gas parameters
van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt
A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of
Generalized similarity method in unsteady two-dimensional MHD ...
African Journals Online (AJOL)
user
International Journal of Engineering, Science and Technology. Vol. 1, No. 1, 2009 ... temperature two-dimensional MHD laminar boundary layer of incompressible fluid. ...... Φ η is Blasius solution for stationary boundary layer on the plate,. ( ). 0.
Topological aspect of disclinations in two-dimensional crystals
International Nuclear Information System (INIS)
Wei-Kai, Qi; Tao, Zhu; Yong, Chen; Ji-Rong, Ren
2009-01-01
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given. (the physics of elementary particles and fields)
Structures of two-dimensional three-body systems
International Nuclear Information System (INIS)
Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.
1996-01-01
Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)
Study on two-dimensional induced signal readout of MRPC
International Nuclear Information System (INIS)
Wu Yucheng; Yue Qian; Li Yuanjing; Ye Jin; Cheng Jianping; Wang Yi; Li Jin
2012-01-01
A kind of two-dimensional readout electrode structure for the induced signal readout of MRPC has been studied in both simulation and experiments. Several MRPC prototypes are produced and a series of test experiments have been done to compare with the result of simulation, in order to verify the simulation model. The experiment results are in good agreement with those of simulation. This method will be used to design the two-dimensional signal readout mode of MRPC in the future work.
Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers
2016-06-15
AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4054 5c. PROGRAM ELEMENT...prospects for a variety of emerging applications in a broad range of fields, such as electronics, energy conversion and storage, catalysis and polymer
Scaling of anomalous hall effect in amorphous CoFeB Films with accompanying quantum correction
Zhang, Yan
2015-05-08
Scaling of anomalous Hall effect in amorphous CoFeB films with thickness ranging from 2 to 160 nm have been investigated. We have found that the scaling relationship between longitudinal (ρxx) and anomalous Hall (ρAH) resistivity is distinctly different in the Bloch and localization regions. For ultrathin CoFeB films, the sheet resistance (Rxx) and anomalous Hall conductance (GAH) received quantum correction from electron localization showing two different scaling relationships at different temperature regions. In contrast, the thicker films show a metallic conductance, which have only one scaling relationship in the entire temperature range. Furthermore, in the dirty regime of localization regions, an unconventional scaling relationship View the MathML sourceσAH∝σxxα with α=1.99 is found, rather than α=1.60 predicted by the unified theory.
The theory of critical phenomena in two-dimensional systems
International Nuclear Information System (INIS)
Olvera de la C, M.
1981-01-01
An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)
Two-dimensional multifractal cross-correlation analysis
International Nuclear Information System (INIS)
Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong
2017-01-01
Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.
Two-Dimensional Materials for Sensing: Graphene and Beyond
Directory of Open Access Journals (Sweden)
Seba Sara Varghese
2015-09-01
Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.
Solvable stochastic dealer models for financial markets
Yamada, Kenta; Takayasu, Hideki; Ito, Takatoshi; Takayasu, Misako
2009-05-01
We introduce solvable stochastic dealer models, which can reproduce basic empirical laws of financial markets such as the power law of price change. Starting from the simplest model that is almost equivalent to a Poisson random noise generator, the model becomes fairly realistic by adding only two effects: the self-modulation of transaction intervals and a forecasting tendency, which uses a moving average of the latest market price changes. Based on the present microscopic model of markets, we find a quantitative relation with market potential forces, which have recently been discovered in the study of market price modeling based on random walks.
Kovacs effect in solvable model glasses
International Nuclear Information System (INIS)
Aquino, Gerardo; Leuzzi, Luca; Nieuwenhuizen, Theo M
2006-01-01
The Kovacs protocol, based on the temperature shift experiment originally conceived by A.J. Kovacs and applied on glassy polymers, is implemented in an exactly solvable model with facilitated dynamics. This model is based on interacting fast and slow modes represented respectively by spherical spins and harmonic oscillator variables. Due to this fundamental property and to slow dynamics, the model reproduces the characteristic nonmonotonic evolution known as the 'Kovacs effect', observed in polymers, spin glasses, in granular materials and models of molecular liquids, when similar experimental protocols are implemented
Kovacs effect in solvable model glasses
Aquino, Gerardo; Leuzzi, Luca; Nieuwenhuizen, Theo M.
2006-05-01
The Kovacs protocol, based on the temperature shift experiment originally conceived by A.J. Kovacs and applied on glassy polymers [1], is implemented in an exactly solvable model with facilitated dynamics. This model is based on interacting fast and slow modes represented respectively by spherical spins and harmonic oscillator variables. Due to this fundamental property and to slow dynamics, the model reproduces the characteristic nonmonotonic evolution known as the ''Kovacs effect'', observed in polymers, spin glasses, in granular materials and models of molecular liquids, when similar experimental protocols are implemented.
Prepotential approach to exact and quasi-exact solvabilities
International Nuclear Information System (INIS)
Ho, C.-L.
2008-01-01
Exact and quasi-exact solvabilities of the one-dimensional Schroedinger equation are discussed from a unified viewpoint based on the prepotential together with Bethe ansatz equations. This is a constructive approach which gives the potential as well as the eigenfunctions and eigenvalues simultaneously. The novel feature of the present work is the realization that both exact and quasi-exact solvabilities can be solely classified by two integers, the degrees of two polynomials which determine the change of variable and the zeroth order prepotential. Most of the well-known exactly and quasi-exactly solvable models, and many new quasi-exactly solvable ones, can be generated by appropriately choosing the two polynomials. This approach can be easily extended to the constructions of exactly and quasi-exactly solvable Dirac, Pauli, and Fokker-Planck equations
Solvability conditions for dendritic growth in the boundary-layer model with capillary anisotropy
Langer, J. S.; Hong, D. C.
1986-01-01
This paper is concerned primarily with the development of an analytic approach to the theory of steady-state velocity selection in the boundary-layer model of dendritic solidification. The two-dimensional version of this model with a fourfold crystalline anisotropy alpha in the surface tension is considered. By extending a WKB method introduced in an earlier paper, the alpha dependence of the selected growth rate is determined in the limit of small alpha; and this rate is studied for large alphas in the limit in which the dimensionless undercooling approaches unity. Portions of the paper are devoted to a reinterpretation of the mathematical structure of the solvability condition in problems of this kind.
Traditional Semiconductors in the Two-Dimensional Limit.
Lucking, Michael C; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S B
2018-02-23
Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.
Two-dimensional analytic weighting functions for limb scattering
Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.
2017-10-01
Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.
Dynamical class of a two-dimensional plasmonic Dirac system.
Silva, Érica de Mello
2015-10-01
A current goal in plasmonic science and technology is to figure out how to manage the relaxational dynamics of surface plasmons in graphene since its damping constitutes a hinder for the realization of graphene-based plasmonic devices. In this sense we believe it might be of interest to enlarge the knowledge on the dynamical class of two-dimensional plasmonic Dirac systems. According to the recurrence relations method, different systems are said to be dynamically equivalent if they have identical relaxation functions at all times, and such commonality may lead to deep connections between seemingly unrelated physical systems. We employ the recurrence relations approach to obtain relaxation and memory functions of density fluctuations and show that a two-dimensional plasmonic Dirac system at long wavelength and zero temperature belongs to the same dynamical class of standard two-dimensional electron gas and classical harmonic oscillator chain with an impurity mass.
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
Velocity and Dispersion for a Two-Dimensional Random Walk
International Nuclear Information System (INIS)
Li Jinghui
2009-01-01
In the paper, we consider the transport of a two-dimensional random walk. The velocity and the dispersion of this two-dimensional random walk are derived. It mainly show that: (i) by controlling the values of the transition rates, the direction of the random walk can be reversed; (ii) for some suitably selected transition rates, our two-dimensional random walk can be efficient in comparison with the one-dimensional random walk. Our work is motivated in part by the challenge to explain the unidirectional transport of motor proteins. When the motor proteins move at the turn points of their tracks (i.e., the cytoskeleton filaments and the DNA molecular tubes), some of our results in this paper can be used to deal with the problem. (general)
Two-dimensional nonlinear equations of supersymmetric gauge theories
International Nuclear Information System (INIS)
Savel'ev, M.V.
1985-01-01
Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...
Pair Interaction of Dislocations in Two-Dimensional Crystals
Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.; von Grünberg, H. H.
2005-10-01
The pair interaction between crystal dislocations is systematically explored by analyzing particle trajectories of two-dimensional colloidal crystals measured by video microscopy. The resulting pair energies are compared to Monte Carlo data and to predictions derived from the standard Hamiltonian of the elastic theory of dislocations. Good agreement is found with respect to the distance and temperature dependence of the interaction potential, but not regarding the angle dependence where discrete lattice effects become important. Our results on the whole confirm that the dislocation Hamiltonian allows a quantitative understanding of the formation and interaction energies of dislocations in two-dimensional crystals.
Two dimensional nonlinear spectral estimation techniques for breast cancer localization
International Nuclear Information System (INIS)
Stathaki, P.T.; Constantinides, A.G.
1994-01-01
In this paper the problem of image texture analysis in the presence of noise is examined from a higher-order statistical perspective. The approach taken involves the use of two dimensional second order Volterra filters where the filter weights are derived from third order cumulants of the two dimensional signal. The specific application contained in this contribution is in mammography, an area in which it is difficult to discern the appropriate features. The paper describes the fundamental issues of the various components of the approach. The results of the entire texture modelling, classification and segmentation scheme contained in this paper are very encouraging
Densis. Densimetric representation of two-dimensional matrices
International Nuclear Information System (INIS)
Los Arcos Merino, J.M.
1978-01-01
Densis is a Fortran V program which allows off-line control of a Calcomp digital plotter, to represent a two-dimensional matrix of numerical elements in the form of a variable shading intensity map in two colours. Each matrix element is associated to a square of a grid which is traced over by lines whose number is a function of the element value according to a selected scale. Program features, subroutine structure and running instructions, are described. Some typical results, for gamma-gamma coincidence experimental data and a sampled two-dimensional function, are indicated. (author)
Two-dimensional QCD in the Coulomb gauge
International Nuclear Information System (INIS)
Kalashnikova, Yu.S.; Nefed'ev, A.V.
2002-01-01
Various aspects of the 't Hooft model for two-dimensional QCD in the limit of infinite number of colours in the Coulomb gauge are discussed. The properties of mesonic excitations are studied, with special emphasis on the pion. Attention is paid to the dual role of the pion. which, while a genuine qq-bar state, is a Goldstone boson of two-dimensional QCD as well. In particular, the validity of the soft-pion theorems is demonstrated. It is shown that the Coulomb gauge is the most suitable choice for the study of hadronic observables involving pions [ru
Quantum Communication Through a Two-Dimensional Spin Network
International Nuclear Information System (INIS)
Wang Zhaoming; Gu Yongjian
2012-01-01
We investigate the state or entanglement transfer through a two-dimensional spin network. We show that for state transfer, better fidelity can be gained along the diagonal direction but for entanglement transfer, when the initial entanglement is created along the boundary, the concurrence is more inclined to propagate along the boundary. This behavior is produced by quantum mechanical interference and the communication quality depends on the precise size of the network. For some number of sites, the fidelity in a two-dimensional channel is higher than one-dimensional case. This is an important result for realizing quantum communication through high dimension spin chain networks.
Critical Behaviour of a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1976-01-01
A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....
Two dimensional nonlinear spectral estimation techniques for breast cancer localization
Energy Technology Data Exchange (ETDEWEB)
Stathaki, P T; Constantinides, A G [Signal Processing Section, Department of Electrical and Electronic Engineering, Imperial College, Exhibition Road, London SW7 2BT, UK (United Kingdom)
1994-12-31
In this paper the problem of image texture analysis in the presence of noise is examined from a higher-order statistical perspective. The approach taken involves the use of two dimensional second order Volterra filters where the filter weights are derived from third order cumulants of the two dimensional signal. The specific application contained in this contribution is in mammography, an area in which it is difficult to discern the appropriate features. The paper describes the fundamental issues of the various components of the approach. The results of the entire texture modelling, classification and segmentation scheme contained in this paper are very encouraging. 7 refs, 2 figs.
Finite element solution of two dimensional time dependent heat equation
International Nuclear Information System (INIS)
Maaz
1999-01-01
A Microsoft Windows based computer code, named FHEAT, has been developed for solving two dimensional heat problems in Cartesian and Cylindrical geometries. The programming language is Microsoft Visual Basic 3.0. The code makes use of Finite element formulation for spatial domain and Finite difference formulation for time domain. Presently the code is capable of solving two dimensional steady state and transient problems in xy- and rz-geometries. The code is capable excepting both triangular and rectangular elements. Validation and benchmarking was done against hand calculations and published results. (author)
Chaotic dynamics in two-dimensional noninvertible maps
Mira, Christian; Cathala, Jean-Claude; Gardini, Laura
1996-01-01
This book is essentially devoted to complex properties (Phase plane structure and bifurcations) of two-dimensional noninvertible maps, i.e. maps having either a non-unique inverse, or no real inverse, according to the plane point. They constitute models of sets of discrete dynamical systems encountered in Engineering (Control, Signal Processing, Electronics), Physics, Economics, Life Sciences. Compared to the studies made in the one-dimensional case, the two-dimensional situation remained a long time in an underdeveloped state. It is only since these last years that the interest for this resea
Chiral anomaly, fermionic determinant and two dimensional models
International Nuclear Information System (INIS)
Rego Monteiro, M.A. do.
1985-01-01
The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt
Uysal, Ismail Enes
2016-10-01
Plasmonic structures are utilized in many applications ranging from bio-medicine to solar energy generation and transfer. Numerical schemes capable of solving equations of classical electrodynamics have been the method of choice for characterizing scattering properties of such structures. However, as dimensions of these plasmonic structures reduce to nanometer scale, quantum mechanical effects start to appear. These effects cannot be accurately modeled by available classical numerical methods. One of these quantum effects is the tunneling, which is observed when two structures are located within a sub-nanometer distance of each other. At these small distances electrons “jump" from one structure to another and introduce a path for electric current to flow. Classical equations of electrodynamics and the schemes used for solving them do not account for this additional current path. This limitation can be lifted by introducing an auxiliary tunnel with material properties obtained using quantum models and applying a classical solver to the structures connected by this auxiliary tunnel. Early work on this topic focused on quantum models that are generated using a simple one-dimensional wave function to find the tunneling probability and assume a simple Drude model for the permittivity of the tunnel. These tunnel models are then used together with a classical frequency domain solver. In this thesis, a time domain surface integral equation solver for quantum corrected analysis of transient plasmonic interactions is proposed. This solver has several advantages: (i) As opposed to frequency domain solvers, it provides results at a broad band of frequencies with a single simulation. (ii) As opposed to differential equation solvers, it only discretizes surfaces (reducing number of unknowns), enforces the radiation condition implicitly (increasing the accuracy), and allows for time step selection independent of spatial discretization (increasing efficiency). The quantum model
Aspects of quantum corrections in a Lorentz-violating extension of the abelian Higgs Model
Energy Technology Data Exchange (ETDEWEB)
Brito, L.C.T.; Fargnoli, H.G. [Universidade Federal de Lavras, MG (Brazil); Scarpelli, A.P. Baeta [Departamento de Policia Federal, Rio de Janeiro, RJ (Brazil)
2013-07-01
Full text: We have investigated new aspects related to the four-dimensional abelian gauge-Higgs model with the addition of the Carroll-Field-Jackiw term (CFJ). We have focused on one-loop quantum corrections to the photon and Higgs sectors and we have analyzed what kind of effects are induced at the quantum level by spontaneous gauge symmetry breaking due the presence of the CFJ term. We have shown that new finite and non-ambiguous Lorentz-breaking terms are induced in both sectors at second order in the background vector. Specifically in the pure gauge sector, a CPT-even aether term (free from ambiguities) is induced. A CPT-even term is also induced in the pure Higgs sector. Both terms have been mapped in the Standard Model Extension. Besides, aspects of the one-loop renormalization of the background vector dependent terms have been studied. The new divergences due the presence of the CFJ term were shown to be worked out by the renormalization condition which requires the vanishing of the vacuum expectation value of the Higgs field. So at one loop the CFJ term does not spoil the well known renormalizability of the model without Lorentz symmetry breaking terms. The calculations have been done within dimensional methods and in an arbitrary gauge choice. (author)
Quantum corrections to potential energy surfaces and their influence on barriers
International Nuclear Information System (INIS)
Reinhard, P.G.; Goeke, K.W.; Bonn Univ.
1980-01-01
A microscopic theory suitable for the description of fission processes and other large-amplitude collective phenomena is presented. The approach makes use of an optimal collective path, which is constructed by means of adiabatic time-dependent Hartree-Fock (TDHF) techniques as to show maximal de-coupling of collective and non-collective degrees of freedom. Although this involves a classical concept, the theory fully incorporates quantum effects associated with extracting a collective Schroedinger equation from adiabatic time-dependent Hartree-Fock theories (ATDHF). The quantum corrections are discussed extensively, and calculations in the two-centre shell model show, e.g. that they reduce the second barrier by 2 MeV and the life-time by a factor of 10 -7 . The relationships of the presented quantized ATDHF approach to the random-phase approximation (RPA) and a generalized dynamic generator co-ordinate method are investigated. For the construction of the optimal fission path, simple step-by-step methods are suggested. (author)
Vectorized Matlab Codes for Linear Two-Dimensional Elasticity
Directory of Open Access Journals (Sweden)
Jonas Koko
2007-01-01
Full Text Available A vectorized Matlab implementation for the linear finite element is provided for the two-dimensional linear elasticity with mixed boundary conditions. Vectorization means that there is no loop over triangles. Numerical experiments show that our implementation is more efficient than the standard implementation with a loop over all triangles.
Level crossings in complex two-dimensional potentials
Indian Academy of Sciences (India)
Two-dimensional P T -symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both ...
Zero sound in a two-dimensional dipolar Fermi gas
Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.
2013-01-01
We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both
Interior design of a two-dimensional semiclassical black hole
Levanony, Dana; Ori, Amos
2009-10-01
We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.
On final states of two-dimensional decaying turbulence
Yin, Z.
2004-01-01
Numerical and analytical studies of final states of two-dimensional (2D) decaying turbulence are carried out. The first part of this work is trying to give a definition for final states of 2D decaying turbulence. The functional relation of ¿-¿, which is frequently adopted as the characterization of
Vibrations of thin piezoelectric shallow shells: Two-dimensional ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity ...
Inter-layer Cooper pairing of two-dimensional electrons
International Nuclear Information System (INIS)
Inoue, Masahiro; Takemori, Tadashi; Yoshizaki, Ryozo; Sakudo, Tunetaro; Ohtaka, Kazuo
1987-01-01
The authors point out the possibility that the high transition temperatures of the recently discovered oxide superconductors are dominantly caused by the inter-layer Cooper pairing of two-dimensional electrons that are coupled through the exchange of three-dimensional phonons. (author)
Solitary wave solutions of two-dimensional nonlinear Kadomtsev ...
Indian Academy of Sciences (India)
Aly R Seadawy
2017-09-13
Sep 13, 2017 ... We considered the two-dimensional DASWs in colli- sionless, unmagnetized cold plasma consisting of dust fluid, ions and electrons. The dynamics of DASWs is governed by the normalized fluid equations of nonlin- ear continuity (1), nonlinear motion of system (2) and. (3) and linear Poisson equation (4) as.
Two-dimensional generalized harmonic oscillators and their Darboux partners
International Nuclear Information System (INIS)
Schulze-Halberg, Axel
2011-01-01
We construct two-dimensional Darboux partners of the shifted harmonic oscillator potential and of an isotonic oscillator potential belonging to the Smorodinsky–Winternitz class of superintegrable systems. The transformed solutions, their potentials and the corresponding discrete energy spectra are computed in explicit form. (paper)
First principles calculation of two dimensional antimony and antimony arsenide
Energy Technology Data Exchange (ETDEWEB)
Pillai, Sharad Babu, E-mail: sbpillai001@gmail.com; Narayan, Som; Jha, Prafulla K. [Department. of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 (India); Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)
2016-05-23
This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.
Two-dimensional models in statistical mechanics and field theory
International Nuclear Information System (INIS)
Koberle, R.
1980-01-01
Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt
Theory of the one- and two-dimensional electron gas
International Nuclear Information System (INIS)
Emery, V.J.
1987-01-01
Two topics are discussed: (1) the competition between 2k/sub F/ and 4k/sub F/ charge state waves in a one-dimensional electron gas and (2) a two-dimensional model of high T/sub c/ superconductivity in the oxides
Two-dimensional turbulent flows on a bounded domain
Kramer, W.
2006-01-01
Large-scale flows in the oceans and the atmosphere reveal strong similarities with purely two-dimensional flows. One of the most typical features is the cascade of energy from smaller flow scales towards larger scales. This is opposed to three-dimensional turbulence where larger flow structures
Exterior calculus and two-dimensional supersymmetric models
International Nuclear Information System (INIS)
Sciuto, S.
1980-01-01
An important property of the calculus of differential forms on superspace is pointed out, and an economical way to treat the linear problem associated with certain supersymmetric two-dimensional models is discussed. A generalization of the super sine-Gordon model is proposed; its bosonic limit is a new model whose associate linear set has an SU(3) structure. (orig.)
Second invariant for two-dimensional classical super systems
Indian Academy of Sciences (India)
Construction of superpotentials for two-dimensional classical super systems (for N. 2) is carried ... extensively used for the case of non-linear partial differential equation by various authors. [3,4–7,12 ..... found to be integrable just by accident.
Quantitative optical mapping of two-dimensional materials
DEFF Research Database (Denmark)
Jessen, Bjarke S.; Whelan, Patrick R.; Mackenzie, David M. A.
2018-01-01
The pace of two-dimensional materials (2DM) research has been greatly accelerated by the ability to identify exfoliated thicknesses down to a monolayer from their optical contrast. Since this process requires time-consuming and error-prone manual assignment to avoid false-positives from image...
Temperature maxima in stable two-dimensional shock waves
International Nuclear Information System (INIS)
Kum, O.; Hoover, W.G.; Hoover, C.G.
1997-01-01
We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith model for strong shock waves in dilute three-dimensional gases. copyright 1997 The American Physical Society
Two-dimensional molecular line transfer for a cometary coma
Szutowicz, S.
2017-09-01
In the proposed axisymmetric model of the cometary coma the gas density profile is described by an angular density function. Three methods for treating two-dimensional radiative transfer are compared: the Large Velocity Gradient (LVG) (the Sobolev method), Accelerated Lambda Iteration (ALI) and accelerated Monte Carlo (MC).
Sub-Nanometer Channels Embedded in Two-Dimensional Materials
Han, Yimo; Li, Ming-yang; Jung, Gang-Seob; Marsalis, Mark A.; Qin, Zhao; Buehler, Markus J.; Li, Lain-Jong; Muller, David A.
2017-01-01
Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically-thin p-n junctions2
Complex dynamical invariants for two-dimensional complex potentials
Indian Academy of Sciences (India)
Abstract. Complex dynamical invariants are searched out for two-dimensional complex poten- tials using rationalization method within the framework of an extended complex phase space characterized by x = x1 + ip3, y = x2 + ip4, px = p1 + ix3, py = p2 + ix4. It is found that the cubic oscillator and shifted harmonic oscillator ...
Coherent Electron Focussing in a Two-Dimensional Electron Gas.
Houten, H. van; Wees, B.J. van; Mooij, J.E.; Beenakker, C.W.J.; Williamson, J.G.; Foxon, C.T.
1988-01-01
The first experimental realization of ballistic point contacts in a two-dimensional electron gas for the study of transverse electron focussing by a magnetic field is reported. Multiple peaks associated with skipping orbits of electrons reflected specularly by the channel boundary are observed. At
Two-dimensional ion effects in relativistic diodes
International Nuclear Information System (INIS)
Poukey, J.W.
1975-01-01
In relativistic diodes, ions are emitted from the anode plasma. The effects and properties of these ions are studied via a two-dimensional particle simulation code. The space charge of these ions enhances the electron emission, and this additional current (including that of the ions, themselves) aids in obtaining superpinched electron beams for use in pellet fusion studies. (U.S.)
Bounds on the capacity of constrained two-dimensional codes
DEFF Research Database (Denmark)
Forchhammer, Søren; Justesen, Jørn
2000-01-01
Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run-l...
Interior design of a two-dimensional semiclassical black hole
International Nuclear Information System (INIS)
Levanony, Dana; Ori, Amos
2009-01-01
We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.
Two-dimensional profiling of Xanthomonas campestris pv. viticola ...
African Journals Online (AJOL)
However, the analysis of the 2D-PAGE gel images revealed a larger number of spots in the lysis method when compared to the others. Taking ... Keywords: Bacterial canker, Vitis vinifera, proteomics, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2D-PAGE).
Image Making in Two Dimensional Art; Experiences with Straw and ...
African Journals Online (AJOL)
Image making in art is professionally referred to as bust in Sculpture andPortraiture in Painting. ... havebeen used to achieve these forms of art; like clay cement, marble, stone,different metals and, fibre glass in the three dimensional form; We also have Pencil, Charcoal Pastel and, Acrylic oil-paint in two dimensional form.
Image Making in Two Dimensional Art; Experiences with Straw and ...
African Journals Online (AJOL)
Image making in art is professionally referred to as bust in Sculpture andPortraiture in Painting. It is an art form executed in three dimensional (3D)and two dimensional (2D) formats respectively. Uncountable materials havebeen used to achieve these forms of art; like clay cement, marble, stone,different metals and, fibre ...
Mass relations for two-dimensional classical configurations
International Nuclear Information System (INIS)
Tataru-Mihai, P.
1980-01-01
Using the two-dimensional sigma-nonlinear models as a framework mass relations for classical configurations of instanton/soliton type are derived. Our results suggest an interesting differential-geometric interpretation of the mass of a classical configuration in terms of the topological characteristics of an associated manifold. (orig.)
Seismically constrained two-dimensional crustal thermal structure of ...
Indian Academy of Sciences (India)
The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to ...
Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy
Jansen, Thomas L. C.; Knoester, Jasper
We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,
Two-dimensional NMR studies of allyl palladium complexes of ...
Indian Academy of Sciences (India)
Administrator
h3-Allyl complexes are intermediates in organic synthetic reactions such as allylic alkylation and amination. There is growing interest in understanding the structures of chiral h3-allyl intermediates as this would help to unravel the mechanism of enantioselective C–C bond forming reactions. Two-dimensional NMR study is a.
Two-dimensional effects in nonlinear Kronig-Penney models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim
1997-01-01
An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...
Two-dimensional position sensitive Si(Li) detector
International Nuclear Information System (INIS)
Walton, J.T.; Hubbard, G.S.; Haller, E.E.; Sommer, H.A.
1978-11-01
Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n + resisitive layer for one contact and a boron implanted p + resistive layer for the second contact. A position resolution of the order of 100 μm is indicated
A TWO-DIMENSIONAL POSITION SENSITIVE SI(LI) DETECTOR
Energy Technology Data Exchange (ETDEWEB)
Walton, Jack T.; Hubbard, G. Scott; Haller, Eugene E.; Sommer, Heinrich A.
1978-11-01
Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n{sup +} resistive layer for one contact and a boron implanted p{sup +} resistive layer for the second contact. A position resolution of the order of 100 {micro}m is indicated.
Solar Internal Rotation and Dynamo Waves: A Two Dimensional ...
Indian Academy of Sciences (India)
tribpo
Solar Internal Rotation and Dynamo Waves: A Two Dimensional. Asymptotic Solution in the Convection Zone ... We calculate here a spatial 2 D structure of the mean magnetic field, adopting real profiles of the solar internal ... of the asymptotic solution in low (middle) and high (right panel) latitudes. field is shifted towards the ...
Linkage analysis by two-dimensional DNA typing
te Meerman, G J; Mullaart, E; Meulen ,van der Martin; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J
1993-01-01
In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core
Proximity Induced Superconducting Properties in One and Two Dimensional Semiconductors
DEFF Research Database (Denmark)
Kjærgaard, Morten
This report is concerned with the properties of one and two dimensional semiconducting materials when brought into contact with a superconductor. Experimentally we study the 2D electron gas in an InGaAs/InAs heterostructure with aluminum grown in situ on the surface, and theoretically we show tha...
Two-Dimensional Charge Transport in Disordered Organic Semiconductors
Brondijk, J. J.; Roelofs, W. S. C.; Mathijssen, S. G. J.; Shehu, A.; Cramer, T.; Biscarini, F.; Blom, P. W. M.; de Leeuw, D. M.
2012-01-01
We analyze the effect of carrier confinement on the charge-transport properties of organic field-effect transistors. Confinement is achieved experimentally by the use of semiconductors of which the active layer is only one molecule thick. The two-dimensional confinement of charge carriers provides
Noninteracting beams of ballistic two-dimensional electrons
International Nuclear Information System (INIS)
Spector, J.; Stormer, H.L.; Baldwin, K.W.; Pfeiffer, L.N.; West, K.W.
1991-01-01
We demonstrate that two beams of two-dimensional ballistic electrons in a GaAs-AlGaAs heterostructure can penetrate each other with negligible mutual interaction analogous to the penetration of two optical beams. This allows electrical signal channels to intersect in the same plane with negligible crosstalk between the channels
Two-dimensional dissipation in third sound resonance
International Nuclear Information System (INIS)
Buck, A.L.; Mochel, J.M.; Illinois Univ., Urbana
1981-01-01
The first determination of non-linear superflow dissipation in a truly two-dimensional helium film is reported. Superfluid velocities were measured using third sound resonance on a closed superfluid film. The predicted power law dissipation function, with exponent of approximately eight, is observed at three temperatures in a film of 0.58 mobile superfluid layers. (orig.)
Graphene: a promising two-dimensional support for heterogeneous catalysts
Directory of Open Access Journals (Sweden)
Xiaobin eFan
2015-01-01
Full Text Available Graphene has many advantages that make it an attractive two-dimensional (2D support for heterogeneous catalysts. It not only allows the high loading of targeted catalytic species, but also facilitates the mass transfer during the reaction processes. These advantages, along with its unique physical and chemical properties, endow graphene great potential as catalyst support in heterogeneous catalysis.
Two-dimensional interpolation with experimental data smoothing
International Nuclear Information System (INIS)
Trejbal, Z.
1989-01-01
A method of two-dimensional interpolation with smoothing of time statistically deflected points is developed for processing of magnetic field measurements at the U-120M field measurements at the U-120M cyclotron. Mathematical statement of initial requirements and the final result of relevant algebraic transformations are given. 3 refs
Tunneling between parallel two-dimensional electron liquids
Czech Academy of Sciences Publication Activity Database
Jungwirth, Tomáš; MacDonald, A. H.
361/362, - (1996), s. 167-170 ISSN 0039-6028. [International Conference on the Electronic Properties of Two Dimensional Systems /11./. Nottingham, 07.08.1995-11.08.1995] R&D Projects: GA ČR GA202/94/1278 Grant - others:INT(XX) 9106888 Impact factor: 2.783, year: 1996
Influence of index contrast in two dimensional photonic crystal lasers
DEFF Research Database (Denmark)
Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner
2010-01-01
The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavity...
Two-Dimensional Tellurene as Excellent Thermoelectric Material
Sharma, Sitansh; Singh, Nirpendra; Schwingenschlö gl, Udo
2018-01-01
We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high
Analysis of Two-Dimensional Electrophoresis Gel Images
DEFF Research Database (Denmark)
Pedersen, Lars
2002-01-01
This thesis describes and proposes solutions to some of the currently most important problems in pattern recognition and image analysis of two-dimensional gel electrophoresis (2DGE) images. 2DGE is the leading technique to separate individual proteins in biological samples with many biological...
Patched Green's function techniques for two-dimensional systems
DEFF Research Database (Denmark)
Settnes, Mikkel; Power, Stephen; Lin, Jun
2015-01-01
We present a numerically efficient technique to evaluate the Green's function for extended two-dimensional systems without relying on periodic boundary conditions. Different regions of interest, or “patches,” are connected using self-energy terms which encode the information of the extended parts...
Nonlinear dynamic characterization of two-dimensional materials
Davidovikj, D.; Alijani, F.; Cartamil Bueno, S.J.; van der Zant, H.S.J.; Amabili, M.; Steeneken, P.G.
2017-01-01
Owing to their atomic-scale thickness, the resonances of two-dimensional (2D) material membranes show signatures of nonlinearities at forces of only a few picoNewtons. Although the linear dynamics of membranes is well understood, the exact relation between the nonlinear response and the resonator's
Transient two-dimensional flow in porous media
International Nuclear Information System (INIS)
Sharpe, L. Jr.
1979-01-01
The transient flow of an isothermal ideal gas from the cavity formed by an underground nuclear explosion is investigated. A two-dimensional finite element method is used in analyzing the gas flow. Numerical results of the pressure distribution are obtained for both the stemming column and the surrounding porous media
Two-dimensional QCD as a model for strong interaction
International Nuclear Information System (INIS)
Ellis, J.
1977-01-01
After an introduction to the formalism of two-dimensional QCD, its applications to various strong interaction processes are reviewed. Among the topics discussed are spectroscopy, deep inelastic cross-sections, ''hard'' processes involving hadrons, ''Regge'' behaviour, the existence of the Pomeron, and inclusive hadron cross-sections. Attempts are made to abstracts features useful for four-dimensional QCD phenomenology. (author)
Two-dimensional gel electrophoresis analysis of different parts of ...
African Journals Online (AJOL)
Two-dimensional gel electrophoresis analysis of different parts of Panax quinquefolius L. root. ... From these results it was concluded that proteomic analysis method was an effective way to identify the different parts of quinquefolius L. root. These findings may contribute to further understanding of the physiological ...
Two-dimensional optimization of free-electron-laser designs
Prosnitz, D.; Haas, R.A.
1982-05-04
Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.
Kubo conductivity of a strongly magnetized two-dimensional plasma.
Montgomery, D.; Tappert, F.
1971-01-01
The Kubo formula is used to evaluate the bulk electrical conductivity of a two-dimensional guiding-center plasma in a strong dc magnetic field. The particles interact only electrostatically. An ?anomalous' electrical conductivity is derived for this system, which parallels a recent result of Taylor and McNamara for the coefficient of spatial diffusion.
Bayesian approach for peak detection in two-dimensional chromatography
Vivó-Truyols, G.
2012-01-01
A new method for peak detection in two-dimensional chromatography is presented. In a first step, the method starts with a conventional one-dimensional peak detection algorithm to detect modulated peaks. In a second step, a sophisticated algorithm is constructed to decide which of the individual
Equilibrium spherically curved two-dimensional Lennard-Jones systems
Voogd, J.M.; Sloot, P.M.A.; van Dantzig, R.
2005-01-01
To learn about basic aspects of nano-scale spherical molecular shells during their formation, spherically curved two-dimensional N-particle Lennard-Jones systems are simulated, studying curvature evolution paths at zero-temperature. For many N-values (N < 800) equilibrium configu- rations are traced
Giant 1/f noise in two-dimensional polycrystalline media
International Nuclear Information System (INIS)
Snarskii, A.; Bezsudnov, I.
2008-01-01
The behaviour of excess (1/f noise) in two-dimensional polycrystalline media is investigated. On the base of current trap model, it is shown that there exists a certain anisotropy value of conductivity tensor for polycrystalline media when the amplitude of 1/f noise becomes giant
International Nuclear Information System (INIS)
Fradkin, E.S.; Palchik, M.Ya.
1996-02-01
We study a family of exactly solvable models of conformally-invariant quantum field theory in D-dimensional space. We demonstrate the existence of D-dimensional analogs of primary and secondary fields. Under the action of energy-momentum tensor and conserved currents, the primary fields creates an infinite set of (tensor) secondary fields of different generations. The commutators of secondary fields with zero components of current and energy-momentum tensor include anomalous operator terms. We show that the Hilbert space of conformal theory has a special sector which structure is solely defined by the Ward identities independently on the choice of dynamical model. The states of this sector are constructed from secondary fields. Definite self-consistent conditions on the states of the latter sector fix the choice of the field model uniquely. In particular, Lagrangian models do belong to this class of models. The above self-consistent conditions are formulated as follows. Special superpositions Q s , s = 1,2,... of secondary fields are constructed. Each superposition is determined by the requirement that the form of its commutators with energy-momentum tensor and current (i.e. transformation properties) should be identical to that of a primary field. Each equation Q s (x) = 0 is consistent, and defines an exactly solvable model for D ≥ 3. The structure of these models are analogous to that of well-known two dimensional conformal models. The states Q s (x) modul 0> are analogous to the null-vectors of two dimensional theory. In each of these models one can obtain a closed set of differential equations for all the higher Green functions, as well as algebraic equations relating the scale dimension of fundamental field to the D-dimensional analog of a central charge. As an example, we present a detailed discussion of a pair of exactly solvable models in even-dimensional space D ≥ 4. (author). 28 refs
Two-dimensional fractal geometry, critical phenomena and conformal invariance
International Nuclear Information System (INIS)
Duplantier, B.
1988-01-01
The universal properties of critical geometrical systems in two-dimensions (2D) like the O (n) and Potts models, are described in the framework of Coulomb gas methods and conformal invariance. The conformal spectrum of geometrical critical systems obtained is made of a discrete infinite series of scaling dimensions. Specific applications involve the fractal properties of self-avoiding walks, percolation clusters, and also some non trivial critical exponents or fractal dimensions associated with subsets of the planar Brownian motion. The statistical mechanics of the same critical models on a random 2D lattice (namely in presence of a critically-fluctuating metric, in the so-called 2D quantum gravity) is also addressed, and the above critical geometrical systems are shown to be exactly solvable in this case. The new ''gravitational'' conformal spectrum so derived is found to satisfy the recent Knizhnik, Polyakov and Zamolodchikov quadratic relation which links it to the standard conformal spectrum in the plane
Two solvable problems of planar geometrical optics.
Borghero, Francesco; Bozis, George
2006-12-01
In the framework of geometrical optics we consider a two-dimensional transparent inhomogeneous isotropic medium (dispersive or not). We show that (i) for any family belonging to a certain class of planar monoparametric families of monochromatic light rays given in the form f(x,y)=c of any definite color and satisfying a differential condition, all the refractive index profiles n=n(x,y) allowing for the creation of the given family can be found analytically (inverse problem) and that (ii) for any member of a class of two-dimensional refractive index profiles n=n(x,y) satisfying a differential condition, all the compatible families of light rays can be found analytically (direct problem). We present appropriate examples.
International Nuclear Information System (INIS)
Sanchez, Richard.
1980-11-01
This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr
arXiv Quantum corrections to quartic inflation with a non-minimal coupling: metric vs. Palatini
Markkanen, Tommi; Vaskonen, Ville; Veermäe, Hardi
2018-03-16
We study models of quartic inflation where the inflaton field is coupled non-minimally to gravity, ξ 2 R, and perform a study of quantum corrections in curved space-time at one-loop level. We specifically focus on comparing results between the metric and Palatini theories of gravity. Transformation from the Jordan to the Einstein frame gives different results for the two formulations and by using an effective field theory expansion we derive the appropriate β-functions and the renormalisation group improved effective potentials in curved space for both cases in the Einstein frame. In particular, we show that in both formalisms the Einstein frame depends on the order of perturbation theory but that the flatness of the potential is unaltered by quantum corrections.
GEOMETRIZATION OF NONHOLONOMIC MECHANICAL SYSTEMS AND THEIR SOLVABILITY
Institute of Scientific and Technical Information of China (English)
慕小武; 郭仲衡
1990-01-01
A new geometrization approach to nonholonomic mechanical systems is proposed and a series of solvability conditions under the proposed geometric frame are given. The proposed frame differs essentially from Hermann’s. The limitations of Hermann’s frame are also discussed. It is shown that a system under Hermann’s frame is solvable only if its constraints are given by natural conservation laws of the corresponding constraint-free system.
International Nuclear Information System (INIS)
Zhang, Shao-Jun; Miao, Yan-Gang; Zhao, Ying-Jie
2015-01-01
As a generalized uncertainty principle (GUP) leads to the effects of the minimal length of the order of the Planck scale and UV/IR mixing, some significant physical concepts and quantities are modified or corrected correspondingly. On the one hand, we derive the maximally localized states—the physical states displaying the minimal length uncertainty associated with a new GUP proposed in our previous work. On the other hand, in the framework of this new GUP we calculate quantum corrections to the thermodynamic quantities of the Schwardzschild black hole, such as the Hawking temperature, the entropy, and the heat capacity, and give a remnant mass of the black hole at the end of the evaporation process. Moreover, we compare our results with that obtained in the frameworks of several other GUPs. In particular, we observe a significant difference between the situations with and without the consideration of the UV/IR mixing effect in the quantum corrections to the evaporation rate and the decay time. That is, the decay time can greatly be prolonged in the former case, which implies that the quantum correction from the UV/IR mixing effect may give rise to a radical rather than a tiny influence to the Hawking radiation.
Two dimensional analytical model for a reconfigurable field effect transistor
Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.
2018-02-01
This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.
Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown
Energy Technology Data Exchange (ETDEWEB)
Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Zhang, Meiyun; Long, Shibing [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Lian, Xiaojuan; Miao, Feng [National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Larcher, Luca [DISMI, Università di Modena e Reggio Emilia, 42122 Reggio Emilia (Italy); Wu, Ernest [IBM Research Division, Essex Junction, Vermont 05452 (United States)
2016-01-04
Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.
Quasi-two-dimensional thermoelectricity in SnSe
Tayari, V.; Senkovskiy, B. V.; Rybkovskiy, D.; Ehlen, N.; Fedorov, A.; Chen, C.-Y.; Avila, J.; Asensio, M.; Perucchi, A.; di Pietro, P.; Yashina, L.; Fakih, I.; Hemsworth, N.; Petrescu, M.; Gervais, G.; Grüneis, A.; Szkopek, T.
2018-01-01
Stannous selenide is a layered semiconductor that is a polar analog of black phosphorus and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle-resolved photoemission spectroscopy, optical reflection spectroscopy, and magnetotransport measurements reveal a multiple-valley valence-band structure and a quasi-two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to 250 cm2/V s at T =1.3 K . SnSe is thus found to be a high-quality quasi-two-dimensional semiconductor ideal for thermoelectric applications.
Folding two dimensional crystals by swift heavy ion irradiation
Energy Technology Data Exchange (ETDEWEB)
Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)
2014-12-01
Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.
Folding two dimensional crystals by swift heavy ion irradiation
International Nuclear Information System (INIS)
Ochedowski, Oliver; Bukowska, Hanna; Freire Soler, Victor M.; Brökers, Lara; Ban-d'Etat, Brigitte; Lebius, Henning; Schleberger, Marika
2014-01-01
Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS 2 and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS 2 does not
Two-dimensional time dependent Riemann solvers for neutron transport
International Nuclear Information System (INIS)
Brunner, Thomas A.; Holloway, James Paul
2005-01-01
A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem
Dynamics of vortex interactions in two-dimensional flows
DEFF Research Database (Denmark)
Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.
2002-01-01
The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...... a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 ... is effectively producing small scale structures and the relation to the enstrophy "cascade" in developed 2D turbulence is discussed. The influence of finite viscosity on the merging is also investigated. Additionally, we examine vortex interactions on a finite domain, and discuss the results in connection...
Quantum vacuum energy in two dimensional space-times
International Nuclear Information System (INIS)
Davies, P.C.W.; Fulling, S.A.
1977-01-01
The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed. (author)
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine
2004-01-01
of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine......Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...
Tuning spin transport across two-dimensional organometallic junctions
Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping
2018-01-01
We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.
Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases
Krug, J.; Neiss, R. A.; Schadschneider, A.; Schmidt, J.
2018-03-01
The spreading of density fluctuations in two-dimensional driven diffusive systems is marginally anomalous. Mode coupling theory predicts that the diffusivity in the direction of the drive diverges with time as (ln t)^{2/3} with a prefactor depending on the macroscopic current-density relation and the diffusion tensor of the fluctuating hydrodynamic field equation. Here we present the first numerical verification of this behavior for a particular version of the two-dimensional asymmetric exclusion process. Particles jump strictly asymmetrically along one of the lattice directions and symmetrically along the other, and an anisotropy parameter p governs the ratio between the two rates. Using a novel massively parallel coupling algorithm that strongly reduces the fluctuations in the numerical estimate of the two-point correlation function, we are able to accurately determine the exponent of the logarithmic correction. In addition, the variation of the prefactor with p provides a stringent test of mode coupling theory.
Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas
International Nuclear Information System (INIS)
Valeo, E.J.; Kramer, G.J.; Nazikian, R.
2001-01-01
A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed
Directional detection of dark matter with two-dimensional targets
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Tully, Christopher G.; Zurek, Kathryn M.
2017-09-01
We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. We show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. This proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.
Linear negative magnetoresistance in two-dimensional Lorentz gases
Schluck, J.; Hund, M.; Heckenthaler, T.; Heinzel, T.; Siboni, N. H.; Horbach, J.; Pierz, K.; Schumacher, H. W.; Kazazis, D.; Gennser, U.; Mailly, D.
2018-03-01
Two-dimensional Lorentz gases formed by obstacles in the shape of circles, squares, and retroreflectors are reported to show a pronounced linear negative magnetoresistance at small magnetic fields. For circular obstacles at low number densities, our results agree with the predictions of a model based on classical retroreflection. In extension to the existing theoretical models, we find that the normalized magnetoresistance slope depends on the obstacle shape and increases as the number density of the obstacles is increased. The peaks are furthermore suppressed by in-plane magnetic fields as well as by elevated temperatures. These results suggest that classical retroreflection can form a significant contribution to the magnetoresistivity of two-dimensional Lorentz gases, while contributions from weak localization cannot be excluded, in particular for large obstacle densities.
Quantum vacuum energy in two dimensional space-times
Energy Technology Data Exchange (ETDEWEB)
Davies, P C.W.; Fulling, S A [King' s Coll., London (UK). Dept. of Mathematics
1977-04-21
The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed.
CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION
Directory of Open Access Journals (Sweden)
Toth Reka
2010-12-01
Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.
Transport behavior of water molecules through two-dimensional nanopores
International Nuclear Information System (INIS)
Zhu, Chongqin; Li, Hui; Meng, Sheng
2014-01-01
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules
Two-dimensional superconductivity in ultrathin disordered thin films
International Nuclear Information System (INIS)
Beasley, M.R.
1992-01-01
The status of the understanding of two-dimensional superconductivity in ultrathin, disordered thin films is reviewed. The different consequences of microscopic versus macroscopic disorder are stressed. It is shown that microscopic disorder leads to a rapid suppression of the mean-field transition temperature. The consequences of macroscopic disorder are not well understood, but a universal behavior of the zero-bias resistance as a function of field and temperature has been observed. (orig.)
Two-dimensional heat conducting simulation of plasma armatures
International Nuclear Information System (INIS)
Huerta, M.A.; Boynton, G.
1991-01-01
This paper reports on our development of a two-dimensional MHD code to simulate internal motions in a railgun plasma armature. The authors use the equations of resistive MHD, with Ohmic heating, and radiation heat transport. The authors use a Flux Corrected Transport code to advance all quantities in time. Our runs show the development of complex flows, subsequent shedding of secondary arcs, and a drop in the acceleration of the armature
Topological field theories and two-dimensional instantons
International Nuclear Information System (INIS)
Schaposnik, F.A.
1990-01-01
In this paper, the author discusses some topics related to the recently developed Topological Field Theories (TFTs). The first part is devoted to a discussion on how a TFT can be quantized using techniques which are well-known from the study of gauge theories. Then the author describes the results that we have obtained in collaboration with George Thompson in the study of a two-dimensional TFT related to the Abelian Higgs model
Two-dimensional color-code quantum computation
International Nuclear Information System (INIS)
Fowler, Austin G.
2011-01-01
We describe in detail how to perform universal fault-tolerant quantum computation on a two-dimensional color code, making use of only nearest neighbor interactions. Three defects (holes) in the code are used to represent logical qubits. Triple-defect logical qubits are deformed into isolated triangular sections of color code to enable transversal implementation of all single logical qubit Clifford group gates. Controlled-NOT (CNOT) is implemented between pairs of triple-defect logical qubits via braiding.
Collision dynamics of two-dimensional non-Abelian vortices
Mawson, Thomas; Petersen, Timothy C.; Simula, Tapio
2017-09-01
We study computationally the collision dynamics of vortices in a two-dimensional spin-2 Bose-Einstein condensate. In contrast to Abelian vortex pairs, which annihilate or pass through each other, we observe non-Abelian vortex pairs to undergo rungihilation—an event that converts the colliding vortices into a rung vortex. The resulting rung defect subsequently decays to another pair of non-Abelian vortices of different type, accompanied by a magnetization reversal.
An energy principle for two-dimensional collisionless relativistic plasmas
International Nuclear Information System (INIS)
Otto, A.; Schindler, K.
1984-01-01
Using relativistic Vlasov theory an energy principle for two-dimensional plasmas is derived, which provides a sufficient and necessary criterion for the stability of relativistic plasma equilibria. This energy principle includes charge separating effects since the exact Poisson equation was taken into consideration. Applying the variational principle to the case of the relativistic plane plasma sheet, the same marginal wave length is found as in the non-relativistic case. (author)
Graphene – A Two-Dimensional Dirac Material
Liu, Danny; Wicklund, Johan
2014-01-01
Graphene is a two-dimensional material, whose popularity has soared in both condensedmatter physics and material science the past decade. Due to its unique properties, graphene can be used in a vast array of new and interesting applications that could fundamentally change the material industry. This report reviews the current research and literature in order to trace the historical development of graphene. Then, in order to better understand the material, the unique properties of graphene are...
Resistive-strips micromegas detectors with two-dimensional readout
Byszewski, M.; Wotschack, J.
2012-02-01
Micromegas detectors show very good performance for charged particle tracking in high rate environments as for example at the LHC. It is shown that two coordinates can be extracted from a single gas gap in these detectors. Several micromegas chambers with spark protection by resistive strips and two-dimensional readout have been tested in the context of the R&D work for the ATLAS Muon System upgrade.
Hall effect in the two-dimensional Luttinger liquid
International Nuclear Information System (INIS)
Anderson, P.W.
1991-01-01
The temperature dependence of the Hall effect in the normal state is a commom theme of all the cuprate superconductors and has been one of the more puzzling observations on these puzzling materials. We describe a general scheme within the Luttinger liquid theory of these two-dimensional quantum fluids which corrrelates the anomalous Hall and resistivity observations on a wide variety of both pure and doped single crystals, especially the data in the accompanying Letter of Chien, Wang, and Ong
Theory of a Nearly Two-Dimensional Dipolar Bose Gas
2016-05-11
order to be published, he sent the paper to Einstein to translate it. The other contributing scientist is world famous physicist Albert Einstein , maybe...mechanical state, a Bose- Einstein condensate (BEC), where the atoms cease to behave like distinguishable entities, and instead form a single macroscopic...model in both three- and two-dimensional geometries. 15. SUBJECT TERMS Bose Einstein condensation, ultracold physics, condensed matter, dipoles 16
SU(1,2) invariance in two-dimensional oscillator
Energy Technology Data Exchange (ETDEWEB)
Krivonos, Sergey [Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nersessian, Armen [Yerevan State University,1 Alex Manoogian St., Yerevan, 0025 (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)
2017-02-01
Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756, with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written in terms of the oscillator variables.
Decaying Two-Dimensional Turbulence in a Circular Container
Schneider, Kai; Farge, Marie
2005-01-01
We present direct numerical simulations of two-dimensional decaying turbulence at initial Reynolds number 5×104 in a circular container with no-slip boundary conditions. Starting with random initial conditions the flow rapidly exhibits self-organization into coherent vortices. We study their formation and the role of the viscous boundary layer on the production and decay of integral quantities. The no-slip wall produces vortices which are injected into the bulk flow and tend to compensate the...
Two-dimensional readout in a liquid xenon ionisation chamber
Solovov, V; Ferreira-Marques, R; Lopes, M I; Pereira, A; Policarpo, Armando
2002-01-01
A two-dimensional readout with metal strips deposited on both sides of a glass plate is investigated aiming to assess the possibility of its use in a liquid xenon ionisation chamber for positron emission tomography. Here, we present results obtained with an alpha-source. It is shown that position resolution of <=1 mm, fwhm, can be achieved for free charge depositions equivalent to those due to gamma-rays with energy from 220 down to 110 keV.
Stochastic and collisional diffusion in two-dimensional periodic flows
International Nuclear Information System (INIS)
Doxas, I.; Horton, W.; Berk, H.L.
1990-05-01
The global effective diffusion coefficient D* for a two-dimensional system of convective rolls with a time dependent perturbation added, is calculated. The perturbation produces a background diffusion coefficient D, which is calculated analytically using the Menlikov-Arnold integral. This intrinsic diffusion coefficient is then enhanced by the unperturbed flow, to produce the global effective diffusion coefficient D*, which we can calculate theoretically for a certain range of parameters. The theoretical value agrees well with numerical simulations. 23 refs., 4 figs
The Convergence Acceleration of Two-Dimensional Fourier Interpolation
Directory of Open Access Journals (Sweden)
Anry Nersessian
2008-07-01
Full Text Available Hereby, the convergence acceleration of two-dimensional trigonometric interpolation for a smooth functions on a uniform mesh is considered. Together with theoretical estimates some numerical results are presented and discussed that reveal the potential of this method for application in image processing. Experiments show that suggested algorithm allows acceleration of conventional Fourier interpolation even for sparse meshes that can lead to an efficient image compression/decompression algorithms and also to applications in image zooming procedures.
Two-dimensional correlation spectroscopy in polymer study
Park, Yeonju; Noda, Isao; Jung, Young Mee
2015-01-01
This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286
Spatial Discrete Soliton in Two dimensional with Kerr medium
International Nuclear Information System (INIS)
Aghdami, M.; Mostafavi, D.; Mokhtari, F.; Keradmand, R.
2012-01-01
In this theoretical work propagation of the Gaussian beam through a two dimensional waveguides array is numerically investigated, in which each waveguide contains medium with Kerr nonlinearity considering coupling to vertical, horizontal and diagonal neighbor through light electric field. Different values of intensity, nonlinear coefficient Kerr and Gaussian beam width of incident Gaussian beam are examined and finally suitable parameters for providing central spatial solitons are obtained.
GEPOIS: a two dimensional nonuniform mesh Poisson solver
International Nuclear Information System (INIS)
Quintenz, J.P.; Freeman, J.R.
1979-06-01
A computer code is described which solves Poisson's equation for the electric potential over a two dimensional cylindrical (r,z) nonuniform mesh which can contain internal electrodes. Poisson's equation is solved over a given region subject to a specified charge distribution with either Neumann or Dirichlet perimeter boundary conditions and with Dirichlet boundary conditions on internal surfaces. The static electric field is also computed over the region with special care given to normal electric field components at boundary surfaces
Acoustic transparency in two-dimensional sonic crystals
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Dehesa, Jose; Torrent, Daniel [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/ Camino de Vera s/n, E-46022 Valencia (Spain); Cai Liangwu [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)], E-mail: jsdehesa@upvnet.upv.es
2009-01-15
Acoustic transparency is studied in two-dimensional sonic crystals consisting of hexagonal distributions of cylinders with continuously varying properties. The transparency condition is achieved by selectively closing the acoustic bandgaps, which are governed by the structure factor of the cylindrical scatterers. It is shown here that cylindrical scatterers with the proposed continuously varying properties are physically realizable by using metafluids based on sonic crystals. The feasibility of this proposal is analyzed by a numerical experiment based on multiple scattering theory.
Two-dimensional manifolds with metrics of revolution
International Nuclear Information System (INIS)
Sabitov, I Kh
2000-01-01
This is a study of the topological and metric structure of two-dimensional manifolds with a metric that is locally a metric of revolution. In the case of compact manifolds this problem can be thoroughly investigated, and in particular it is explained why there are no closed analytic surfaces of revolution in R 3 other than a sphere and a torus (moreover, in the smoothness class C ∞ such surfaces, understood in a certain generalized sense, exist in any topological class)
Warranty menu design for a two-dimensional warranty
International Nuclear Information System (INIS)
Ye, Zhi-Sheng; Murthy, D.N. Pra
2016-01-01
Fierce competitions in the commercial product market have forced manufacturers to provide customer-friendly warranties with a view to achieving higher customer satisfaction and increasing the market share. This study proposes a strategy that offers customers a two-dimensional warranty menu with a number of warranty choices, called a flexible warranty policy. We investigate the design of a flexible two-dimensional warranty policy that contains a number of rectangular regions. This warranty policy is obtained by dividing customers into several groups according to their use rates and providing each group a germane warranty region. Consumers choose a favorable one from the menu according to their usage behaviors. Evidently, this flexible warranty policy is attractive to users of different usage behaviors, and thus, it gives the manufacturer a good position in advertising the product. When consumers are unaware about their use rates upon purchase, we consider a fixed two-dimensional warranty policy with a stair-case warranty region and show that it is equivalent to the flexible policy. Such an equivalence reveals the inherent relationship between the rectangular warranty policy, the L-shape warranty policy, the step-stair warranty policy and the iso-probability of failure warranty policy that were extensively discussed in the literature. - Highlights: • We design a two-dimensional warranty menu with a number of warranty choices. • Consumers can choose a favorable one from the menu as per their usage behavior. • We further consider a fixed 2D warranty policy with a stair-case warranty region. • We show the equivalence of the two warranty policies.
Two-dimensional simulation of the MHD stability, (1)
International Nuclear Information System (INIS)
Kurita, Gen-ichi; Amano, Tsuneo.
1976-03-01
The two-dimensional computer code has been prepared to study MHD stability of an axisymmetric toroidal plasma with and without the surrounding vacuum region. It also includes the effect of magnetic surfaces with non-circular cross sections. The linearized equations of motion are solved as an initial value problem. The results by computer simulation are compared with those by the theory for the cylindrical plasma; they are in good agreement. (auth.)
Two-dimensional analysis of trapped-ion eigenmodes
International Nuclear Information System (INIS)
Marchand, R.; Tang, W.M.; Rewoldt, G.
1979-11-01
A fully two-dimensional eigenmode analysis of the trapped-ion instability in axisymmetric toroidal geometry is presented. The calculations also takes into account the basic dynamics associated with other low frequency modes such as the trapped-electron instability and the ion-temperature-gradient instability. The poloidal structure of the mode is taken into account by Fourier expanding the perturbed electrostatic potential, PHI, in theta
Analysis of two dimensional signals via curvelet transform
Lech, W.; Wójcik, W.; Kotyra, A.; Popiel, P.; Duk, M.
2007-04-01
This paper describes an application of curvelet transform analysis problem of interferometric images. Comparing to two-dimensional wavelet transform, curvelet transform has higher time-frequency resolution. This article includes numerical experiments, which were executed on random interferometric image. In the result of nonlinear approximations, curvelet transform obtains matrix with smaller number of coefficients than is guaranteed by wavelet transform. Additionally, denoising simulations show that curvelet could be a very good tool to remove noise from images.
Two-dimensional shielding benchmarks for iron at YAYOI, (1)
International Nuclear Information System (INIS)
Oka, Yoshiaki; An, Shigehiro; Kasai, Shigeru; Miyasaka, Shun-ichi; Koyama, Kinji.
The aim of this work is to assess the collapsed neutron and gamma multigroup cross sections for two dimensional discrete ordinate transport code. Two dimensional distributions of neutron flux and gamma ray dose through a 70cm thick and 94cm square iron shield were measured at the fast neutron source reactor ''YAYOI''. The iron shield was placed over the lead reflector in the vertical experimental column surrounded by heavy concrete wall. The detectors used in this experiment were threshold detectors In, Ni, Al, Mg, Fe and Zn, sandwitch resonance detectors Au, W and Co, activation foils Au for neutrons and thermoluminescence detectors for gamma ray dose. The experimental results were compared with the calculated ones by the discrete ordinate transport code ANISN and TWOTRAN. The region-wise, coupled neutron-gamma multigroup cross-sections (100n+20gamma, EURLIB structure) were generated from ENDF/B-IV library for neutrons and POPOP4 library for gamma-ray production cross-sections by using the code system RADHEAT. The effective microscopic neutron cross sections were obtained from the infinite dilution values applying ABBN type self-shielding factors. The gamma ray production multigroup cross-sections were calculated from these effective microscopic neutron cross-sections. For two-dimensional calculations the group constants were collapsed into 10 neutron groups and 3 gamma groups by using ANISN. (auth.)
Electromagnetically induced two-dimensional grating assisted by incoherent pump
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn
2017-04-25
We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.
Procedures for two-dimensional electrophoresis of proteins
Energy Technology Data Exchange (ETDEWEB)
Tollaksen, S.L.; Giometti, C.S.
1996-10-01
High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.
Experimental two-dimensional quantum walk on a photonic chip.
Tang, Hao; Lin, Xiao-Feng; Feng, Zhen; Chen, Jing-Yuan; Gao, Jun; Sun, Ke; Wang, Chao-Yue; Lai, Peng-Cheng; Xu, Xiao-Yun; Wang, Yao; Qiao, Lu-Feng; Yang, Ai-Lin; Jin, Xian-Min
2018-05-01
Quantum walks, in virtue of the coherent superposition and quantum interference, have exponential superiority over their classical counterpart in applications of quantum searching and quantum simulation. The quantum-enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. We demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure that forms a two-dimensional lattice with up to 49 × 49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single photon-level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a quantum walk to freely evolve in all directions and at a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems.
Automated Processing of Two-Dimensional Correlation Spectra
Sengstschmid; Sterk; Freeman
1998-04-01
An automated scheme is described which locates the centers of cross peaks in two-dimensional correlation spectra, even under conditions of severe overlap. Double-quantum-filtered correlation (DQ-COSY) spectra have been investigated, but the method is also applicable to TOCSY and NOESY spectra. The search criterion is the intrinsic symmetry (or antisymmetry) of cross-peak multiplets. An initial global search provides the preliminary information to build up a two-dimensional "chemical shift grid." All genuine cross peaks must be centered at intersections of this grid, a fact that reduces the extent of the subsequent search program enormously. The program recognizes cross peaks by examining the symmetry of signals in a test zone centered at a grid intersection. This "symmetry filter" employs a "lowest value algorithm" to discriminate against overlapping responses from adjacent multiplets. A progressive multiplet subtraction scheme provides further suppression of overlap effects. The processed two-dimensional correlation spectrum represents cross peaks as points at the chemical shift coordinates, with some indication of their relative intensities. Alternatively, the information is presented in the form of a correlation table. The authenticity of a given cross peak is judged by a set of "confidence criteria" expressed as numerical parameters. Experimental results are presented for the 400-MHz double-quantum-filtered COSY spectrum of 4-androsten-3,17-dione, a case where there is severe overlap. Copyright 1998 Academic Press.
Quantum oscillations in quasi-two-dimensional conductors
Galbova, O
2002-01-01
The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...
Directory of Open Access Journals (Sweden)
D. A. Fetisov
2015-01-01
Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved
Solvable model of spiral wave chimeras.
Martens, Erik A; Laing, Carlo R; Strogatz, Steven H
2010-01-29
Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core.
Solvable Model of Spiral Wave Chimeras
DEFF Research Database (Denmark)
Martens, Erik Andreas; Laing, Carlo R.; Strogatz, Steven H.
2010-01-01
Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral...... can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core....
Directory of Open Access Journals (Sweden)
Dinesh Kumar
2013-11-01
Full Text Available This paper deals with the study of two-dimensional Saigo-Maeda operators of Weyl type associated with Aleph function defined in this paper. Two theorems on these defined operators are established. Some interesting results associated with the H-functions and generalized Mittag-Leffler functions are deduced from the derived results. One dimensional analog of the derived results is also obtained.
Two-dimensional polyacrylamide gel electrophoresis of intracellular proteins
International Nuclear Information System (INIS)
Ojima, N.; Sakamoto, T.; Yamashita, M.
1996-01-01
Since two-dimensional electrophoresis was established by O'Farrell for analysis of intracellular proteins of Escherichia coli, it has been applied to separation of proteins of animal cells and tissues, and especially to identification of stress proteins. Using this technique, proteins are separated by isoelectric focusing containing 8 m urea in the first dimension and by SDS-PAGE in the second dimension. The gels are stained with Coomassie Blue R-250 dye, followed by silver staining. In the case of radio-labeled proteins, the gels are dried and then autoradiographed. In order to identify a specific protein separated by two-dimensional electrophoresis, a technique determining the N-terminal amino acid sequence of the protein has been developed recently. After the proteins in the gel were electrotransferred to a polyvinylidene difluoride membrane, the membrane was stained for protein with Commassie Blue and a stained membrane fragment was applied to a protein sequencer. Our recent studies demonstrated that fish cells newly synthesized various proteins in response to heat shock, cold nd osmotic stresses. For example, when cellular proteins extracted from cold-treated rainbow trout cells were subjected to two-dimensional gel electrophoresis, the 70 kDa protein was found to be synthesized during the cold-treatment. N-Terminal sequence analysis showed that the cold-inducible protein was a homolog of mammalian valosin-containing protein and yeast cell division cycle gene product CDC48p. Furthermore, the sequence data were useful for preparing PCR primers and a rabbit antibody against a synthetic peptide to analyze a role for the protein in the function of trout cells and mechanisms for regulation
Statistical mechanics of two-dimensional and geophysical flows
International Nuclear Information System (INIS)
Bouchet, Freddy; Venaille, Antoine
2012-01-01
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. After a brief presentation of the 2D Euler and quasi-geostrophic equations, the specificity of two-dimensional and geophysical turbulence is emphasized. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations and mean field approach) and thermodynamic concepts (ensemble inequivalence and negative heat capacity) are briefly explained and described. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations is provided. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equilibrium steady states. In this last case, forces and dissipation are in a statistical balance; fluxes of conserved quantity characterize the system and microcanonical or other equilibrium measures no longer describe the system.
Introduction to two dimensional conformal and superconformal field theory
International Nuclear Information System (INIS)
Shenker, S.H.
1986-01-01
Some of the basic properties of conformal and superconformal field theories in two dimensions are discussed in connection with the string and superstring theories built from them. In the first lecture the stress-energy tensor, the Virasoro algebra, highest weight states, primary fields, operator products coefficients, bootstrap ideas, and unitary and degenerate representations of the Virasoro algebra are discussed. In the second lecture the basic structure of superconformal two dimensional field theory is sketched and then the Ramond Neveu-Schwarz formulation of the superstring is described. Some of the issues involved in constructing the fermion vertex in this formalism are discussed
Two dimensional hybrid simulation of a curved bow shock
International Nuclear Information System (INIS)
Thomas, V.A.; Winske, D.
1990-01-01
Results are presented from two dimensional hybrid simulations of curved collisionless supercritical shocks, retaining both quasi-perpendicular and quasi-parallel sections of the shock in order to study the character and origin of the foreshock ion population. The simulations demonstrate that the foreshock ion population is dominated by ions impinging upon the quasi-parallel side of the shock, while nonlocal transport from the quasi-perpendicular side of the shock into the foreshock region is minimal. Further, it is shown that the ions gain energy by drifting significantly in the direction of the convection electric field through multiple shock encounters
Focused two-dimensional antiscatter grid for mammography
International Nuclear Information System (INIS)
Makarova, O.V.; Moldovan, N.; Tang, C.-M.; Mancini, D.C.; Divan, R.; Zyryanov, V.N.; Ryding, D.C.; Yaeger, J.; Liu, C.
2002-01-01
We are developing freestanding high-aspect-ratio, focused, two-dimensional antiscatter grids for mammography using deep x-ray lithography and copper electroforming. The exposure is performed using x-rays from bending magnet beamline 2-BM at the Advanced Photon Source (APS) of Argonne National Laboratory. A 2.8-mm-thick prototype freestanding copper antiscatter grid with 25 (micro)m-wide parallel cell walls and 550 (micro)m periodicity has been fabricated. The progress in developing a dynamic double-exposure technique to create the grid with the cell walls aligned to a point x-ray source of the mammography system is discussed
Two-dimensional 220 MHz Fourier transform EPR imaging
International Nuclear Information System (INIS)
Placidi, Giuseppe; Brivati, John A.; Alecci, Marcello; Testa, Luca; Sotgiu, Antonello
1998-01-01
In the last decade radiofrequency continuous-wave EPR spectrometers have been developed to detect and localize free radicals in vivo. Only recently, pulsed radiofrequency EPR spectrometers have been described for imaging applications with small samples. In the present work, we show the first two-dimensional image obtained at 220 MHz on a large phantom (40 ml) that simulates typical conditions of in vivo EPR imaging. This pulsed EPR apparatus has the potential to make the time required for three-dimensional imaging compatible with the biological half-life of normally used paramagnetic probes. (author)
Voltage quantization by ballistic vortices in two-dimensional superconductors
International Nuclear Information System (INIS)
Orlando, T.P.; Delin, K.A.
1991-01-01
The voltage generated by moving ballistic vortices with a mass m ν in a two-dimensional superconducting ring is quantized, and this quantization depends on the amount of charge enclosed by the ring. The quantization of the voltage is the dual to flux quantization in a superconductor, and is a manifestation of the Aharonov-Casher effect. The quantization is obtained by applying the Bohr-Sommerfeld criterion to the canonical momentum of the ballistic vortices. The results of this quantization condition can also be used to understand the persistent voltage predicted by van Wees for an array of Josephson junctions
Two-dimensional beam profiles and one-dimensional projections
Findlay, D. J. S.; Jones, B.; Adams, D. J.
2018-05-01
One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.
Two-dimensionally confined topological edge states in photonic crystals
International Nuclear Information System (INIS)
Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad
2016-01-01
We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters. (paper)
Nonlinear aerodynamics of two-dimensional airfoils in severe maneuver
Scott, Matthew T.; Mccune, James E.
1988-01-01
This paper presents a nonlinear theory of forces and moment acting on a two-dimensional airfoil in unsteady potential flow. Results are obtained for cases of both large and small amplitude motion. The analysis, which is based on an extension of Wagner's integral equation to the nonlinear regime, takes full advantage of the trailing wake's tendency to deform under local velocities. Interactive computational results are presented that show examples of wake-induced lift and moment augmentation on the order of 20 percent of quasi-static values. The expandability and flexibility of the present computational method are noted, as well as the relative speed with which solutions are obtained.
Two-dimensional unsteady lift problems in supersonic flight
Heaslet, Max A; Lomax, Harvard
1949-01-01
The variation of pressure distribution is calculated for a two-dimensional supersonic airfoil either experiencing a sudden angle-of-attack change or entering a sharp-edge gust. From these pressure distributions the indicial lift functions applicable to unsteady lift problems are determined for two cases. Results are presented which permit the determination of maximum increment in lift coefficient attained by an unrestrained airfoil during its flight through a gust. As an application of these results, the minimum altitude for safe flight through a specific gust is calculated for a particular supersonic wing of given strength and wing loading.
Engineering topological edge states in two dimensional magnetic photonic crystal
Yang, Bing; Wu, Tong; Zhang, Xiangdong
2017-01-01
Based on a perturbative approach, we propose a simple and efficient method to engineer the topological edge states in two dimensional magnetic photonic crystals. The topological edge states in the microstructures can be constructed and varied by altering the parameters of the microstructure according to the field-energy distributions of the Bloch states at the related Bloch wave vectors. The validity of the proposed method has been demonstrated by exact numerical calculations through three concrete examples. Our method makes the topological edge states "designable."
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
Energy Technology Data Exchange (ETDEWEB)
Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P.
2015-12-17
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.
Field analysis of two-dimensional focusing grating
Borsboom, P.P.; Frankena, H.J.
1995-01-01
The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...
Wigner functions from the two-dimensional wavelet group.
Ali, S T; Krasowska, A E; Murenzi, R
2000-12-01
Following a general procedure developed previously [Ann. Henri Poincaré 1, 685 (2000)], here we construct Wigner functions on a phase space related to the similitude group in two dimensions. Since the group space in this case is topologically homeomorphic to the phase space in question, the Wigner functions so constructed may also be considered as being functions on the group space itself. Previously the similitude group was used to construct wavelets for two-dimensional image analysis; we discuss here the connection between the wavelet transform and the Wigner function.
Pattern formation in two-dimensional square-shoulder systems
International Nuclear Information System (INIS)
Fornleitner, Julia; Kahl, Gerhard
2010-01-01
Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.
Pattern formation in two-dimensional square-shoulder systems
Energy Technology Data Exchange (ETDEWEB)
Fornleitner, Julia [Institut fuer Festkoerperforschung, Forschungsszentrum Juelich, D-52425 Juelich (Germany); Kahl, Gerhard, E-mail: fornleitner@cmt.tuwien.ac.a [Institut fuer Theoretische Physik and Centre for Computational Materials Science (CMS), Technische Universitaet Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien (Austria)
2010-03-17
Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.
Decay of homogeneous two-dimensional quantum turbulence
Baggaley, Andrew W.; Barenghi, Carlo F.
2018-03-01
We numerically simulate the free decay of two-dimensional quantum turbulence in a large, homogeneous Bose-Einstein condensate. The large number of vortices, the uniformity of the density profile, and the absence of boundaries (where vortices can drift out of the condensate) isolate the annihilation of vortex-antivortex pairs as the only mechanism which reduces the number of vortices, Nv, during the turbulence decay. The results clearly reveal that vortex annihilation is a four-vortex process, confirming the decay law Nv˜t-1 /3 where t is time, which was inferred from experiments with relatively few vortices in small harmonically trapped condensates.
Human muscle proteins: analysis by two-dimensional electrophoresis
Energy Technology Data Exchange (ETDEWEB)
Giometti, C.S.; Danon, M.J.; Anderson, N.G.
1983-09-01
Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.
Cavalier perspective plots of two-dimensional matrices. Program Stereo
International Nuclear Information System (INIS)
Los Arcos Merino, J.M.
1978-01-01
The program Stereo allows representation of a two-dimensional matrix containing numerical data, in the form of a cavalier perspective, isometric or not, with an angle variable between 0 deg and 180 deg. The representation is in histogram form for each matrix row and those curves which fall behind higher curves and therefore would not be seen are suppressed. It has been written in Fortran V for a Calcomp-936 digital plotter operating off-line with a Univac 1106 computer. Drawing method, subroutine structure and running instructions are described in this paper. (author)
Bosonization in a two-dimensional Riemann Cartan geometry
International Nuclear Information System (INIS)
Denardo, G.; Spallucci, E.
1987-01-01
We study the vacuum functional for a Dirac field in a two dimensional Riemann-Cartan geometry. Torsion is treated as a quantum variable while the metric is considered as a classical background field. Decoupling spinors from the non-Riemannian part of the geometry introduces a chiral Jacobian into the vacuum generating functional. We compute this functional Jacobian determinant by means of the Alvarez method. Finally, we show that the effective action for the background geometry is of the Liouville type and does not preserve any memory of the initial torsion field. (author)
Periodic trajectories for two-dimensional nonintegrable Hamiltonians
International Nuclear Information System (INIS)
Davies, K.T.R.
1990-02-01
I want to report on some calculations of classical periodic trajectories in a two-dimensional nonintegrable potential. After a brief introduction, I will present some details of the theory. The main part of this report will be devoted to showing pictures of the various families of trajectories and to discussing the topology (in E-τ space) and branching behavior of these families. Then I will demonstrate the connection between periodic trajectories and ''nearby'' nonperiodic trajectories, which nicely illustrates the relationship of this work to chaos. Finally, I will discuss very briefly how periodic trajectories can be used to calculate tori. 12 refs., 40 figs
Optical Two Dimensional Fourier Transform Spectroscopy of Layered Metal Dichalcogenides
Dey, P.; Paul, J.; Stevens, C. E.; Kovalyuk, Z. D.; Kudrynskyi, Z. R.; Romero, A. H.; Cantarero, A.; Hilton, D. J.; Shan, J.; Karaiskaj, D.; Z. D. Kovalyuk; Z. R. Kudrynskyi Collaboration; A. H. Romero Collaboration; A. Cantarero Collaboration; D. J. Hilton Collaboration; J. Shan Collaboration
2015-03-01
Nonlinear two-dimensional Fourier transform (2DFT) measurements were used to study the mechanism of excitonic dephasing and probe the electronic structure of the excitonic ground state in layered metal dichalcogenides. Temperature-dependent 2DFT measurements were performed to probe exciton-phonon interactions. Excitation density dependent 2DFT measurements reveal exciton-exciton and exciton-carrier scattering, and the lower limit for the homogeneous linewidth of excitons on positively and negatively doped samples. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0012635.
Repulsion of polarized particles from two-dimensional materials
Rodríguez-Fortuño, Francisco J.; Picardi, Michela F.; Zayats, Anatoly V.
2018-05-01
Repulsion of nanoparticles, molecules, and atoms from surfaces can have important applications in nanomechanical devices, microfluidics, optical manipulation, and atom optics. Here, through the solution of a classical scattering problem, we show that a dipole source oscillating at a frequency ω can experience a robust and strong repulsive force when its near-field interacts with a two-dimensional material. As an example, the case of graphene is considered, showing that a broad bandwidth of repulsion can be obtained at frequencies for which propagation of plasmon modes is allowed 0 chemical potential tunable electrically or by chemical doping.
Two-dimensional collapse calculations of cylindrical clouds
International Nuclear Information System (INIS)
Bastien, P.; Mitalas, R.
1979-01-01
A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)
Graphene and Two-Dimensional Materials for Optoelectronic Applications
Directory of Open Access Journals (Sweden)
Andreas Bablich
2016-03-01
Full Text Available This article reviews optoelectronic devices based on graphene and related two-dimensional (2D materials. The review includes basic considerations of process technology, including demonstrations of 2D heterostructure growth, and comments on the scalability and manufacturability of the growth methods. We then assess the potential of graphene-based transparent conducting electrodes. A major part of the review describes photodetectors based on lateral graphene p-n junctions and Schottky diodes. Finally, the progress in vertical devices made from 2D/3D heterojunctions, as well as all-2D heterostructures is discussed.
Poincare' maps of impulsed oscillators and two-dimensional dynamics
International Nuclear Information System (INIS)
Lupini, R.; Lenci, S.; Gardini, L.; Urbino Univ.
1996-01-01
The Poincare' map of one-dimensional linear oscillators subject to periodic, non-linear and time-delayed impulses is shown to reduce to a family of plane maps with possible non-uniqueness of the inverse. By restricting the analysis to a convenient form of the impulse function, a variety of interesting dynamical behaviours in this family are pointed out, including multistability and homoclinic bifurcations. Critical curves of two-dimensional endomorphisms are used to identify the structure of absorbing areas and their bifurcations
Inverse radiative transfer problems in two-dimensional heterogeneous media
International Nuclear Information System (INIS)
Tito, Mariella Janette Berrocal
2001-01-01
The analysis of inverse problems in participating media where emission, absorption and scattering take place has several relevant applications in engineering and medicine. Some of the techniques developed for the solution of inverse problems have as a first step the solution of the direct problem. In this work the discrete ordinates method has been used for the solution of the linearized Boltzmann equation in two dimensional cartesian geometry. The Levenberg - Marquardt method has been used for the solution of the inverse problem of internal source and absorption and scattering coefficient estimation. (author)
Morphology of bipolar planetary nebulae. I. Two-dimensional spectrophotometry
International Nuclear Information System (INIS)
Pascoli, G.
1990-01-01
Two-dimensional spectrophotometric observations of bipolar planetary nebulae were performed by using a CCD detector mounted at the Cassegrain focus of either 1.54 m Danish Telescope or 2.2 m German Telescope at La Silla (ESO) in Chile. Emission lines have been selected with the help of narrow band-pass interference filters (Δλ∼ 10 - 20 A). Isophotal maps in various lines Hα, [NII] λ 6584, [OIII] λ 5007 and [SII] λλ 6717-6731 are presented. Particular attention has been given to scrutinize the symmetries inside a few bipolar planetary nebulae, in order to subsequently investigate their space structure
Gibbs perturbations of a two-dimensional gauge field
International Nuclear Information System (INIS)
Petrova, E.N.
1981-01-01
Small Gibbs perturbations of random fields have been investigated up to now for a few initial fields only. Among them there are independent fields, Gaussian fields and some others. The possibility for the investigation of Gibbs modifications of a random field depends essentially on the existence of good estimates for semiinvariants of this field. This is the reason why the class of random fields for which the investigation of Gibbs perturbations with arbitrary potential of bounded support is possible is rather small. The author takes as initial a well-known model: a two-dimensional gauge field. (Auth.)
Saddle-points of a two dimensional random lattice theory
International Nuclear Information System (INIS)
Pertermann, D.
1985-07-01
A two dimensional random lattice theory with a free massless scalar field is considered. We analyse the field theoretic generating functional for any given choice of positions of the lattice sites. Asking for saddle-points of this generating functional with respect to the positions we find the hexagonal lattice and a triangulated version of the hypercubic lattice as candidates. The investigation of the neighbourhood of a single lattice site yields triangulated rectangles and regular polygons extremizing the above generating functional on the local level. (author)
Minimal quantization of two-dimensional models with chiral anomalies
International Nuclear Information System (INIS)
Ilieva, N.
1987-01-01
Two-dimensional gauge models with chiral anomalies - ''left-handed'' QED and the chiral Schwinger model, are quantized consistently in the frames of the minimal quantization method. The choice of the cone time as a physical time for system of quantization is motivated. The well-known mass spectrum is found but with a fixed value of the regularization parameter a=2. Such a unique solution is obtained due to the strong requirement of consistency of the minimal quantization that reflects in the physically motivated choice of the time axis
Two-dimensional N = 2 Super-Yang-Mills Theory
August, Daniel; Wellegehausen, Björn; Wipf, Andreas
2018-03-01
Supersymmetry is one of the possible scenarios for physics beyond the standard model. The building blocks of this scenario are supersymmetric gauge theories. In our work we study the N = 1 Super-Yang-Mills (SYM) theory with gauge group SU(2) dimensionally reduced to two-dimensional N = 2 SYM theory. In our lattice formulation we break supersymmetry and chiral symmetry explicitly while preserving R symmetry. By fine tuning the bar-mass of the fermions in the Lagrangian we construct a supersymmetric continuum theory. To this aim we carefully investigate mass spectra and Ward identities, which both show a clear signal of supersymmetry restoration in the continuum limit.
Mixed-symmetry superconductivity in two-dimensional Fermi liquids
International Nuclear Information System (INIS)
Musaelian, K.A.; Betouras, J.; Chubukov, A.V.; Joynt, R.
1996-01-01
We consider a two-dimensional (2D) isotropic Fermi liquid with attraction in both s and d channels and examine the possibility of a superconducting state with mixed s and d symmetry of the gap function. We show that both in the weak-coupling limit and at strong coupling, a mixed s+id symmetry state is realized in a certain range of interaction. Phase transitions between the mixed and the pure symmetry states are second order. We also show that there is no stable mixed s+d symmetry state at any coupling. copyright 1996 The American Physical Society
Magnus force in discrete and continuous two-dimensional superfluids
International Nuclear Information System (INIS)
Gecse, Z.; Khlebnikov, S.
2005-01-01
Motion of vortices in two-dimensional superfluids in the classical limit is studied by solving the Gross-Pitaevskii equation numerically on a uniform lattice. We find that, in the presence of a superflow directed along one of the main lattice periods, vortices move with the superflow on fine lattices but perpendicular to it on coarse ones. We interpret this result as a transition from the full Magnus force in a Galilean-invariant limit to vanishing effective Magnus force in a discrete system, in agreement with the existing experiments on vortex motion in Josephson junction arrays
Network patterns in exponentially growing two-dimensional biofilms
Zachreson, Cameron; Yap, Xinhui; Gloag, Erin S.; Shimoni, Raz; Whitchurch, Cynthia B.; Toth, Milos
2017-10-01
Anisotropic collective patterns occur frequently in the morphogenesis of two-dimensional biofilms. These patterns are often attributed to growth regulation mechanisms and differentiation based on gradients of diffusing nutrients and signaling molecules. Here, we employ a model of bacterial growth dynamics to show that even in the absence of growth regulation or differentiation, confinement by an enclosing medium such as agar can itself lead to stable pattern formation over time scales that are employed in experiments. The underlying mechanism relies on path formation through physical deformation of the enclosing environment.
Two dimensional topological insulator in quantizing magnetic fields
Olshanetsky, E. B.; Kvon, Z. D.; Gusev, G. M.; Mikhailov, N. N.; Dvoretsky, S. A.
2018-05-01
The effect of quantizing magnetic field on the electron transport is investigated in a two dimensional topological insulator (2D TI) based on a 8 nm (013) HgTe quantum well (QW). The local resistance behavior is indicative of a metal-insulator transition at B ≈ 6 T. On the whole the experimental data agrees with the theory according to which the helical edge states transport in a 2D TI persists from zero up to a critical magnetic field Bc after which a gap opens up in the 2D TI spectrum.
Anisotropic mass density by two-dimensional acoustic metamaterials
Energy Technology Data Exchange (ETDEWEB)
Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera s/n, E-46022 Valencia (Spain)], E-mail: jsdehesa@upvnet.upv.es
2008-02-15
We show that specially designed two-dimensional arrangements of full elastic cylinders embedded in a nonviscous fluid or gas define (in the homogenization limit) a new class of acoustic metamaterials characterized by a dynamical effective mass density that is anisotropic. Here, analytic expressions for the dynamical mass density and the effective sound velocity tensors are derived in the long wavelength limit. Both show an explicit dependence on the lattice filling fraction, the elastic properties of cylinders relative to the background, their positions in the unit cell, and their multiple scattering interactions. Several examples of these metamaterials are reported and discussed.
The Penalty Cost Functional for the Two-Dimensional
Directory of Open Access Journals (Sweden)
Victor Onomza WAZIRI
2006-07-01
Full Text Available This paper constructs the penalty cost functional for optimizing the two-dimensional control operator of the energized wave equation. In some multiplier methods such as the Lagrange multipliers and Pontrygean maximum principle, the cost of merging the constraint equation to the integral quadratic objective functional to obtain an unconstraint equation is normally guessed or obtained from the first partial derivatives of the unconstrained equation. The Extended Conjugate Gradient Method (ECGM necessitates that the penalty cost be sequentially obtained algebraically. The ECGM problem contains a functional which is completely given in terms of state and time spatial dependent variables.
Wave dispersion relations in two-dimensional Yukawa systems
International Nuclear Information System (INIS)
Liu Yanhong; Liu Bin; Chen Yanping; Yang Size; Wang Long; Wang Xiaogang
2003-01-01
Collective modes in a two-dimensional Yukawa system are investigated by molecular dynamics simulation in a wide range of coupling parameter Γ and screening strength κ. The dispersion relations and sound speeds of the transverse and longitudinal waves obtained for hexagonal lattice are in agreement with the theoretical results. The negative dispersion of the longitudinal wave is demonstrated. Frequency gaps are found on the dispersion curves of the transverse wave due to scattering of the waves on lattice defects for proper values of Γ. The common frequency of transverse and longitudinal waves drops dramatically with the increasing screening strength κ
Two-dimensional simulations of magnetically-driven instabilities
International Nuclear Information System (INIS)
Peterson, D.; Bowers, R.; Greene, A.E.; Brownell, J.
1986-01-01
A two-dimensional Eulerian MHD code is used to study the evolution of magnetically-driven instabilities in cylindrical geometry. The code incorporates an equation of state, resistivity, and radiative cooling model appropriate for an aluminum plasma. The simulations explore the effects of initial perturbations, electrical resistivity, and radiative cooling on the growth and saturation of the instabilities. Comparisons are made between the 2-D simulations, previous 1-D simulations, and results from the Pioneer experiments of the Los Alamos foil implosion program
Autocorrelation based reconstruction of two-dimensional binary objects
International Nuclear Information System (INIS)
Mejia-Barbosa, Y.; Castaneda, R.
2005-10-01
A method for reconstructing two-dimensional binary objects from its autocorrelation function is discussed. The objects consist of a finite set of identical elements. The reconstruction algorithm is based on the concept of class of element pairs, defined as the set of element pairs with the same separation vector. This concept allows to solve the redundancy introduced by the element pairs of each class. It is also shown that different objects, consisting of an equal number of elements and the same classes of pairs, provide Fraunhofer diffraction patterns with identical intensity distributions. However, the method predicts all the possible objects that produce the same Fraunhofer pattern. (author)
Linear and nonlinear viscous flow in two-dimensional fluids
International Nuclear Information System (INIS)
Gravina, D.; Ciccotti, G.; Holian, B.L.
1995-01-01
We report on molecular dynamics simulations of shear viscosity η of a dense two-dimensional fluid as a function of the shear rate γ. We find an analytic dependence of η on γ, and do not find any evidence whatsoever of divergence in the Green-Kubo (GK) value that would be caused by the well-known long-time tail for the shear-stress autocorrelation function, as predicted by the mode-coupling theory. In accordance with the linear response theory, the GK value of η agrees remarkably well with nonequilibrium values at small shear rates. (c) 1995 The American Physical Society
BRST quantization of Polyakov's two-dimensional gravity
International Nuclear Information System (INIS)
Itoh, Katsumi
1990-01-01
Two-dimensional gravity coupled to minimal models is quantized in the chiral gauge by the BRST method. By using the Wakimoto construction for the gravity sector, we show how the quartet mechanism of Kugo and Ojima works and solve the physical state condition. As a result the positive semi-definiteness of the physical subspace is shown. The formula of Knizhnik et al. for gravitational scaling dimensions is rederived from the physical state condition. We also observe a relation between the chiral gauge and the conformal gauge. (orig.)
Confinement and dynamical regulation in two-dimensional convective turbulence
DEFF Research Database (Denmark)
Bian, N.H.; Garcia, O.E.
2003-01-01
In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low......-frequency bursting in the fluctuation level and the convective heat flux integral, both resulting in a state of large-scale intermittency. The first one involves the control of convective transport by sheared mean flows. This regulation relies on the conservative transfer of kinetic energy from tilted fluctuations...
Two-dimensional approach to relativistic positioning systems
International Nuclear Information System (INIS)
Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio
2006-01-01
A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allows to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out
Nonlinear excitations in two-dimensional molecular structures with impurities
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth
1995-01-01
We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... of the impurity. Transforming the equation to the noninertial frame of reference coupled with the center of mass we investigate the soliton behavior in the close vicinity of the impurity. With the help of the lens transformation we show that the soliton width is governed by an Ermakov-Pinney equation. We also...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....
Low-energy effective action in two-dimensional SQED: a two-loop analysis
Samsonov, I. B.
2017-07-01
We study two-loop quantum corrections to the low-energy effective actions in N=(2,2) and N=(4,4) SQED on the Coulomb branch. In the latter model, the low-energy effective action is described by a generalized Kähler potential which depends on both chiral and twisted chiral superfields. We demonstrate that this generalized Kähler potential is one-loop exact and corresponds to the N=(4,4) sigma-model with torsion presented by Roček, Schoutens and Sevrin [1]. In the N=(2,2) SQED, the effective Kähler potential is not protected against higher-loop quantum corrections. The two-loop quantum corrections to this potential and the corresponding sigma-model metric are explicitly found.
International Nuclear Information System (INIS)
Quan, Xu; Qiang, Tian
2009-01-01
This paper discusses the two-dimensional discrete monatomic Fermi–Pasta–Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather. (condensed matter: structure, thermal and mechanical properties)
A microprocessor based on a two-dimensional semiconductor
Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas
2017-04-01
The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor--molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.
Growth and characterization of two-dimensional nanostructures
International Nuclear Information System (INIS)
Herrera Sancho, Oscar Andrey
2008-01-01
Two dimensional nanostructures of palladium, nickel, silver and gadolinium were grown by means of physical evaporation in atmospheres of high vacuum and ultra high vacuum. The qualitative characterization, in situ, of the nanostructures was carried out with techniques of surface analysis: Auger electron spectroscopy and X-ray photoelectron spectroscopy (XPS). The model for the quantification of contaminants in the nanostructures, was proposed by Seah and Shirley, and was made using the spectra XPS measured in situ in the atmospheres of vacuum. For the two-dimensional nanostructures of gadolinium of thicknesses 8 Å, 16 Å, 24 Å, 32 Å, 36 Å, 44 Å, 50 Å, 61 Å, 77 Å, 81 Å, 92 Å and 101 Å, were obtained optical spectra of transmission measured in situ. An band of absorption centered at approximately 2,40 eV is obtained by an increase in the dynamic conductivity from the optical constants, i.e. refractive index and extinction coefficient, of the nanostructure of gadolinium. In addition, the optical constants for the gadolinium nanostructures have presented a maximum of 80 Å of thickness and then it was continued a decreasing tendency toward the values that were reported in the literature for bulk of gadolinium. (author) [es
Strain-engineered growth of two-dimensional materials.
Ahn, Geun Ho; Amani, Matin; Rasool, Haider; Lien, Der-Hsien; Mastandrea, James P; Ager Iii, Joel W; Dubey, Madan; Chrzan, Daryl C; Minor, Andrew M; Javey, Ali
2017-09-20
The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1% tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2 , respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.Strain engineering is an essential tool for modifying local electronic properties in silicon-based electronics. Here, Ahn et al. demonstrate control of biaxial strain in two-dimensional materials based on the growth substrate, enabling more complex low-dimensional electronics.
Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal
International Nuclear Information System (INIS)
Konno, R; Hatayama, N; Takahashi, Y; Nakano, H
2009-01-01
Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal is investigated according to the recent theoretical development of magneto-volume effect for the three-dimensional weak ferromagnets. We particularly focus on the T 2 -linear thermal expansion of magnetic origin at low temperatures, so far disregarded by conventional theories. As the effect of thermal spin fluctuations we have found that the T-linear thermal expansion coefficient shows strong enhancement by assuming the double Lorentzian form of the non-interacting dynamical susceptibility justified in the small wave-number and low frequency region. It grows faster in proportional to y -1/2 as we approach the magnetic instability point than two-dimensional nearly antiferromagnetic metals with ln(1/y s ) dependence, where y and y s are the inverses of the reduced uniform and staggered magnetic susceptibilities, respectively. Our result is consistent with the Grueneisen's relation between the thermal expansion coefficient and the specific heat at low temperatures. In 2-dimensional electron gas we find that the thermal expansion coefficient is divergent with a finite y when the higher order term of non-interacting dynamical susceptibility is taken into account.
Emergence of geometry: A two-dimensional toy model
International Nuclear Information System (INIS)
Alfaro, Jorge; Espriu, Domene; Puigdomenech, Daniel
2010-01-01
We review the similarities between the effective chiral Lagrangrian, relevant for low-energy strong interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism whereby gravitons would emerge as Goldstone bosons of a global SO(D)xGL(D) symmetry broken down to SO(D) by fermion condensation. We propose a two-dimensional toy model where a dynamical zweibein is generated from a topological theory without any preexisting metric structure, the space being endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the notion of distance is an induced effective one. In spite of several nonstandard features this simple toy model appears to be renormalizable and at long distances is described by an effective Lagrangian that corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an infrared regulator. The low-energy expansion is valid for momenta k>M, i.e. for supra-horizon scales. We briefly discuss a possible implementation of a similar mechanism in four dimensions.
Chimera patterns in two-dimensional networks of coupled neurons
Schmidt, Alexander; Kasimatis, Theodoros; Hizanidis, Johanne; Provata, Astero; Hövel, Philipp
2017-03-01
We discuss synchronization patterns in networks of FitzHugh-Nagumo and leaky integrate-and-fire oscillators coupled in a two-dimensional toroidal geometry. A common feature between the two models is the presence of fast and slow dynamics, a typical characteristic of neurons. Earlier studies have demonstrated that both models when coupled nonlocally in one-dimensional ring networks produce chimera states for a large range of parameter values. In this study, we give evidence of a plethora of two-dimensional chimera patterns of various shapes, including spots, rings, stripes, and grids, observed in both models, as well as additional patterns found mainly in the FitzHugh-Nagumo system. Both systems exhibit multistability: For the same parameter values, different initial conditions give rise to different dynamical states. Transitions occur between various patterns when the parameters (coupling range, coupling strength, refractory period, and coupling phase) are varied. Many patterns observed in the two models follow similar rules. For example, the diameter of the rings grows linearly with the coupling radius.
Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.
Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun
2016-04-15
Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers. Copyright © 2016 Elsevier B.V. All rights reserved.
Evidence for two-dimensional ising structure in atomic nuclei
International Nuclear Information System (INIS)
MacGregor, M.H.
1976-01-01
Although the unpaired nucleons in an atomic nucleus exhibit pronounced shell-model-like behavior, the situation with respect to the paired-off ''core region'' nucleons is considerably more obscure. Several recent ''multi-alpha knockout'' and ''quasi-fission'' experiments indicate that nucleon clustering is prevalent throughout the core region of the nucleus; this same conclusion is suggested by nuclear-binding-energy systematics, by the evidence for a ''neutron halo'' in heavy nuclei and by the magnetic-moment systematics of low-mass odd-A nuclei. A number of arguments suggests, in turn, that this nucleon clustering is not spherical or spheroidal in shape, as has generally been assumed, but instead is in the form of two-dimensional Ising-like layers, with the layers arrayed perpendicular to the symmetry axis of the nucleus. The effects of this two-dimensional layering are observed most clearly in low-energy-induced fission, where nuclei with an even (odd) number of Ising layers fission symmetrically (asymmetrically). This picture of the nucleus gives an immediate quantitative explanation for the observed asymmetry in the fission of uranium, and also for the transition from symmetric to asymmetric and back to symmetric fission as the atomic number of the fissioning nuclues increase from A = 197 up to A = 258. These results suggest that, in the shell model formulation of the atomic nucleus, the basis states for the paired-off nucleon core region should be modified so as to contain laminar nucleon cluster correlations
Two dimensional kinetic analysis of electrostatic harmonic plasma waves
Energy Technology Data Exchange (ETDEWEB)
Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); SSR, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)
2016-06-15
Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.
Aspects of jamming in two-dimensional athermal frictionless systems.
Reichhardt, C; Reichhardt, C J Olson
2014-05-07
In this work we provide an overview of jamming transitions in two dimensional systems focusing on the limit of frictionless particle interactions in the absence of thermal fluctuations. We first discuss jamming in systems with short range repulsive interactions, where the onset of jamming occurs at a critical packing density and where certain quantities show a divergence indicative of critical behavior. We describe how aspects of the dynamics change as the jamming density is approached and how these dynamics can be explored using externally driven probes. Different particle shapes can produce jamming densities much lower than those observed for disk-shaped particles, and we show how jamming exhibits fragility for some shapes while for other shapes this is absent. Next we describe the effects of long range interactions and jamming behavior in systems such as charged colloids, vortices in type-II superconductors, and dislocations. We consider the effect of adding obstacles to frictionless jamming systems and discuss connections between this type of jamming and systems that exhibit depinning transitions. Finally, we discuss open questions such as whether the jamming transition in all these different systems can be described by the same or a small subset of universal behaviors, as well as future directions for studies of jamming transitions in two dimensional systems, such as jamming in self-driven or active matter systems.
Two-dimensional nuclear magnetic resonance of quadrupolar systems
Energy Technology Data Exchange (ETDEWEB)
Wang, Shuanhu [Univ. of California, Berkeley, CA (United States)
1997-09-01
This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.
Two-Dimensional Impact Reconstruction Method for Rail Defect Inspection
Directory of Open Access Journals (Sweden)
Jie Zhao
2014-01-01
Full Text Available The safety of train operating is seriously menaced by the rail defects, so it is of great significance to inspect rail defects dynamically while the train is operating. This paper presents a two-dimensional impact reconstruction method to realize the on-line inspection of rail defects. The proposed method utilizes preprocessing technology to convert time domain vertical vibration signals acquired by wireless sensor network to space signals. The modern time-frequency analysis method is improved to reconstruct the obtained multisensor information. Then, the image fusion processing technology based on spectrum threshold processing and node color labeling is proposed to reduce the noise, and blank the periodic impact signal caused by rail joints and locomotive running gear. This method can convert the aperiodic impact signals caused by rail defects to partial periodic impact signals, and locate the rail defects. An application indicates that the two-dimensional impact reconstruction method could display the impact caused by rail defects obviously, and is an effective on-line rail defects inspection method.
The emergence of geometry: a two-dimensional toy model
Alfaro, Jorge; Puigdomenech, Daniel
2010-01-01
We review the similarities between the effective chiral lagrangrian, relevant for low-energy strong interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism whereby gravitons would emerge as Goldstone bosons of a global SO(D) X GL(D) symmetry broken down to SO(D) by fermion condensation. We propose a two-dimensional toy model where a dynamical zwei-bein is generated from a topological theory without any pre-existing metric structure, the space being endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the notion of distance is an induced effective one. In spite of several non-standard features this simple toy model appears to be renormalizable and at long distances is described by an effective lagrangian that corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an infrared re...
Two-dimensional sparse wavenumber recovery for guided wavefields
Sabeti, Soroosh; Harley, Joel B.
2018-04-01
The multi-modal and dispersive behavior of guided waves is often characterized by their dispersion curves, which describe their frequency-wavenumber behavior. In prior work, compressive sensing based techniques, such as sparse wavenumber analysis (SWA), have been capable of recovering dispersion curves from limited data samples. A major limitation of SWA, however, is the assumption that the structure is isotropic. As a result, SWA fails when applied to composites and other anisotropic structures. There have been efforts to address this issue in the literature, but they either are not easily generalizable or do not sufficiently express the data. In this paper, we enhance the existing approaches by employing a two-dimensional wavenumber model to account for direction-dependent velocities in anisotropic media. We integrate this model with tools from compressive sensing to reconstruct a wavefield from incomplete data. Specifically, we create a modified two-dimensional orthogonal matching pursuit algorithm that takes an undersampled wavefield image, with specified unknown elements, and determines its sparse wavenumber characteristics. We then recover the entire wavefield from the sparse representations obtained with our small number of data samples.
Human lymphocyte polymorphisms detected by quantitative two-dimensional electrophoresis
International Nuclear Information System (INIS)
Goldman, D.; Merril, C.R.
1983-01-01
A survey of 186 soluble lymphocyte proteins for genetic polymorphism was carried out utilizing two-dimensional electrophoresis of 14 C-labeled phytohemagglutinin (PHA)-stimulated human lymphocyte proteins. Nineteen of these proteins exhibited positional variation consistent with independent genetic polymorphism in a primary sample of 28 individuals. Each of these polymorphisms was characterized by quantitative gene-dosage dependence insofar as the heterozygous phenotype expressed approximately 50% of each allelic gene product as was seen in homozygotes. Patterns observed were also identical in monozygotic twins, replicate samples, and replicate gels. The three expected phenotypes (two homozygotes and a heterozygote) were observed in each of 10 of these polymorphisms while the remaining nine had one of the homozygous classes absent. The presence of the three phenotypes, the demonstration of gene-dosage dependence, and our own and previous pedigree analysis of certain of these polymorphisms supports the genetic basis of these variants. Based on this data, the frequency of polymorphic loci for man is: P . 19/186 . .102, and the average heterozygosity is .024. This estimate is approximately 1/3 to 1/2 the rate of polymorphism previously estimated for man in other studies using one-dimensional electrophoresis of isozyme loci. The newly described polymorphisms and others which should be detectable in larger protein surveys with two-dimensional electrophoresis hold promise as genetic markers of the human genome for use in gene mapping and pedigree analyses
Development of two dimensional electrophoresis method using single chain DNA
International Nuclear Information System (INIS)
Ikeda, Junichi; Hidaka, So
1998-01-01
By combining a separation method due to molecular weight and a method to distinguish difference of mono-bases, it was aimed to develop a two dimensional single chain DNA labeled with Radioisotope (RI). From electrophoretic pattern difference of parent and variant strands, it was investigated to isolate the root module implantation control gene. At first, a Single Strand Conformation Polymorphism (SSCP) method using concentration gradient gel was investigated. As a result, it was formed that intervals between double chain and single chain DNAs expanded, but intervals of both single chain DNAs did not expand. On next, combination of non-modified acrylic amide electrophoresis method and Denaturing Gradient-Gel Electrophoresis (DGGE) method was examined. As a result, hybrid DNA developed by two dimensional electrophoresis arranged on two lines. But, among them a band of DNA modified by high concentration of urea could not be found. Therefore, in this fiscal year's experiments, no preferable result could be obtained. By the used method, it was thought to be impossible to detect the differences. (G.K.)
Bayesian approach for peak detection in two-dimensional chromatography.
Vivó-Truyols, Gabriel
2012-03-20
A new method for peak detection in two-dimensional chromatography is presented. In a first step, the method starts with a conventional one-dimensional peak detection algorithm to detect modulated peaks. In a second step, a sophisticated algorithm is constructed to decide which of the individual one-dimensional peaks have been originated from the same compound and should then be arranged in a two-dimensional peak. The merging algorithm is based on Bayesian inference. The user sets prior information about certain parameters (e.g., second-dimension retention time variability, first-dimension band broadening, chromatographic noise). On the basis of these priors, the algorithm calculates the probability of myriads of peak arrangements (i.e., ways of merging one-dimensional peaks), finding which of them holds the highest value. Uncertainty in each parameter can be accounted by adapting conveniently its probability distribution function, which in turn may change the final decision of the most probable peak arrangement. It has been demonstrated that the Bayesian approach presented in this paper follows the chromatographers' intuition. The algorithm has been applied and tested with LC × LC and GC × GC data and takes around 1 min to process chromatograms with several thousands of peaks.
Optimal Padding for the Two-Dimensional Fast Fourier Transform
Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.
2011-01-01
One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that
Exactly and quasi-exactly solvable 'discrete' quantum mechanics.
Sasaki, Ryu
2011-03-28
A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.
A note on unique solvability of the absolute value equation
Directory of Open Access Journals (Sweden)
Taher Lotfi
2014-05-01
Full Text Available It is proved that applying sufficient regularity conditions to the interval matrix $[A-|B|,A+|B|]$, we can create a new unique solvability condition for the absolute value equation $Ax+B|x|=b$, since regularity of interval matrices implies unique solvability of their corresponding absolute value equation. This condition is formulated in terms of positive definiteness of a certain point matrix. Special case $B=-I$ is verified too as an application.
Supersymmetric construction of exactly solvable potentials and nonlinear algebras
International Nuclear Information System (INIS)
Junker, G.; Roy, P.
1998-01-01
Using algebraic tools of supersymmetric quantum mechanics we construct classes of conditionally exactly solvable potentials being the supersymmetric partners of the linear or radial harmonic oscillator. With the help of the raising and lowering operators of these harmonic oscillators and the SUSY operators we construct ladder operators for these new conditionally solvable systems. It is found that these ladder operators together with the Hamilton operator form a nonlinear algebra which is of quadratic and cubic type for the SUSY partners of the linear and radial harmonic oscillator
Quasi exactly solvable operators and abstract associative algebras
International Nuclear Information System (INIS)
Brihaye, Y.; Kosinski, P.
1998-01-01
We consider the vector spaces consisting of direct sums of polynomials of given degrees and we show how to classify the linear differential operators preserving these spaces. The families of operators so obtained are identified as the envelopping algebras of particular abstract associative algebras. Some of these operators can be transformed into quasi exactly solvable Schroedinger operators which, having a hidden algebra, can be partially solved algebraically; we exhibit however a series of Schoedinger equations which, while completely solvable algebraically, do not possess a hidden algebra
Two dimensional neutral transport analysis in tokamak plasma
International Nuclear Information System (INIS)
Shimizu, Katsuhiro; Azumi, Masafumi
1987-02-01
Neutral particle influences the particle and energy balance, and play an important role on sputtering impurity and the charge exchange loss of neutral beam injection. In order to study neutral particle behaviour including the effects of asymmetric source and divertor configuration, the two dimensional neutral transport code has been developed using the Monte-Carlo techniques. This code includes the calculation of the H α radiation intensity based on the collisional-radiation model. The particle confinement time of the joule heated plasma in JT-60 tokamak is evaluated by comparing the calculated H α radiation intensity with the experimental data. The effect of the equilibrium on the neutral density profile in high-β plasma is also investigated. (author)
Nematic Equilibria on a Two-Dimensional Annulus
Lewis, A. H.; Aarts, D. G. A. L.; Howell, P. D.; Majumdar, A.
2017-01-01
We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.
Two-dimensional analysis of motion artifacts, including flow effects
International Nuclear Information System (INIS)
Litt, A.M.; Brody, A.S.; Spangler, R.A.; Scott, P.D.
1990-01-01
The effects of motion on magnetic resonance images have been theoretically analyzed for the case of a point-like object in simple harmonic motion and for other one-dimensional trajectories. The authors of this paper extend this analysis to a generalized two-dimensional magnetization with an arbitrary motion trajectory. The authors provide specific solutions for the clinically relevant cases of the cross-sections of cylindrical objects in the body, such as the aorta, which has a roughly one-dimensional, simple harmonic motion during respiration. By extending the solution to include inhomogeneous magnetizations, the authors present a model which allows the effects of motion artifacts and flow artifacts to be analyzed simultaneously
Global geometry of two-dimensional charged black holes
International Nuclear Information System (INIS)
Frolov, Andrei V.; Kristjansson, Kristjan R.; Thorlacius, Larus
2006-01-01
The semiclassical geometry of charged black holes is studied in the context of a two-dimensional dilaton gravity model where effects due to pair-creation of charged particles can be included in a systematic way. The classical mass-inflation instability of the Cauchy horizon is amplified and we find that gravitational collapse of charged matter results in a spacelike singularity that precludes any extension of the spacetime geometry. At the classical level, a static solution describing an eternal black hole has timelike singularities and multiple asymptotic regions. The corresponding semiclassical solution, on the other hand, has a spacelike singularity and a Penrose diagram like that of an electrically neutral black hole. Extremal black holes are destabilized by pair-creation of charged particles. There is a maximally charged solution for a given black hole mass but the corresponding geometry is not extremal. Our numerical data exhibits critical behavior at the threshold for black hole formation
Suspension and simple optical characterization of two-dimensional membranes
Northeast, David B.; Knobel, Robert G.
2018-03-01
We report on a method for suspending two-dimensional crystal materials in an electronic circuit using an only photoresists and solvents. Graphene and NbSe2 are suspended tens of nanometers above metal electrodes with clamping diameters of several microns. The optical cavity formed from the membrane/air/metal structures enables a quick method to measure the number of layers and the gap separation using comparisons between the expected colour and optical microscope images. This characterization technique can be used with just an illuminated microscope with a digital camera which makes it adaptable to environments where other means of characterization are not possible, such as inside nitrogen glove boxes used in handling oxygen-sensitive materials.
Disorder effect in two-dimensional topological insulators
International Nuclear Information System (INIS)
Zhang Xianglin; Feng Shiping; Guo Huaiming
2012-01-01
We conduct a systematic study on the disorder effect in two-dimensional (2D) topological insulators by calculating the Z 2 topological invariant. Starting from the trivial and nontrivial topological phases of the model describing HgTe/CdTe quantum wells (QWs), we introduce three different kinds of disorder into the system, including the fluctuations in the on-site potential, the hopping amplitude and the topological mass. These kinds of disorder commonly exist in HgTe/CdTe QWs grown experimentally. By explicit numerical calculations, we show that all three kinds of disorder have the similar effect: the topological phase in the system is not only robust to them, but also can be brought about by introducing them to the trivial insulator phase. These results make a further confirmation and extendability of the study on the interplay between the disorder and the topological phase.
Thermoelectric transport in two-dimensional giant Rashba systems
Xiao, Cong; Li, Dingping; Ma, Zhongshui; Niu, Qian
Thermoelectric transport in strongly spin-orbit coupled two-dimensional Rashba systems is studied using the analytical solution of the linearized Boltzmann equation. To highlight the effects of inter-band scattering, we assume point-like potential impurities, and obtain the band-and energy-dependent transport relaxation times. Unconventional transport behaviors arise when the Fermi level lies near or below the band crossing point (BCP), such as the non-Drude electrical conducivity below the BCP, the failure of the standard Mott relation linking the Peltier coefficient to the electrical conductivity near the BCP, the enhancement of diffusion thermopower and figure of merit below the BCP, the zero-field Hall coefficient which is not inversely proportional to and not a monotonic function of the carrier density, the enhanced Nernst coefficient below the BCP, and the enhanced current-induced spin-polarization efficiency.
Two-dimensional DFA scaling analysis applied to encrypted images
Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.
2015-01-01
The technique of detrended fluctuation analysis (DFA) has been widely used to unveil scaling properties of many different signals. In this paper, we determine scaling properties in the encrypted images by means of a two-dimensional DFA approach. To carry out the image encryption, we use an enhanced cryptosystem based on a rule-90 cellular automaton and we compare the results obtained with its unmodified version and the encryption system AES. The numerical results show that the encrypted images present a persistent behavior which is close to that of the 1/f-noise. These results point to the possibility that the DFA scaling exponent can be used to measure the quality of the encrypted image content.
Spin precession in inversion-asymmetric two-dimensional systems
International Nuclear Information System (INIS)
Liu, M.-H.; Chang, C.-R.
2006-01-01
We present a theoretical method to calculate the expectation value of spin in an inversion-asymmetric two-dimensional (2D) system with respect to an arbitrarily spin-polarized electron state, injected via an ideal point contact. The 2D system is confined in a [0 0 1]-grown quantum well, where both the Rashba and the Dresselhaus spin-orbit couplings are taken into account. The obtained analytical results allow more concrete description of the spatial behaviors of the spin precession caused individually by the Rashba and the Dresselhaus terms. Applying the calculation on the Datta-Das spin-FET, whose original design considers only the Rashba effect inside the channel, we investigate the possible influence due to the Dresselhaus spin-orbit coupling. Concluded solution is the choice of ±[1±10], in particular [1 1 0], as the channel direction
Entropic Barriers for Two-Dimensional Quantum Memories
Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.
2014-03-01
Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.
Sample preparation guidelines for two-dimensional electrophoresis.
Posch, Anton
2014-12-01
Sample preparation is one of the key technologies for successful two-dimensional electrophoresis (2DE). Due to the great diversity of protein sample types and sources, no single sample preparation method works with all proteins; for any sample the optimum procedure must be determined empirically. This review is meant to provide a broad overview of the most important principles in sample preparation in order to avoid a multitude of possible pitfalls. Sample preparation protocols from the expert in the field were screened and evaluated. On the basis of these protocols and my own comprehensive practical experience important guidelines are given in this review. The presented guidelines will facilitate straightforward protocol development for researchers new to gel-based proteomics. In addition the available choices are rationalized in order to successfully prepare a protein sample for 2DE separations. The strategies described here are not limited to 2DE and can also be applied to other protein separation techniques.
Two-dimensional divertor modeling and scaling laws
International Nuclear Information System (INIS)
Catto, P.J.; Connor, J.W.; Knoll, D.A.
1996-01-01
Two-dimensional numerical models of divertors contain large numbers of dimensionless parameters that must be varied to investigate all operating regimes of interest. To simplify the task and gain insight into divertor operation, we employ similarity techniques to investigate whether model systems of equations plus boundary conditions in the steady state admit scaling transformations that lead to useful divertor similarity scaling laws. A short mean free path neutral-plasma model of the divertor region below the x-point is adopted in which all perpendicular transport is due to the neutrals. We illustrate how the results can be used to benchmark large computer simulations by employing a modified version of UEDGE which contains a neutral fluid model. (orig.)
Two-dimensional spectrophotometry of planetary nebulae by CCD imaging
International Nuclear Information System (INIS)
Jacoby, G.H.; Africano, J.L.; Quigley, R.J.; Western Washington Univ., Bellingham, WA)
1987-01-01
The spatial distribution of the electron temperature and density and the ionic abundances of O(+), O(2+), N(+), and S(+) have been derived from CCD images of the planetary nebulae NGC 40 and NGC 6826 taken in the important emission lines of forbidden O II, forbidden O III, H-beta, forbidden N II, and forbidden S II. The steps required in the derivation of the absolute fluxes, line, ratios, and ionic abundances are outlined and then discussed in greater detail. The results show that the CCD imaging technique for two-dimensional spectrophotometry can effectively compete with classical spectrophotometry, providing the added benefits of complete spatial coverage at seeing-disk spatial resolution. The multiplexing in the spatial dimension, however, results in a loss of spectral information, since only one emission line is observed at any one time. 37 references
Two-dimensional neutron scintillation detector with optimal gamma discrimination
International Nuclear Information System (INIS)
Kanyo, M.; Reinartz, R.; Schelten, J.; Mueller, K.D.
1993-01-01
The gamma sensitivity of a two-dimensional scintillation neutron detector based on position sensitive photomultipliers (Hamamatsu R2387 PM) has been minimized by a digital differential discrimination unit. Since the photomultiplier gain is position-dependent by ±25% a discrimination unit was developed where digital upper and lower discrimination levels are set due to the position-dependent photomultiplier gain obtained from calibration measurements. By this method narrow discriminator windows can be used to reduce the gamma background drastically without effecting the neutron sensitivity of the detector. The new discrimination method and its performance tested by neutron measurements will be described. Experimental results concerning spatial resolution and γ-sensitivity are presented
Mixing times in quantum walks on two-dimensional grids
International Nuclear Information System (INIS)
Marquezino, F. L.; Portugal, R.; Abal, G.
2010-01-01
Mixing properties of discrete-time quantum walks on two-dimensional grids with toruslike boundary conditions are analyzed, focusing on their connection to the complexity of the corresponding abstract search algorithm. In particular, an exact expression for the stationary distribution of the coherent walk over odd-sided lattices is obtained after solving the eigenproblem for the evolution operator for this particular graph. The limiting distribution and mixing time of a quantum walk with a coin operator modified as in the abstract search algorithm are obtained numerically. On the basis of these results, the relation between the mixing time of the modified walk and the running time of the corresponding abstract search algorithm is discussed.
Static and dynamic properties of two-dimensional Coulomb clusters.
Ash, Biswarup; Chakrabarti, J; Ghosal, Amit
2017-10-01
We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.
Few helium atoms in quasi two-dimensional space
International Nuclear Information System (INIS)
Kilic, Srecko; Vranjes, Leandra
2003-01-01
Two, three and four 3 He and 4 He atoms in quasi two-dimensional space above graphite and cesium surfaces and in 'harmonic' potential perpendicular to the surface have been studied. Using some previously examined variational wave functions and the Diffusion Monte Carlo procedure, it has been shown that all molecules: dimers, trimers and tetramers, are bound more strongly than in pure two- and three-dimensional space. The enhancement of binding with respect to unrestricted space is more pronounced on cesium than on graphite. Furthermore, for 3 He 3 ( 3 He 4 ) on all studied surfaces, there is an indication that the configuration of a dimer and a 'free' particle (two dimers) may be equivalently established
Two dimensional radiated power diagnostics on Alcator C-Mod
International Nuclear Information System (INIS)
Reinke, M. L.; Hutchinson, I. H.
2008-01-01
The radiated power diagnostics for the Alcator C-Mod tokamak have been upgraded to measure two dimensional structure of the photon emissivity profile in order to investigate poloidal asymmetries in the core radiation. Commonly utilized unbiased absolute extreme ultraviolet (AXUV) diode arrays view the plasma along five different horizontal planes. The layout of the diagnostic set is shown and the results from calibrations and recent experiments are discussed. Data showing a significant, 30%-40%, inboard/outboard emissivity asymmetry during ELM-free H-mode are presented. The ability to use AXUV diode arrays to measure absolute radiated power is explored by comparing diode and resistive bolometer-based emissivity profiles for highly radiative L-mode plasmas seeded with argon. Emissivity profiles match in the core but disagree radially outward resulting in an underprediction of P rad of nearly 50% by the diodes compared to P rad determined using resistive bolometers.
Superconductivity of the two-dimensional Penson-Kolb model
International Nuclear Information System (INIS)
Czart, W.R.; Robaszkiewicz, S.
2001-01-01
Two-dimensional (d = 2) Penson-Kolb model, i.e. the tight-binding model with the pair-hopping (intersite charge exchange) interaction, is considered and the effects of phase fluctuations on the s-wave superconductivity of this system are discussed within Kosterlitz-Thouless scenario. The London penetration depth λ at T = 0, the Kosterlitz Thouless critical temperature T c , and the Hartree-Fock approximation critical temperature T p are determined as a function of particle concentration and interaction. The Uemura type plots (T c vs. λ -2 (0)) are derived. Beyond weak coupling and for low concentrations they show the existence of universal scaling: T c ∼ 1/λ 2 (0), as it previously found for the attractive Hubbard model and for the models intersite electron pairing. (author)
Self-organized defect strings in two-dimensional crystals.
Lechner, Wolfgang; Polster, David; Maret, Georg; Keim, Peter; Dellago, Christoph
2013-12-01
Using experiments with single-particle resolution and computer simulations we study the collective behavior of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings, terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through the crystal in a succession of rapid one-dimensional gliding and rare rotations. While the rotation rate decreases exponentially with the number of defects in the string, the diffusion constant is constant for large strings. By monitoring the separation of the dislocations at the end points, we measure their effective interactions with high precision beyond their spontaneous formation and annihilation, and we explain the double-well form of the dislocation interaction in terms of continuum elasticity theory.
Measuring protein dynamics with ultrafast two-dimensional infrared spectroscopy
International Nuclear Information System (INIS)
Adamczyk, Katrin; Candelaresi, Marco; Hunt, Neil T; Robb, Kirsty; Hoskisson, Paul A; Tucker, Nicholas P; Gumiero, Andrea; Walsh, Martin A; Parker, Anthony W
2012-01-01
Recent advances in the methodology and application of ultrafast two-dimensional infrared (2D-IR) spectroscopy to biomolecular systems are reviewed. A description of the 2D-IR technique and the molecular contributions to the observed spectra are presented followed by a discussion of recent literature relating to the use of 2D-IR and associated approaches for measuring protein dynamics. In particular, these include the use of diatomic ligand groups for measuring haem protein dynamics, isotopic labelling strategies and the use of vibrational probe groups. The final section reports on the current state of the art regarding the use of 2D-IR methods to provide insights into biological reaction mechanisms. (topical review)
Cooperation in two-dimensional mixed-games
International Nuclear Information System (INIS)
Amaral, Marco A; Silva, Jafferson K L da; Wardil, Lucas
2015-01-01
Evolutionary game theory is a common framework to study the evolution of cooperation, where it is usually assumed that the same game is played in all interactions. Here, we investigate a model where the game that is played by two individuals is uniformly drawn from a sample of two different games. Using the master equation approach we show that the random mixture of two games is equivalent to play the average game when (i) the strategies are statistically independent of the game distribution and (ii) the transition rates are linear functions of the payoffs. We also use Monte-Carlo simulations in a two-dimensional lattice and mean-field techniques to investigate the scenario when the two above conditions do not hold. We find that even outside of such conditions, several quantities characterizing the mixed-games are still the same as the ones obtained in the average game when the two games are not very different. (paper)
The first principle calculation of two-dimensional Dirac materials
Lu, Jin
2017-12-01
As the size of integrated device becoming increasingly small, from the last century, semiconductor industry is facing the enormous challenge to break the Moore’s law. The development of calculation, communication and automatic control have emergent expectation of new materials at the aspect of semiconductor industrial technology and science. In spite of silicon device, searching the alternative material with outstanding electronic properties has always been a research point. As the discovery of graphene, the research of two-dimensional Dirac material starts to express new vitality. This essay studied the development calculation of 2D material’s mobility and introduce some detailed information of some approximation method of the first principle calculation.
Quasi-Two-Dimensional Magnetism in Co-Based Shandites
Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki
2016-06-01
We report quasi-two-dimensional (Q2D) itinerant electron magnetism in the layered Co-based shandites. Comprehensive magnetization measurements were performed using single crystals of Co3Sn2-xInxS2 (0 ≤ x ≤ 2) and Co3-yFeySn2S2 (0 ≤ y ≤ 0.5). The magnetic parameters of both systems; the Curie temperature TC, effective moment peff and spontaneous moment ps; exhibit almost identical variations against the In- and Fe-concentrations, indicating significance of the electron count on the magnetism in the Co-based shandite. The ferromagnetic-nonmagnetic quantum phase transition is found around xc ˜ 0.8. Analysis based on the extended Q2D spin fluctuation theory clearly reveals the highly Q2D itinerant electron character of the ferromagnetism in the Co-based shandites.
Two-dimensional strain gradient damage modeling: a variational approach
Placidi, Luca; Misra, Anil; Barchiesi, Emilio
2018-06-01
In this paper, we formulate a linear elastic second gradient isotropic two-dimensional continuum model accounting for irreversible damage. The failure is defined as the condition in which the damage parameter reaches 1, at least in one point of the domain. The quasi-static approximation is done, i.e., the kinetic energy is assumed to be negligible. In order to deal with dissipation, a damage dissipation term is considered in the deformation energy functional. The key goal of this paper is to apply a non-standard variational procedure to exploit the damage irreversibility argument. As a result, we derive not only the equilibrium equations but, notably, also the Karush-Kuhn-Tucker conditions. Finally, numerical simulations for exemplary problems are discussed as some constitutive parameters are varying, with the inclusion of a mesh-independence evidence. Element-free Galerkin method and moving least square shape functions have been employed.
Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis
Directory of Open Access Journals (Sweden)
Young S. Shin
1998-01-01
Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.
Advancements of two dimensional correlation spectroscopy in protein researches
Tao, Yanchun; Wu, Yuqing; Zhang, Liping
2018-05-01
The developments of two-dimensional correlation spectroscopy (2DCOS) applications in protein studies are discussed, especially for the past two decades. The powerful utilities of 2DCOS combined with various analytical techniques in protein studies are summarized. The emphasis is on the vibration spectroscopic techniques including IR, NIR, Raman and optical activity (ROA), as well as vibration circular dichroism (VCD) and fluorescence spectroscopy. In addition, some new developments, such as hetero-spectral 2DCOS, moving-window correlation, and model based correlation, are also reviewed for their utility in the investigation of the secondary structure, denaturation, folding and unfolding changes of protein. Finally, the new possibility and challenges of 2DCOS in protein research are highlighted as well.
Superfluid response of two-dimensional parahydrogen clusters in confinement
Energy Technology Data Exchange (ETDEWEB)
Idowu, Saheed; Boninsegni, Massimo [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E7 (Canada)
2015-04-07
We study by computer simulations the effect of confinement on the superfluid properties of small two-dimensional (2D) parahydrogen clusters. For clusters of fewer than twenty molecules, the superfluid response in the low temperature limit is found to remain comparable in magnitude to that of free clusters, within a rather wide range of depth and size of the confining well. The resilience of the superfluid response is attributable to the “supersolid” character of these clusters. We investigate the possibility of establishing a bulk 2D superfluid “cluster crystal” phase of p-H{sub 2}, in which a global superfluid response would arise from tunnelling of molecules across adjacent unit cells. The computed energetics suggests that for clusters of about ten molecules, such a phase may be thermodynamically stable against the formation of the equilibrium insulating crystal, for values of the cluster crystal lattice constant possibly allowing tunnelling across adjacent unit cells.
Review—Two-Dimensional Layered Materials for Energy Storage Applications
Kumar, Pushpendra
2016-07-02
Rechargeable batteries are most important energy storage devices in modern society with the rapid development and increasing demand for handy electronic devices and electric vehicles. The higher surface-to-volume ratio two-dimensional (2D) materials, especially transition metal dichalcogenides (TMDCs) and transition metal carbide/nitrite generally referred as MXene, have attracted intensive research activities due to their fascinating physical/chemical properties with extensive applications. One of the growing applications is to use these 2D materials as potential electrodes for rechargeable batteries and electrochemical capacitors. This review is an attempt to summarize the research and development of TMDCs, MXenes and their hybrid structures in energy storage systems. (C) The Author(s) 2016. Published by ECS. All rights reserved.
Two dimensional tunable photonic crystals and n doped semiconductor materials
International Nuclear Information System (INIS)
Elsayed, Hussein A.; El-Naggar, Sahar A.; Aly, Arafa H.
2015-01-01
In this paper, we theoretically investigate the effect of the doping concentration on the properties of two dimensional semiconductor photonic band structures. We consider two structures; type I(II) that is composed of n doped semiconductor (air) rods arranged into a square lattice of air (n doped semiconductor). We consider three different shapes of rods. Our numerical method is based on the frequency dependent plane wave expansion method. The numerical results show that the photonic band gaps in type II are more sensitive to the changes in the doping concentration than those of type I. In addition, the width of the gap of type II is less sensitive to the shape of the rods than that of type I. Moreover, the cutoff frequency can be strongly tuned by the doping concentrations. Our structures could be of technical use in optical electronics for semiconductor applications
Two-Dimensional Tellurene as Excellent Thermoelectric Material
Sharma, Sitansh
2018-04-20
We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high room temperature Seebeck coefficient (Sxx = 0.38 mV/K, Syy = 0.36 mV/K) is combined with anisotropic lattice thermal conductivity (κxxl = 0.43 W/m K, κyyl = 1.29 W/m K). Phonon band structures demonstrate a key role of optical phonons in the record low thermal conductivity that leads to excellent thermoelectric performance of tellurene. At room temperature and moderate hole doping of 1.2 × 10–11 cm–2, for example, a figure of merit of ZTxx = 0.8 is achieved.
Two-dimensional wave propagation in layered periodic media
Quezada de Luna, Manuel
2014-09-16
We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.
Bifurcated equilibria in two-dimensional MHD with diamagnetic effects
International Nuclear Information System (INIS)
Ottaviani, M.; Tebaldi, C.
1998-12-01
In this work we analyzed the sequence of bifurcated equilibria in two-dimensional reduced magnetohydrodynamics. Diamagnetic effects are studied under the assumption of a constant equilibrium pressure gradient, not altered by the formation of the magnetic island. The formation of an island when the symmetric equilibrium becomes unstable is studied as a function of the tearing mode stability parameter Δ' and of the diamagnetic frequency, by employing fixed-points numerical techniques and an initial value code. At larger values of Δ' a tangent bifurcation takes place, above which no small island solutions exist. This bifurcation persists up to fairly large values of the diamagnetic frequency (of the order of one tenth of the Alfven frequency). The implications of this phenomenology for the intermittent MHD dynamics observed in tokamaks is discussed. (authors)
A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy
Energy Technology Data Exchange (ETDEWEB)
El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens, E-mail: bredenbeck@biophysik.uni-frankfurt.org, E-mail: bredenbeck@biophysik.uni-frankfurt.de [Institut für Biophysik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt (Germany)
2015-08-15
A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.
Critical behavior of the two-dimensional first passage time
International Nuclear Information System (INIS)
Chayes, J.T.; Chayes, L.; Durrett, R.
1986-01-01
We study the two-dimensional first passage problem in which bonds have zero and unit passage times with probability p and 1-p, respectively. We provide that as the zero-time bonds approach the percolation threshold p/sub c/, the first passage time exhibits the same critical behavior as the correlation function of the underlying percolation problem. In particular, if the correlation length obeys ξ(p)--chemical bondp-p/sub c/chemical bond/sup -//sup v/, then the first passage time constant satisfies μ(p)--chemical bondp-p/sub c/chemical bond/sup v/. At p/sub c/, where it has been asserted that the first passage time from 0 to x scales as chemical bondxchemical bond to a power psi with 0< psi<1, we show that the passage times grow like log chemical bondxchemical bond, i.e., the fluid spreads exponentially rapidly
Two-dimensional electronic spectroscopy with birefringent wedges
Energy Technology Data Exchange (ETDEWEB)
Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2014-12-15
We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.
Charge ordering in two-dimensional ionic liquids
Perera, Aurélien; Urbic, Tomaz
2018-04-01
The structural properties of model two-dimensional (2D) ionic liquids are examined, with a particular focus on the charge ordering process, with the use of computer simulation and integral equation theories. The influence of the logarithmic form of the Coulomb interaction, versus that of a 3D screened interaction form, is analysed. Charge order is found to hold and to be analogous for both interaction models, despite their very different form. The influence of charge ordering in the low density regime is discussed in relation to well known properties of 2D Coulomb fluids, such as the Kosterlitz-Thouless transition and criticality. The present study suggests the existence of a stable thermodynamic labile cluster phase, implying the existence of a liquid-liquid "transition" above the liquid-gas binodal. The liquid-gas and Kosterlitz-Thouless transitions would then take place inside the predicted cluster phase.
Two-dimensional fruit ripeness estimation using thermal imaging
Sumriddetchkajorn, Sarun; Intaravanne, Yuttana
2013-06-01
Some green fruits do not change their color from green to yellow when being ripe. As a result, ripeness estimation via color and fluorescent analytical approaches cannot be applied. In this article, we propose and show for the first time how a thermal imaging camera can be used to two-dimensionally classify fruits into different ripeness levels. Our key idea relies on the fact that the mature fruits have higher heat capacity than the immature ones and therefore the change in surface temperature overtime is slower. Our experimental proof of concept using a thermal imaging camera shows a promising result in non-destructively identifying three different ripeness levels of mangoes Mangifera indica L.
Two-Dimensional Perovskite Activation with an Organic Luminophore.
Jemli, Khaoula; Audebert, Pierre; Galmiche, Laurent; Trippé-Allard, Gaelle; Garrot, Damien; Lauret, Jean-Sébastien; Deleporte, Emmanuelle
2015-10-07
A great advantage of the hybrid organic-inorganic perovskites is the chemical flexibility and the possibility of a molecular engineering of each part of the material (the inorganic part and the organic part respectively) in order to improve or add some functionalities. An adequately chosen organic luminophore has been introduced inside a lead bromide type organic-inorganic perovskite, while respecting the two-dimensional perovskite structure. A substantial increase of the brilliance of the perovskite is obtained. This activation of the perovskite luminescence by the adequate engineering of the organic part is an original approach, and is particularly interesting in the framework of the light-emitting devices such as organic light-emitting diodes (OLEDs) or lasers.
Atomically thin two-dimensional organic-inorganic hybrid perovskites
Dou, Letian; Wong, Andrew B.; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W.; Fu, Anthony; Bischak, Connor G.; Ma, Jie; Ding, Tina; Ginsberg, Naomi S.; Wang, Lin-Wang; Alivisatos, A. Paul; Yang, Peidong
2015-09-01
Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.
Photo-switchable two-dimensional nanofluidic ionic diodes.
Wang, Lili; Feng, Yaping; Zhou, Yi; Jia, Meijuan; Wang, Guojie; Guo, Wei; Jiang, Lei
2017-06-01
The bottom-up assembly of ion-channel-mimetic nanofluidic devices and materials with two-dimensional (2D) nano-building blocks paves a straightforward way towards the real-world applications of the novel transport phenomena on a nano- or sub-nanoscale. One immediate challenge is to provide the 2D nanofluidic systems with adaptive responsibilities and asymmetric ion transport characteristics. Herein, we introduce a facile and general strategy to provide a graphene-oxide-based 2D nanofluidic system with photo-switchable ionic current rectification (ICR). The degree of ICR can be prominently enhanced upon UV irradiation and it can be perfectly retrieved under irradiation with visible light. A maximum ICR ratio of about 48 was achieved. The smart and functional nanofluidic devices have applications in energy conversion, chemical sensing, water treatment, etc .
Tachyon hair on two-dimensional black holes
International Nuclear Information System (INIS)
Peet, A.; Susskind, L.; Thorlacius, L.
1993-01-01
Static black holes in two-dimensional string theory can carry tachyon hair. Configurations which are nonsingular at the event horizon have a nonvanishing asymptotic energy density. Such solutions can be smoothly extended through the event horizon and have a nonvanishing energy flux emerging from the past singularity. Dynamical processes will not change the amount of tachyon hair on a black hole. In particular, there will be no tachyon hair on a black hole formed in gravitational collapse if the initial geometry is the linear dilaton vacuum. There also exist static solutions with a finite total energy, which have singular event horizons. Simple dynamical arguments suggest that black holes formed in gravitational collapse will not have tachyon hair of this type
On wakefields with two-dimensional planar geometry
International Nuclear Information System (INIS)
Chao, A.W.; Bane, K.L.F.
1996-10-01
In order to reach higher acceleration gradients in linear accelerators, it is advantageous to use a higher accelerating RF frequency, which in turn requires smaller accelerating structures. As the structure size becomes smaller, rectangular structures become increasingly interesting because they are easier to construct than cylindrically symmetric ones. One drawback of small structures, however, is that the wakefields generated by the beam in such structures tend to be strong. Recently, it has been suggested that one way of ameliorating this problem is to use rectangular structures that are very flat and to use flat beams. In the limiting case of a very flat planar geometry, the problem resembles a purely two-dimensional (2-D) problem, the wakefields of which have been studied
Ion distributions in a two-dimensional reconnection field geometry
International Nuclear Information System (INIS)
Curran, D.B.; Goertz, C.K.; Whelan, T.A.
1987-01-01
ISEE observations have shown trapped ion distributions in the magnetosphere along with streaming ion distributions in the magnetosheath. The more energetic ion beams are found to exist further away from the magnetopause than lower-energy ion beams. In order to understand these properties of the data, we have taken a simple two-dimensional reconnection model which contains a neutral line and an azimuthal electric field and compared its predictions with the experimental data of September 8, 1978. Our model explains trapped particles in the magnetosphere due to nonadiabatic mirroring in the magnetosheath and streaming ions in the magnetosheath due to energization at the magnetopause. The model also shows the higher-energy ions extending further into the magnetosheath, away from the magnetopause than the lower-energy ions. This suggests the ion data of September 8, 1978 are consistent with a reconnection geometry. Copyright American Geophysical Union 1987
Normal Modes of Magnetized Finite Two-Dimensional Yukawa Crystals
Marleau, Gabriel-Dominique; Kaehlert, Hanno; Bonitz, Michael
2009-11-01
The normal modes of a finite two-dimensional dusty plasma in an isotropic parabolic confinement, including the simultaneous effects of friction and an external magnetic field, are studied. The ground states are found from molecular dynamics simulations with simulated annealing, and the influence of screening, friction, and magnetic field on the mode frequencies is investigated in detail. The two-particle problem is solved analytically and the limiting cases of weak and strong magnetic fields are discussed.[4pt] [1] C. Henning, H. K"ahlert, P. Ludwig, A. Melzer, and M.Bonitz. J. Phys. A 42, 214023 (2009)[2] B. Farokhi, M. Shahmansouri, and P. K. Shukla. Phys.Plasmas 16, 063703 (2009)[3] L. Cândido, J.-P. Rino, N. Studart, and F. M. Peeters. J. Phys.: Condens. Matter 10, 11627--11644 (1998)
Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.
Yang, Yuting; Jiang, Hua; Hang, Zhi Hong
2018-01-25
Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.
Two-dimensional plasma photonic crystals in dielectric barrier discharge
International Nuclear Information System (INIS)
Fan Weili; Dong Lifang; Zhang Xinchun
2010-01-01
A series of two-dimensional plasma photonic crystals have been obtained by filaments' self-organization in atmospheric dielectric barrier discharge with two water electrodes, which undergo the transition from square to square superlattice and finally to the hexagon. The spatio-temporal behaviors of the plasma photonic crystals in nanosecond scale have been studied by optical method, which show that the plasma photonic crystal is actually an integration of different transient sublattices. The photonic band diagrams of the transverse electric (TE) mode and transverse magnetic mode for each sublattice of these plasma photonic crystals have been investigated theoretically. A wide complete band gap is formed in the hexagonal plasma photonic crystal with the TE mode. The changes of the band edge frequencies and the band gap widths in the evolvement of different structures are studied. A kind of tunable plasma photonic crystal which can be controlled both in space and time is suggested.
Three-dimensional versus two-dimensional vision in laparoscopy
DEFF Research Database (Denmark)
Sørensen, Stine D; Savran, Mona Meral; Konge, Lars
2016-01-01
were cohort size and characteristics, skill trained or operation performed, instrument used, outcome measures, and conclusions. Two independent authors performed the search and data extraction. RESULTS: Three hundred and forty articles were screened for eligibility, and 31 RCTs were included...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...... in the review. Three trials were carried out in a clinical setting, and 28 trials used a simulated setting. Time was used as an outcome measure in all of the trials, and number of errors was used in 19 out of 31 trials. Twenty-two out of 31 trials (71 %) showed a reduction in performance time, and 12 out of 19...
Statistical thermodynamics of a two-dimensional relativistic gas.
Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood
2009-03-01
In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).
Two-dimensional echocardiographic features of right ventricular infarction
International Nuclear Information System (INIS)
D'Arcy, B.; Nanda, N.C.
1982-01-01
Real-time, two-dimensional echocardiographic studies were performed in 10 patients with acute myocardial infarction who had clinical features suggestive of right ventricular involvement. All patients showed right ventricular wall motion abnormalities. In the four-chamber view, seven patients showed akinesis of the entire right ventricular diaphragmatic wall and three showed akinesis of segments of the diaphragmatic wall. Segmental dyskinetic areas involving the right ventricular free wall were identified in four patients. One patient showed a large right ventricular apical aneurysm. Other echocardiographic features included enlargement of the right ventricle in eight cases, paradoxical ventricular septal motion in seven cases, tricuspid incompetence in eight cases, dilation of the stomach in four cases and localized pericardial effusion in two cases. Right ventricular infarction was confirmed by radionuclide methods in seven patients, at surgery in one patient and at autopsy in two patients
Two-dimensional computer simulation of high intensity proton beams
Lapostolle, Pierre M
1972-01-01
A computer program has been developed which simulates the two- dimensional transverse behaviour of a proton beam in a focusing channel. The model is represented by an assembly of a few thousand 'superparticles' acted upon by their own self-consistent electric field and an external focusing force. The evolution of the system is computed stepwise in time by successively solving Poisson's equation and Newton's law of motion. Fast Fourier transform techniques are used for speed in the solution of Poisson's equation, while extensive area weighting is utilized for the accurate evaluation of electric field components. A computer experiment has been performed on the CERN CDC 6600 computer to study the nonlinear behaviour of an intense beam in phase space, showing under certain circumstances a filamentation due to space charge and an apparent emittance growth. (14 refs).
Two-Dimensional Halide Perovskites for Emerging New- Generation Photodetectors
DEFF Research Database (Denmark)
Tang, Yingying; Cao, Xianyi; Chi, Qijin
2018-01-01
Compared to their conventional three-dimensional (3D) counterparts, two-dimensional (2D) halide perovskites have attracted more interests recently in a variety of areas related to optoelectronics because of their unique structural characteristics and enhanced performances. In general, there are two...... distinct types of 2D halide perovskites. One represents those perovskites with an intrinsic layered crystal structure (i.e. MX6 layers, M = metal and X = Cl, Br, I), the other defines the perovskites with a 2D nanostructured morphology such as nanoplatelets and nanosheets. Recent studies have shown that 2D...... halide perovskites hold promising potential for the development of new-generation photodetectors, mainly arising from their highly efficient photoluminescence and absorbance, color tunability in the visible-light range and relatively high stability. In this chapter, we present the summary and highlights...
Review—Two-Dimensional Layered Materials for Energy Storage Applications
Kumar, Pushpendra; Abuhimd, Hatem; Wahyudi, Wandi; Li, Mengliu; Ming, Jun; Li, Lain-Jong
2016-01-01
Rechargeable batteries are most important energy storage devices in modern society with the rapid development and increasing demand for handy electronic devices and electric vehicles. The higher surface-to-volume ratio two-dimensional (2D) materials, especially transition metal dichalcogenides (TMDCs) and transition metal carbide/nitrite generally referred as MXene, have attracted intensive research activities due to their fascinating physical/chemical properties with extensive applications. One of the growing applications is to use these 2D materials as potential electrodes for rechargeable batteries and electrochemical capacitors. This review is an attempt to summarize the research and development of TMDCs, MXenes and their hybrid structures in energy storage systems. (C) The Author(s) 2016. Published by ECS. All rights reserved.
Two-dimensional void reconstruction by neutron transmission
International Nuclear Information System (INIS)
Zakaib, G.D.; Harms, A.A.; Vlachopoulos, J.
1978-01-01
Contemporary algebraic reconstruction methods are utilized in investigating the two-dimensional void distribution in a water analog from neutron transmission measurements. It is sought to ultimately apply these techniques to the determination of time-averaged void distribution in two-phase flow systems as well as for potential usage in neutron radiography. Initially, projection data were obtained from a digitized model of a hypothetical two-phase representation and later from neutron beam traverses across a voided methacrylate plastic model. From 10 to 15 views were incorporated, and decoupling of overlapped measurements was utilized to afford greater resolution. In general, the additive Algebraic Reconstruction Technique yielded the best reconstructions, with others showing promise for noisy data. Results indicate the need for some further development of the method in interpreting real data
Drifting plasmons in open two-dimensional channels: modal analysis
International Nuclear Information System (INIS)
Sydoruk, O
2013-01-01
Understanding the properties of plasmons in two-dimensional channels is important for developing methods of terahertz generation. This paper presents a modal analysis of plasmonic reflection in open channels supporting dc currents. As it shows, the plasmons can be amplified upon reflection if a dc current flows away from a conducting boundary; de-amplification occurs for the opposite current direction. The problem is solved analytically, based on a perturbation calculation, and numerically, and agreement between the methods is demonstrated. The power radiated by a channel is found to be negligible, and plasmon reflection in open channels is shown to be similar to that in closed channels. Based on this similarity, the oscillator designs developed earlier for closed channels could be applicable also for open ones. The results develop the modal-decomposition technique further as an instrument for the design of terahertz plasmonic sources. (paper)
Two-dimensional random arrays for real time volumetric imaging
DEFF Research Database (Denmark)
Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.
1994-01-01
real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive......Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...
Efficient two-dimensional compressive sensing in MIMO radar
Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad
2017-12-01
Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.
Discrete formulation for two-dimensional multigroup neutron diffusion equations
Energy Technology Data Exchange (ETDEWEB)
Vosoughi, Naser E-mail: vosoughi@mehr.sharif.edu; Salehi, Ali A.; Shahriari, Majid
2003-02-01
The objective of this paper is to introduce a new numerical method for neutronic calculation in a reactor core. This method can produce the final finite form of the neutron diffusion equation by classifying the neutronic variables and using two kinds of cell complexes without starting from the conventional differential form of the neutron diffusion equation. The method with linear interpolation produces the same convergence as the linear continuous finite element method. The quadratic interpolation is proven; the convergence order depends on the shape of the dual cell. The maximum convergence order is achieved by choosing the dual cell based on two Gauss' points. The accuracy of the method was examined with a well-known IAEA two-dimensional benchmark problem. The numerical results demonstrate the effectiveness of the new method.
Discrete formulation for two-dimensional multigroup neutron diffusion equations
International Nuclear Information System (INIS)
Vosoughi, Naser; Salehi, Ali A.; Shahriari, Majid
2003-01-01
The objective of this paper is to introduce a new numerical method for neutronic calculation in a reactor core. This method can produce the final finite form of the neutron diffusion equation by classifying the neutronic variables and using two kinds of cell complexes without starting from the conventional differential form of the neutron diffusion equation. The method with linear interpolation produces the same convergence as the linear continuous finite element method. The quadratic interpolation is proven; the convergence order depends on the shape of the dual cell. The maximum convergence order is achieved by choosing the dual cell based on two Gauss' points. The accuracy of the method was examined with a well-known IAEA two-dimensional benchmark problem. The numerical results demonstrate the effectiveness of the new method
Nematic Equilibria on a Two-Dimensional Annulus
Lewis, A. H.
2017-01-16
We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.
Magnon damping in two-dimensional Heisenberg ferromagnetic system
International Nuclear Information System (INIS)
Cheng, T.-M.; Li Lin; Ze Xianyu
2006-01-01
A magnon-phonon interaction model is set up for a two-dimensional insulating ferromagnetic system. By using Matsubara function theory we have studied the magnon damping -I m Σ* (1) (k->) and calculated the magnon damping -I m Σ* (1) (k->) curve on the main symmetric point and line in the Brillouin zone for various parameters in the system. It is concluded that at the boundary of Brillouin zone there is a strong magnon damping. However, the magnon damping is very weak on the zone of small wave vector and the magnon damping reaches maximal value at very low temperature. The contributions of longitudinal phonon and transverse phonon on the magnon damping are compared and the influences of various parameters are also discussed
Two dimensional polar display of cardiac blood pool SPECT
International Nuclear Information System (INIS)
Honda, Norinari; Machida, Kikuo; Mamiya, Toshio; Takahashi, Taku; Takishima, Teruo; Hasegawa, Noriko; Hashimoto, Masanori; Ohno, Ken
1989-01-01
A new method of ECG gated cardiac blood pool SPECT to illustrate the left ventricular (LV) wall motion in a single static image, two dimensional polar display (2DPD), was described. Circumferential profiles of the difference between end diastolic and end systolic short axis images of the LV were displayed in a similar way to the bull's eye plot of 201 Tl myocardial SPECT. The diagnoses by 2DPDs agreed with those by cinematic displays of ECG gated blood pool SPECT in 74 out of 84 segments (85.5%) of abnormal motion, and 155 out of 168 segments (80.3%) of normal motion. It is concluded that 2DPD can evaluate regional wall motion by a single static image in a significant number of patients, and is also useful in comparing with the bull's eye image of 201 Tl myorcardial SPECT. (orig.)
Evaporation effect on two-dimensional wicking in porous media.
Benner, Eric M; Petsev, Dimiter N
2018-03-15
We analyze the effect of evaporation on expanding capillary flow for losses normal to the plane of a two-dimensional porous medium using the potential flow theory formulation of the Lucas-Washburn method. Evaporation induces a finite steady state liquid flux on capillary flows into fan-shaped domains which is significantly greater than the flux into media of constant cross section. We introduce the evaporation-capillary number, a new dimensionless quantity, which governs the frontal motion when multiplied by the scaled time. This governing product divides the wicking behavior into simple regimes of capillary dominated flow and evaporative steady state, as well as the intermediate regime of evaporation influenced capillary driven motion. We also show flow dimensionality and evaporation reduce the propagation rate of the wet front relative to the Lucas-Washburn law. Copyright © 2017 Elsevier Inc. All rights reserved.
Two-dimensional atom localization via Raman-driven coherence
Energy Technology Data Exchange (ETDEWEB)
Rahmatullah,; Qamar, Sajid, E-mail: sajid_qamar@comsats.edu.pk
2014-02-07
A scheme for two-dimensional (2D) atom localization via Raman-driven coherence in a four-level diamond-configuration system is suggested. The atom interacts with two orthogonal standing-wave fields where each standing-wave field is constructed from the superposition of the two-standing wave fields along the corresponding directions. Due to the position-dependent atom–field interaction, the frequency of the spontaneously emitted photon carries the position information about the atom. We investigate the effect of the detunings and phase shifts associated with standing-wave fields. Unique position information of the single atom is obtained by properly adjusting the system parameters. This is an extension of our previous proposal for one-dimensional atom localization via Raman-driven coherence.
Two-dimensional goodness-of-fit testing in astronomy
International Nuclear Information System (INIS)
Peacock, J.A
1983-01-01
This paper deals with the techniques available to test for consistency between the empirical distribution of data points on a plane and a hypothetical density law. Two new statistical tests are developed. The first is a two-dimensional version of the Kolmogorov-Smirnov test, for which the distribution of the test statistic is investigated using a Monte Carlo method. This test is found in practice to be very nearly distribution-free, and empirical formulae for the confidence levels are given. Secondly, the method of power-spectrum analysis is extended to deal with cases in which the null hypothesis is not a uniform distribution. These methods are illustrated by application to the distribution of quasar candidates found on an objective-prism plate of the Virgo Cluster. (author)
Acoustic resonances in two-dimensional radial sonic crystal shells
Energy Technology Data Exchange (ETDEWEB)
Torrent, Daniel; Sanchez-Dehesa, Jose, E-mail: jsdehesa@upvnet.upv.e [Wave Phenomena Group, Departamento de Ingenieria Electronica, Universidad Politecnica de Valencia, C/Camino de Vera s.n., E-46022 Valencia (Spain)
2010-07-15
Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction that verify the Bloch theorem and are possible only if certain specially designed acoustic metamaterials with mass density anisotropy can be engineered (see Torrent and Sanchez-Dehesa 2009 Phys. Rev. Lett. 103 064301). A comprehensive analysis of two-dimensional (2D) RSC shells is reported here. A given shell is in fact a circular slab with a central cavity. These finite crystal structures contain Fabry-Perot-like resonances and modes strongly localized at the central cavity. Semi-analytical expressions are developed to obtain the quality factors of the different resonances, their symmetry features and their excitation properties. The results reported here are completely general and can be extended to equivalent 3D spherical shells and to their photonic counterparts.
Acoustic metamaterials for new two-dimensional sonic devices
Energy Technology Data Exchange (ETDEWEB)
Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera sn, E-46022 Valencia (Spain)
2007-09-15
It has been shown that two-dimensional arrays of rigid or fluidlike cylinders in a fluid or a gas define, in the limit of large wavelengths, a class of acoustic metamaterials whose effective parameters (sound velocity and density) can be tailored up to a certain limit. This work goes a step further by considering arrays of solid cylinders in which the elastic properties of cylinders are taken into account. We have also treated mixtures of two different elastic cylinders. It is shown that both effects broaden the range of acoustic parameters available for designing metamaterials. For example, it is predicted that metamaterials with perfect matching of impedance with air are now possible by using aerogel and rigid cylinders equally distributed in a square lattice. As a potential application of the proposed metamaterial, we present a gradient index lens for airborne sound (i.e. a sonic Wood lens) whose functionality is demonstrated by multiple scattering simulations.
Selective growth of two-dimensional phosphorene on catalyst surface.
Qiu, L; Dong, J C; Ding, F
2018-02-01
Although the study of black phosphorene (BP) and its isomers has attracted enormous attention, the method of synthesizing high-quality samples in a large area is still pending. Here we explore the potential of using the chemical vapor deposition method to synthesize large-area two-dimensional (2D) phosphorene films on metal surfaces. Our ab initio calculations show that BP can be synthesized by using tin (Sn) as a catalyst, while one of its isomers, blue phosphorene (BLP), is very possible to be synthesized by using most other metals, such as Ag and Au. Besides, our study also suggests that the large binding energy between the 2D phosphorene and the active metal substrate may prohibit the exfoliation of the 2D phosphorene for real applications and, therefore, tin, silver and gold are predicted to be the most suitable catalysts for the synthesis of BP and BLP.
Seismic isolation of buildings on two dimensional phononic crystal foundation
Han, Lin; Li, Xiao-mei; Zhang, Yan
2017-11-01
In order to realize the seismic isolation of buildings, we establish the two dimensional phononic crystal (PC) foundation which has the cell with the size close to the regular concrete test specimens, and is composed of the concrete base, rubber coating and lead cylindrical core. We study the in-plane band gap (BG) characteristics in it, through the analysis of the frequency dispersion relation and frequency response result. To lower the start BG frequency to the seismic frequency range, we also study the influences of material parameters (the elastic modulus of coating and density of cylindrical core) and geometry parameters (the thickness of coating, radius of cylindrical core and lattice constant) on BG ranges. The study could help to design the PC foundation for seismic isolation of building.
Intertwined Hamiltonians in two-dimensional curved spaces
International Nuclear Information System (INIS)
Aghababaei Samani, Keivan; Zarei, Mina
2005-01-01
The problem of intertwined Hamiltonians in two-dimensional curved spaces is investigated. Explicit results are obtained for Euclidean plane, Minkowski plane, Poincare half plane (AdS 2 ), de Sitter plane (dS 2 ), sphere, and torus. It is shown that the intertwining operator is related to the Killing vector fields and the isometry group of corresponding space. It is shown that the intertwined potentials are closely connected to the integral curves of the Killing vector fields. Two problems are considered as applications of the formalism presented in the paper. The first one is the problem of Hamiltonians with equispaced energy levels and the second one is the problem of Hamiltonians whose spectrum is like the spectrum of a free particle
Electrical conductivity of quasi-two-dimensional foams.
Yazhgur, Pavel; Honorez, Clément; Drenckhan, Wiebke; Langevin, Dominique; Salonen, Anniina
2015-04-01
Quasi-two-dimensional (quasi-2D) foams consist of monolayers of bubbles squeezed between two narrowly spaced plates. These simplified foams have served successfully in the past to shed light on numerous issues in foam physics. Here we consider the electrical conductivity of such model foams. We compare experiments to a model which we propose, and which successfully relates the structural and the conductive properties of the foam over the full range of the investigated liquid content. We show in particular that in the case of quasi-2D foams the liquid in the nodes needs to be taken into account even at low liquid content. We think that these results may provide different approaches for the characterization of foam properties and for the in situ characterization of the liquid content of foams in confining geometries, such as microfluidics.
Incoherent control and entanglement for two-dimensional coupled systems
International Nuclear Information System (INIS)
Romano, Raffaele; D'Alessandro, Domenico
2006-01-01
We investigate accessibility and controllability of a quantum system S coupled to a quantum probe P, both described by two-dimensional Hilbert spaces, under the hypothesis that the external control affects only P. In this context accessibility and controllability properties describe to what extent it is possible to drive the state of the system S by acting on P and using the interaction between the two systems. We give necessary and sufficient conditions for these properties and we discuss the relation with the entangling capability of the interaction between S and P. In particular, we show that controllability can be expressed in terms of the SWAP and √(SWAP) operators acting on the composite system
Unruly topologies in two-dimensional quantum gravity
International Nuclear Information System (INIS)
Hartle, J.B.
1985-01-01
A sum over histories formulation of quantum geometry could involve sums over different topologies as well as sums over different metrics. In classical gravity a geometry is a manifold with a metric, but it is difficult to implement a sum over manifolds in quantum gravity. In this difficulty, motivation is found for including in the sum over histories, geometries defined on more general objects than manifolds-unruly topologies. In simplicial two-dimensional quantum gravity a class of simplicial complexes is found to which the gravitational action can be extended, for which sums over the class are straightforwardly defined, and for which a manifold dominates the sum in the classical limit. The situation in higher dimensions is discussed. (author)
Two dimensional layered materials: First-principle investigation
Tang, Youjian
Two-dimensional layered materials have emerged as a fascinating research area due to their unique physical and chemical properties, which differ from those of their bulk counterparts. Some of these unique properties are due to carriers and transport being confined to 2 dimensions, some are due to lattice symmetry, and some arise from their large surface area, gateability, stackability, high mobility, spin transport, or optical accessibility. How to modify the electronic and magnetic properties of two-dimensional layered materials for desirable long-term applications or fundamental physics is the main focus of this thesis. We explored the methods of adsorption, intercalation, and doping as ways to modify two-dimensional layered materials, using density functional theory as the main computational methodology. Chapter 1 gives a brief review of density functional theory. Due to the difficulty of solving the many-particle Schrodinger equation, density functional theory was developed to find the ground-state properties of many-electron systems through an examination of their charge density, rather than their wavefunction. This method has great application throughout the chemical and material sciences, such as modeling nano-scale systems, analyzing electronic, mechanical, thermal, optical and magnetic properties, and predicting reaction mechanisms. Graphene and transition metal dichalcogenides are arguably the two most important two-dimensional layered materials in terms of the scope and interest of their physical properties. Thus they are the main focus of this thesis. In chapter 2, the structure and electronic properties of graphene and transition metal dichalcogenides are described. Alkali adsorption onto the surface of bulk graphite and metal intecalation into transition metal dichalcogenides -- two methods of modifying properties through the introduction of metallic atoms into layered systems -- are described in chapter 2. Chapter 3 presents a new method of tuning
Superconductivity in engineered two-dimensional electron gases
Chubukov, Andrey V.; Kivelson, Steven A.
2017-11-01
We consider Kohn-Luttinger mechanism for superconductivity in a two-dimensional electron gas confined to a narrow well between two grounded metallic planes with two occupied subbands with Fermi momenta kF L>kF S . On the basis of a perturbative analysis, we conclude that non-s -wave superconductivity emerges even when the bands are parabolic. We analyze the conditions that maximize Tc as a function of the distance to the metallic planes, the ratio kF L/kF S , and rs, which measures the strength of Coulomb correlations. The largest attraction is in p -wave and d -wave channels, of which p wave is typically the strongest. For rs=O (1 ) we estimate that the dimensionless coupling λ ≈10-1 , but it likely continues increasing for larger rs (where we lose theoretical control).
Internal optical bistability of quasi-two-dimensional semiconductor nanoheterostructures
Derevyanchuk, Oleksandr V.; Kramar, Natalia K.; Kramar, Valeriy M.
2018-01-01
We represent the results of numerical computations of the frequency and temperature domains of possible realization of internal optical bistability in flat quasi-two-dimensional semiconductor nanoheterostructures with a single quantum well (i.e., nanofilms). Particular computations have been made for a nanofilm of layered semiconductor PbI2 embedded in dielectric medium, i.e. ethylene-methacrylic acid (E-MAA) copolymer. It is shown that an increase in the nanofilm's thickness leads to a long-wave shift of the frequency range of the manifestation the phenomenon of bistability, to increase the size of the hysteresis loop, as well as to the expansion of the temperature interval at which the realization of this phenomenon is possible.
On the background independence of two-dimensional topological gravity
Imbimbo, Camillo
1995-04-01
We formulate two-dimensional topological gravity in a background covariant Lagrangian framework. We derive the Ward identities which characterize the dependence of physical correlators on the background world-sheet metric defining the gauge-slice. We point out the existence of an "anomaly" in Ward identitites involving correlators of observables with higher ghost number. This "anomaly" represents an obstruction for physical correlators to be globally defined forms on moduli space which could be integrated in a background independent way. Starting from the anomalous Ward identities, we derive "descent" equations whose solutions are cocycles of the Lie algebra of the diffeomorphism group with values in the space of local forms on the moduli space. We solve the descent equations and provide explicit formulas for the cocycles, which allow for the definition of background independent integrals of physical correlators on the moduli space.
Approaches for Achieving Superlubricity in Two-Dimensional Materials.
Berman, Diana; Erdemir, Ali; Sumant, Anirudha V
2018-03-27
Controlling friction and reducing wear of moving mechanical systems is important in many applications, from nanoscale electromechanical systems to large-scale car engines and wind turbines. Accordingly, multiple efforts are dedicated to design materials and surfaces for efficient friction and wear manipulation. Recent advances in two-dimensional (2D) materials, such as graphene, hexagonal boron nitride, molybdenum disulfide, and other 2D materials opened an era for conformal, atomically thin solid lubricants. However, the process of effectively incorporating 2D films requires a fundamental understanding of the atomistic origins of friction. In this review, we outline basic mechanisms for frictional energy dissipation during sliding of two surfaces against each other, and the procedures for manipulating friction and wear by introducing 2D materials at the tribological interface. Finally, we highlight recent progress in implementing 2D materials for friction reduction to near-zero values-superlubricity-across scales from nano- up to macroscale contacts.
A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy
International Nuclear Information System (INIS)
El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens
2015-01-01
A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported
Two dimensional radiated power diagnostics on Alcator C-Moda)
Reinke, M. L.; Hutchinson, I. H.
2008-10-01
The radiated power diagnostics for the Alcator C-Mod tokamak have been upgraded to measure two dimensional structure of the photon emissivity profile in order to investigate poloidal asymmetries in the core radiation. Commonly utilized unbiased absolute extreme ultraviolet (AXUV) diode arrays view the plasma along five different horizontal planes. The layout of the diagnostic set is shown and the results from calibrations and recent experiments are discussed. Data showing a significant, 30%-40%, inboard/outboard emissivity asymmetry during ELM-free H-mode are presented. The ability to use AXUV diode arrays to measure absolute radiated power is explored by comparing diode and resistive bolometer-based emissivity profiles for highly radiative L-mode plasmas seeded with argon. Emissivity profiles match in the core but disagree radially outward resulting in an underprediction of Prad of nearly 50% by the diodes compared to Prad determined using resistive bolometers.
Finite volume model for two-dimensional shallow environmental flow
Simoes, F.J.M.
2011-01-01
This paper presents the development of a two-dimensional, depth integrated, unsteady, free-surface model based on the shallow water equations. The development was motivated by the desire of balancing computational efficiency and accuracy by selective and conjunctive use of different numerical techniques. The base framework of the discrete model uses Godunov methods on unstructured triangular grids, but the solution technique emphasizes the use of a high-resolution Riemann solver where needed, switching to a simpler and computationally more efficient upwind finite volume technique in the smooth regions of the flow. Explicit time marching is accomplished with strong stability preserving Runge-Kutta methods, with additional acceleration techniques for steady-state computations. A simplified mass-preserving algorithm is used to deal with wet/dry fronts. Application of the model is made to several benchmark cases that show the interplay of the diverse solution techniques.
Resonant spin Hall effect in two dimensional electron gas
Shen, Shun-Qing
2005-03-01
Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169
Two-dimensional fluorescence lifetime correlation spectroscopy. 2. Application.
Ishii, Kunihiko; Tahara, Tahei
2013-10-03
In the preceding article, we introduced the theoretical framework of two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS). In this article, we report the experimental implementation of 2D FLCS. In this method, two-dimensional emission-delay correlation maps are constructed from the photon data obtained with the time-correlated single photon counting (TCSPC), and then they are converted to 2D lifetime correlation maps by the inverse Laplace transform. We develop a numerical method to realize reliable transformation, employing the maximum entropy method (MEM). We apply the developed actual 2D FLCS to two real systems, a dye mixture and a DNA hairpin. For the dye mixture, we show that 2D FLCS is experimentally feasible and that it can identify different species in an inhomogeneous sample without any prior knowledge. The application to the DNA hairpin demonstrates that 2D FLCS can disclose microsecond spontaneous dynamics of biological molecules in a visually comprehensible manner, through identifying species as unique lifetime distributions. A FRET pair is attached to the both ends of the DNA hairpin, and the different structures of the DNA hairpin are distinguished as different fluorescence lifetimes in 2D FLCS. By constructing the 2D correlation maps of the fluorescence lifetime of the FRET donor, the equilibrium dynamics between the open and the closed forms of the DNA hairpin is clearly observed as the appearance of the cross peaks between the corresponding fluorescence lifetimes. This equilibrium dynamics of the DNA hairpin is clearly separated from the acceptor-missing DNA that appears as an isolated diagonal peak in the 2D maps. The present study clearly shows that newly developed 2D FLCS can disclose spontaneous structural dynamics of biological molecules with microsecond time resolution.
Two-dimensional PCA-based human gait identification
Chen, Jinyan; Wu, Rongteng
2012-11-01
It is very necessary to recognize person through visual surveillance automatically for public security reason. Human gait based identification focus on recognizing human by his walking video automatically using computer vision and image processing approaches. As a potential biometric measure, human gait identification has attracted more and more researchers. Current human gait identification methods can be divided into two categories: model-based methods and motion-based methods. In this paper a two-Dimensional Principal Component Analysis and temporal-space analysis based human gait identification method is proposed. Using background estimation and image subtraction we can get a binary images sequence from the surveillance video. By comparing the difference of two adjacent images in the gait images sequence, we can get a difference binary images sequence. Every binary difference image indicates the body moving mode during a person walking. We use the following steps to extract the temporal-space features from the difference binary images sequence: Projecting one difference image to Y axis or X axis we can get two vectors. Project every difference image in the difference binary images sequence to Y axis or X axis difference binary images sequence we can get two matrixes. These two matrixes indicate the styles of one walking. Then Two-Dimensional Principal Component Analysis(2DPCA) is used to transform these two matrixes to two vectors while at the same time keep the maximum separability. Finally the similarity of two human gait images is calculated by the Euclidean distance of the two vectors. The performance of our methods is illustrated using the CASIA Gait Database.
Two dimensional electron systems for solid state quantum computation
Mondal, Sumit
Two dimensional electron systems based on GaAs/AlGaAs heterostructures are extremely useful in various scientific investigations of recent times including the search for quantum computational schemes. Although significant strides have been made over the past few years to realize solid state qubits on GaAs/AlGaAs 2DEGs, there are numerous factors limiting the progress. We attempt to identify factors that have material and design-specific origin and develop ways to overcome them. The thesis is divided in two broad segments. In the first segment we describe the realization of a new field-effect induced two dimensional electron system on GaAs/AlGaAs heterostructure where the novel device-design is expected to suppress the level of charge noise present in the device. Modulation-doped GaAs/AlGaAs heterostructures are utilized extensively in the study of quantum transport in nanostructures, but charge fluctuations associated with remote ionized dopants often produce deleterious effects. Electric field-induced carrier systems offer an attractive alternative if certain challenges can be overcome. We demonstrate a field-effect transistor in which the active channel is locally devoid of modulation-doping, but silicon dopant atoms are retained in the ohmic contact region to facilitate low-resistance contacts. A high quality two-dimensional electron gas is induced by a field-effect that is tunable over a density range of 6.5x10 10cm-2 to 2.6x1011cm-2 . Device design, fabrication, and low temperature (T=0.3K) characterization results are discussed. The demonstrated device-design overcomes several existing limitations in the fabrication of field-induced 2DEGs and might find utility in hosting nanostructures required for making spin qubits. The second broad segment describes our effort to correlate transport parameters measured at T=0.3K to the strength of the fractional quantum Hall state observed at nu=5/2 in the second Landau level of high-mobility GaAs/AlGaAs two dimensional
Guo, Chuan Fei; Cao, Sihai; Zhang, Jianming; Tang, Haoying; Guo, Shengming; Tian, Ye; Liu, Qian
2011-06-01
Design and synthesis of super-nanostructures is one of the key and prominent topics in nanotechnology. Here we propose a novel methodology for synthesizing complex hierarchical superstructures using sacrificial templates composed of ordered two-dimensional (2D) nanostructures through lattice-directed topotactic transformations. The fabricated superstructures are nested 2D orthogonal Bi(2)S(3) networks composed of nanorods. Further investigation indicates that the lattice matching between the product and sacrificial template is the dominant mechanism for the formation of the superstructures, which agrees well with the simulation results based on an anisotropic nucleation and growth analysis. Our approach may provide a promising way toward a lattice-directed nonlithographic nanofabrication technique for making functional porous nanoarchitectures and electronic devices. © 2011 American Chemical Society
Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals
Energy Technology Data Exchange (ETDEWEB)
Foteinopoulou, Stavroula [Iowa State Univ., Ames, IA (United States)
2003-01-01
In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates
Eight exactly solvable comples potentials in Bender - Boettcher quantum mechanics
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2001-01-01
Roč. 2, č. 66 (2001), s. 213-218 ISSN 0009-725X. [The 20th Winter Schooll "Geometry and Physics". Srní, 15.01.2000-22.01.2000] R&D Projects: GA AV ČR IAA1048004 Keywords : solvable * potentials * bound-state Subject RIV: BE - Theoretical Physics
Fragments of reminiscences and exactly solvable nonrelativistic quantum models
International Nuclear Information System (INIS)
Zakhariev, B.N.
1994-01-01
Some exactly solvable nonrelativistic quantum models are discussed. Special attention is paid to the quantum inverse problem. It is pointed out that by analyzing the inverse problem pictures one can get a deeper insight into the laws of the microworld and acquire the ability to make the qualitative predictions without computers and formulae. 5 refs
Global solvability for involutive systems on the torus
Directory of Open Access Journals (Sweden)
Cleber de Medeira
2013-11-01
Full Text Available In this article, we consider a class of involutive systems of n smooth vector fields on the torus of dimension n+1. We prove that the global solvability of this class is related to an algebraic condition involving Liouville forms and the connectedness of all sublevel and superlevel sets of the primitive of a certain 1-form associated with the system.
Solvable Model for Dynamic Mass Transport in Disordered Geophysical Media
Marder, M.; Eftekhari, Behzad; Patzek, Tadeusz
2018-01-01
We present an analytically solvable model for transport in geophysical materials on large length and time scales. It describes the flow of gas to a complicated absorbing boundary over long periods of time. We find a solution to this model using Green's function techniques, and apply the solution to three absorbing networks of increasing complexity.
Continual Lie algebras and noncommutative counterparts of exactly solvable models
Zuevsky, A.
2004-01-01
Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.
Exactly Solvable Quantum Mechanical Potentials: An Alternative Approach.
Pronchik, Jeremy N.; Williams, Brian W.
2003-01-01
Describes an alternative approach to finding exactly solvable, one-dimensional quantum mechanical potentials. Differs from the usual approach in that instead of starting with a particular potential and seeking solutions to the related Schrodinger equations, it begins with known solutions to second-order ordinary differential equations and seeks to…
Classification of non-solvable groups with a given property
Indian Academy of Sciences (India)
In this paper, we classify the finite non-solvable groups satisfying the following property P5: their orders of representatives are set-wise relatively prime for any 5 distinct non-central conjugacy classes. Keywords. Conjugacy classes; graph; Frobenius group; order. 2010 Mathematics Subject Classification. 20D60, 20E45. 1.
Classification of non-solvable groups with a given property
Indian Academy of Sciences (India)
In this paper, we classify the finite non-solvable groups satisfying the following property P 5 : their orders of representatives are set-wise relatively prime for any 5 distinct non-central conjugacy classes. Author Affiliations. Zeinab Foruzanfar1 Zohreh Mostaghim1. School of Mathematics, Iran University of Science and ...
Explicitly solvable complex Chebyshev approximation problems related to sine polynomials
Freund, Roland
1989-01-01
Explicitly solvable real Chebyshev approximation problems on the unit interval are typically characterized by simple error curves. A similar principle is presented for complex approximation problems with error curves induced by sine polynomials. As an application, some new explicit formulae for complex best approximations are derived.
A simple method for generating exactly solvable quantum mechanical potentials
Williams, B W
1993-01-01
A simple transformation method permitting the generation of exactly solvable quantum mechanical potentials from special functions solving second-order differential equations is reviewed. This method is applied to Gegenbauer polynomials to generate an attractive radial potential. The relationship of this method to the determination of supersymmetric quantum mechanical superpotentials is discussed, and the superpotential for the radial potential is also derived. (author)
Super Virasoro algebra and solvable supersymmetric quantum field theories
International Nuclear Information System (INIS)
Yamanaka, Itaru; Sasaki, Ryu.
1987-09-01
Interesting and deep relationships between super Virasoro algebras and super soliton systems (super KdV, super mKdV and super sine-Gordon equations) are investigated at both classical and quantum levels. An infinite set of conserved quantities responsible for solvability is characterized by super Virasoro algebras only. Several members of the infinite set of conserved quantities are derived explicitly. (author)
Analytically solvable models of reaction-diffusion systems
Energy Technology Data Exchange (ETDEWEB)
Zemskov, E P; Kassner, K [Institut fuer Theoretische Physik, Otto-von-Guericke-Universitaet, Universitaetsplatz 2, 39106 Magdeburg (Germany)
2004-05-01
We consider a class of analytically solvable models of reaction-diffusion systems. An analytical treatment is possible because the nonlinear reaction term is approximated by a piecewise linear function. As particular examples we choose front and pulse solutions to illustrate the matching procedure in the one-dimensional case.
Solvable Model for Dynamic Mass Transport in Disordered Geophysical Media
Marder, M.
2018-03-29
We present an analytically solvable model for transport in geophysical materials on large length and time scales. It describes the flow of gas to a complicated absorbing boundary over long periods of time. We find a solution to this model using Green\\'s function techniques, and apply the solution to three absorbing networks of increasing complexity.
Two-dimensional materials for novel liquid separation membranes
Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng
2016-08-01
Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as
Surface and Interface Engineering of Organometallic and Two Dimensional Semiconductor
Park, Jun Hong
For over half a century, inorganic Si and III-V materials have led the modern semiconductor industry, expanding to logic transistor and optoelectronic applications. However, these inorganic materials have faced two different fundamental limitations, flexibility for wearable applications and scaling limitation as logic transistors. As a result, the organic and two dimensional have been studied intentionally for various fields. In the present dissertation, three different studies will be presented with followed order; (1) the chemical response of organic semiconductor in NO2 exposure. (2) The surface and stability of WSe2 in ambient air. (3) Deposition of dielectric on two dimensional materials using organometallic seeding layer. The organic molecules rely on the van der Waals interaction during growth of thin films, contrast to covalent bond inorganic semiconductors. Therefore, the morphology and electronic property at surface of organic semiconductor in micro scale is more sensitive to change in gaseous conditions. In addition, metal phthalocyanine, which is one of organic semiconductor materials, change their electronic property as reaction with gaseous analytes, suggesting as potential chemical sensing platforms. In the present part, the growth behavior of metal phthalocyanine and surface response to gaseous condition will be elucidated using scanning tunneling microscopy (STM). In second part, the surface of layered transition metal dichalcogenides and their chemical response to exposure ambient air will be investigated, using STM. Layered transition metal dichalcogenides (TMDs) have attracted widespread attention in the scientific community for electronic device applications because improved electrostatic gate control and suppression of short channel leakage resulted from their atomic thin body. To fabricate the transistor based on TMDs, TMDs should be exposed to ambient conditions, while the effect of air exposure has not been understood fully. In this part
A two-dimensional mathematical model of percutaneous drug absorption
Directory of Open Access Journals (Sweden)
Kubota K
2004-06-01
Full Text Available Abstract Background When a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies the effect of the parameter values, when the region of contact of the skin with the drug, is a line segment on the skin surface. Methods Though a simple one-dimensional model is often useful to describe percutaneous drug absorption, it may be better represented by multi-dimensional models. A two-dimensional mathematical model is developed for percutaneous absorption of a drug, which may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. This model consists of a linear second-order parabolic equation with appropriate initial conditions and boundary conditions. These boundary conditions are of Dirichlet type, Neumann type or Robin type. A finite-difference method which maintains second-order accuracy in space along the boundary, is developed to solve the parabolic equation. Extrapolation in time is applied to improve the accuracy in time. Solution of the parabolic equation gives the concentration of the drug in the skin at a given time. Results Simulation of the numerical methods described is carried out with various values of the parameter r. The illustrations are given in the form of figures. Conclusion Based on the values of r, conclusions are drawn about (1 the flow rate of the drug, (2 the flux and the cumulative amount of drug eliminated into the receptor cell, (3 the steady-state value of the flux, (4 the time to reach the steady
Two-dimensional materials for novel liquid separation membranes.
Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng
2016-08-19
Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as
One and two dimensional simulations on beat wave acceleration
International Nuclear Information System (INIS)
Mori, W.; Joshi, C.; Dawson, J.M.; Forslund, D.W.; Kindel, J.M.
1984-01-01
Recently there has been considerable interest in the use of fast-large-amplitude plasma waves as the basis for a high energy particle accelerator. In these schemes, lasers are used to create the plasma wave. To date the few simulation studies on this subject have been limited to one-dimensional, short rise time simulations. Here the authors present results from simulations in which more realistic parameters are used. In addition, they present the first two dimensional simulations on this subject. One dimensional simulations on a 2 1/2-D relativistic electromagnetic particle code, in which only a few cells were used in one direction, on colinear optical mixing are presented. In these simulations the laser rise time, laser intensity, plasma density, plasma temperature and system size were varied. The simulations indicate that the theory of Rosenbluth and Liu is applicable over a wide range of parameters. In addition, simulations with a DC magnetic field are presented in order to study the ''Surfatron'' concept
Two Dimensional Heat Transfer around Penetrations in Multilayer Insulation
Johnson, Wesley L.; Kelly, Andrew O.; Jumper, Kevin M.
2012-01-01
The objective of this task was to quantify thermal losses involving integrating MLI into real life situations. Testing specifically focused on the effects of penetrations (including structural attachments, electrical conduit/feedthroughs, and fluid lines) through MLI. While there have been attempts at quantifying these losses both analytically and experimentally, none have included a thorough investigation of the methods and materials that could be used in such applications. To attempt to quantify the excess heat load coming into the system due to the integration losses, a calorimeter was designed to study two dimensional heat transfer through penetrated MLI. The test matrix was designed to take as many variables into account as was possible with the limited test duration and system size. The parameters varied were the attachment mechanism, the buffer material (for buffer attachment mechanisms only), the thickness of the buffer, and the penetration material. The work done under this task is an attempt to measure the parasitic heat loads and affected insulation areas produced by system integration, to model the parasitic loads, and from the model produce engineering equations to allow for the determination of parasitic heat loads in future applications. The methods of integration investigated were no integration, using a buffer to thermally isolate the strut from the MLI, and temperature matching the MLI on the strut. Several materials were investigated as a buffer material including aerogel blankets, aerogel bead packages, cryolite, and even an evacuated vacuum space (in essence a no buffer condition).
Chemical vapor deposition growth of two-dimensional heterojunctions
Cui, Yu; Li, Bo; Li, JingBo; Wei, ZhongMing
2018-01-01
The properties of two-dimensional (2D) layered materials with atom-smooth surface and special interlayer van der Waals coupling are different from those of traditional materials. Due to the absence of dangling bonds from the clean surface of 2D layered materials, the lattice mismatch influences slightly on the growth of 2D heterojunctions, thus providing a flexible design strategy. 2D heterojunctions have attracted extensive attention because of their excellent performance in optoelectronics, spintronics, and valleytronics. The transfer method was utilized for the fabrication of 2D heterojunctions during the early stage of fundamental research on these materials. This method, however, has limited practical applications. Therefore, chemical vapor deposition (CVD) method was recently developed and applied for the preparation of 2D heterojunctions. The CVD method is a naturally down-top growth strategy that yields 2D heterojunctions with sharp interfaces. Moreover, this method effectively reduces the introduction of contaminants to the fabricated heterojunctions. Nevertheless, the CVD-growth method is sensitive to variations in growth conditions. In this review article, we attempt to provide a comprehensive overview of the influence of growth conditions on the fabrication of 2D heterojunctions through the direct CVD method. We believe that elucidating the effects of growth conditions on the CVD method is necessary to help control and improve the efficiency of the large-scale fabrication of 2D heterojunctions for future applications in integrated circuits.
Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials.
Blonsky, Michael N; Zhuang, Houlong L; Singh, Arunima K; Hennig, Richard G
2015-10-27
Two-dimensional (2D) materials present many unique materials concepts, including material properties that sometimes differ dramatically from those of their bulk counterparts. One of these properties, piezoelectricity, is important for micro- and nanoelectromechanical systems applications. Using symmetry analysis, we determine the independent piezoelectric coefficients for four groups of predicted and synthesized 2D materials. We calculate with density-functional perturbation theory the stiffness and piezoelectric tensors of these materials. We determine the in-plane piezoelectric coefficient d11 for 37 materials within the families of 2D metal dichalcogenides, metal oxides, and III-V semiconductor materials. A majority of the structures, including CrSe2, CrTe2, CaO, CdO, ZnO, and InN, have d11 coefficients greater than 5 pm/V, a typical value for bulk piezoelectric materials. Our symmetry analysis shows that buckled 2D materials exhibit an out-of-plane coefficient d31. We find that d31 for 8 III-V semiconductors ranges from 0.02 to 0.6 pm/V. From statistical analysis, we identify correlations between the piezoelectric coefficients and the electronic and structural properties of the 2D materials that elucidate the origin of the piezoelectricity. Among the 37 2D materials, CdO, ZnO, and CrTe2 stand out for their combination of large piezoelectric coefficient and low formation energy and are recommended for experimental exploration.