Hierarchy of exactly solvable spin-1/2 chains with so (N)_I critical points
Lahtinen, V.; Mansson, T.; Ardonne, E.
2014-01-01
We construct a hierarchy of exactly solvable spin-1/2 chains with so(N)1 critical points. Our construction is based on the framework of condensate-induced transitions between topological phases. We employ this framework to construct a Hamiltonian term that couples N transverse field Ising chains
Critical dense polymers with Robin boundary conditions, half-integer Kac labels and Z4 fermions
Directory of Open Access Journals (Sweden)
Paul A. Pearce
2014-12-01
Full Text Available For general Temperley–Lieb loop models, including the logarithmic minimal models LM(p,p′ with p,p′ coprime integers, we construct an infinite family of Robin boundary conditions on the strip as linear combinations of Neumann and Dirichlet boundary conditions. These boundary conditions are Yang–Baxter integrable and allow loop segments to terminate on the boundary. Algebraically, the Robin boundary conditions are described by the one-boundary Temperley–Lieb algebra. Solvable critical dense polymers is the first member LM(1,2 of the family of logarithmic minimal models and has loop fugacity β=0 and central charge c=−2. Specialising to LM(1,2 with our Robin boundary conditions, we solve the model exactly on strips of arbitrary finite size N and extract the finite-size conformal corrections using an Euler–Maclaurin formula. The key to the solution is an inversion identity satisfied by the commuting double row transfer matrices. This inversion identity is established directly in the Temperley–Lieb algebra. We classify the eigenvalues of the double row transfer matrices using the physical combinatorics of the patterns of zeros in the complex spectral parameter plane and obtain finitised characters related to spaces of coinvariants of Z4 fermions. In the continuum scaling limit, the Robin boundary conditions are associated with irreducible Virasoro Verma modules with conformal weights Δr,s−12=132(L2−4 where L=2s−1−4r, r∈Z, s∈N. These conformal weights populate a Kac table with half-integer Kac labels. Fusion of the corresponding modules with the generators of the Kac fusion algebra is examined and general fusion rules are proposed.
Integrals of motion for critical dense polymers and symplectic fermions
International Nuclear Information System (INIS)
Nigro, Alessandro
2009-01-01
We consider critical dense polymers L(1,2). We obtain for this model the eigenvalues of the local integrals of motion of the underlying conformal field theory by means of a thermodynamic Bethe ansatz. We give a detailed description of the relation between this model and symplectic fermions including some examples of the indecomposable structure of the transfer matrix in the continuum limit. Integrals of motion are defined directly on the lattice in terms of the Temperley–Lieb algebra and their eigenvalues are obtained and expressed as an infinite sum of the eigenvalues of the continuum integrals of motion. An elegant decomposition of the transfer matrix in terms of a finite number of lattice integrals of motion is obtained, thus providing a reason for their introduction
Integrals of motion for critical dense polymers and symplectic fermions
Nigro, Alessandro
2009-10-01
We consider critical dense polymers \\mathcal {L}(1,2) . We obtain for this model the eigenvalues of the local integrals of motion of the underlying conformal field theory by means of a thermodynamic Bethe ansatz. We give a detailed description of the relation between this model and symplectic fermions including some examples of the indecomposable structure of the transfer matrix in the continuum limit. Integrals of motion are defined directly on the lattice in terms of the Temperley-Lieb algebra and their eigenvalues are obtained and expressed as an infinite sum of the eigenvalues of the continuum integrals of motion. An elegant decomposition of the transfer matrix in terms of a finite number of lattice integrals of motion is obtained, thus providing a reason for their introduction.
Child abduction murder: the impact of forensic evidence on solvability.
Brown, Katherine M; Keppel, Robert D
2012-03-01
This study examined 733 child abduction murders (CAMs) occurring from 1968 to 2002 to explore the influence of forensic evidence on case solvability in CAM investigations. It was hypothesized that the presence of forensic evidence connecting the offender to the crime would enhance case solvability in murder investigations of abducted children. This study examined the impact of CAM of different types of forensic evidence and the impact of the summed total of forensic evidence items on case solvability by controlling for victim age, victim race, victim gender, and victim-offender relationship. Time and distance theoretical predictors were also included. Binomial logistic regression models were used to determine whether forensic evidence was a critical solvability factor in murder investigations of abducted children. This research indicated that, while forensic evidence increased case solvability, the impact of forensic evidence on solvability was not as important as other solvability factors examined. © 2011 American Academy of Forensic Sciences.
International Nuclear Information System (INIS)
Ushveridze, A.G.
1992-01-01
This paper reports that quasi-exactly solvable (QES) models realize principally new type of exact solvability in quantum physics. These models are distinguished by the fact that the Schrodinger equations for them can be solved exactly only for certain limited parts of the spectrum, but not for the whole spectrum. They occupy an intermediate position between the exactly the authors solvable (ES) models and all the others. The number of energy levels for which the spectral problems can be solved exactly refer below to as the order of QES model. From the mathematical point of view the existence of QES models is not surprising. Indeed, if the term exact solvability expresses the possibility of total explicit diagonalization of infinite Hamiltonian matrix, then the term quasi-exact solvability implies the situation when the Hamiltonian matrix can be reduced explicitly to the block-diagonal form with one of the appearing blocks being finite
A Dense Starburst Plexus Is Critical for Generating Direction Selectivity.
Morrie, Ryan D; Feller, Marla B
2018-03-22
Starburst amacrine cell (SAC) morphology is considered central to retinal direction selectivity. In Sema6A -/- mice, SAC dendritic arbors are smaller and no longer radially symmetric, leading to a reduction in SAC dendritic plexus density. Sema6A -/- mice also have a dramatic reduction in the directional tuning of retinal direction-selective ganglion cells (DSGCs). Here we show that the loss of DSGC tuning in Sema6A -/- mice is due to reduced null direction inhibition, even though strong asymmetric SAC-DSGC connectivity and SAC dendritic direction selectivity are maintained. Hence, the reduced coverage factor of SAC dendrites leads specifically to a loss of null direction inhibition. Moreover, SAC dendrites are no longer strictly tuned to centrifugal motion, indicating that SAC morphology is critical in coordinating synaptic connectivity and dendritic integration to generate direction selectivity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Finite-size corrections for logarithmic representations in critical dense polymers
Energy Technology Data Exchange (ETDEWEB)
Izmailian, Nickolay Sh., E-mail: izmailan@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Yerevan Physics Institute, Alikhanian Br. 2, 375036 Yerevan (Armenia); National Center for Theoretical Sciences, Physics Division, National Taiwan University, Taipei 10617, Taiwan (China); Ruelle, Philippe, E-mail: philippe.ruelle@uclouvain.be [Institut de Recherche en Mathematique et Physique, Universite catholique de Louvain, B-1348 Louvain-La-Neuve (Belgium); Hu, Chin-Kun, E-mail: huck@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China)
2012-05-01
We study (analytic) finite-size corrections in the dense polymer model on the strip by perturbing the critical Hamiltonian with irrelevant operators belonging to the tower of the identity. We generalize the perturbation expansion to include Jordan cells, and examine whether the finite-size corrections are sensitive to the properties of indecomposable representations appearing in the conformal spectrum, in particular their indecomposability parameters. We find, at first order, that the corrections do not depend on these parameters nor even on the presence of Jordan cells. Though the corrections themselves are not universal, the ratios are universal and correctly reproduced by the conformal perturbative approach, to first order.
The damaging effect of densely ionizing radiations on stem cells of mammalian critical organs
International Nuclear Information System (INIS)
Konoplyannikov, A.G.; Konoplyannikova, O.A.
1985-01-01
Literature and experimental data on foundation of conceptions for cell determinants of survival rate in irradiated animals are analysed. Experimental confirmation of conceptions for cell determinants for both CFU of hemopoietic organs and for cases of intestinal death after densely ionizing radiation effect is obtained. The explanation of causes for difference in interrelation of two types of radiation death of animals in such a case is suggested
Patterson, Steven L; Dancy, Blair C R; Ippolito, Danielle L; Stallings, Jonathan D
2017-11-01
: This paper presents environmental health risks which are prevalent in dense urban environments.We review the current literature and recommendations proposed by environmental medicine experts in a 2-day symposium sponsored by the Department of Defense and supported by the Johns Hopkins University Applied Physics Laboratory.Key hazards in the dense urban operational environment include toxic industrial chemicals and materials, water pollution and sewage, and air pollution. Four critical gaps in environmental medicine were identified: prioritizing chemical and environmental concerns, developing mobile decision aids, personalized health assessments, and better real-time health biomonitoring.As populations continue to concentrate in cities, civilian and military leaders will need to meet emerging environmental health concerns by developing and delivering adequate technology and policy solutions.
Solvable models in quantum mechanics
Albeverio, S; Høegh-Krohn, R; Holden, H; Gesztesy, F
2004-01-01
This monograph presents a detailed study of a class of solvable models in quantum mechanics that describe the motion of a particle in a potential having support at the positions of a discrete (finite or infinite) set of point sources. Both situations-where the strengths of the sources and their locations are precisely known and where these are only known with a given probability distribution-are covered. The authors present a systematic mathematical approach to these models and illustrate its connections with previous heuristic derivations and computations. Results obtained by different method
The construction of finite solvable groups revisited
Eick, Bettina; Horn, Max
2013-01-01
We describe a new approach towards the systematic construction of finite groups up to isomorphism. This approach yields a practical algorithm for the construction of finite solvable groups up to isomorphism. We report on a GAP implementation of this method for finite solvable groups and exhibit some sample applications.
Strain induced irreversible critical current degradation in highly dense Bi-2212 round wire
Bjoerstad, R; Rikel, M.O.; Ballarino, A; Bottura, L; Jiang, J; Matras, M; Sugano, M; Hudspeth, J; Di Michiel, M
2015-01-01
The strain induced critical current degradation of overpressure processed straight Bi 2212/Ag wires has been studied at 77 K in self-field. For the first time superconducting properties, lattice distortions, composite wire stress and strain have been measured simultaneously in a high energy synchrotron beamline. A permanent Ic degradation of 5% occurs when the wire strain exceeds 0.60%. At a wire strain of about 0.65% a drastic n value and Ic reduction occur, and the composite stress and the Bi-2212 lattice parameter reach a plateau, indicating Bi-2212 filament fracturing. The XRD measurements show that Bi-2212 exhibits linear elastic behaviour up to the irreversible strain limit.
International Nuclear Information System (INIS)
Bradley, P.; Van Duzer, T.
1985-01-01
A destructive read-out (DRO) memory cell using three Josephson junctions has been devised whose operation depends only on the ratio of critical currents and application of the proper read/write voltages. The effects of run-to-run and across-thewafer variations in I /SUB c/ are minimized since all three junctions for a given cell are quite close to each other. Additional advantages are: immunity from flux trapping, high circuit density, and fast switching. Since destructive read-out is generally undesirable, a self-rewriting scheme is necessary. Rows and columns of cells with drivers and sense circuits, as well as small memory arrays and decoders have been simulated on SPICE. Power dissipation of cells and bias circuits for a 1K-bit RAM is estimated at about 2 mW. Inclusion of peripheral circuitry raises this by as much as a factor of five depending on the driving scheme and speed desired. Estimated access time is appreciably less than a nanosecond. Preliminary experimental investigations are reported
On polynormality in finite solvable groups
International Nuclear Information System (INIS)
Mamadou Sadialiou Bah
2003-05-01
In the study of the arrangement of intermediate subgroups a wide use has been made of certain properties describing the way conjugacy classes of subgroups are embedded in the groups: abnormality, pronormality, paranormality, and their weak analogues. It was proved that pronormality and abnormality coincide with their weak analogues for solvable groups. This was a generalisation of known results of Peng and Taunt for finite solvable groups. In this paper we prove a conjecture of Borevich asserting a similar result for paranormality and polynormality (which is a sort of weak paranormality). Further we show that we get a stronger result when the given subgroup is nilpotent: In a finite solvable group any nilpotent polynormal subgroup is pronormal. (author)
Perturbations of normally solvable nonlinear operators, I
Directory of Open Access Journals (Sweden)
William O. Ray
1985-01-01
Full Text Available Let X and Y be Banach spaces and let ℱ and be Gateaux differentiable mappings from X to Y In this note we study when the operator ℱ+ is surjective for sufficiently small perturbations of a surjective operator ℱ The methods extend previous results in the area of normal solvability for nonlinear operators.
General Reducibility and Solvability of Polynomial Equations ...
African Journals Online (AJOL)
General Reducibility and Solvability of Polynomial Equations. ... Unlike quadratic, cubic, and quartic polynomials, the general quintic and higher degree polynomials cannot be solved algebraically in terms of finite number of additions, ... Galois Theory, Solving Polynomial Systems, Polynomial factorization, Polynomial Ring ...
Proton radioactivity with analytically solvable potential
Indian Academy of Sciences (India)
The phenomenon of proton emission is treated as a process of asymmetric fission through a one-dimensional potential barrier developed due to combined effects of the Coulomb potential, centrifugal potential and various renormalization processes. The barrier is simulated to an asymmetric, smooth and analytically solvable ...
Solvable groups and a shear construction
DEFF Research Database (Denmark)
Freibert, Marco; Swann, Andrew Francis
The twist construction is a geometric model of T-duality that includes constructions of nilmanifolds from tori. This paper shows how one-dimensional foliations on manifolds may be used in a shear construction, which in algebraic form builds certain solvable Lie groups from Abelian ones. We discuss...... other examples of geometric structures that may be obtained from the shear construction....
Exactly solvable models of baryon structure
Energy Technology Data Exchange (ETDEWEB)
Bijker, R. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico. Apartado Postal 70-543, 04510 Mexico D.F. (Mexico); Leviatan, A. [Racah Institute of Physics, The Hebrew University. Jerusalem 91904, Israel (Israel)
1998-12-31
We present a qualitative analysis of the gross features of baryon spectroscopy (masses and form factors) in terms of various exactly solvable models. It is shown that a collective model, in which baryon resonances are interpreted as rotations and vibrations of an oblate symmetric top, provides a good starting point for a more detailed quantitative study. (Author)
Exactly solvable models of baryon structure
International Nuclear Information System (INIS)
Bijker, R.; Leviatan, A.
1998-01-01
We present a qualitative analysis of the gross features of baryon spectroscopy (masses and form factors) in terms of various exactly solvable models. It is shown that a collective model, in which baryon resonances are interpreted as rotations and vibrations of an oblate symmetric top, provides a good starting point for a more detailed quantitative study. (Author)
Solvable stochastic dealer models for financial markets
Yamada, Kenta; Takayasu, Hideki; Ito, Takatoshi; Takayasu, Misako
2009-05-01
We introduce solvable stochastic dealer models, which can reproduce basic empirical laws of financial markets such as the power law of price change. Starting from the simplest model that is almost equivalent to a Poisson random noise generator, the model becomes fairly realistic by adding only two effects: the self-modulation of transaction intervals and a forecasting tendency, which uses a moving average of the latest market price changes. Based on the present microscopic model of markets, we find a quantitative relation with market potential forces, which have recently been discovered in the study of market price modeling based on random walks.
Viswanathan, T M; Viswanathan, G M
2011-01-28
Strong global solvability is difficult to prove for high-dimensional hydrodynamic systems because of the complex interplay between nonlinearity and scale invariance. We define the Ladyzhenskaya-Lions exponent α(L)(n)=(2+n)/4 for Navier-Stokes equations with dissipation -(-Δ)(α) in R(n), for all n≥2. We review the proof of strong global solvability when α≥α(L)(n), given smooth initial data. If the corresponding Euler equations for n>2 were to allow uncontrolled growth of the enstrophy (1/2)∥∇u∥(L²)(2), then no globally controlled coercive quantity is currently known to exist that can regularize solutions of the Navier-Stokes equations for α<α(L)(n). The energy is critical under scale transformations only for α=α(L)(n).
Application of quasiexactly solvable potential method to the N-body ...
Indian Academy of Sciences (India)
The importance of exactly solvable potentials in quantum mechanics is well known. But even in a one-dimensional case, the number of such potentials are limited [1]. The quasiexactly solvable (QES) potentials are intermediate to exactly solvable and non- solvable ones and the Schrödinger equations of these potentials are ...
An exactly solvable system from quantum optics
Energy Technology Data Exchange (ETDEWEB)
Maciejewski, Andrzej J., E-mail: maciejka@astro.ia.uz.zgora.pl [J. Kepler Institute of Astronomy, University of Zielona Góra, Licealna 9, PL-65-417 Zielona Góra (Poland); Przybylska, Maria, E-mail: M.Przybylska@if.uz.zgora.pl [Institute of Physics, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra (Poland); Stachowiak, Tomasz, E-mail: stachowiak@cft.edu.pl [Center for Theoretical Physics PAS, Al. Lotników 32/46, 02-668 Warsaw (Poland)
2015-07-31
We investigate a generalisation of the Rabi system in the Bargmann–Fock representation. In this representation the eigenproblem of the considered quantum model is described by a system of two linear differential equations with one independent variable. The system has only one irregular singular point at infinity. We show how the quantisation of the model is related to asymptotic behaviour of solutions in a vicinity of this point. The explicit formulae for the spectrum and eigenfunctions of the model follow from an analysis of the Stokes phenomenon. An interpretation of the obtained results in terms of differential Galois group of the system is also given. - Highlights: • New exactly solvable system from quantum optics is found. • Normalisation condition for system in Bargmann representation is used. • Formulae for spectrum and eigenfunctions from analysis of Stokes phenomenon are given.
Exactly solvable models for multiatomic molecular Bose-Einstein condensates
Energy Technology Data Exchange (ETDEWEB)
Santos, G, E-mail: gfilho@if.ufrgs.br, E-mail: gfilho@cbpf.br [Instituto de Fisica da UFRGS, Av. Bento Goncalves, 9500, Agronomia, Porto Alegre, RS (Brazil)
2011-08-26
I introduce two families of exactly solvable models for multiatomic hetero-nuclear and homo-nuclear molecular Bose-Einstein condensates through the algebraic Bethe ansatz method. The conserved quantities of the respective models are also shown. (paper)
Solvable nonlinear evolution PDEs in multidimensional space involving elliptic functions
Energy Technology Data Exchange (ETDEWEB)
Calogero, F [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , 00185 Roma (Italy); Francoise, J-P [Laboratoire J-L Lions, UMR CNRS, Universite P-M Curie, Paris 6 (France); Sommacal, M [Dipartimento di Matematica e Informatica, Universita di Perugia, Perugia (Italy)
2007-07-27
A solvable nonlinear (system of) evolution PDEs in multidimensional space, involving elliptic functions, is identified, and certain of its solutions are exhibited. An isochronous version of this (system of) evolution PDEs in multidimensional space is also reported. (fast track communication)
Solvable nonlinear evolution PDEs in multidimensional space involving trigonometric functions
Energy Technology Data Exchange (ETDEWEB)
Calogero, F [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , 00185 Rome (Italy); Francoise, J-P [Laboratoire J.-L. Lions, UMR CNRS, Universite P.-M. Curie, Paris 6 (France); Sommacal, M [Dipartimento di Matematica e Informatica, Universita di Perugia (Italy)
2007-05-04
A solvable nonlinear (system of) evolution PDEs in multidimensional space, involving trigonometric (or hyperbolic) functions, is identified. An isochronous version of this (system of) evolution PDEs in multidimensional space is also reported. (fast track communication)
On solvable spherical subgroups of semisimple algebraic groups (report version)
Avdeev, Roman
2010-01-01
A new approach to classification of solvable spherical subgroups of semisimple algebraic groups is considered. This approach is completely different from the known approach by D. Luna and provides an explicit classification.
Morrison, Suzanne F.; Biciloa, Pita; Harlow, Peter S.; Keogh, J. Scott
2013-01-01
The Critically Endangered Fijian crested iguana, Brachylophus vitiensis, occurs at extreme density at only one location, with estimates of >10,000 iguanas living on the 70 hectare island of Yadua Taba in Fiji. We conducted a mark and recapture study over two wet seasons, investigating the spatial ecology and intraspecific interactions of the strictly arboreal Fijian crested iguana. This species exhibits moderate male-biased sexual size dimorphism, which has been linked in other lizard species to territoriality, aggression and larger male home ranges. We found that male Fijian crested iguanas exhibit high injury levels, indicative of frequent aggressive interactions. We did not find support for larger home range size in adult males relative to adult females, however male and female residents were larger than roaming individuals. Males with established home ranges also had larger femoral pores relative to body size than roaming males. Home range areas were small in comparison to those of other iguana species, and we speculate that the extreme population density impacts considerably on the spatial ecology of this population. There was extensive home range overlap within and between sexes. Intersexual overlap was greater than intrasexual overlap for both sexes, and continuing male-female pairings were observed among residents. Our results suggest that the extreme population density necessitates extensive home range overlap even though the underlying predictors of territoriality, such as male biased sexual size dimorphism and high aggression levels, remain. Our findings should be factored in to conservation management efforts for this species, particularly in captive breeding and translocation programs. PMID:24019902
Directory of Open Access Journals (Sweden)
Suzanne F Morrison
Full Text Available The Critically Endangered Fijian crested iguana, Brachylophus vitiensis, occurs at extreme density at only one location, with estimates of >10,000 iguanas living on the 70 hectare island of Yadua Taba in Fiji. We conducted a mark and recapture study over two wet seasons, investigating the spatial ecology and intraspecific interactions of the strictly arboreal Fijian crested iguana. This species exhibits moderate male-biased sexual size dimorphism, which has been linked in other lizard species to territoriality, aggression and larger male home ranges. We found that male Fijian crested iguanas exhibit high injury levels, indicative of frequent aggressive interactions. We did not find support for larger home range size in adult males relative to adult females, however male and female residents were larger than roaming individuals. Males with established home ranges also had larger femoral pores relative to body size than roaming males. Home range areas were small in comparison to those of other iguana species, and we speculate that the extreme population density impacts considerably on the spatial ecology of this population. There was extensive home range overlap within and between sexes. Intersexual overlap was greater than intrasexual overlap for both sexes, and continuing male-female pairings were observed among residents. Our results suggest that the extreme population density necessitates extensive home range overlap even though the underlying predictors of territoriality, such as male biased sexual size dimorphism and high aggression levels, remain. Our findings should be factored in to conservation management efforts for this species, particularly in captive breeding and translocation programs.
Morrison, Suzanne F; Biciloa, Pita; Harlow, Peter S; Keogh, J Scott
2013-01-01
The Critically Endangered Fijian crested iguana, Brachylophus vitiensis, occurs at extreme density at only one location, with estimates of >10,000 iguanas living on the 70 hectare island of Yadua Taba in Fiji. We conducted a mark and recapture study over two wet seasons, investigating the spatial ecology and intraspecific interactions of the strictly arboreal Fijian crested iguana. This species exhibits moderate male-biased sexual size dimorphism, which has been linked in other lizard species to territoriality, aggression and larger male home ranges. We found that male Fijian crested iguanas exhibit high injury levels, indicative of frequent aggressive interactions. We did not find support for larger home range size in adult males relative to adult females, however male and female residents were larger than roaming individuals. Males with established home ranges also had larger femoral pores relative to body size than roaming males. Home range areas were small in comparison to those of other iguana species, and we speculate that the extreme population density impacts considerably on the spatial ecology of this population. There was extensive home range overlap within and between sexes. Intersexual overlap was greater than intrasexual overlap for both sexes, and continuing male-female pairings were observed among residents. Our results suggest that the extreme population density necessitates extensive home range overlap even though the underlying predictors of territoriality, such as male biased sexual size dimorphism and high aggression levels, remain. Our findings should be factored in to conservation management efforts for this species, particularly in captive breeding and translocation programs.
... may lose breast density as a result of hormonal changes experienced during menopause. However, some younger women may have fatty breasts while some elderly women have dense breasts. Much of what determines a woman's ... and hormonal factors also affect a woman's breast density. About ...
Quasi exactly solvable operators and abstract associative algebras
International Nuclear Information System (INIS)
Brihaye, Y.; Kosinski, P.
1998-01-01
We consider the vector spaces consisting of direct sums of polynomials of given degrees and we show how to classify the linear differential operators preserving these spaces. The families of operators so obtained are identified as the envelopping algebras of particular abstract associative algebras. Some of these operators can be transformed into quasi exactly solvable Schroedinger operators which, having a hidden algebra, can be partially solved algebraically; we exhibit however a series of Schoedinger equations which, while completely solvable algebraically, do not possess a hidden algebra
Supersymmetric construction of exactly solvable potentials and nonlinear algebras
International Nuclear Information System (INIS)
Junker, G.; Roy, P.
1998-01-01
Using algebraic tools of supersymmetric quantum mechanics we construct classes of conditionally exactly solvable potentials being the supersymmetric partners of the linear or radial harmonic oscillator. With the help of the raising and lowering operators of these harmonic oscillators and the SUSY operators we construct ladder operators for these new conditionally solvable systems. It is found that these ladder operators together with the Hamilton operator form a nonlinear algebra which is of quadratic and cubic type for the SUSY partners of the linear and radial harmonic oscillator
Solvable quantum lattices with nonlocal non-Hermitian endpoint interactions
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2015-01-01
Roč. 361, OCT (2015), s. 226-246 ISSN 0003-4916 Institutional support: RVO:61389005 Keywords : exactly solvable quantum models * non-Hermitian boundary conditions * new nonlocal boundary conditions * physical inner products Subject RIV: BE - Theoretical Physics Impact factor: 2.375, year: 2015
Solvable Model for Dynamic Mass Transport in Disordered Geophysical Media
Marder, M.
2018-03-29
We present an analytically solvable model for transport in geophysical materials on large length and time scales. It describes the flow of gas to a complicated absorbing boundary over long periods of time. We find a solution to this model using Green\\'s function techniques, and apply the solution to three absorbing networks of increasing complexity.
Exactly Solvable Quantum Mechanical Potentials: An Alternative Approach.
Pronchik, Jeremy N.; Williams, Brian W.
2003-01-01
Describes an alternative approach to finding exactly solvable, one-dimensional quantum mechanical potentials. Differs from the usual approach in that instead of starting with a particular potential and seeking solutions to the related Schrodinger equations, it begins with known solutions to second-order ordinary differential equations and seeks to…
Conjugacy class sizes and solvability of finite groups
Indian Academy of Sciences (India)
Let be a finite group and * be the set of primary, biprimary and triprimary elements of . We prove that if the conjugacy class sizes of * are {1,,,} with positive coprime integers and ,then is solvable. This extends a recent result of Kong (Manatsh. Math. 168(2)(2012) 267–271).
Analytically solvable models of reaction-diffusion systems
Energy Technology Data Exchange (ETDEWEB)
Zemskov, E P; Kassner, K [Institut fuer Theoretische Physik, Otto-von-Guericke-Universitaet, Universitaetsplatz 2, 39106 Magdeburg (Germany)
2004-05-01
We consider a class of analytically solvable models of reaction-diffusion systems. An analytical treatment is possible because the nonlinear reaction term is approximated by a piecewise linear function. As particular examples we choose front and pulse solutions to illustrate the matching procedure in the one-dimensional case.
Classification of non-solvable groups with a given property
Indian Academy of Sciences (India)
In this paper, we classify the finite non-solvable groups satisfying the following property P 5 : their orders of representatives are set-wise relatively prime for any 5 distinct non-central conjugacy classes. Author Affiliations. Zeinab Foruzanfar1 Zohreh Mostaghim1. School of Mathematics, Iran University of Science and ...
Classification of non-solvable groups with a given property
Indian Academy of Sciences (India)
In this paper, we classify the finite non-solvable groups satisfying the following property P5: their orders of representatives are set-wise relatively prime for any 5 distinct non-central conjugacy classes. Keywords. Conjugacy classes; graph; Frobenius group; order. 2010 Mathematics Subject Classification. 20D60, 20E45. 1.
WEAK SOLVABILITY FOR A CLASS OF CONTACT PROBLEMS
Directory of Open Access Journals (Sweden)
Andaluzia Matei
2010-07-01
Full Text Available A unilateral frictionless contact model, under the small deformationshypothesis, for static processes is considered. We model the behaviorof the material by a constitutive law stated in a subdifferentialform. The contact is described with Signorini's condition. Our studyfocuses on the weak solvability of the model, based on a weak formulation with dual Lagrange multipliers
The Asymmetric Simple Exclusion Process: An Exactly Solvable ...
Indian Academy of Sciences (India)
Arvind Ayyer, Indian Institute of Science
2017-06-30
Jun 30, 2017 ... An Exactly Solvable Model of Particle Transport. Arvind Ayyer,. Indian Institute of Science. 28th Mid Year Meeting. Faculty Hall, Indian Institute of Science ... System is in thermodynamic equilibrium. Microscopic motion may be present, but macroscopic observables do not change over time. The probability ...
Generalization of quasi-exactly solvable and isospectral potentials
Indian Academy of Sciences (India)
which are exactly solvable for single state. Here, we attain added realism and sophistication by dealing with higher dimensional Schrödinger equation so that the results can easily be applied to any required lower dimension (N > 1). Over and above, the dimensional variable N may be treated as a perturbation parameter (. 1.
Exactly solvable models in many-body theory
March, N H
2016-01-01
The book reviews several theoretical, mostly exactly solvable, models for selected systems in condensed states of matter, including the solid, liquid, and disordered states, and for systems of few or many bodies, both with boson, fermion, or anyon statistics. Some attention is devoted to models for quantum liquids, including superconductors and superfluids. Open problems in relativistic fields and quantum gravity are also briefly reviewed.The book ranges almost comprehensively, but concisely, across several fields of theoretical physics of matter at various degrees of correlation and at different energy scales, with relevance to molecular, solid-state, and liquid-state physics, as well as to phase transitions, particularly for quantum liquids. Mostly exactly solvable models are presented, with attention also to their numerical approximation and, of course, to their relevance for experiments.
Exactly solvable models for atom-molecule Hamiltonians.
Dukelsky, J; Dussel, G G; Esebbag, C; Pittel, S
2004-07-30
We present a family of exactly solvable generalizations of the Jaynes-Cummings model involving the interaction of an ensemble of SU(2) or SU(1,1) quasispins with a single boson field. They are obtained from the trigonometric Richardson-Gaudin models by replacing one of the SU(2) or SU(1,1) degrees of freedom by an ideal boson. The application to a system of bosonic atoms and molecules is reported.
New analytically solvable models of relativistic point interactions
International Nuclear Information System (INIS)
Gesztesy, F.; Seba, P.
1987-01-01
Two new analytically solvable models of relativistic point interactions in one dimension (being natural extensions of the nonrelativistic δ-resp, δ'-interaction) are considered. Their spectral properties in the case of finitely many point interactions as well as in the periodic case are fully analyzed. Moreover the spectrum is explicitely determined in the case of independent, identically distributed random coupling constants and the analog of the Saxon and Huther conjecture concerning gaps in the energy spectrum of such systems is derived
Exactly solvable models of proton and neutron interacting bosons
International Nuclear Information System (INIS)
Lerma, S.H.; Errea, B.; Dukelsky, J.; Pittel, S.; Van Isacker, P.
2006-01-01
We describe a class of exactly-solvable models of interacting bosons based on the algebra SO(3, 2). Each copy of the algebra represents a system of neutron and proton bosons in a given bosonic level interacting via a pairing interaction. The model that includes s and d bosons is a specific realization of the IBM2, restricted to the transition regime between vibrational and γ-soft nuclei. By including additional copies of the algebra, we can generate proton-neutron boson models involving other boson degrees of freedom, while still maintaining exact solvability. In each of these models, we can study not only the states of maximal symmetry, but also those of mixed symmetry, albeit still in the vibrational to γ-soft transition regime. Furthermore, in each of these models we can study some features of F-spin symmetry breaking. We report systematic calculations as a function of the pairing strength for models based on s,d, and g bosons and on s,d, and f bosons. The formalism of exactly-solvable models based on the SO(3, 2) algebra is not limited to systems of proton and neutron bosons, however, but can also be applied to other scenarios that involve two species of interacting bosons
Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong
2016-09-16
If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10^{-14}M_{⊙} if the axion mass is 10^{-4} eV. We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10^{-20}M_{⊙} to about M_{⊙}. If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.
Exactly solvable cellular automaton traffic jam model.
Kearney, Michael J
2006-12-01
A detailed study is undertaken of the v{max}=1 limit of the cellular automaton traffic model proposed by Nagel and Paczuski [Phys. Rev. E 51, 2909 (1995)]. The model allows one to analyze the behavior of a traffic jam initiated in an otherwise freely flowing stream of traffic. By mapping onto a discrete-time queueing system, itself related to various problems encountered in lattice combinatorics, exact results are presented in relation to the jam lifetime, the maximum jam length, and the jam mass (the space-time cluster size or integrated vehicle waiting time), both in terms of the critical and the off-critical behavior. This sets existing scaling results in their natural context and also provides several other interesting results in addition.
Exactly solvable cellular automaton traffic jam model
Kearney, Michael J.
2006-12-01
A detailed study is undertaken of the vmax=1 limit of the cellular automaton traffic model proposed by Nagel and Paczuski [Phys. Rev. E 51, 2909 (1995)]. The model allows one to analyze the behavior of a traffic jam initiated in an otherwise freely flowing stream of traffic. By mapping onto a discrete-time queueing system, itself related to various problems encountered in lattice combinatorics, exact results are presented in relation to the jam lifetime, the maximum jam length, and the jam mass (the space-time cluster size or integrated vehicle waiting time), both in terms of the critical and the off-critical behavior. This sets existing scaling results in their natural context and also provides several other interesting results in addition.
Equivalence Problem Solvability in Biparametric Gateway Program Models
Directory of Open Access Journals (Sweden)
A. E. Molchanov
2014-01-01
Full Text Available Algebraic program models with procedures are designed to analyze program semantic properties on their models called program schemes. Procedural liberisation problem and equivalence problem are stated for program models with procedures in which both defining parameters are chosen independently. Program models with procedures built over a given program model without procedures are investigated. Algorithms for both stated tasks are proposed for models where an additional restriction is applied: the intersection emptiness problem is solvable in the program model without procedures. Polynomial estimates for the complexity of the algorithms are shown. Some topics for further investigation are proposed.
Exactly solvable relativistic model with the anomalous interaction
Ferraro, Elena; Messina, Antonino; Nikitin, A. G.
2010-04-01
A special class of Dirac-Pauli equations with time-like vector potentials of an external field is investigated. An exactly solvable relativistic model describing the anomalous interaction of a neutral Dirac fermion with a cylindrically symmetric external electromagnetic field is presented. The related external field is a superposition of the electric field generated by a charged infinite filament and the magnetic field generated by a straight line current. In the nonrelativistic approximation the considered model is reduced to the integrable Pron’ko-Stroganov model.
Quantum transfer matrices for discrete and continuous quasi-exactly solvable problems
International Nuclear Information System (INIS)
Zabrodin, A.V.
1995-01-01
The algebraic structure of continuous and discrete quasi-exactly solvable spectral problems by embedding them into the framework of the quantum inverse scattering method is clarified. The quasi-exactly solvable Hamiltonians in one dimension are identified with traces of quantum monodromy matrices for specific integrable systems with non-periodic boundary conditions. Applications to Azbel-Hofstadter problem are outlined. 39 refs
Exactly solvable string models of curved space-time backgrounds
International Nuclear Information System (INIS)
Russo, J.G.
1995-01-01
We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the ''dilatonic'' (a=1) and ''Kaluza-Klein'' (a=√(3)) Melvin solutions and the uniform magnetic field solution, as well as some singular space-times. Solvability of the string σ-model is related to its connection via duality to a simpler model which is a ''twisted'' product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model (tachyonic instabilities in the spectrum, gyromagnetic ratio, issue of singularities, etc.). It provides one of the first examples of a consistent solvable conformal string model with explicit D=4 curved space-time interpretation. (orig.)
Exactly solvable model in quadrupole-octupole coupled states
Jalili Majarshin, A.; Sabri, H.; Rezaei, M.
2018-03-01
Exactly solvable model in quadrupole-octupole coupled (QOC) states is an interesting nuclear structure phenomenon. For example, several transitions of the electric dipole and quadrupole (E1 and E2) values are indicative of QOC states. Various collective models as three-level and four-level pairing models were employed in order to account for the observed properties of the QOC states. We suggest a simultaneous description of low-lying collective positive and negative-parity states to use the spdf and sdf interacting boson model to reproduce the general characteristics of the QOC states. Also, quantum phase transitions are investigated based on dual algebraic structures for the sd, sdf and spdf-IBM. The low lying positive and negative parity states and the QOC properties of the stable even-even Cd isotopes are calculated in solvable extended transitional Hamiltonian of the IBM-spdf and IBM-sdf models based on the affine SU (1 , 1) ˆ Lie algebra. Some observables such as energy levels, transition rates, expectation value of boson number operators, energy differences and staggering pattern are calculated and examined for Cd isotopes. The IBM calculations indicate a nuclear structure of the electric E1, E2 and E3 strength and energy spectra in the low-lying, thus confirming the experimental results for transition region. The calculations confirm a good agreement for the energy spectra, quantum phase transitions and fragmentation of the E1, E2 and E3 strengths.
Exactly solvable string models of curved space-time backgrounds
Russo, J.G.; Russo, J G; Tseytlin, A A
1995-01-01
We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the dilatonic Melvin solution and the uniform magnetic field solution discussed earlier as well as some singular space-times. Solvability of the string sigma model is related to its connection via duality to a much simpler looking model which is a "twisted" product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model as well as a number of generalizations leading to larger classes of exact 4-dimensional string solutions.
Protecting coherence by environmental decoherence: a solvable paradigmatic model
Torres, Juan Mauricio; Seligman, Thomas H.
2017-11-01
We consider a particularly simple exactly solvable model for a qubit coupled to sequentially nested environments. The purpose is to exemplify the coherence conserving effect of a central system, that has been reported as a result of increasing the coupling between near and far environment. The paradigmatic example is the Jaynes–Cummings Hamiltonian, which we introduce into a Kossakowski–Lindblad master equation using alternatively the lowering operator of the oscillator or its number operator as Lindblad operators. The harmonic oscillator is regarded as the near environment of the qubit, while effects of a far environment are accounted for by the two options for the dissipative part of the master equation. The exact solution allows us to cover the entire range of coupling strength from the perturbative regime to strong coupling analytically. The coherence conserving effect of the coupling to the far environment is confirmed throughout.
An Exactly Solvable Supersymmetric Model of Semimagic Nuclei
International Nuclear Information System (INIS)
Balantekin, A. B.; Gueven, Nurtac; Pehlivan, Yamac
2008-01-01
A simple model of nucleons coupled to angular momentum zero (s-pairs) occupying the valance shell of a semi-magic nuclei is considered. The model has a separable, orbit dependent pairing interaction which dominates over the kinetic term. It is shown that such an interaction leads to an exactly solvable model whose (0 + ) eigenstates and energies can be computed very easily with the help of the algebraic Bethe ansatz method. It is also shown that the model has a supersymmetry which connects the spectra of some semimagic nuclei. The results obtained from this model for the semimagic Ni isotopes from 58 Ni to 68 Ni are given. In addition, a new and easier technique for calculating the energy eigenvalues from the Bethe ansatz equations is also presented.
Quantum quench dynamics in analytically solvable one-dimensional models
Iucci, Anibal; Cazalilla, Miguel A.; Giamarchi, Thierry
2008-03-01
In connection with experiments in cold atomic systems, we consider the non-equilibrium dynamics of some analytically solvable one-dimensional systems which undergo a quantum quench. In this quench one or several of the parameters of the Hamiltonian of an interacting quantum system are changed over a very short time scale. In particular, we concentrate on the Luttinger model and the sine-Gordon model in the Luther-Emery point. For the latter, we show that the order parameter and the two-point correlation function relax in the long time limit to the values determined by a generalized Gibbs ensemble first discussed by J. T. Jaynes [Phys. Rev. 106, 620 (1957); 108, 171 (1957)], and recently conjectured by M. Rigol et.al. [Phys. Rev. Lett. 98, 050405 (2007)] to apply to the non-equilibrium dynamics of integrable systems.
Solvable Family of Driven-Dissipative Many-Body Systems
Foss-Feig, Michael; Young, Jeremy T.; Albert, Victor V.; Gorshkov, Alexey V.; Maghrebi, Mohammad F.
2017-11-01
Exactly solvable models have played an important role in establishing the sophisticated modern understanding of equilibrium many-body physics. Conversely, the relative scarcity of solutions for nonequilibrium models greatly limits our understanding of systems away from thermal equilibrium. We study a family of nonequilibrium models, some of which can be viewed as dissipative analogues of the transverse-field Ising model, in that an effectively classical Hamiltonian is frustrated by dissipative processes that drive the system toward states that do not commute with the Hamiltonian. Surprisingly, a broad and experimentally relevant subset of these models can be solved efficiently. We leverage these solutions to compute the effects of decoherence on a canonical trapped-ion-based quantum computation architecture, and to prove a no-go theorem on steady-state phase transitions in a many-body model that can be realized naturally with Rydberg atoms or trapped ions.
Topological order in an exactly solvable 3D spin model
International Nuclear Information System (INIS)
Bravyi, Sergey; Leemhuis, Bernhard; Terhal, Barbara M.
2011-01-01
Research highlights: RHtriangle We study exactly solvable spin model with six-qubit nearest neighbor interactions on a 3D face centered cubic lattice. RHtriangle The ground space of the model exhibits topological quantum order. RHtriangle Elementary excitations can be geometrically described as the corners of rectangular-shaped membranes. RHtriangle The ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. RHtriangle Logical operators acting on the encoded qubits are described in terms of closed strings and closed membranes. - Abstract: We study a 3D generalization of the toric code model introduced recently by Chamon. This is an exactly solvable spin model with six-qubit nearest-neighbor interactions on an FCC lattice whose ground space exhibits topological quantum order. The elementary excitations of this model which we call monopoles can be geometrically described as the corners of rectangular-shaped membranes. We prove that the creation of an isolated monopole separated from other monopoles by a distance R requires an operator acting on Ω(R 2 ) qubits. Composite particles that consist of two monopoles (dipoles) and four monopoles (quadrupoles) can be described as end-points of strings. The peculiar feature of the model is that dipole-type strings are rigid, that is, such strings must be aligned with face-diagonals of the lattice. For periodic boundary conditions the ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. We describe a complete set of logical operators acting on the encoded qubits in terms of closed strings and closed membranes.
Flatland Position-Dependent-Mass: Polar Coordinates, Separability and Exact Solvability
Mazharimousavi, S. Habib; Mustafa, Omar
2010-10-01
The kinetic energy operator with position-dependent-mass in plane polar coordinates is obtained. The separability of the corresponding Schrödinger equation is discussed. A hypothetical toy model is reported and two exactly solvable examples are studied.
Non-solvable contractions of semisimple Lie algebras in low dimension
International Nuclear Information System (INIS)
Campoamor-Stursberg, R
2007-01-01
The problem of non-solvable contractions of Lie algebras is analysed. By means of a stability theorem, the problem is shown to be deeply related to the embeddings among semisimple Lie algebras and the resulting branching rules for representations. With this procedure, we determine all deformations of indecomposable Lie algebras having a nontrivial Levi decomposition onto semisimple Lie algebras of dimension n ≤ 8, and obtain the non-solvable contractions of the latter class of algebras
International Nuclear Information System (INIS)
Kulik, P.P.
1977-01-01
The known data on dense plasma investigation are summarized and systemized. The dense plasma is created by joint effect of high temperatures, resulting in thermal substance ionization, and high densities, resulting in ionization by pressure. The state of investigations of plasma properties has been analysed and a contribution of static and kinetic theories to equilibrium plasma investigation has been shown
Energy Technology Data Exchange (ETDEWEB)
More, R.M.
1986-01-01
Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.
International Nuclear Information System (INIS)
More, R.M.
1986-01-01
Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs
Topological order in an exactly solvable 3D spin model
Bravyi, Sergey; Leemhuis, Bernhard; Terhal, Barbara M.
2011-04-01
We study a 3D generalization of the toric code model introduced recently by Chamon. This is an exactly solvable spin model with six-qubit nearest-neighbor interactions on an FCC lattice whose ground space exhibits topological quantum order. The elementary excitations of this model which we call monopoles can be geometrically described as the corners of rectangular-shaped membranes. We prove that the creation of an isolated monopole separated from other monopoles by a distance R requires an operator acting on Ω( R2) qubits. Composite particles that consist of two monopoles (dipoles) and four monopoles (quadrupoles) can be described as end-points of strings. The peculiar feature of the model is that dipole-type strings are rigid, that is, such strings must be aligned with face-diagonals of the lattice. For periodic boundary conditions the ground space can encode 4 g qubits where g is the greatest common divisor of the lattice dimensions. We describe a complete set of logical operators acting on the encoded qubits in terms of closed strings and closed membranes.
An exactly solvable, spatial model of mutation accumulation in cancer
Paterson, Chay; Nowak, Martin A.; Waclaw, Bartlomiej
2016-12-01
One of the hallmarks of cancer is the accumulation of driver mutations which increase the net reproductive rate of cancer cells and allow them to spread. This process has been studied in mathematical models of well mixed populations, and in computer simulations of three-dimensional spatial models. But the computational complexity of these more realistic, spatial models makes it difficult to simulate realistically large and clinically detectable solid tumours. Here we describe an exactly solvable mathematical model of a tumour featuring replication, mutation and local migration of cancer cells. The model predicts a quasi-exponential growth of large tumours, even if different fragments of the tumour grow sub-exponentially due to nutrient and space limitations. The model reproduces clinically observed tumour growth times using biologically plausible rates for cell birth, death, and migration rates. We also show that the expected number of accumulated driver mutations increases exponentially in time if the average fitness gain per driver is constant, and that it reaches a plateau if the gains decrease over time. We discuss the realism of the underlying assumptions and possible extensions of the model.
Entanglement, decoherence and thermal relaxation in exactly solvable models
International Nuclear Information System (INIS)
Lychkovskiy, Oleg
2011-01-01
Exactly solvable models provide an opportunity to study different aspects of reduced quantum dynamics in detail. We consider the reduced dynamics of a single spin in finite XX and XY spin 1/2 chains. First we introduce a general expression describing the evolution of the reduced density matrix. This expression proves to be tractable when the combined closed system (i.e. open system plus environment) is integrable. Then we focus on comparing decoherence and thermalization timescales in the XX chain. We find that for a single spin these timescales are comparable, in contrast to what should be expected for a macroscopic body. This indicates that the process of quantum relaxation of a system with few accessible states can not be separated in two distinct stages - decoherence and thermalization. Finally, we turn to finite-size effects in the time evolution of a single spin in the XY chain. We observe three consecutive stages of the evolution: regular evolution, partial revivals, irregular (apparently chaotic) evolution. The duration of the regular stage is proportional to the number of spins in the chain. We observe a 'quiet and cold period' in the end of the regular stage, which breaks up abruptly at some threshold time.
Another New Solvable Many-Body Model of Goldfish Type
Directory of Open Access Journals (Sweden)
Francesco Calogero
2012-07-01
Full Text Available A new solvable many-body problem is identified. It is characterized by nonlinear Newtonian equations of motion (''acceleration equal force'' featuring one-body and two-body velocity-dependent forces ''of goldfish type'' which determine the motion ofan arbitrary number $N$ of unit-mass point-particles in a plane. The $N$ (generally complex values $z_{n}(t$ at time $t$ ofthe $N$ coordinates of these moving particles are given by the $N$eigenvalues of a time-dependent $Nimes N$ matrix $U(t$explicitly known in terms of the $2N$ initial data $z_{n}(0$and $dot{z}_{n}(0 $. This model comes in two dif/ferentvariants, one featuring 3 arbitrary coupling constants, the other only 2; for special values of these parameters all solutions are completely periodic with the same period independent of the initial data (''isochrony''; for other special values of these parameters this property holds up to corrections vanishing exponentially as $tightarrow infty$ (''asymptotic isochrony''. Other isochronous variants of these models are also reported. Alternative formulations, obtained by changing the dependent variables from the $N$ zeros of a monic polynomial of degree $N$ to its $N$ coefficients, are also exhibited. Some mathematical findings implied by some of these results - such as Diophantine properties of the zeros of certain polynomials - are outlined, but their analysis is postponed to a separate paper.
Modelling dense relational data
DEFF Research Database (Denmark)
Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard
2012-01-01
Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness they are no......Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness...... they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....
On the Solvability of 2-pair Unicast Networks --- A Cut-based Characterization
Cai, K.; Letaief, K. B.; Fan, P.; Feng, R.
2010-01-01
In this paper, we propose a subnetwork decomposition/combination approach to investigate the single rate $2$-pair unicast problem. It is shown that the solvability of a $2$-pair unicast problem is completely determined by four specific link subsets, namely, $\\mathcal A_{1,1}$, $\\mathcal A_{2,2}$, $\\mathcal A_{1,2}$ and $\\mathcal A_{2,1}$ of its underlying network. As a result, an efficient cut-based algorithm to determine the solvability of a $2$-pair unicast problem is presented.
Energy Technology Data Exchange (ETDEWEB)
Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-08-31
The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.
Band structure analysis of an analytically solvable Hill equation with continuous potential
Morozov, G. V.; Sprung, D. W. L.
2015-03-01
This paper concerns analytically solvable cases of Hill’s equation containing a continuously differentiable periodic potential. We outline a procedure for constructing the Floquet-Bloch fundamental system, and analyze the band structure of the system. The similarities to, and differences from, the cases of a piecewise constant periodic potential and the Mathieu potential, are illuminated.
Exactly solvable models for tri-atomic molecular Bose-Einstein condensates
Energy Technology Data Exchange (ETDEWEB)
Santos, G; Roditi, I; Santos, Z V T [CBPF-Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro RJ (Brazil); Foerster, A [Instituto de Fisica da UFRGS, Porto Alegre, RS (Brazil); Tonel, A P [CCET da Universidade Federal do Pampa/Unipampa, Bage, RS (Brazil)], E-mail: gfilho@cbpf.br
2008-07-25
We construct a family of tri-atomic models for heteronuclear and homonuclear molecular Bose-Einstein condensates. We show that these new generalized models are exactly solvable through the algebraic Bethe ansatz method and derive their corresponding Bethe ansatz equations and energies.
Exactly solvable models for triatomic-molecular Bose-Einstein Condensates
Energy Technology Data Exchange (ETDEWEB)
Santos, G.; Roditi, I.; Santos, Z.V.T. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Foerster, A. [Instituto de Fisica da UFRGS, Porto Alegre, RS (Brazil); Tonel, A.P. [CCET da Universidade Federal do Pampa/Unipampa, Bage, RS (Brazil)
2014-11-15
We construct a family of triatomic models for heteronuclear and homonuclear molecular Bose-Einstein condensates. We show that these new generalized models are exactly solvable through the algebraic Bethe Ansatz method and derive their corresponding Bethe Ansatz equations and energies. (author)
Interaction of attosecond electromagnetic pulses with atoms: The exactly solvable model
International Nuclear Information System (INIS)
Popov, Yu. V.; Kouzakov, K. A.; Vinitsky, S. I.; Gusev, A. A.
2007-01-01
We consider the exactly solvable model of interaction of zero-duration electromagnetic pulses with an atom. The model has a number of peculiar properties which are outlined in the cases of a single pulse and two opposite pulses. In perspective, it can be useful in different fields of physics involving interaction of attosecond laser pulses with quantum systems
Solvability condition for synchronization of discrete-time multi-agent systems and design
Stoorvogel, Antonie Arij; Saberi, Ali; Zhang, Meirong; Liu, Zhenwei
This paper provides solvability conditions for state synchronization with homogeneous discrete-time multi-agent systems (MAS) with a directed and weighted communication network under full-state coupling. We assume only a lower bound for the second eigenvalue of the Laplacian matrices associated with
Flatland Position-Dependent-Mass: Polar Coordinates, Separability and Exact Solvability
Directory of Open Access Journals (Sweden)
Omar Mustafa
2010-10-01
Full Text Available The kinetic energy operator with position-dependent-mass in plane polar coordinates is obtained. The separability of the corresponding Schrödinger equation is discussed. A hypothetical toy model is reported and two exactly solvable examples are studied.
On non-Frattini chief factors and solvability of finite groups
Indian Academy of Sciences (India)
Indian Acad. Sci. (Math. Sci.) Vol. 122, No. 2, May 2012, pp. 163–173. c Indian Academy of Sciences. On non-Frattini chief factors and solvability of finite groups. JIANJUN LIU1,∗. , XIUYUN GUO2 and QIANLU LI3. 1School of Mathematics and Statistics, Southwest University,. Chongqing 400715, People's Republic of China.
An approach to one-dimensional elliptic quasi-exactly solvable models
Indian Academy of Sciences (India)
Abstract. One-dimensional Jacobian elliptic quasi-exactly solvable second-order differ- ential equations are obtained by introducing the generalized third master functions. It is shown that the solutions of these differential equations are generating functions for a new set of polynomials in terms of energy with factorization ...
Exactly solvable model of phase transition between hadron and quark-gluon-matter
International Nuclear Information System (INIS)
Gorenstein, M.I.; Petrov, V.K.; Shelest, V.P.; Zinovjev, G.M.
1982-01-01
An exactly solvable model of phase transition between hadron and quark-gluon matter is proposed. The hadron phase of this model is considered as a gas of bags filled by point massless constituents. The mass and volume spectrum of the bag is found. The thermodynamical characteristics of a bag gas in the neighbourhood of a phase transition point are ascertained in analytical form
Application of quasiexactly solvable potential method to the N-body ...
Indian Academy of Sciences (India)
Abstract. The quasiexactly solvable potential method is used to determine the energies and the corresponding exact eigenfunctions for a system of N particles with equal mass interacting via an anharmonic potential. For systems with five and seven particles, we compute the ground state and the first excited state only, and ...
DENSE MEDIUM CYCLONE OPTIMIZATON
Energy Technology Data Exchange (ETDEWEB)
Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood
2005-06-30
Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.
International Nuclear Information System (INIS)
Cockbain, A.G.
1976-01-01
A method is described for the manufacture of articles of substantially pure dense ceramic materials, for use in severe environments. Si N is very suitable for use in such environments, but suffers from the disadvantage that it is not amenable to sintering. Some disadvantages of the methods normally used for making articles of Si N are mentioned. The method described comprises mixing a powder of the substantially pure ceramic material with an additive that promotes densification, and which is capable of nuclear transmutation into a gas when exposed to radiation, and hot pressing the mixture to form a billet. The billet is then irradiated to convert the additive into a gas which is held captive in the billet, and it is then subjected to a hot forging operation, during which the captive gas escapes and an article of substantially pure dense ceramic material is forged. The method is intended primarily for use for Si N, but may be applied to other ceramic materials. The additive may be Li or Be or their compounds, to the extent of at least 5 ppm and not more than 5% by weight. Irradiation is effected by proton or neutron bombardment. (UK)
Energy Technology Data Exchange (ETDEWEB)
Dapo, Haris
2009-01-28
The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three
PREFACE: Singular interactions in quantum mechanics: solvable models
Dell'Antonio, Gianfausto; Exner, Pavel; Geyler, Vladimir
2005-06-01
This issue comprises two dozen research papers which are all in one sense or another devoted to models in which the interaction is singular and sharply localized; a typical example is a quantum particle interacting with a family of δ-type potentials. Such an idealization usually makes analysis of their properties considerably easier, sometimes allowing us to reduce it to a simple algebraic problem—this is why one speaks about solvable models. The subject can be traced back to the early days of quantum mechanics; however, the progress in this field was slow and uneven until the 1960s, mostly because singular interactions are often difficult to deal with mathematically and intuitive arguments do not work. After overcoming the initial difficulties the `classical' theory of point interactions was developed, and finally summarized in 1988 in a monograph by Albeverio, Gesztesy, Høegh-Krohn, and Holden, which you will find quoted in numerous places within this issue. A reliable way to judge theories is to observe the progress they make within one or two decades. In this case there is no doubt that the field has witnessed a continuous development and covered areas which nobody had thought of when the subject first emerged. The reader may see it in the second edition of the aforementioned book which was published by AMS Chelsea only recently and contained a brief survey of these new achievements. It is no coincidence that this topical issue appears at the same time; it has been conceived as its counterpart and a forum at which fresh results in the field can demonstrated. Let us briefly survey the contents of the issue. While the papers included have in common the basic subject, they represent a broad spectrum philosophically as well as technically, and any attempt to classify them is somewhat futile. Nevertheless, we will divide them into a few groups. The first comprises contributions directly related to the usual point-interaction ideology. M Correggi and one of the
Investigating solvability and complexity of linear active networks by means of matroids
DEFF Research Database (Denmark)
Petersen, Bjørn
1979-01-01
The solvability and complexity problems of finear active network are approached from a purely combinatorial point of view, using the concepts of matroid theory. Since the method is purely combinatorial, we take into account the network topology alone. Under this assumption necessary and sufficient...... conditions are given for the unique solvablity of linear active networks. The complexity and the number of dc-eigenfrequencies are also given. The method enables.you to decide if degeneracies are due to the topology alone, or if they are caused by special relations among network parameter values....... If the network parameter values are taken into account, the complexity and number of dc-eigenfrequencies given by the method, are only upper and lower bounds, respectively. The above conditions are fairly easily checked, and the complexity and number of dc-elgenfrequencies are found, using polynomially bounded...
Jorge, Maria Salete Bessa; Vasconcelos, Mardênia Gomes Ferreira; Junior, Euton Freitas de Castro; Barreto, Levi Alves; Rosa, Lianna Ramalho de Sena; de Lima, Leilson Lira
2014-12-01
To aprehend the social representations about the solvability in mental health care with users of the Family Health Strategy and professionals of family health teams and of the Center for Psychosocial Care. A qualitative study using semi-structured interviews for data collection, and the Alceste software for analysis. This software uses the Hierarchical Descending Classification based on the examination of lexical roots, considering the words as units and providing context in the corpus. The representations emerge in two opposing poles: the users require satisfaction with care and the professionals realize the need for improvement of health actions. Although the matricial support in mental health and the home visits are developed, the barriers related to investment in health, continuing education and organization of care persist. The different representations enable improvements in customer service, solvability of care and aggregate knowledge and practices in the expanded perspective of health needs in the family, social and therapeutic context.
Parametric symmetries in exactly solvable real and PT symmetric complex potentials
Energy Technology Data Exchange (ETDEWEB)
Yadav, Rajesh Kumar, E-mail: rajeshastrophysics@gmail.com [Department of Physics, S. P. College, S K. M. University, Dumka 814101 (India); Khare, Avinash, E-mail: khare@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Bagchi, Bijan, E-mail: bbagchi123@gmail.com [Department of Physics, School of Natural Science, Shiv Nadar University, Greater Noida, UP 201314 (India); Kumari, Nisha, E-mail: nishaism0086@gmail.com; Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com [Department of Physics, Banaras Hindu University, Varanasi 221005 (India)
2016-06-15
In this paper, we discuss the parametric symmetries in different exactly solvable systems characterized by real or complex PT symmetric potentials. We focus our attention on the conventional potentials such as the generalized Pöschl Teller (GPT), Scarf-I, and PT symmetric Scarf-II which are invariant under certain parametric transformations. The resulting set of potentials is shown to yield a completely different behavior of the bound state solutions. Further, the supersymmetric partner potentials acquire different forms under such parametric transformations leading to new sets of exactly solvable real and PT symmetric complex potentials. These potentials are also observed to be shape invariant (SI) in nature. We subsequently take up a study of the newly discovered rationally extended SI potentials, corresponding to the above mentioned conventional potentials, whose bound state solutions are associated with the exceptional orthogonal polynomials (EOPs). We discuss the transformations of the corresponding Casimir operator employing the properties of the so(2, 1) algebra.
Topological Galois theory solvability and unsolvability of equations in finite terms
Khovanskii, Askold
2014-01-01
This book provides a detailed and largely self-contained description of various classical and new results on solvability and unsolvability of equations in explicit form. In particular, it offers a complete exposition of the relatively new area of topological Galois theory, initiated by the author. Applications of Galois theory to solvability of algebraic equations by radicals, basics of Picard–Vessiot theory, and Liouville's results on the class of functions representable by quadratures are also discussed. A unique feature of this book is that recent results are presented in the same elementary manner as classical Galois theory, which will make the book useful and interesting to readers with varied backgrounds in mathematics, from undergraduate students to researchers. In this English-language edition, extra material has been added (Appendices A–D), the last two of which were written jointly with Yura Burda.
Solvability in the sense of sequences to some non-Fredholm operators
Directory of Open Access Journals (Sweden)
Vitaly Volpert
2013-07-01
Full Text Available We study the solvability of certain linear nonhomogeneous elliptic problems and show that under reasonable technical conditions the convergence in $L^2(mathbb{R}^d$ of their right sides implies the existence and the convergence in $H^2(mathbb{R}^d$ of the solutions. The equations involve second order differential operators without Fredholm property and we use the methods of spectral and scattering theory for Schrodinger type operators analogously to our preceding work [17].
Energy Technology Data Exchange (ETDEWEB)
Honarasa, G.R., E-mail: honarasa@sutech.ac.i [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Tavassoly, M.K., E-mail: mktavassoly@yazduni.ac.i [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Hatami, M., E-mail: mhatami@yazduni.ac.i [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of)
2009-10-19
In this Letter, the 'number-phase entropic uncertainty relation' and the 'number-phase Wigner function' of generalized coherent states associated to a few solvable quantum systems with non-degenerate spectra are studied. We also investigate time evolution of 'number-phase entropic uncertainty' and 'Wigner function' of the considered physical systems with the help of temporally stable Gazeau-Klauder coherent states.
Well-solvable cases of the QAP with block-structured matrices
Çela, E; Deineko, VG; Woeginger, GJ Gerhard
2014-01-01
We investigate special cases of the quadratic assignment problem (QAP) where one of the two underlying matrices carries a simple block structure. For the special case where the second underlying matrix is a monotone anti-Monge matrix, we derive a polynomial time result for a certain class of cut problems. For the special case where the second underlying matrix is a product matrix, we identify two sets of conditions on the block structure that make this QAP polynomially solvable respectively N...
A conditionally exactly solvable generalization of the inverse square root potential
Energy Technology Data Exchange (ETDEWEB)
Ishkhanyan, A.M., E-mail: aishkhanyan@gmail.com [Institute for Physical Research, NAS of Armenia, Ashtarak 0203 (Armenia); Armenian State Pedagogical University, Yerevan 0010 (Armenia); Institute of Physics and Technology, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation)
2016-11-25
We present a conditionally exactly solvable singular potential for the one-dimensional Schrödinger equation which involves the exactly solvable inverse square root potential. Each of the two fundamental solutions that compose the general solution of the problem is given by a linear combination with non-constant coefficients of two confluent hypergeometric functions. Discussing the bound-state wave functions vanishing both at infinity and in the origin, we derive the exact equation for the energy spectrum which is written using two Hermite functions of non-integer order. In specific auxiliary variables this equation becomes a mathematical equation that does not refer to a specific physical context discussed. In the two-dimensional space of these auxiliary variables the roots of this equation draw a countable infinite set of open curves with hyperbolic asymptotes. We present an analytic description of these curves by a transcendental algebraic equation for the involved variables. The intersections of the curves thus constructed with a certain cubic curve provide a highly accurate description of the energy spectrum. - Highlights: • We present a conditionally exactly solvable singular potential for 1D Schrödinger equation. • Each of the two fundamental solutions is given by a linear combination with non-constant coefficients of two confluent hypergeometric functions. • The exact equation for the energy spectrum is written using two Hermite functions that do not reduce to polynomials.
Directory of Open Access Journals (Sweden)
Richard J Chen
2017-07-01
Full Text Available History of present illness: A 77-year-old female presented to the emergency department after being found down at home, last seen normal 7 ½ hours prior to arrival. Patient had a history of hypertension, congestive heart failure, atrial fibrillation and breast cancer status post chemotherapy/radiation and lumpectomy. Physical exam showed right gaze preference, left facial droop and tongue deviation and flaccid left hemiplegia. Significant findings: A non-contrast computed tomography (CT scan showed a hyperdensity along the right middle cerebral artery (MCA consistent with acute thrombus. The red arrow highlights the hyperdensity in the annotated image. Discussion: The dense MCA sign can serve as an important tool in the diagnosis of acute stroke. It typically appears before other signs of infarct are apparent on CT imaging, and identifies an intracranial large artery occlusion and corresponding infarct, in the correct clinical setting.1 Calcifications in the same area of the brain could be mistaken for an MCA sign, but this sign carries a high specificity (95% and lower sensitivity (52% for arterial obstruction in ischemic stroke.2 Early identification allows for a wider array of treatment options for a patient with an ischemic stroke, including intra-venous or intra-arterial thrombolysis and mechanical thrombectomy. This patient was subsequently taken for mechanical thrombectomy. Mechanical thrombectomy was chosen for this patient because the resources were available, and recent clinical trials have shown that newer types of mechanical thrombectomy have a positive functional outcome in patients with an ischemic stroke from an intracranial large artery occlusion, as compared to intravenous tissue plasminogen activator (tPa alone.3,4,5,6 In facilities lacking the capability for mechanical thrombectomy, treatment considerations include rapid transfer to a facility with capability, or proceeding with intravenous tPa. After intervention, this
Mining connected global and local dense subgraphs for bigdata
Wu, Bo; Shen, Haiying
2016-01-01
The problem of discovering connected dense subgraphs of natural graphs is important in data analysis. Discovering dense subgraphs that do not contain denser subgraphs or are not contained in denser subgraphs (called significant dense subgraphs) is also critical for wide-ranging applications. In spite of many works on discovering dense subgraphs, there are no algorithms that can guarantee the connectivity of the returned subgraphs or discover significant dense subgraphs. Hence, in this paper, we define two subgraph discovery problems to discover connected and significant dense subgraphs, propose polynomial-time algorithms and theoretically prove their validity. We also propose an algorithm to further improve the time and space efficiency of our basic algorithm for discovering significant dense subgraphs in big data by taking advantage of the unique features of large natural graphs. In the experiments, we use massive natural graphs to evaluate our algorithms in comparison with previous algorithms. The experimental results show the effectiveness of our algorithms for the two problems and their efficiency. This work is also the first that reveals the physical significance of significant dense subgraphs in natural graphs from different domains.
Self-organized critical pinball machine
DEFF Research Database (Denmark)
Flyvbjerg, H.
2004-01-01
The nature of self-organized criticality (SOC) is pin-pointed with a simple mechanical model: a pinball machine. Its phase space is fully parameterized by two integer variables, one describing the state of an on-going game, the other describing the state of the machine. This is the simplest...... possible SOC system, having only two degrees of freedom and no spatial correlations, yet is not solvable by analytical means. (C) 2004 Elsevier B.V. All rights reserved....
Solvable random-decimation model of cluster scaling
Fraser, Simon J.
1988-07-01
A percolation model of critical-cluster scaling is studied. The model allows the generation of configurations of strongly self-similar clusters by stochastic decimation on a tree. Tree traversal is controlled by a probability parameter p. At p=0 or 1, the configuration is deterministic, but, for 0decimation algorithm uses the Sierpinski carpet and Vicsek snowflake generators, so that the treelike character (connectedness) of the clusters can be changed continuously. Various dimensions of the (fractal) percolation cluster are calculated using boundary conditions that give correct values at the deterministic limits. The usual cluster distribution law, ns~s-τ with τ=d/D+1, is obeyed for stationary p in (0,1), although τ=d/D, the deterministic value at p=0 or 1. Here d is the space dimension, and D the fractal dimension of the percolation cluster. The sensitivity of τ to changes in p near p=0 or 1 allows anomalous cluster scaling, so that τ may be fixed between d/D and d/D+1, without affecting D. Possible applications of the model are discussed.
Classical and quantum contents of solvable game theory on Hilbert space
International Nuclear Information System (INIS)
Cheon, Taksu; Tsutsui, Izumi
2006-01-01
A simple and general formulation of the quantum game theory is presented, accommodating all possible strategies in the Hilbert space for the first time. The theory is solvable for the two strategy quantum game, which is shown to be equivalent to a family of classical games supplemented by quantum interference. Our formulation gives a clear perspective to understand why and how quantum strategies outmaneuver classical strategies. It also reveals novel aspects of quantum games such as the stone-scissor-paper phase sub-game and the fluctuation-induced moderation
Three-body problem in d-dimensional space: Ground state, (quasi)-exact-solvability
Turbiner, Alexander V.; Miller, Willard; Escobar-Ruiz, M. A.
2018-02-01
As a straightforward generalization and extension of our previous paper [A. V. Turbiner et al., "Three-body problem in 3D space: Ground state, (quasi)-exact-solvability," J. Phys. A: Math. Theor. 50, 215201 (2017)], we study the aspects of the quantum and classical dynamics of a 3-body system with equal masses, each body with d degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. The quantum (and classical) Hamiltonian for which these states are eigenfunctions is derived. It corresponds to a three-dimensional quantum particle moving in a curved space with special d-dimension-independent metric in a certain d-dependent singular potential, while at d = 1, it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is d-independent; it has a hidden sl(4, R) Lie (Poisson) algebra structure, alternatively, the hidden algebra h(3) typical for the H3 Calogero model as in the d = 3 case. We find an exactly solvable three-body S3-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly solvable three-body sextic polynomial type potential with singular terms. For both models, an extra first order integral exists. For d = 1, the whole family of 3-body (two-dimensional) Calogero-Moser-Sutherland systems as well as the Tremblay-Turbiner-Winternitz model is reproduced. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to d > 1 leads to two primitive quasi
Energy Technology Data Exchange (ETDEWEB)
Dufour, F., E-mail: dufour@math.u-bordeaux1.fr [Institut de Mathématiques de Bordeaux, INRIA Bordeaux Sud Ouest, Team: CQFD, and IMB (France); Prieto-Rumeau, T., E-mail: tprieto@ccia.uned.es [UNED, Department of Statistics and Operations Research (Spain)
2016-08-15
We consider a discrete-time constrained discounted Markov decision process (MDP) with Borel state and action spaces, compact action sets, and lower semi-continuous cost functions. We introduce a set of hypotheses related to a positive weight function which allow us to consider cost functions that might not be bounded below by a constant, and which imply the solvability of the linear programming formulation of the constrained MDP. In particular, we establish the existence of a constrained optimal stationary policy. Our results are illustrated with an application to a fishery management problem.
International Nuclear Information System (INIS)
Sparenberg, Jean-Marc; Samsonov, Boris F; Foucart, Francois; Baye, Daniel
2006-01-01
A new type of supersymmetric transformations of the coupled-channel radial Schroedinger equation is introduced, which do not conserve the vanishing behaviour of solutions at the origin. Contrary to the usual transformations, these 'non-conservative' transformations allow, in the presence of thresholds, the construction of well-behaved potentials with coupled scattering matrices from uncoupled potentials. As an example, an exactly-solvable potential matrix is obtained which provides a very simple model of the Feshbach-resonance phenomenon. (letter to the editor)
Global solvability and global hypoellipticity in Gevrey classes for vector fields on the torus
Bergamasco, A. P.; Dattori da Silva, P. L.; Gonzalez, R. B.
2018-03-01
Let L = ∂ / ∂ t +∑j=1N (aj + ibj) (t) ∂ / ∂xj be a vector field defined on the torus T N + 1 ≃R N + 1 / 2 πZ N + 1, where aj, bj are real-valued functions and belonging to the Gevrey class Gs (T1), s > 1, for j = 1 , … , N. We present a complete characterization for the s-global solvability and s-global hypoellipticity of L. Our results are linked to Diophantine properties of the coefficients and, also, connectedness of certain sublevel sets.
Energy Technology Data Exchange (ETDEWEB)
Kudryavtsev, A.G., E-mail: kudryavtsev_a_g@mail.ru
2013-11-15
The Fokker–Planck equation associated with the two-dimensional stationary Schrödinger equation has the conservation law form that yields a pair of potential equations. The special form of Darboux transformation of the potential equations system is considered. As the potential variable is a nonlocal variable for the Schrödinger equation that provides the nonlocal Darboux transformation for the Schrödinger equation. This nonlocal transformation is applied for obtaining of the exactly solvable two-dimensional stationary Schrödinger equations. The examples of exactly solvable two-dimensional stationary Schrödinger operators with smooth potentials decaying at infinity are obtained.
Quasi-exact solvability and entropies of the one-dimensional regularised Calogero model
Pont, Federico M.; Osenda, Omar; Serra, Pablo
2018-05-01
The Calogero model can be regularised through the introduction of a cutoff parameter which removes the divergence in the interaction term. In this work we show that the one-dimensional two-particle regularised Calogero model is quasi-exactly solvable and that for certain values of the Hamiltonian parameters the eigenfunctions can be written in terms of Heun’s confluent polynomials. These eigenfunctions are such that the reduced density matrix of the two-particle density operator can be obtained exactly as well as its entanglement spectrum. We found that the number of non-zero eigenvalues of the reduced density matrix is finite in these cases. The limits for the cutoff distance going to zero (Calogero) and infinity are analysed and all the previously obtained results for the Calogero model are reproduced. Once the exact eigenfunctions are obtained, the exact von Neumann and Rényi entanglement entropies are studied to characterise the physical traits of the model. The quasi-exactly solvable character of the model is assessed studying the numerically calculated Rényi entropy and entanglement spectrum for the whole parameter space.
Dense detector for baryon decay
International Nuclear Information System (INIS)
Courant, H.; Heller, K.; Marshak, M.L.; Peterson, E.A.; Ruddick, K.; Shupe, M.
1981-01-01
Our studies indicate that the dense detector represents a potentially powerful means to search for baryon decay and to study this process, if it occurs. The detector has good angular resolution and particle identification properties for both showering and non-showering events. Its energy resolution is particularly good for muons, but pion, electron and photon energies can also be measured with resolutions of at least 25 percent (standard deviation). The dense detector has strong logistical advantages over other proposed schemes. These advantages imply not only a lower cost but also faster construction and higher reliability. A particular advantage is that the dense detector can be prototyped in order to optimize its characteristics prior to the construction of a large module. Subsequent modules can also be added easily, while the initial detector continues operation
Panin, A. A.; Shlyapugin, G. I.
2017-11-01
We consider one-dimensional equations of the type of the Yajima-Oikawa-Satsuma ion acoustic wave equation and prove the local solvability. Using the test function method, we obtain sufficient conditions for solution blow-up and estimate the blow-up time.
Czech Academy of Sciences Publication Activity Database
Šremr, Jiří
2007-01-01
Roč. 132, č. 3 (2007), s. 263-295 ISSN 0862-7959 R&D Projects: GA ČR GP201/04/P183 Institutional research plan: CEZ:AV0Z10190503 Keywords : system of functional differential equations with monotone operators * initial value problem * unique solvability Subject RIV: BA - General Mathematics
Dense Crowds of Virtual Humans
Stüvel, S.A.
2016-01-01
This thesis presents a novel crowd simulation method `Torso Crowds', aimed at the simulation of dense crowds. The method is based on the results of user studies and a motion capture experiment, which are also described in this thesis. Torso Crowds introduces a capsule shape to represent people in
E2-quasi-exact solvability for non-Hermitian models
International Nuclear Information System (INIS)
Fring, Andreas
2015-01-01
We propose the notion of E 2 -quasi-exact solvability and apply this idea to find explicit solutions to the eigenvalue problem for a non-Hermitian Hamiltonian system depending on two parameters. The model considered reduces to the complex Mathieu Hamiltonian in a double scaling limit, which enables us to compute the exceptional points in the energy spectrum of the latter as a limiting process of the zeros for some algebraic equations. The coefficient functions in the quasi-exact eigenfunctions are univariate polynomials in the energy obeying a three-term recurrence relation. The latter property guarantees the existence of a linear functional such that the polynomials become orthogonal. The polynomials are shown to factorize for all levels above the quantization condition leading to vanishing norms rendering them to be weakly orthogonal. In two concrete examples we compute the explicit expressions for the Stieltjes measure. (paper)
E2-quasi-exact solvability for non-Hermitian models
Fring, Andreas
2015-04-01
We propose the notion of E2-quasi-exact solvability and apply this idea to find explicit solutions to the eigenvalue problem for a non-Hermitian Hamiltonian system depending on two parameters. The model considered reduces to the complex Mathieu Hamiltonian in a double scaling limit, which enables us to compute the exceptional points in the energy spectrum of the latter as a limiting process of the zeros for some algebraic equations. The coefficient functions in the quasi-exact eigenfunctions are univariate polynomials in the energy obeying a three-term recurrence relation. The latter property guarantees the existence of a linear functional such that the polynomials become orthogonal. The polynomials are shown to factorize for all levels above the quantization condition leading to vanishing norms rendering them to be weakly orthogonal. In two concrete examples we compute the explicit expressions for the Stieltjes measure.
Fundamental solutions and local solvability for nonsmooth Hörmander’s operators
Bramanti, Marco; Manfredini, Maria
2017-01-01
The authors consider operators of the form L=\\sum_{i=1}^{n}X_{i}^{2}+X_{0} in a bounded domain of \\mathbb{R}^{p} where X_{0},X_{1},\\ldots,X_{n} are nonsmooth Hörmander's vector fields of step r such that the highest order commutators are only Hölder continuous. Applying Levi's parametrix method the authors construct a local fundamental solution \\gamma for L and provide growth estimates for \\gamma and its first derivatives with respect to the vector fields. Requiring the existence of one more derivative of the coefficients the authors prove that \\gamma also possesses second derivatives, and they deduce the local solvability of L, constructing, by means of \\gamma, a solution to Lu=f with Hölder continuous f. The authors also prove C_{X,loc}^{2,\\alpha} estimates on this solution.
Integrability and solvability of the simplified two-qubit Rabi model
International Nuclear Information System (INIS)
Peng Jie; Ren Zhongzhou; Guo Guangjie; Ju Guoxing
2012-01-01
The simplified two-qubit Rabi model is proposed and its analytical solution is presented. There are no level crossings in the spectral graph of the model, which indicates that it is not integrable. The criterion of integrability for the Rabi model proposed by Braak (2011 Phys. Rev. Lett. 107 100401) is also used for the simplified two-qubit Rabi model and the same conclusion, consistent with what the spectral graph shows, can be drawn, which indicates that the criterion remains valid when applied to the two-qubit case. The simplified two-qubit Rabi model is another example of a non-integrable but exactly solvable system except for the generalized Rabi model. (paper)
International Nuclear Information System (INIS)
Stauber, T; Mielke, A
2003-01-01
To contrast different generators for flow equations for Hamiltonians and to discuss the dependence of physical quantities on unitarily equivalent, but effectively different, initial Hamiltonians, a numerically solvable model is considered which is structurally similar to impurity models. By this we discuss the question of optimization for the first time. A general truncation scheme is established that produces good results for the Hamiltonian flow as well as for the operator flow. Nevertheless, it is also pointed out that a systematic and feasible scheme for the operator flow on the operator level is missing. For this, an explicit analysis of the operator flow is given for the first time. We observe that truncation of the series of the observable flow after the linear or bilinear terms does not yield satisfactory results for the entire parameter regime as - especially close to resonances - even high orders of the exact series expansion carry considerable weight
An exactly solvable model for the integrability-chaos transition in rough quantum billiards.
Olshanii, Maxim; Jacobs, Kurt; Rigol, Marcos; Dunjko, Vanja; Kennard, Harry; Yurovsky, Vladimir A
2012-01-24
A central question of dynamics, largely open in the quantum case, is to what extent it erases a system's memory of its initial properties. Here we present a simple statistically solvable quantum model describing this memory loss across an integrability-chaos transition under a perturbation obeying no selection rules. From the perspective of quantum localization-delocalization on the lattice of quantum numbers, we are dealing with a situation where every lattice site is coupled to every other site with the same strength, on average. The model also rigorously justifies a similar set of relationships, recently proposed in the context of two short-range-interacting ultracold atoms in a harmonic waveguide. Application of our model to an ensemble of uncorrelated impurities on a rectangular lattice gives good agreement with ab initio numerics.
The Lambert-W step-potential – an exactly solvable confluent hypergeometric potential
Energy Technology Data Exchange (ETDEWEB)
Ishkhanyan, A.M., E-mail: aishkhanyan@gmail.com [Institute for Physical Research, NAS of Armenia, 0203 Ashtarak (Armenia); Armenian State Pedagogical University, 0010 Yerevan (Armenia); Institute of Physics and Technology, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation)
2016-02-15
We present an asymmetric step–barrier potential for which the one-dimensional stationary Schrödinger equation is exactly solved in terms of the confluent hypergeometric functions. The potential is given in terms of the Lambert W-function, which is an implicitly elementary function also known as the product logarithm. We present the general solution of the problem and consider the quantum reflection at transmission of a particle above this potential barrier. Compared with the abrupt-step and hyperbolic tangent potentials, which are reproduced by the Lambert potential in certain parameter and/or variable variation regions, the reflection coefficient is smaller because of the lesser steepness of the potential on the particle incidence side. Presenting the derivation of the Lambert potential we show that this is a four-parametric sub-potential of a more general five-parametric one also solvable in terms of the confluent hypergeometric functions. The latter potential, however, is a conditionally integrable one. Finally, we show that there exists one more potential the solution for which is written in terms of the derivative of a bi-confluent Heun function. - Highlights: • We introduce an asymmetric step-barrier potential for which the 1D Schrödinger equation is exactly solved in terms of confluent hypergeometric functions. • The potential is given in terms of the Lambert-function, which is an implicitly elementary function also known as the product logarithm. • This is a four-parametric specification of a more general five-parametric potential also solvable in terms of the confluent hypergeometric functions. • There exists one more potential the solution for which is written in terms of the derivative of a bi-confluent Heun function.
Predicting diffusivities in dense fluid mixtures
Directory of Open Access Journals (Sweden)
C. DARIVA
1999-09-01
Full Text Available In this work the Enskog solution of the Boltzmann equation, as corrected by Speedy, together with the Weeks-Chandler-Andersen (WCA perturbation theory of liquids is employed in correlating and predicting self-diffusivities of dense fluids. Afterwards this theory is used to estimate mutual diffusion coefficients of solutes at infinite dilution in sub and supercritical solvents. We have also investigated the behavior of Fick diffusion coefficients in the proximity of a binary vapor-liquid critical point since this subject is of great interest for extraction purposes. The approach presented here, which makes use of a density and temperature dependent hard-sphere diameter, is shown to be excellent for predicting diffusivities in dense pure fluids and fluid mixtures. The calculations involved highly nonideal mixtures as well as systems with high molecular asymmetry. The predicted diffusivities are in good agreement with the experimental data for the pure and binary systems. The methodology proposed here makes only use of pure component information and density of mixtures. The simple algebraic relations are proposed without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent mixtures.
Geometrical critical phenomena on a random surface of arbitrary genus
International Nuclear Information System (INIS)
Duplantier, B.; Kostov, I.K.
1990-01-01
The statistical mechanics of self-avoiding walks (SAW) or of the O(n)-loop model on a two-dimensional random surface are shown to be exactly solvable. The partition functions of SAW and surface configurations (possibly in the presence of vacuum loops) are calculated by planar diagram enumeration techniques. Two critical regimes are found: a dense phase where the infinite walks and loops fill the infinite surface, the non-filled part staying finite, and a dilute phase where the infinite surface singularity on the one hand, and walk and loop singularities on the other, merge together. The configuration critical exponents of self-avoiding networks of any fixed topology G, on a surface with arbitrary genus H, are calculated as universal functions of G and H. For self-avoiding walks, the exponents are built from an infinite set of basic conformal dimensions associated with central charges c = -2 (dense phase) and c = 0 (dilute phase). The conformal spectrum Δ L , L ≥ 1 associated with L-leg star polymers is calculated exactly, for c = -2 and c = 0. This is generalized to the set of L-line 'watermelon' exponents Δ L of the O(n) model on a random surface. The divergences of the partition functions of self-avoiding networks on the random surface, possibly in the presence of vacuum loops, are shown to satisfy a factorization theorem over the vertices of the network. This provides a proof, in the presence of a fluctuating metric, of a result conjectured earlier in the standard plane. From this, the value of the string susceptibility γ str (H,c) is extracted for a random surface of arbitrary genus H, bearing a field theory of central charge c, or equivalently, embedded in d=c dimensions. Lastly, by enumerating spanning trees on a random lattice, we solve the similar problem of hamiltonian walks on the (fluctuating) Manhattan covering lattice. We also obtain new results for dilute trees on a random surface. (orig./HSI)
Suprathermal viscosity of dense matter
International Nuclear Information System (INIS)
Alford, Mark; Mahmoodifar, Simin; Schwenzer, Kai
2010-01-01
Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation μ Δ of the chemical potentials from chemical equilibrium fulfills μ Δ > or approx. T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.
Kaon condensation in dense stellar matter
International Nuclear Information System (INIS)
Lee, Chang-Hwan; Rho, M.; Washington Univ., Seattle, WA
1995-03-01
This article combines two talks given by the authors and is based on Works done in collaboration with G.E. Brown and D.P. Min on kaon condensation in dense baryonic medium treated in chiral perturbation theory using heavy-baryon formalism. It contains, in addition to what was recently published, astrophysical backgrounds for kaon condensation discussed by Brown and Bethe, a discussion on a renormalization-group analysis to meson condensation worked out together with H.K. Lee and S.J. Sin, and the recent results of K.M. Westerberg in the bound-state approach to the Skyrme model. Negatively charged kaons are predicted to condense at a critical density 2 approx-lt ρ/ρo approx-lt 4, in the range to allow the intriguing new phenomena predicted by Brown and Bethe to take place in compact star matter
International Nuclear Information System (INIS)
El-Hussein, K.
1991-08-01
Let V be a real finite dimensional vector space and let K be a connected compact Lie group, which acts on V by means of a continuous linear representation ρ. Let G=V x p K be the motion group which is the semi-direct product of V by K and let P be an invariant differential operator on G. In this paper we give a necessary and sufficient condition for the global solvability of P on G. Now let G be a connected semi-simple Lie group with finite centre and let P be an invariant differential operator on G. We give also a necessary and sufficient condition for the global solvability of P on G. (author). 8 refs
Constructing Dense Graphs with Unique Hamiltonian Cycles
Lynch, Mark A. M.
2012-01-01
It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…
Energy Technology Data Exchange (ETDEWEB)
Pittel, S. [Bartol Research Institute, University of Delaware, Newark, Delaware 19716 (United States); Dukelsky, J. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); Dussel, G.G. [Departamento de Fisica Juan Jose Giambiagi, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)
2004-12-01
We present a family of exactly-solvable models involving the interaction of an ensemble of coupled SU(2) or SU(1,1) systems with a single bosonic field. They arise from the trigonometric Richardson-Gaudin models by replacing one SU(2) or SU(1,1) degree of freedom by an ideal boson. A first application to a system of bosonic atoms and a molecule dimer is reported. (Author) 14 refs., 3 figs.
Inference by replication in densely connected systems.
Neirotti, Juan P; Saad, David
2007-10-01
An efficient Bayesian inference method for problems that can be mapped onto dense graphs is presented. The approach is based on message passing where messages are averaged over a large number of replicated variable systems exposed to the same evidential nodes. An assumption about the symmetry of the solutions is required for carrying out the averages; here we extend the previous derivation based on a replica-symmetric- (RS)-like structure to include a more complex one-step replica-symmetry-breaking-like (1RSB-like) ansatz. To demonstrate the potential of the approach it is employed for studying critical properties of the Ising linear perceptron and for multiuser detection in code division multiple access (CDMA) under different noise models. Results obtained under the RS assumption in the noncritical regime give rise to a highly efficient signal detection algorithm in the context of CDMA; while in the critical regime one observes a first-order transition line that ends in a continuous phase transition point. Finite size effects are also observed. While the 1RSB ansatz is not required for the original problems, it was applied to the CDMA signal detection problem with a more complex noise model that exhibits RSB behavior, resulting in an improvement in performance.
A constitutive law for dense granular flows.
Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier
2006-06-08
A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.
A review of flow modeling for dense medium cyclones
Energy Technology Data Exchange (ETDEWEB)
M. Narasimha; M.S. Brennan; P.N. Holtham [Tata Steel, Jamshedpur (India). R& amp; D Division
2006-06-15
A critical assessment is presented for the existing fluid flow models used for dense medium cyclones (DMCs) and hydrocyclones. As the present discussion indicates, the understanding of dense medium cyclone flow is still far from the complete. However, its similarity to the hydrocyclone provides a basis for improved understanding of fluid flow in DMCs. The complexity of fluid flow in DMCs is basically due to the existence of medium as well as the dominance of turbulent particle size and density effects on separation. Both the theoretical and experimental analysis is done with respect to two-phase motions and solid phase flow in hydrocyclones or DMCs. A detailed discussion is presented on the empirical, semiempirical, and the numerical models based upon both the vorticity-stream function approach and Navier-Stokes equations in their primitive variables and in cylindrical coordinates available in literature. The existing equations describing turbulence and multiphase flows in cyclone are also critically reviewed.
A dynamical systems approach to the tilted Bianchi models of solvable type
Coley, Alan; Hervik, Sigbjørn
2005-02-01
We use a dynamical systems approach to analyse the tilting spatially homogeneous Bianchi models of solvable type (e.g., types VIh and VIIh) with a perfect fluid and a linear barotropic γ-law equation of state. In particular, we study the late-time behaviour of tilted Bianchi models, with an emphasis on the existence of equilibrium points and their stability properties. We briefly discuss the tilting Bianchi type V models and the late-time asymptotic behaviour of irrotational Bianchi type VII0 models. We prove the important result that for non-inflationary Bianchi type VIIh models vacuum plane-wave solutions are the only future attracting equilibrium points in the Bianchi type VIIh invariant set. We then investigate the dynamics close to the plane-wave solutions in more detail, and discover some new features that arise in the dynamical behaviour of Bianchi cosmologies with the inclusion of tilt. We point out that in a tiny open set of parameter space in the type IV model (the loophole) there exist closed curves which act as attracting limit cycles. More interestingly, in the Bianchi type VIIh models there is a bifurcation in which a set of equilibrium points turns into closed orbits. There is a region in which both sets of closed curves coexist, and it appears that for the type VIIh models in this region the solution curves approach a compact surface which is topologically a torus.
A solvable model of Vlasov-kinetic plasma turbulence in Fourier-Hermite phase space
Adkins, T.; Schekochihin, A. A.
2018-02-01
A class of simple kinetic systems is considered, described by the one-dimensional Vlasov-Landau equation with Poisson or Boltzmann electrostatic response and an energy source. Assuming a stochastic electric field, a solvable model is constructed for the phase-space turbulence of the particle distribution. The model is a kinetic analogue of the Kraichnan-Batchelor model of chaotic advection. The solution of the model is found in Fourier-Hermite space and shows that the free-energy flux from low to high Hermite moments is suppressed, with phase mixing cancelled on average by anti-phase-mixing (stochastic plasma echo). This implies that Landau damping is an ineffective route to dissipation (i.e. to thermalisation of electric energy via velocity space). The full Fourier-Hermite spectrum is derived. Its asymptotics are -3/2$ at low wavenumbers and high Hermite moments ( ) and -1/2k-2$ at low Hermite moments and high wavenumbers ( ). These conclusions hold at wavenumbers below a certain cutoff (analogue of Kolmogorov scale), which increases with the amplitude of the stochastic electric field and scales as inverse square of the collision rate. The energy distribution and flows in phase space are a simple and, therefore, useful example of competition between phase mixing and nonlinear dynamics in kinetic turbulence, reminiscent of more realistic but more complicated multi-dimensional systems that have not so far been amenable to complete analytical solution.
International Nuclear Information System (INIS)
Gershgorin, B.; Majda, A.J.
2011-01-01
A statistically exactly solvable model for passive tracers is introduced as a test model for the authors' Nonlinear Extended Kalman Filter (NEKF) as well as other filtering algorithms. The model involves a Gaussian velocity field and a passive tracer governed by the advection-diffusion equation with an imposed mean gradient. The model has direct relevance to engineering problems such as the spread of pollutants in the air or contaminants in the water as well as climate change problems concerning the transport of greenhouse gases such as carbon dioxide with strongly intermittent probability distributions consistent with the actual observations of the atmosphere. One of the attractive properties of the model is the existence of the exact statistical solution. In particular, this unique feature of the model provides an opportunity to design and test fast and efficient algorithms for real-time data assimilation based on rigorous mathematical theory for a turbulence model problem with many active spatiotemporal scales. Here, we extensively study the performance of the NEKF which uses the exact first and second order nonlinear statistics without any approximations due to linearization. The role of partial and sparse observations, the frequency of observations and the observation noise strength in recovering the true signal, its spectrum, and fat tail probability distribution are the central issues discussed here. The results of our study provide useful guidelines for filtering realistic turbulent systems with passive tracers through partial observations.
A Bethe ansatz solvable model for superpositions of Cooper pairs and condensed molecular bosons
Energy Technology Data Exchange (ETDEWEB)
Hibberd, K.E. [Centre for Mathematical Physics, University of Queensland, 4072 (Australia); Dunning, C. [Institute of Mathematics, Statistics and Actuarial Science, University of Kent (United Kingdom); Links, J. [Centre for Mathematical Physics, University of Queensland, 4072 (Australia)]. E-mail: jrl@maths.uq.edu.au
2006-08-07
We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrodinger operators. For the solution we derive here the potential of the Schrodinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PT-symmetric wavefunctions defined on a contour in the complex plane.
A Bethe ansatz solvable model for superpositions of Cooper pairs and condensed molecular bosons
Hibberd, K. E.; Dunning, C.; Links, J.
2006-08-01
We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrödinger operators. For the solution we derive here the potential of the Schrödinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PT-symmetric wavefunctions defined on a contour in the complex plane.
A Bethe ansatz solvable model for superpositions of Cooper pairs and condensed molecular bosons
International Nuclear Information System (INIS)
Hibberd, K.E.; Dunning, C.; Links, J.
2006-01-01
We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrodinger operators. For the solution we derive here the potential of the Schrodinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PT-symmetric wavefunctions defined on a contour in the complex plane
Hamiltonian formulation of systems with balanced loss-gain and exactly solvable models
Ghosh, Pijush K.; Sinha, Debdeep
2018-01-01
A Hamiltonian formulation of generic many-body systems with balanced loss and gain is presented. It is shown that a Hamiltonian formulation is possible only if the balancing of loss and gain terms occurs in a pairwise fashion. It is also shown that with the choice of a suitable co-ordinate, the Hamiltonian can always be reformulated in the background of a pseudo-Euclidean metric. If the equations of motion of some of the well-known many-body systems like Calogero models are generalized to include balanced loss and gain, it appears that the same may not be amenable to a Hamiltonian formulation. A few exactly solvable systems with balanced loss and gain, along with a set of integrals of motion are constructed. The examples include a coupled chain of nonlinear oscillators and a many-particle Calogero-type model with four-body inverse square plus two-body pair-wise harmonic interactions. For the case of nonlinear oscillators, stable solution exists even if the loss and gain parameter has unbounded upper range. Further, the range of the parameter for which the stable solutions are obtained is independent of the total number of the oscillators. The set of coupled nonlinear equations are solved exactly for the case when the values of all the constants of motions except the Hamiltonian are equal to zero. Exact, analytical classical solutions are presented for all the examples considered.
Exactly solvable models of two-dimensional dilaton cosmology with quantum backreaction
International Nuclear Information System (INIS)
Zaslavskii, O B
2003-01-01
We consider a general approach to exactly solvable 2D dilaton cosmology with one-loop backreaction from conformal fields taken into account. It includes as particular cases previous models discussed in the literature. We list different types of solutions and investigate their properties for simple models, typical for string theory. We find a rather rich class of everywhere-regular solutions, which exist practically in every type of analysed solution. They exhibit different kinds of asymptotic behaviour in the past and future, including inflation, superinflation, deflation, power expansion or contraction. In particular, for some models the dS spacetime with a time-dependent dilaton field is the exact solution of the field equations. For some kinds of solution the weak-energy condition is violated independently of a specific model. We also find the solutions with a singularity which is situated in an infinite past (or future), so at any finite moment of a comoving time the universe is singularity-free. It is pointed out that for some models the spacetime may be everywhere regular even in spite of infinitely large quantum backreaction in an infinite past
Breaking Dense Structures: Proving Stability of Densely Structured Hybrid Systems
Directory of Open Access Journals (Sweden)
Eike Möhlmann
2015-06-01
Full Text Available Abstraction and refinement is widely used in software development. Such techniques are valuable since they allow to handle even more complex systems. One key point is the ability to decompose a large system into subsystems, analyze those subsystems and deduce properties of the larger system. As cyber-physical systems tend to become more and more complex, such techniques become more appealing. In 2009, Oehlerking and Theel presented a (de-composition technique for hybrid systems. This technique is graph-based and constructs a Lyapunov function for hybrid systems having a complex discrete state space. The technique consists of (1 decomposing the underlying graph of the hybrid system into subgraphs, (2 computing multiple local Lyapunov functions for the subgraphs, and finally (3 composing the local Lyapunov functions into a piecewise Lyapunov function. A Lyapunov function can serve multiple purposes, e.g., it certifies stability or termination of a system or allows to construct invariant sets, which in turn may be used to certify safety and security. In this paper, we propose an improvement to the decomposing technique, which relaxes the graph structure before applying the decomposition technique. Our relaxation significantly reduces the connectivity of the graph by exploiting super-dense switching. The relaxation makes the decomposition technique more efficient on one hand and on the other allows to decompose a wider range of graph structures.
Dense module enumeration in biological networks
International Nuclear Information System (INIS)
Tsuda, Koji; Georgii, Elisabeth
2009-01-01
Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.
Finding dense locations in indoor tracking data
DEFF Research Database (Denmark)
Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua
2014-01-01
Finding the dense locations in large indoor spaces is very useful for getting overloaded locations, security, crowd management, indoor navigation, and guidance. Indoor tracking data can be very large and are not readily available for finding dense locations. This paper presents a graph-based model...... of the mapping table, along with associated construction, query processing, and pruning techniques. The DLT-Index supports very efficient aggregate point queries, interval queries, and dense location queries. A comprehensive experimental study with real data shows that the proposed techniques can efficiently...... find dense locations in large amounts of indoor tracking data....
Elemental nitrogen partitioning in dense interstellar clouds.
Daranlot, Julien; Hincelin, Ugo; Bergeat, Astrid; Costes, Michel; Loison, Jean-Christophe; Wakelam, Valentine; Hickson, Kevin M
2012-06-26
Many chemical models of dense interstellar clouds predict that the majority of gas-phase elemental nitrogen should be present as N(2), with an abundance approximately five orders of magnitude less than that of hydrogen. As a homonuclear diatomic molecule, N(2) is difficult to detect spectroscopically through infrared or millimeter-wavelength transitions. Therefore, its abundance is often inferred indirectly through its reaction product N(2)H(+). Two main formation mechanisms, each involving two radical-radical reactions, are the source of N(2) in such environments. Here we report measurements of the low temperature rate constants for one of these processes, the N + CN reaction, down to 56 K. The measured rate constants for this reaction, and those recently determined for two other reactions implicated in N(2) formation, are tested using a gas-grain model employing a critically evaluated chemical network. We show that the amount of interstellar nitrogen present as N(2) depends on the competition between its gas-phase formation and the depletion of atomic nitrogen onto grains. As the reactions controlling N(2) formation are inefficient, we argue that N(2) does not represent the main reservoir species for interstellar nitrogen. Instead, elevated abundances of more labile forms of nitrogen such as NH(3) should be present on interstellar ices, promoting the eventual formation of nitrogen-bearing organic molecules.
Filter-Dense Multicolor Microscopy.
Directory of Open Access Journals (Sweden)
Siavash Kijani
Full Text Available Immunofluorescence microscopy is a unique method to reveal the spatial location of proteins in tissues and cells. By combining antibodies that are labeled with different fluorochromes, the location of several proteins can simultaneously be visualized in one sample. However, because of the risk of bleed-through signals between fluorochromes, standard multicolor microscopy is restricted to a maximum of four fluorescence channels, including one for nuclei staining. This is not always enough to address common scientific questions. In particular, the use of a rapidly increasing number of marker proteins to classify functionally distinct cell populations and diseased tissues emphasizes the need for more complex multistainings. Hence, multicolor microscopy should ideally offer more channels to meet the current needs in biomedical science. Here we present an enhanced multi-fluorescence setup, which we call Filter-Dense Multicolor Microscopy (FDMM. FDMM is based on condensed filter sets that are more specific for each fluorochrome and allow a more economic use of the light spectrum. FDMM allows at least six independent fluorescence channels and can be applied to any standard fluorescence microscope without changing any operative procedures for the user. In the present study, we demonstrate an FDMM setup of six channels that includes the most commonly used fluorochromes for histology. We show that the FDMM setup is specific and robust, and we apply the technique on typical biological questions that require more than four fluorescence microscope channels.
International Nuclear Information System (INIS)
Tetsu, Miyamoto
1999-01-01
The steady state and quasi-steady processes of infinite- and finite-width sheet z-pinches are studied. The relations corresponding to the Bennett relation and Pease-Braginskii current of cylindrical fiber z-pinches depend on a geometrical factor in the sheet z-pinches. The finite-width sheet z-pinch is approximated by a segment of infinite-width sheet z-pinch, if it is wide enough, and corresponds to a number of (width/thickness) times fiber z-pinch plasmas of the diameter that equals the sheet thickness. If the sheet current equals this number times the fiber current, the plasma created in the sheet z-pinches is as dense as in the fiber z-pinches. The total energy of plasma and magnetic field per unit mass is approximately equal in both pinches. Quasi-static transient processes are different in several aspects from the fiber z-pinch. No radiation collapse occurs in the sheet z-pinch. The stability is improved in the sheet z-pinches. The fusion criterions and the experimental arrangements to produce the sheet z-pinches are also discussed. (author)
Ban, Masashi
2017-08-01
Violation of the quantum regression theorem and the Leggett-Garg inequality is studied by means of the exactly solvable multi-mode Jaynes-Cummings model. An exact expression of a two-time correlation function is compared with that derived by the quantum regression theorem. It is found that the quantum regression theorem is not valid even if the reduced time evolution of the qubit is Markovian. Furthermore, it is shown that if the quantum regression theorem is applied in this model, the Leggett-Garg inequality is satisfied while it is violated by the exact correlation function.
Directory of Open Access Journals (Sweden)
Weiguo Rui
2014-01-01
Full Text Available By using the integral bifurcation method together with factoring technique, we study a water wave model, a high-order nonlinear wave equation of KdV type under some newly solvable conditions. Based on our previous research works, some exact traveling wave solutions such as broken-soliton solutions, periodic wave solutions of blow-up type, smooth solitary wave solutions, and nonsmooth peakon solutions within more extensive parameter ranges are obtained. In particular, a series of smooth solitary wave solutions and nonsmooth peakon solutions are obtained. In order to show the properties of these exact solutions visually, we plot the graphs of some representative traveling wave solutions.
Znojil, Miloslav
2017-07-01
The phenomenon of the birth of an isolated quantum bound state at the lower edge of the continuum is studied for a particle moving along a discrete real line of coordinates x ∈Z . The motion is controlled by a weakly nonlocal 2 J -parametric external potential V which is non-Hermitian but P T symmetric. The model is found exactly solvable. The bound states are interpreted as Sturmians. Their closed-form definitions are presented and discussed up to J =7 .
Dense suspensions: force response and jamming
von Kann, S.
2012-01-01
The response of dense suspensions to an external force was studied using two different experiments. In the first experiment, objects were settled in a deep bath of a dense cornstarch suspension. This is the only suspension to result in two unexpected phenomena: Velocity oscillations in the bulk, and
Dense image correspondences for computer vision
Liu, Ce
2016-01-01
This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applications such techniques were originally developed to solve. This book introduces the techniques used for establishing correspondences between challenging image pairs, the novel features used to make these techniques robust, and the many problems dense correspondences are now being used to solve. The book provides information to anyone attempting to utilize dense correspondences in order to solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code, and data necessary for expediting the development of effective correspondence-based computer vision systems. · Provides i...
Directory of Open Access Journals (Sweden)
T. Scoquart, J. J. Seaward, S. G. Jackson, M. Olshanii
2016-10-01
Full Text Available The purpose of this article is to demonstrate that non-crystallographic reflection groups can be used to build new solvable quantum particle systems. We explicitly construct a one-parametric family of solvable four-body systems on a line, related to the symmetry of a regular icosahedron: in two distinct limiting cases the system is constrained to a half-line. We repeat the program for a 600-cell, a four-dimensional generalization of the regular three-dimensional icosahedron.
Statistical mechanics and dynamics of solvable models with long-range interactions
International Nuclear Information System (INIS)
Campa, Alessandro; Dauxois, Thierry; Ruffo, Stefano
2009-01-01
For systems with long-range interactions, the two-body potential decays at large distances as V(r)∼1/r α , with α≤d, where d is the space dimension. Examples are: gravitational systems, two-dimensional hydrodynamics, two-dimensional elasticity, charged and dipolar systems. Although such systems can be made extensive, they are intrinsically non additive: the sum of the energies of macroscopic subsystems is not equal to the energy of the whole system. Moreover, the space of accessible macroscopic thermodynamic parameters might be non convex. The violation of these two basic properties of the thermodynamics of short-range systems is at the origin of ensemble inequivalence. In turn, this inequivalence implies that specific heat can be negative in the microcanonical ensemble, and temperature jumps can appear at microcanonical first order phase transitions. The lack of convexity allows us to easily spot regions of parameter space where ergodicity may be broken. Historically, negative specific heat had been found for gravitational systems and was thought to be a specific property of a system for which the existence of standard equilibrium statistical mechanics itself was doubted. Realizing that such properties may be present for a wider class of systems has renewed the interest in long-range interactions. Here, we present a comprehensive review of the recent advances on the statistical mechanics and out-of-equilibrium dynamics of solvable systems with long-range interactions. The core of the review consists in the detailed presentation of the concept of ensemble inequivalence, as exemplified by the exact solution, in the microcanonical and canonical ensembles, of mean-field type models. Remarkably, the entropy of all these models can be obtained using the method of large deviations. Long-range interacting systems display an extremely slow relaxation towards thermodynamic equilibrium and, what is more striking, the convergence towards quasi-stationary states. The
Dense Matter Physics with Rare Isotopes
Kim, Youngman
Terrestrial dense matter from heavy ion collisions with rare isotope beams offers much opportunity to study compact stars, exotic nuclei and also many facets of QCD phase diagram with non-zero isospin asymmetry. We first review some recent results with a parity doublet model in dense matter and in nuclei to discuss the origin of nucleon mass other than that from chiral symmetry breaking. To study dense matter created in heavy ion collisions, a transport model is almost the only available tool on the market. We present a brief summary of a new transport code, DaeJeon Boltzmann-Uehling-Uhlenbeck.
Exact solutions and critical chaos in dilaton gravity with a boundary
Energy Technology Data Exchange (ETDEWEB)
Fitkevich, Maxim [Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary Prospect 7a, Moscow 117312 (Russian Federation); Moscow Institute of Physics and Technology,Institutskii per. 9, Dolgoprudny 141700, Moscow Region (Russian Federation); Levkov, Dmitry [Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary Prospect 7a, Moscow 117312 (Russian Federation); Zenkevich, Yegor [Dipartimento di Fisica, Università di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); INFN, sezione di Milano-Bicocca,I-20126 Milano (Italy); National Research Nuclear University MEPhI,Moscow 115409 (Russian Federation)
2017-04-19
We consider (1+1)-dimensional dilaton gravity with a reflecting dynamical boundary. The boundary cuts off the region of strong coupling and makes our model causally similar to the spherically-symmetric sector of multidimensional gravity. We demonstrate that this model is exactly solvable at the classical level and possesses an on-shell SL(2, ℝ) symmetry. After introducing general classical solution of the model, we study a large subset of soliton solutions. The latter describe reflection of matter waves off the boundary at low energies and formation of black holes at energies above critical. They can be related to the eigenstates of the auxiliary integrable system, the Gaudin spin chain. We argue that despite being exactly solvable, the model in the critical regime, i.e. at the verge of black hole formation, displays dynamical instabilities specific to chaotic systems. We believe that this model will be useful for studying black holes and gravitational scattering.
Astrophysics implication of dense matter phase diagram
International Nuclear Information System (INIS)
Sedrakian, A.
2010-01-01
I will discuss the ways that astrophysics can help us to understand the phase diagram of dense matter. The examples will include gravitational wave from compact stars, cooling of compact stars, and effects on vorticity on compact star dynamics. (author)
Exploring warm dense water by using Free-Electron-Laser
Sperling, P.; Kim, J.; Chen, Z.; French, M.; Curry, C.; Koralek, J.; Mo, M.; Nakatsutsumi, M.; Rodel, R.; Redmer, R.; Toleikis, S.; Zalden, P.; Glenzer, S. H.
2017-10-01
Warm dense water is predicted in the interior of giant planets and has an important impact on planetary evolutions. As such, the electrical and thermal properties in this regime are critically important for modelling astrophysical objects. We present electrical property measurements in warm dense water by using a novel planar water jet compatible with high repetition rate studies. The liquid density water is isochorically and uniformly heated to non-equilibrium warm dense matter by FLASH free-electron laser irradiation (5.5 nm, 0.1 - 20 μ J). The dielectric function can be extracted from optical transmission and reflection measurements on the picosecond timescale before significant expansion and subsequent relaxation occurs. The time-dependent dielectric function reveals the electronic properties of water at different temperatures of the electronic and ionic subsystem during the heating and relaxation process, that allow to infer the electron-ion energy coupling. Comparison with 2-temperature density-functional-theory molecular-dynamic simulations show good agreement, that can not be achieved by standard theories of plasma physics. This work is supported by DOE FES under FWP 100182.
Kinetic chemistry of dense interstellar clouds
International Nuclear Information System (INIS)
Graedel, T.E.; Langer, W.D.; Frerking, M.A.
1982-01-01
A detailed model of the time-dependent chemistry of dense interstellar clouds has been developed to study the dominant chemical processes in carbon and oxygen isotope fractionation, formation of nitrogen-containing molecules, evolution of product molecules as a function of cloud density and temperature, and other topics of interest. The full computation involves 328 individual reactions (expanded to 1067 to study carbon and oxygen isotope chemistry); photodegradation processes are unimportant in these dense clouds and are excluded
Czech Academy of Sciences Publication Activity Database
Sasaki, R.; Znojil, Miloslav
2016-01-01
Roč. 49, č. 44 (2016), č. článku 445303. ISSN 1751-8113 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : non-analytic potentials * bound states * reflection and transmission * exactly solvable * orthogonality theorems * associated Hamiltonians * supersymmetry Subject RIV: BE - Theoretical Physics Impact factor: 1.857, year: 2016
Two-dimensional fractal geometry, critical phenomena and conformal invariance
International Nuclear Information System (INIS)
Duplantier, B.
1988-01-01
The universal properties of critical geometrical systems in two-dimensions (2D) like the O (n) and Potts models, are described in the framework of Coulomb gas methods and conformal invariance. The conformal spectrum of geometrical critical systems obtained is made of a discrete infinite series of scaling dimensions. Specific applications involve the fractal properties of self-avoiding walks, percolation clusters, and also some non trivial critical exponents or fractal dimensions associated with subsets of the planar Brownian motion. The statistical mechanics of the same critical models on a random 2D lattice (namely in presence of a critically-fluctuating metric, in the so-called 2D quantum gravity) is also addressed, and the above critical geometrical systems are shown to be exactly solvable in this case. The new ''gravitational'' conformal spectrum so derived is found to satisfy the recent Knizhnik, Polyakov and Zamolodchikov quadratic relation which links it to the standard conformal spectrum in the plane
METHOD OF PRODUCING DENSE CONSOLIDATED METALLIC REGULUS
Magel, T.T.
1959-08-11
A methcd is presented for reducing dense metal compositions while simultaneously separating impurities from the reduced dense metal and casting the reduced parified dense metal, such as uranium, into well consolidated metal ingots. The reduction is accomplished by heating the dense metallic salt in the presence of a reducing agent, such as an alkali metal or alkaline earth metal in a bomb type reacting chamber, while applying centrifugal force on the reacting materials. Separation of the metal from the impurities is accomplished essentially by the incorporation of a constricted passageway at the vertex of a conical reacting chamber which is in direct communication with a collecting chamber. When a centrifugal force is applled to the molten metal and slag from the reduction in a direction collinear with the axis of the constricted passage, the dense molten metal is forced therethrough while the less dense slag is retained within the reaction chamber, resulting in a simultaneous separation of the reduced molten metal from the slag and a compacting of the reduced metal in a homogeneous mass.
Bogolubov, N. N.; Prykarpatsky, Y. A.
2013-03-01
An approach to describing nonlinear Lax type integrable dynamical systems of modern mathematical and theoretical physics, based on the Marsden-Weinstein reduction method on canonically symplectic manifolds with group symmetry, is proposed. Its natural relationship with the well-known Adler-Kostant-Souriau-Berezin-Kirillov method and the associated R-matrix approach is analyzed. A new generalized exactly solvable spatially one-dimensional quantum superradiance model, describing a charged fermionic medium interacting with external electromagnetic field, is suggested. The Lax type operator spectral problem is presented, the related R-structure is calculated. The Hamilton operator renormalization procedure subject to a physically stable vacuum is described, the quantum excitations and quantum solitons, related with the thermodynamical equilibrity of the model, are discussed.
International Nuclear Information System (INIS)
Calogero, F.
1976-01-01
A generalized Wronskian type relation is used to obtain a number of expressions for the scattering and bound state parameters (reflection and transmission coefficients, bound state energies and normalization constants) in the context of the one dimensional Schroedinger equation. These expressions are in the form of integrals over the wave functions multiplied by appropriate (generally nonlinear) combinations of the potentials and their derivatives. Some of them provide the basis for deriving classes of nonlinear partial differential equations that are solvable by the inverse scattering method. The main interest of this approach rests in its simplicity and in its delivery of nonlinear evolution equations that may involve more than one (space) variable and contain coefficients that are not constant
Rates of Thermonuclear Reactions in Dense Plasmas
International Nuclear Information System (INIS)
Tsytovich, V.N.; Bornatici, M.
2000-01-01
The problem of plasma screening of thermonuclear reactions has attracted considerable scientific interest ever since Salpeter's seminal paper, but it is still faced with controversial statements and without any definite conclusion. It is of relevant importance to thermonuclear reactions in dense astrophysical plasmas, for which charge screening can substantially affect the reaction rates. Whereas Salpeter and a number of subsequent investigations have dealt with static screening, Carraro, Schafer, and Koonin have drawn attention to the fact that plasma screening of thermonuclear reactions is an essentially dynamic effect. In addressing the issue of collective plasma effects on the thermonuclear reaction rates, the first critical overview of most of the work carried out so far is presented and the validity of the test particle approach is assessed. In contrast to previous investigations, we base our description on the kinetic equation for nonequilibrium plasmas, which accounts for the effects on the rates of thermonuclear reactions of both plasma fluctuations and screening and allows one to analyze explicitly the effects of the fluctuations on the reaction rates. Such a kinetic formulation is more general than both Salpeter's approach and the recently developed statistical approaches and makes it possible to obtain a more comprehensive understanding of the problem. A noticeable result of the fluctuation approach is that the static screening, which affects both the interaction and the self-energy of the reacting nuclei, does not affect the reaction rates, in contrast with the results obtained so far. Instead, a reduction of the thermonuclear reaction rates is obtained as a result of the effect of plasma fluctuations related to the free self-energy of the reacting nuclei. A simple physical explanation of the slowing down of the reaction rates is given, and the relation to the dynamically screened test particle approach is discussed. Corrections to the reaction rates
Constitutive law of dense granular matter
International Nuclear Information System (INIS)
Hatano, Takahiro
2010-01-01
The frictional properties of dense granular matter under steady shear flow are investigated using numerical simulation. Shear flow tends to localize near the driving boundary unless the coefficient of restitution is close to zero and the driving velocity is small. The bulk friction coefficient is independent of shear rate in dense and slow flow, whereas it is an increasing function of shear rate in rapid flow. The coefficient of restitution affects the friction coefficient only in such rapid flow. Contrastingly, in dense and slow regime, the friction coefficient is independent of the coefficient of restitution and mainly determined by the elementary friction coefficient and the rotation of grains. It is found that the mismatch between the vorticity of flow and the angular frequency of grains plays a key role to the frictional properties of sheared granular matter.
Nucleon structure and properties of dense matter
International Nuclear Information System (INIS)
Kutschera, M.; Pethick, C.J.; Illinois Univ., Urbana, IL
1988-01-01
We consider the properties of dense matter in a framework of the Skyrme soliton model and the chiral bag model. The influence of the nucleon structure on the equation of state of dense matter is emphasized. We find that in both models the energy per unit volume is proportional to n 4/3 , n being the baryon number density. We discuss the properties of neutron stars with a derived equation of state. The role of many-body effects is investigated. The effect of including higher order terms in the chiral lagrangian is examined. The phase transition to quark matter is studied. 29 refs., 6 figs. (author)
Dense Alternating Sign Matrices and Extensions
Czech Academy of Sciences Publication Activity Database
Fiedler, Miroslav; Hall, F.J.; Stroev, M.
2014-01-01
Roč. 444, 1 March (2014), s. 219-226 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : alternating sign matrix * dense matrix * totally unimodular matrix * combined matrix * generalized complementary basic matrix Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014
Precision Neuroscience: Dense Sampling of Individual Brains.
Poldrack, Russell A
2017-08-16
In this issue, Gordon et al. (2017) use dense sampling of resting and task fMRI within individuals to demonstrate that patterns of correlation in resting fMRI are closely aligned with functional architecture as identified using task fMRI. Copyright © 2017 Elsevier Inc. All rights reserved.
Eculizumab in Pediatric Dense Deposit Disease
Oosterveld, Michiel J. S.; Garrelfs, Mark R.; Hoppe, Bernd; Florquin, Sandrine; Roelofs, Joris J. T. H.; van den Heuvel, L. P.; Amann, Kerstin; Davin, Jean-Claude; Bouts, Antonia H. M.; Schriemer, Pietrik J.; Groothoff, Jaap W.
2015-01-01
Dense deposit disease (DDD), a subtype of C3 glomerulopathy, is a rare disease affecting mostly children. Treatment options are limited. Debate exists whether eculizumab, a monoclonal antibody against complement factor C5, is effective in DDD. Reported data are scarce, especially in children. The
Preparation of a dense, polycrystalline ceramic structure
Cooley, Jason; Chen, Ching-Fong; Alexander, David
2010-12-07
Ceramic nanopowder was sealed inside a metal container under a vacuum. The sealed evacuated container was forced through a severe deformation channel at an elevated temperature below the melting point of the ceramic nanopowder. The result was a dense nanocrystalline ceramic structure inside the metal container.
Fluidized bed dry dense medium coal beneficiation
CSIR Research Space (South Africa)
North, Brian C
2017-10-01
Full Text Available Coal beneficiation in South Africa is currently conducted mostly on a wet “float and sink” basis. This process is heavily water intensive and also potentially polluting. Dry beneficiation alternatives are being sought. The alternative of dry dense...
A Note on Strongly Dense Matrices
Czech Academy of Sciences Publication Activity Database
Fiedler, Miroslav; Hall, F.J.
2015-01-01
Roč. 1, č. 4 (2015), s. 721-730 ISSN 2199-675X Institutional support: RVO:67985807 Keywords : strongly dense matrix * Boolean matrix * nonnegative matrix * idempotent matrix * intrinsic product * generalized complementary basic matrix Subject RIV: BA - General Mathematics
Morren, Sybil Huang
1991-01-01
Transonic flow of dense gases for two-dimensional, steady-state, flow over a NACA 0012 airfoil was predicted analytically. The computer code used to model the dense gas behavior was a modified version of Jameson's FL052 airfoil code. The modifications to the code enabled modeling the dense gas behavior near the saturated vapor curve and critical pressure region where the fundamental derivative, Gamma, is negative. This negative Gamma region is of interest because the nonclassical gas behavior such as formation and propagation of expansion shocks, and the disintegration of inadmissible compression shocks may exist. The results indicated that dense gases with undisturbed thermodynamic states in the negative Gamma region show a significant reduction in the extent of the transonic regime as compared to that predicted by the perfect gas theory. The results support existing theories and predictions of the nonclassical, dense gas behavior from previous investigations.
International Nuclear Information System (INIS)
Schulze-Halberg, Axel; García-Ravelo, Jesús; Pacheco-García, Christian; Juan Peña Gil, José
2013-01-01
We consider the Schrödinger equation in the Thomas–Fermi field, a model that has been used for describing electron systems in δ-doped semiconductors. It is shown that the problem becomes exactly-solvable if a particular effective (position-dependent) mass distribution is incorporated. Orthogonal sets of normalizable bound state solutions are constructed in explicit form, and the associated energies are determined. We compare our results with the corresponding findings on the constant-mass problem discussed by Ioriatti (1990) [13]. -- Highlights: ► We introduce an exactly solvable, position-dependent mass model for the Thomas–Fermi potential. ► Orthogonal sets of solutions to our model are constructed in closed form. ► Relation to delta-doped semiconductors is discussed. ► Explicit subband bottom energies are calculated and compared to results obtained in a previous study
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2013-01-01
Roč. 336, SEP (2013), s. 98-111 ISSN 0003-4916 R&D Projects: GA ČR GAP203/11/1433 Institutional support: RVO:61389005 Keywords : Non-Hermitian quantum Hamiltonian * exceptional point * phase transition * exactly solvable model Subject RIV: BE - Theoretical Physics Impact factor: 3.065, year: 2013 http://www.sciencedirect.com/science/article/pii/S0003491613001267
Directory of Open Access Journals (Sweden)
D. Blackmore
2013-06-01
Full Text Available A new exactly solvable spatially one-dimensional quantum superradiance model describing a charged fermionic medium interacting with external electromagnetic field is proposed. The infinite hierarchy of quantuum conservation laws and many-particle Bethe eigenstates that model quantum solitonic impulse structures are constructed. The Hamilton operator renormalization procedure subject to a physically stable vacuum is described, the quantum excitations and quantum solitons, related with the thermodynamical equilibrity of the model, are discussed.
International Nuclear Information System (INIS)
Zheng Renhui; Jing Yuanyuan; Chen Liping; Shi Qiang
2011-01-01
Graphical abstract: An analytically solvable model was employed to study proton coupled electron transfer reactions. Approximated theories are assessed, and vibrational coherence is observed in case of small reorganization energy. Research highlights: → The Duschinsky rotation effect in PCET reactions. → Assessment of the BO approx. for proton motion using an analytically solvable model. → Vibrational coherence in PCET in the case of small reorganization energy. - Abstract: By employing an analytically solvable model including the Duschinsky rotation effect, we investigated the applicability of the commonly used Born-Oppenheimer (BO) approximation for separating the proton and proton donor-acceptor motions in theories of proton coupled electron transfer (PCET) reactions. Comparison with theories based on the BO approximation shows that, the BO approximation for the proton coordinate is generally valid while some further approximations may become inaccurate in certain range of parameters. We have also investigated the effect of vibrationally coherent tunneling in the case of small reorganization energy, and shown that it plays an important role on the rate constant and kinetic isotope effect.
WARM EXTENDED DENSE GAS AT THE HEART OF A COLD COLLAPSING DENSE CORE
International Nuclear Information System (INIS)
Shinnaga, Hiroko; Phillips, Thomas G.; Furuya, Ray S.; Kitamura, Yoshimi
2009-01-01
In order to investigate when and how the birth of a protostellar core occurs, we made survey observations of four well-studied dense cores in the Taurus molecular cloud using CO transitions in submillimeter bands. We report here the detection of unexpectedly warm (∼30-70 K), extended (radius of ∼2400 AU), dense (a few times 10 5 cm -3 ) gas at the heart of one of the dense cores, L1521F (MC27), within the cold dynamically collapsing components. We argue that the detected warm, extended, dense gas may originate from shock regions caused by collisions between the dynamically collapsing components and outflowing/rotating components within the dense core. We propose a new stage of star formation, 'warm-in-cold core stage (WICCS)', i.e., the cold collapsing envelope encases the warm extended dense gas at the center due to the formation of a protostellar core. WICCS would constitute a missing link in evolution between a cold quiescent starless core and a young protostar in class 0 stage that has a large-scale bipolar outflow.
Thermal and nonthermal motions in dense cores
Energy Technology Data Exchange (ETDEWEB)
Myers, P.C.; Ladd, E.F.; Fuller, G.A. (Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (USA))
1991-05-01
Kinetic temperature and NH3 line width data for 61 dense cores with embedded IRAS sources show that the nonthermal component of the core motions increases with source luminosity more rapidly than does the thermal component. The trends cross in the luminosity range 7-22 solar luminosities, which divides the regimes of thermal and nonthermal motions. Maps of line widths in dense cores and their surrounding clouds indicate that nonthermal line broadening is due not only to stellar winds, but also to gas properties independent of the star. The 'initial conditions' for motions in cores forming lower-mass stars are primarily thermal, while those in cores forming higher mass stars are probably primarily nonthermal. These differences in core properties may arise from differences in the relative proportion of magnetic and gravitational energy in the condensing core. 30 refs.
Topological Surface States in Dense Solid Hydrogen.
Naumov, Ivan I; Hemley, Russell J
2016-11-11
Metallization of dense hydrogen and associated possible high-temperature superconductivity represents one of the key problems of physics. Recent theoretical studies indicate that before becoming a good metal, compressed solid hydrogen passes through a semimetallic stage. We show that such semimetallic phases predicted to be the most stable at multimegabar (∼300 GPa) pressures are not conventional semimetals: they exhibit topological metallic surface states inside the bulk "direct" gap in the two-dimensional surface Brillouin zone; that is, metallic surfaces may appear even when the bulk of the material remains insulating. Examples include hydrogen in the Cmca-12 and Cmca-4 structures; Pbcn hydrogen also has metallic surface states but they are of a nontopological nature. The results provide predictions for future measurements, including probes of possible surface superconductivity in dense hydrogen.
The kinetic chemistry of dense interstellar clouds
Graedel, T. E.; Langer, W. D.; Frerking, M. A.
1982-01-01
A model of the time-dependent chemistry of dense interstellar clouds is formulated to study the dominant chemical processes in carbon and oxygen isotope fractionation, the formation of nitrogen-containing molecules, and the evolution of product molecules as a function of cloud density and temperature. The abundances of the dominant isotopes of the carbon- and oxygen-bearing molecules are calculated. The chemical abundances are found to be quite sensitive to electron concentration since the electron concentration determines the ratio of H3(+) to He(+), and the electron density is strongly influenced by the metals abundance. For typical metal abundances and for H2 cloud density not less than 10,000 molecules/cu cm, nearly all carbon exists as CO at late cloud ages. At high cloud density, many aspects of the chemistry are strongly time dependent. Finally, model calculations agree well with abundances deduced from observations of molecular line emission in cold dense clouds.
Deterministic dense coding with partially entangled states
Mozes, Shay; Oppenheim, Jonathan; Reznik, Benni
2005-01-01
The utilization of a d -level partially entangled state, shared by two parties wishing to communicate classical information without errors over a noiseless quantum channel, is discussed. We analytically construct deterministic dense coding schemes for certain classes of nonmaximally entangled states, and numerically obtain schemes in the general case. We study the dependency of the maximal alphabet size of such schemes on the partially entangled state shared by the two parties. Surprisingly, for d>2 it is possible to have deterministic dense coding with less than one ebit. In this case the number of alphabet letters that can be communicated by a single particle is between d and 2d . In general, we numerically find that the maximal alphabet size is any integer in the range [d,d2] with the possible exception of d2-1 . We also find that states with less entanglement can have a greater deterministic communication capacity than other more entangled states.
Highly Dense Isolated Metal Atom Catalytic Sites
DEFF Research Database (Denmark)
Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei
2015-01-01
-ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation......Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X...
Dense Output for Strong Stability Preserving Runge–Kutta Methods
Ketcheson, David I.
2016-12-10
We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step-size restriction as the method itself. A general recipe for first-order SSP dense output formulae for SSP methods is given, and second-order dense output formulae for several optimal SSP methods are developed. It is shown that SSP dense output formulae of order three and higher do not exist, and that in any method possessing a second-order SSP dense output, the coefficient matrix A has a zero row.
Localisation accuracy of semi-dense monocular SLAM
Schreve, Kristiaan; du Plessies, Pieter G.; Rätsch, Matthias
2017-06-01
Understanding the factors that influence the accuracy of visual SLAM algorithms is very important for the future development of these algorithms. So far very few studies have done this. In this paper, a simulation model is presented and used to investigate the effect of the number of scene points tracked, the effect of the baseline length in triangulation and the influence of image point location uncertainty. It is shown that the latter is very critical, while the other all play important roles. Experiments with a well known semi-dense visual SLAM approach are also presented, when used in a monocular visual odometry mode. The experiments shows that not including sensor bias and scale factor uncertainty is very detrimental to the accuracy of the simulation results.
Accelerating Dense Linear Algebra on the GPU
DEFF Research Database (Denmark)
Sørensen, Hans Henrik Brandenborg
and matrix-vector operations on GPUs. Such operations form the backbone of level 1 and level 2 routines in the Basic Linear Algebra Subroutines (BLAS) library and are therefore of great importance in many scientific applications. The target hardware is the most recent NVIDIA Tesla 20-series (Fermi...... architecture). Most of the techniques I discuss for accelerating dense linear algebra are applicable to memory-bound GPU algorithms in general....
Particle identification system based on dense aerogel
Energy Technology Data Exchange (ETDEWEB)
Barnyakov, A.Yu. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Barnyakov, M.Yu. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20, Karl Marx prospect, Novosibirsk, 630092 (Russian Federation); Beloborodov, K.I., E-mail: K.I.Beloborodov@inp.nsk.su [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Bobrovnikov, V.S.; Buzykaev, A.R. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Danilyuk, A.F. [Boreskov Institute of Catalysis, 5, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Golubev, V.B. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Gulevich, V.V. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Kononov, S.A.; Kravchenko, E.A. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Onuchin, A.P.; Martin, K.A. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20, Karl Marx prospect, Novosibirsk, 630092 (Russian Federation); Serednyakov, S.I. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); and others
2013-12-21
A threshold Cherenkov counter based on dense aerogel with refraction index n=1.13 is described. This counter is used for kaon identification at momenta below 1 GeV/c in the SND detector, which takes data at the VEPP-2000 e{sup +}e{sup −} collider. The results of measurements of the counter efficiency using electrons, muons, pions, and kaons produced in e{sup +}e{sup −} annihilation are presented.
Dense Aluminum Plasma Equation of State Measurements
Workman, J.; Tierney, T.; Kyrala Benage, G., Jr.
1997-11-01
Knowledge of the equation of state for any material is essential to a full understanding of its intrinsic and dynamic properties. Accurate experimental measurements of the equation of state for strongly coupled plasmas (Γ >= 1), relevant to astrophysical, geologic and ICF applications, have been extremely difficult. We present preliminary results on a novel method for off-Hugoniot measurements of the equation of state for dense plasmas (3 Marx pulsed power device to create plasma densities of up to one-tenth solid and temperatures of a few eV from a 200 μm diameter aluminum wire. Density and temperature profiles of the dense aluminum plasma are determined using laser-produced temporally- and spatially-resolved x-ray backlighters and optical streak records. Simulations indicate that the use of a laser-generated shock wave in the dense plasma can provide megabar pressures at 10 eV temperatures with ion densities of up to 10 times the initial density. Future experiments will concentrate on the use of this laser-generated shock to determine the equation of state through accurate density and shock-speed measurements.
Formation and fragmentation of protostellar dense cores
International Nuclear Information System (INIS)
Maury, Anaelle
2009-01-01
Stars form in molecular clouds, when they collapse and fragment to produce protostellar dense cores. These dense cores are then likely to contract under their own gravity, and form young protostars, that further evolve while accreting their circumstellar mass, until they reach the main sequence. The main goal of this thesis was to study the formation and fragmentation of protostellar dense cores. To do so, two main studies, described in this manuscript, were carried out. First, we studied the formation of protostellar cores by quantifying the impact of protostellar outflows on clustered star formation. We carried out a study of the protostellar outflows powered by the young stellar objects currently formed in the NGc 2264-C proto-cluster, and we show that protostellar outflows seem to play a crucial role as turbulence progenitors in clustered star forming regions, although they seem unlikely to significantly modify the global infall processes at work on clump scales. Second, we investigated the formation of multiple systems by core fragmentation, by using high - resolution observations that allow to probe the multiplicity of young protostars on small scales. Our results suggest that the multiplicity rate of protostars on small scales increase while they evolve, and thus favor dynamical scenarios for the formation of multiple systems. Moreover, our results favor magnetized scenarios of core collapse to explain the small-scale properties of protostars at the earliest stages. (author) [fr
Multishock Compression Properties of Warm Dense Argon
Zheng, Jun; Chen, Qifeng; Yunjun, Gu; Li, Zhiguo; Shen, Zhijun
2015-10-01
Warm dense argon was generated by a shock reverberation technique. The diagnostics of warm dense argon were performed by a multichannel optical pyrometer and a velocity interferometer system. The equations of state in the pressure-density range of 20-150 GPa and 1.9-5.3 g/cm3 from the first- to fourth-shock compression were presented. The single-shock temperatures in the range of 17.2-23.4 kK were obtained from the spectral radiance. Experimental results indicates that multiple shock-compression ratio (ηi = ρi/ρ0) is greatly enhanced from 3.3 to 8.8, where ρ0 is the initial density of argon and ρi (i = 1, 2, 3, 4) is the compressed density from first to fourth shock, respectively. For the relative compression ratio (ηi’ = ρi/ρi-1), an interesting finding is that a turning point occurs at the second shocked states under the conditions of different experiments, and ηi’ increases with pressure in lower density regime and reversely decreases with pressure in higher density regime. The evolution of the compression ratio is controlled by the excitation of internal degrees of freedom, which increase the compression, and by the interaction effects between particles that reduce it. A temperature-density plot shows that current multishock compression states of argon have distributed into warm dense regime.
Bhattacharjee, Debottam; Dasgupta, Sandipan; Biswas, Arpita; Deheria, Jayshree; Gupta, Shreya; Nikhil Dev, N; Udell, Monique; Bhadra, Anindita
2017-07-01
Domestic dogs' (Canis lupus familiaris) socio-cognitive faculties have made them highly sensitive to human social cues. While dogs often excel at understanding human communicative gestures, they perform comparatively poorly in problem-solving and physical reasoning tasks. This difference in their behaviour could be due to the lifestyle and intense socialization, where problem solving and physical cognition are less important than social cognition. Free-ranging dogs live in human-dominated environments, not under human supervision and are less socialized. Being scavengers, they often encounter challenges where problem solving is required in order to get access to food. We tested Indian street dogs in familiar and unfamiliar independent solvable tasks and quantified their persistence and dependence on a novel human experimenter, in addition to their success in solving a task. Our results indicate that free-ranging dogs succeeded and persisted more in the familiar task as compared to the unfamiliar one. They showed negligible amount of human dependence in the familiar task, but showed prolonged gazing and considerable begging behaviour to the human experimenter in the context of the unfamiliar task. Cognitive abilities of free-ranging dogs thus play a pivotal role in determining task-associated behaviours based on familiarity. In addition to that, these dogs inherently tend to socialize with and depend on humans, even if they are strangers. Our results also illustrate free-ranging dogs' low competence at physical cognitive tasks.
Cheng, Wen-Guang; Qiu, De-Qin; Yu, Bo
2017-06-01
This paper is concerned with the fifth-order modified Korteweg-de Vries (fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion (CRE) solvable. Three special form of soliton-cnoidal wave interaction solutions are discussed analytically and shown graphically. Furthermore, based on the consistent tanh expansion (CTE) method, the nonlocal symmetry related to the consistent tanh expansion (CTE) is investigated, we also give the relationship between this kind of nonlocal symmetry and the residual symmetry which can be obtained with the truncated Painlevé method. We further study the spectral function symmetry and derive the Lax pair of the fmKdV equation. The residual symmetry can be localized to the Lie point symmetry of an enlarged system and the corresponding finite transformation group is computed. Supported by National Natural Science Foundation of China under Grant No. 11505090, and Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No. BS2015SF009
Klaiman, S.; Streltsov, A. I.; Alon, O. E.
2018-04-01
A solvable model of a generic trapped bosonic mixture, N 1 bosons of mass m 1 and N 2 bosons of mass m 2 trapped in an harmonic potential of frequency ω and interacting by harmonic inter-particle interactions of strengths λ 1, λ 2, and λ 12, is discussed. It has recently been shown for the ground state [J. Phys. A 50, 295002 (2017)] that in the infinite-particle limit, when the interaction parameters λ 1(N 1 ‑ 1), λ 2(N 2 ‑ 1), λ 12 N 1, λ 12 N 2 are held fixed, each of the species is 100% condensed and its density per particle as well as the total energy per particle are given by the solution of the coupled Gross-Pitaevskii equations of the mixture. In the present work we investigate properties of the trapped generic mixture at the infinite-particle limit, and find differences between the many-body and mean-field descriptions of the mixture, despite each species being 100%. We compute analytically and analyze, both for the mixture and for each species, the center-of-mass position and momentum variances, their uncertainty product, the angular-momentum variance, as well as the overlap of the exact and Gross-Pitaevskii wavefunctions of the mixture. The results obtained in this work can be considered as a step forward in characterizing how important are many-body effects in a fully condensed trapped bosonic mixture at the infinite-particle limit.
The dense plasma focus and nuclear energy. A possible path towards fuel-selfsufficiency
International Nuclear Information System (INIS)
Heindler, M.; Harms, A.A.
1983-01-01
This chapter examines the concept of incorporating a dense plasma focus device which supplies neutrons to breed fissile fuel for fission reactions in a nuclear energy system. Discusses the dense plasma focus in a fusion-fission symbiont concept; a parametric description of a DPF-based nuclear energy system; fissile fuel and energy balance in a DPF based symbiont; a fusion-fission symbiont with a DPF device of current design; and DPF facility requirements for a self-sufficient fusion-fission symbiont. The primary objective of this study was to establish a systems concept which is essentially self-sufficient with respect to nuclear fuel. Concludes that while existing dense plasma focus devices are insufficient and inadequate for such purpose, the improvement of some critical performance parameters (e.g., the pulse repetition rate and the neutron yield per pulse) could render a self-sufficient nuclear energy concept a nearterm technological objective
About chiral models of dense matter and its magnetic properties
International Nuclear Information System (INIS)
Kutschera, M.
1990-12-01
The chiral models of dense nucleon matter are discussed. The quark matter with broken chiral symmetry is described. The magnetic properties of dense matter are presented and conclusions are given. 37 refs. (A.S.)
DEFF Research Database (Denmark)
Kjellberg, Caspar Mølholt; Meredith, David
2014-01-01
such as Sibelius or Finale. It was hypothesized that it would be possible to develop a Sibelius plug-in, written in Manuscript 6, that would improve the critical editing work flow, but it was found that the capabilities of this scripting language were insufficient. Instead, a 3-part system was designed and built......, consisting of a Sibelius plug-in, a cross-platform application, called CriticalEd, and a REST-based solution, which handles data storage/retrieval. A prototype has been tested at the Danish Centre for Music Publication, and the results suggest that the system could greatly improve the efficiency......The best text method is commonly applied among music scholars engaged in producing critical editions. In this method, a comment list is compiled, consisting of variant readings and editorial emendations. This list is maintained by inserting the comments into a document as the changes are made...
MAGNETIC FIELD IN THE ISOLATED MASSIVE DENSE CLUMP IRAS 20126+4104
International Nuclear Information System (INIS)
Shinnaga, Hiroko; Phillips, Thomas G.; Novak, Giles; Vaillancourt, John E.; Machida, Masahiro N.; Kataoka, Akimasa; Tomisaka, Kohji; Davidson, Jacqueline; Houde, Martin; Dowell, C. Darren; Leeuw, Lerothodi
2012-01-01
We measured polarized dust emission at 350 μm toward the high-mass star-forming massive dense clump IRAS 20126+4104 using the SHARC II Polarimeter, SHARP, at the Caltech Submillimeter Observatory. Most of the observed magnetic field vectors agree well with magnetic field vectors obtained from a numerical simulation for the case when the global magnetic field lines are inclined with respect to the rotation axis of the dense clump. The results of the numerical simulation show that rotation plays an important role on the evolution of the massive dense clump and its magnetic field. The direction of the cold CO 1-0 bipolar outflow is parallel to the observed magnetic field within the dense clump as well as the global magnetic field, as inferred from optical polarimetry data, indicating that the magnetic field also plays a critical role in an early stage of massive star formation. The large-scale Keplerian disk of the massive (proto)star rotates in an almost opposite sense to the clump's envelope. The observed magnetic field morphology and the counterrotating feature of the massive dense clump system provide hints to constrain the role of magnetic fields in the process of high-mass star formation.
Evolution of dense spatially modulated electron bunches
Balal, N.; Bratman, V. L.; Friedman, A.
2018-03-01
An analytical theory describing the dynamics of relativistic moving 1D electron pulses (layers) with the density modulation affected by a space charge has been revised and generalized for its application to the formation of dense picosecond bunches from linear accelerators with laser-driven photo injectors, and its good agreement with General Particle Tracer simulations has been demonstrated. Evolution of quasi-one-dimensional bunches (disks), for which the derived formulas predict longitudinal expansion, is compared with that for thin and long electron cylinders (threads), for which the excitation of non-linear waves with density spikes was found earlier by Musumeci et al. [Phys. Rev. Lett. 106(18), 184801 (2011)] and Musumeci et al. [Phys. Rev. Spec. Top. -Accel. Beams 16(10), 100701 (2013)]. Both types of bunches can be used for efficiency enhancement of THz sources based on the Doppler frequency up-shifted coherent spontaneous radiation of electrons. Despite the strong Coulomb repulsion, the periodicity of a preliminary modulation in dense 1D layers persists during their expansion in the most interesting case of a relatively small change in particle energy. However, the period of modulation increases and its amplitude decreases in time. In the case of a large change in electron energy, the uniformity of periodicity is broken due to different relativistic changes in longitudinal scales along the bunch: the "period" of modulation decreases and its amplitude increases from the rear to the front boundary. Nevertheless, the use of relatively long electron bunches with a proper preliminary spatial modulation of density can provide a significantly higher power and a narrower spectrum of coherent spontaneous radiation of dense bunches than in the case of initially short single bunches with the same charge.
On the solvability of the compressible Navier–Stokes system in bounded domains
International Nuclear Information System (INIS)
Danchin, Raphaël
2010-01-01
This paper is dedicated to the well-posedness issue for the barotropic Navier–Stokes system with homogeneous Dirichlet boundary conditions in bounded domains of R N . We aim at considering data in as large a class as possible. Our main result is that if the initial density is bounded away from zero and belongs to some W 1,r with r > N, if the initial velocity is in the Besov space B 2-(2/p) r,p (and satisfies a suitable boundary condition), and if the body force is in L p loc (R + ;L r ) for some p > 1 then the system has a unique local solution. Our regularity assumptions are consistent with a dimensional analysis which shows that critical data would correspond to r = N and p = 1, and improve an old result by Solonnikov (1980 J. Sov. Math. 14 1120–32)
Two-way traffic flow: Exactly solvable model of traffic jam
Lee, H.-W.; Popkov, V.; Kim, D.
1997-12-01
We study completely asymmetric two-channel exclusion processes in one dimension. It describes a two-way traffic flow with cars moving in opposite directions. The interchannel interaction makes cars slow down in the vicinity of approaching cars in the other lane. Particularly, we consider in detail the system with a finite density of cars on one lane and a single car on the other. When the interchannel interaction reaches a critical value, a traffic jam occurs, which turns out to be of first-order phase transition. We derive exact expressions for the average velocities, the current, the density profile and the k-point density correlation functions. We also obtain the exact probability of two cars being in one lane of distance R apart, provided there is a finite density of cars on the other lane, and show that the two cars form a weakly bound state in the jammed phase.
Gravity-driven dense granular flows
Energy Technology Data Exchange (ETDEWEB)
ERTAS,DENIZ; GREST,GARY S.; HALSEY,THOMAS C.; DEVINE,DOV; SILBERT,LEONARDO E.
2000-03-29
The authors report and analyze the results of numerical studies of dense granular flows in two and three dimensions, using both linear damped springs and Hertzian force laws between particles. Chute flow generically produces a constant density profile that satisfies scaling relations suggestive of a Bagnold grain inertia regime. The type for force law has little impact on the behavior of the system. Failure is not initiated at the surface, consistent with the absence of surface flows and different principal stress directions at vs. below the surface.
Graph Quasicontinuous Functions and Densely Continuous Forms
Directory of Open Access Journals (Sweden)
Lubica Hola
2017-07-01
Full Text Available Let $X, Y$ be topological spaces. A function $f: X \\to Y$ is said to be graph quasicontinuous if there is a quasicontinuous function $g: X \\to Y$ with the graph of $g$ contained in the closure of the graph of $f$. There is a close relation between the notions of graph quasicontinuous functions and minimal usco maps as well as the notions of graph quasicontinuous functions and densely continuous forms. Every function with values in a compact Hausdorff space is graph quasicontinuous; more generally every locally compact function is graph quasicontinuous.
Fabrication of dense panels in lithium fluoride
International Nuclear Information System (INIS)
Farcy, P.; Roger, J.; Pointud, R.
1958-04-01
The authors report a study aimed at the fabrication of large and dense lithium fluoride panels. This sintered lithium fluoride is then supposed to be used for the construction of barriers of protection against a flow of thermal neutrons. They briefly present the raw material which is used under the form of chamotte obtained through a pre-sintering process which is also described. Grain size measurements and sample preparation are indicated. Shaping, drying, and thermal treatment are briefly described, and characteristics of the sintered product are indicated
Leeuwpan fine coal dense medium plant
CSIR Research Space (South Africa)
Lundt, M
2010-11-01
Full Text Available Introduction Leeuwpan Colliery is located close to Delmas in the Mpumalanga Province, and is one of eight coal mines in the Exxaro Resources group. The dense media separation (DMS) plant at Leeuwpan was commissioned in 1997. The plant originally treated... three Witbank coal seams, namely seams no. 2, 4 and 5. A coal jig plant was built in 2005 to treat the top layer of coal—Seams 4 and 5—to supply a 30% ash coal to power stations. When the jig plant was commissioned, it increased the DMS plant...
Dense hydrogen plasma: Comparison between models
International Nuclear Information System (INIS)
Clerouin, J.G.; Bernard, S.
1997-01-01
Static and dynamical properties of the dense hydrogen plasma (ρ≥2.6gcm -3 , 0.1< T<5eV) in the strongly coupled regime are compared through different numerical approaches. It is shown that simplified density-functional molecular-dynamics simulations (DFMD), without orbitals, such as Thomas-Fermi Dirac or Thomas-Fermi-Dirac-Weiszaecker simulations give similar results to more sophisticated descriptions such as Car-Parrinello (CP), tight binding, or path-integral Monte Carlo, in a wide range of temperatures. At very low temperature, screening effects predicted by DFMD are still less pronounced than CP simulations. copyright 1997 The American Physical Society
Oscillating propagators in heavy-dense QCD
Akerlund, Oscar; Rindlisbacher, Tobias
2016-10-11
Using Monte Carlo simulations and extended mean field theory calculations we show that the $3$-dimensional $\\mathbb{Z}_3$ spin model with complex external fields has non-monotonic correlators in some regions of its parameter space. This model serves as a proxy for heavy-dense QCD in $(3+1)$ dimensions. Non-monotonic correlators are intrinsically related to a complex mass spectrum and a liquid-like (or crystalline) behavior. A liquid phase could have implications for heavy-ion experiments, where it could leave detectable signals in the spatial correlations of baryons.
Neutrino interactions in hot and dense matter
International Nuclear Information System (INIS)
Reddy, S.; Prakash, M.; Lattimer, J.M.
1998-01-01
We study the charged and neutral current weak interaction rates relevant for the determination of neutrino opacities in dense matter found in supernovae and neutron stars. We establish an efficient formalism for calculating differential cross sections and mean free paths for interacting, asymmetric nuclear matter at arbitrary degeneracy. The formalism is valid for both charged and neutral current reactions. Strong interaction corrections are incorporated through the in-medium single particle energies at the relevant density and temperature. The effects of strong interactions on the weak interaction rates are investigated using both potential and effective field-theoretical models of matter. We investigate the relative importance of charged and neutral currents for different astrophysical situations, and also examine the influence of strangeness-bearing hyperons. Our findings show that the mean free paths are significantly altered by the effects of strong interactions and the multi-component nature of dense matter. The opacities are then discussed in the context of the evolution of the core of a protoneutron star. copyright 1998 The American Physical Society
Solids flow rate measurement in dense slurries
Energy Technology Data Exchange (ETDEWEB)
Porges, K.G.; Doss, E.D.
1993-09-01
Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.
Redesigning Triangular Dense Matrix Computations on GPUs
Charara, Ali
2016-08-09
A new implementation of the triangular matrix-matrix multiplication (TRMM) and the triangular solve (TRSM) kernels are described on GPU hardware accelerators. Although part of the Level 3 BLAS family, these highly computationally intensive kernels fail to achieve the percentage of the theoretical peak performance on GPUs that one would expect when running kernels with similar surface-to-volume ratio on hardware accelerators, i.e., the standard matrix-matrix multiplication (GEMM). The authors propose adopting a recursive formulation, which enriches the TRMM and TRSM inner structures with GEMM calls and, therefore, reduces memory traffic while increasing the level of concurrency. The new implementation enables efficient use of the GPU memory hierarchy and mitigates the latency overhead, to run at the speed of the higher cache levels. Performance comparisons show up to eightfold and twofold speedups for large dense matrix sizes, against the existing state-of-the-art TRMM and TRSM implementations from NVIDIA cuBLAS, respectively, across various GPU generations. Once integrated into high-level Cholesky-based dense linear algebra algorithms, the performance impact on the overall applications demonstrates up to fourfold and twofold speedups, against the equivalent native implementations, linked with cuBLAS TRMM and TRSM kernels, respectively. The new TRMM/TRSM kernel implementations are part of the open-source KBLAS software library (http://ecrc.kaust.edu.sa/Pages/Res-kblas.aspx) and are lined up for integration into the NVIDIA cuBLAS library in the upcoming v8.0 release.
Quantum Linear System Algorithm for Dense Matrices
Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam
2018-02-01
Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that A x =b . We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O (κ2√{n }polylog(n )/ɛ ) for an n ×n dimensional A with bounded spectral norm, where κ denotes the condition number of A , and ɛ is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A .
INTERNAL MOTIONS IN STARLESS DENSE CORES
International Nuclear Information System (INIS)
Lee, Chang Won; Myers, Philip C.
2011-01-01
This paper discusses the statistics of internal motions in starless dense cores and the relation of these motions to core density and evolution. Four spectral lines from three molecular species are analyzed from single-pointing and mapped observations of several tens of starless cores. Blue asymmetric profiles are dominant, indicating that inward motions are prevalent in sufficiently dense starless cores. These blue profiles are found to be more abundant, and their asymmetry is bluer, at core positions with stronger N 2 H + line emission or higher column density. Thirty-three starless cores are classified into four different types according to the blueshift and redshift of the lines in their molecular line maps. Among these cores, contracting motions dominate: 19 are classified as contracting, 3 as oscillating, 3 as expanding, and 8 as static. Contracting cores have inward motions all over the core with those motions predominating near the region of peak density. Cores with the bluest asymmetry tend to have greater column density than other cores and all five cores with peak column density >6 x 10 21 cm -2 are found to be contracting. This suggests that starless cores are likely to have contracting motions if they are sufficiently condensed. Our classification of the starless cores may indicate a sequence of core evolution in the sense that column density increases from static to contracting cores: the static cores in the earliest stage, the expanding and/or the oscillating cores in the next, and the contracting cores in the latest stage.
Dense, layered, inclined flows of spheres
Jenkins, James T.; Larcher, Michele
2017-12-01
We consider dense, inclined flows of spheres in which the particles translate in layers, whose existence may be promoted by the presence of a rigid base and/or sidewalls. We imagine that in such flows a sphere of a layer is forced up the back of a sphere of the layer below, lifting a column of spheres above it, and then falls down the front of the lower sphere, until it bumps against the preceding sphere of the lower layer. We calculate the forces and rate of momentum transfer associated with this process of rub, lift, fall, and bump and determine a relation between the ratio of shear stress to normal stress and the rate of strain that may be integrated to obtain the velocity profile. The fall of a sphere and that of the column above it results in a linear increase in the magnitude of the velocity fluctuations with distance from the base of the flow. We compare the predictions of the model with measured profiles of velocity and granular temperature in several different dense, inclined flows.
Wireless Fractal Ultra-Dense Cellular Networks.
Hao, Yixue; Chen, Min; Hu, Long; Song, Jeungeun; Volk, Mojca; Humar, Iztok
2017-04-12
With the ever-growing number of mobile devices, there is an explosive expansion in mobile data services. This represents a challenge for the traditional cellular network architecture to cope with the massive wireless traffic generated by mobile media applications. To meet this challenge, research is currently focused on the introduction of a small cell base station (BS) due to its low transmit power consumption and flexibility of deployment. However, due to a complex deployment environment and low transmit power of small cell BSs, the coverage boundary of small cell BSs will not have a traditional regular shape. Therefore, in this paper, we discuss the coverage boundary of an ultra-dense small cell network and give its main features: aeolotropy of path loss fading and fractal coverage boundary. Simple performance analysis is given, including coverage probability and transmission rate, etc., based on stochastic geometry theory and fractal theory. Finally, we present an application scene and discuss challenges in the ultra-dense small cell network.
Phosphorus in the dense interstellar medium
International Nuclear Information System (INIS)
Turner, B.E.; Tsuji, T.; Bally, J.; Guelin, M.; Cernicharo, J.
1990-01-01
An observational study was made of interstellar (and circumstellar) phosphorus chemistry by means of (1) a survey of PN in energetic star-forming regions (several new detections); (2) a search for PN in cold cloud cores; and (3) a search for HPO, HCP, and PH3 in interstellar and circumstellar sources. The results are consistent with previously developed ion-molecule models of phosphorus chemistry and imply large depletion factors for P in dense clouds: about 1000 in warm star-forming cores and more than 10,000 in cold cloud cores. Thermochemical equilibrium models have been developed for the P chemistry in C-rich and O-rich environments, and it is found that HCP contains all the phosphorus in the C-rich case. The search for HCP in IRC 10216 yields an upper limit which, taken together with the recent detection of CP, implies significant depletion of HCP onto grains. Depletion factors for first- and second-row elements in diffuse and dense interstellar clouds are summarized, and an overall picture of circumstellar and interstellar grain and gas-phase processes is proposed to explain the depletions of N, O, C, S, Si, P, and in particular the high depletions of Si and P. 101 refs
Kinjo, Ken; Uchibe, Eiji; Doya, Kenji
2013-01-01
Linearly solvable Markov Decision Process (LMDP) is a class of optimal control problem in which the Bellman's equation can be converted into a linear equation by an exponential transformation of the state value function (Todorov, 2009b). In an LMDP, the optimal value function and the corresponding control policy are obtained by solving an eigenvalue problem in a discrete state space or an eigenfunction problem in a continuous state using the knowledge of the system dynamics and the action, state, and terminal cost functions. In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in which the dynamics of the body and the environment have to be learned from experience. We first perform a simulation study of a pole swing-up task to evaluate the effect of the accuracy of the learned dynamics model on the derived the action policy. The result shows that a crude linear approximation of the non-linear dynamics can still allow solution of the task, despite with a higher total cost. We then perform real robot experiments of a battery-catching task using our Spring Dog mobile robot platform. The state is given by the position and the size of a battery in its camera view and two neck joint angles. The action is the velocities of two wheels, while the neck joints were controlled by a visual servo controller. We test linear and bilinear dynamic models in tasks with quadratic and Guassian state cost functions. In the quadratic cost task, the LMDP controller derived from a learned linear dynamics model performed equivalently with the optimal linear quadratic regulator (LQR). In the non-quadratic task, the LMDP controller with a linear dynamics model showed the best performance. The results demonstrate the usefulness of the LMDP framework in real robot control even when simple linear models are used for dynamics learning.
Jurčišinová, E.; Jurčišin, M.
2018-02-01
The influence of the next-nearest-neighbor interaction on the properties of the geometrically frustrated antiferromagnetic systems is investigated in the framework of the exactly solvable antiferromagnetic spin- 1 / 2 Ising model in the external magnetic field on the square-kagome recursive lattice, where the next-nearest-neighbor interaction is supposed between sites within each elementary square of the lattice. The thermodynamic properties of the model are investigated in detail and it is shown that the competition between the nearest-neighbor antiferromagnetic interaction and the next-nearest-neighbor ferromagnetic interaction changes properties of the single-point ground states but does not change the frustrated character of the basic model. On the other hand, the presence of the antiferromagnetic next-nearest-neighbor interaction leads to the enhancement of the frustration effects with the formation of additional plateau and single-point ground states at low temperatures. Exact expressions for magnetizations and residual entropies of all ground states of the model are found. It is shown that the model exhibits various ground states with the same value of magnetization but different macroscopic degeneracies as well as the ground states with different values of magnetization but the same value of the residual entropy. The specific heat capacity is investigated and it is shown that the model exhibits the Schottky-type anomaly behavior in the vicinity of each single-point ground state value of the magnetic field. The formation of the field-induced double-peak structure of the specific heat capacity at low temperatures is demonstrated and it is shown that its very existence is directly related to the presence of highly macroscopically degenerated single-point ground states in the model.
International Nuclear Information System (INIS)
Mankiewicz, L.; Sawicki, M.
1989-01-01
Within a relativistically correct yet analytically solvable model of light-front quantum mechanics we construct the electromagnetic form factor of the two-body bound state and we study the validity of the static approximation to the full form factor. Upon comparison of full form factors calculated for different values of binding energy we observe an unexpected effect that for very strongly bound states further increase in binding leads to an increase in the size of the bound system. A similar effect is found for another quantum-mechanical model of relativistic dynamics
Czech Academy of Sciences Publication Activity Database
Dilna, N.; Rontó, András
2010-01-01
Roč. 60, č. 3 (2010), s. 327-338 ISSN 0139-9918 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-linear boundary value-problem * functional differential equation * non-local condition * unique solvability * differential inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0015-9
The dynamics of dense galactic nuclei
Lee, Man Hoi
In this thesis, two topics on the dynamics of dense galactic nuclei are studied. They are relevant to the formation of massive black holes and the observations of several nearby galactic nuclei. An overview of the observations is given in Chapter 1. In Chapter 2, the dynamical evolution of dense clusters of compact stars is studied. The formation of binaries and their subsequent merging by gravitational radiation emission is important to the evolution of such clusters. Aarseth's NBODY5 N-body simulation code, which is modified to include these processes, is used to simulate small N clusters with different initial velocity dispersions. The initial evolution is similar to previous results from Fokker-Planck simulations and shows orderly formation of heavy objects. However, the late evolution shows runaway growth for the most massive object in the cluster. We present arguments to show that merger by gravitational radiation (and possibly hydrodynamic merger of normal stars) is expected to be unstable to runaway growth. These results suggest that a seed massive black hole can be formed by runaway growth in a dense cluster of compact stars. In Chapter 3, the effects of stellar encounters on rotating stellar systems with central massive black holes are studied. For axisymmetric stellar systems with distribution functions that depend only on the energy E and the angular momentum about one axis Jx, the steady-state stellar distribution is found by directly integrating the Fokker-Planck equation in E, J subx) space. Two sets of models with simple assumptions about the loss cone in phase space (due to loss of stars to the central black hole) are presented: the loss cone in the Jx direction is either ignored or completely empty. We find that the depletion of stars due to an empty loss cone is significant. Density and kinematic profiles are also presented. The ratio of rotation velocity to velocity dispersion, V/sigma at small radii is higher than that of the background
Anomalous effects of dense matter under rotation
Huang, Xu-Guang; Nishimura, Kentaro; Yamamoto, Naoki
2018-02-01
We study the anomaly induced effects of dense baryonic matter under rotation. We derive the anomalous terms that account for the chiral vortical effect in the low-energy effective theory for light Nambu-Goldstone modes. The anomalous terms lead to new physical consequences, such as the anomalous Hall energy current and spontaneous generation of angular momentum in a magnetic field (or spontaneous magnetization by rotation). In particular, we show that, due to the presence of such anomalous terms, the ground state of the quantum chromodynamics (QCD) under sufficiently fast rotation becomes the "chiral soliton lattice" of neutral pions that has lower energy than the QCD vacuum and nuclear matter. We briefly discuss the possible realization of the chiral soliton lattice induced by a fast rotation in noncentral heavy ion collisions.
Intrinsically secure fast reactors with dense cores
International Nuclear Information System (INIS)
Slessarev, Igor
2007-01-01
Secure safety, resistance to weapons material proliferation and problems of long-lived wastes remain the most important 'painful points' of nuclear power. Many innovative reactor concepts have been developed aimed at a radical enhancement of safety. The promising potential of innovative nuclear reactors allows for shifting accents in current reactor safety 'strategy' to reveal this worth. Such strategy is elaborated focusing on the priority for intrinsically secure safety features as well as on sure protection being provided by the first barrier of defence. Concerning the potential of fast reactors (i.e. sodium cooled, lead-cooled, etc.), there are no doubts that they are able to possess many favourable intrinsically secure safety features and to lay the proper foundation for a new reactor generation. However, some of their neutronic characteristics have to be radically improved. Among intrinsically secure safety properties, the following core parameters are significantly important: reactivity margin values, reactivity feed-back and coolant void effects. Ways of designing intrinsically secure safety features in fast reactors (titled hereafter as Intrinsically Secure Fast Reactors - ISFR) can be found in the frame of current reactor technologies by radical enhancement of core neutron economy and by optimization of core compositions. Simultaneously, respecting resistance to proliferation, by using non-enriched fuel feed as well as a core breeding gain close to zero, are considered as the important features (long-lived waste problems will be considered in a separate paper). This implies using the following reactor design options as well as closed fuel cycles with natural U as the reactor feed: ·Ultra-plate 'dense cores' of the ordinary (monolithic) type with negative total coolant void effects. ·Modular type cores. Multiple dense modules can be embedded in the common reflector for achieving the desired NPP total power. The modules can be used also independently (as
Frontiers and challenges in warm dense matter
Desjarlais, Michael; Redmer, Ronald; Trickey, Samuel
2014-01-01
Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent...
Medical device disinfection by dense carbon dioxide.
Bertoloni, G; Bertucco, A; Rassu, M; Vezzù, K
2011-01-01
The employment of disinfection-sterilisation processes for the re-use of medical devices without negative effects such as the presence of toxic residues, material degradation or other modifications is an important consideration for reducing the costs of surgical and medical procedures. Ethylene oxide is the most commonly used low temperature sterilisation technique in healthcare facilities, but its associated toxicity has reduced interest in this technology for the reprocessing of medical equipment. The aim of this study was to examine the disinfection efficiency of a novel low temperature approach, based on dense carbon dioxide on artificially contaminated catheters. The results obtained demonstrated that this method provided a complete inactivation of all bacteria and yeast strains tested, and that no obvious modifications to the surfaces tested were observed with multiple treatments. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.
Coherent neutrino interactions in a dense medium
International Nuclear Information System (INIS)
Kiers, K.; Weiss, N.
1997-01-01
Motivated by the effect of matter on neutrino oscillations (the MSW effect) we study in more detail the propagation of neutrinos in a dense medium. The dispersion relation for massive neutrinos in a medium is known to have a minimum at nonzero momentum p∼G F ρ/√(2). We study in detail the origin and consequences of this dispersion relation for both Dirac and Majorana neutrinos both in a toy model with only neutral currents and a single neutrino flavor and in a realistic open-quotes standard modelclose quotes with two neutrino flavors. We find that for a range of neutrino momenta near the minimum of the dispersion relation, Dirac neutrinos are trapped by their coherent interactions with the medium. This effect does not lead to the trapping of Majorana neutrinos. copyright 1997 The American Physical Society
Particle Segregation in Dense Granular Flows
Gray, John Mark Nicholas Timm
2018-01-01
Granular materials composed of particles with differing grain sizes, densities, shapes, or surface properties may experience unexpected segregation during flow. This review focuses on kinetic sieving and squeeze expulsion, whose combined effect produces the dominant gravity-driven segregation mechanism in dense sheared flows. Shallow granular avalanches that form at the surface of more complex industrial flows such as heaps, silos, and rotating drums provide ideal conditions for particles to separate, with large particles rising to the surface and small particles percolating down to the base. When this is combined with erosion and deposition, amazing patterns can form in the underlying substrate. Gravity-driven segregation and velocity shear induce differential lateral transport, which may be thought of as a secondary segregation mechanism. This allows larger particles to accumulate at flow fronts, and if they are more frictional than the fine grains, they can feedback on the bulk flow, causing flow fingering, levee formation, and longer runout of geophysical mass flows.
Charmonium propagation through a dense medium
Directory of Open Access Journals (Sweden)
Kopeliovich B.Z.
2015-01-01
Full Text Available Attenuation of a colourless c̄c dipole propagating with a large momentum through a hot medium originates from two sources, Debye screening (melting, and inelastic collisions with surrounding scattering centres (absorption. The former never terminates completely production of a bound charmonium in heavy ion collisions, even at very high temperatures. The latter, is controlled my the magnitude of the dipole cross section, related to the transport coefficient, which is the rate of transverse momentum broadening in the medium. A novel procedure of Lorentz boosting of the Schrödinger equation is developed, which allows to calculate the charmonium survival probability employing the path-integral technique, incorporating both melting and absorption. A novel mechanism of charmonium regeneration in a dense medium is proposed.
Dense gas dispersion in the atmosphere
Energy Technology Data Exchange (ETDEWEB)
Nielsen, Morten
1998-09-01
Dense gas dispersion is characterized by buoyancy induced gravity currents and reduction of the vertical mixing. Liquefied gas releases from industrial accidents are cold because of the heat of evaporation which determines the density for a given concentration and physical properties. The temperature deficit is moderated by the heat flux from the ground, and this convection is an additional source of turbulence which affects the mixing. A simple model as the soil heat flux is used to estimate the ability of the ground to sustain the heat flux during release. The initial enthalpy, release rate, initial entrainment and momentum are discussed for generic source types and the interaction with obstacles is considered. In the MTH project BA experiments source with and without momentum were applied. The continuously released propane gas passed a two-dimensional removable obstacle perpendicular to the wind direction. Ground-level gas concentrations and vertical profiles of concentration, temperature, wind speed and turbulence were measured in front of and behind the obstacle. Ultrasonic anemometers providing fast velocity and concentration signals were mounted at three levels on the masts. The observed turbulence was influenced by the stability and the initial momentum of the jet releases. Additional information were taken from the `Dessert tortoise` ammonia jet releases, from the `Fladis` experiment with transition from dense to passive dispersion, and from the `Thorney Island` continuous releases of isothermal freon mixtures. The heat flux was found to moderate the negative buoyancy in both the propane and ammonia experiments. The heat flux measurements are compared to an estimate by analogy with surface layer theory. (au) 41 tabs., 146 ills., 189 refs.
Effect of critical field on screened dielectric breakdown growth
International Nuclear Information System (INIS)
Wang Wei.
1993-10-01
In this paper we have shown that due to a critical field, the patterns growing in the screened Laplacian field will be affected. When the critical field is zero, there is a transition from a dense growing to single branch of aggregate. At a higher critical field, the pattern shows a spiky-type aggregate, and for a small critical field the transition is cut. For an intermediate critical field, the result shows that below the transition, there no dense structure. (author). 9 refs, 2 figs
On the critical behavior of the inverse susceptibility of a model of structural phase transitions
International Nuclear Information System (INIS)
Pisanova, E.S.; Ivanov, S.I.
2013-01-01
An exactly solvable lattice model describing structural phase transitions in an anharmonic crystal with long-range interaction is considered in the neighborhoods of the quantum and classical critical points at the corresponding upper critical dimensions. In a broader neighborhood of the critical region the inverse susceptibility of the model is exactly calculated in terms of the Lambert W-function and graphically presented as a function of the deviation from the critical point and the upper critical dimension. For quantum and classical systems with real physical dimensions (chains, thin layers and three-dimensional systems) the exact results are compared with the asymptotic ones on the basis of some numerical data for their ratio. Relative errors are also provided
Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics
Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.
2018-05-01
The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.
Breast cancer screening in Korean woman with dense breast tissue
Energy Technology Data Exchange (ETDEWEB)
Shin, Hee Jung [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Ko, Eun Sook [Dept. of Radiology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Yi, Ann [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)
2015-11-15
Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results.
Breast cancer screening in Korean woman with dense breast tissue
International Nuclear Information System (INIS)
Shin, Hee Jung; Ko, Eun Sook; Yi, Ann
2015-01-01
Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results
Ultrafast visualization of the structural evolution of dense hydrogen towards warm dense matter
Fletcher, Luke
2016-10-01
Hot dense hydrogen far from equilibrium is ubiquitous in nature occurring during some of the most violent and least understood events in our universe such as during star formation, supernova explosions, and the creation of cosmic rays. It is also a state of matter important for applications in inertial confinement fusion research and in laser particle acceleration. Rapid progress occurred in recent years characterizing the high-pressure structural properties of dense hydrogen under static or dynamic compression. Here, we show that spectrally and angularly resolved x-ray scattering measure the thermodynamic properties of dense hydrogen and resolve the ultrafast evolution and relaxation towards thermodynamic equilibrium. These studies apply ultra-bright x-ray pulses from the Linac Coherent Light (LCLS) source. The interaction of rapidly heated cryogenic hydrogen with a high-peak power optical laser is visualized with intense LCLS x-ray pulses in a high-repetition rate pump-probe setting. We demonstrate that electron-ion coupling is affected by the small number of particles in the Debye screening cloud resulting in much slower ion temperature equilibration than predicted by standard theory. This work was supported by the DOE Office of Science, Fusion Energy Science under FWP 100182.
Improved models of dense anharmonic lattices
Energy Technology Data Exchange (ETDEWEB)
Rosenau, P., E-mail: rosenau@post.tau.ac.il; Zilburg, A.
2017-01-15
We present two improved quasi-continuous models of dense, strictly anharmonic chains. The direct expansion which includes the leading effect due to lattice dispersion, results in a Boussinesq-type PDE with a compacton as its basic solitary mode. Without increasing its complexity we improve the model by including additional terms in the expanded interparticle potential with the resulting compacton having a milder singularity at its edges. A particular care is applied to the Hertz potential due to its non-analyticity. Since, however, the PDEs of both the basic and the improved model are ill posed, they are unsuitable for a study of chains dynamics. Using the bond length as a state variable we manipulate its dispersion and derive a well posed fourth order PDE. - Highlights: • An improved PDE model of a Newtonian lattice renders compacton solutions. • Compactons are classical solutions of the improved model and hence amenable to standard analysis. • An alternative well posed model enables to study head on interactions of lattices' solitary waves. • Well posed modeling of Hertz potential.
Dense Gravity Currents with Breaking Internal Waves
Tanimoto, Yukinobu; Hogg, Charlie; Ouellette, Nicholas; Koseff, Jeffrey
2017-11-01
Shoaling and breaking internal waves along a pycnocline may lead to mixing and dilution of dense gravity currents, such as cold river inflows into lakes or brine effluent from desalination plants in near-coastal environments. In order to explore the interaction between gravity currents and breaking interfacial waves a series of laboratory experiments was performed in which a sequence of internal waves impinge upon a shelf-slope gravity current. The waves are generated in a two-layer thin-interface ambient water column under a variety of conditions characterizing both the waves and the gravity currents. The mixing of the gravity current is measured through both intrusive (CTD probe) and nonintrusive (Planar-laser inducted fluorescence) techniques. We will present results over a full range of Froude number (characterizing the waves) and Richardson number (characterizing the gravity current) conditions, and will discuss the mechanisms by which the gravity current is mixed into the ambient environment including the role of turbulence in the process. National Science Foundation.
Thermochemistry of dense hydrous magnesium silicates
Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra
1994-01-01
Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.
Characterisation of Ferrosilicon Dense Medium Separation Material
International Nuclear Information System (INIS)
Waanders, F. B.; Mans, A.
2003-01-01
Ferrosilicon is used in the dense medium separation of iron ore at Kumba resources, Sishen, South Africa. Due to high cost and losses that occur during use, maximum recovery by means of magnetic separation is aimed for. The purpose of this project was to determine the characteristics of the unused Fe-Si and then to characterise the changes that occur during storage and use thereof. Scanning electron microscopy was used to determine the composition of each sample, whilst Moessbauer spectroscopy yielded a two-sextet spectrum with hyperfine magnetic field strengths of 20 and 31 T, respectively, for the fresh samples. Additional hematite oxide peaks appeared in the Moessbauer spectra after use of the Fe-Si over a length of time, but this did not result in a dramatic degradation of the medium. No definite changes occurred during correct storage methods. It was, however, found that the biggest loss of Fe-Si was due to the abrasion of the particles, which resulted in the formation of an oxihydroxide froth, during the process.
Deuterium fractionation in dense interstellar clouds
International Nuclear Information System (INIS)
Millar, T.J.; Bennett, A.; Herbst, E.
1989-01-01
The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized. 60 refs
Deuterium fractionation in dense interstellar clouds
Millar, T. J.; Bennett, A.; Herbst, Eric
1989-05-01
The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized.
Load Designs For MJ Dense Plasma Foci
Link, A.; Povlius, A.; Anaya, R.; Anderson, M. G.; Angus, J. R.; Cooper, C. M.; Falabella, S.; Goerz, D.; Higginson, D.; Holod, I.; McMahon, M.; Mitrani, J.; Koh, E. S.; Pearson, A.; Podpaly, Y. A.; Prasad, R.; van Lue, D.; Watson, J.; Schmidt, A. E.
2017-10-01
Dense plasma focus (DPF) Z-pinches are compact pulse power driven devices with coaxial electrodes. The discharge of DPF consists of three distinct phases: first generation of a plasma sheath, plasma rail gun phase where the sheath is accelerated down the electrodes and finally an implosion phase where the plasma stagnates into a z-pinch geometry. During the z-pinch phase, DPFs can produce MeV ion beams, x-rays and neutrons. Megaampere class DPFs with deuterium fills have demonstrated neutron yields in the 1012 neutrons/shot range with pulse durations of 10-100 ns. Kinetic simulations using the code Chicago are being used to evaluate various load configurations from initial sheath formation to the final z-pinch phase for DPFs with up to 5 MA and 1 MJ coupled to the load. Results will be presented from the preliminary design simulations. LLNL-ABS-734785 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and with support from the Computing Grand Challenge program at LLNL.
Kinetic Simulations of Dense Plasma Focus Breakdown
Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.
2015-11-01
A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.
Packing frustration in dense confined fluids.
Nygård, Kim; Sarman, Sten; Kjellander, Roland
2014-09-07
Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile--each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.
Quantum-critical scaling of fidelity in 2D pairing models
International Nuclear Information System (INIS)
Adamski, Mariusz; Jȩdrzejewski, Janusz; Krokhmalskii, Taras
2017-01-01
The laws of quantum-critical scaling theory of quantum fidelity, dependent on the underlying system dimensionality D, have so far been verified in exactly solvable 1D models, belonging to or equivalent to interacting, quadratic (quasifree), spinless or spinfull, lattice-fermion models. The obtained results are so appealing that in quest for correlation lengths and associated universal critical indices ν, which characterize the divergence of correlation lengths on approaching critical points, one might be inclined to substitute the hard task of determining an asymptotic behavior at large distances of a two-point correlation function by an easier one, of determining the quantum-critical scaling of the quantum fidelity. However, the role of system's dimensionality has been left as an open problem. Our aim in this paper is to fill up this gap, at least partially, by verifying the laws of quantum-critical scaling theory of quantum fidelity in a 2D case. To this end, we study correlation functions and quantum fidelity of 2D exactly solvable models, which are interacting, quasifree, spinfull, lattice-fermion models. The considered 2D models exhibit new, as compared with 1D ones, features: at a given quantum-critical point there exists a multitude of correlation lengths and multiple universal critical indices ν, since these quantities depend on spatial directions, moreover, the indices ν may assume larger values. These facts follow from the obtained by us analytical asymptotic formulae for two-point correlation functions. In such new circumstances we discuss the behavior of quantum fidelity from the perspective of quantum-critical scaling theory. In particular, we are interested in finding out to what extent the quantum fidelity approach may be an alternative to the correlation-function approach in studies of quantum-critical points beyond 1D.
Dense matter in strong gravitational field of neutron star
Indian Academy of Sciences (India)
Sajad A. Bhat
2018-02-10
Feb 10, 2018 ... Abstract. Mass, radius and moment of inertia are direct probes of compositions and Equation of State (EoS) of dense matter in neutron star interior. These are computed for novel phases of dense matter involving hyperons and antikaon condensate and their observable consequences are discussed in this ...
Dense graph limits under respondent-driven sampling
Indian Academy of Sciences (India)
Siva Athreya
Sub-graph count (fingerprints). Source: IUPUI Network Sampling course. Page 15. Aim and Result. • Motivation: provide a rigorous framework for Respondent. Driven Sampling on dense graphs. • Theorem : (in words). Limit of a dense graph sequence constructed via R.D.S., where the sequence of the vertex-sets is ergodic, ...
Interparticle interaction and transport processes in dense semiclassical plasmas
International Nuclear Information System (INIS)
Baimbetov, F.B.; Giniyatova, Sh.G.
2005-01-01
On the basis of the density response formalism an expression for the pseudopotential of dense semiclassical plasma, which takes account of quantum-mechanical effects, local field corrections, and electronic screening effects is obtained. The static structure factors taking into account both local fields and quantum-mechanical effects are calculated. An electrical conductivity, thermal conductivity, and viscosity of dense semiclassical plasma are studied
Dynamics of dense direct-seeded stands of southern pines
J.C.G. Goelz
2006-01-01
Direct seeding of southern pines is an effective method of artificial regeneration, producing extremely dense stands when survival exceeds expectations. Long-term studies of dense direct-seeded stands provide ideal data for exploring development of stands as they approach the limit of maximum stand density. I present data from seven studies with ages of stands ranging...
Improved understanding of the acoustophoretic focusing of dense suspensions in a microchannel
Karthick, S.; Sen, A. K.
2017-11-01
We provide improved understanding of acoustophoretic focusing of a dense suspension (volume fraction φ >10 % ) in a microchannel subjected to an acoustic standing wave using a proposed theoretical model and experiments. The model is based on the theory of interacting continua and utilizes a momentum transport equation for the mixture, continuity equation, and transport equation for the solid phase. The model demonstrates the interplay between acoustic radiation and shear-induced diffusion (SID) forces that is critical in the focusing of dense suspensions. The shear-induced particle migration model of Leighton and Acrivos, coupled with the acoustic radiation force, is employed to simulate the continuum behavior of particles. In the literature, various closures for the diffusion coefficient Dφ* are available for rigid spheres at high concentrations and nonspherical deformable particles [e.g., red blood cells (RBCs)] at low concentrations. Here we propose a closure for Dφ* for dense suspension of RBCs and validate the proposed model with experimental data. While the available closures for Dφ* fail to predict the acoustic focusing of a dense suspension of nonspherical deformable particles like RBCs, the predictions of the proposed model match experimental data within 15%. Both the model and experiments reveal a competition between acoustic radiation and SID forces that gives rise to an equilibrium width w* of a focused stream of particles at some distance Leq* along the flow direction. Using different shear rates, acoustic energy densities, and particle concentrations, we show that the equilibrium width is governed by Péclet number Pe and Strouhal number Stas w*=1.4(PeSt) -0.5 while the length required to obtain the equilibrium-focused width depends on St as Leq*=3.8 /(St)0.6 . The proposed model and correlations would find significance in the design of microchannels for acoustic focusing of dense suspensions such as undiluted blood.
Eculizumab in Pediatric Dense Deposit Disease.
Oosterveld, Michiel J S; Garrelfs, Mark R; Hoppe, Bernd; Florquin, Sandrine; Roelofs, Joris J T H; van den Heuvel, L P; Amann, Kerstin; Davin, Jean-Claude; Bouts, Antonia H M; Schriemer, Pietrik J; Groothoff, Jaap W
2015-10-07
Dense deposit disease (DDD), a subtype of C3 glomerulopathy, is a rare disease affecting mostly children. Treatment options are limited. Debate exists whether eculizumab, a monoclonal antibody against complement factor C5, is effective in DDD. Reported data are scarce, especially in children. The authors analyzed clinical and histologic data of five pediatric patients with a native kidney biopsy diagnosis of DDD. Patients received eculizumab as therapy of last resort for severe nephritic or nephrotic syndrome with alternative pathway complement activation; this therapy was given only when the patients had not or only marginally responded to immunosuppressive therapy. Outcome measures were kidney function, proteinuria, and urine analysis. In all, seven disease episodes were treated with eculizumab (six episodes of severe nephritic syndrome [two of which required dialysis] and one nephrotic syndrome episode). Median age at treatment start was 8.4 (range, 5.9-13) years. For three treatment episodes, eculizumab was the sole immunosuppressive treatment. In all patients, both proteinuria and renal function improved significantly within 12 weeks of treatment (median urinary protein-to-creatinine ratio of 8.5 [range, 2.2-17] versus 1.1 [range, 0.2-2.0] g/g, P<0.005, and eGFR of 58 [range, 17-114] versus 77 [range, 50-129] ml/min per 1.73 m(2), P<0.01). A striking finding was the disappearance of leukocyturia within 1 week after the first eculizumab dose in all five episodes with leukocyturia at treatment initiation. In this case series of pediatric patients with DDD, eculizumab treatment was associated with reduction in proteinuria and increase in eGFR. Leukocyturia resolved within 1 week of initiation of eculizumab treatment. These results underscore the need for a randomized trial of eculizumab in DDD. Copyright © 2015 by the American Society of Nephrology.
16. Hot dense plasma atomic processes
International Nuclear Information System (INIS)
Werner, Dappen; Totsuji, H.; Nishii, Y.
2002-01-01
This document gathers 13 articles whose common feature is to deal with atomic processes in hot plasmas. Density functional molecular dynamics method is applied to the hydrogen plasma in the domain of liquid metallic hydrogen. The effects of the density gradient are taken into account in both the electronic kinetic energy and the exchange energy and it is shown that they almost cancel with each other, extending the applicability of the Thomas-Fermi-Dirac approximation to the cases where the density gradient is not negligible. Another article reports about space and time resolved M-shell X-ray measurements of a laser-produced gas jet xenon plasma. Plasma parameters have been measured by ion acoustic and electron plasma waves Thomson scattering. Photo-ionization becomes a dominant atomic process when the density and the temperature of plasmas are relatively low and when the plasma is submitted to intense external radiation. It is shown that 2 plasmas which have a very different density but have the same ionization parameters, are found in a similar ionization state. Most radiation hydrodynamics codes use radiative opacity data from available libraries of atomic data. Several articles are focused on the determination of one group Rosseland and Planck mean analytical formulas for several single elements used in inertial fusion targets. In another paper the plasma density effect on population densities, effective ionization, recombination rate coefficients and on emission lines from carbon and Al ions in hot dense plasma, is studied. The last article is devoted to a new atomic model in plasmas that considers the occupation probability of the bound state and free state density in the presence of the plasma micro-field. (A.C.)
Thinking Critically about Critical Thinking
Mulnix, Jennifer Wilson
2012-01-01
As a philosophy professor, one of my central goals is to teach students to think critically. However, one difficulty with determining whether critical thinking can be taught, or even measured, is that there is widespread disagreement over what critical thinking actually is. Here, I reflect on several conceptions of critical thinking, subjecting…
Neutrino reactions in hot and dense matter
International Nuclear Information System (INIS)
Lohs, Andreas
2015-01-01
In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the
Neutrino reactions in hot and dense matter
Energy Technology Data Exchange (ETDEWEB)
Lohs, Andreas
2015-04-13
In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the
Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions
Energy Technology Data Exchange (ETDEWEB)
Seshadhri, Comandur [The Ohio State Univ., Columbus, OH (United States); Pinar, Ali [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sariyuce, Ahmet Erdem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Catalyurek, Umit [The Ohio State Univ., Columbus, OH (United States)
2014-11-01
Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account for overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.
Directory of Open Access Journals (Sweden)
Orlando Ragnisco
2010-12-01
Full Text Available A novel family of exactly solvable quantum systems on curved space is presented. The family is the quantum version of the classical Perlick family, which comprises all maximally superintegrable 3-dimensional Hamiltonian systems with spherical symmetry. The high number of symmetries (both geometrical and dynamical exhibited by the classical systems has a counterpart in the accidental degeneracy in the spectrum of the quantum systems. This family of quantum problem is completely solved with the techniques of the SUSYQM (supersymmetric quantum mechanics. We also analyze in detail the ordering problem arising in the quantization of the kinetic term of the classical Hamiltonian, stressing the link existing between two physically meaningful quantizations: the geometrical quantization and the position dependent mass quantization.
Critical care helps people with life-threatening injuries and illnesses. It might treat problems such as complications from surgery, ... attention by a team of specially-trained health care providers. Critical care usually takes place in an ...
Dense interstellar cloud chemistry: Basic issues and possible dynamical solution
International Nuclear Information System (INIS)
Prasad, S.S.; Heere, K.R.; Tarafdar, S.P.
1989-01-01
Standing at crossroad of enthusiasm and frustration, dense intertellar cloud chemistry has a squarely posed fundamental problem: Why do the grains appear to play at best a minor role in the chemistry? Grain surface chemistry creates considerable difficulties when the authors treat dense clouds as static objects and ignore the implications of the processes by which the clouds became dense in the first place. A new generation of models which treat chemical and dynamical evolutions concurrently are therefore presented as possible solution to the current frustrations. The proposed modeling philosophy and agenda could make the next decade quite exciting for interstellar chemistry
A constitutive model for simple shear of dense frictional suspensions
Singh, Abhinendra; Mari, Romain; Denn, Morton M.; Morris, Jeffrey F.
2018-03-01
Discrete particle simulations are used to study the shear rheology of dense, stabilized, frictional particulate suspensions in a viscous liquid, toward development of a constitutive model for steady shear flows at arbitrary stress. These suspensions undergo increasingly strong continuous shear thickening (CST) as solid volume fraction $\\phi$ increases above a critical volume fraction, and discontinuous shear thickening (DST) is observed for a range of $\\phi$. When studied at controlled stress, the DST behavior is associated with non-monotonic flow curves of the steady-state stress as a function of shear rate. Recent studies have related shear thickening to a transition between mostly lubricated to predominantly frictional contacts with the increase in stress. In this study, the behavior is simulated over a wide range of the dimensionless parameters $(\\phi,\\tilde{\\sigma}$, and $\\mu)$, with $\\tilde{\\sigma} = \\sigma/\\sigma_0$ the dimensionless shear stress and $\\mu$ the coefficient of interparticle friction: the dimensional stress is $\\sigma$, and $\\sigma_0 \\propto F_0/ a^2$, where $F_0$ is the magnitude of repulsive force at contact and $a$ is the particle radius. The data have been used to populate the model of the lubricated-to-frictional rheology of Wyart and Cates [Phys. Rev. Lett.{\\bf 112}, 098302 (2014)], which is based on the concept of two viscosity divergences or \\textquotedblleft jamming\\textquotedblright\\ points at volume fraction $\\phi_{\\rm J}^0 = \\phi_{\\rm rcp}$ (random close packing) for the low-stress lubricated state, and at $\\phi_{\\rm J} (\\mu) < \\phi_{\\rm J}^0$ for any nonzero $\\mu$ in the frictional state; a generalization provides the normal stress response as well as the shear stress. A flow state map of this material is developed based on the simulation results.
The critical manifolds of inhomogeneous bond percolation on bow-tie and checkerboard lattices
Ziff, Robert M.; Scullard, Christian R.; Wierman, John C.; Sedlock, Matthew R. A.
2012-12-01
We give a conditional derivation of the inhomogeneous critical percolation manifold of the bow-tie lattice with five different probabilities, a problem that does not appear at first to fall into any known solvable class. Although our argument is mathematically rigorous only on a region of the manifold, we conjecture that the formula is correct over its entire domain, and we provide a non-rigorous argument for this that employs the negative probability regime of the triangular lattice critical surface. We discuss how the rigorous portion of our result substantially broadens the range of lattices in the solvable class to include certain inhomogeneous and asymmetric bow-tie lattices, and that, if it could be put on a firm foundation, the negative probability portion of our method would extend this class to many further systems, including F Y Wu’s checkerboard formula for the square lattice. We conclude by showing that this latter problem can in fact be proved using a recent result of Grimmett and Manolescu for isoradial graphs, lending strong evidence in favor of our other conjectured results. This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu's 80th birthday.
Exploring interspace: open space opportunities in dense urban areas
Paul H. Gobster; Kathleen E. Dickhut
1995-01-01
Using ideas from landscape ecology, this paper explores how small open spaces can aid urban forestry efforts in dense urban areas. A case study in Chicago illustrates the physical and social lessons learned in dealing with these spaces.
Rheology and Segregation of Granular Mixtures in Dense Flows
Indian Academy of Sciences (India)
Devang Khakhar
IIT Bombay. Rheology and Segregation of. Granular Mixtures in Dense Flows. Devang Khakhar. Department of Chemical Engineering. Indian Institute of Technology Bombay. Mumbai, India. Acknowledgment: Anurag Tripathi. 77th Annual Meeting of IASc, Ahmedabad, 18-20 Nov, 2011 ...
Automated Motion Estimation for 2D Cine DENSE MRI
Gilliam, Andrew D.; Epstein, Frederick H.
2013-01-01
Cine displacement encoding with stimulated echoes (DENSE) is a magnetic resonance (MR) method that directly encodes tissue displacement into MR phase images. This technique has successfully interrogated many forms of tissue motion, but is most commonly used to evaluate cardiac mechanics. Currently, motion analysis from cine DENSE images requires manually delineated anatomical structures. An automated analysis would improve measurement throughput, simplify data interpretation, and potentially access important physiological information during the MR exam. In this article, we present the first fully automated solution for the estimation of tissue motion and strain from 2D cine DENSE data. Results using both simulated and human cardiac cine DENSE data indicate good agreement between the automated algorithm and the standard semi-manual analysis method. PMID:22575669
Interference Management with Successive Cancellation for Dense Small Cell Networks
DEFF Research Database (Denmark)
Lopez, Victor Fernandez; Pedersen, Klaus I.; Steiner, Jens
2016-01-01
Network-Assisted Interference Cancellation and Suppression (NAICS) receivers have appeared as a promising way to curb inter-cell interference in future dense network deployments. This investigation compares the performance of a NAICS receiver with successive interference cancellation capabilities...
Fine coal processing with dense-medium cyclones
CSIR Research Space (South Africa)
De Korte, GJ
2012-10-01
Full Text Available . The paper provides a brief overview of past and current application of dense medium cyclones in the processing of fine coal and reviews some of the important considerations for the successful application of the technique....
Densely crosslinked polycarbosiloxanes .2. Thermal and mechanical properties
Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Stenekes, R.; Pennings, A.J; Hadziioannou, G
1997-01-01
The thermal and mechanical properties of two densely crosslinked polycarbosiloxane systems were investigated in relation to the molecular structure. The networks were prepared from functional branched prepolymers and crosslinked via a hydrosilylation curing reaction. The prepolymers having only
Physics of dense matter, neutron stars, and supernova
International Nuclear Information System (INIS)
Glendenning, N.K.
1989-02-01
Nuclear and astrophysical evidence on the equation of state of dense matter is examined. The role of hyperonization of matter in the development of proto-neutron stars is briefly discussed. 7 refs., 4 figs
How Critical Is Critical Thinking?
Shaw, Ryan D.
2014-01-01
Recent educational discourse is full of references to the value of critical thinking as a 21st-century skill. In music education, critical thinking has been discussed in relation to problem solving and music listening, and some researchers suggest that training in critical thinking can improve students' responses to music. But what exactly is…
Physical properties of dense, low-temperature plasmas
International Nuclear Information System (INIS)
Redmer, R.
1997-01-01
Plasmas occur in a wide range of the density-temperature plane. The physical quantities can be expressed by Green's functions which are evaluated by means of standard quantum statistical methods. The influences of many-particle effects such as dynamic screening and self-energy, structure factor and local-field corrections, formation and decay of bound states, degeneracy and Pauli exclusion principle are studied. As a basic concept for partially ionized plasmas, a cluster decomposition is performed for the self-energy as well as for the polarization function. The general model of a partially ionized plasma interpolates between low-density, nonmetallic systems such as atomic vapors and high-density, conducting systems such as metals or fully ionized plasmas. The equations of state, including the location of the critical point and the shape of the coexistence curve, are determined for expanded alkali-atom and mercury fluids. The occurrence of a metal-nonmetal transition near the critical point of the liquid-vapor phase transition leads in these materials to characteristic deviations from the behavior of nonconducting fluids such as the inert gases. Therefore, a unified approach is needed to describe the drastic changes of the electronic properties as well as the variation of the physical properties with the density. Similar results are obtained for the hypothetical plasma phase transition in hydrogen plasma. The transport coefficients (electrical and thermal conductivity, thermopower) are studied wthin linear response theory given here in the formulation of Zubarev which is valid for arbitrary degeneracy and yields the transport coefficients for the limiting cases of nondegenerate, weakly coupled plasmas (Spitzer theory) as well as degenerate, strongly coupled plasmas (Ziman theory). mercury within the MHNC scheme via effective ion-ion potentials which are derived from the polarization function within an extended RPA. The optical properties of dense plasmas, the shift
Survival of high pT light and heavy flavors in a dense medium
International Nuclear Information System (INIS)
Kopeliovich, B. Z.
2011-01-01
This talk presents an attempt at a critical overview of the current status of modeling for high-p T processes in nuclei. In particular, it includes discussion of the space-time development of hadronization of highly virtual light and heavy partons, and the related time scales; the role of early production and subsequent attenuation of pre-hadrons in a dense medium. We identify several challenging problems within the current interpretation of high-p T processes and propose solutions for some of them.
Adsorption of fluids on solid surfaces: A route toward very dense layers
Energy Technology Data Exchange (ETDEWEB)
Sartarelli, S.A. [Instituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, San Miguel (Argentina); Szybisz, L., E-mail: szybisz@tandar.cnea.gov.ar [Laboratorio TANDAR, Departamento de Fisica, Comision Nacional de Energia Atomica, RA-1429 Buenos Aires (Argentina); Departamento de Fiica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, RA-1033 Buenos Aires (Argentina)
2012-08-15
Adsorption of Xe on single planar walls is investigated in the frame of a density functional theory. The strength of the adsorbate-substrate attraction is changed by considering surfaces of Cs, Na, Li, and Mg. The behavior is analyzed by varying the temperature T (between the triple point T{sub t} and the critical T{sub c}) and the coverage {Gamma}{sub Script-Small-L }. The obtained adsorption isotherms exhibit a variety of wetting situations. Density profiles are reported. It is shown that for strongly attractive surfaces the adsorbed liquid becomes very dense reaching densities characteristic of solids.
On the curve of critical exponents for nonlinear elliptic problems in the case of a zero mass
Il'yasov, Ya. Sh.
2017-03-01
For semilinear elliptic equations -Δ u = λ| u| p-2 u-| u| q-2 u, boundary value problems in bounded and unbounded domains are considered. In the plane of exponents p × q, the so-called curves of critical exponents are defined that divide this plane into domains with qualitatively different properties of the boundary value problems and the corresponding parabolic equations. New solvability conditions for boundary value problems, conditions for the stability and instability of stationary solutions, and conditions for the existence of global solutions to parabolic equations are found.
Siaw, Fei-Lu; Chong, Kok-Keong
2013-01-01
This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.
Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.
2016-12-01
Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.
Neutrinos and Nucleosynthesis in Hot and Dense Matter
Energy Technology Data Exchange (ETDEWEB)
Fuller, George [Univ. of California, San Diego, CA (United States)
2016-01-14
The Topical Collaboration for Neutrinos and Nucleosynthesis in Hot and Dense matter brought together researchers from a variety of nuclear science specialties and a number of institutions to address nuclear physics and neutrino physics problems associated with dense matter and the origin of the elements. See attached final technical reports for (1) the UCSD award and (2) a copy of the report for the whole TC
Dense matter in compact stars a pedagogical introduction
Schmitt, Andreas
2010-01-01
Cold and dense nuclear and/or quark matter can be found in the interior of compact stars. It is very challenging to determine the ground state and properties of this matter because of the strong-coupling nature of QCD. I give a pedagogical introduction to microscopic calculations based on phenomenological models, effective theories, and perturbative QCD. I discuss how the results of these calculations can be related to astrophysical observations to potentially rule out or confirm candidate phases of dense matter.
Three body dynamics in dense gravitational systems
Moody, Kenneth
galactic black hole binaries as a background source. I also found that the binaries are ejected from the cluster with, for the most part, a velocity just above the escape speed of the cluster which is a few tens of km/sec. These gravitational wave sources are thus constrained in their host galaxies as the galactic escape velocity is some hundreds of km/sec which only a very few binaries achieve in special cases. I studied the effect of the Kozai mechanism on two pulsars, one in the globular cluster M4, and the other J1903+0327. The M4 pulsar pulsar was found to have an unusually large orbital eccentricity, given that it is in a binary with a period of nearly 200 days. This unusual behavior led to the conclusion that a planet-like third body of much less than a solar mass was orbiting the binary. I used my own code to integrate the secular evolution equations with a broad set of initial conditions to determine the first detailed properties of the third body; namely that the mass of the planet is about that of Jupiter. The second pulsar J1903+0327 consists of a 2.15ms pulsar and a near solar mass companion in an e = 0.44 orbit. A preliminary study of this pulsar showed that the high eccentricity can be reproduced by my models, and there are three candidate clusters from which this pulsar could have originated. My third project was a study of the effect of a planet at 50 AU on the inner solar system. The origin of this planet is assumed to be from an exchange with another solar system in the early stages of the sun's life while it was still in the dense star forming region where it was born. Similar studies have been done with the exchange of stars among binaries by Malmberg et al. (2007b). The exchange once again allows the Kozai effect to bring about drastic change in the inner system. A planet is chosen as the outer object as, unlike a stellar companion, it would remain unseen by current radial velocity and direct observation methods, although it could be detected by
Directory of Open Access Journals (Sweden)
Pippin Barr
2016-11-01
Full Text Available Games can serve a critical function in many different ways, from serious games about real world subjects to self-reflexive commentaries on the nature of games themselves. In this essay we discuss critical possibilities stemming from the area of critical design, and more specifically Carl DiSalvo’s adversarial design and its concept of reconfiguring the remainder. To illustrate such an approach, we present the design and outcomes of two games, Jostle Bastard and Jostle Parent. We show how the games specifically engage with two previous games, Hotline Miami and Octodad: Dadliest Catch, reconfiguring elements of those games to create interactive critical experiences and extensions of the source material. Through the presentation of specific design concerns and decisions, we provide a grounded illustration of a particular critical function of videogames and hope to highlight this form as another valuable approach in the larger area of videogame criticism.
Undervalued and ignored: Are humans poorly adapted to energy-dense foods?
Brunstrom, Jeffrey M; Drake, Alex C L; Forde, Ciarán G; Rogers, Peter J
2018-01-01
In many species the capacity to accurately differentiate the energy density (kcal/g) of foods is critical because it greatly improves efficiency in foraging. In modern humans this ability remains intact and is expressed in a selective preference for types of fruit and vegetables that contain more calories. However, humans evolved consuming these low energy-dense foods (typically energy-dense foods that now feature in modern Western diets. In two experiment participants (both N = 40) completed four tasks that assessed the 'value' of different sets of 22 foods that ranged in energy density (0.1 kcal/g-5.3 kcal/g and range 0.1 kcal/g to 6.2 kcal/g in Experiment 1 and 2, respectively). In Experiment 1 three measures (expected fullness, calorie estimation, and food choice), and in foods less than approximately 1.5 kcal/g (typically fruits and vegetables), the relationship between perceived value and energy density is linear. Above this, we observed clear compressive functions, indicating relative and progressive undervaluation of higher energy-dense foods. The fourth task (rated liking) failed to provide evidence for any relationship with energy density. In Experiment 2 the same pattern was replicated in measures of expected fullness, and in two different assessments of subjective calorie content. Consistent with the concept of 'evolutionary discordance,' this work indicates that modern human physiology is poorly adapted to evaluate foods that have a historically unusual (high) energy density. This has implications both for our understanding of how 'modern' energy-dense foods affect choice and energy intake, and for strategies aimed at removing calories from highly energy-rich foods. Copyright © 2017 University of Bristol. Published by Elsevier Ltd.. All rights reserved.
DEFF Research Database (Denmark)
Rosenbaum, Ralph K.; Olsen, Stig Irving
2017-01-01
Manipulation and mistakes in LCA studies are as old as the tool itself, and so is its critical review. Besides preventing misuse and unsupported claims, critical review may also help identifying mistakes and more justifiable assumptions as well as generally improve the quality of a study. It thus...
Rosette, Arturo
2009-01-01
This study focuses on the development and practices of Critical Muralists--community-educator-artist-leader-activists--and situates these specifically in relation to the Mexican mural tradition of los Tres Grandes and in relation to the history of public art more generally. The study examines how Critical Muralists address artistic and…
Prakash, Jyoti; Kumar, Pankaj; Kumari, Kultaran; Manan, Shweta
2018-02-01
The effect of magnetic-field-dependent (MFD) viscosity on the thermal convection in a ferromagnetic fluid in the presence of a uniform vertical magnetic field is investigated for a fluid layer saturating a densely packed porous medium using the Darcy model. A correction is applied to the model by Sunil et al. [Z. Naturforsch. 59, 397 (2004)], which is very important to predict the correct behaviour of MFD viscosity. A linear stability analysis is carried out for stationary modes. The critical wave number and critical Rayleigh number for the onset of instability, for the case of free boundaries, are determined numerically for sufficiently large values of the magnetic parameter M1. Numerical results are obtained and illustrated graphically. It is shown that MFD viscosity has stabilizing effect on the system, whereas medium permeability has a destabilizing effect.
Sustainable energy policy for Asia: Mitigating systemic hurdles in a highly dense city
International Nuclear Information System (INIS)
Ng, Artie W.; Nathwani, Jatin
2010-01-01
Greenhouse gas emission (GHG) has been increasingly a sensitive issue that is across border and impacting global public interests. While the use of renewable energy technology is perceived as a means to enable delivery of emission-free solutions, its penetration into the energy market has not been timely and significant enough as projected in prior studies. This article aims to illustrate some of the critical hurdles as the policy makers start formulating environmentally friendly energy consumption means for the public in Asian economies. In particular, through analyzing the characteristics in the case of Hong Kong, the authors unveil the challenges for this highly dense city to reach a landscape of alternative energy resources for its transition into a sustainable economy. Education and engagement with the public about a sustainable future, alignment of stakeholders' economic interests and absorption capacity of emerging technologies are argued as the three main challenges and initiatives in mitigating the underlying systemic hurdles that remain to be overcome. Observing the current responses to the externalities by the policy makers in Hong Kong, this study articulates the critical challenges to mitigate these specific systemic hurdles embedded in the existing infrastructure of a highly dense city. Possible mitigating measures to enable deployment of integrative sustainable energy solutions in dealing with climate change are discussed. (author)
Hot super-dense compact object with particular EoS
Tito, E. P.; Pavlov, V. I.
2018-03-01
We show the possibility of existence of a self-gravitating spherically-symmetric equilibrium configuration for a neutral matter with neutron-like density, small mass M ≪ M_{⊙}, and small radius R ≪ R_{⊙}. We incorporate the effects of both the special and general theories of relativity. Such object may be formed in a cosmic cataclysm, perhaps an exotic one. Since the base equations of hydrostatic equilibrium are completed by the equation of state (EoS) for the matter of the object, we offer a novel, interpolating experimental data from high-energy physics, EoS which permits the existence of such compact system of finite radius. This EoS model possesses a critical state characterized by density ρc and temperature Tc. For such an object, we derive a radial distribution for the super-dense matter in "liquid" phase using Tolman-Oppenheimer-Volkoff equations for hydrostatic equilibrium. We demonstrate that a stable configuration is indeed possible (only) for temperatures smaller than the critical one. We derive the mass-radius relation (adjusted for relativistic corrections) for such small (M ≪ M_{⊙}) super-dense compact objects. The results are within the constraints established by both heavy-ion collision experiments and theoretical studies of neutron-rich matter.
Experimental Studies of the Transport Parameters of Warm Dense Matter
Energy Technology Data Exchange (ETDEWEB)
Chouffani, Khalid [Idaho State Univ., Pocatello, ID (United States)
2014-12-01
There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.
High-performance dense MgB2 superconducting wire fabricated from mechanically milled powder
Kodama, Motomune; Suzuki, Takaaki; Tanaka, Hideki; Okishiro, Kenji; Okamoto, Kazutaka; Nishijima, Gen; Matsumoto, Akiyoshi; Yamamoto, Akiyasu; Shimoyama, Jun-ichi; Kishio, Kohji
2017-04-01
Owing to the relatively high critical temperature and the low manufacturing cost, MgB2 superconducting wires are promising for liquid helium-free superconducting applications. Today, commercially available MgB2 wires are manufactured by either an in situ or ex situ powder-in-tube process, the in situ process being more effective to obtain high critical current density. In in situ-processed wires, however, the critical current density is seriously suppressed by the high porosity of MgB2 filaments. To resolve this problem, we propose an innovative method of using precursor powder prepared by mechanical milling of magnesium, boron, and coronene powders. This precursor powder has a metal-matrix-composite structure, in which boron particles are dispersed in a magnesium matrix. The plastic deformation of the precursor powder through wire processing leads to compact packing, and a dense MgB2 filament is generated after heat treatment. As a result, the limitation of critical current density that occurs for the typical in situ process is overcome, and the practical critical current density of 103 A mm-2 is obtained at 10 K and 6.1 T, at 15 K and 4.8 T, and at 20 K and 3.3 T.
Warm dense matter and Thomson scattering at FLASH
International Nuclear Information System (INIS)
Faeustlin, Roland Rainer
2010-05-01
X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)
Rayleigh-Taylor/gravitational instability in dense magnetoplasmas
International Nuclear Information System (INIS)
Ali, S.; Ahmed, Z.; Mirza, Arshad M.; Ahmad, I.
2009-01-01
The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.
Local Crystalline Structure in an Amorphous Protein Dense Phase
Greene, Daniel G.; Modla, Shannon; Wagner, Norman J.; Sandler, Stanley I.; Lenhoff, Abraham M.
2015-01-01
Proteins exhibit a variety of dense phases ranging from gels, aggregates, and precipitates to crystalline phases and dense liquids. Although the structure of the crystalline phase is known in atomistic detail, little attention has been paid to noncrystalline protein dense phases, and in many cases the structures of these phases are assumed to be fully amorphous. In this work, we used small-angle neutron scattering, electron microscopy, and electron tomography to measure the structure of ovalbumin precipitate particles salted out with ammonium sulfate. We found that the ovalbumin phase-separates into core-shell particles with a core radius of ∼2 μm and shell thickness of ∼0.5 μm. Within this shell region, nanostructures comprised of crystallites of ovalbumin self-assemble into a well-defined bicontinuous network with branches ∼12 nm thick. These results demonstrate that the protein gel is comprised in part of nanocrystalline protein. PMID:26488663
Holographic stereogram using camera array in dense arrangement
Yamamoto, Kenji; Oi, Ryutaro; Senoh, Takanori; Ichihashi, Yasuyuki; Kurita, Taiichiro
2011-02-01
Holographic stereograms can display 3D objects by using ray information. To display high quality representations of real 3D objects by using holographic stereograms, relatively dense ray information must be prepared as the 3D object information. One promising method of obtaining this information uses a combination of a camera array and view interpolation which is signal processing technique. However, it is still technically difficult to synthesize ray information without visible error by using view interpolation. Our approach uses a densely arranged camera array to reduce this difficulty. Even though view interpolation is a simple signal processing technique, the synthesized ray information produced by this camera array should be adequate. We designed and manufactured a densely arranged camera array and used it to generate holographic stereograms.
Rayleigh-Taylor/gravitational instability in dense magnetoplasmas
Energy Technology Data Exchange (ETDEWEB)
Ali, S., E-mail: shahid.ali@ncp.edu.p [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); IPFN, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ahmed, Z. [COMSATS Institute of Information Technology, Department of Physics, Wah Campus (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, I. [COMSATS Institute of Information Technology, Department of Physics, Islamabad Campus (Pakistan)
2009-08-10
The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.
Warm dense matter and Thomson scattering at FLASH
Energy Technology Data Exchange (ETDEWEB)
Faeustlin, Roland Rainer
2010-05-15
X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)
African Journals Online (AJOL)
both formal and informal) in culture and social theory. CRITICAL ARTS aims to challenge and ... Book Review: Brian McNair, An Introduction to Political Communication (3rd edition), London: Routledge, 2003, ISBN 0415307082, 272pp. Phil Joffe ...
Directory of Open Access Journals (Sweden)
Simon, Jane
2010-01-01
Full Text Available This essay considers how written language frames visual objects. Drawing on Michel Foucault’s response to Raymond Roussel’s obsessive description, the essay proposes a model of criticism where description might press up against its objects. This critical closeness is then mapped across the conceptual art practice and art criticism of Ian Burn. Burn attends to the differences between seeing and reading, and considers the conditions which frame how we look at images, including how we look at, and through words. The essay goes on to consider Meaghan Morris’s writing on Lynn Silverman’s photographs. Both Morris and Burn offer an alternative to a parasitic model of criticism and enact a patient way of looking across and through visual landscapes.
Seo, Youngmin
2016-01-01
We present deep NH3 map of L1495-B218 filaments and the dense cores embedded within the filaments in Taurus. The L1495-B218 filaments form an interconnected, nearby, large complex extending 8 pc. We observed the filaments in NH3 (1,1) & (2,2) and CCS 21-10 with spectral resolution of 0.038 km/s and spatial resolution of 31". The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithm, identifies 39 leaves and 16 branches in NH3 (1,1). Applying a virial analysis for the 39 NH3 leaves, we find only 9 out of 39 leaves are gravitationally bound, and 12 out of 30 gravitationally unbound leaves are pressure-confined. Our analysis suggests that a dense core may form as a pressure-confined structure, evolve to a gravitationally bound core, and then undergo collapse to form a protostar (Seo et al. 2015).We also present more realistic dynamic stability conditions for dense cores with converging motions and under the influence of radiation pressure. The critical Bonnor-Ebert sphere and the isothermal cylinder have been widely used to test stability of dense cores and filaments; however, these assume a quiescent environment while actual star forming regions are turbulent and illuminated by radiation. In a new analysis of stability conditions we account for converging motions which have been modeled toward starless cores (Seo et al. 2011) and the effect of radiation fields into account. We find that the critical size of a dense core having a homologous converging motion with its peak speed being the sound speed is roughly half of the critical size of the Bonnor-Ebert sphere (Seo et al. 2013). We also find that the critical mass/line density of a dense core/filament irradiated by radiation are considerably smaller than that of the Bonnor-Ebert sphere/isothermal cylinder when the radiation pressure is stronger than the central gas pressure of dense core/isothermal cylinder. For inner Galactic regions and regions near OB associations, the critical
The equation of state of dense Skyrmion matter
International Nuclear Information System (INIS)
Walhout, T.S.
1990-01-01
In the context of effective topological soliton theories of baryonic interactions, methods for determining the thermodynamic properties of dense matter in the solid and liquid states are presented. In particular, simulation involving a face-centered cubic lattice of skyrmions are used to construct the equation of state for dense neutron matter. The implications for neutron star structure are discussed, and comparisons are made with previous calculations. These techniques are also applied with some success to both symmetric and asymmetric nuclear matter in the Skyrme model. Possibilities for further improvement are outlined. (orig.)
Cyclic Plane Strain Compression Tests on Dense Granular Materials
Koseki, Junichi; Karimi, Job Munene; Tsutsumi, Yukika; Maqbool, Sajjad; Sato, Takeshi
A series of cyclic plane strain compression tests are performed under drained condition on dense Toyoura sand and compacted Chiba gravel, by using small-scale and large-scale apparatuses, respectively. Comparisons are made with results from monotonic loading tests. Local strain distributions are calculated by conducting image analyses of digital photographs taken at different stages of loading during each test. Based on these results, strain localization properties of dense granular materials are discussed, in particular focusing on possible effects of cyclic loading history.
Finding dense locations in symbolic indoor tracking data
DEFF Research Database (Denmark)
Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua
2017-01-01
Finding the dense locations in large indoor spaces is very useful for many applications such as overloaded area detection, security control, crowd management, indoor navigation, and so on. Indoor tracking data can be enormous and are not immediately ready for finding dense locations. This paper...... presents two graph-based models for constrained and semi-constrained indoor movement, respectively, and then uses the models to map raw tracking records into mapping records that represent object entry and exit times in particular locations. Subsequently, an efficient indexing structure called Hierarchical...
Predictions of x-ray scattering spectra in warm dense matter
Energy Technology Data Exchange (ETDEWEB)
Starrett, Charles E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Saumon, Didier [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Souza, Andre N. [Univ. of Michigan, Ann Arbor, MI (United States); Perkins, David J. [Univ. of California, Los Angeles, CA (United States); Hansen, Stephanie B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-03-12
This presentation gives an Introduction to our model of warm dense matter; How x-ray scattering spectra are calculated from it; Comparisons with experiments: Room temperature/pressure beryllium Warm dense beryllium Warm dense aluminum; Predictions for warm dense beryllium and titanium; and, Conclusions.
Blokhintsev, L. D.; Kadyrov, A. S.; Mukhamedzhanov, A. M.; Savin, D. A.
2018-02-01
A problem of analytical continuation of scattering data to the negative-energy region to obtain information about bound states is discussed within an exactly solvable potential model. This work is continuation of the previous one by the same authors [L. D. Blokhintsev et al., Phys. Rev. C 95, 044618 (2017), 10.1103/PhysRevC.95.044618]. The goal of this paper is to determine the most effective way of analytic continuation for different systems. The d +α and α +12C systems are considered and, for comparison, an effective-range function approach and a recently suggested Δ method [O. L. Ramírez Suárez and J.-M. Sparenberg, Phys. Rev. C 96, 034601 (2017), 10.1103/PhysRevC.96.034601.] are applied. We conclude that the Δ method is more effective for heavier systems with large values of the Coulomb parameter, whereas for light systems with small values of the Coulomb parameter the effective-range function method might be preferable.
Tempel, David G.; Aspuru-Guzik, Alán
2011-11-01
The dissipative dynamics of many-electron systems interacting with a thermal environment has remained a long-standing challenge within time-dependent density functional theory (TDDFT). Recently, the formal foundations of open quantum systems time-dependent density functional theory (OQS-TDDFT) within the master equation approach were established. It was proven that the exact time-dependent density of a many-electron open quantum system evolving under a master equation can be reproduced with a closed (unitarily evolving) and non-interacting Kohn-Sham system. This potentially offers a great advantage over previous approaches to OQS-TDDFT, since with suitable functionals one could obtain the dissipative open-systems dynamics by simply propagating a set of Kohn-Sham orbitals as in usual TDDFT. However, the properties and exact conditions of such open-systems functionals are largely unknown. In the present article, we examine a simple and exactly-solvable model open quantum system: one electron in a harmonic well evolving under the Lindblad master equation. We examine two different representitive limits of the Lindblad equation (relaxation and pure dephasing) and are able to deduce a number of properties of the exact OQS-TDDFT functional. Challenges associated with developing approximate functionals for many-electron open quantum systems are also discussed.
Human Action Recognition Using Improved Salient Dense Trajectories
Directory of Open Access Journals (Sweden)
Qingwu Li
2016-01-01
Full Text Available Human action recognition in videos is a topic of active research in computer vision. Dense trajectory (DT features were shown to be efficient for representing videos in state-of-the-art approaches. In this paper, we present a more effective approach of video representation using improved salient dense trajectories: first, detecting the motion salient region and extracting the dense trajectories by tracking interest points in each spatial scale separately and then refining the dense trajectories via the analysis of the motion saliency. Then, we compute several descriptors (i.e., trajectory displacement, HOG, HOF, and MBH in the spatiotemporal volume aligned with the trajectories. Finally, in order to represent the videos better, we optimize the framework of bag-of-words according to the motion salient intensity distribution and the idea of sparse coefficient reconstruction. Our architecture is trained and evaluated on the four standard video actions datasets of KTH, UCF sports, HMDB51, and UCF50, and the experimental results show that our approach performs competitively comparing with the state-of-the-art results.
Gas-particle interactions in dense gas-fluidised beds
Li, J.; Kuipers, J.A.M.
2003-01-01
The occurrence of heterogeneous flow structures in gas-particle flows seriously affects gas¿solid contacting and transport processes in dense gas-fluidized beds. A computational study, using a discrete particle method based on Molecular Dynamics techniques, has been carried out to explore the
Multi-scaling of the dense plasma focus
Saw, S. H.; Lee, S.
2015-03-01
The dense plasma focus is a copious source of multi-radiations with many potential new applications of special interest such as in advanced SXR lithography, materials synthesizing and testing, medical isotopes and imaging. This paper reviews the series of numerical experiments conducted using the Lee model code to obtain the scaling laws of the multi-radiations.
Dense Focal Plane Arrays for Pushbroom Satellite Radiometers
DEFF Research Database (Denmark)
Iupikov, O. A.; Ivashina, M. V.; Pontoppidan, K.
2014-01-01
Performance of a dense focal plane array feeding an offset toroidal reflector antenna system is studied and discussed in the context of a potential application in multi-beam radiometers for ocean surveillance. We present a preliminary design of the array feed for the 5-m diameter antenna at X...
Ranks of dense alternating sign matrices and their sign patterns
Czech Academy of Sciences Publication Activity Database
Fiedler, Miroslav; Gao, W.; Hall, F.J.; Jing, G.; Li, Z.; Stroev, M.
2015-01-01
Roč. 471, April (2015), s. 109-121 ISSN 0024-3795 R&D Projects: GA ČR(CZ) GA14-07880S Institutional support: RVO:67985840 Keywords : alternating sign matrix * dense matrix * sign pattern matrix Subject RIV: BA - General Mathematics Impact factor: 0.965, year: 2015 http://www.sciencedirect.com/science/article/pii/S0024379515000257
A comparative study of fast dense stereo vision algorithms
Sunyoto, H.; Mark, W. van der; Gavrila, D.M.
2004-01-01
With recent hardware advances, real-time dense stereo vision becomes increasingly feasible for general-purpose processors. This has important benefits for the intelligent vehicles domain, alleviating object segmentation problems when sensing complex, cluttered traffic scenes. In this paper, we
Length scales and selforganization in dense suspension flows
Düring, G.; Lerner, E.; Wyart, M.
2014-01-01
Dense non-Brownian suspension flows of hard particles display mystifying properties: As the jamming threshold is approached, the viscosity diverges, as well as a length scale that can be identified from velocity correlations. To unravel the microscopic mechanism governing dissipation and its
Influence of Food Packaging on Children's Energy-dense Snack ...
International Development Research Centre (IDRC) Digital Library (Canada)
This research will study the influence of food packaging on Guatemalan preschool and school-aged children's energy-dense snack (EDS) food preferences. In 2010 ... Based on lessons learned from the tobacco control movement, banning licensed characters on advertising will help decrease children's product recognition.
Dense 3D Map Construction for Indoor Search and Rescue
DEFF Research Database (Denmark)
Ellekilde, Lars-Peter; Huang, Shoudong; Miró, Jaime Valls
2007-01-01
The main contribution of this paper is a new simultaneous localization and mapping SLAM algorithm for building dense three-dimensional maps using information ac- quired from a range imager and a conventional camera, for robotic search and rescue in unstructured indoor environments. A key challenge...
Sparse symmetric preconditioners for dense linear systems in electromagnetism
Carpentieri, Bruno; Duff, Iain S.; Giraud, Luc; Monga Made, M. Magolu
2004-01-01
We consider symmetric preconditioning strategies for the iterative solution of dense complex symmetric non-Hermitian systems arising in computational electromagnetics. In particular, we report on the numerical behaviour of the classical incomplete Cholesky factorization as well as some of its recent
Influence of Food Packaging on Children's Energy-dense Snack ...
International Development Research Centre (IDRC) Digital Library (Canada)
Childhood obesity is a major global public health concern. Rates of obese and overweight children have increased in low- and middle-income countries such as Guatemala. This research will study the influence of food packaging on Guatemalan preschool and school-aged children's energy-dense snack (EDS) food ...
Spaces in which every dense subset is a G δ
African Journals Online (AJOL)
A topological space X is called a DG-space if every subset of X is a G-set in its closure. In this paper we study DG-spaces that contains subspaces in which every dense subset is open and spaces in which every subset is a G. We give some new results in these classes of topological spaces.
Real-Time Dense Stereo for Intelligent Vehicles
Gavrila, D.M.; Mark, W. van der
2006-01-01
Stereo vision is an attractive passive sensing technique for obtaining three-dimensional (3-D) measurements. Recent hardware advances have given rise to a new class of real-time dense disparity estimation algorithms. This paper examines their suitability for intelligent vehicle (IV) applications. In
Light localization in cold and dense atomic ensemble
International Nuclear Information System (INIS)
Sokolov, Igor
2017-01-01
We report on results of theoretical analysis of possibilities of light strong (Anderson) localization in a cold atomic ensemble. We predict appearance of localization in dense atomic systems in strong magnetic field. We prove that in absence of the field the light localization is impossible. (paper)
Hugoniot measurements of double-shocked precompressed dense xenon plasmas.
Zheng, J; Chen, Q F; Gu, Y J; Chen, Z Y
2012-12-01
The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ∼6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.
Pharmaceutical production of nano particles using supercritical or dense gas technology
International Nuclear Information System (INIS)
Regtop, H.
2002-01-01
. Dense gas technology using fluids, near or above the critical point, as a solvent or antisolvent have been developed in recent years. Eiffel has considered various dense gas methods as in the production of nano particles. The first method is known as Rapid Expansion of Supercritical Solutions (RESS), and involves expanding a supercritical solution of the drug through a nozzle. Whilst providing very effective methods of producing fine particles, the application of the RESS method is limited by the low solubility of drugs in dense carbon dioxide (which is usually the gas of choice since it is operated at moderate critical temperature of 31.1 degrees centigrade). The second method, known as Gas Antisolvent Process (GAS), involves rapid precipitation of the drug from organic solutions, typically using carbon dioxide as the antisolvent. The third mode which is called the Aerosol Solvent Extraction System (ASES), involves continuous introduction of a solution containing the drug of interest through a nozzle into a flowing dense gas stream
The structure of protostellar dense cores: a millimeter continuum study
International Nuclear Information System (INIS)
Motte, Frederique
1998-01-01
A comprehensive theoretical scenario explains low-mass star formation and describes the gravitational collapse of an isolated 'ideal' dense core. The major aim of this thesis is to check the standard model predictions on the structure of protostellar dense cores (or envelopes). The earliest stages of star formation remain poorly known because the protostars are still deeply embedded in massive, opaque circumstellar cocoons. On the one hand, sensitive bolometer arrays very recently allow us to measure the millimeter continuum emission arising from dense cores. Such observations are a powerful tool to constrain the density structure of proto-stellar dense cores (on large length scale). In particular, we studied the structure of isolated proto-stellar envelopes in Taurus and protostars in the ρ Ophiuchi cluster. In order to accurately derive their envelope density power law, we simulated the observation of several envelope models. Then we show that most of the Taurus protostars present a density structure consistent with the standard model predictions. In contrast, dense cores in ρ Ophiuchi main cloud are highly fragmented and protostellar envelope have finite size. Moreover fragmentation appears to be essential in determining the final stellar mass of ρ Oph forming stars. In clusters, fragmentation may thus be at the origin of the stellar initial mass function (IMF). On the other hand, our interferometric millimeter continuum observations are tracing (with higher angular resolution) the inner part of protostellar envelopes. Our study show that disks during protostellar stages are not yet massive and thus do not perturb the analysis of envelope density structure. (author) [fr
Prevalence of mammographically dense breasts in the United States.
Sprague, Brian L; Gangnon, Ronald E; Burt, Veronica; Trentham-Dietz, Amy; Hampton, John M; Wellman, Robert D; Kerlikowske, Karla; Miglioretti, Diana L
2014-10-01
National legislation is under consideration that would require women with mammographically dense breasts to be informed of their breast density and encouraged to discuss supplemental breast cancer screening with their health care providers. The number of US women potentially affected by this legislation is unknown. We determined the mammographic breast density distribution by age and body mass index (BMI) using data from 1518 599 mammograms conducted from 2007 through 2010 at mammography facilities in the Breast Cancer Surveillance Consortium (BCSC). We applied these breast density distributions to age- and BMI-specific counts of the US female population derived from the 2010 US Census and the National Health and Nutrition Examination Survey (NHANES) to estimate the number of US women with dense breasts. Overall, 43.3% (95% confidence interval [CI] = 43.1% to 43.4%) of women 40 to 74 years of age had heterogeneously or extremely dense breasts, and this proportion was inversely associated with age and BMI. Based on the age and BMI distribution of US women, we estimated that 27.6 million women (95% CI = 27.5 to 27.7 million) aged 40 to 74 years in the United States have heterogeneously or extremely dense breasts. Women aged 40 to 49 years (N = 12.3 million) accounted for 44.3% of this group. The prevalence of dense breasts among US women of common breast cancer screening ages exceeds 25 million. Policymakers and healthcare providers should consider this large prevalence when debating breast density notification legislation and designing strategies to ensure that women who are notified have opportunities to evaluate breast cancer risk and discuss and pursue supplemental screening options if deemed appropriate. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DEFF Research Database (Denmark)
Svegaard, Robin Sebastian Kaszmarczyk
2015-01-01
This article will introduce and take a look at a specific subset of the fan created remix videos known as vids, namely those that deal with feminist based critique of media. Through examples, it will show how fans construct and present their critique, and finally broach the topic of the critical...
Is There a Space for Critical Literacy in the Context of Social Media?
Burnett, Cathy; Merchant, Guy
2011-01-01
In this paper we look at what the critical tradition in education has to offer to the phenomenon of social media. Through an overview and evaluation of the approaches advocated by practitioners of critical literacy and critical media literacy, we illustrate the limitations of applying these frameworks to the fluid and densely interwoven spaces of…
Human perception of subresolution fineness of dense textures based on image intensity statistics.
Sawayama, Masataka; Nishida, Shin'ya; Shinya, Mikio
2017-04-01
We are surrounded by many textures with fine dense structures, such as human hair and fabrics, whose individual elements are often finer than the spatial resolution limit of the visual system or that of a digitized image. Here we show that human observers have an ability to visually estimate subresolution fineness of those textures. We carried out a psychophysical experiment to show that observers could correctly discriminate differences in the fineness of hair-like dense line textures even when the thinnest line element was much finer than the resolution limit of the eye or that of the display. The physical image analysis of the textures, along with a theoretical analysis based on the central limit theorem, indicates that as the fineness of texture increases and the number of texture elements per resolvable unit increases, the intensity contrast of the texture decreases and the intensity histogram approaches a Gaussian shape. Subsequent psychophysical experiments showed that these image features indeed play critical roles in fineness perception; i.e., lowering the contrast made artificial and natural textures look finer, and this effect was most evident for textures with unimodal Gaussian-like intensity distributions. These findings indicate that the human visual system is able to estimate subresolution texture fineness on the basis of diagnostic image features correlated with subresolution fineness, such as the intensity contrast and the shape of the intensity histogram.
Enhancement of the droplet nucleation in a dense supersaturated Lennard-Jones vapor
Energy Technology Data Exchange (ETDEWEB)
Zhukhovitskii, D. I., E-mail: dmr@ihed.ras.ru [Joint Institute of High Temperatures, Russian Academy of Sciences, Izhorskaya 13, Bd. 2, 125412 Moscow (Russian Federation)
2016-05-14
The vapor–liquid nucleation in a dense Lennard-Jones system is studied analytically and numerically. A solution of the nucleation kinetic equations, which includes the elementary processes of condensation/evaporation involving the lightest clusters, is obtained, and the nucleation rate is calculated. Based on the equation of state for the cluster vapor, the pre-exponential factor is obtained. The latter diverges as a spinodal is reached, which results in the nucleation enhancement. The work of critical cluster formation is calculated using the previously developed two-parameter model (TPM) of small clusters. A simple expression for the nucleation rate is deduced and it is shown that the work of cluster formation is reduced for a dense vapor. This results in the nucleation enhancement as well. To verify the TPM, a simulation is performed that mimics a steady-state nucleation experiments in the thermal diffusion cloud chamber. The nucleating vapor with and without a carrier gas is simulated using two different thermostats for the monomers and clusters. The TPM proves to match the simulation results of this work and of other studies.
The Role of Deposition in Limiting the Hazard Extent of Dense-Gas Plumes
Energy Technology Data Exchange (ETDEWEB)
Dillon, M B
2008-05-11
Accidents that involve large (multi-ton) releases of toxic industrial chemicals and form dense-gas clouds often yield far fewer fatalities, casualties and environmental effects than standard assessment and emergency response models predict. This modeling study, which considers both dense-gas turbulence suppression and deposition to environmental objects (e.g. buildings), demonstrates that dry deposition to environmental objects may play a significant role in reducing the distance at which adverse impacts occur - particularly under low-wind, stable atmospheric conditions which are often considered to be the worst-case scenario for these types of releases. The degree to which the released chemical sticks to (or reacts with) environmental surfaces is likely a key parameter controlling hazard extents. In all modeled cases, the deposition to vertical surfaces of environmental objects (e.g. building walls) was more efficient in reducing atmospheric chemical concentrations than deposition to the earth's surface. This study suggests that (1) hazard extents may vary widely by release environment (e.g. grasslands vs. suburbia) and release conditions (e.g. sunlight or humidity may change the rate at which chemicals react with a surface) and (2) greenbelts (or similar structures) may dramatically reduce the impacts of large-scale releases. While these results are demonstrated to be qualitatively consistent with the downwind extent of vegetation damage in two chlorine releases, critical knowledge gaps exist and this study provides recommendations for additional experimental studies.
Lattice Stability and Interatomic Potential of Non-equilibrium Warm Dense Gold
Chen, Z.; Mo, M.; Soulard, L.; Recoules, V.; Hering, P.; Tsui, Y. Y.; Ng, A.; Glenzer, S. H.
2017-10-01
Interatomic potential is central to the calculation and understanding of the properties of matter. A manifestation of interatomic potential is lattice stability in the solid-liquid transition. Recently, we have used frequency domain interferometry (FDI) to study the disassembly of ultrafast laser heated warm dense gold nanofoils. The FDI measurement is implemented by a spatial chirped single-shot technique. The disassembly of the sample is characterized by the change in phase shift of the reflected probe resulted from hydrodynamic expansion. The experimental data is compared with the results of two-temperature molecular dynamic simulations based on a highly optimized embedded-atom-method (EAM) interatomic potential. Good agreement is found for absorbed energy densities of 0.9 to 4.3MJ/kg. This provides the first demonstration of the applicability of an EAM interatomic potential in the non-equilibrium warm dense matter regime. The MD simulations also reveal the critical role of pressure waves in solid-liquid transition in ultrafast laser heated nanofoils. This work is supported by DOE Office of Science, Fusion Energy Science under FWP 100182, and SLAC LDRD program.
Critical reading and critical thinking Critical reading and critical thinking
Directory of Open Access Journals (Sweden)
Loni Kreis Taglieber
2008-04-01
Full Text Available The purpose of this paper is to provide, for L1 and L2 reading and writing teachers, a brief overview of the literature about critical reading and higher level thinking skills. The teaching of these skills is still neglected in some language classes in Brazil, be it in L1 or in L2 classes. Thus, this paper may also serve as a resource guide for L1 and/or L2 reading and writing teachers who want to incorporate critical reading and thinking into their classes. In modern society, even in everyday life people frequently need to deal with complicated public and political issues, make decisions, and solve problems. In order to do this efficiently and effectively, citizens must be able to evaluate critically what they see, hear, and read. Also, with the huge amount of printed material available in all areas in this age of “information explosion” it is easy to feel overwhelmed. But often the information piled up on people’s desks and in their minds is of no use due to the enormous amount of it. The purpose of this paper is to provide, for L1 and L2 reading and writing teachers, a brief overview of the literature about critical reading and higher level thinking skills. The teaching of these skills is still neglected in some language classes in Brazil, be it in L1 or in L2 classes. Thus, this paper may also serve as a resource guide for L1 and/or L2 reading and writing teachers who want to incorporate critical reading and thinking into their classes. In modern society, even in everyday life people frequently need to deal with complicated public and political issues, make decisions, and solve problems. In order to do this efficiently and effectively, citizens must be able to evaluate critically what they see, hear, and read. Also, with the huge amount of printed material available in all areas in this age of “information explosion” it is easy to feel overwhelmed. But often the information piled up on people’s desks and in their minds is of
International Nuclear Information System (INIS)
Stirling, W.G.; Perry, S.C.
1996-01-01
We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO 3 is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs
Energy Technology Data Exchange (ETDEWEB)
Stirling, W.G. [Liverpool Univ., Dep. of Physics, Liverpool (United Kingdom); Perry, S.C. [Keele Univ. (United Kingdom). Dept. of Physics
1996-12-31
We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO{sub 3} is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs.
Propagation of monochromatic light in a hot and dense medium
Masood, Samina S.
2017-12-01
Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe.
Partial jamming and non-locality in dense granular flows
Directory of Open Access Journals (Sweden)
Kharel Prashidha
2017-01-01
Full Text Available Dense granular flows can exhibit non-local flow behaviours that cannot be predicted by local constitutive laws alone. Such behaviour is accompanied by the existence of diverging cooperativity length. Here we show that this length can be attributed to the development of transient clusters of jammed particles within the flow. By performing DEM simulation of dense granular flows, we directly measure the size of such clusters which scales with the inertial number with a power law. We then derive a general non-local relation based on kinematic compatibility for the existence of clusters in an arbitrary non-homogenous flow. The kinematic nature of this derivation suggests that non-locality should be expected in any material regardless of their local constitutive law, as long as transient clusters exist within the flow.
The electron-atom interaction in partially ionized dense plasmas
Energy Technology Data Exchange (ETDEWEB)
Omarbakiyeva, Yu A; Ramazanov, T S; Roepke, G [IETP, Al Farabi Kazakh National University, Tole Bi 96a, Almaty 050012 (Kazakhstan)], E-mail: yultuz@physics.kz
2009-05-29
The electron-atom interaction is considered in dense partially ionized plasmas. The separable potential is constructed from scattering data using effective radius theory. Parameters of the interaction potential were obtained from phase shifts, scattering length and effective radius. The binding energy of the electron in the H{sup -} ion is determined for the singlet channel on the basis of the reconstructed separable potential. In dense plasmas, the influence of the Pauli exclusion principle on the phase shifts and the binding energy is considered. Due to the Pauli blocking, the binding energy vanishes at the Mott density. At that density the behavior of the phase shifts is drastically changed. This leads to modifications of macroscopic properties such as composition and transport coefficients.
Propagation of monochromatic light in a hot and dense medium
Energy Technology Data Exchange (ETDEWEB)
Masood, Samina S. [University of Houston Clear Lake, Department of Physical and Applied Sciences, Houston, TX (United States)
2017-12-15
Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe. (orig.)
Observations of non-linear plasmon damping in dense plasmas
Witte, B. B. L.; Sperling, P.; French, M.; Recoules, V.; Glenzer, S. H.; Redmer, R.
2018-05-01
We present simulations using finite-temperature density-functional-theory molecular-dynamics to calculate dynamic dielectric properties in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew, Burke, Ernzerhof approximation, Strongly Constrained and Appropriately Normed Semilocal Density Functional, and Heyd, Scuseria, Ernzerhof (HSE) approximation indicates evident differences in the electron transition energies, dc conductivity, and Lorenz number. The HSE calculations show excellent agreement with x-ray scattering data [Witte et al., Phys. Rev. Lett. 118, 225001 (2017)] as well as dc conductivity and absorption measurements. These findings demonstrate non-Drude behavior of the dynamic conductivity above the Cooper minimum that needs to be taken into account to determine optical properties in the warm dense matter regime.
A look at scalable dense linear algebra libraries
Energy Technology Data Exchange (ETDEWEB)
Dongarra, J.J. (Tennessee Univ., Knoxville, TN (United States) Dept. of Computer Science Oak Ridge National Lab., TN (United States)); van de Geijn, R. (Texas Univ., Austin, TX (United States). Dept. of Computer Sciences); Walker, D.W. (Oak Ridge National Lab., TN (United States))
1992-07-01
We discuss the essential design features of a library of scalable software for performing dense linear algebra computations on distributed memory concurrent computers. The square block scattered decomposition is proposed as a flexible and general-purpose way of decomposing most, if not all, dense matrix problems. An object- oriented interface to the library permits more portable applications to be written, and is easy to learn and use, since details of the parallel implementation are hidden from the user. Experiments on the Intel Touchstone Delta system with a prototype code that uses the square block scattered decomposition to perform LU factorization are presented and analyzed. It was found that the code was both scalable and efficient, performing at about 14 Gflop/s (double precision) for the largest problem considered.
Anomalous axion interactions and topological currents in dense matter
International Nuclear Information System (INIS)
Metlitski, Max A.; Zhitnitsky, Ariel R.
2005-01-01
Recently an effective Lagrangian for the interactions of photons, Nambu-Goldstone bosons and superfluid phonons in dense quark matter has been derived using anomaly matching arguments. In this paper we illuminate the nature of certain anomalous terms in this Lagrangian by an explicit microscopic calculation. We also generalize the corresponding construction to introduce the axion field. We derive an anomalous axion effective Lagrangian describing the interactions of axions with photons and superfluid phonons in the dense matter background. This effective Lagrangian, among other things, implies that an axion current will be induced in the presence of magnetic field. We speculate that this current may be responsible for the explanation of neutron star kicks
Water Cooled TJ Dense Array Modules for Parabolic Dishes
International Nuclear Information System (INIS)
Loeckenhoff, Ruediger; Kubera, Tim; Rasch, Klaus Dieter
2010-01-01
AZUR SPACE Solar Power GmbH has developed a novel type of dense array module for use in parabolic dishes. Such dishes never produce a perfectly homogeneous, rectangular light spot but an inhomogeneous light distribution. A regular module would use this light distribution very inefficiently. Therefore AZUR SPACE developed a dense array module concept which can be adapted to inhomogeneous light spots. It is populated with state of the art triple junction solar cells.The modules are designed for light intensities in the range of 50-100 W/cm 2 and are actively water cooled. Prototypes are installed in 11 m 2 parabolic dishes produced by Zenith Solar. A peak output of 2.3 kW electrical and 5.5 kW thermal power could be demonstrated. The thermal power may be used for solar heating, solar cooling or warm water.
Projective block Lanczos algorithm for dense, Hermitian eigensystems
International Nuclear Information System (INIS)
Webster, F.; Lo, G.C.
1996-01-01
Projection operators are used to effect open-quotes deflation by restrictionclose quotes and it is argued that this is an optimal Lanczos algorithm for memory minimization. Algorithmic optimization is constrained to dense, Hermitian eigensystems where a significant number of the extreme eigenvectors must be obtained reliably and completely. The defining constraints are operator algebra without a matrix representation and semi-orthogonalization without storage of Krylov vectors. other semi-orthogonalization strategies for Lanczos algorithms and conjugate gradient techniques are evaluated within these constraints. Large scale, sparse, complex numerical experiments are performed on clusters of magnetic dipoles, a quantum many-body system that is not block-diagonalizable. Plane-wave, density functional theory of beryllium clusters provides examples of dense complex eigensystems. Use of preconditioners and spectral transformations is evaluated in a preprocessor prior to a high accuracy self-consistent field calculation. 25 refs., 3 figs., 5 tabs
Fine structure of the vapor field in evaporating dense sprays
Villermaux, Emmanuel; Moutte, Alexandre; Amielh, Muriel; Meunier, Patrice
2017-11-01
Making use of an original technique which permits the simultaneous measurement of both the displacement field of evaporating droplets in a spray, and of their vapor, we investigate the relevance of a scenario introduced earlier to describe the evaporation dynamics of dense sprays. A plume of dense acetone droplets evaporating in air is studied, for which the stirring field is measured by particle image velocimetry of the droplets, and the vapor field is imaged quantitatively by laser-induced fluorescence. We show, thanks to these unique in situ measurements, that the spray boundary with the diluting environment is slaved to the dynamics of its saturating vapor concentration field, whose structure is analyzed for different well defined local flow topologies.
Temperature Measurements of Dense Plasmas by Detailed Balance
International Nuclear Information System (INIS)
Holl, A; Redmer, R; Ropke, G; Reinholz, H; Thiele, R; Fortmann, C; Forster, E; Cao, L; Tschentscher, T; Toleikis, S; Glenzer, S H
2006-01-01
Plasmas at high electron densities of n e = 10 20 - 10 26 cm -3 and moderate temperatures T e = 1 - 20 eV are important for laboratory astrophysics, high energy density science and inertial confinement fusion. These plasmas are usually referred to as Warm Dense Matter (WDM) and are characterized by a coupling parameter of Λ ∼> 1 where correlations become important. The characterization of such plasmas is still a challenging task due to the lack of direct measurement techniques for temperatures and densities. They propose to measure the Thomson scattering spectrum of vacuum-UV radiation off density fluctuations in the plasma. Collective Thomson scattering provides accurate data for the electron temperature applying first principles. Further, this method takes advantage of the spectral asymmetry resulting from detailed balance and is independent of collisional effects in these dense systems
Loran, Farhang; Mostafazadeh, Ali
2017-12-01
We provide an exact solution of the scattering problem for the potentials of the form v (x ,y ) =χa(x ) [v0(x ) +v1(x ) ei α y] , where χa(x ) :=1 for x ∈[0 ,a ] , χa(x ) :=0 for x ∉[0 ,a ] , vj(x ) are real or complex-valued functions, χa(x ) v0(x ) is an exactly solvable scattering potential in one dimension, and α is a positive real parameter. If α exceeds the wave number k of the incident wave, the scattered wave does not depend on the choice of v1(x ) . In particular, v (x ,y ) is invisible if v0(x ) =0 and k α and v1(x ) ≠0 , the scattered wave consists of a finite number of coherent plane-wave pairs ψn± with wave vector: kn=(±√{k2-[nα ] 2 },n α ) , where n =0 ,1 ,2 ,...generating quantum states with a quantized component of momentum and pairs of states with an entangled momentum. We examine a realization of these potentials in terms of certain optical slabs. If k =N α for some positive integer N , ψN± coalesce and their amplitude diverge. If k exceeds N α slightly, ψN± have a much larger amplitude than ψn± with n
Ionization-potential depression and dynamical structure factor in dense plasmas
Lin, Chengliang; Röpke, Gerd; Kraeft, Wolf-Dietrich; Reinholz, Heidi
2017-07-01
The properties of a bound electron system immersed in a plasma environment are strongly modified by the surrounding plasma. The modification of an essential quantity, the ionization energy, is described by the electronic and ionic self-energies, including dynamical screening within the framework of the quantum statistical theory. Introducing the ionic dynamical structure factor as the indicator for the ionic microfield, we demonstrate that ionic correlations and fluctuations play a critical role in determining the ionization potential depression. This is, in particular, true for mixtures of different ions with large mass and charge asymmetry. The ionization potential depression is calculated for dense aluminum plasmas as well as for a CH plasma and compared to the experimental data and more phenomenological approaches used so far.
Deadly heat waves projected in the densely populated agricultural regions of South Asia.
Im, Eun-Soon; Pal, Jeremy S; Eltahir, Elfatih A B
2017-08-01
The risk associated with any climate change impact reflects intensity of natural hazard and level of human vulnerability. Previous work has shown that a wet-bulb temperature of 35°C can be considered an upper limit on human survivability. On the basis of an ensemble of high-resolution climate change simulations, we project that extremes of wet-bulb temperature in South Asia are likely to approach and, in a few locations, exceed this critical threshold by the late 21st century under the business-as-usual scenario of future greenhouse gas emissions. The most intense hazard from extreme future heat waves is concentrated around densely populated agricultural regions of the Ganges and Indus river basins. Climate change, without mitigation, presents a serious and unique risk in South Asia, a region inhabited by about one-fifth of the global human population, due to an unprecedented combination of severe natural hazard and acute vulnerability.
Composition and thermodynamic properties of dense alkali metal plasmas
Energy Technology Data Exchange (ETDEWEB)
Gabdullin, M.T. [NNLOT, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan); Ramazanov, T.S.; Dzhumagulova, K.N. [IETP, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan)
2012-04-15
In this work composition and thermodynamic properties of dense alkali metal plasmas (Li, Na) were investigated. Composition was derived by solving the Saha equations with corrections due to nonideality. The lowering of the ionization potentials was calculated on the basis of pseudopotentials by taking screening and quantum effects into account (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
The EOS and neutrino interactions in dense matter
Energy Technology Data Exchange (ETDEWEB)
Prakash, M.; Reddy, S. [Dept. of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY (United States)
1998-06-01
The deleptonization and cooling times of a newly born neutron star depend on the equation of state (EOS) and neutrino opacities in dense matter. Through model calculations we show that effects of Pauli blocking and many-body correlations due to strong interactions reduce both the neutral and charged current neutrino cross sections by large factors compared to the case in which these effects are ignored. (orig.)
Dense Molecular Gas in the Starburst Nucleus of NGC 1808
Salak, Dragan; Tomiyasu, Yuto; Nakai, Naomasa; Kuno, Nario; Miyamoto, Yusuke; Kaneko, Hiroyuki
2018-04-01
Dense molecular gas tracers in the central 1 kpc region of the superwind galaxy NGC 1808 have been imaged by ALMA at a resolution of 1″ (∼50 pc). Integrated intensities and line intensity ratios of HCN (1–0), H13CN (1–0), HCO+ (1–0), H13CO+ (1–0), HOC+ (1–0), HCO+ (4–3), CS (2–1), C2H (1–0), and previously detected CO (1–0) and CO (3–2) are presented. SiO (2–1) and HNCO (4–3) are detected toward the circumnuclear disk (CND), indicating the presence of shocked dense gas. There is evidence that an enhanced intensity ratio of HCN (1–0)/HCO+ (1–0) reflects star formation activity, possibly in terms of shock heating and electron excitation in the CND and a star-forming ring at radius ∼300 pc. A non-local thermodynamic equilibrium analysis indicates that the molecular gas traced by HCN, H13CN, HCO+, and H13CO+ in the CND is dense ({n}{{{H}}2}∼ {10}5 {cm}}-3) and warm (20 K ≲ T k ≲ 100 K). The calculations yield a low average gas density of {n}{{{H}}2}∼ {10}2{--}{10}3 {cm}}-3 for a temperature of {T}{{k}}≳ 30 {{K}} in the nuclear outflow. Dense gas tracers HCN (1–0), HCO+ (1–0), CS (2–1), and C2H (1–0) are detected for the first time in the superwind of NGC 1808, confirming the presence of a velocity gradient in the outflow direction.
Memory-efficient analysis of dense functional connectomes
Directory of Open Access Journals (Sweden)
Kristian Loewe
2016-11-01
Full Text Available The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software are compared with regard to their computational efficiency in terms of memory requirements and computation time. The matrix implementation based on on-demand computations has very low memory requirements thus enabling
Topical Collaboration "Neutrinos and Nucleosynthesis in Hot and Dense Matter"
Energy Technology Data Exchange (ETDEWEB)
Allahverdi, Rouzbeh [Univ. of New Mexico, Albuquerque, NM (United States)
2015-09-18
This is the final technical report describing contributions from the University of New Mexico to Topical Collaboration on "Neutrinos and Nucleosynthesis in Hot and Dense Matter" in the period June 2010 through May 2015. During the funding period, the University of New Mexico successfully hired Huaiyu Duan as a new faculty member with the support from DOE, who has contributed to the Topical Collaboration through his research and collaborations.
Pulsars and cosmic rays in the dense supernova shells
International Nuclear Information System (INIS)
Berezinsky, V.S.; Prilutsky, O.F.
1977-01-01
Cosmic rays (c.r.) injected by a young pulsar in the dense supernova shell are considered. The maintenance of the Galactic c.r. pool by pulsar production is shown to have a difficulty: adiabatic energy losses of c.r. in the expanding shell demand a high initial c.r. luminosity of pulsar, which results in too high flux of γ-radiation produced through π 0 -decays (in excess over diffuse γ-ray background). (author)
Non-dense domain operator matrices and Cauchy problems
International Nuclear Information System (INIS)
Lalaoui Rhali, S.
2002-12-01
In this work, we study Cauchy problems with non-dense domain operator matrices. By assuming that the entries of an unbounded operator matrix are Hille-Yosida operators, we give a necessary and sufficient condition ensuring that the part of this operator matrix generates a semigroup in the closure of its domain. This allows us to prove the well-posedness of the corresponding Cauchy problem. Our results are applied to delay and neutral differential equations. (author)
Studies of RF Breakdown of Metals in Dense Gases
Hanlet, Pierrick M; Ankenbrandt, Charles; Johnson, Rolland P; Kaplan, Daniel; Kuchnir, Moyses; Moretti, Alfred; Paul, Kevin; Popovic, Milorad; Yarba, Victor; Yonehara, Katsuya
2005-01-01
A study of RF breakdown of metals in gases has begun as part of a program to develop RF cavities filled with dense hydrogen gas to be used for muon ionization cooling. A pressurized 800 MHz test cell has been used at Fermilab to compare the conditioning and breakdown behavior of copper, molybdenum, chromium, and beryllium electrodes as functions of hydrogen and helium gas density. These results are compared to the predicted or known RF breakdown behavior of these metals in vacuum.
Locating sources within a dense sensor array using graph clustering
Gerstoft, P.; Riahi, N.
2017-12-01
We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.
Rheology of dense suspensions of non colloidal particles
Directory of Open Access Journals (Sweden)
Guazzelli Élisabeth
2017-01-01
Full Text Available Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing and in natural phenomena (e.g. flows of slurries, debris, and lava. Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers or non-Newtonian fluids that we will also address.
Geophysical Age Dating of Seamounts using Dense Core Flexure Model
Hwang, Gyuha; Kim, Seung-Sep
2016-04-01
Lithospheric flexure of oceanic plate is thermo-mechanical response of an elastic plate to the given volcanic construct (e.g., seamounts and ocean islands). If the shape and mass of such volcanic loads are known, the flexural response is governed by the thickness of elastic plate, Te. As the age of oceanic plate increases, the elastic thickness of oceanic lithosphere becomes thicker. Thus, we can relate Te with the age of plate at the time of loading. To estimate the amount of the driving force due to seamounts on elastic plate, one needs to approximate their density structure. The most common choice is uniform density model, which utilizes constant density value for a seamount. This approach simplifies computational processes for gravity prediction and error estimates. However, the uniform density model tends to overestimate the total mass of the seamount and hence produces more positive gravitational contributions from the load. Minimization of gravity misfits using uniform density, therefore, favors thinner Te in order to increase negative contributions from the lithospheric flexure, which can compensate for the excessive positives from the seamount. An alternative approach is dense core model, which approximate the heterogeneity nature of seamount density as three bodies of infill sediment, edifice, and dense core. In this study, we apply the dense core model to the Louisville Seamount Chain for constraining flexural deformation. We compare Te estimates with the loading time of the examined seamounts to redefine empirical geophysical age dating of seamounts.
Rheology of dense suspensions of non colloidal particles
Guazzelli, Élisabeth
2017-06-01
Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers) or non-Newtonian fluids that we will also address.
Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds
Energy Technology Data Exchange (ETDEWEB)
Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O' Hern; Paul Tortora
2008-02-29
The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.
Rheological Behavior of Dense Assemblies of Granular Materials
International Nuclear Information System (INIS)
Sundaresan, Sankaran; Tardos, Gabriel I.; Subramaniam, Shankar
2011-01-01
Assemblies of granular materials behave differently when they are owing rapidly, from when they are slowly deforming. The behavior of rapidly owing granular materials, where the particle-particle interactions occur largely through binary collisions, is commonly related to the properties of the constituent particles through the kinetic theory of granular materials. The same cannot be said for slowly moving or static assemblies of granular materials, where enduring contacts between particles are prevalent. For instance, a continuum description of the yield characteristics of dense assemblies of particles in the quasistatic ow regime cannot be written explicitly on the basis of particle properties, even for cohesionless particles. Continuum models for this regime have been proposed and applied, but these models typically assume that the assembly is at incipient yield and they are expressed in terms of the yield function, which we do not yet know how to express in terms of particle-level properties. The description of the continuum rheology in the intermediate regime is even less understood. Yet, many practically important flows in nature and in a wide range of technological applications occur in the dense flow regime and at the transition between dilute and dense regimes; the lack of validated continuum rheological models for particle assemblies in these regimes limits predictive modeling of such flows. This research project is aimed at developing such rheological models.
Compressible, Dense, Three-Dimensional Holey Graphene Monolithic Architecture.
Han, Xiaogang; Yang, Zhi; Zhao, Bin; Zhu, Shuze; Zhou, Lihui; Dai, Jiaqi; Kim, Jae-Woo; Liu, Boyang; Connell, John W; Li, Teng; Yang, Bao; Lin, Yi; Hu, Liangbing
2017-03-28
By creating holes in 2D nanosheets, tortuosity and porosity can be greatly tunable, which enables a fast manufacturing process (i.e., fast removal of gas and solvent) toward various nanostructures. We demonstrated outstanding compressibility of holey graphene nanosheets, which is impossible for pristine graphene. Holey graphene powder can be easily compressed into dense and strong monoliths with different shapes at room temperature without using any solvents or binders. The remarkable compressibility of holey graphene, which is in sharp contrast with pristine graphene, not only enables the fabrication of robust, dense graphene products that exhibit high density (1.4 g/cm 3 ), excellent specific mechanical strength [18 MPa/(g/cm 3 )], and good electrical (130 S/cm) and thermal (20 W/mK) conductivities, but also provides a binder-free dry process that overcomes the disadvantages of wet processes required for fabrication of three-dimensional graphene products. Fundamentally different from graphite, the holey graphene products are both dense and porous, which can enable possible broader applications such as energy storage and gas separation membranes.
N-Body Evolution of Dense Clusters of Compact Stars
Lee, Man Hoi
1993-11-01
The dynamical evolution of dense clusters of compact stars is studied using direct N-body simulations. The formation of binaries and their subsequent merging by gravitational radiation emission is important to the evolution of such clusters. Aarseth's NBODY5 N-body simulation code is modified to include the lowest order gravitational radiation force during two-body encounters and to handle the decay and merger of radiating binaries. It is used to study the evolution of small-N (= 1000) clusters with different initial velocity dispersions. The initial evolution is similar to that obtained by Quinlan & Shapiro (1989) using a multimass Fokker-Planck code and shows orderly formation of heavy objects. However, the late evolution differs qualitatively from previous results. In particular, we find runaway growth for the most massive object in the cluster: it acquires a mass much larger than that of the other objects and is detached from the smooth mass spectrum of the rest of the objects. We discuss why the Fokker-Planck equation with a mean-rate approach to the merger process cannot model runaway growth, and we present arguments to show that merger by gravitational radiation is expected to be unstable to runaway growth. The results suggest that a seed massive black hole can be formed by runaway growth in a dense cluster of compact stars. The possibility of runaway growth in dense clusters of normal stars is also discussed.
Accurate segmentation of dense nanoparticles by partially discrete electron tomography
Energy Technology Data Exchange (ETDEWEB)
Roelandts, T., E-mail: tom.roelandts@ua.ac.be [IBBT-Vision Lab University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Batenburg, K.J. [IBBT-Vision Lab University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica, Science Park 123, 1098 XG Amsterdam (Netherlands); Biermans, E. [EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Kuebel, C. [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bals, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Sijbers, J. [IBBT-Vision Lab University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium)
2012-03-15
Accurate segmentation of nanoparticles within various matrix materials is a difficult problem in electron tomography. Due to artifacts related to image series acquisition and reconstruction, global thresholding of reconstructions computed by established algorithms, such as weighted backprojection or SIRT, may result in unreliable and subjective segmentations. In this paper, we introduce the Partially Discrete Algebraic Reconstruction Technique (PDART) for computing accurate segmentations of dense nanoparticles of constant composition. The particles are segmented directly by the reconstruction algorithm, while the surrounding regions are reconstructed using continuously varying gray levels. As no properties are assumed for the other compositions of the sample, the technique can be applied to any sample where dense nanoparticles must be segmented, regardless of the surrounding compositions. For both experimental and simulated data, it is shown that PDART yields significantly more accurate segmentations than those obtained by optimal global thresholding of the SIRT reconstruction. -- Highlights: Black-Right-Pointing-Pointer We present a novel reconstruction method for partially discrete electron tomography. Black-Right-Pointing-Pointer It accurately segments dense nanoparticles directly during reconstruction. Black-Right-Pointing-Pointer The gray level to use for the nanoparticles is determined objectively. Black-Right-Pointing-Pointer The method expands the set of samples for which discrete tomography can be applied.
How Critical Is Critical Infrastructure?
2015-09-01
to Examine Critical Issues Underlying the Planned Rebuilding at the World Trade Center Site. 178 HVS Global Hospitality Services, 2012 Manhattan...Hotel Market Overview (Mineola, NY: HVS Global Hospitality Services, 2012, http://www.hvs.com/Content/3268.pdf. 179 “Key Office Properties,” accessed...premier real estate, luxury shopping, world class hotels, destination dining, and tourism , into an area that produces cumulative consumer spending of
AUTHOR|(CDS)2070299
2017-01-01
Critical Mass is a cycling event typically held on the last Friday of every month; its purpose is not usually formalized beyond the direct action of meeting at a set location and time and traveling as a group through city or town streets on bikes. The event originated in 1992 in San Francisco; by the end of 2003, the event was being held in over 300 cities around the world. At CERN it is held once a year in conjunction with the national Swiss campaing "Bike to work".
Kleiner, Susan; Greenwood, Mike
A nutrient-dense diet is a critical aspect in attaining optimal exercise training and athletic performance outcomes. Although including safe and effective nutritional supplements in the dietary design can be extremely helpful in promoting adequate caloric ingestion, they are not sufficient for promoting adequate caloric ingestion based on individualized caloric expenditure needs without the proper diet. Specifically, a strategic and scientifically based nutrient-dense dietary profile should be created by qualified professionals to meet the sport/exercise-specific energy demands of any individual involved in select training intensity protocols. Finally, ingesting the right quantity and quality of nutrient dense calories at precise windows of opportunity becomes vital in attaining desired training and/or competitive performance outcomes.
Ultra High Intensity laser produced fast electron transport in under-dense and over-dense matter
International Nuclear Information System (INIS)
Manclossi, Mauro
2006-01-01
This thesis is related to inertial fusion research, and particularly concerns the approach to fast ignition, which is based on the use of ultra-intense laser pulses to ignite the thermonuclear fuel. Until now, the feasibility of this scheme has not been proven and depends on many fundamental aspects of the underlying physics, which are not yet fully understood and which are also very far from controls. The main purpose of this thesis is the experimental study of transport processes in the material over-dense (solid) and under-dense (gas jet) of a beam of fast electrons produced by pulse laser at a intensity of some 10 19 Wcm -2 . (author)
Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model
Pakseresht, Pedram; Apte, Sourabh V.
2017-11-01
Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).
Level compressibility in a critical random matrix ensemble: the second virial coefficient
Kravtsov, Vladimir E.; Yevtushenko, Oleg; Cuevas, Emilio
2006-03-01
We study spectral statistics of a Gaussian unitary critical ensemble of almost diagonal Hermitian random matrices with off-diagonal entries lang|Hij|2rang ~ b2|i - j|-2 small compared to diagonal ones lang|Hii|2rang ~ 1. Using the recently suggested method of virial expansion in the number of interacting energy levels (Yevtushenko and Kravtsov 2003 J. Phys. A: Math. Gen. 36 8265), we calculate a coefficient ~b2 Lt 1 in the level compressibility χ(b). We demonstrate that only the leading terms in χ(b) coincide for this model and for an exactly solvable model suggested by Moshe et al (1994 Phys. Rev. Lett. 73 1497), the sub-leading terms ~b2 being different. Numerical data confirm our analytical calculation.
DEFF Research Database (Denmark)
Nielsen, Sandro
2018-01-01
Dictionary criticism is part of the lexicographical universe and reviewing of electronic and printed dictionaries is not an exercise in linguistics or in subject fields but an exercise in lexicography. It does not follow from this that dictionary reviews should not be based on a linguistic approach......, but that the linguistic approach is only one of several approaches to dictionary reviewing. Similarly, the linguistic and factual competences of reviewers should not be relegated to an insignificant position in the review process. Moreover, reviewers should define the object of their reviews, the dictionary, as a complex...... information tool with several components and in terms of significant lexicographical features: lexicographical functions, data and structures. This emphasises the fact that dictionaries are much more than mere vessels of linguistic categories, namely lexicographical tools that have been developed to fulfil...
1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas
International Nuclear Information System (INIS)
Ichimaru, S.; Tajima, T.
1991-10-01
The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas
1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas
Energy Technology Data Exchange (ETDEWEB)
Ichimaru, S. (ed.) (Tokyo Univ. (Japan). Dept. of Physics); Tajima, T. (ed.) (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies)
1991-10-01
The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.
1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Ichimaru, S. [ed.] [Tokyo Univ. (Japan). Dept. of Physics; Tajima, T. [ed.] [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies
1991-10-01
The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.
Structural relaxation in dense liquids composed of anisotropic particles.
Shen, Tianqi; Schreck, Carl; Chakraborty, Bulbul; Freed, Denise E; O'Hern, Corey S
2012-10-01
We perform extensive molecular dynamics simulations of dense liquids composed of bidisperse dimer- and ellipse-shaped particles in two dimensions that interact via purely repulsive contact forces. We measure the structural relaxation times obtained from the long-time α decay of the self part of the intermediate scattering function for the translational and rotational degrees of freedom (DOF) as a function of packing fraction φ, temperature T, and aspect ratio α. We are able to collapse the packing-fraction and temperature-dependent structural relaxation times for disks, and dimers and ellipses over a wide range of α, onto a universal scaling function F(±)(|φ-φ(0)|,T,α), which is similar to that employed in previous studies of dense liquids composed of purely repulsive spherical particles in three dimensions. F(±) for both the translational and rotational DOF are characterized by the α-dependent scaling exponents μ and δ and packing fraction φ(0)(α) that signals the crossover in the scaling form F(±) from hard-particle dynamics to super-Arrhenius behavior for each aspect ratio. We find that the fragility of structural relaxation at φ(0), m(φ(0)), decreases monotonically with increasing aspect ratio for both ellipses and dimers. For α>α(p), where α(p) is the location of the peak in the packing fraction φ(J) at jamming onset, the rotational DOF are strongly coupled to the translational DOF, and the dynamic scaling exponents and φ(0) are similar for the rotational and translational DOF. For 1composed of dimer- and ellipse-shaped particles are qualitatively the same, despite the fact that zero-temperature static packings of dimers are isostatic, while static packings of ellipses are hypostatic. Thus, zero-temperature contact counting arguments do not apply to structural relaxation of dense liquids of anisotropic particles near the glass transition.
Inhomogeneous quasistationary state of dense fluids of inelastic hard spheres.
Fouxon, Itzhak
2014-05-01
We study closed dense collections of freely cooling hard spheres that collide inelastically with constant coefficient of normal restitution. We find inhomogeneous states (ISs) where the density profile is spatially nonuniform but constant in time. The states are exact solutions of nonlinear partial differential equations that describe the coupled distributions of density and temperature valid when inelastic losses of energy per collision are small. The derivation is performed without modeling the equations' coefficients that are unknown in the dense limit (such as the equation of state) using only their scaling form specific for hard spheres. Thus the IS is the exact state of this dense many-body system. It captures a fundamental property of inelastic collections of particles: the possibility of preserving nonuniform temperature via the interplay of inelastic cooling and heat conduction that generalizes previous results. We perform numerical simulations to demonstrate that arbitrary initial state evolves to the IS in the limit of long times where the container has the geometry of the channel. The evolution is like a gas-liquid transition. The liquid condenses in a vanishing part of the total volume but takes most of the mass of the system. However, the gaseous phase, which mass grows only logarithmically with the system size, is relevant because its fast particles carry most of the energy of the system. Remarkably, the system self-organizes to dissipate no energy: The inelastic decay of energy is a power law [1+t/t(c)](-2), where t(c) diverges in the thermodynamic limit. This is reinforced by observing that for supercritical systems the IS coincide in most of the space with the steady states of granular systems heated at one of the walls. We discuss the relation of our results to the recently proposed finite-time singularity in other container's geometries.
Parallel Access of Out-Of-Core Dense Extendible Arrays
Energy Technology Data Exchange (ETDEWEB)
Otoo, Ekow J; Rotem, Doron
2007-07-26
Datasets used in scientific and engineering applications are often modeled as dense multi-dimensional arrays. For very large datasets, the corresponding array models are typically stored out-of-core as array files. The array elements are mapped onto linear consecutive locations that correspond to the linear ordering of the multi-dimensional indices. Two conventional mappings used are the row-major order and the column-major order of multi-dimensional arrays. Such conventional mappings of dense array files highly limit the performance of applications and the extendibility of the dataset. Firstly, an array file that is organized in say row-major order causes applications that subsequently access the data in column-major order, to have abysmal performance. Secondly, any subsequent expansion of the array file is limited to only one dimension. Expansions of such out-of-core conventional arrays along arbitrary dimensions, require storage reorganization that can be very expensive. Wepresent a solution for storing out-of-core dense extendible arrays that resolve the two limitations. The method uses a mapping function F*(), together with information maintained in axial vectors, to compute the linear address of an extendible array element when passed its k-dimensional index. We also give the inverse function, F-1*() for deriving the k-dimensional index when given the linear address. We show how the mapping function, in combination with MPI-IO and a parallel file system, allows for the growth of the extendible array without reorganization and no significant performance degradation of applications accessing elements in any desired order. We give methods for reading and writing sub-arrays into and out of parallel applications that run on a cluster of workstations. The axial-vectors are replicated and maintained in each node that accesses sub-array elements.
Bayesian quantification of thermodynamic uncertainties in dense gas flows
International Nuclear Information System (INIS)
Merle, X.; Cinnella, P.
2015-01-01
A Bayesian inference methodology is developed for calibrating complex equations of state used in numerical fluid flow solvers. Precisely, the input parameters of three equations of state commonly used for modeling the thermodynamic behavior of the so-called dense gas flows, – i.e. flows of gases characterized by high molecular weights and complex molecules, working in thermodynamic conditions close to the liquid–vapor saturation curve – are calibrated by means of Bayesian inference from reference aerodynamic data for a dense gas flow over a wing section. Flow thermodynamic conditions are such that the gas thermodynamic behavior strongly deviates from that of a perfect gas. In the aim of assessing the proposed methodology, synthetic calibration data – specifically, wall pressure data – are generated by running the numerical solver with a more complex and accurate thermodynamic model. The statistical model used to build the likelihood function includes a model-form inadequacy term, accounting for the gap between the model output associated to the best-fit parameters and the true phenomenon. Results show that, for all of the relatively simple models under investigation, calibrations lead to informative posterior probability density distributions of the input parameters and improve the predictive distribution significantly. Nevertheless, calibrated parameters strongly differ from their expected physical values. The relationship between this behavior and model-form inadequacy is discussed. - Highlights: • Development of a Bayesian inference procedure for calibrating dense-gas flow solvers. • Complex thermodynamic models calibrated by using aerodynamic data for the flow. • Preliminary Sobol analysis used to reduce parameter space. • Piecewise polynomial surrogate model constructed to reduce computational cost. • Calibration results show the crucial role played by model-form inadequacies
Exp6-polar thermodynamics of dense supercritical water
Energy Technology Data Exchange (ETDEWEB)
Bastea, S; Fried, L E
2007-12-13
We introduce a simple polar fluid model for the thermodynamics of dense supercritical water based on a Buckingham (exp-6) core and point dipole representation of the water molecule. The proposed exp6-polar thermodynamics, based on ideas originally applied to dipolar hard spheres, performs very well when tested against molecular dynamics simulations. Comparisons of the model predictions with experimental data available for supercritical water yield excellent agreement for the shock Hugoniot, isotherms and sound speeds, and are also quite good for the self-diffusion constant and relative dielectric constant. We expect the present approach to be also useful for other small polar molecules and their mixtures.
Performance analysis of simultaneous dense coding protocol under decoherence
Huang, Zhiming; Zhang, Cai; Situ, Haozhen
2017-09-01
The simultaneous dense coding (SDC) protocol is useful in designing quantum protocols. We analyze the performance of the SDC protocol under the influence of noisy quantum channels. Six kinds of paradigmatic Markovian noise along with one kind of non-Markovian noise are considered. The joint success probability of both receivers and the success probabilities of one receiver are calculated for three different locking operators. Some interesting properties have been found, such as invariance and symmetry. Among the three locking operators we consider, the SWAP gate is most resistant to noise and results in the same success probabilities for both receivers.
On the spatial distributions of dense cores in Orion B
Parker, Richard J.
2018-05-01
We quantify the spatial distributions of dense cores in three spatially distinct areas of the Orion B star-forming region. For L1622, NGC 2068/NGC 2071, and NGC 2023/NGC 2024, we measure the amount of spatial substructure using the Q-parameter and find all three regions to be spatially substructured (Q Orion B, the mass segregation cannot be dynamical. Our results are also inconsistent with simulations in which the most massive stars form via competitive accretion, and instead hint that magnetic fields may be important in influencing the primordial spatial distributions of gas and stars in star-forming regions.
Plasmon-polariton modes of dense Au nanowire arrays
Energy Technology Data Exchange (ETDEWEB)
Yan, Hongdan; Lemmens, Peter; Wulferding, Dirk; Cetin, Mehmet Fatih [IPKM, TU-BS, Braunschweig (Germany); Tornow, Sabine; Zwicknagl, Gertrud [IMP, TU-BS, Braunschweig (Germany); Krieg, Ulrich; Pfnuer, Herbert [IFP, LU Hannover (Germany); Daum, Winfried; Lilienkamp, Gerhard [IEPT, TU Clausthal (Germany); Schilling, Meinhard [EMG, TU-BS, Braunschweig (Germany)
2011-07-01
Using optical absorption and other techniques we study plasmon-polariton modes of dense Au nanowire arrays as function of geometrical parameters and coupling to molecular degrees of freedom. For this instance we electrochemically deposit Au nanowires in porous alumina with well controlled morphology and defect concentration. Transverse and longitudinal modes are observed in the absorption spectra resulting from the anisotropic plasmonic structure. The longitudinal mode shows a blue shift of energy with increasing length of the wires due to the more collective nature of this response. We compare our observations with model calculations and corresponding results on 2D Ag nanowire lattices.
Dilution in a Dense Bottom Jet in Cross Currents
DEFF Research Database (Denmark)
Petersen, O.; Larsen, Torben
1998-01-01
A 3-dimensional numerical model describing the dilution in the near field around dense vertical jets in a cross flow is formulated and validated against laboratory experiments. The validation shows that the model reproduces the flow pattern well, though the dilution is underestimated by 20......%. The model is applied to a case study where the dilution from two vertical jets at an angle in shallow water is described. It is demonstrated that a 20% increase in dilution is possible. It is concluded that the model may become a valuable tool in diffusor design....
Graham's law of effusion in dense systems with nonuniform interactions
Mohazzabi, P.; Cumaranatunge, L.
2003-09-01
We investigate Graham's law of effusion in a series of molecular dynamics simulations. We show that the law remains valid not only in a dilute gas, but also in fluids dense enough to cause localization, even when various particles of the system interact according to varying interatomic force laws. Although Maxwellian velocity distribution is a sufficient condition for Graham's law of effusion to hold, it is not strictly necessary, in the sense that the law is obeyed even by systems that deviate significantly from Maxwellian.
Ultrasound propagation in dense aerogels filled with liquid 4He
International Nuclear Information System (INIS)
Matsumoto, K; Ohmori, K; Abe, S; Kanamori, K; Nakanishi, K
2012-01-01
Longitudinal ultrasound propagation was studied in dense aerogels filled with liquid 4 He. Sound velocity and attenuation were measured at the frequency of 6 MHz in both normal and superfluid phases. Pressure dependence of velocity and attenuation were also studied. Studied aerogels had porosities about 85%. They had two different types of structure, tangled strand structure and aggregated particles structure. The pore size distributions were narrow. Reduction of superfluid transition temperature mainly depended on not porosity but mean pore size. The structure of gel played an important role in sound velocity and attenuation.
Dense grid sibling frames with linear phase filters
Abdelnour, Farras
2013-09-01
We introduce new 5-band dyadic sibling frames with dense time-frequency grid. Given a lowpass filter satisfying certain conditions, the remaining filters are obtained using spectral factorization. The analysis and synthesis filterbanks share the same lowpass and bandpass filters but have different and oversampled highpass filters. This leads to wavelets approximating shift-invariance. The filters are FIR, have linear phase, and the resulting wavelets have vanishing moments. The filters are designed using spectral factorization method. The proposed method leads to smooth limit functions with higher approximation order, and computationally stable filterbanks.
Generation and characterisation of warm dense matter with intense lasers
Riley, D.
2018-01-01
In this paper I discuss the subject of warm dense matter (WDM), which, apart from being of academic interest and relevant to inertial fusion capsules, is a subject of importance to those who wish to understand the formation and structure of planetary interiors and other astrophysical bodies. I broadly outline some key properties of WDM and go on to discuss various methods of generating samples in the laboratory using large laser facilities and outline some common techniques of diagnosis. It is not intended as a comprehensive review but rather a brief outline for scientists new to the field and those with an interest but not working in the field directly.
A continuous stochastic model for non-equilibrium dense gases
Sadr, M.; Gorji, M. H.
2017-12-01
While accurate simulations of dense gas flows far from the equilibrium can be achieved by direct simulation adapted to the Enskog equation, the significant computational demand required for collisions appears as a major constraint. In order to cope with that, an efficient yet accurate solution algorithm based on the Fokker-Planck approximation of the Enskog equation is devised in this paper; the approximation is very much associated with the Fokker-Planck model derived from the Boltzmann equation by Jenny et al. ["A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion," J. Comput. Phys. 229, 1077-1098 (2010)] and Gorji et al. ["Fokker-Planck model for computational studies of monatomic rarefied gas flows," J. Fluid Mech. 680, 574-601 (2011)]. The idea behind these Fokker-Planck descriptions is to project the dynamics of discrete collisions implied by the molecular encounters into a set of continuous Markovian processes subject to the drift and diffusion. Thereby, the evolution of particles representing the governing stochastic process becomes independent from each other and thus very efficient numerical schemes can be constructed. By close inspection of the Enskog operator, it is observed that the dense gas effects contribute further to the advection of molecular quantities. That motivates a modelling approach where the dense gas corrections can be cast in the extra advection of particles. Therefore, the corresponding Fokker-Planck approximation is derived such that the evolution in the physical space accounts for the dense effects present in the pressure, stress tensor, and heat fluxes. Hence the consistency between the devised Fokker-Planck approximation and the Enskog operator is shown for the velocity moments up to the heat fluxes. For validation studies, a homogeneous gas inside a box besides Fourier, Couette, and lid-driven cavity flow setups is considered. The results based on the Fokker-Planck model are
Chemical potential calculations in dense liquids using metadynamics
Perego, C.; Giberti, F.; Parrinello, M.
2016-10-01
The calculation of chemical potential has traditionally been a challenge in atomistic simulations. One of the most used approaches is Widom's insertion method in which the chemical potential is calculated by periodically attempting to insert an extra particle in the system. In dense systems this method fails since the insertion probability is very low. In this paper we show that in a homogeneous fluid the insertion probability can be increased using metadynamics. We test our method on a supercooled high density binary Lennard-Jones fluid. We find that we can obtain efficiently converged results even when Widom's method fails.
Repetitively pulsed capacitor bank for the dense-plasma focus
International Nuclear Information System (INIS)
Zucker, O.; Bostick, W.; Gullickson, R.; Long, J.; Luce, J.; Sahlin, H.
1976-01-01
This report describes a 1 pulse per second capacitor bank designed to energize a dense-plasma focus (DPF). The DPF is a neutron source capable (with moderate scaling) of delivering a minimum of 10 15 neutrons per pulse or neutron flux of 2 x 10 13 N/cm 2 . s. The average power consumption, which has become a major issue due to the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. This small source size high flux neutron source could be extremely useful to qualify fission reactor material irradiation results for fusion reactor design
Laterally cyclic loading of monopile in dense sand
DEFF Research Database (Denmark)
Klinkvort, Rasmus Tofte; Hededal, Ole; Svensson, M.
2011-01-01
In order to investigate the response from laterally cyclic loading of monopiles a large centrifuge tests series is ongoing at the Technical University of Denmark (DTU). This paper will present some of the tests carried out with a focus on the influence of accumulation of rotation when changing...... the loading conditions. In these tests the load conditions are controlled by two load characteristics, one controlling the level of the cyclic loading and one controlling the characteristic of the cyclic loading. The centrifuge tests were performed in dense dry sand on a pile with prototype dimensions...
Polyatomic Trilobite Rydberg Molecules in a Dense Random Gas.
Luukko, Perttu J J; Rost, Jan-Michael
2017-11-17
Trilobites are exotic giant dimers with enormous dipole moments. They consist of a Rydberg atom and a distant ground-state atom bound together by short-range electron-neutral attraction. We show that highly polar, polyatomic trilobite states unexpectedly persist and thrive in a dense ultracold gas of randomly positioned atoms. This is caused by perturbation-induced quantum scarring and the localization of electron density on randomly occurring atom clusters. At certain densities these states also mix with an s state, overcoming selection rules that hinder the photoassociation of ordinary trilobites.
Coherent nonlinear structures in dense electron—positron plasma
Khan, S. A.; Wazir, Z.
2013-02-01
It is shown that rarefactive-type double layer structures exist in ultradense electron—positron plasma. For this purpose, an extended Korteweg de Vries equation is derived and solved analytically in the low amplitude limit by employing the appropriate fluid equations. A strong influence of quantum degeneracy pressure of electrons and positrons, quantum diffraction effects and concentration of background positive ions on double layer is noticed. It is also pointed out that the amplitude and steepness of the double layer increases with an increase in ion concentration or ion charge number. The results are examined numerically for some interesting cases of dense plasmas with illustrations.
Explosive and solitary excitations in a very dense magnetoplasma
Energy Technology Data Exchange (ETDEWEB)
Sabry, R. [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)], E-mail: refaatsabry@mans.edu.eg; Moslem, W.M. [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)], E-mail: wmmoslem@hotmail.com; Shukla, P.K. [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)], E-mail: ps@tp4.rub.de
2008-08-25
A two-component dense magnetoplasma consisting of ions and degenerate electrons is considered. The basic set of hydrodynamic and Poisson equations are reduced to the Zakharov-Kuznetsov (ZK) equation by using the reductive perturbation technique. The basic features of the electrostatic excitations are investigated by applying a new direct method to the ZK equation. It is found that the latter has new solutions, which admit the propagation of either solitary or explosive pulses. The relevance of the new direct method to other nonlinear partial differential equations is also discussed.
Low energy antiprotons from supernova exploding in dense clouds
Stephens, S. A.; Mauger, B. G.
1984-01-01
The antiproton spectrum resulting from a supernova, which exploded inside a dense cloud, is calculated by taking into account all energy loss processes including adiabatic deceleration during the expansion phase. The influence of various energy loss processes on the evolution of the spectrum as the supernova expands is investigated. It is shown that if about 25 percent of the cosmic ray nucleons are from such sources, the observed low energy antiprotons can be explained, provided the effect of solar modulation is not very large. The possibility of obtaining enhanced low energy spectrum by this process is also examined.
Dense distributed processing in a hindlimb scratch motor network
DEFF Research Database (Denmark)
Guzulaitis, Robertas; Hounsgaard, Jørn Dybkjær
2014-01-01
elegans), we show that ventral horn interneurons in mid-thoracic spinal segments are functionally integrated in the hindlimb scratch network. First, mid-thoracic interneurons receive intense synaptic input during scratching and behave like neurons in the hindlimb enlargement. Second, some mid......-thoracic interneurons activated during scratching project descending axons toward the hindlimb enlargement. Third, elimination of mid-thoracic segments leads to a weakening of scratch rhythmicity. We conclude that densely innervated interneurons in mid-thoracic segments contribute to hindlimb scratching and may be part...
Interaction of CO2 laser radiation with dense plasma
Abdel-Raoof, Wasfi Sharkawy
1980-01-01
The instabilities which occur in the interaction of CO2 laser radiation with a dense plasma have been studied. A TEA CO2 laser provided pulses of up to 30 joules of energy with a duration of 50 nanoseconds. By focussing the radiation on to a plane target a focal spot of about 180 micrometers diameter was formed with a irradiance of 10 to 10 W cm. The scattered radiation was collected by a laser focussing lens and analysed with a grating spectrometer. Linear relationships have been found betwe...
Molecules ionization at phase transition in warm dense hydrogen
Norman, G. E.; Saitov, I. M.
2018-01-01
An idea is suggested that the fluid–fluid phase transition in warm dense hydrogen is related to the partial ionization of molecules H2 with formation of molecular ions {{{H}}}2+ {{and}} {{{H}}}3+. Conventional ab initio quantum modeling is applied. Proton pair correlation functions (PCF) obtained are used for the nonconventional diagnostics of the phase transition and elucidation of its nature for temperatures 700–1500 K. Short- and long-range changes of PCFs are studied. H2 molecules ionization and molecular ions {{{H}}}2+ {{and}} {{{H}}}3+ appearance is revealed. The validity of the soft sphere model is tested for the long-range order.
Supersonic minimum length nozzle design for dense gases
Aldo, Andrew C.; Argrow, Brian M.
1993-01-01
Recently, dense gases have been investigated for many engineering applications such as for turbomachinery and wind tunnels. Supersonic nozzle design for these gases is complicated by their nonclassical behavior in the transonic flow regime. In this paper a method of characteristics (MOC) is developed for two-dimensional (planar) and, primarily, axisymmetric flow of a van der Waals gas. Using a straight aortic line assumption, a centered expansion is used to generate an inviscid wall contour of minimum length. The van der Waals results are compared to previous perfect gas results to show the real gas effects on the flow properties and inviscid wall contours.
Reiterated inclusions of dipoles in a dense plasma
International Nuclear Information System (INIS)
Naouri, Gerard
1983-01-01
This thesis introduces a simple model made up for the calculation of pressure effects in dense and partially ionized 3 D two component plasma. The technic used is the description of the overlapping of atomic orbitals by means of interacting dipoles incased in one another. By iteration of this procedure we get an effective two-body potential which allows us to calculate line shifts of hydrogenic ions. In conclusion we suggest a possible improvement of the method by substituting a self consistent potential to the Debye one for the calculation of the wave functions. [fr
Orbital free molecular dynamics; Approche sans orbitale des plasmas denses
Energy Technology Data Exchange (ETDEWEB)
Lambert, F
2007-08-15
The microscopic properties of hot and dense plasmas stay a field essentially studied thanks to classical theories like the One Component Plasma, models which rely on free parameters, particularly ionization. In order to investigate these systems, we have used, in this PhD work, a semi-classical model, without free parameters, that is based on coupling consistently classical molecular dynamics for the nuclei and orbital free density functional theory for the electrons. The electronic fluid is represented by a free energy entirely determined by the local density. This approximation was validated by a comparison with an ab initio technique, quantum molecular dynamics. This one is identical to the previous except for the description of the free energy that depends on a quantum-independent-particle model. Orbital free molecular dynamics was then used to compute equation of state of boron and iron plasmas in the hot and dense regime. Furthermore, comparisons with classical theories were performed on structural and dynamical properties. Finally, equation of state and transport coefficients mixing laws were studied by direct simulation of a plasma composed of deuterium and copper. (author)
Stochastic entangled chain dynamics of dense polymer solutions.
Kivotides, Demosthenes; Wilkin, S Louise; Theofanous, Theo G
2010-10-14
We propose an adjustable-parameter-free, entangled chain dynamics model of dense polymer solutions. The model includes the self-consistent dynamics of molecular chains and solvent by describing the former via coarse-grained polymer dynamics that incorporate hydrodynamic interaction effects, and the latter via the forced Stokes equation. Real chain elasticity is modeled via the inclusion of a Pincus regime in the polymer's force-extension curve. Excluded volume effects are taken into account via the combined action of coarse-grained intermolecular potentials and explicit geometric tracking of chain entanglements. We demonstrate that entanglements are responsible for a new (compared to phantom chain dynamics), slow relaxation mode whose characteristic time scale agrees very well with experiment. Similarly good agreement between theory and experiment is also obtained for the equilibrium chain size. We develop methods for the solution of the model in periodic flow domains and apply them to the computation of entangled polymer solutions in equilibrium. We show that the number of entanglements Π agrees well with the number of entanglements expected on the basis of tube theory, satisfactorily reproducing the latter's scaling of Π with the polymer volume fraction φ. Our model predicts diminishing chain size with concentration, thus vindicating Flory's suggestion of excluded volume effects screening in dense solutions. The predicted scaling of chain size with φ is consistent with the heuristic, Flory theory based value.
A novel double patterning approach for 30nm dense holes
Hsu, Dennis Shu-Hao; Wang, Walter; Hsieh, Wei-Hsien; Huang, Chun-Yen; Wu, Wen-Bin; Shih, Chiang-Lin; Shih, Steven
2011-04-01
Double Patterning Technology (DPT) was commonly accepted as the major workhorse beyond water immersion lithography for sub-38nm half-pitch line patterning before the EUV production. For dense hole patterning, classical DPT employs self-aligned spacer deposition and uses the intersection of horizontal and vertical lines to define the desired hole patterns. However, the increase in manufacturing cost and process complexity is tremendous. Several innovative approaches have been proposed and experimented to address the manufacturing and technical challenges. A novel process of double patterned pillars combined image reverse will be proposed for the realization of low cost dense holes in 30nm node DRAM. The nature of pillar formation lithography provides much better optical contrast compared to the counterpart hole patterning with similar CD requirements. By the utilization of a reliable freezing process, double patterned pillars can be readily implemented. A novel image reverse process at the last stage defines the hole patterns with high fidelity. In this paper, several freezing processes for the construction of the double patterned pillars were tested and compared, and 30nm double patterning pillars were demonstrated successfully. A variety of different image reverse processes will be investigated and discussed for their pros and cons. An economic approach with the optimized lithography performance will be proposed for the application of 30nm DRAM node.
Reciprocal locomotion of dense swimmers in Stokes flow
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Rodriguez, David [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Lauga, Eric [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411 (United States)], E-mail: davidgr@alum.mit.edu, E-mail: elauga@ucsd.edu
2009-05-20
Due to the kinematic reversibility of Stokes flow, a body executing a reciprocal motion (a motion in which the sequence of body configurations remains identical under time reversal) cannot propel itself in a viscous fluid in the limit of negligible inertia; this result is known as Purcell's scallop theorem. In this limit, the Reynolds numbers based on the fluid inertia and on the body inertia are all zero. Previous studies characterized the breakdown of the scallop theorem with fluid inertia. In this paper we show that, even in the absence of fluid inertia, certain dense bodies undergoing reciprocal motion are able to swim. Using Lorentz's reciprocal theorem, we first derive the general differential equations that govern the locomotion kinematics of a dense swimmer. We demonstrate that no reciprocal swimming is possible if the body motion consists only of tangential surface deformation (squirming). We then apply our general formulation to compute the locomotion of four simple swimmers, each with a different spatial asymmetry, that perform normal surface deformations. We show that the resulting swimming speeds (or rotation rates) scale as the first power of a properly defined 'swimmer Reynolds number', demonstrating thereby a continuous breakdown of the scallop theorem with body inertia.
Shrinkage/swelling of compacted clayey loose and dense soils
Nowamooz, Hossein; Masrouri, Farimah
2009-11-01
This Note presents an experimental study performed on expansive compacted loose and dense samples using osmotic oedometers. Several successive wetting and drying cycles were applied in a suction range between 0 and 8 MPa under different values of constant net vertical stress (15, 30, and 60 kPa). During the suction cycles, the dense samples showed cumulative swelling strains, while the loose samples showed volumetric shrinkage accumulation. At the end of the suction cycles, the volumetric strains converged to an equilibrium stage that indicated elastic behavior of the swelling soil for any further hydraulic variations. At this stage, the compression curves for the studied soil at the different imposed suctions (0, 2, and 8 MPa) converged towards the saturated state curve for the high applied vertical stresses. We defined this pressure as the saturation stress(P). The compression curves provided sufficient data to examine the soil mechanical behavior at the equilibrium stage. To cite this article: H. Nowamooz, F. Masrouri, C. R. Mecanique 337 (2009).
Statistical mechanics of dense plasmas: numerical simulation and theory
International Nuclear Information System (INIS)
DeWitt, H.E.
1977-10-01
Recent Monte Carlo calculations from Paris and from Livermore for dense one and two component plasmas have led to systematic and accurate results for the thermodynamic properties of dense Coulombic fluids. This talk will summarize the results of these numerical experiments, and the simple analytic expressions for the equation of state and other thermodynamic functions that have been obtained. The thermal energy for the one component plasma has a simple power law dependence on temperature that is identical to Monte Carlo results on strongly coupled fluids governed by l/r/sup n/ potentials. A universal model for fluids governed by simple repulsive forces is suggested. For two component plasmas the ion-sphere model is shown to accurately reproduce the Monte Carlo data for the static portion of the energy. Electron screening is included using the Lindhard dielectric function and linear response theory. Free energy expressions have been constructed for one and two component plasmas that allow easy computation of all thermodynamic functions
Dense neuron clustering explains connectivity statistics in cortical microcircuits.
Directory of Open Access Journals (Sweden)
Vladimir V Klinshov
Full Text Available Local cortical circuits appear highly non-random, but the underlying connectivity rule remains elusive. Here, we analyze experimental data observed in layer 5 of rat neocortex and suggest a model for connectivity from which emerge essential observed non-random features of both wiring and weighting. These features include lognormal distributions of synaptic connection strength, anatomical clustering, and strong correlations between clustering and connection strength. Our model predicts that cortical microcircuits contain large groups of densely connected neurons which we call clusters. We show that such a cluster contains about one fifth of all excitatory neurons of a circuit which are very densely connected with stronger than average synapses. We demonstrate that such clustering plays an important role in the network dynamics, namely, it creates bistable neural spiking in small cortical circuits. Furthermore, introducing local clustering in large-scale networks leads to the emergence of various patterns of persistent local activity in an ongoing network activity. Thus, our results may bridge a gap between anatomical structure and persistent activity observed during working memory and other cognitive processes.
Signatures of personality on dense 3D facial images.
Hu, Sile; Xiong, Jieyi; Fu, Pengcheng; Qiao, Lu; Tan, Jingze; Jin, Li; Tang, Kun
2017-03-06
It has long been speculated that cues on the human face exist that allow observers to make reliable judgments of others' personality traits. However, direct evidence of association between facial shapes and personality is missing from the current literature. This study assessed the personality attributes of 834 Han Chinese volunteers (405 males and 429 females), utilising the five-factor personality model ('Big Five'), and collected their neutral 3D facial images. Dense anatomical correspondence was established across the 3D facial images in order to allow high-dimensional quantitative analyses of the facial phenotypes. In this paper, we developed a Partial Least Squares (PLS) -based method. We used composite partial least squares component (CPSLC) to test association between the self-tested personality scores and the dense 3D facial image data, then used principal component analysis (PCA) for further validation. Among the five personality factors, agreeableness and conscientiousness in males and extraversion in females were significantly associated with specific facial patterns. The personality-related facial patterns were extracted and their effects were extrapolated on simulated 3D facial models.
Spaced resolved analysis of suprathermal electrons in dense plasma
Directory of Open Access Journals (Sweden)
Moinard A.
2013-11-01
Full Text Available The investigation of the hot electron fraction is a crucial topic for high energy density laser driven plasmas: first, energy losses and radiative properties depend strongly on the hot electron fraction and, second, in ICF hohlraums suprathermal electrons preheat the D-T-capsule and seriously reduce the fusion performance. In the present work we present our first experimental and theoretical studies to analyze single shot space resolved hot electron fractions inside dense plasmas via optically thin X-ray line transitions from autoionizing states. The benchmark experiment has been carried out at an X-pinch in order to create a dense, localized plasma with a well defined symmetry axis of hot electron propagation. Simultaneous high spatial and spectral resolution in the X-ray spectral range has been obtained with a spherically bent quartz Bragg crystal. The high performance of the X-ray diagnostics allowed to identify space resolved hot electron fractions via the X-ray spectral distribution of multiple excited states.
Equation of state of partially-ionized dense plasmas
International Nuclear Information System (INIS)
Rogers, F.J.
1989-01-01
This paper describes methods for calculating the equation of state of partially-ionized dense plasmas. The term dense plasma is used rather than strongly coupled plasma, since it is possible that at plasma conditions such that only a few levels can be observed spectroscopically the plasma coupling parameters are not large. Due mainly to their importance in theoretical astrophysics, the properties of partially ionized plasmas have been of interest for a long while. More recently, this interest has intensified due to the development of methods for producing partially ionized plasmas in the laboratory. This has opened up large programs of experimental investigation and of practical application. In this paper we consider detailed statistical mechanical methods that explicitly treat the distribution over ionic species and their energy level structure. These detailed approaches are generally characterized as being in the ''chemical picture'' when a free energy expression is minimized or in the ''physical picture'' when the starting point is the grand canonical ensemble. 52 refs., 2 tabs
Study of warm dense plasma electronic dynamics by optical interferometry
International Nuclear Information System (INIS)
Deneuville, F.
2013-01-01
The Warm Dense Matter (WDM) regime is characterised by a density close to the solid density and an electron temperature close to the Fermi temperature. In this work, the nonequilibrium Warm Dense Matter is studied during the solid to liquid phase transition induced by an ultra short laser interacting with a solid. A 30 femtosecond time resolution pump-probe experiment (FDI) is set up, yielding to the measurement of the heated sample complex reflectivity for both S and P polarisation. We have determined a criterion based on the measured reflectivities, which permits to control the interface shape of the probed matter. For pump laser fluences around 1 J/cm 2 , the hydrodynamics of the heated matter is studied and experimental results are compared to the two-temperatures code ESTHER. Furthermore, the evolution of the dielectric function at 800 nm and 400 nm is inferred from our measurements on a sub-picosecond time-scale. Within the Drude-Lorentz model for the conduction electrons, the dielectric function yields information such as ionisation state, electronic temperature and electron collision frequency. (author) [fr
Studies Of Infrasonic Propagation Using Dense Seismic Networks
Hedlin, M. A.; deGroot-Hedlin, C. D.; Drob, D. P.
2011-12-01
Although there are approximately 100 infrasonic arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Relatively large infrasonic signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasonic arrays. The dense sampling of the infrasonic wavefield has allowed us to observe complete travel-time branches of infrasound and address important research problems in infrasonic propagation. We present our analysis of infrasound created by a series of rocket motor detonations that occurred at the UTTR facility in Utah in 2007. These data were well recorded by the USArray seismometers. We use the precisely located blasts to assess the utility of G2S mesoscale models and methods to synthesize infrasonic propagation. We model the travel times of the branches using a ray-based approach and the complete wavefield using a FDTD algorithm. Although results from both rays and FDTD approaches predict the travel times to within several seconds, only about 40% of signals are predicted using rays largely due to penetration of sound into shadow zones. FDTD predicts some sound penetration into the shadow zone, but the observed shadow zones, as defined by the seismic data, have considerably narrower spatial extent than either method predicts, perhaps due to un-modeled small-scale structure in the atmosphere.
TEXTURE-AWARE DENSE IMAGE MATCHING USING TERNARY CENSUS TRANSFORM
Directory of Open Access Journals (Sweden)
H. Hu
2016-06-01
Full Text Available Textureless and geometric discontinuities are major problems in state-of-the-art dense image matching methods, as they can cause visually significant noise and the loss of sharp features. Binary census transform is one of the best matching cost methods but in textureless areas, where the intensity values are similar, it suffers from small random noises. Global optimization for disparity computation is inherently sensitive to parameter tuning in complex urban scenes, and must compromise between smoothness and discontinuities. The aim of this study is to provide a method to overcome these issues in dense image matching, by extending the industry proven Semi-Global Matching through 1 developing a ternary census transform, which takes three outputs in a single order comparison and encodes the results in two bits rather than one, and also 2 by using texture-information to self-tune the parameters, which both preserves sharp edges and enforces smoothness when necessary. Experimental results using various datasets from different platforms have shown that the visual qualities of the triangulated point clouds in urban areas can be largely improved by these proposed methods.
Handover management in dense cellular networks: A stochastic geometry approach
Arshad, Rabe
2016-07-26
Cellular operators are continuously densifying their networks to cope with the ever-increasing capacity demand. Furthermore, an extreme densification phase for cellular networks is foreseen to fulfill the ambitious fifth generation (5G) performance requirements. Network densification improves spectrum utilization and network capacity by shrinking base stations\\' (BSs) footprints and reusing the same spectrum more frequently over the spatial domain. However, network densification also increases the handover (HO) rate, which may diminish the capacity gains for mobile users due to HO delays. In highly dense 5G cellular networks, HO delays may neutralize or even negate the gains offered by network densification. In this paper, we present an analytical paradigm, based on stochastic geometry, to quantify the effect of HO delay on the average user rate in cellular networks. To this end, we propose a flexible handover scheme to reduce HO delay in case of highly dense cellular networks. This scheme allows skipping the HO procedure with some BSs along users\\' trajectories. The performance evaluation and testing of this scheme for only single HO skipping shows considerable gains in many practical scenarios. © 2016 IEEE.
Time evolution of cell size distributions in dense cell cultures
Khain, Evgeniy
2015-03-01
Living cells in a dense system are all in contact with each other. The common assumption is that such cells stop dividing due to a lack of space. Recent experimental observations have shown, however, that cells continue dividing for a while, but other cells in the system must shrink, to allow the newborn cells to grow to a normal size. Due to these ``pressure'' effects, the average cell size dramatically decreases with time, and the dispersion in cell sizes decreases, too. The collective cell behavior becomes even more complex when the system is expanding: cells near the edges are larger and migrate faster, while cells deep inside the colony are smaller and move slower. This exciting experimental data still needs to be described theoretically, incorporating the distribution of cell sizes in the system. We propose a mathematical model for time evolution of cell size distribution both in a closed and open system. The model incorporates cell proliferation, cell growth after division, cell shrinking due to ``pressure'' from other cells, and possible cell detachment from the interface of a growing colony. This research sheds light on physical and biological mechanisms of cell response to a dense environment and on the role of mechanical stresses in determining the distribution of cell sizes in the system.
Thermophysical properties of multi-shock compressed dense argon.
Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J
2014-02-21
In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.
Probing Dense Sprays with Gated, Picosecond, Digital Particle Field Holography
Directory of Open Access Journals (Sweden)
James Trolinger
2011-12-01
Full Text Available This paper describes work that demonstrated the feasibility of producing a gated digital holography system that is capable of producing high-resolution images of three-dimensional particle and structure details deep within dense particle fields of a spray. We developed a gated picosecond digital holocamera, using optical Kerr cell gating, to demonstrate features of gated digital holography that make it an exceptional candidate for this application. The Kerr cell gate shuttered the camera after the initial burst of ballistic and snake photons had been recorded, suppressing longer path, multiple scattered illumination. By starting with a CW laser without gating and then incorporating a picosecond laser and an optical Kerr gate, we were able to assess the imaging quality of the gated holograms, and determine improvement gained by gating. We produced high quality images of 50–200 μm diameter particles, hairs and USAF resolution charts from digital holograms recorded through turbid media where more than 98% of the light was scattered from the field. The system can gate pulses as short as 3 mm in pathlength (10 ps, enabling image-improving features of the system. The experiments lead us to the conclusion that this method has an excellent capability as a diagnostics tool in dense spray combustion research.
Abdelfattah, Ahmad
2015-01-15
High performance computing (HPC) platforms are evolving to more heterogeneous configurations to support the workloads of various applications. The current hardware landscape is composed of traditional multicore CPUs equipped with hardware accelerators that can handle high levels of parallelism. Graphical Processing Units (GPUs) are popular high performance hardware accelerators in modern supercomputers. GPU programming has a different model than that for CPUs, which means that many numerical kernels have to be redesigned and optimized specifically for this architecture. GPUs usually outperform multicore CPUs in some compute intensive and massively parallel applications that have regular processing patterns. However, most scientific applications rely on crucial memory-bound kernels and may witness bottlenecks due to the overhead of the memory bus latency. They can still take advantage of the GPU compute power capabilities, provided that an efficient architecture-aware design is achieved. This dissertation presents a uniform design strategy for optimizing critical memory-bound kernels on GPUs. Based on hierarchical register blocking, double buffering and latency hiding techniques, this strategy leverages the performance of a wide range of standard numerical kernels found in dense and sparse linear algebra libraries. The work presented here focuses on matrix-vector multiplication kernels (MVM) as repre- sentative and most important memory-bound operations in this context. Each kernel inherits the benefits of the proposed strategies. By exposing a proper set of tuning parameters, the strategy is flexible enough to suit different types of matrices, ranging from large dense matrices, to sparse matrices with dense block structures, while high performance is maintained. Furthermore, the tuning parameters are used to maintain the relative performance across different GPU architectures. Multi-GPU acceleration is proposed to scale the performance on several devices. The
Sypka, Przemysław; Starzak, Rafał; Owsiak, Krzysztof
2016-12-01
Solar radiation reaching densely forested slopes is one of the main factors influencing the water balance between the atmosphere, tree stands and the soil. It also has a major impact on site productivity, spatial arrangement of vegetation structure as well as forest succession. This paper presents a methodology to estimate variations in solar radiation reaching tree stands in a small mountain valley. Measurements taken in three inter-forest meadows unambiguously showed the relationship between the amount of solar insolation and the shading effect caused mainly by the contour of surrounding tree stands. Therefore, appropriate knowledge of elevation, aspect and tilt angles of the analysed planes had to be taken into consideration during modelling. At critical times, especially in winter, the diffuse and reflected components of solar radiation only reached some of the sites studied as the beam component of solar radiation was totally blocked by the densely forested mountain slopes in the neighbourhood. The cross-section contours and elevation angles of all obstructions are estimated from a digital surface model including both digital elevation model and the height of tree stands. All the parameters in a simplified, empirical model of the solar insolation reaching a given horizontal surface within the research valley are dependent on the sky view factor (SVF). The presented simplified, empirical model and its parameterisation scheme should be easily adaptable to different complex terrains or mountain valleys characterised by diverse geometry or spatial orientation. The model was developed and validated (R 2 = 0.92 , σ = 0.54) based on measurements taken at research sites located in the Silesian Beskid Mountain Range. A thorough understanding of the factors determining the amount of solar radiation reaching woodlands ought to considerably expand the knowledge of the water exchange balance within forest complexes as well as the estimation of site
Beyond Resonance: Characterizing Complex Basin Effects Using a Dense Seismic Array
Boué, P.; Denolle, M.; Hirata, N.; Nakagawa, S.; Beroza, G. C.
2015-12-01
Cross-correlation of the ambient seismic field is now a well-established approach to create high-resolution images of the crust and the upper mantle, to explore the spatial and temporal variations in elastic wave speeds, and to develop images of complex wavefields themselves. Recent ambient-field studies have successfully observed higher-mode surface waves and body wave propagation at various scales of the Earth. These new observations paved the way for a more accurate seismic hazard assessment for which a detailed knowledge of seismic wave propagation is critical, especially in complex media such as sedimentary basins. While the effects of basin resonance are widely appreciated and understood, basin-edge effects are usually less well constrained, but have been used to explain zones of concentrated damage in the 1994 Northridge and 1995 Kobe earthquakes. In this study, we use the dense MeSO-net (MEtropolitan Seismic Observation network) seismic network, deployed in the Tokyo metropolitan area, and the sparse, but high quality, Hi-net (High sensitivity seismograph network) to identify the dominant modes of wave propagation within the Kanto Basin. Our goal is to explore how the wavefield behaves in the vicinity of sharp basin edges. When combined with the ambient seismic field interferometry, dense, 3-component, seismic arrays provide a new opportunity to image such propagation effects. Using array processing techniques, we show that mode conversions, reflection, and diffractions, in particular at basin edges dominate the ground motion in the Kanto Basin. Accurate predictions of strong ground motion, and its variability, must account for these effects.
Barrett, Terry
1989-01-01
Explores critical activities in the visual arts and how they can enhance art appreciation. Outlines sources of criticism, different types of criticism, the varied backgrounds of art critics, and the artist-critic relationship. Maintains that, by emphasizing interpretive aspects, school art criticism can come closer to professional art criticism.…
Local Critical Perturbations of Unimodal Maps
Blokh, Alexander; Misiurewicz, Michał
2009-07-01
We introduce a new complete metric in the space {mathcal {V}_2} of unimodal C 2-maps of the interval, with two maps close if they are close in the C 2-metric and differ only on a small interval containing their critical points. We identify all structurally stable maps in the sense of this metric. They are maps for which either (1) the trajectory of the critical point is attracted to a topologically attracting (at least from one side) periodic orbit, but never falls into this orbit, or (2) the critical point is mapped by some iterate to the interior of an interval consisting entirely of periodic points of the same (minimal) period. We verify the generalized Fatou conjecture for {mathcal {V}_2} and show that structurally stable maps form an open dense subset of {mathcal {V}_2}.
Solvable PT-symmetric Hamiltonians
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2002-01-01
Roč. 65, č. 6 (2002), s. 1149-1151 ISSN 1063-7788 R&D Projects: GA AV ČR IAA1048004; GA AV ČR KSK1048102 Keywords : real energy-spectra * quantum-mechanics * anharmonic-oscillators * complex Hamiltonians * potentials * PJ * Eigenvalues * coulomb * model * well Subject RIV: BE - Theoretical Physics Impact factor: 0.533, year: 2002
Solvable models of working memories
MéZard, M.; Nadal, J. P.; Toulouse, G.
1987-11-01
We consider a family of models, which generalizes the Hopfield model of neural networks, and can be solved likewise. This family contains palimpsestic schemes, which give memories that behave in a similar way as a working (short-term) memory. The replica method leads to a simple formalism that allows for a detailed comparison between various schemes, and the study of various effects, such as repetitive learning.
Hungry Kids: The Solvable Crisis
Felling, Christy
2013-01-01
The numbers speak for themselves in terms of the crisis of hunger among kids in the United States: More than 16 million children--one in five--live in households that struggle to put food on the table. Nearly half of all food stamp recipients are children. But, argues Felling, the battle against childhood hunger can be won; the United States has…
Oblique Multi-Camera Systems - Orientation and Dense Matching Issues
Rupnik, E.; Nex, F.; Remondino, F.
2014-03-01
The use of oblique imagery has become a standard for many civil and mapping applications, thanks to the development of airborne digital multi-camera systems, as proposed by many companies (Blomoblique, IGI, Leica, Midas, Pictometry, Vexcel/Microsoft, VisionMap, etc.). The indisputable virtue of oblique photography lies in its simplicity of interpretation and understanding for inexperienced users allowing their use of oblique images in very different applications, such as building detection and reconstruction, building structural damage classification, road land updating and administration services, etc. The paper reports an overview of the actual oblique commercial systems and presents a workflow for the automated orientation and dense matching of large image blocks. Perspectives, potentialities, pitfalls and suggestions for achieving satisfactory results are given. Tests performed on two datasets acquired with two multi-camera systems over urban areas are also reported.
ON THE FORMATION OF GLYCOLALDEHYDE IN DENSE MOLECULAR CORES
Energy Technology Data Exchange (ETDEWEB)
Woods, Paul M.; Kelly, George; Viti, Serena [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Slater, Ben; Brown, Wendy A.; Puletti, Fabrizio; Burke, Daren J.; Raza, Zamaan, E-mail: paul.woods@ucl.ac.uk [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)
2012-05-01
Glycolaldehyde is a simple monosaccharide sugar linked to prebiotic chemistry. Recently, it was detected in a molecular core in the star-forming region G31.41+0.31 at a reasonably high abundance. We investigate the formation of glycolaldehyde at 10 K to determine whether it can form efficiently under typical dense core conditions. Using an astrochemical model, we test five different reaction mechanisms that have been proposed in the astrophysical literature, finding that a gas-phase formation route is unlikely. Of the grain-surface formation routes, only two are efficient enough at very low temperatures to produce sufficient glycolaldehyde to match the observational estimates, with the mechanism culminating in CH{sub 3}OH + HCO being favored. However, when we consider the feasibility of these mechanisms from a reaction chemistry perspective, the second grain-surface route looks more promising, H{sub 3}CO + HCO.
Dense plasmas at the PUC (Pontificia Universidad Catolica de Chile)
International Nuclear Information System (INIS)
Chuaqui, Hernan
1999-01-01
This paper describes the major results obtained in the research program of the Pontifical Catholic University's Optics and Plasma Laboratory in the area of transient discharges in dense plasmas during the past decade. The most significant results in plasma focus, Z-pinch based on neutral gas, vacuum spark and X-pinch are presented. The work carried out to date has led to the design and construction of a new pulse power generator, LLAMPUDKEN which will aid in the continued development of the area. The most significant characteristics of this generator's design is presented, as well as their relevance to the program's future. The novel aspects of the design which make LLAMPUDKEN a unique instrument worldwide are emphasized. A schedule for future work is presented
The physics of hot and dense quark-gluon matter
Energy Technology Data Exchange (ETDEWEB)
Kharzeev, Dmitri E. [Stony Brook Univ., NY (United States)
2012-05-10
This technical report describes the work done under the DOE grant DE-FG-88ER41723 (final award number DE-SC0005645), "The physics of hot and dense quark-gluon matter", during the year of 12/01/2010 through 11/30/2011. As planned in the proposal, the performed research focused along two main thrusts: 1) topological effects in hot quark-gluon matter and 2) phenomenology of relativistic heavy ion collisions. The results of research are presented in 12 papers published in reputable refereed journals (Physical Review Letters, Physical Review, Physics Letters and Nuclear Physics). All of the performed research is directly related to the experimental programs of DOE, especially at the Relativistic Heavy Ion Collider. Much of it also has broader interdisciplinary implications - for example, the work on the non-dissipative chiral magnetic current is directly relevant for quantum computing. The attached report describes the performed work in detail.
Molecular dynamics simulations of temperature equilibration in dense hydrogen
Glosli, J. N.; Graziani, F. R.; More, R. M.; Murillo, M. S.; Streitz, F. H.; Surh, M. P.; Benedict, L. X.; Hau-Riege, S.; Langdon, A. B.; London, R. A.
2008-08-01
The temperature equilibration rate between electrons and protons in dense hydrogen has been calculated with molecular dynamics simulations for temperatures between 10 and 600eV and densities between 1020cm-3to1024cm-3 . Careful attention has been devoted to convergence of the simulations, including the role of semiclassical potentials. We find that for Coulomb logarithms L≳1 , a model by Gericke-Murillo-Schlanges (GMS) [D. O. Gericke , Phys. Rev. E 65, 036418 (2002)] based on a T -matrix method and the approach by Brown-Preston-Singleton [L. S. Brown , Phys. Rep. 410, 237 (2005)] agrees with the simulation data to within the error bars of the simulation. For smaller Coulomb logarithms, the GMS model is consistent with the simulation results. Landau-Spitzer models are consistent with the simulation data for L>4 .
Dynamical density functional theory for dense atomic liquids
International Nuclear Information System (INIS)
Archer, A J
2006-01-01
Starting from Newton's equations of motion, we derive a dynamical density functional theory (DDFT) applicable to atomic liquids. The theory has the feature that it requires as input the Helmholtz free energy functional from equilibrium density functional theory. This means that, given a reliable equilibrium free energy functional, the correct equilibrium fluid density profile is guaranteed. We show that when the isothermal compressibility is small, the DDFT generates the correct value for the speed of sound in a dense liquid. We also interpret the theory as a dynamical equation for a coarse grained fluid density and show that the theory can be used (making further approximations) to derive the standard mode coupling theory that is used to describe the glass transition. The present theory should provide a useful starting point for describing the dynamics of inhomogeneous atomic fluids
Dense hadron star in quark degree of freedom
Directory of Open Access Journals (Sweden)
Tzeng Yiharn
2014-03-01
Full Text Available The quark degree of freedom may play an important role as one studies dense hadron stars which can help to understand the universe origin. We add a temperature dependence to the effective quark mass adopted from a quark-quark interaction on the QCD basis to probe properties of the star in the quark degree of freedom. Based on this interaction, the quark matter’s equation of state is obtained and its thermodynamic characteristics is investigated in detail. Stability of a star made of such matter is examined with and without strange quarks. The Tolman-Oppenheimer-Volkov equation along with the condition that dm=dr = 4πr2E are used to calculate mass and radius of such a star. Exact computations are made to calculate the star’s radius and mass at several temperatures. Comparisons of results from these temperatures are made and the significance is carefully investigated and discussed.
Simultaneous dense coding affected by fluctuating massless scalar field
Huang, Zhiming; Ye, Yiyong; Luo, Darong
2018-04-01
In this paper, we investigate the simultaneous dense coding (SDC) protocol affected by fluctuating massless scalar field. The noisy model of SDC protocol is constructed and the master equation that governs the SDC evolution is deduced. The success probabilities of SDC protocol are discussed for different locking operators under the influence of vacuum fluctuations. We find that the joint success probability is independent of the locking operators, but other success probabilities are not. For quantum Fourier transform and double controlled-NOT operators, the success probabilities drop with increasing two-atom distance, but SWAP operator is not. Unlike the SWAP operator, the success probabilities of Bob and Charlie are different. For different noisy interval values, different locking operators have different robustness to noise.
Quantum Control of Open Systems and Dense Atomic Ensembles
DiLoreto, Christopher
Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated
Field electron emission from dense array of microneedles of tungsten
International Nuclear Information System (INIS)
Okuyama, F.; Aoyagi, M.; Kitai, T.; Ishikawa, K.
1978-01-01
Characteristics of field electron emission from the dense array of microneedles of tungsten prepared on a 10-μm tungsten filament were measured at an environmental pressure of approx.1 x 10 -8 Torr (1.33 x 10 -6 Pa). Electron emission was not uniform over the filament surface, but the variation of emission current with applied voltage explicitly obeyed the Fowler-Nordheim relationship. At an emission current of approx.10 -4 A, a vacuum arc was induced that led to a permanent change in current-voltage characteristic. Current fluctuation was dependent on emitter temperature and applied voltage, and the lowest fluctuation of about 4% was routinely obtained at approx.550 K and at applied voltages several percent lower than the arc-inducing voltage. Macroscopic current density amounted to approx.20-80 mA/cm 2 at the best stability
Improving Dense Network Performance through Centralized Scheduling and Interference Coordination
DEFF Research Database (Denmark)
Lopez, Victor Fernandez; Pedersen, Klaus I.; Alvarez, Beatriz Soret
2017-01-01
. Interference management at the receiver is achieved through the use of a Network-Assisted Interference Cancellation and Suppression (NAICS) receiver. In order to further boost the 5th percentile user data rates, the transmission rank at the interferers is selectively reduced by a centralized rank coordination......Dense network deployments comprising small cells pose a series of important challenges when it comes to achieving an efficient resource use and curbing inter-cell interference in the downlink. This article examines different techniques to treat these problems in a dynamic way, from the network...... and the receiver sides. As a network coordination scheme, we apply a centralized joint cell association and scheduling mechanism based on dynamic cell switching, by which users are not always served by the strongest perceived cell. The method simultaneously resultsin more balanced loads and increased performance...
A parallel solver for huge dense linear systems
Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.
2011-11-01
HDSS (Huge Dense Linear System Solver) is a Fortran Application Programming Interface (API) to facilitate the parallel solution of very large dense systems to scientists and engineers. The API makes use of parallelism to yield an efficient solution of the systems on a wide range of parallel platforms, from clusters of processors to massively parallel multiprocessors. It exploits out-of-core strategies to leverage the secondary memory in order to solve huge linear systems O(100.000). The API is based on the parallel linear algebra library PLAPACK, and on its Out-Of-Core (OOC) extension POOCLAPACK. Both PLAPACK and POOCLAPACK use the Message Passing Interface (MPI) as the communication layer and BLAS to perform the local matrix operations. The API provides a friendly interface to the users, hiding almost all the technical aspects related to the parallel execution of the code and the use of the secondary memory to solve the systems. In particular, the API can automatically select the best way to store and solve the systems, depending of the dimension of the system, the number of processes and the main memory of the platform. Experimental results on several parallel platforms report high performance, reaching more than 1 TFLOP with 64 cores to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors. New version program summaryProgram title: Huge Dense System Solver (HDSS) Catalogue identifier: AEHU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 062 No. of bytes in distributed program, including test data, etc.: 1 069 110 Distribution format: tar.gz Programming language: Fortran90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system
Dense xerogel matrices and films for optical memory
International Nuclear Information System (INIS)
Chaput, F.; Boilot, J.P.; Devreux, F.; Canva, M.; Georges, P.; Brun, A.
1992-01-01
This paper reports that optically clear gels doped with organic molecules are prepared in the zirconia-silica system by hydrolysis of metal alkoxides in a wet atmosphere. After drying, dense xerogels are obtained which exhibit a closed porosity. By using the same route, organic-inorganic hybrid xerogels are also produced as films. The molecule-matrix interactions are evaluated from the absorption recovery times of the S O → S 1 transition for triphenylmethane dyes. Concerning doped xerogels with other organic molecules having polar groups, the application of the strong polarized electric field of an ultrashort optical pulse allows to locally create a birefringence with a memory effect. This type of sample could be used for optical storage and treatment of information
Subtle Monte Carlo Updates in Dense Molecular Systems
DEFF Research Database (Denmark)
Bottaro, Sandro; Boomsma, Wouter; Johansson, Kristoffer E.
2012-01-01
as correlations in a multivariate Gaussian distribution. We demonstrate that our method reproduces structural variation in proteins with greater efficiency than current state-of-the-art Monte Carlo methods and has real-time simulation performance on par with molecular dynamics simulations. The presented results......Although Markov chain Monte Carlo (MC) simulation is a potentially powerful approach for exploring conformational space, it has been unable to compete with molecular dynamics (MD) in the analysis of high density structural states, such as the native state of globular proteins. Here, we introduce...... a kinetic algorithm, CRISP, that greatly enhances the sampling efficiency in all-atom MC simulations of dense systems. The algorithm is based on an exact analytical solution to the classic chain-closure problem, making it possible to express the interdependencies among degrees of freedom in the molecule...
Dense and Sparse Matrix Operations on the Cell Processor
Energy Technology Data Exchange (ETDEWEB)
Williams, Samuel W.; Shalf, John; Oliker, Leonid; Husbands,Parry; Yelick, Katherine
2005-05-01
The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. Therefore, the high performance computing community is examining alternative architectures that address the limitations of modern superscalar designs. In this work, we examine STI's forthcoming Cell processor: a novel, low-power architecture that combines a PowerPC core with eight independent SIMD processing units coupled with a software-controlled memory to offer high FLOP/s/Watt. Since neither Cell hardware nor cycle-accurate simulators are currently publicly available, we develop an analytic framework to predict Cell performance on dense and sparse matrix operations, using a variety of algorithmic approaches. Results demonstrate Cell's potential to deliver more than an order of magnitude better GFLOP/s per watt performance, when compared with the Intel Itanium2 and Cray X1 processors.
Dynamically generated patterns in dense suspensions of active filaments
Prathyusha, K. R.; Henkes, Silke; Sknepnek, Rastko
2018-02-01
We use Langevin dynamics simulations to study dynamical behavior of a dense planar layer of active semiflexible filaments. Using the strength of active force and the thermal persistence length as parameters, we map a detailed phase diagram and identify several nonequilibrium phases in this system. In addition to a slowly flowing melt phase, we observe that, for sufficiently high activity, collective flow accompanied by signatures of local polar and nematic order appears in the system. This state is also characterized by strong density fluctuations. Furthermore, we identify an activity-driven crossover from this state of coherently flowing bundles of filaments to a phase with no global flow, formed by individual filaments coiled into rotating spirals. This suggests a mechanism where the system responds to activity by changing the shape of active agents, an effect with no analog in systems of active particles without internal degrees of freedom.
Additive Manufacturing of Dense Hexagonal Boron Nitride Objects
Energy Technology Data Exchange (ETDEWEB)
Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL
2017-05-12
The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.
Deposition of aluminium nanoparticles using dense plasma focus device
International Nuclear Information System (INIS)
Devi, Naorem Bilasini; Srivastava, M P; Roy, Savita
2010-01-01
Plasma route to nanofabrication has drawn much attention recently. The dense plasma focus (DPF) device is used for depositing aluminium nanoparticles on n-type Si (111) wafer. The plasma chamber is filled with argon gas and evacuated at a pressure of 80 Pa. The substrate is placed at distances 4.0 cm, 5.0 cm and 6.0 cm from the top of the central anode. The aluminium is deposited on Si wafer at room temperature with two focused DPF shots. The deposits on the substrate are examined for their morphological properties using atomic force microscopy (AFM). The AFM images have shown the formation of aluminium nanoparticles. From the AFM images, it is found that the size of aluminium nanoparticles increases with increase in distance between the top of anode and the substrate for same number of DPF shots.
Adaptive Probabilistic Broadcasting over Dense Wireless Ad Hoc Networks
Directory of Open Access Journals (Sweden)
Victor Gau
2010-01-01
Full Text Available We propose an idle probability-based broadcasting method, iPro, which employs an adaptive probabilistic mechanism to improve performance of data broadcasting over dense wireless ad hoc networks. In multisource one-hop broadcast scenarios, the modeling and simulation results of the proposed iPro are shown to significantly outperform the standard IEEE 802.11 under saturated condition. Moreover, the results also show that without estimating the number of competing nodes and changing the contention window size, the performance of the proposed iPro can still approach the theoretical bound. We further apply iPro to multihop broadcasting scenarios, and the experiment results show that within the same elapsed time after the broadcasting, the proposed iPro has significantly higher Packet-Delivery Ratios (PDR than traditional methods.
The phenomenon of radiative compression in dense magnetized plasmas
International Nuclear Information System (INIS)
Choi, Peter
1998-01-01
Full text: Localized regions of extremely high energy density have long been observed in dense magnetized plasma, created in different experiments, including vacuum spark, exploding wire, Z-pinch and plasma focus. The physical dimensions of these regions are typically tens to hundreds of microns with a characteristic temperature of few hundred eV upward. A theory of self-compression under enhanced cooling, when the radiation rate exceeds the joule heating rate, was first put forward by Shearer to explain the possible responsible mechanism. More recent work suggests that a radiative collapse formalism could indeed produce eaters of ultra-high density. In the paper the experimental evidences are examined, and the applicability limit of the radiative collapse picture is discussed, when the properties of the driving generator are considered. A new set of relations connecting the driver parameters and the limiting size of the compression is proposed
Hysteresis losses in a dense superparamagnetic nanoparticle assembly
Directory of Open Access Journals (Sweden)
S. A. Gudoshnikov
2012-03-01
Full Text Available The hysteresis losses of a dense assembly of magnetite nanoparticles with an average diameter D = 25 nm are measured in the frequency range f = 10 – 200 kHz for magnetic field amplitudes up to H0 = 400 Oe. The low frequency hysteresis loops of the assembly are obtained by means of integration of the electro-motive force signal arising in a small pick-up coil wrapped around a sample which contains 1 – 5 mg of a magnetite powder. It is proved experimentally that the specific absorption rate diminishes approximately 4.5 times when the sample aspect ratio decreases from 11.4 to 1. Theoretical estimate shows that experimentally measured hysteresis loops can be approximately described only by taking into account appreciable contributions of magnetic nanoparticles of both very small, D 30 nm, diameters. Thus the wide particle size distribution has to be assumed.
Mixed molecular and atomic phase of dense hydrogen.
Howie, Ross T; Guillaume, Christophe L; Scheler, Thomas; Goncharov, Alexander F; Gregoryanz, Eugene
2012-03-23
We used Raman and visible transmission spectroscopy to investigate dense hydrogen (deuterium) up to 315 (275) GPa at 300 K. At around 200 GPa, we observe the phase transformation, which we attribute to phase III, previously observed only at low temperatures. This is succeeded at 220 GPa by a reversible transformation to a new phase, IV, characterized by the simultaneous appearance of the second vibrational fundamental and new low-frequency phonon excitations and a dramatic softening and broadening of the first vibrational fundamental mode. The optical transmission spectra of phase IV show an overall increase of absorption and a closing band gap which reaches 1.8 eV at 315 GPa. Analysis of the Raman spectra suggests that phase IV is a mixture of graphenelike layers, consisting of elongated H2 dimers experiencing large pairing fluctuations, and unbound H2 molecules.
Model-checking dense-time Duration Calculus
DEFF Research Database (Denmark)
Fränzle, Martin
2004-01-01
Since the seminal work of Zhou Chaochen, M. R. Hansen, and P. Sestoft on decidability of dense-time Duration Calculus [Zhou, Hansen, Sestoft, 1993] it is well-known that decidable fragments of Duration Calculus can only be obtained through withdrawal of much of the interesting vocabulary...... of this logic. While this was formerly taken as an indication that key-press verification of implementations with respect to elaborate Duration Calculus specifications were also impossible, we show that the model property is well decidable for realistic designs which feature natural constraints...... suitably sparser model classes we obtain model-checking procedures for rich subsets of Duration Calculus. Together with undecidability results also obtained, this sheds light upon the exact borderline between decidability and undecidability of Duration Calculi and related logics....
Preconditioner-free Wiener filtering with a dense noise matrix
Huffenberger, Kevin M.
2018-05-01
This work extends the Elsner & Wandelt (2013) iterative method for efficient, preconditioner-free Wiener filtering to cases in which the noise covariance matrix is dense, but can be decomposed into a sum whose parts are sparse in convenient bases. The new method, which uses multiple messenger fields, reproduces Wiener-filter solutions for test problems, and we apply it to a case beyond the reach of the Elsner & Wandelt (2013) method. We compute the Wiener-filter solution for a simulated Cosmic Microwave Background (CMB) map that contains spatially varying, uncorrelated noise, isotropic 1/f noise, and large-scale horizontal stripes (like those caused by atmospheric noise). We discuss simple extensions that can filter contaminated modes or inverse-noise-filter the data. These techniques help to address complications in the noise properties of maps from current and future generations of ground-based Microwave Background experiments, like Advanced ACTPol, Simons Observatory, and CMB-S4.
Quantum statistical mechanics of dense partially ionized hydrogen.
Dewitt, H. E.; Rogers, F. J.
1972-01-01
The theory of dense hydrogenic plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. In this theory, the effective interaction between any two charges is the dynamic screened potential obtained from the plasma dielectric function. We make the static approximation; and we carry out detailed numerical calculations with the bound and scattering states of the Debye potential, using the Beth-Uhlenbeck form of the quantum second virial coefficient. We compare our results with calculations from the Saha equation.
Putting the Critical Back in Critical Infrastructure
2015-12-01
CRITICAL BACK IN CRITICAL INFRASTRUCTURE by Bradford C. Mason December 2015 Thesis Advisor: Rudolph P. Darken Second Reader: Thomas Mackin...NAVAL POSTGRADUATE SCHOOL December 2015 Approved by: Rudolph P. Darken Thesis Advisor Thomas Mackin, California Polytechnic State...critical infrastructure resilience CIRGP Critical Infrastructure Resilience Grant Program CMI Consequences Measurement Index COAG Council of Australian
Overlapping communities from dense disjoint and high total degree clusters
Zhang, Hongli; Gao, Yang; Zhang, Yue
2018-04-01
Community plays an important role in the field of sociology, biology and especially in domains of computer science, where systems are often represented as networks. And community detection is of great importance in the domains. A community is a dense subgraph of the whole graph with more links between its members than between its members to the outside nodes, and nodes in the same community probably share common properties or play similar roles in the graph. Communities overlap when nodes in a graph belong to multiple communities. A vast variety of overlapping community detection methods have been proposed in the literature, and the local expansion method is one of the most successful techniques dealing with large networks. The paper presents a density-based seeding method, in which dense disjoint local clusters are searched and selected as seeds. The proposed method selects a seed by the total degree and density of local clusters utilizing merely local structures of the network. Furthermore, this paper proposes a novel community refining phase via minimizing the conductance of each community, through which the quality of identified communities is largely improved in linear time. Experimental results in synthetic networks show that the proposed seeding method outperforms other seeding methods in the state of the art and the proposed refining method largely enhances the quality of the identified communities. Experimental results in real graphs with ground-truth communities show that the proposed approach outperforms other state of the art overlapping community detection algorithms, in particular, it is more than two orders of magnitude faster than the existing global algorithms with higher quality, and it obtains much more accurate community structure than the current local algorithms without any priori information.
Site characterization in densely fractured dolomite: Comparison of methods
Muldoon, M.; Bradbury, K.R.
2005-01-01
One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of ???10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head - and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid. Copyright ?? 2005 National Ground Water Association.
Current and Perspective Applications of Dense Plasma Focus Devices
Gribkov, V. A.
2008-04-01
Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement—MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.
Mechanical characterization of densely welded Apache Leap tuff
International Nuclear Information System (INIS)
Fuenkajorn, K.; Daemen, J.J.K.
1991-06-01
An empirical criterion is formulated to describe the compressive strength of the densely welded Apache Leap tuff. The criterion incorporates the effects of size, L/D ratio, loading rate and density variations. The criterion improves the correlation between the test results and the failure envelope. Uniaxial and triaxial compressive strengths, Brazilian tensile strength and elastic properties of the densely welded brown unit of the Apache Leap tuff have been determined using the ASTM standard test methods. All tuff samples are tested dry at room temperature (22 ± 2 degrees C), and have the core axis normal to the flow layers. The uniaxial compressive strength is 73.2 ± 16.5 MPa. The Brazilian tensile strength is 5.12 ± 1.2 MPa. The Young's modulus and Poisson's ratio are 22.6 ± 5.7 GPa and 0.20 ± 0.03. Smoothness and perpendicularity do not fully meet the ASTM requirements for all samples, due to the presence of voids and inclusions on the sample surfaces and the sample preparation methods. The investigations of loading rate, L/D radio and cyclic loading effects on the compressive strength and of the size effect on the tensile strength are not conclusive. The Coulomb strength criterion adequately represents the failure envelope of the tuff under confining pressures from 0 to 62 MPa. Cohesion and internal friction angle are 16 MPa and 43 degrees. The brown unit of the Apache Leap tuff is highly heterogeneous as suggested by large variations of the test results. The high intrinsic variability of the tuff is probably caused by the presence of flow layers and by nonuniform distributions of inclusions, voids and degree of welding. Similar variability of the properties has been found in publications on the Topopah Spring tuff at Yucca Mountain. 57 refs., 32 figs., 29 tabs
Warm dense mater: another application for pulsed power hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Reinovsky, Robert Emil [Los Alamos National Laboratory
2009-01-01
Pulsed Power Hydrodynamics (PPH) is an application of low-impedance pulsed power, and high magnetic field technology to the study of advanced hydrodynamic problems, instabilities, turbulence, and material properties. PPH can potentially be applied to the study of the properties of warm dense matter (WDM) as well. Exploration of the properties of warm dense matter such as equation of state, viscosity, conductivity is an emerging area of study focused on the behavior of matter at density near solid density (from 10% of solid density to slightly above solid density) and modest temperatures ({approx}1-10 eV). Conditions characteristic of WDM are difficult to obtain, and even more difficult to diagnose. One approach to producing WDM uses laser or particle beam heating of very small quantities of matter on timescales short compared to the subsequent hydrodynamic expansion timescales (isochoric heating) and a vigorous community of researchers are applying these techniques. Pulsed power hydrodynamic techniques, such as large convergence liner compression of a large volume, modest density, low temperature plasma to densities approaching solid density or through multiple shock compression and heating of normal density material between a massive, high density, energetic liner and a high density central 'anvil' are possible ways to reach relevant conditions. Another avenue to WDM conditions is through the explosion and subsequent expansion of a conductor (wire) against a high pressure (density) gas background (isobaric expansion) techniques. However, both techniques demand substantial energy, proper power conditioning and delivery, and an understanding of the hydrodynamic and instability processes that limit each technique. In this paper we will examine the challenges to pulsed power technology and to pulsed power systems presented by the opportunity to explore this interesting region of parameter space.
Consequences of the Solar System passage through dense interstellar clouds
Directory of Open Access Journals (Sweden)
A. G. Yeghikyan
2003-06-01
Full Text Available Several consequences of the passage of the solar system through dense interstellar molecular clouds are discussed. These clouds, dense (more than 100 cm-3, cold (10–50 K and extended (larger than 1 pc, are characterized by a gas-to-dust mass ratio of about 100, by a specific power grain size spectrum (grain radii usually cover the range 0.001–3 micron and by an average dust-to-gas number density ratio of about 10-12. Frequently these clouds contain small-scale (10–100 AU condensations with gas concentrations ranging up to 10 5 cm-3. At their casual passage over the solar system they exert pressures very much enhanced with respect to today’s standards. Under these conditions it will occur that the Earth is exposed directly to the interstellar flow. It is shown first that even close to the Sun, at 1 AU, the cloud’s matter is only partly ionized and should mainly interact with the solar wind by charge exchange processes. Dust particles of the cloud serve as a source of neutrals, generated by the solar UV irradiation of dust grains, causing the evaporation of icy materials. The release of neutral atoms from dust grains is then followed by strong influences on the solar wind plasma flow. The behavior of the neutral gas inflow parameters is investigated by a 2-D hydrodynamic approach to model the interaction processes. Because of a reduction of the heliospheric dimension down to 1 AU, direct influence of the cloud’s matter to the terrestrial environment and atmosphere could be envisaged.Key words. Interplanetary physics (heliopause and solar wind termination; interplanetary dust; interstellar gas
Mapping topographic plant location properties using a dense matching approach
Niederheiser, Robert; Rutzinger, Martin; Lamprecht, Andrea; Bardy-Durchhalter, Manfred; Pauli, Harald; Winkler, Manuela
2017-04-01
Within the project MEDIALPS (Disentangling anthropogenic drivers of climate change impacts on alpine plant species: Alps vs. Mediterranean mountains) six regions in Alpine and in Mediterranean mountain regions are investigated to assess how plant species respond to climate change. The project is embedded in the Global Observation Research Initiative in Alpine Environments (GLORIA), which is a well-established global monitoring initiative for systematic observation of changes in the plant species composition and soil temperature on mountain summits worldwide to discern accelerating climate change pressures on these fragile alpine ecosystems. Close-range sensing techniques such as terrestrial photogrammetry are well suited for mapping terrain topography of small areas with high resolution. Lightweight equipment, flexible positioning for image acquisition in the field, and independence on weather conditions (i.e. wind) make this a feasible method for in-situ data collection. New developments of dense matching approaches allow high quality 3D terrain mapping with less requirements for field set-up. However, challenges occur in post-processing and required data storage if many sites have to be mapped. Within MEDIALPS dense matching is used for mapping high resolution topography for 284 3x3 meter plots deriving information on vegetation coverage, roughness, slope, aspect and modelled solar radiation. This information helps identifying types of topography-dependent ecological growing conditions and evaluating the potential for existing refugial locations for specific plant species under climate change. This research is conducted within the project MEDIALPS - Disentangling anthropogenic drivers of climate change impacts on alpine plant species: Alps vs. Mediterranean mountains funded by the Earth System Sciences Programme of the Austrian Academy of Sciences.
Effective Field Theories for Hot and Dense Matter
Directory of Open Access Journals (Sweden)
Blaschke D.
2010-10-01
Full Text Available The lecture is divided in two parts. The ﬁrst one deals with an introduction to the physics of hot, dense many-particle systems in quantum ﬁeld theory [1, 2]. The basics of the path integral approach to the partition function are explained for the example of chiral quark models. The QCD phase diagram is discussed in the meanﬁeld approximation while QCD bound states in the medium are treated in the rainbow-ladder approximation (Gaussian ﬂuctuations. Special emphasis is devoted to the discussion of the Mott eﬀect, i.e. the transition of bound states to unbound, but resonant scattering states in the continnum under the inﬂuence of compression and heating of the system. Three examples are given: (1 the QCD model phase diagram with chiral symmetry ¨ restoration and color superconductivity [3], (2 the Schrodinger equation for heavy-quarkonia [4], and (2 Pions [5] as well as Kaons and D-mesons in the ﬁnite-temperature Bethe-Salpeter equation [6]. We discuss recent applications of this quantum ﬁeld theoretical approach to hot and dense quark matter for a description of anomalous J/ψ supression in heavy-ion collisions [7] and for the structure and cooling of compact stars with quark matter interiors [8]. The second part provides a detailed introduction to the Polyakov-loop Nambu–Jona-Lasinio model [9] for thermodynamics and mesonic correlations [10] in the phase diagram of quark matter. Important relationships of low-energy QCD like the Gell-Mann–Oakes–Renner relation are generalized to ﬁnite temperatures. The eﬀect of including the coupling to the Polyakov-loop potential on the phase diagram and mesonic correlations is discussed. An outlook is given to eﬀects of nonlocality of the interactions [11] and of mesonic correlations in the medium [12] which go beyond the meanﬁeld description.
Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.
2018-04-01
Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.
International Nuclear Information System (INIS)
Tishkovets, Victor P.; Jockers, Klaus
2006-01-01
The theory of light scattering by systems of spherical particles is applied to study the light scattering by discrete random media. A microphysical approach of statistical electromagnetics is used to derive the vector radiative transfer equation for semi-infinite densely packed media composed of identical spherical particles. The equation obtained corresponds to the sum of the ladder diagrams in the diagrammatic representation of the Bethe-Salpeter equation. The new vector radiative transfer equation is compared with that for sparse media. The effective refractive index as it enters in our equation is calculated from the known generalization of the Lorentz-Lorenz equation. Some numerical results of calculations of the reflection matrix are presented and compared with those for sparse media. The differences between the theoretical description of light scattering by closely packed and sparse media are discussed in detail
Reproductive and Hormonal Factors Associated with Fatty or Dense Breast Patterns among Korean Women
Jeon, Jei-Hun; Kang, Jung-Hyun; Kim, Yeonju; Lee, Hoo-Yeon; Choi, Kui Son; Jun, Jae Kwan; Oh, Dong-Kwan; Lee, Chang Yoon; Ko, Kyungran; Park, Eun-Cheol
2011-01-01
Purpose Dense breasts have been suggested as a risk factor for breast cancer, but controversy still remains. This study evaluates the association of reproductive and hormonal factors with dense breasts among Korean women. Materials and Methods Using a cross-sectional design, 516 women were recruited and classified for breast density patterns as being either fatty or dense, using the Breast Imaging Reporting and Data System (BI-RADS) of the American College of Radiology. Univariate and multiva...
The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A
Energy Technology Data Exchange (ETDEWEB)
Kirk, Helen; Di Francesco, James [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Rd, Victoria, BC, V9E 2E7 (Canada); Friesen, Rachel K. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario M5S 3H4 (Canada); Pineda, Jaime E.; Caselli, Paola; Alves, Felipe O.; Chacón-Tanarro, Ana; Punanova, Anna [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748, Garching (Germany); Rosolowsky, Erik [Department of Physics, University of Alberta, Edmonton, AB (Canada); Offner, Stella S. R. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Matzner, Christopher D.; Singh, Ayushi [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario, M5S 3H4 (Canada); Myers, Philip C.; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Chen, Michael Chun-Yuan; Keown, Jared [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2 (Canada); Seo, Young Min [Jet Propulsion Laboratory, NASA, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Shirley, Yancy [Steward Observatory, 933 North Cherry Ave., Tucson, AZ 85721 (United States); Ginsburg, Adam [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Hall, Christine [Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, Ontario, K7L 3N6 (Canada); and others
2017-09-10
We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests that most of the dense cores are pressure-confined.
Dense Medium Plasma Water Purification Reactor (DMP WaPR), Phase I
National Aeronautics and Space Administration — The Dense Medium Plasma Water Purification Reactor offers significant improvements over existing water purification technologies used in Advanced Life Support...
National Aeronautics and Space Administration — Densely ionizing radiation is a major component of the space radiation environment and has potentially greater carcinogenic effect compared to sparsely ionizing...
National Aeronautics and Space Administration — This is a proposal to develop a unique, gated, picosecond, digital holography system for characterizing dense particle fields in high pressure combustion...
Densely Aligned Graphene Nanoribbon Arrays and Bandgap Engineering
Energy Technology Data Exchange (ETDEWEB)
Su, Justin [Stanford Univ., CA (United States); Chen, Changxin [Stanford Univ., CA (United States); Gong, Ming [Stanford Univ., CA (United States); Kenney, Michael [Stanford Univ., CA (United States)
2017-01-04
Graphene has attracted great interest for future electronics due to its high mobility and high thermal conductivity. However, a two-dimensional graphene sheet behaves like a metal, lacking a bandgap needed for the key devices components such as field effect transistors (FETs) in digital electronics. It has been shown that, partly due to quantum confinement, graphene nanoribbons (GNRs) with ~2 nm width can open up sufficient bandgaps and evolve into semiconductors to exhibit high on/off ratios useful for FETs. However, a challenging problem has been that, such ultra-narrow GNRs (~2 nm) are difficult to fabricate, especially for GNRs with smooth edges throughout the ribbon length. Despite high on/off ratios, these GNRs show very low mobility and low on-state conductance due to dominant scattering effects by imperfections and disorders at the edges. Wider GNRs (>5 nm) show higher mobility, higher conductance but smaller bandgaps and low on/off ratios undesirable for FET applications. It is highly desirable to open up bandgaps in graphene or increase the bandgaps in wide GNRs to afford graphene based semiconductors for high performance (high on-state current and high on/off ratio) electronics. Large scale ordering and dense packing of such GNRs in parallel are also needed for device integration but have also been challenging thus far. It has been shown theoretically that uniaxial strains can be applied to a GNR to engineer its bandgap. The underlying physics is that under uniaxial strain, the Dirac point moves due to stretched C-C bonds, leading to an increase in the bandgap of armchair GNRs by up to 50% of its original bandgap (i.e. bandgap at zero strain). For zigzag GNRs, due to the existence of the edge states, changes of bandgap are smaller under uniaxial strain and can be increased by ~30%. This work proposes a novel approach to the fabrication of densely aligned graphene nanoribbons with highly smooth edges afforded by anisotropic etching and uniaxial strain for
Summer ammonia measurements in a densely populated Mediterranean city
Directory of Open Access Journals (Sweden)
M. Pandolfi
2012-08-01
Full Text Available Real-time measurements of ambient concentrations of gas-phase ammonia (NH_{3} were performed in Barcelona (NE Spain in summer between May and September 2011. Two measurement sites were selected: one in an urban background traffic-influenced area (UB and the other in the historical city centre (CC. Levels of NH_{3} were higher at CC (5.6 ± 2.1 μg m^{−3} or 7.5 ± 2.8 ppbv compared with UB (2.2 ± 1.0 μg m^{−3} or 2.9 ± 1.3 ppbv. This difference is attributed to the contribution from non-traffic sources such as waste containers, sewage systems, humans and open markets more dense in the densely populated historical city centre. Under high temperatures in summer these sources had the potential to increase the ambient levels of NH_{3} well above the urban-background-traffic-influenced UB measurement station. Measurements were used to assess major local emissions, sinks and diurnal evolution of NH_{3}. The measured levels of NH_{3}, especially high in the old city, may contribute to the high mean annual concentrations of secondary sulfate and nitrate measured in Barcelona compared with other cities in Spain affected by high traffic intensity. Ancillary measurements, including PM_{10}, PM_{2.5}, PM_{1} levels (Particulate Matter with aerodynamic diameter smaller than 10 μm, 2.5 μm, and 1 μm, gases and black carbon concentrations and meteorological data, were performed during the measurement campaign. The analysis of specific periods (3 special cases during the campaign revealed that road traffic was a significant source of NH_{3}. However, its effect was more evident at UB compared with CC where it was masked given the high levels of NH_{3} from non-traffic sources measured in the old city. The relationship between SO_{4}^{2−} daily concentrations and gas-fraction ammonia (NH_{3}/(NH_{3} + NH_{4 }
Summer ammonia measurements in a densely populated Mediterranean city
Pandolfi, M.; Amato, F.; Reche, C.; Alastuey, A.; Otjes, R. P.; Blom, M. J.; Querol, X.
2012-08-01
Real-time measurements of ambient concentrations of gas-phase ammonia (NH3) were performed in Barcelona (NE Spain) in summer between May and September 2011. Two measurement sites were selected: one in an urban background traffic-influenced area (UB) and the other in the historical city centre (CC). Levels of NH3 were higher at CC (5.6 ± 2.1 μg m-3 or 7.5 ± 2.8 ppbv) compared with UB (2.2 ± 1.0 μg m-3 or 2.9 ± 1.3 ppbv). This difference is attributed to the contribution from non-traffic sources such as waste containers, sewage systems, humans and open markets more dense in the densely populated historical city centre. Under high temperatures in summer these sources had the potential to increase the ambient levels of NH3 well above the urban-background-traffic-influenced UB measurement station. Measurements were used to assess major local emissions, sinks and diurnal evolution of NH3. The measured levels of NH3, especially high in the old city, may contribute to the high mean annual concentrations of secondary sulfate and nitrate measured in Barcelona compared with other cities in Spain affected by high traffic intensity. Ancillary measurements, including PM10, PM2.5, PM1 levels (Particulate Matter with aerodynamic diameter smaller than 10 μm, 2.5 μm, and 1 μm), gases and black carbon concentrations and meteorological data, were performed during the measurement campaign. The analysis of specific periods (3 special cases) during the campaign revealed that road traffic was a significant source of NH3. However, its effect was more evident at UB compared with CC where it was masked given the high levels of NH3 from non-traffic sources measured in the old city. The relationship between SO42- daily concentrations and gas-fraction ammonia (NH3/(NH3 + NH4+)) revealed that the gas-to-particle phase partitioning (volatilization or ammonium salts formation) also played an important role in the evolution of NH3 concentration in summer in Barcelona.
Modelling compressible dense and dilute two-phase flows
Saurel, Richard; Chinnayya, Ashwin; Carmouze, Quentin
2017-06-01
Many two-phase flow situations, from engineering science to astrophysics, deal with transition from dense (high concentration of the condensed phase) to dilute concentration (low concentration of the same phase), covering the entire range of volume fractions. Some models are now well accepted at the two limits, but none are able to cover accurately the entire range, in particular regarding waves propagation. In the present work, an alternative to the Baer and Nunziato (BN) model [Baer, M. R. and Nunziato, J. W., "A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials," Int. J. Multiphase Flow 12(6), 861 (1986)], initially designed for dense flows, is built. The corresponding model is hyperbolic and thermodynamically consistent. Contrarily to the BN model that involves 6 wave speeds, the new formulation involves 4 waves only, in agreement with the Marble model [Marble, F. E., "Dynamics of a gas containing small solid particles," Combustion and Propulsion (5th AGARD Colloquium) (Pergamon Press, 1963), Vol. 175] based on pressureless Euler equations for the dispersed phase, a well-accepted model for low particle volume concentrations. In the new model, the presence of pressure in the momentum equation of the particles and consideration of volume fractions in the two phases render the model valid for large particle concentrations. A symmetric version of the new model is derived as well for liquids containing gas bubbles. This model version involves 4 characteristic wave speeds as well, but with different velocities. Last, the two sub-models with 4 waves are combined in a unique formulation, valid for the full range of volume fractions. It involves the same 6 wave speeds as the BN model, but at a given point of space, 4 waves only emerge, depending on the local volume fractions. The non-linear pressure waves propagate only in the phase with dominant volume fraction. The new model is tested numerically on various
Fabrication of dense anisotropic collagen scaffolds using biaxial compression.
Zitnay, Jared L; Reese, Shawn P; Tran, Garvin; Farhang, Niloofar; Bowles, Robert D; Weiss, Jeffrey A
2018-01-01
We developed a new method to manufacture dense, aligned, and porous collagen scaffolds using biaxial plastic compression of type I collagen gels. Using a novel compression apparatus that constricts like an iris diaphragm, low density collagen gels were compressed to yield a permanently densified, highly aligned collagen material. Micro-porosity scaffolds were created using hydrophilic elastomer porogens that can be selectively removed following biaxial compression, with porosity modulated by using different porogen concentrations. The resulting scaffolds exhibit collagen densities that are similar to native connective tissues (∼10% collagen by weight), pronounced collagen alignment across multiple length scales, and an interconnected network of pores, making them highly relevant for use in tissue culture, the study of physiologically relevant cell-matrix interactions, and tissue engineering applications. The scaffolds exhibited highly anisotropic material behavior, with the modulus of the scaffolds in the fiber direction over 100 times greater than the modulus in the transverse direction. Adipose-derived mesenchymal stem cells were seeded onto the biaxially compressed scaffolds with minimal cell death over seven days of culture, along with cell proliferation and migration into the pore spaces. This fabrication method provides new capabilities to manufacture structurally and mechanically relevant cytocompatible scaffolds that will enable more physiologically relevant cell culture studies. Further improvement of manufacturing techniques has the potential to produce engineered scaffolds for direct replacement of dense connective tissues such as meniscus and annulus fibrosus. In vitro studies of cell-matrix interactions and the engineering of replacement materials for collagenous connective tissues require biocompatible scaffolds that replicate the high collagen density (15-25%/wt), aligned fibrillar organization, and anisotropic mechanical properties of native
Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires
International Nuclear Information System (INIS)
Tian Jinghua; Hu Jie; Li Sisi; Zhang Fan; Liu Jun; Shi Jian; Li Xin; Chen Yong; Tian Zhongqun
2011-01-01
Seedless hydrothermal synthesis has been improved by introducing an adequate content of ammonia into the nutrient solution, allowing the fabrication of dense and ultralong ZnO nanowire arrays over large areas on a substrate. The presence of ammonia in the nutrient solution facilitates the high density nucleation of ZnO on the substrate which is critical for the nanowire growth. In order to achieve an optimal growth, the growth conditions have been studied systematically as a function of ammonia content, growth temperature and incubation time. The effect of polyethyleneimine (PEI) has also been studied but shown to be of no benefit to the nucleation of ZnO. Ultradense and ultralong ZnO nanowires could be obtained under optimal growth conditions, showing no fused structure at the foot of the nanowire arrays. Due to different reaction kinetics, four growth regimes could be attributed, including the first fast growth, equilibrium phase, second fast growth and final erosion. Combining this simple method with optical lithography, ZnO nanowires could be grown selectively on patterned areas. In addition, the as-grown ZnO nanowires could be used for the fabrication of a piezoelectric nanogenerator. Compared to the device of ZnO nanowires made by other methods, a more than twice voltage output has been obtained, thereby proving an improved performance of our growth method.
Phase diagram of dense two-color QCD within lattice simulations
Directory of Open Access Journals (Sweden)
Braguta V.V.
2017-01-01
Full Text Available We present the results of a low-temperature scan of the phase diagram of dense two-color QCD with Nf = 2 quarks. The study is conducted using lattice simulation with rooted staggered quarks. At small chemical potential we observe the hadronic phase, where the theory is in a confining state, chiral symmetry is broken, the baryon density is zero and there is no diquark condensate. At the critical point μ = mπ/2 we observe the expected second order transition to Bose-Einstein condensation of scalar diquarks. In this phase the system is still in confinement in conjunction with nonzero baryon density, but the chiral symmetry is restored in the chiral limit. We have also found that in the first two phases the system is well described by chiral perturbation theory. For larger values of the chemical potential the system turns into another phase, where the relevant degrees of freedom are fermions residing inside the Fermi sphere, and the diquark condensation takes place on the Fermi surface. In this phase the system is still in confinement, chiral symmetry is restored and the system is very similar to the quarkyonic state predicted by SU(Nc theory at large Nc.
Pesicek, Jeremy; Cieślik, Konrad; Lambert, Marc-André; Carrillo, Pedro; Birkelo, Brad
2016-01-01
We have determined source mechanisms for nine high-quality microseismic events induced during hydraulic fracturing of the Montney Shale in Canada. Seismic data were recorded using a dense regularly spaced grid of sensors at the surface. The design and geometry of the survey are such that the recorded P-wave amplitudes essentially map the upper focal hemisphere, allowing the source mechanism to be interpreted directly from the data. Given the inherent difficulties of computing reliable moment tensors (MTs) from high-frequency microseismic data, the surface amplitude and polarity maps provide important additional confirmation of the source mechanisms. This is especially critical when interpreting non-shear source processes, which are notoriously susceptible to artifacts due to incomplete or inaccurate source modeling. We have found that most of the nine events contain significant non-double-couple (DC) components, as evident in the surface amplitude data and the resulting MT models. Furthermore, we found that source models that are constrained to be purely shear do not explain the data for most events. Thus, even though non-DC components of MTs can often be attributed to modeling artifacts, we argue that they are required by the data in some cases, and can be reliably computed and confidently interpreted under favorable conditions.
Glass transition of dense fluids of hard and compressible spheres
Berthier, Ludovic; Witten, Thomas A.
2009-08-01
We use computer simulations to study the glass transition of dense fluids made of polydisperse repulsive spheres. For hard particles, we vary the volume fraction, φ , and use compressible particles to explore finite temperatures, T>0 . In the hard sphere limit, our dynamic data show evidence of an avoided mode-coupling singularity near φMCT≈0.592 ; they are consistent with a divergence of equilibrium relaxation times occurring at φ0≈0.635 , but they leave open the existence of a finite temperature singularity for compressible spheres at volume fraction φ>φ0 . Using direct measurements and a scaling procedure, we estimate the equilibrium equation of state for the hard sphere metastable fluid up to φ0 , where pressure remains finite, suggesting that φ0 corresponds to an ideal glass transition. We use nonequilibrium protocols to explore glassy states above φ0 and establish the existence of multiple equations of state for the unequilibrated glass of hard spheres, all diverging at different densities in the range φɛ[0.642,0.664] . Glassiness thus results in the existence of a continuum of densities where jamming transitions can occur.
Dense particle cloud dispersion by a shock wave
Kellenberger, M.; Johansen, C.; Ciccarelli, G.; Zhang, F.
2013-09-01
A dense particle flow is generated by the interaction of a shock wave with an initially stationary packed granular bed. High-speed particle dispersion research is motivated by the energy release enhancement of explosives containing solid particles. The initial packed granular bed is produced by compressing loose powder into a wafer with a particle volume fraction of . The wafer is positioned inside the shock tube, uniformly filling the entire cross-section. This results in a clean experiment where no flow obstructing support structures are present. Through high-speed shadowgraph imaging and pressure measurements along the length of the channel, detailed information about the particle shock interaction was obtained. Due to the limited strength of the incident shock wave, no transmitted shock wave is produced. The initial solid-like response of the particle wafer acceleration forms a series of compression waves that eventually coalesce to form a shock wave. Breakup is initiated along the periphery of the wafer as the result of shear that forms due to the fixed boundary condition. Particle breakup is initiated by local failure sites that result in the formation of particle jets that extend ahead of the accelerating, largely intact, wafer core. In a circular tube, the failure sites are uniformly distributed along the wafer circumference. In a square channel, the failure sites, and the subsequent particle jets, initially form at the corners due to the enhanced shear. The wafer breakup subsequently spreads to the edges forming a highly non-uniform particle cloud.
Electronic excitations and metallization of dense solid hydrogen.
Cohen, R E; Naumov, Ivan I; Hemley, Russell J
2013-08-20
Theoretical calculations and an assessment of recent experimental results for dense solid hydrogen lead to a unique scenario for the metallization of hydrogen under pressure. The existence of layered structures based on graphene sheets gives rise to an electronic structure related to unique features found in graphene that are well studied in the carbon phase. The honeycombed layered structure for hydrogen at high density, first predicted in molecular calculations, produces a complex optical response. The metallization of hydrogen is very different from that originally proposed via a phase transition to a close-packed monoatomic structure, and different from simple metallization recently used to interpret recent experimental data. These different mechanisms for metallization have very different experimental signatures. We show that the shift of the main visible absorption edge does not constrain the point of band gap closure, in contrast with recent claims. This conclusion is confirmed by measured optical spectra, including spectra obtained to low photon energies in the infrared region for phases III and IV of hydrogen.
DS Mesons in Asymmetric Hot and Dense Hadronic Matter
Directory of Open Access Journals (Sweden)
Divakar Pathak
2015-01-01
Full Text Available The in-medium properties of DS mesons are investigated within the framework of an effective hadronic model, which is a generalization of a chiral SU(3 model, to SU(4, in order to study the interactions of the charmed hadrons. In the present work, the DS mesons are observed to experience net attractive interactions in a dense hadronic medium, hence reducing the masses of the DS+ and DS- mesons from the vacuum values. While this conclusion holds in both nuclear and hyperonic media, the magnitude of the mass drop is observed to intensify with the inclusion of strangeness in the medium. Additionally, in hyperonic medium, the mass degeneracy of the DS mesons is observed to be broken, due to opposite signs of the Weinberg-Tomozawa interaction term in the Lagrangian density. Along with the magnitude of the mass drops, the mass splitting between DS+ and DS- mesons is also observed to grow with an increase in baryonic density and strangeness content of the medium. However, all medium effects analyzed are found to be weakly dependent on isospin asymmetry and temperature. We discuss the possible implications emanating from this analysis, which are all expected to make a significant difference to observables in heavy ion collision experiments, especially the upcoming Compressed Baryonic Matter (CBM experiment at the future Facility for Antiproton and Ion Research (FAIR, GSI, where matter at high baryonic densities is planned to be produced.
Ion Transport in Solid and Warm Dense Targets
Beg, F. N.; Qiao, B.; McGuffey, C.; Kim, J.; Wei, M.-S.; Stephens, R. B.
2013-10-01
High intensity proton/ion beam transport and energy deposition in solids and Warm Dense Matter (WDM) is not well understood even though it is important to several applications including heavy ion fusion and laser-produced ion beam driven fast ignition fusion. Ion stopping power models have been developed for the relevant regimes but thus far lack experimental validation. One of the challenges to understand ion beam transport and energy deposition in solid density cold matter and WDM is self-consistently accounting for the matter's response to the intense beam (heating, ionization, strong return currents and self-generated electric and magnetic fields) and in turn the beam's response to the matter (temperature gradients, current-driven fields). In this presentation, ion stopping-power module implemented in the hybrid particle-in-cell code LSP and its applications in modeling intense proton beam transport and heating in solids and WDM targets will be discussed. In addition, relevance of this work to the Matter in Extreme Condition end station with the unique capability of the combined high flux hard x-ray pulse and the high intensity short pulse optical laser at the Linac Coherent Light Source (LCLS) will be presented. This work was partially supported by the DOE/NNSA National Laser User Facility program, Grant DE-NA0002034.
PIC Simulations of Dense Plasma Focus Z-pinch
Schmidt, A.; Blackfield, D.; Tang, V.; Welch, D.; Rose, D.
2011-10-01
Dense Plasma Focus (DPF) Z-pinches are abundant sources of radiation, including neutrons, x-rays, and energetic electron and ion beams. Energetic protons and deuterons up to 10 MeV have been observed from cm-scale-length pinches, implying average acceleration gradients up to 1 GV/m. Gradients of this magnitude could potentially be exploited in the design of a compact accelerator. However, the physical mechanisms behind these immense electric fields are not well understood and thus DPF design cannot currently be optimized to maximize these gradients. At LLNL, we have assembled a DPF Z-pinch experiment and will be using a 4 MV ion probe beam to directly measure pinch-induced gradients. LSP, a fully relativistic electromagnetic Particle-In-Cell (PIC) code is used to perform time-dependent simulations of the pinch phase of the DPF and to gain insight into the origin and evolution of the large accelerating fields. LSP can be used in 2D or 3D geometries and can model the ions kinetically with fluid electrons (hybrid model) or model both species kinetically (fully kinetic model). We present results from both pressure and sheath width scans using LSP. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) at LLNL.
Improving Performance in Dense Wireless Spaces by Controlling Bulk Traffic
Directory of Open Access Journals (Sweden)
Marat Zhanikeev
2017-01-01
Full Text Available The growing number of wireless devices nowadays often results in congestion of wireless channels. In research, this topic is referred to as networking in dense wireless spaces. The literature on the topic shows that the biggest problem is the high number of concurrent sessions to a wireless access point. The obvious solution is to reduce the number of concurrent sessions. This paper proposes a simple method called Bulk-n-Pick which minimizes the number of prolonged concurrent sessions by separating bulk from sync traffic. Aiming at educational applications, under the proposed design, web applications would distribute the main bulk of content once at the beginning of a class and then rely on small messages for real time sync traffic during the class. For realistic performance analysis, this paper first performs real-life experiments with various counts of wireless devices, bulk sizes, and levels of sync intensity. Based on the experiments, this paper shows that the proposed Bulk-n-Pick method outperforms the traditional design even when only two concurrent bulk sessions are allowed. The experiment shows that up to 10 concurrent bulk sessions are feasible in practice. Based on these results, a method for online performance optimization is proposed and validated in a trace-based emulation.
Neutron diffraction observations of interstitial protons in dense ice.
Guthrie, Malcolm; Boehler, Reinhard; Tulk, Christopher A; Molaison, Jamie J; dos Santos, António M; Li, Kuo; Hemley, Russell J
2013-06-25
The motif of distinct H2O molecules in H-bonded networks is believed to persist up to the densest molecular phase of ice. At even higher pressures, where the molecule dissociates, it is generally assumed that the proton remains localized within these same networks. We report neutron-diffraction measurements on D2O that reveal the location of the D atoms directly up to 52 GPa, a pressure regime not previously accessible to this technique. The data show the onset of a structural change at ∼13 GPa and cannot be described by the conventional network structure of ice VII above ∼26 GPa. Our measurements are consistent with substantial deuteron density in the octahedral, interstitial voids of the oxygen lattice. The observation of this "interstitial" ice VII form provides a framework for understanding the evolution of hydrogen bonding in ice that contrasts with the conventional picture. It may also be a precursor for the superionic phase reported at even higher pressure with important consequences for our understanding of dense matter and planetary interiors.
Nanoengineering of bioactive glasses: hollow and dense nanospheres
Energy Technology Data Exchange (ETDEWEB)
Luz, Gisela M., E-mail: gisela.luz@dep.uminho.pt; Mano, Joao F., E-mail: jmano@dep.uminho.pt [University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 3B' s Research Group, Biomaterials, Biodegradables and Biomimetics (Portugal)
2013-02-15
The possibility of engineering bioactive glass (BG) nanoparticles into suitable sizes and shapes represents a significant achievement regarding the development of new osteoconductive biomaterials for therapeutic strategies to replace or regenerate damaged mineralised tissues. Herein we report the structural and chemical evolution of sol-gel derived BG nanoparticles for both the binary (SiO{sub 2}:CaO (mol%) = 70:30) and ternary (SiO{sub 2}:CaO:P{sub 2}O{sub 5} (mol%) = 55:40:5) formulations, in order to understand how the particles formation can be directed. Hollow BG nanospheres were obtained through Ostwald ripening. The presence of a non ionic surfactant, poly(ethylene glycol) (PEG), allowed the formation of dense BG nanospheres with controllable diameters depending on the molecular weight of PEG. A deep insight into the genesis of BG nanoparticles formation is essential to design BG based materials with controlled compositions, morphologies and sizes at the nanoscale, in order to improve their performance in orthopaedic applications including bone tissue engineering.
Siting of nuclear power plants in densely populated countries
International Nuclear Information System (INIS)
Togo, Y.
1981-01-01
In evaluating the safety of reactor siting, three typical approaches can be applied; the deterministic approach, the probabilistic approach and the combined approach. In regard to a risk associated with siting, the design of a reactor has to do with both individual and societal risk, while exclusion distance mainly has to do with individual risk, and surrounding population primarily has to do with societal risk. Consequently, in a densely populated area, more attention should be paid to societal risk. There are many reactor sites in the world which can be described as concentrated siting. Although concentrated siting has a lot of merits, such as reducing the construction cost or maintenance cost of reactors, more careful consideration should be paid to safety-related matters of such concentrated reactors because the risk to the individual from accidents caused by concentrated reactors is larger than that from a single reactor. As for the recent controversial issue concerning siting criteria, it appears that the present international consensus on siting philosophy is still valid after the TMI accident. (author)
Local order and crystallization of dense polydisperse hard spheres
Coslovich, Daniele; Ozawa, Misaki; Berthier, Ludovic
2018-04-01
Computer simulations give precious insight into the microscopic behavior of supercooled liquids and glasses, but their typical time scales are orders of magnitude shorter than the experimentally relevant ones. We recently closed this gap for a class of models of size polydisperse fluids, which we successfully equilibrate beyond laboratory time scales by means of the swap Monte Carlo algorithm. In this contribution, we study the interplay between compositional and geometric local orders in a model of polydisperse hard spheres equilibrated with this algorithm. Local compositional order has a weak state dependence, while local geometric order associated to icosahedral arrangements grows more markedly but only at very high density. We quantify the correlation lengths and the degree of sphericity associated to icosahedral structures and compare these results to those for the Wahnström Lennard-Jones mixture. Finally, we analyze the structure of very dense samples that partially crystallized following a pattern incompatible with conventional fractionation scenarios. The crystal structure has the symmetry of aluminum diboride and involves a subset of small and large particles with size ratio approximately equal to 0.5.
Research and development program on dense TPC's at LBL
International Nuclear Information System (INIS)
Oddone, P; Nemethy, P.
1982-01-01
We have initiated a research and development program at LBL to develop high density TPC's. We are motivated by their potential use as tracking calorimeters to study nucleon decay. They may also be useful in the study of cosmic neutrino fluxes, double β decay and other low rate processes. Of these applications, the use of dense TPC's to study nucleon decay is the most challenging one because it requires instrumenting very large masses. Our R and D program is aimed at developing large TPC's which are competitive in cost with other proposed nucleon decay detectors while offering superior capabilities for energy resolution, particle identification and uniformity of response. There are two ways of obtaining high density TPC's: the first is to use a cryogenic liquid such as liquid argon or liquid methane; the second is to pressurize a gas such as argon or methane to several hundred atmospheres where the density of the gas approaches that of the liquid state. While we are interested in studying both approaches, we are concentrating on the high pressure approach since it offers the potential advantage of proportional wire amplification. A wire amplification of about 3 orders of magnitude would eliminate the noise problems which are inherent in ionization mode detectors such as liquid argon chambers. A possible 10 kton detector is described, and its properties are discussed in terms of tracking, energy measurements and particle identification
Operational characteristics of a high voltage dense plasma focus
Woodall, D. M.
1985-11-01
A high voltage dense plasma focus powered by a single stage Marx bank was designed, built and operated. The maximum bank parameters are: voltage--120 kV, energy--20 kJ, short circuit current--600kA. The bank impedance is about 200 millohms. The plasma focus center electrode diameter is 1.27 cm. The outer electrode diameter is 10.16 cm. Rundown length is about 10 cm, corresponding to a bank quarter period of about 900 millohms ns. Rundown L is about 50 milliohms. The context of this work is established with a review of previous plasma focus theoretical, experimental and computational work and related topics. Theoretical motivation for high voltage operation is presented. The design, construction and operation of this device are discussed in detail. Results and analysis of measurements obtained are presented. Device operation was investigated primarily at 80 kV (9 kJ), with a gas fill of about 1 torr H2, plus 3-5 percent A. The following diagnostics were used: gun voltage and current measurements; filtered, time resolved x ray PIN measurements of the pinch region; time integrated x ray pinhole photographs of the pinch region; fast frame visible light photographs of the sheath during rundown; and B probe measurements of the current sheath shortly before collapse.
Dense plasma focus powered by flux compression generators
International Nuclear Information System (INIS)
Fowler, C.M.; Freeman, B.L.; Caird, R.S.; Erickson, D.J.; Garn, W.B.
1992-01-01
A short summary is given of earlier Los Alamos work in which a Dense Plasma Focus was powered by Flux Compression Generators. Neutron yields obtained in the shot series scaled well with the fifth power of the current. The shot parameters were modeled surprisingly well through the plasma rundown phase by a simple snowplow model. It is shown, with the use of this model, that DPF currents in excess of 10 MA should be obtained with existing generators and initial energy sources. One new element is needed -- a high energy opening switch such as a fuse. Much more is known about fuse operation since the Los Alamos program was stopped, so development of this component should be relatively straightforward. If the yield-current scaling relation holds to this current level, then D-T neutron yields in excess of 10 16 per burst would result, sufficient for some interesting pulsed radiography applications that involve rapidly moving components. Finally, in a sheer flight of fancy, it is shown that D-T yields approaching 10 20 could be obtained, using FCGs not too much beyond the state of the art, provided the simple modeling and neutron-current scaling relations continue to hold, a rather unlikely supposition
Bulk and shear viscosities of hot and dense hadron gas
International Nuclear Information System (INIS)
Kadam, Guru Prakash; Mishra, Hiranmaya
2015-01-01
We estimate the bulk and the shear viscosity at finite temperature and baryon densities of hadronic matter within a hadron resonance gas model which includes a Hagedorn spectrum. The parameters of the Hagedorn spectrum are adjusted to fit recent lattice QCD simulations at finite chemical potential. For the estimation of the bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For the shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons
Coherent ultra dense wavelength division multiplexing passive optical networks
Shahpari, Ali; Ferreira, Ricardo; Ribeiro, Vitor; Sousa, Artur; Ziaie, Somayeh; Tavares, Ana; Vujicic, Zoran; Guiomar, Fernando P.; Reis, Jacklyn D.; Pinto, Armando N.; Teixeira, António
2015-12-01
In this paper, we firstly review the progress in ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON), by making use of the key attributes of this technology in the context of optical access and metro networks. Besides the inherit properties of coherent technology, we explore different modulation formats and pulse shaping. The performance is experimentally demonstrated through a 12 × 10 Gb/s bidirectional UDWDM-PON over hybrid 80 km standard single mode fiber (SSMF) and optical wireless link. High density, 6.25 GHz grid, Nyquist shaped 16-ary quadrature amplitude modulation (16QAM) and digital frequency shifting are some of the properties exploited together in the tests. Also, bidirectional transmission in fiber, relevant in the context, is analyzed in terms of nonlinear and back-reflection effects on receiver sensitivity. In addition, as a basis for the discussion on market readiness, we experimentally demonstrate real-time detection of a Nyquist-shaped quaternary phase-shift keying (QPSK) signal using simple 8-bit digital signal processing (DSP) on a field-programmable gate array (FPGA).
Advances of dense plasma physics with particle accelerators
Energy Technology Data Exchange (ETDEWEB)
Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K. [Gesellschaft fur Schwerionenforschung, GSI-Darmstadt, Plasmaphysik, Darmstadt (Germany); Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Roth, M.; Udrea, S.; Varentsov, D. [DarmstadtTechnische Univ., Institut fur Kernphysik (Germany); Jacoby, J. [Frankfurt Univ., Institut fur Angewandte Physik (Germany); Zioutas, K. [European Organization for Nuclear Research (CERN), Geneve (Switzerland); Patras Univ., Dept. of Physics (Greece); Sharkov, B.Y. [Institut for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)
2006-06-15
High intensity particle beams from accelerators induce high energy density states in bulk matter. The SIS-18 heavy ion synchrotron at GSI (Darmstadt, Germany) now routinely delivers intense Uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Due to the specific nature of the ion-matter interaction a volume of matter is heated uniformly with low gradients of temperature and pressure in the initial phase, depending on the pulse structure of the beam with respect to space and time. The new accelerator complex FAIR (Facility for Antiproton and ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. One special piece of accelerator equipment a superconducting high field dipole magnet, developed for the LHC at CERN is now serving as a key instrument to diagnose the dense plasma of the sun interior plasma, thus providing an extremely interesting combination of accelerator physics, plasma physics and particle physics. (authors)
Advances of dense plasma physics with particle accelerators
International Nuclear Information System (INIS)
Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K.; Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Roth, M.; Udrea, S.; Varentsov, D.; Jacoby, J.; Zioutas, K.; Sharkov, B.Y.
2006-01-01
High intensity particle beams from accelerators induce high energy density states in bulk matter. The SIS-18 heavy ion synchrotron at GSI (Darmstadt, Germany) now routinely delivers intense Uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Due to the specific nature of the ion-matter interaction a volume of matter is heated uniformly with low gradients of temperature and pressure in the initial phase, depending on the pulse structure of the beam with respect to space and time. The new accelerator complex FAIR (Facility for Antiproton and ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. One special piece of accelerator equipment a superconducting high field dipole magnet, developed for the LHC at CERN is now serving as a key instrument to diagnose the dense plasma of the sun interior plasma, thus providing an extremely interesting combination of accelerator physics, plasma physics and particle physics. (authors)
PHOSPHORUS-BEARING MOLECULES IN MASSIVE DENSE CORES
Energy Technology Data Exchange (ETDEWEB)
Fontani, F.; Rivilla, V. M. [INAF-Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, I-50125 Firenze (Italy); Caselli, P.; Vasyunin, A. [Max-Planck-Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching (Germany); Palau, A. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090 Morelia, Michoacán, México (Mexico)
2016-05-10
Phosphorus is a crucial element for the development of life, but so far P-bearing molecules have been detected only in a few astrophysical objects; hence, its interstellar chemistry is almost totally unknown. Here, we show new detections of phosphorus nitride (PN) in a sample of dense cores in different evolutionary stages of the intermediate- and high-mass star formation process: starless, with protostellar objects, and with ultracompact H ii regions. All detected PN line widths are smaller than ≃5 km s{sup −1}, and they arise from regions associated with kinetic temperatures smaller than 100 K. Because the few previous detections reported in the literature are associated with warmer and more turbulent sources, the results of this work show that PN can arise from relatively quiescent and cold gas. This information is challenging for theoretical models that invoke either high desorption temperatures or grain sputtering from shocks to release phosphorus into the gas phase. Derived column densities are of the order of 10{sup 11–12} cm{sup −2}, marginally lower than the values derived in the few high-mass star-forming regions detected so far. New constraints on the abundance of phosphorus monoxide, the fundamental unit of biologically relevant molecules, are also given.
DENSE MULTIPLE STEREO MATCHING OF HIGHLY OVERLAPPING UAV IMAGERY
Directory of Open Access Journals (Sweden)
N. Haala
2012-07-01
Full Text Available UAVs are becoming standard platforms for applications aiming at photogrammetric data capture. Since these systems can be completely built-up at very reasonable prices, their use can be very cost effective. This is especially true while aiming at large scale aerial mapping of areas at limited extent. In principle, the photogrammetric evaluation of UAV-based imagery is feasible by of-the-shelf commercial software products. Thus, standard steps like aerial triangulation, the generation of Digital Surface Models and ortho image computation can be performed effectively. However, this processing pipeline can be hindered due to the limited quality of UAV data. This is especially true if low-cost sensor components are applied. To overcome potential problems in AAT, UAV imagery is frequently captured at considerable overlaps. As it will be discussed in the paper, such highly overlapping image blocks are not only beneficial during georeferencing, but are especially advantageous while aiming at a dense and accurate image based 3D surface reconstruction.
Dense Fe cluster-assembled films by energetic cluster deposition
International Nuclear Information System (INIS)
Peng, D.L.; Yamada, H.; Hihara, T.; Uchida, T.; Sumiyama, K.
2004-01-01
High-density Fe cluster-assembled films were produced at room temperature by an energetic cluster deposition. Though cluster-assemblies are usually sooty and porous, the present Fe cluster-assembled films are lustrous and dense, revealing a soft magnetic behavior. Size-monodispersed Fe clusters with the mean cluster size d=9 nm were synthesized using a plasma-gas-condensation technique. Ionized clusters are accelerated electrically and deposited onto the substrate together with neutral clusters from the same cluster source. Packing fraction and saturation magnetic flux density increase rapidly and magnetic coercivity decreases remarkably with increasing acceleration voltage. The Fe cluster-assembled film obtained at the acceleration voltage of -20 kV has a packing fraction of 0.86±0.03, saturation magnetic flux density of 1.78±0.05 Wb/m 2 , and coercivity value smaller than 80 A/m. The resistivity at room temperature is ten times larger than that of bulk Fe metal
Vibron hopping and bond anharmonicity in hot dense hydrogen
Feldman, J. L.; Johnson, J. Karl; Hemley, Russell J.
2009-02-01
The Raman-active vibron of dense hydrogen has been shown to exhibit unexpected changes as a function of pressure and temperature to above 100GPa. To understand these results we have performed supercell-based calculations using Van Kranendonk theory taking into account the renormalization of the hopping parameter by the lattice vibrations. We find that the major temperature dependence at this level of theory comes from the differences in populations of rotational states. The theory provides a fair description of the experimental results up to 70GPa. We examine in detail a number of assumptions made in the application of the Van Kranendonk model to hydrogen as a function of pressure and temperature. We also present results of hybrid path integral molecular dynamics calculations in the fluid state at a low pressure (7GPa) near the melting temperature. An amorphous-solid model of the fluid predicts that the Raman vibron frequencies change little upon melting, in agreement with experiment. The Van Kranendonk theory with fixed rotational identities of the molecules tends to predict more peaks in the Raman spectrum than are observed experimentally.
Numerical study of dense adjoint matter in two color QCD
International Nuclear Information System (INIS)
Hands, S.; Morrison, S.; Scorzato, L.; Oevers, M.
2000-06-01
We identify the global symmetries of SU(2) lattice gauge theory with N flavors of staggered fermion in the presence of a quark chemical potential μ, for fermions in both fundamental and adjoint representations, and anticipate likely patterns of symmetry breaking at both low and high densities. Results from numerical simulations of the model with N=1 adjoint flavor on a 4 3 x 8 lattice are presented, using both hybrid Monte Carlo and two-step multi-boson algorithms. It is shown that the sign of the fermion determinant starts to fluctuate once the model enters a phase with non-zero baryon charge density. HMC simulations are not ergodic in this regime, but TSMB simulations retain ergodicity even in the dense phase, and in addition appear to show superior decorrelation. The HMC results for the equation of state and the pion mass show good quantitative agreement with the predictions of chiral perturbation theory, which should hold only for N≥2. The TSMB results incorporating the sign of the determinant support a delayed onset transition, consistent with the pattern of symmetry breaking expected for N=1. (orig.)
Observations of strong ion-ion correlations in dense plasmas
Energy Technology Data Exchange (ETDEWEB)
Ma, T.; Fletcher, L.; Pak, A.; Chapman, D. A.; Falcone, R. W.; Fortmann, C.; Galtier, E.; Gericke, D. O.; Gregori, G.; Hastings, J.; Landen, O. L.; Le Pape, S.; Lee, H. J.; Nagler, B.; Neumayer, P.; Turnbull, D.; Vorberger, J.; White, T. G.; Wünsch, K.; Zastrau, U.; Glenzer, S. H.; Döppner, T.
2014-05-01
Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ~3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4k=4Å-1. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.
The CO Transition from Diffuse Molecular Gas to Dense Clouds
Rice, Johnathan S.; Federman, Steven
2017-06-01
The atomic to molecular transitions occurring in diffuse interstellar gas surrounding molecular clouds are affected by the local physical conditions (density and temperature) and the radiation field penetrating the material. Our optical observations of CH, CH^{+}, and CN absorption from McDonald Observatory and the European Southern Observatory are useful tracers of this gas and provide the velocity structure needed for analyzing lower resolution ultraviolet observations of CO and H_{2} absorption from Far Ultraviolet Spectroscopic Explorer. We explore the changing environment between diffuse and dense gas by using the column densities and excitation temperatures from CO and H_{2} to determine the gas density. The resulting gas densities from this method are compared to densities inferred from other methods such as C_{2} and CN chemistry. The densities allow us to interpret the trends from the combined set of tracers. Groupings of sight lines, such as those toward h and χ Persei or Chameleon provide a chance for further characterization of the environment. The Chameleon region in particular helps illuminate CO-dark gas, which is not associated with emission from H I at 21 cm or from CO at 2.6 mm. Expanding this analysis to include emission data from the GOT C+ survey allows the further characterization of neutral diffuse gas, including CO-dark gas.
Nuclei in neutrino-degenerate dense matter, 1
International Nuclear Information System (INIS)
Ogasawara, Ryusuke; Sato, Katsuhiko
1982-01-01
The properties of nuclei in cold dense matter with strongly degenerate neutrinos are investigated with the aid of an extended Thomas-Fermi model of nuclei. The following results are obtained. 1) The proton number of nucleus increases with the increasing density of the matter and it becomes very huge compared with that of the cold catalyzed matter due to the decrease of the Coulomb energy caused by the effect of the lattice-Coulomb energy. 2) The matter densities at the neutron-drip points, where the chemical potentials of neutrons equal zero are obtained as a function of the number of leptons per nucleon Y sub(L), and it is found that nuclei coalesce before neutron drip when Y sub(L) is greater than about 0.4 for the case b.c.c. lattice. 3) Along the neutron-drip points, an infinite network of linked nuclei may be formed at the matter density rho sub(P) asymptotically equals 9 x 10 13 g cm - 3 , and the bubble-phase appears at the matter density rho sub(B) asymptotically equals 1.1 x 10 14 g cm - 3 . When the matter density becomes higher than rho sub(H) asymptotically equals 1.7 x 10 14 g cm - 3 , the bubbles melt into a homogeneous matter. (author)
Sonoluminescence test for equation of state in warm dense matter
International Nuclear Information System (INIS)
Ng, Siu-Fai; Barnard, J.J.; Leung, P.T.; Yu, S.S.
2008-01-01
In experiments of Single-bubble Sonoluminescence (SBSL), the bubble is heated to temperatures of a few eV in the collapse phase of the oscillation. Our hydrodynamic simulations show that the density inside the bubble can go up to the order of 1 g/cm3, and the electron density due to ionization is 1021; cm3. So the plasma coupling constant is found to be around 1 and the gas inside the bubble is in the Warm Dense Matter (WDM) regime. We simulate the light emission of SL with an optical model for thermal radiation which takes the finite opacity of the bubble into consideration. The numerical results obtained are compared to the experimental data and found to be very sensitive to the equation of state used. As theories for the equation of state, as well as the opacity data, in the WDM regime are still very uncertain, we propose that SL may be a good low-cost experimental check for the EOS and the opacity data for matter in the WDM regime
Study of microwave emission from a dense plasma focus
International Nuclear Information System (INIS)
Gerdin, G.; Venneri, F.; Tanisi, M.
1985-01-01
Microwave emission was detected in a 12.5 kJ dense plasma focus, using microwave horns and detectors placed in various locations outside the device. The results show that the parallel plates connecting the focus to its capacitor banks act as antennas and transmission lines, rather than wave guides. Subsequent measurements were performed with a microwave detector (R-band) attached to the focus anode, directly looking into the coaxial gun region, allowing to restrict the microwave emitting region to the muzzle end of the focus. The microwave frequency spectrum, determined with a time of flight detection system, strongly suggests the lower hybrid instability as the driving mechanism of the emissions. Comparing the time sequence of the emissions with those of other observable phenomena in the focus, a model was developed, to explain the possible relationship between the generation of microwave radiation and turbulence induced resistivity in the focus pinch. According to the model, microwaves and enhanced resistivity are caused by current driven instabilities occurring in the current sheath produced at the outer boundary of the pinch during the initial compression phase. Comparisons of the model predictions with observed experimental results are presented, including time resolved measurements of the pinch resistivity
Assembly of optical-scale dumbbells into dense photonic crystals.
Forster, Jason D; Park, Jin-Gyu; Mittal, Manish; Noh, Heeso; Schreck, Carl F; O'Hern, Corey S; Cao, Hui; Furst, Eric M; Dufresne, Eric R
2011-08-23
We describe the self-assembly of nonspherical particles into crystals with novel structure and optical properties combining a partial photonic band gap with birefringence that can be modulated by an external field or quenched by solvent evaporation. Specifically, we study symmetric optical-scale polymer dumbbells with an aspect ratio of 1.58. Hard particles with this geometry have been predicted to crystallize in equilibrium at high concentrations. However, unlike spherical particles, which readily crystallize in the bulk, previous experiments have shown that these dumbbells crystallize only under strong confinement. Here, we demonstrate the use of an external electric field to align and assemble the dumbbells to make a birefringent suspension with structural color. When the electric field is turned off, the dumbbells rapidly lose their orientational order and the color and birefringence quickly go away. In this way, dumbbells combine the structural color of photonic crystals with the field addressability of liquid crystals. In addition, we find that if the solvent is removed in the presence of an electric field, the particles self-assemble into a novel, dense crystalline packing hundreds of particles thick. Analysis of the crystal structure indicates that the dumbbells have a packing fraction of 0.7862, higher than the densest known packings of spheres and ellipsoids. We perform numerical experiments to more generally demonstrate the importance of controlling the orientation of anisotropic particles during a concentration quench to achieve long-range order. © 2011 American Chemical Society
Implementing a New Dense Symmetric Eigensolver on Multicore Systems
Sukkari, Dalal E.
2013-07-01
We present original advanced architecture implementations of the QDWHeig algo- rithm for solving dense symmetric eigenproblems. The algorithm (Y. Nakatsukasa and N. J. Higham, 2012) performs a spectral divide-and-conquer, which recursively divides the matrix into smaller submatrices by finding an invariant subspace for a subset of the spectrum. The main contribution of this thesis is to enhance the per- formance of QDWHeig algorithm by relying on a high performance kernels from PLASMA [1] and LAPACK [2]. We demonstrate the quality of the eigenpairs that are computed with the QDWHeig algorithm for many matrix types with different eigenvalue clustering. We then implement QDWHeig using kernels from LAPACK and PLASMA, and compare its performance against other divide-and-conquer sym- metric eigensolvers. The main part of QDWHeig is finding a polar decomposition. We introduce mixed precision to enhance the performance in finding the polar decom- position. Our evaluation considers speed and accuracy of the computed eigenvalues. Some applications require finding only a subspectrum of the eigenvalues; therefore we modify the algorithm to find the eigenpairs in a given interval of interest. An ex- perimental study shows significant improvement on the performance of our algorithm using mixed precision and PLASMA routines.
Survival of human lymphocytes after exposure to densely ionizing radiations
International Nuclear Information System (INIS)
Madhvanath, U.; Raju, M.R.; Kelly, L.S.
1976-01-01
Interphase death of human blood lymphocytes cultured in vitro was studied after exposure to 60 Co gamma rays and to accelerated ions of 1 H, 4 He, 7 Li, 11 B, 12 C, 20 Ne, 40 Ar, and π - meson beam under aerobic conditions. Exposures were also conducted under hypoxic conditions with 60 Co gamma rays, 4 He, 7 Li, and 12 C ion beams. Time course of interphase death was followed for 6 days after irradiation. Percent survivals were determined by using the trypan blue exclusion method. Survival curves at 5 days postirradiation were exponential for all radiations studied. These observations indicate that the production of interphase death of lymphocytes by densely ionizing radiations follows a pattern similar to that observed with colony-forming mammalian cells. However, the reproductive capacity of the latter cells is impaired with maximum effectiveness at energy densities associated with 220 keV/μm for the beam conditions used in this investigation. The much lower energy densities required to kill a lymphocyte suggest that a sensitive structure other than DNA may be responsible for the production of lymphocyte death, perhaps the membranes. The calculated inactivation cross sections for high-LET radiations above 650 keV/μm yielded values larger than the actual cell dimensions. It appears that contributions from delta rays become appreciable in this system at these LET's
Measuring the temperature history of isochorically heated warm dense metals
McGuffey, Chris; Kim, J.; Park, J.; Moody, J.; Emig, J.; Heeter, B.; Dozieres, M.; Beg, Fn; McLean, Hs
2017-10-01
A pump-probe platform has been designed for soft X-ray absorption spectroscopy near edge structure measurements in isochorically heated Al or Cu samples with temperature of 10s to 100s of eV. The method is compatible with dual picosecond-class laser systems and may be used to measure the temperature of the sample heated directly by the pump laser or by a laser-driven proton beam Knowledge of the temperature history of warm dense samples will aid equation of state measurements. First, various low- to mid-Z targets were evaluated for their suitability as continuum X-ray backlighters over the range 200-1800 eV using a 10 J picosecond-class laser with relativistic peak intensity Alloys were found to be more suitable than single-element backlighters. Second, the heated sample package was designed with consideration of target thickness and tamp layers using atomic physics codes. The results of the first demonstration attempts will be presented. This work was supported by the U.S. DOE under Contract No. DE-SC0014600.
Modeling of dilute and dense dispersed fluid-particle flow
Energy Technology Data Exchange (ETDEWEB)
Laux, Harald
1998-08-01
A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a
Do protein crystals nucleate within dense liquid clusters?
Maes, Dominique; Vorontsova, Maria A; Potenza, Marco A C; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G
2015-07-01
Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10(-3) of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in lysozyme and glucose isomerase solutions are locations for crystal nucleation.
Wave packet molecular dynamics simulations of warm dense hydrogen
Knaup, M; Toepffer, C; Zwicknagel, G
2003-01-01
Recent shock-wave experiments with deuterium in a regime where a plasma phase-transition has been predicted and their theoretical interpretation are the matter of a controversial discussion. In this paper, we apply 'wave packet molecular dynamics' (WPMD) simulations to investigate warm dense hydrogen. The WPMD method was originally used by Heller for a description of the scattering of composite particles such as simple atoms and molecules; later it was applied to Coulomb systems by Klakow et al. In the present version of our model the protons are treated as classical point-particles, whereas the electrons are represented by a completely anti-symmetrized Slater sum of periodic Gaussian wave packets. We present recent results for the equation of state of hydrogen at constant temperature T = 300 K and of deuterium at constant Hugoniot E - E sub 0 + 1/2(1/n - 1/n sub 0)(p + p sub 0) = 0, and compare them with the experiments and several theoretical approaches.