WorldWideScience

Sample records for solutions network formulation

  1. An MPCC Formulation and Its Smooth Solution Algorithm for Continuous Network Design Problem

    Directory of Open Access Journals (Sweden)

    Guangmin Wang

    2017-12-01

    Full Text Available Continuous network design problem (CNDP is searching for a transportation network configuration to minimize the sum of the total system travel time and the investment cost of link capacity expansions by considering that the travellers follow a traditional Wardrop user equilibrium (UE to choose their routes. In this paper, the CNDP model can be formulated as mathematical programs with complementarity constraints (MPCC by describing UE as a non-linear complementarity problem (NCP. To address the difficulty resulting from complementarity constraints in MPCC, they are substituted by the Fischer-Burmeister (FB function, which can be smoothed by the introduction of the smoothing parameter. Therefore, the MPCC can be transformed into a well-behaved non-linear program (NLP by replacing the complementarity constraints with a smooth equation. Consequently, the solver such as LINDOGLOBAL in GAMS can be used to solve the smooth approximate NLP to obtain the solution to MPCC for modelling CNDP. The numerical experiments on the example from the literature demonstrate that the proposed algorithm is feasible.

  2. Systematic network synthesis and design: Problem formulation, superstructure generation, data management and solution

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Gargalo, Carina L.; Chairakwongsa, Siwanat

    2015-01-01

    when large problems are considered. In an earlier work, we proposed a computer-aided framework for synthesis and design of process networks. In this contribution, we expand the framework by including methods and tools developed to structure, automate and simplify the mathematical formulation......The developments obtained in recent years in the field of mathematical programming considerably reduced the computational time and resources needed to solve large and complex Mixed Integer Non Linear Programming (MINLP) problems. Nevertheless, the application of these methods in industrial practice...... is still limited by the complexity associated with the mathematical formulation of some problems. In particular, the tasks of design space definition and representation as superstructure, as well as the data collection, validation and handling may become too complex and cumbersome to execute, especially...

  3. Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zamzam, Admed S. [University of Minnesota; Sidiropoulos, Nicholas D. [University of Minnesota; Taylor, Josh A. [University of Toronto

    2018-01-12

    This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successive convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.

  4. A hybrid solution approach for a multi-objective closed-loop logistics network under uncertainty

    Science.gov (United States)

    Mehrbod, Mehrdad; Tu, Nan; Miao, Lixin

    2015-06-01

    The design of closed-loop logistics (forward and reverse logistics) has attracted growing attention with the stringent pressures of customer expectations, environmental concerns and economic factors. This paper considers a multi-product, multi-period and multi-objective closed-loop logistics network model with regard to facility expansion as a facility location-allocation problem, which more closely approximates real-world conditions. A multi-objective mixed integer nonlinear programming formulation is linearized by defining new variables and adding new constraints to the model. By considering the aforementioned model under uncertainty, this paper develops a hybrid solution approach by combining an interactive fuzzy goal programming approach and robust counterpart optimization based on three well-known robust counterpart optimization formulations. Finally, this paper compares the results of the three formulations using different test scenarios and parameter-sensitive analysis in terms of the quality of the final solution, CPU time, the level of conservatism, the degree of closeness to the ideal solution, the degree of balance involved in developing a compromise solution, and satisfaction degree.

  5. Initial value formulation for the spherically symmetric dust solution

    International Nuclear Information System (INIS)

    Liu, H.

    1990-01-01

    An initial value formulation for the dust solution with spherical symmetry is given explicitly in which the initial distributions of dust and its velocity on an initial surface are chosen to be the initial data. As special cases, the Friedmann universe, the Schwarzschild solution in comoving coordinates, and a spherically symmetric and radially inhomogeneous cosmological model are derived

  6. Cleaning UF membranes with simple and formulated solutions

    NARCIS (Netherlands)

    Levitsky, I.; Duek, A.; Naim, R.; Arkhangelsky, E.; Gitis, V.

    2012-01-01

    The ultrafiltration membranes fouled by proteins are typically cleaned by consecutive soaking in alkali, surfactant and oxidizing solutions. We combined all three chemicals into a formulated cleaning agent and examined its efficiency to restore the water flux without damaging the membrane or

  7. The existence and global attractivity of almost periodic sequence solution of discrete-time neural networks

    International Nuclear Information System (INIS)

    Huang Zhenkun; Wang Xinghua; Gao Feng

    2006-01-01

    In this Letter, we discuss discrete-time analogue of a continuous-time cellular neural network. Sufficient conditions are obtained for the existence of a unique almost periodic sequence solution which is globally attractive. Our results demonstrate dynamics of the formulated discrete-time analogue as mathematical models for the continuous-time cellular neural network in almost periodic case. Finally, a computer simulation illustrates the suitability of our discrete-time analogue as numerical algorithms in simulating the continuous-time cellular neural network conveniently

  8. Formulation and Development of Metered Dose Inhalations of Salbutamol in Solution Form

    Science.gov (United States)

    Khale, Anubha; Bajaj, Amrita

    2011-01-01

    In the present study attempts were made to prepare metered dose inhalation of salbutamol in solution form and compared it with the marketed metered dose inhalation in suspension form. Solution form of the drug was found better than marketed suspension formulation with respect to homogeneity and content uniformity. Propellant blend P-11 and P-12 in the proportion 30:70 was selected as it gave optimum vapour pressure. Surfactant oleic acid in concentration 10 mg per can was selected as it gave best results with clarity, spray pattern, vapour pressure, content per spray and rate of evaporation. Ethyl alcohol 2 ml per can was used as a cosolvent to give a clear solution, optimum vapour pressure, maximum content per spray and fair rate of evaporation. The selected formulation was subjected to the physico-chemical evaluation tests as per the standard pharmacopoeial procedures and the characteristics of the formulations were further compared with a conventional marketed formulation. In vitro study reveled the net respirable fraction was better than marketed preparation. PMID:22923867

  9. The Stratonovich formulation of quantum feedback network rules

    Science.gov (United States)

    Gough, John E.

    2016-12-01

    We express the rules for forming quantum feedback networks using the Stratonovich form of quantum stochastic calculus rather than the Itō or SLH (J. E. Gough and M. R. James, "Quantum feedback networks: Hamiltonian formulation," Commun. Math. Phys. 287, 1109 (2009), J. E. Gough and M. R. James, "The Series product and its application to quantum feedforward and feedback networks," IEEE Trans. Autom. Control 54, 2530 (2009)) form. Remarkably the feedback reduction rule implies that we obtain the Schur complement of the matrix of Stratonovich coupling operators where we short out the internal input/output coefficients.

  10. Non-Perturbative Formulation of Time-Dependent String Solutions

    CERN Document Server

    Alexandre, J; Mavromatos, Nikolaos E; Alexandre, Jean; Ellis, John; Mavromatos, Nikolaos E.

    2006-01-01

    We formulate here a new world-sheet renormalization-group technique for the bosonic string, which is non-perturbative in the Regge slope alpha' and based on a functional method for controlling the quantum fluctuations, whose magnitudes are scaled by the value of alpha'. Using this technique we exhibit, in addition to the well-known linear-dilaton cosmology, a new, non-perturbative time-dependent background solution. Using the reparametrization invariance of the string S-matrix, we demonstrate that this solution is conformally invariant to alpha', and we give a heuristic inductive argument that conformal invariance can be maintained to all orders in alpha'. This new time-dependent string solution may be applicable to primordial cosmology or to the exit from linear-dilaton cosmology at large times.

  11. End-Member Formulation of Solid Solutions and Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lichtner, Peter C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed to correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.

  12. 21 CFR 864.2875 - Balanced salt solutions or formulations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Balanced salt solutions or formulations. 864.2875 Section 864.2875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2875...

  13. Optimal resource allocation solutions for heterogeneous cognitive radio networks

    Directory of Open Access Journals (Sweden)

    Babatunde Awoyemi

    2017-05-01

    Full Text Available Cognitive radio networks (CRN are currently gaining immense recognition as the most-likely next-generation wireless communication paradigm, because of their enticing promise of mitigating the spectrum scarcity and/or underutilisation challenge. Indisputably, for this promise to ever materialise, CRN must of necessity devise appropriate mechanisms to judiciously allocate their rather scarce or limited resources (spectrum and others among their numerous users. ‘Resource allocation (RA in CRN', which essentially describes mechanisms that can effectively and optimally carry out such allocation, so as to achieve the utmost for the network, has therefore recently become an important research focus. However, in most research works on RA in CRN, a highly significant factor that describes a more realistic and practical consideration of CRN has been ignored (or only partially explored, i.e., the aspect of the heterogeneity of CRN. To address this important aspect, in this paper, RA models that incorporate the most essential concepts of heterogeneity, as applicable to CRN, are developed and the imports of such inclusion in the overall networking are investigated. Furthermore, to fully explore the relevance and implications of the various heterogeneous classifications to the RA formulations, weights are attached to the different classes and their effects on the network performance are studied. In solving the developed complex RA problems for heterogeneous CRN, a solution approach that examines and exploits the structure of the problem in achieving a less-complex reformulation, is extensively employed. This approach, as the results presented show, makes it possible to obtain optimal solutions to the rather difficult RA problems of heterogeneous CRN.

  14. Relative bioavailability of diclofenac potassium from softgel capsule versus powder for oral solution and immediate-release tablet formulation.

    Science.gov (United States)

    Bende, Girish; Biswal, Shibadas; Bhad, Prafulla; Chen, Yuming; Salunke, Atish; Winter, Serge; Wagner, Robert; Sunkara, Gangadhar

    2016-01-01

    The oral bioavailability of diclofenac potassium 50 mg administered as a soft gelatin capsule (softgel capsule), powder for oral solution (oral solution), and tablet was evaluated in a randomized, open-label, 3-period, 6-sequence crossover study in healthy adults. Plasma diclofenac concentrations were measured using a validated liquid chromatography-mass spectrometry/mass spectrometry method, and pharmacokinetic analysis was performed by noncompartmental methods. The median time to achieve peak plasma concentrations of diclofenac was 0.5, 0.25, and 0.75 hours with the softgel capsule, oral solution, and tablet formulations, respectively. The geometric mean ratio and associated 90%CI for AUCinf, and Cmax of the softgel capsule formulation relative to the oral solution formulation were 0.97 (0.95-1.00) and 0.85 (0.76-0.95), respectively. The geometric mean ratio and associated 90%CI for AUCinf and Cmax of the softgel capsule formulation relative to the tablet formulation were 1.04 (1.00-1.08) and 1.67 (1.43-1.96), respectively. In conclusion, the exposure (AUC) of diclofenac with the new diclofenac potassium softgel capsule formulation was comparable to that of the existing oral solution and tablet formulations. The peak plasma concentration of diclofenac from the new softgel capsule was 67% higher than the existing tablet formulation, whereas it was 15% lower in comparison with the oral solution formulation. © 2015, The American College of Clinical Pharmacology.

  15. PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin.

    Science.gov (United States)

    Ryan, Gemma M; Kaminskas, Lisa M; Bulitta, Jürgen B; McIntosh, Michelle P; Owen, David J; Porter, Christopher J H

    2013-11-28

    Improved delivery of chemotherapeutic drugs to the lymphatic system has the potential to augment outcomes for cancer therapy by enhancing activity against lymph node metastases. Uptake of small molecule chemotherapeutics into the lymphatic system, however, is limited. Nano-sized drug carriers have the potential to promote access to the lymphatics, but to this point, this has not been examined in detail. The current study therefore evaluated the lymphatic exposure of doxorubicin after subcutaneous and intravenous administration as a simple solution formulation or when formulated as a doxorubicin loaded PEGylated poly-lysine dendrimer (hydrodynamic diameter 12 nm), a PEGylated liposome (100 nm) and various pluronic micellar formulations (~5 nm) to thoracic lymph duct cannulated rats. Plasma and lymph pharmacokinetics were analysed by compartmental pharmacokinetic modelling in S-ADAPT, and Berkeley Madonna software was used to predict the lymphatic exposure of doxorubicin over an extended period of time. The micelle formulations displayed poor in vivo stability, resulting in doxorubicin profiles that were similar to that observed after administration of the doxorubicin solution formulation. In contrast, the dendrimer formulation significantly increased the recovery of doxorubicin in the thoracic lymph after both intravenous and subcutaneous dosing when compared to the solution or micellar formulation. Dendrimer-doxorubicin also resulted in increases in lymphatic doxorubicin concentrations when compared to the liposome formulation, although liposomal doxorubicin did increase lymphatic transport when compared to the solution formulation. Specifically, the dendrimer formulation increased the recovery of doxorubicin in the lymph up to 30 h post dose by up to 685 fold and 3.7 fold when compared to the solution and liposomal formulations respectively. Using the compartmental model to predict lymphatic exposure to longer time periods suggested that doxorubicin exposure to

  16. Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    Liu Jinn-Liang

    2017-10-01

    Full Text Available We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation effects important in a variety of chemical and biological systems, especially in high field or large concentration conditions found in and near binding sites, ion channels, and electrodes. Steric effects and correlations are apparent when we compare nonlocal Poisson-Fermi results to Poisson-Boltzmann calculations in electric double layer and to experimental measurements on the selectivity of potassium channels for K+ over Na+.

  17. Neural networks to formulate special fats

    Directory of Open Access Journals (Sweden)

    Garcia, R. K.

    2012-09-01

    Full Text Available Neural networks are a branch of artificial intelligence based on the structure and development of biological systems, having as its main characteristic the ability to learn and generalize knowledge. They are used for solving complex problems for which traditional computing systems have a low efficiency. To date, applications have been proposed for different sectors and activities. In the area of fats and oils, the use of neural networks has focused mainly on two issues: the detection of adulteration and the development of fatty products. The formulation of fats for specific uses is the classic case of a complex problem where an expert or group of experts defines the proportions of each base, which, when mixed, provide the specifications for the desired product. Some conventional computer systems are currently available to assist the experts; however, these systems have some shortcomings. This article describes in detail a system for formulating fatty products, shortenings or special fats, from three or more components by using neural networks (MIX. All stages of development, including design, construction, training, evaluation, and operation of the network will be outlined.

    Las redes neuronales son una rama de la inteligencia artificial basadas en la estructura y funcionamiento de sistemas biológicos, teniendo como principal característica la capacidad de aprender y generalizar conocimiento. Estas son utilizadas en la resolución de problemas complejos, en los cuales los sistemas computacionales tradicionales presentan una eficiencia baja. Hasta la fecha, han sido propuestas aplicaciones para los más diversos sectores y actividades. En el área de grasas y aceites, la utilización de redes neuronales se ha concentrado principalmente en dos asuntos: la detección de adulteraciones y la formulación de productos grasos. La formulación de grasas para uso específico es el caso clásico de problema complejo donde un experto o grupo de

  18. SOME UNUSUAL SOLUTIONS FOR EUROPEAN NETWORKS

    Directory of Open Access Journals (Sweden)

    Vernescu V

    2012-03-01

    Full Text Available Authors present several non-conventional solutions unused in Europe which are, however, frequently adopted in some medium (M and low (L voltages (V networks from North-American and Australian countries, especially in low density areas of consumption in rural and urban distribution. The proposed solutions may assure diversified supply possibilities in our middle and South–Eastern regions, as regards modernizing and upgrading the distribution networks. The solutions try to propose to adapt our European practice to the North-American experience, aiming at developing more flexible, cheaper and safer supply of the consumers, both at MV and at LV networks. Several original solutions promoted in Romanian networks and their peculiarities are also described. The paper presents distribution schemes at medium voltage in connection with low voltage supply in different condition of neutral treatment at MV or LV. It also shows the measures to be adopted in order to diminish the investment expenses in low voltage at the supplied consumers. The technical condition of co-existence of OHEL at MV and LV on the same poles, without jeopardizing the LV equipment, is necessary. Among the solutions proposed, the authors also describe the unconventional one, consisting in the supply of isolated monophase consumer at MV by ground return and also the conditions necessary for sure and safe operation of this particularly connection. Finally, there are shown some conclusions about the necessity to assure imposed environmental conditions.

  19. A Network Traffic Control Enhancement Approach over Bluetooth Networks

    DEFF Research Database (Denmark)

    Son, L.T.; Schiøler, Henrik; Madsen, Ole Brun

    2003-01-01

    This paper analyzes network traffic control issues in Bluetooth data networks as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. An adaptive distributed network traffic control scheme is proposed as an approximated solu...... as capacity limitations and flow requirements in the network. Simulation shows that the performance of Bluetooth networks could be improved by applying the adaptive distributed network traffic control scheme...... solution of the stated optimization problem that satisfies quality of service requirements and topologically induced constraints in Bluetooth networks, such as link capacity and node resource limitations. The proposed scheme is decentralized and complies with frequent changes of topology as well......This paper analyzes network traffic control issues in Bluetooth data networks as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. An adaptive distributed network traffic control scheme is proposed as an approximated...

  20. Formulation and stability of an extemporaneous 0.02% chlorhexidine digluconate ophthalmic solution.

    Science.gov (United States)

    Lin, Shu-Chiao; Huang, Chih-Fen; Shen, Li-Jiuan; Wang, Hsueh-Ju; Lin, Chia-Yu; Wu, Fe-Lin Lin

    2015-12-01

    Acanthamoeba keratitis is difficult to treat because Acanthamoeba cysts are resistant to the majority of antimicrobial agents. Despite the efficacy of 0.02% chlorhexidine in treating Acanthamoeba keratitis, a lack of data in the literature regarding the formulation's stability limits its clinical use. The objective of this study was to develop an optimal extemporaneous 0.02% chlorhexidine digluconate ophthalmic formulation for patients in need. With available active pharmaceutical ingredients, 0.02% chlorhexidine digluconate sample solutions were prepared by diluting with BSS Plus Solution or acetate buffer. Influences of the buffer, type of container, and temperature under daily-open condition were assessed based on the changes of pH values and chlorhexidine concentrations of the test samples weekly. To determine the beyond-use date, the optimal samples were stored at 2-8°C or room temperature, and analyzed at time 0 and at Week 1, Week 2, Week 3, Week 4, Week 5, Week 8, Week 12, and Week 24. Despite chlorhexidine exhibiting better stability in acetate buffer than in BSS solution, its shelf-life was stability at 2-25°C for 6 months after being sealed and for 1 month after opening. This finding will enable us to prepare 0.02% chlorhexidine digluconate ophthalmic solutions based on a doctor's prescription. Copyright © 2014. Published by Elsevier B.V.

  1. Optical solutions for unbundled access network

    Science.gov (United States)

    Bacîş Vasile, Irina Bristena

    2015-02-01

    The unbundling technique requires finding solutions to guarantee the economic and technical performances imposed by the nature of the services that can be offered. One of the possible solutions is the optic one; choosing this solution is justified for the following reasons: it optimizes the use of the access network, which is the most expensive part of a network (about 50% of the total investment in telecommunications networks) while also being the least used (telephone traffic on the lines has a low cost); it increases the distance between the master station/central and the terminal of the subscriber; the development of the services offered to the subscribers is conditioned by the subscriber network. For broadband services there is a need for support for the introduction of high-speed transport. A proper identification of the factors that must be satisfied and a comprehensive financial evaluation of all resources involved, both the resources that are in the process of being bought as well as extensions are the main conditions that would lead to a correct choice. As there is no single optimal technology for all development scenarios, which can take into account all access systems, a successful implementation is always done by individual/particularized scenarios. The method used today for the selection of an optimal solution is based on statistics and analysis of the various, already implemented, solutions, and on the experience that was already gained; the main evaluation criterion and the most unbiased one is the ratio between the cost of the investment and the quality of service, while serving an as large as possible number of customers.

  2. On matrix diffusion: formulations, solution methods and qualitative effects

    Science.gov (United States)

    Carrera, Jesús; Sánchez-Vila, Xavier; Benet, Inmaculada; Medina, Agustín; Galarza, Germán; Guimerà, Jordi

    Matrix diffusion has become widely recognized as an important transport mechanism. Unfortunately, accounting for matrix diffusion complicates solute-transport simulations. This problem has led to simplified formulations, partly motivated by the solution method. As a result, some confusion has been generated about how to properly pose the problem. One of the objectives of this work is to find some unity among existing formulations and solution methods. In doing so, some asymptotic properties of matrix diffusion are derived. Specifically, early-time behavior (short tests) depends only on φm2RmDm / Lm2, whereas late-time behavior (long tracer tests) depends only on φmRm, and not on matrix diffusion coefficient or block size and shape. The latter is always true for mean arrival time. These properties help in: (a) analyzing the qualitative behavior of matrix diffusion; (b) explaining one paradox of solute transport through fractured rocks (the apparent dependence of porosity on travel time); (c) discriminating between matrix diffusion and other problems (such as kinetic sorption or heterogeneity); and (d) describing identifiability problems and ways to overcome them. RésuméLa diffusion matricielle est un phénomène reconnu maintenant comme un mécanisme de transport important. Malheureusement, la prise en compte de la diffusion matricielle complique la simulation du transport de soluté. Ce problème a conduit à des formulations simplifiées, en partie à cause de la méthode de résolution. Il s'en est suivi une certaine confusion sur la façon de poser correctement le problème. L'un des objectifs de ce travail est de trouver une certaine unité parmi les formulations et les méthodes de résolution. C'est ainsi que certaines propriétés asymptotiques de la diffusion matricielle ont été dérivées. En particulier, le comportement à l'origine (expériences de traçage courtes) dépend uniquement du terme φm2RmDm / Lm2, alors que le comportement à long terme

  3. Balancing emergency message dissemination and network lifetime in wireless body area network using ant colony optimization and Bayesian game formulation

    Directory of Open Access Journals (Sweden)

    R. Latha

    Full Text Available Nowadays, Wireless Body Area Network (WBAN is emerging very fast and so many new methods and algorithms are coming up for finding the optimal path for disseminating emergency messages. Ant Colony Optimization (ACO is one of the cultural algorithms for solving many hard problems such as Travelling Salesman Problem (TSP. ACO is a natural behaviour of ants, which work stochastically with the help of pheromone trails deposited in the shortest route to find their food. This optimization procedure involves adapting, positive feedback and inherent parallelism. Each ant will deposit certain amount of pheromone in the tour construction it makes searching for food. This type of communication is known as stigmetric communication. In addition, if a dense WBAN environment prevails, such as hospital, i.e. in the environment of overlapping WBAN, game formulation was introduced for analyzing the mixed strategy behaviour of WBAN. In this paper, the ant colony optimization approach to the travelling salesman problem was applied to the WBAN to determine the shortest route for sending emergency message to the doctor via sensor nodes; and also a static Bayesian game formulation with mixed strategy was analysed to enhance the network lifetime. Whenever the patient needs any critical care or any other medical issue arises, emergency messages will be created by the WBAN and sent to the doctor's destination. All the modes of communication were realized in a simulation environment using OMNet++. The authors investigated a balanced model of emergency message dissemination and network lifetime in WBAN using ACO and Bayesian game formulation. Keywords: Wireless body area network, Ant colony optimization, Bayesian game model, Sensor network, Message latency, Network lifetime

  4. A New Optimization Strategy to Improve Design of Hydrogen Network Based Formulation of Hydrogen Consumers

    Directory of Open Access Journals (Sweden)

    M. R. S. Birjandi

    2018-03-01

    Full Text Available This paper describes a shortcut model for formulating hydrogen consumers in hydrogen network based on inlet/outlet flow rate and inlet/outlet hydrogen purity. The formulation procedure is obtained using nonlinear regression of industrial data and represents the relationship between the flow rate and purity of outlet and inlet streams. The proposed model can estimate outlet flow rate and purity of hydrogen by changing inlet flow rate and purity of hydrogen. The shortcut model is used to achieve optimal operation of consumers and it optimizes hydrogen network design.

  5. Gel network shampoo formulation and hair health benefits.

    Science.gov (United States)

    Marsh, J M; Brown, M A; Felts, T J; Hutton, H D; Vatter, M L; Whitaker, S; Wireko, F C; Styczynski, P B; Li, C; Henry, I D

    2017-10-01

    The objective of this work was to create a shampoo formula that contains a stable ordered gel network structure that delivers fatty alcohols inside hair. X-ray diffraction (SAXS and WAXS), SEM and DSC have been used to confirm formation of the ordered Lβ gel network with fatty alcohol (cetyl and stearyl alcohols) and an anionic surfactant (SLE1S). Micro-autoradiography and extraction methods using GC-MS were used to confirm penetration of fatty alcohols into hair, and cyclic fatigue testing was used to measure hair strength. In this work, evidence of a stable Lβ ordered gel network structure created from cetyl and stearyl alcohols and anionic surfactant (SLE1S) is presented, and this is confirmed via scanning electron microscopy images showing lamella layers and differential scanning calorimetry (DSC) showing new melting peaks vs the starting fatty alcohols. Hair washed for 16 repeat cycles with this shampoo showed penetration of fatty alcohols from the gel network into hair as confirmed by a differential extraction method with GC-MS and by radiolabelling of stearyl alcohol and showing its presence inside hair cross-sections. The gel network role in delivering fatty alcohol inside hair is demonstrated by comparing with a shampoo with added fatty alcohol not in an ordered gel network structure. The hair containing fatty alcohol was measured via the Dia-stron cyclic fatigue instrument and showed a significantly higher number of cycles to break vs control. The formation of a stable gel network was confirmed in the formulated shampoo, and it was demonstrated that this gel network is important to deliver cetyl and stearyl alcohols into hair. The presence of fatty alcohol inside hair was shown to deliver a hair strength benefit via cyclic fatigue testing. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  6. New networking solutions support GEANT2

    CERN Multimedia

    2006-01-01

    "Researchers across the globe are benefiting from new advanced networking solutions, deployed as part of the GEANT2. For the first time, scientists collaborating on the world's largest particle physics experiment, the Large Hadron Collider (LHC), now have access to point-to-point network connections between distributed research centres." (1 page)

  7. Solutions to operate transmission and distribution gas networks

    Directory of Open Access Journals (Sweden)

    Neacsu Sorin

    2017-01-01

    Full Text Available In order to respect the actual and future regulations, besides SCADA, there is a need for further modern operating solutions for the transmission and distribution gas network. The paper presents the newest operating principles and modern software solutions that represent a considerable help to operate the transmission and distribution gas networks.

  8. Synthesis of Industrial Water Networks

    DEFF Research Database (Denmark)

    Pennati, A.; Quaglia, Alberto; Gani, Rafiqul

    of the water networks proposed comprise few contaminants and do not consider critical parameters for wastewater treatment equipment, such as limiting inlet concentrations, flow rates, and other specific design constraints. Thus, these networks are arguably not fit to manage the complexity of a real industrial...... case (in terms of number of contaminants, number of processing options, design constraints etc.). In this work, a systematic framework for the formulation and solution of water networks problems is proposed, based on the modification of an earlier work [3]. The optimization problem is formulated...

  9. Formulation and applications of complex network theory

    Science.gov (United States)

    Park, Juyong

    In recent years, there has been a great surge of interest among physicists in modeling social, technological, or biological systems as networks. Analyses of large-scale networks such as the Internet have led to discoveries of many unexpected network properties, including power-law degree distributions. These discoveries have prompted physicists to devise novel ways to model networks, both computational and theoretical. In this dissertation, we present several network models and their applications. First, we study the theory of Exponential Random Graphs. We derive it from the principle of maximum entropy, thereby showing that it is the equivalent of the Gibbs ensemble for networks. Using tools of statistical physics, we solve well-known and new examples that include power-law networks and the two-star model. Our solutions confirm the existence of a first-order phase transition for the latter whose exact behavior has not been presented previously. We also study degree correlations and clustering in networks. Degrees of adjacent vertices are positively correlated in social networks, whereas they are negatively correlated in other types of networks. We demonstrate that a negative degree correlation is a more natural state of a network, and therefore that social networks are an exception. We argue that variations in the number of vertices in social groups cause positive degree correlations, and analyze a model that incorporates such a mechanism. The model indeed shows a high level of degree correlation and clustering that is similar in value to those of real networks. Finally, we develop algorithms for ranking vertices in networks that represent pairwise comparisons. The first algorithm is based on the familiar concept of indirect wins and losses. The second algorithm is based on the concept of retrodictive accuracy, which is maximized by positioning as many winners above the losers as possible. We compare the rankings of American college football teams generated by our

  10. A Framework to Implement IoT Network Performance Modelling Techniques for Network Solution Selection.

    Science.gov (United States)

    Delaney, Declan T; O'Hare, Gregory M P

    2016-12-01

    No single network solution for Internet of Things (IoT) networks can provide the required level of Quality of Service (QoS) for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks.

  11. A Framework to Implement IoT Network Performance Modelling Techniques for Network Solution Selection

    Directory of Open Access Journals (Sweden)

    Declan T. Delaney

    2016-12-01

    Full Text Available No single network solution for Internet of Things (IoT networks can provide the required level of Quality of Service (QoS for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks.

  12. Design of analog networks in the control theory formulation. Part 2: Numerical results

    OpenAIRE

    Zemliak, A. M.

    2005-01-01

    The paper presents numerical results of design of nonlinear electronic networks based on the problem formulation in terms of the control theory. Several examples illustrate the prospects of the approach suggested in the first part of the work.

  13. Network periodic solutions: patterns of phase-shift synchrony

    International Nuclear Information System (INIS)

    Golubitsky, Martin; Wang, Yunjiao; Romano, David

    2012-01-01

    We prove the rigid phase conjecture of Stewart and Parker. It then follows from previous results (of Stewart and Parker and our own) that rigid phase-shifts in periodic solutions on a transitive network are produced by a cyclic symmetry on a quotient network. More precisely, let X(t) = (x 1 (t), ..., x n (t)) be a hyperbolic T-periodic solution of an admissible system on an n-node network. Two nodes c and d are phase-related if there exists a phase-shift θ cd in [0, 1) such that x d (t) = x c (t + θ cd T). The conjecture states that if phase relations persist under all small admissible perturbations (that is, the phase relations are rigid), then for each pair of phase-related cells, their input signals are also phase-related to the same phase-shift. For a transitive network, rigid phase relations can also be described abstractly as a Z m permutation symmetry of a quotient network. We discuss how patterns of phase-shift synchrony lead to rigid synchrony, rigid phase synchrony, and rigid multirhythms, and we show that for each phase pattern there exists an admissible system with a periodic solution with that phase pattern. Finally, we generalize the results to nontransitive networks where we show that the symmetry that generates rigid phase-shifts occurs on an extension of a quotient network

  14. Simple, distance-dependent formulation of the Watts-Strogatz model for directed and undirected small-world networks

    Science.gov (United States)

    Song, H. Francis; Wang, Xiao-Jing

    2014-12-01

    Small-world networks—complex networks characterized by a combination of high clustering and short path lengths—are widely studied using the paradigmatic model of Watts and Strogatz (WS). Although the WS model is already quite minimal and intuitive, we describe an alternative formulation of the WS model in terms of a distance-dependent probability of connection that further simplifies, both practically and theoretically, the generation of directed and undirected WS-type small-world networks. In addition to highlighting an essential feature of the WS model that has previously been overlooked, namely the equivalence to a simple distance-dependent model, this alternative formulation makes it possible to derive exact expressions for quantities such as the degree and motif distributions and global clustering coefficient for both directed and undirected networks in terms of model parameters.

  15. Stand-alone solutions, computer networks and extern communications

    International Nuclear Information System (INIS)

    Tarschisch, H.

    1988-01-01

    The advantages of local networks over stand-alone solutions are presented. Of the local networks (LAN), two are presently at the center of attention: the bus and the ring. ETHERNET and the IBM-Token-Ring are described as typical examples. Access to public networks, especially TELEPAC and ISDN, is discussed. 12 figs

  16. Stochastic network interdiction optimization via capacitated network reliability modeling and probabilistic solution discovery

    International Nuclear Information System (INIS)

    Ramirez-Marquez, Jose Emmanuel; Rocco S, Claudio M.

    2009-01-01

    This paper introduces an evolutionary optimization approach that can be readily applied to solve stochastic network interdiction problems (SNIP). The network interdiction problem solved considers the minimization of the cost associated with an interdiction strategy such that the maximum flow that can be transmitted between a source node and a sink node for a fixed network design is greater than or equal to a given reliability requirement. Furthermore, the model assumes that the nominal capacity of each network link and the cost associated with their interdiction can change from link to link and that such interdiction has a probability of being successful. This version of the SNIP is for the first time modeled as a capacitated network reliability problem allowing for the implementation of computation and solution techniques previously unavailable. The solution process is based on an evolutionary algorithm that implements: (1) Monte-Carlo simulation, to generate potential network interdiction strategies, (2) capacitated network reliability techniques to analyze strategies' source-sink flow reliability and, (3) an evolutionary optimization technique to define, in probabilistic terms, how likely a link is to appear in the final interdiction strategy. Examples for different sizes of networks are used throughout the paper to illustrate the approach

  17. Secure Wireless Sensor Networks: Problems and Solutions

    Directory of Open Access Journals (Sweden)

    Fei Hu

    2003-08-01

    Full Text Available As sensor networks edge closer towards wide-spread deployment, security issues become a central concern. So far, the main research focus has been on making sensor networks feasible and useful, and less emphasis was placed on security. This paper analyzes security challenges in wireless sensor networks and summarizes key issues that should be solved for achieving the ad hoc security. It gives an overview of the current state of solutions on such key issues as secure routing, prevention of denial-of-service and key management service. We also present some secure methods to achieve security in wireless sensor networks. Finally we present our integrated approach to securing sensor networks.

  18. WaterNet: The NASA Water Cycle Solutions Network

    Science.gov (United States)

    Houser, P. R.; Belvedere, D. R.; Pozzi, W. H.; Imam, B.; Schiffer, R.; Lawford, R.; Schlosser, C. A.; Gupta, H.; Welty, C.; Vorosmarty, C.; Matthews, D.

    2007-12-01

    Water is essential to life and directly impacts and constrains society's welfare, progress, and sustainable growth, and is continuously being transformed by climate change, erosion, pollution, and engineering practices. The water cycle is a critical resource for industry, agriculture, natural ecosystems, fisheries, aquaculture, hydroelectric power, recreation, and water supply, and is central to drought, flood, transportation-aviation, and disease hazards. It is therefore a national priority to use advancements in scientific observations and knowledge to develop solutions to the water challenges faced by society. NASA's unique role is to use its view from space to improve water and energy cycle monitoring and prediction. NASA has collected substantial water cycle information and knowledge that must be transitioned to develop solutions for all twelve National Priority Application (NPA) areas. NASA cannot achieve this goal alone -it must establish collaborations and interoperability with existing networks and nodes of research organizations, operational agencies, science communities, and private industry. Therefore, WaterNet: The NASA Water Cycle Solutions Network goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. WaterNet is a catalyst for discovery and sharing of creative solutions to water problems. It serves as a creative, discovery process that is the entry-path for a research-to-solutions systems engineering NASA framework, with the end result to ultimately improve decision support.

  19. Buoyancy-driven chaotic regimes during solute dispersion in pore networks

    International Nuclear Information System (INIS)

    Tsakiroglou, C.D.; Theodoropoulou, M.A.; Karoutsos, V.

    2005-01-01

    In an attempt to investigate gravity effects on solute dispersion at the scale of a pore network, single source-solute transport visualization experiments are performed on glass-etched pore networks of varying morphology and degree of pore-scale heterogeneities. The (lighter) low solute concentration aqueous solution flows steadily through the porous medium and the (heavier) high solute concentration solution is injected at a very low and constant flow rate through an inner port. The transient evolution of the solute concentration distribution over various regions of the pore network is determined at different scales by capturing and video-recording snapshots of the dispersion on PC, measuring automatically the spatial variation of the color intensity of the solution, and transforming the color intensities to solute concentrations. Without the action of gravity, the steady-state dispersion regime changes with Peclet (Pe) number, and the longitudinal and transverse dispersivities are estimated by fitting the experimental datasets to approximate analytic solutions of the advection-dispersion equation. Under the action of gravity, multiple of steady-state solute dispersion regimes is developed at each Pe value, and lobe-shaped instabilities of the solute concentration are observed across the pore network, as the downward flow of the denser (higher solute concentration) fluid is counterbalanced by the upward flow of the less dense (lower solute concentration) fluid. The steady-state dispersion regimes may be periodic, quasi-periodic or chaotic depending on the system parameters. The nature of the transient fluctuations of the average solute concentration is analyzed by identifying the periodicity of the fluctuations, determining the autocorrelation function and the statistical moments of the time series, and inspecting the FFT (fast Fourier transform) power spectra. It is found that the mixing zone tends to be stabilized at higher values of the Peclet (Pe) number

  20. Theoretical study on the sound absorption of electrolytic solutions. I. Theoretical formulation

    Science.gov (United States)

    Yamaguchi, T.; Matsuoka, T.; Koda, S.

    2007-04-01

    A theory is formulated that describes the sound absorption of electrolytic solutions due to the relative motion of ions, including the formation of ion pairs. The theory is based on the Kubo-Green formula for the bulk viscosity. The time correlation function of the pressure is projected onto the bilinear product of the density modes of ions. The time development of the product of density modes is described by the diffusive limit of the generalized Langevin equation, and approximate expressions for the three- and four-body correlation functions required are given with the hypernetted-chain integral equation theory. Calculations on the aqueous solutions of model electrolytes are performed. It is demonstrated that the theory describes both the activated barrier crossing between contact and solvent-separated ion pairs and the Coulombic correlation between ions.

  1. Managing collaborative innovation networks

    DEFF Research Database (Denmark)

    Stevens, Vidar; Agger, Annika

    2017-01-01

    Collaborative innovation networks are increasingly used as vehicles for fostering innovative policy solutions. However, scholars have noted that the extent to which collaborative networks can actually contribute to the development of innovative policy solutions depends on how they are managed...... a Flemish administrative network to develop a radical new Spatial Planning Policy Plan. This study shows that the best way to manage collaborative innovation networks is not to press directly for results, but take the time to invest in relationship-building and together agree on a planning and clear process...... steps. Such a management approach allows actors to get to know each other and from thereon expand, with more background and appreciation for the others’ goals, behaviors, and intentions, their group activities concerning the formulation of a radical and innovative policy plan....

  2. A numerical procedure for transient free surface seepage through fracture networks

    Science.gov (United States)

    Jiang, Qinghui; Ye, Zuyang; Zhou, Chuangbing

    2014-11-01

    A parabolic variational inequality (PVI) formulation is presented for the transient free surface seepage problem defined for a whole fracture network. Because the seepage faces are specified as Signorini-type conditions, the PVI formulation can effectively eliminate the singularity of spillpoints that evolve with time. By introducing a continuous penalty function to replace the original Heaviside function, a finite element procedure based on the PVI formulation is developed to predict the transient free surface response in the fracture network. The effects of the penalty parameter on the solution precision are analyzed. A relative error formula for evaluating the flow losses at steady state caused by the penalty parameter is obtained. To validate the proposed method, three typical examples are solved. The solutions for the first example are compared with the experimental results. The results from the last two examples further demonstrate that the orientation, extent and density of fractures significantly affect the free surface seepage behavior in the fracture network.

  3. Optimal information transfer in enzymatic networks: A field theoretic formulation

    Science.gov (United States)

    Samanta, Himadri S.; Hinczewski, Michael; Thirumalai, D.

    2017-07-01

    Signaling in enzymatic networks is typically triggered by environmental fluctuations, resulting in a series of stochastic chemical reactions, leading to corruption of the signal by noise. For example, information flow is initiated by binding of extracellular ligands to receptors, which is transmitted through a cascade involving kinase-phosphatase stochastic chemical reactions. For a class of such networks, we develop a general field-theoretic approach to calculate the error in signal transmission as a function of an appropriate control variable. Application of the theory to a simple push-pull network, a module in the kinase-phosphatase cascade, recovers the exact results for error in signal transmission previously obtained using umbral calculus [Hinczewski and Thirumalai, Phys. Rev. X 4, 041017 (2014), 10.1103/PhysRevX.4.041017]. We illustrate the generality of the theory by studying the minimal errors in noise reduction in a reaction cascade with two connected push-pull modules. Such a cascade behaves as an effective three-species network with a pseudointermediate. In this case, optimal information transfer, resulting in the smallest square of the error between the input and output, occurs with a time delay, which is given by the inverse of the decay rate of the pseudointermediate. Surprisingly, in these examples the minimum error computed using simulations that take nonlinearities and discrete nature of molecules into account coincides with the predictions of a linear theory. In contrast, there are substantial deviations between simulations and predictions of the linear theory in error in signal propagation in an enzymatic push-pull network for a certain range of parameters. Inclusion of second-order perturbative corrections shows that differences between simulations and theoretical predictions are minimized. Our study establishes that a field theoretic formulation of stochastic biological signaling offers a systematic way to understand error propagation in

  4. Development of a New Aprepitant Liquisolid Formulation with the Aid of Artificial Neural Networks and Genetic Programming.

    Science.gov (United States)

    Barmpalexis, Panagiotis; Grypioti, Agni; Eleftheriadis, Georgios K; Fatouros, Dimitris G

    2018-02-01

    In the present study, liquisolid formulations were developed for improving dissolution profile of aprepitant (APT) in a solid dosage form. Experimental studies were complemented with artificial neural networks and genetic programming. Specifically, the type and concentration of liquid vehicle was evaluated through saturation-solubility studies, while the effect of the amount of viscosity increasing agent (HPMC), the type of wetting (Soluplus® vs. PVP) and solubilizing (Poloxamer®407 vs. Kolliphor®ELP) agents, and the ratio of solid coating (microcrystalline cellulose) to carrier (colloidal silicon dioxide) were evaluated based on in vitro drug release studies. The optimum liquisolid formulation exhibited improved dissolution characteristics compared to the marketed product Emend®. X-ray diffraction (XRD), scanning electron microscopy (SEM) and a novel method combining particle size analysis by dynamic light scattering (DLS) and HPLC, revealed that the increase in dissolution rate of APT in the optimum liquisolid formulation was due to the formation of stable APT nanocrystals. Differential scanning calorimetry (DSC) and attenuated total reflection FTIR spectroscopy (ATR-FTIR) revealed the presence of intermolecular interactions between APT and liquisolid formulation excipients. Multilinear regression analysis (MLR), artificial neural networks (ANNs), and genetic programming (GP) were used to correlate several formulation variables with dissolution profile parameters (Y 15min and Y 30min ) using a full factorial experimental design. Results showed increased correlation efficacy for ANNs and GP (RMSE of 0.151 and 0.273, respectively) compared to MLR (RMSE = 0.413).

  5. Finding p-Hub Median Locations: An Empirical Study on Problems and Solution Techniques

    Directory of Open Access Journals (Sweden)

    Xiaoqian Sun

    2017-01-01

    Full Text Available Hub location problems have been studied by many researchers for almost 30 years, and, accordingly, various solution methods have been proposed. In this paper, we implement and evaluate several widely used methods for solving five standard hub location problems. To assess the scalability and solution qualities of these methods, three well-known datasets are used as case studies: Turkish Postal System, Australia Post, and Civil Aeronautics Board. Classical problems in small networks can be solved efficiently using CPLEX because of their low complexity. Genetic algorithms perform well for solving three types of single allocation problems, since the problem formulations can be neatly encoded with chromosomes of reasonable size. Lagrangian relaxation is the only technique that solves reliable multiple allocation problems in large networks. We believe that our work helps other researchers to get an overview on the best solution techniques for the problems investigated in our study and also stipulates further interest on cross-comparing solution techniques for more expressive problem formulations.

  6. Backend solutions for AA in the MUSE network supporting FMC

    NARCIS (Netherlands)

    Neerbos, A.N.R. van; Prins, M.; Melander, B.; Pimilla Larrucea, I.; Thakur, M.J.; Fredricx, F.

    2007-01-01

    The European MUSE project investigated fixed-mobile convergence from the perspective of an unbundled fixed network. A major part of the work consisted of finding solutions for the authentication and authorisation of users who roam from their home network to a visited network. This paper shows how AA

  7. Power-Aware Routing and Network Design with Bundled Links: Solutions and Analysis

    Directory of Open Access Journals (Sweden)

    Rosario G. Garroppo

    2013-01-01

    Full Text Available The paper deeply analyzes a novel network-wide power management problem, called Power-Aware Routing and Network Design with Bundled Links (PARND-BL, which is able to take into account both the relationship between the power consumption and the traffic throughput of the nodes and to power off both the chassis and even the single Physical Interface Card (PIC composing each link. The solutions of the PARND-BL model have been analyzed by taking into account different aspects associated with the actual applicability in real network scenarios: (i the time for obtaining the solution, (ii the deployed network topology and the resulting topology provided by the solution, (iii the power behavior of the network elements, (iv the traffic load, (v the QoS requirement, and (vi the number of paths to route each traffic demand. Among the most interesting and novel results, our analysis shows that the strategy of minimizing the number of powered-on network elements through the traffic consolidation does not always produce power savings, and the solution of this kind of problems, in some cases, can lead to spliting a single traffic demand into a high number of paths.

  8. Almost Periodic Solution for Memristive Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Huaiqin Wu

    2013-01-01

    Full Text Available This paper is concerned with the dynamical stability analysis for almost periodic solution of memristive neural networks with time-varying delays. Under the framework of Filippov solutions, by applying the inequality analysis techniques, the existence and asymptotically almost periodic behavior of solutions are discussed. Based on the differential inclusions theory and Lyapunov functional approach, the stability issues of almost periodic solution are investigated, and a sufficient condition for the existence, uniqueness, and global exponential stability of the almost periodic solution is established. Moreover, as a special case, the condition which ensures the global exponential stability of a unique periodic solution is also presented for the considered memristive neural networks. Two examples are given to illustrate the validity of the theoretical results.

  9. Storage Solutions for Power Quality Problems in Cyprus Electricity Distribution Network

    Directory of Open Access Journals (Sweden)

    Andreas Poullikkas

    2014-01-01

    Full Text Available In this work, a prediction of the effects of introducing energy storage systems on the network stability of the distribution network of Cyprus and a comparison in terms of cost with a traditional solution is carried out. In particular, for solving possible overvoltage problems, several scenarios of storage units' installation are used and compared with the alternative solution of extra cable connection between the node with the lowest voltage and the node with the highest voltage of the distribution network. For the comparison, a case study of a typical LV distribution feeder in the power system of Cyprus is used. The results indicated that the performance indicator of each solution depends on the type, the size and the position of installation of the storage unit. Also, as more storage units are installed the better the performance indicator and the more attractive is the investment in storage units to solve power quality problems in the distribution network. In the case where the technical requirements in voltage limitations according to distribution regulations are satisfied with one storage unit, the installation of an additional storage unit will only increase the final cost. The best solution, however, still remains the alternative solution of extra cable connection between the node with the lowest voltage and the node with the highest voltage of the distribution network, due to the lower investment costs compared to that of the storage units.

  10. The double travelling salesman problem with multiple stacks - Formulation and heuristic solution approaches

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann; Madsen, Oli B.G.

    2009-01-01

    This paper introduces the double travelling salesman problem with multiple stacks and presents four different metaheuristic approaches to its solution. The double TSP with multiple stacks is concerned with determining the shortest route performing pickups and deliveries in two separated networks...

  11. Preliminary Formulation of Finite Element Solution for the 1-D, 1-G Time Dependent Neutron Diffusion Equation without Consideration about Delay Neutron

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Eun Hyun; Song, Yong Mann; Park, Joo Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    If time-dependent equation is solved with the FEM, the limitation of the input geometry will disappear. It has often been pointed out that the numerical methods implemented in the RFSP code are not state-of-the-art. Although an acceleration method such as the Coarse Mesh Finite Difference (CMFD) for Finite Difference Method (FDM) does not exist for the FEM, one should keep in mind that the number of time steps for the transient simulation is not large. The rigorous formulation in this study will richen the theoretical basis of the FEM and lead to an extension of the dynamics code to deal with a more complicated problem. In this study, the formulation for the 1-D, 1-G Time Dependent Neutron Diffusion Equation (TDNDE) without consideration of the delay neutron will first be done. A problem including one multiplying medium will be solved. Also several conclusions from a comparison between the numerical and analytic solutions, a comparison between solutions with various element orders, and a comparison between solutions with different time differencing will be made to be certain about the formulation and FEM solution. By investigating various cases with different values of albedo, theta, and the order of elements, it can be concluded that the finite element solution is agree well with the analytic solution. The higher the element order used, the higher the accuracy improvements are obtained.

  12. Conjugate descent formulation of backpropagation error in feedforward neural networks

    Directory of Open Access Journals (Sweden)

    NK Sharma

    2009-06-01

    Full Text Available The feedforward neural network architecture uses backpropagation learning to determine optimal weights between different interconnected layers. This learning procedure uses a gradient descent technique applied to a sum-of-squares error function for the given input-output pattern. It employs an iterative procedure to minimise the error function for a given set of patterns, by adjusting the weights of the network. The first derivates of the error with respect to the weights identify the local error surface in the descent direction. Hence the network exhibits a different local error surface for every different pattern presented to it, and weights are iteratively modified in order to minimise the current local error. The determination of an optimal weight vector is possible only when the total minimum error (mean of the minimum local errors for all patterns from the training set may be minimised. In this paper, we present a general mathematical formulation for the second derivative of the error function with respect to the weights (which represents a conjugate descent for arbitrary feedforward neural network topologies, and we use this derivative information to obtain the optimal weight vector. The local error is backpropagated among the units of hidden layers via the second order derivative of the error with respect to the weights of the hidden and output layers independently and also in combination. The new total minimum error point may be evaluated with the help of the current total minimum error and the current minimised local error. The weight modification processes is performed twice: once with respect to the present local error and once more with respect to the current total or mean error. We present some numerical evidence that our proposed method yields better network weights than those determined via a conventional gradient descent approach.

  13. Security Analysis of a Software Defined Wide Area Network Solution

    OpenAIRE

    Rajendran, Ashok

    2016-01-01

    Enterprise wide area network (WAN) is a private network that connects the computers and other devices across an organisation's branch locations and the data centers. It forms the backbone of enterprise communication. Currently, multiprotocol label switching (MPLS) is commonly used to provide this service. As a recent alternative to MPLS, software-dened wide area networking (SD-WAN) solutions are being introduced as an IP based cloud-networking service for enterprises. SD-WAN virtualizes the n...

  14. Evaluation of Persian Professional Web Social Networks\\\\\\' Features, to Provide a Suitable Solution for Optimization of These Networks in Iran

    Directory of Open Access Journals (Sweden)

    Nadjla Hariri

    2013-03-01

    Full Text Available This study aimed to determine the status of Persian professional web social networks' features and provide a suitable solution for optimization of these networks in Iran. The research methods were library research and evaluative method, and study population consisted of 10 Persian professional web social networks. In this study, for data collection, a check list of social networks important tools and features was used. According to the results, “Cloob”, “IR Experts” and “Doreh” were the most compatible networks with the criteria of social networks. Finally, some solutions were presented for optimization of capabilities of Persian professional web social networks.

  15. Mathematical Formulation of Multilayer Networks

    Science.gov (United States)

    De Domenico, Manlio; Solé-Ribalta, Albert; Cozzo, Emanuele; Kivelä, Mikko; Moreno, Yamir; Porter, Mason A.; Gómez, Sergio; Arenas, Alex

    2013-10-01

    A network representation is useful for describing the structure of a large variety of complex systems. However, most real and engineered systems have multiple subsystems and layers of connectivity, and the data produced by such systems are very rich. Achieving a deep understanding of such systems necessitates generalizing “traditional” network theory, and the newfound deluge of data now makes it possible to test increasingly general frameworks for the study of networks. In particular, although adjacency matrices are useful to describe traditional single-layer networks, such a representation is insufficient for the analysis and description of multiplex and time-dependent networks. One must therefore develop a more general mathematical framework to cope with the challenges posed by multilayer complex systems. In this paper, we introduce a tensorial framework to study multilayer networks, and we discuss the generalization of several important network descriptors and dynamical processes—including degree centrality, clustering coefficients, eigenvector centrality, modularity, von Neumann entropy, and diffusion—for this framework. We examine the impact of different choices in constructing these generalizations, and we illustrate how to obtain known results for the special cases of single-layer and multiplex networks. Our tensorial approach will be helpful for tackling pressing problems in multilayer complex systems, such as inferring who is influencing whom (and by which media) in multichannel social networks and developing routing techniques for multimodal transportation systems.

  16. Game Theoretic Problems in Network Economics and Mechanism Design Solutions

    CERN Document Server

    Narahari, Y; Narayanam, Ramasuri; Prakash, Hastagiri

    2009-01-01

    Explores game theoretic modeling and mechanism design for problem solving in Internet and network economics. This monograph contains an exposition of representative game theoretic problems in three different network economics situations and a systematic exploration of mechanism design solutions to these problems.

  17. Supervisory control of mobile sensor networks: math formulation, simulation, and implementation.

    Science.gov (United States)

    Giordano, Vincenzo; Ballal, Prasanna; Lewis, Frank; Turchiano, Biagio; Zhang, Jing Bing

    2006-08-01

    This paper uses a novel discrete-event controller (DEC) for the coordination of cooperating heterogeneous wireless sensor networks (WSNs) containing both unattended ground sensors (UGSs) and mobile sensor robots. The DEC sequences the most suitable tasks for each agent and assigns sensor resources according to the current perception of the environment. A matrix formulation makes this DEC particularly useful for WSN, where missions change and sensor agents may be added or may fail. WSN have peculiarities that complicate their supervisory control. Therefore, this paper introduces several new tools for DEC design and operation, including methods for generating the required supervisory matrices based on mission planning, methods for modifying the matrices in the event of failed nodes, or nodes entering the network, and a novel dynamic priority assignment weighting approach for selecting the most appropriate and useful sensors for a given mission task. The resulting DEC represents a complete dynamical description of the WSN system, which allows a fast programming of deployable WSN, a computer simulation analysis, and an efficient implementation. The DEC is actually implemented on an experimental wireless-sensor-network prototyping system. Both simulation and experimental results are presented to show the effectiveness and versatility of the developed control architecture.

  18. Computing motion using resistive networks

    Science.gov (United States)

    Koch, Christof; Luo, Jin; Mead, Carver; Hutchinson, James

    1988-01-01

    Recent developments in the theory of early vision are described which lead from the formulation of the motion problem as an ill-posed one to its solution by minimizing certain 'cost' functions. These cost or energy functions can be mapped onto simple analog and digital resistive networks. It is shown how the optical flow can be computed by injecting currents into resistive networks and recording the resulting stationary voltage distribution at each node. These networks can be implemented in cMOS VLSI circuits and represent plausible candidates for biological vision systems.

  19. Wireless Sensor Network Optimization: Multi-Objective Paradigm.

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-07-20

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.

  20. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  1. Quantized hopfield networks for reliability optimization

    International Nuclear Information System (INIS)

    Nourelfath, Mustapha; Nahas, Nabil

    2003-01-01

    The use of neural networks in the reliability optimization field is rare. This paper presents an application of a recent kind of neural networks in a reliability optimization problem for a series system with multiple-choice constraints incorporated at each subsystem, to maximize the system reliability subject to the system budget. The problem is formulated as a nonlinear binary integer programming problem and characterized as an NP-hard problem. Our design of neural network to solve efficiently this problem is based on a quantized Hopfield network. This network allows us to obtain optimal design solutions very frequently and much more quickly than others Hopfield networks

  2. Formulation and stability of an extemporaneously compounded oral solution of chlorpromazine HCl.

    Science.gov (United States)

    Prohotsky, Daniel L; Juba, Katherine M; Zhao, Fang

    2014-12-01

    Chlorpromazine is a phenothiazine antipsychotic which is often used in hospice and palliative care to treat hiccups, delirium, and nausea. With the discontinuation of the commercial oral solution concentrate, there is a need to prepare this product by extemporaneous compounding. This study was initiated to identify an easy-to-prepare formulation for the compounding pharmacist. A stability study was also conducted to select the proper storage conditions and establish the beyond-use date. Chlorpromazine HCl powder and the Ora-Sweet® syrup vehicle were used to prepare the 100 mg/mL solution. Once the feasibility was established, a batch of the solution was prepared and packaged in amber plastic prescription bottles for a stability study. These samples were stored at refrigeration (2-8°C) or room temperature (20-25°C) for up to 3 months. At each monthly time point, the samples were evaluated by visual inspection, pH measurement, and high performance liquid chromatography (HPLC). A separate forced stability study was conducted to confirm that the HPLC method was stability indicating. A clear and colorless solution of 100 mg/mL chlorpromazine HCl was obtained by dissolving the drug powder in Ora-Sweet® with moderate agitation. The stability study results indicated that this solution product remained unchanged in visual appearance or pH at both refrigeration and room temperature for up to 3 months. The HPLC results also confirmed that all stability samples retained 93.6-101.4% of initial drug concentration. Chlorpromazine HCl solution 100 mg/mL can be compounded extemporaneously by dissolving chlorpromazine HCl drug powder in Ora-Sweet®. The resulting product is stable for at least three months in amber plastic prescription bottles stored at either refrigeration or room temperature.

  3. Models and Tabu Search Metaheuristics for Service Network Design with Asset-Balance Requirements

    DEFF Research Database (Denmark)

    Pedersen, Michael Berliner; Crainic, T.G.; Madsen, Oli B.G.

    2009-01-01

    This paper focuses on a generic model for service network design, which includes asset positioning and utilization through constraints on asset availability at terminals. We denote these relations as "design-balance constraints" and focus on the design-balanced capacitated multicommodity network...... design model, a generalization of the capacitated multicommodity network design model generally used in service network design applications. Both arc-and cycle-based formulations for the new model are presented. The paper also proposes a tabu search metaheuristic framework for the arc-based formulation....... Results on a wide range of network design problem instances from the literature indicate the proposed method behaves very well in terms of computational efficiency and solution quality....

  4. Multiple excitation of supports - Part 1. Formulation

    International Nuclear Information System (INIS)

    Galeao, A.C.N.R.; Barbosa, H.J.C.

    1980-12-01

    The formulation and the solution of a simple specific problem of support movement are presented. The formulation is extended to the general case of infinitesimal elasticity where the approximated solutions are obtained by the variational formulation with spatial discretization by Finite Element Method. Finally, the present usual numerical techniques for the treatment of the resulting ordinary differential equations system are discused: Direct integration, Modal overlap, Spectral response. (E.G.) [pt

  5. A constrained multinomial Probit route choice model in the metro network: Formulation, estimation and application

    Science.gov (United States)

    Zhang, Yongsheng; Wei, Heng; Zheng, Kangning

    2017-01-01

    Considering that metro network expansion brings us with more alternative routes, it is attractive to integrate the impacts of routes set and the interdependency among alternative routes on route choice probability into route choice modeling. Therefore, the formulation, estimation and application of a constrained multinomial probit (CMNP) route choice model in the metro network are carried out in this paper. The utility function is formulated as three components: the compensatory component is a function of influencing factors; the non-compensatory component measures the impacts of routes set on utility; following a multivariate normal distribution, the covariance of error component is structured into three parts, representing the correlation among routes, the transfer variance of route, and the unobserved variance respectively. Considering multidimensional integrals of the multivariate normal probability density function, the CMNP model is rewritten as Hierarchical Bayes formula and M-H sampling algorithm based Monte Carlo Markov Chain approach is constructed to estimate all parameters. Based on Guangzhou Metro data, reliable estimation results are gained. Furthermore, the proposed CMNP model also shows a good forecasting performance for the route choice probabilities calculation and a good application performance for transfer flow volume prediction. PMID:28591188

  6. Supply network configuration—A benchmarking problem

    Science.gov (United States)

    Brandenburg, Marcus

    2018-03-01

    Managing supply networks is a highly relevant task that strongly influences the competitiveness of firms from various industries. Designing supply networks is a strategic process that considerably affects the structure of the whole network. In contrast, supply networks for new products are configured without major adaptations of the existing structure, but the network has to be configured before the new product is actually launched in the marketplace. Due to dynamics and uncertainties, the resulting planning problem is highly complex. However, formal models and solution approaches that support supply network configuration decisions for new products are scant. The paper at hand aims at stimulating related model-based research. To formulate mathematical models and solution procedures, a benchmarking problem is introduced which is derived from a case study of a cosmetics manufacturer. Tasks, objectives, and constraints of the problem are described in great detail and numerical values and ranges of all problem parameters are given. In addition, several directions for future research are suggested.

  7. Numerical Solution of Fuzzy Differential Equations with Z-numbers Using Bernstein Neural Networks

    Directory of Open Access Journals (Sweden)

    Raheleh Jafari

    2017-01-01

    Full Text Available The uncertain nonlinear systems can be modeled with fuzzy equations or fuzzy differential equations (FDEs by incorporating the fuzzy set theory. The solutions of them are applied to analyze many engineering problems. However, it is very difficult to obtain solutions of FDEs. In this paper, the solutions of FDEs are approximated by two types of Bernstein neural networks. Here, the uncertainties are in the sense of Z-numbers. Initially the FDE is transformed into four ordinary differential equations (ODEs with Hukuhara differentiability. Then neural models are constructed with the structure of ODEs. With modified back propagation method for Z- number variables, the neural networks are trained. The theory analysis and simulation results show that these new models, Bernstein neural networks, are effective to estimate the solutions of FDEs based on Z-numbers.

  8. Multi-stability and almost periodic solutions of a class of recurrent neural networks

    International Nuclear Information System (INIS)

    Liu Yiguang; You Zhisheng

    2007-01-01

    This paper studies multi-stability, existence of almost periodic solutions of a class of recurrent neural networks with bounded activation functions. After introducing a sufficient condition insuring multi-stability, many criteria guaranteeing existence of almost periodic solutions are derived using Mawhin's coincidence degree theory. All the criteria are constructed without assuming the activation functions are smooth, monotonic or Lipschitz continuous, and that the networks contains periodic variables (such as periodic coefficients, periodic inputs or periodic activation functions), so all criteria can be easily extended to fit many concrete forms of neural networks such as Hopfield neural networks, or cellular neural networks, etc. Finally, all kinds of simulations are employed to illustrate the criteria

  9. Global stability and existence of periodic solutions of discrete delayed cellular neural networks

    International Nuclear Information System (INIS)

    Li Yongkun

    2004-01-01

    We use the continuation theorem of coincidence degree theory and Lyapunov functions to study the existence and stability of periodic solutions for the discrete cellular neural networks (CNNs) with delays xi(n+1)=xi(n)e-bi(n)h+θi(h)-bar j=1maij(n)fj(xj(n))+θi(h)-bar j=1mbij(n)fj(xj(n- τij(n)))+θi(h)Ii(n),i=1,2,...,m. We obtain some sufficient conditions to ensure that for the networks there exists a unique periodic solution, and all its solutions converge to such a periodic solution

  10. Social networks a real solution for students' future jobs

    Directory of Open Access Journals (Sweden)

    Lorena Bătăgan

    2015-11-01

    Full Text Available This study examines if social networks represent a real solution for students' future jobs. The authors use for their analysis data provided by the students from Faculty of Economic Cybernetics, Statistics and Informatics (ECSI ‒ The Bucharest University of Economic Studies and by professional networking websites like Facebook and LinkedIn. In this paper there are highlighted the level of using social networks and students’ perception on the use of social networks in their activities. The paper focuses on students’ interest in using social networks for securing future jobs. The results of research underlined the idea that for higher education there is an opportunity to facilitate the access of students to social networks in two ways: by developing or enhancing students’ knowledge on how to use social networks and as part of that effort, by educating students about how they can promote their skills. The main idea is that the use of large amounts of data generated by social networks accelerates students' integration within working environment and their employment.

  11. Approximate solutions of dual fuzzy polynomials by feed-back neural networks

    Directory of Open Access Journals (Sweden)

    Ahmad Jafarian

    2012-11-01

    Full Text Available Recently, artificial neural networks (ANNs have been extensively studied and used in different areas such as pattern recognition, associative memory, combinatorial optimization, etc. In this paper, we investigate the ability of fuzzy neural networks to approximate solution of a dual fuzzy polynomial of the form $a_{1}x+ ...+a_{n}x^n =b_{1}x+ ...+b_{n}x^n+d,$ where $a_{j},b_{j},d epsilon E^1 (for j=1,...,n.$ Since the operation of fuzzy neural networks is based on Zadeh's extension principle. For this scope we train a fuzzified neural network by back-propagation-type learning algorithm which has five layer where connection weights are crisp numbers. This neural network can get a crisp input signal and then calculates its corresponding fuzzy output. Presented method can give a real approximate solution for given polynomial by using a cost function which is defined for the level sets of fuzzy output and target output. The simulation results are presented to demonstrate the efficiency and effectiveness of the proposed approach.

  12. Network Simulation solution of free convective flow from a vertical cone with combined effect of non- uniform surface heat flux and heat generation or absorption

    Science.gov (United States)

    Immanuel, Y.; Pullepu, Bapuji; Sambath, P.

    2018-04-01

    A two dimensional mathematical model is formulated for the transitive laminar free convective, incompressible viscous fluid flow over vertical cone with variable surface heat flux combined with the effects of heat generation and absorption is considered . using a powerful computational method based on thermoelectric analogy called Network Simulation Method (NSM0, the solutions of governing nondimensionl coupled, unsteady and nonlinear partial differential conservation equations of the flow that are obtained. The numerical technique is always stable and convergent which establish high efficiency and accuracy by employing network simulator computer code Pspice. The effects of velocity and temperature profiles have been analyzed for various factors, namely Prandtl number Pr, heat flux power law exponent n and heat generation/absorption parameter Δ are analyzed graphically.

  13. Optimal power flow: a bibliographic survey I. Formulations and deterministic methods

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Stephen [Colorado School of Mines, Department of Electrical Engineering and Computer Science, Golden, CO (United States); Steponavice, Ingrida [University of Jyvaskyla, Department of Mathematical Information Technology, Agora (Finland); Rebennack, Steffen [Colorado School of Mines, Division of Economics and Business, Golden, CO (United States)

    2012-09-15

    Over the past half-century, optimal power flow (OPF) has become one of the most important and widely studied nonlinear optimization problems. In general, OPF seeks to optimize the operation of electric power generation, transmission, and distribution networks subject to system constraints and control limits. Within this framework, however, there is an extremely wide variety of OPF formulations and solution methods. Moreover, the nature of OPF continues to evolve due to modern electricity markets and renewable resource integration. In this two-part survey, we survey both the classical and recent OPF literature in order to provide a sound context for the state of the art in OPF formulation and solution methods. The survey contributes a comprehensive discussion of specific optimization techniques that have been applied to OPF, with an emphasis on the advantages, disadvantages, and computational characteristics of each. Part I of the survey (this article) provides an introduction and surveys the deterministic optimization methods that have been applied to OPF. Part II of the survey examines the recent trend towards stochastic, or non-deterministic, search techniques and hybrid methods for OPF. (orig.)

  14. Periodic oscillatory solution in delayed competitive-cooperative neural networks: A decomposition approach

    International Nuclear Information System (INIS)

    Yuan Kun; Cao Jinde

    2006-01-01

    In this paper, the problems of exponential convergence and the exponential stability of the periodic solution for a general class of non-autonomous competitive-cooperative neural networks are analyzed via the decomposition approach. The idea is to divide the connection weights into inhibitory or excitatory types and thereby to embed a competitive-cooperative delayed neural network into an augmented cooperative delay system through a symmetric transformation. Some simple necessary and sufficient conditions are derived to ensure the componentwise exponential convergence and the exponential stability of the periodic solution of the considered neural networks. These results generalize and improve the previous works, and they are easy to check and apply in practice

  15. Business Strategy Formulation By Shareholders and Company Management using The Analytical Network Process (ANPBusiness Strategy Formulation by Shareholders and Company Management Using Analytical Network Process (ANP

    Directory of Open Access Journals (Sweden)

    Faizal Faizal

    2016-11-01

    Full Text Available This research aimed to identify the business strategy formulation by the shareholders and the management of the company. Ten companies were selected to be the objects of this research. Those companies were the information technology, telecommunication, printing, mining, construction and chemical companies in Indonesia. The research was conducted by using the Analytical Network Process (ANP and considering the chosen respondents as the decision makers (experts of those companies. The respondents were chosen by using the non-probabilitty sampling method. The result shows that the roles of the company managements are considered m ore influental (0,57143 than the roles of the shareholders (0,28571. From the output of stakeholder’s condition, the best-stratified priority strategies are differentiation (0,600515, cost of leadership (0,230754 and focus (0,168731.

  16. Generic Mathematical Programming Formulation and Solution for Computer-Aided Molecular Design

    DEFF Research Database (Denmark)

    Zhang, Lei; Cignitti, Stefano; Gani, Rafiqul

    2015-01-01

    This short communication presents a generic mathematical programming formulation for Computer-Aided Molecular Design (CAMD). A given CAMD problem, based on target properties, is formulated as a Mixed Integer Linear/Non-Linear Program (MILP/MINLP). The mathematical programming model presented here......, which is formulated as an MILP/MINLP problem, considers first-order and second-order molecular groups for molecular structure representation and property estimation. It is shown that various CAMD problems can be formulated and solved through this model....

  17. Formulation and solutions of fractional continuously variable order mass–spring–damper systems controlled by viscoelastic and viscous–viscoelastic dampers

    Directory of Open Access Journals (Sweden)

    S Saha Ray

    2016-05-01

    Full Text Available This article presents the formulation and a new approach to find analytic solutions for fractional continuously variable order dynamic models, namely, fractional continuously variable order mass–spring–damper systems. Here, we use the viscoelastic and viscous–viscoelastic dampers for describing the damping nature of the oscillating systems, where the order of fractional derivative varies continuously. Here, we handle the continuous changing nature of fractional order derivative for dynamic systems, which has not been studied yet. By successive recursive method, here we find the solution of fractional continuously variable order mass–spring–damper systems and then obtain closed-form solutions. We then present and discuss the solutions obtained in the cases with continuously variable order of damping for oscillator through graphical plots.

  18. So ware-Defined Network Solutions for Science Scenarios: Performance Testing Framework and Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Settlemyer, Bradley [Los Alamos National Laboratory (LANL); Kettimuthu, R. [Argonne National Laboratory (ANL); Boley, Josh [Argonne National Laboratory (ANL); Katramatos, Dimitrios [Brookhaven National Laboratory (BNL); Rao, Nageswara S. [ORNL; Sen, Satyabrata [ORNL; Liu, Qiang [ORNL

    2018-01-01

    High-performance scientific work flows utilize supercomputers, scientific instruments, and large storage systems. Their executions require fast setup of a small number of dedicated network connections across the geographically distributed facility sites. We present Software-Defined Network (SDN) solutions consisting of site daemons that use dpctl, Floodlight, ONOS, or OpenDaylight controllers to set up these connections. The development of these SDN solutions could be quite disruptive to the infrastructure, while requiring a close coordination among multiple sites; in addition, the large number of possible controller and device combinations to investigate could make the infrastructure unavailable to regular users for extended periods of time. In response, we develop a Virtual Science Network Environment (VSNE) using virtual machines, Mininet, and custom scripts that support the development, testing, and evaluation of SDN solutions, without the constraints and expenses of multi-site physical infrastructures; furthermore, the chosen solutions can be directly transferred to production deployments. By complementing VSNE with a physical testbed, we conduct targeted performance tests of various SDN solutions to help choose the best candidates. In addition, we propose a switching response method to assess the setup times and throughput performances of different SDN solutions, and present experimental results that show their advantages and limitations.

  19. Unification of Information Security Policies for Network Security Solutions

    Directory of Open Access Journals (Sweden)

    D.S. Chernyavskiy

    2012-03-01

    Full Text Available Diversity of command languages on network security solutions’ (NSS interfaces causes problems in a process of information security policy (ISP deployment. Unified model for security policy representation and implementation in NSS could aid to avoid such problems and consequently enhance efficiency of the process. The proposed solution is Unified language for network security policy (ULNSP. The language is based on formal languages theory, and being coupled with its translator, ULNSP makes it possible to formalize and implement ISP independently of particular NSS.

  20. Influence of formulation and processing variables on properties of itraconazole nanoparticles made by advanced evaporative precipitation into aqueous solution.

    Science.gov (United States)

    Bosselmann, Stephanie; Nagao, Masao; Chow, Keat T; Williams, Robert O

    2012-09-01

    Nanoparticles, of the poorly water-soluble drug, itraconazole (ITZ), were produced by the Advanced Evaporative Precipitation into Aqueous Solution process (Advanced EPAS). This process combines emulsion templating and EPAS processing to provide improved control over the size distribution of precipitated particles. Specifically, oil-in-water emulsions containing the drug and suitable stabilizers are sprayed into a heated aqueous solution to induce precipitation of the drug in form of nanoparticles. The influence of processing parameters (temperature and volume of the heated aqueous solution; type of nozzle) and formulation aspects (stabilizer concentrations; total solid concentrations) on the size of suspended ITZ particles, as determined by laser diffraction, was investigated. Furthermore, freeze-dried ITZ nanoparticles were evaluated regarding their morphology, crystallinity, redispersibility, and dissolution behavior. Results indicate that a robust precipitation process was developed such that size distribution of dispersed nanoparticles was shown to be largely independent across the different processing and formulation parameters. Freeze-drying of colloidal dispersions resulted in micron-sized agglomerates composed of spherical, sub-300-nm particles characterized by reduced crystallinity and high ITZ potencies of up to 94% (w/w). The use of sucrose prevented particle agglomeration and resulted in powders that were readily reconstituted and reached high and sustained supersaturation levels upon dissolution in aqueous media.

  1. A stabilized finite element formulation for the solution of the Navier-Stokes equations in axisymmetric geometry

    International Nuclear Information System (INIS)

    Souza, Altivo Monteiro de

    2008-12-01

    The world energy consumption has been increasing strongly in recent years. Nuclear energy has been regarded as a suitable option to supply this growing energy demand in industrial scale. In view of the need of improving the understanding and capacity of analysis of nuclear power plants, modern simulation techniques for flow and heat transfer problems are gaining greater importance. A large number of problems found in nuclear reactor engineering can be dealt assuming axial symmetry. Thus, in this work a stabilized finite element formulation for the solution of the Navier-Stokes and energy equations for axisymmetric problems have been developed and tested. The formulation has been implemented in the NS S OLVER M PI 2 D A program developed at the Parallel Computation Laboratory of the Instituto de Engenharia Nuclear (LCP/IEN) and is now available either for safety analysis or design of nuclear systems. (author)

  2. Highway Passenger Transport Based Express Parcel Service Network Design: Model and Algorithm

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2017-01-01

    Full Text Available Highway passenger transport based express parcel service (HPTB-EPS is an emerging business that uses unutilised room of coach trunk to ship parcels between major cities. While it is reaping more and more express market, the managers are facing difficult decisions to design the service network. This paper investigates the HPTB-EPS network design problem and analyses the time-space characteristics of such network. A mixed-integer programming model is formulated integrating the service decision, frequency, and network flow distribution. To solve the model, a decomposition-based heuristic algorithm is designed by decomposing the problem as three steps: construction of service network, service path selection, and distribution of network flow. Numerical experiment using real data from our partner company demonstrates the effectiveness of our model and algorithm. We found that our solution could reduce the total cost by up to 16.3% compared to the carrier’s solution. The sensitivity analysis demonstrates the robustness and flexibility of the solutions of the model.

  3. Multimodal Network Equilibrium with Stochastic Travel Times

    Directory of Open Access Journals (Sweden)

    M. Meng

    2014-01-01

    Full Text Available The private car, unlike public traffic modes (e.g., subway, trolley running along dedicated track-ways, is invariably subject to various uncertainties resulting in travel time variation. A multimodal network equilibrium model is formulated that explicitly considers stochastic link capacity variability in the road network. The travel time of combined-mode trips is accumulated based on the concept of the mean excess travel time (METT which is a summation of estimated buffer time and tardy time. The problem is characterized by an equivalent VI (variational inequality formulation where the mode choice is expressed in a hierarchical logit structure. Specifically, the supernetwork theory and expansion technique are used herein to represent the multimodal transportation network, which completely represents the combined-mode trips as constituting multiple modes within a trip. The method of successive weighted average is adopted for problem solutions. The model and solution method are further applied to study the trip distribution and METT variations caused by the different levels of the road conditions. Results of numerical examples show that travelers prefer to choose the combined travel mode as road capacity decreases. Travelers with different attitudes towards risk are shown to exhibit significant differences when making travel choice decisions.

  4. Controlled neural network application in track-match problem

    International Nuclear Information System (INIS)

    Baginyan, S.A.; Ososkov, G.A.

    1993-01-01

    Track-match problem of high energy physics (HEP) data handling is formulated in terms of incidence matrices. The corresponding Hopfield neural network is developed to solve this type of constraint satisfaction problems (CSP). A special concept of the controlled neural network is proposed as a basis of an algorithm for the effective CSP solution. Results of comparable calculations show the very high performance of this algorithm against conventional search procedures. 8 refs.; 1 fig.; 1 tab

  5. Integrating generation and transmission networks reliability for unit commitment solution

    International Nuclear Information System (INIS)

    Jalilzadeh, S.; Shayeghi, H.; Hadadian, H.

    2009-01-01

    This paper presents a new method with integration of generation and transmission networks reliability for the solution of unit commitment (UC) problem. In fact, in order to have a more accurate assessment of system reserve requirement, in addition to unavailability of generation units, unavailability of transmission lines are also taken into account. In this way, evaluation of the required spinning reserve (SR) capacity is performed by applying reliability constraints based on loss of load probability and expected energy not supplied (EENS) indices. Calculation of the above parameters is accomplished by employing a novel procedure based on the linear programming which it also minimizes them to achieve optimum level of the SR capacity and consequently a cost-benefit reliability constrained UC schedule. In addition, a powerful solution technique called 'integer-coded genetic algorithm (ICGA)' is being used for the solution of the proposed method. Numerical results on the IEEE reliability test system show that the consideration of transmission network unavailability has an important influence on reliability indices of the UC schedules

  6. Limitations of demand- and pressure-driven modeling for large deficient networks

    Science.gov (United States)

    Braun, Mathias; Piller, Olivier; Deuerlein, Jochen; Mortazavi, Iraj

    2017-10-01

    The calculation of hydraulic state variables for a network is an important task in managing the distribution of potable water. Over the years the mathematical modeling process has been improved by numerous researchers for utilization in new computer applications and the more realistic modeling of water distribution networks. But, in spite of these continuous advances, there are still a number of physical phenomena that may not be tackled correctly by current models. This paper will take a closer look at the two modeling paradigms given by demand- and pressure-driven modeling. The basic equations are introduced and parallels are drawn with the optimization formulations from electrical engineering. These formulations guarantee the existence and uniqueness of the solution. One of the central questions of the French and German research project ResiWater is the investigation of the network resilience in the case of extreme events or disasters. Under such extraordinary conditions where models are pushed beyond their limits, we talk about deficient network models. Examples of deficient networks are given by highly regulated flow, leakage or pipe bursts and cases where pressure falls below the vapor pressure of water. These examples will be presented and analyzed on the solvability and physical correctness of the solution with respect to demand- and pressure-driven models.

  7. Buffer Sizing in Wireless Networks: Challenges, Solutions, and Opportunities

    KAUST Repository

    Showail, Ahmad

    2016-04-01

    Buffer sizing is an important network configuration parameter that impacts the Quality of Service (QoS) characteristics of data traffic. With falling memory costs and the fallacy that \\'more is better\\', network devices are being overprovisioned with large bu ers. This may increase queueing delays experienced by a packet and subsequently impact stability of core protocols such as TCP. The problem has been studied extensively for wired networks. However, there is little work addressing the unique challenges of wireless environment such as time-varying channel capacity, variable packet inter-service time, and packet aggregation, among others. In this paper we discuss these challenges, classify the current state-of-the-art solutions, discuss their limitations, and provide directions for future research in the area.

  8. Formulation and solution of the classical seashell problem

    International Nuclear Information System (INIS)

    Illert, C.

    1987-01-01

    Despite an extensive scholarly literature dating back to classical times, seashell geometries have hiterto resisted rigorous theoretical analysis, leaving applied scientists to adopt a directionless empirical approach toward classification. The voluminousness of recent paleontological literature demonstrates the importance of this problem to applied scientists, but in no way reflects corresponding conceptual or theoretical advances beyond the XIX century thinking which was so ably summarized by Sir D'Arcy Wentworth Thompson in 1917. However, in this foundation paper for the newly emerging science of theoretical conchology, unifying theoretical considerations for the first time, permits a rigorous formulation and a complete solution of the problem of biological shell geometries. Shell coiling about the axis of symmetry can be deduced from first principles using energy considerations associated with incremental growth. The present paper shows that those shell apertures which are incurved (''cowrielike''), outflared (''stromblike'') or even backturned (''Opisthostomoidal'') are merely special cases of a much broader spectrum of ''allowable'' energy-efficient growth trajectories (tensile elastic clockspring spirals), many of which were widely used by Cretaceous ammonites. Energy considerations also dictate shell growth along the axis of symmetry, thus seashell spires can be understood in terms of certain special figures of revolution (Moebius elastic conoids), the better-known coeloconoidal and cyrtoconoidal shell spires being only two special cases arising from a whole class of topologically possible, energy efficient and biologically observed geometries. The ''wires'' and ''conoids'' of the present paper are instructive conceptual simplifications sufficient for present purposes. A second paper will later deal with generalized tubular surfaces in thre

  9. Fast and accurate solution for the SCUC problem in large-scale power systems using adapted binary programming and enhanced dual neural network

    International Nuclear Information System (INIS)

    Shafie-khah, M.; Moghaddam, M.P.; Sheikh-El-Eslami, M.K.; Catalão, J.P.S.

    2014-01-01

    Highlights: • A novel hybrid method based on decomposition of SCUC into QP and BP problems is proposed. • An adapted binary programming and an enhanced dual neural network model are applied. • The proposed EDNN is exactly convergent to the global optimal solution of QP. • An AC power flow procedure is developed for including contingency/security issues. • It is suited for large-scale systems, providing both accurate and fast solutions. - Abstract: This paper presents a novel hybrid method for solving the security constrained unit commitment (SCUC) problem. The proposed formulation requires much less computation time in comparison with other methods while assuring the accuracy of the results. Furthermore, the framework provided here allows including an accurate description of warmth-dependent startup costs, valve point effects, multiple fuel costs, forbidden zones of operation, and AC load flow bounds. To solve the nonconvex problem, an adapted binary programming method and enhanced dual neural network model are utilized as optimization tools, and a procedure for AC power flow modeling is developed for including contingency/security issues, as new contributions to earlier studies. Unlike classical SCUC methods, the proposed method allows to simultaneously solve the unit commitment problem and comply with the network limits. In addition to conventional test systems, a real-world large-scale power system with 493 units has been used to fully validate the effectiveness of the novel hybrid method proposed

  10. Energy Efficiency Perspectives of PMR Networks

    Directory of Open Access Journals (Sweden)

    Marco Dolfi

    2016-12-01

    Full Text Available Recently, the concern about energy efficiency in wireless communications has been growing rapidly. Manufacturers and researchers have developed innovative solutions, highlighting the benefits in reducing operational expenditures (OPEX and carbon footprint. Professional Mobile Radio (PMR systems, like Terrestrial Trunked Radio (TETRA, have been designed to provide voice and data services to professional users. The energy consumption is one of the critical aspects of PMR broadband solutions and a major constraint for PMR services. The future convergence of PMR to the LTE system introduces a new topic in the research discussion about the energy efficiency of wireless systems. This paper focuses on the feasibility of energy efficient solutions for current and potentially future PMR networks, by providing a mathematical formulation of power consumption in TETRA base stations and assessing possible business models and energy saving solutions for enhanced mission-critical operations. The energy efficiency evaluation has been performed by taking into account the traffic load of a deployed TETRA regional network: in the considered network scenario with 150 base stations, significant OPEX savings up to 70 thousand Euros per year of operation are achieved. Moreover, the proposed solutions allow for saving more than 1 ton of CO 2 per year.

  11. Existence and exponential stability of almost periodic solution for Hopfield-type neural networks with impulse

    International Nuclear Information System (INIS)

    Zhang Huiying; Xia Yonghui

    2008-01-01

    In this paper, some sufficient conditions are obtained for checking the existence and exponential stability of almost periodic solution for bidirectional associative memory Hopfield-type neural networks with impulse. The approaches are based on contraction principle and Gronwall-Bellman's inequality. This paper is considering the almost periodic solution for impulsive Hopfield-type neural networks

  12. Vehicular ad hoc networks standards, solutions, and research

    CERN Document Server

    Molinaro, Antonella; Scopigno, Riccardo

    2015-01-01

    This book presents vehicular ad-hoc networks (VANETs) from the their onset, gradually going into technical details, providing a clear understanding of both theoretical foundations and more practical investigation. The editors gathered top-ranking authors to provide comprehensiveness and timely content; the invited authors were carefully selected from a list of who’s who in the respective field of interest: there are as many from Academia as from Standardization and Industry sectors from around the world. The covered topics are organized around five Parts starting from an historical overview of vehicular communications and standardization/harmonization activities (Part I), then progressing to the theoretical foundations of VANETs and a description of the day-one standard-compliant solutions (Part II), hence going into details of vehicular networking and security (Part III) and to the tools to study VANETs, from mobility and channel models, to network simulators and field trial methodologies (Part IV), and fi...

  13. How to cluster in parallel with neural networks

    Science.gov (United States)

    Kamgar-Parsi, Behzad; Gualtieri, J. A.; Devaney, Judy E.; Kamgar-Parsi, Behrooz

    1988-01-01

    Partitioning a set of N patterns in a d-dimensional metric space into K clusters - in a way that those in a given cluster are more similar to each other than the rest - is a problem of interest in astrophysics, image analysis and other fields. As there are approximately K(N)/K (factorial) possible ways of partitioning the patterns among K clusters, finding the best solution is beyond exhaustive search when N is large. Researchers show that this problem can be formulated as an optimization problem for which very good, but not necessarily optimal solutions can be found by using a neural network. To do this the network must start from many randomly selected initial states. The network is simulated on the MPP (a 128 x 128 SIMD array machine), where researchers use the massive parallelism not only in solving the differential equations that govern the evolution of the network, but also by starting the network from many initial states at once, thus obtaining many solutions in one run. Researchers obtain speedups of two to three orders of magnitude over serial implementations and the promise through Analog VLSI implementations of speedups comensurate with human perceptual abilities.

  14. Coupled Fluid, Energy, and Solute Transport (CFEST) model: Formulation and user's manual

    International Nuclear Information System (INIS)

    Gupta, S.K.; Cole, C.R.; Kincaid, C.T.; Monti, A.M.

    1987-10-01

    The CFEST (Coupled Fluid, Energy, and Solute Transport) code has been developed to analyze coupled hydrologic, thermal, and solute transport processes. It treats single-pahse Darcy ground-water flow in a horizontal or vertical plane, or in fully three-dimensional space under nonisothermal conditions. The code has the capability to model discontinuous and continuous layering, time-dependent and constant sources/sinks, and transient as well as steady-stae ground-water flow. The code offers a wide choice of boundary conditions such as precsribed heads, nodal injection or withdrawal, constant or spatially varying infiltration rates, and welemental source/sink. Initial conditions for the flow analysis can be prescribed pressure or hydraulic head. The heterogeneity in aquifer permeability and porosity can be described by geologic unit or explicity for given elements. Three-dimensional elelments are generated from user-defined well logs at each surface node. To facilitate interaction between disciplines, support programs are provided to plot the finite element grid, well logs, contour maps of input and output parameters, and vertical cross sections. Ground-water travel paths and times and volumetric rates from a specified point can be determined from support programs. This report includes governing partial differential equations, finite element formulation, a use's manual, verification test examples, sample problems, and source listings. 36 refs., 121 figs., 36 tabs

  15. Detecting Network Vulnerabilities Through Graph TheoreticalMethods

    Energy Technology Data Exchange (ETDEWEB)

    Cesarz, Patrick; Pomann, Gina-Maria; Torre, Luis de la; Villarosa, Greta; Flournoy, Tamara; Pinar, Ali; Meza Juan

    2007-09-30

    Identifying vulnerabilities in power networks is an important problem, as even a small number of vulnerable connections can cause billions of dollars in damage to a network. In this paper, we investigate a graph theoretical formulation for identifying vulnerabilities of a network. We first try to find the most critical components in a network by finding an optimal solution for each possible cutsize constraint for the relaxed version of the inhibiting bisection problem, which aims to find loosely coupled subgraphs with significant demand/supply mismatch. Then we investigate finding critical components by finding a flow assignment that minimizes the maximum among flow assignments on all edges. We also report experiments on IEEE 30, IEEE 118, and WSCC 179 benchmark power networks.

  16. Promoting Wired Links in Wireless Mesh Networks: An Efficient Engineering Solution

    Science.gov (United States)

    Barekatain, Behrang; Raahemifar, Kaamran; Ariza Quintana, Alfonso; Triviño Cabrera, Alicia

    2015-01-01

    Wireless Mesh Networks (WMNs) cannot completely guarantee good performance of traffic sources such as video streaming. To improve the network performance, this study proposes an efficient engineering solution named Wireless-to-Ethernet-Mesh-Portal-Passageway (WEMPP) that allows effective use of wired communication in WMNs. WEMPP permits transmitting data through wired and stable paths even when the destination is in the same network as the source (Intra-traffic). Tested with four popular routing protocols (Optimized Link State Routing or OLSR as a proactive protocol, Dynamic MANET On-demand or DYMO as a reactive protocol, DYMO with spanning tree ability and HWMP), WEMPP considerably decreases the end-to-end delay, jitter, contentions and interferences on nodes, even when the network size or density varies. WEMPP is also cost-effective and increases the network throughput. Moreover, in contrast to solutions proposed by previous studies, WEMPP is easily implemented by modifying the firmware of the actual Ethernet hardware without altering the routing protocols and/or the functionality of the IP/MAC/Upper layers. In fact, there is no need for modifying the functionalities of other mesh components in order to work with WEMPPs. The results of this study show that WEMPP significantly increases the performance of all routing protocols, thus leading to better video quality on nodes. PMID:25793516

  17. GeoNetwork powered GI-cat: a geoportal hybrid solution

    Science.gov (United States)

    Baldini, Alessio; Boldrini, Enrico; Santoro, Mattia; Mazzetti, Paolo

    2010-05-01

    To the aim of setting up a Spatial Data Infrastructures (SDI) the creation of a system for the metadata management and discovery plays a fundamental role. An effective solution is the use of a geoportal (e.g. FAO/ESA geoportal), that has the important benefit of being accessible from a web browser. With this work we present a solution based integrating two of the available frameworks: GeoNetwork and GI-cat. GeoNetwork is an opensource software designed to improve accessibility of a wide variety of data together with the associated ancillary information (metadata), at different scale and from multidisciplinary sources; data are organized and documented in a standard and consistent way. GeoNetwork implements both the Portal and Catalog components of a Spatial Data Infrastructure (SDI) defined in the OGC Reference Architecture. It provides tools for managing and publishing metadata on spatial data and related services. GeoNetwork allows harvesting of various types of web data sources e.g. OGC Web Services (e.g. CSW, WCS, WMS). GI-cat is a distributed catalog based on a service-oriented framework of modular components and can be customized and tailored to support different deployment scenarios. It can federate a multiplicity of catalogs services, as well as inventory and access services in order to discover and access heterogeneous ESS resources. The federated resources are exposed by GI-cat through several standard catalog interfaces (e.g. OGC CSW AP ISO, OpenSearch, etc.) and by the GI-cat extended interface. Specific components implement mediation services for interfacing heterogeneous service providers, each of which exposes a specific standard specification; such components are called Accessors. These mediating components solve providers data modelmultiplicity by mapping them onto the GI-cat internal data model which implements the ISO 19115 Core profile. Accessors also implement the query protocol mapping; first they translate the query requests expressed

  18. Flow Formulations for Curriculum-based Course Timetabling

    DEFF Research Database (Denmark)

    Bagger, Niels-Christian Fink; Kristiansen, Simon; Sørensen, Matias

    2017-01-01

    lower bound on one data instance in the benchmark data set from the second international timetabling competition. Regarding upper bounds, the formulation based on the minimum cost flow problem performs better on average than other mixed integer programming approaches for the CTT.......In this paper we present two mixed-integer programming formulations for the Curriculum based Course Timetabling Problem (CTT). We show that the formulations contain underlying network structures by dividing the CTT into two separate models and then connect the two models using flow formulation...... techniques. The first mixed-integer programming formulation is based on an underlying minimum cost flow problem, which decreases the number of integer variables significantly and improves the performance compared to an intuitive mixed-integer programming formulation. The second formulation is based...

  19. Industrial wastewater treatment network based on recycling and rerouting strategies for retrofit design schemes

    DEFF Research Database (Denmark)

    Sueviriyapan, Natthapong; Suriyapraphadilok, Uthaiporn; Siemanond, Kitipat

    2015-01-01

    a generic model-based synthesis and design framework for retrofit wastewater treatment networks (WWTN) of an existing industrial process. The developed approach is suitable for grassroots and retrofit systems and adaptable to a wide range of wastewater treatment problems. A sequential solution procedure...... is employed to solve a network superstructure-based optimization problem formulated as Mixed Integer Linear and/or Non-Linear Programming (MILP/MINLP). Data from a petroleum refinery effluent treatment plant together with special design constraints are employed to formulate different design schemes based...... for the future development of the existing wastewater treatment process....

  20. Head to head comparison of the formulation and stability of concentrated solutions of HESylated versus PEGylated anakinra.

    Science.gov (United States)

    Liebner, Robert; Meyer, Martin; Hey, Thomas; Winter, Gerhard; Besheer, Ahmed

    2015-02-01

    Although PEGylation of biologics is currently the gold standard for half-life extension, the technology has a number of limitations, most importantly the non-biodegradability of PEG and the extremely high viscosity at high concentrations. HESylation is a promising alternative based on coupling to the biodegradable polymer hydroxyethyl starch (HES). In this study, we are comparing HESylation with PEGylation regarding the effect on the protein's physicochemical properties, as well as on formulation at high concentrations, where protein stability and viscosity can be compromised. For this purpose, the model protein anakinra is coupled to HES or PEG by reductive amination. Results show that coupling of HES or PEG had practically no effect on the protein's secondary structure, and that it reduced protein affinity by one order of magnitude, with HESylated anakinra more affine than the PEGylated protein. The viscosity of HESylated anakinra at protein concentrations up to 75 mg/mL was approximately 40% lower than that of PEG-anakinra. Both conjugates increased the apparent melting temperature of anakinra in concentrated solutions. Finally, HESylated anakinra was superior to PEG-anakinra regarding monomer recovery after 8 weeks of storage at 40°C. These results show that HESylating anakinra offers formulation advantages compared with PEGylation, especially for concentrated protein solutions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Effective Data Backup System Using Storage Area Network Solution ...

    African Journals Online (AJOL)

    The primary cause of data loss is lack or non- existent of data backup. Storage Area Network Solution (SANS) is internet-based software which will collect clients data and host them in several locations to forestall data loss in case of disaster in one location. The researcher used adobe Dreamweaver (CSC3) embedded with ...

  2. Pareto Optimal Solutions for Network Defense Strategy Selection Simulator in Multi-Objective Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2018-01-01

    Full Text Available Using Pareto optimization in Multi-Objective Reinforcement Learning (MORL leads to better learning results for network defense games. This is particularly useful for network security agents, who must often balance several goals when choosing what action to take in defense of a network. If the defender knows his preferred reward distribution, the advantages of Pareto optimization can be retained by using a scalarization algorithm prior to the implementation of the MORL. In this paper, we simulate a network defense scenario by creating a multi-objective zero-sum game and using Pareto optimization and MORL to determine optimal solutions and compare those solutions to different scalarization approaches. We build a Pareto Defense Strategy Selection Simulator (PDSSS system for assisting network administrators on decision-making, specifically, on defense strategy selection, and the experiment results show that the Satisficing Trade-Off Method (STOM scalarization approach performs better than linear scalarization or GUESS method. The results of this paper can aid network security agents attempting to find an optimal defense policy for network security games.

  3. Optimal design of cluster-based ad-hoc networks using probabilistic solution discovery

    International Nuclear Information System (INIS)

    Cook, Jason L.; Ramirez-Marquez, Jose Emmanuel

    2009-01-01

    The reliability of ad-hoc networks is gaining popularity in two areas: as a topic of academic interest and as a key performance parameter for defense systems employing this type of network. The ad-hoc network is dynamic and scalable and these descriptions are what attract its users. However, these descriptions are also synonymous for undefined and unpredictable when considering the impacts to the reliability of the system. The configuration of an ad-hoc network changes continuously and this fact implies that no single mathematical expression or graphical depiction can describe the system reliability-wise. Previous research has used mobility and stochastic models to address this challenge successfully. In this paper, the authors leverage the stochastic approach and build upon it a probabilistic solution discovery (PSD) algorithm to optimize the topology for a cluster-based mobile ad-hoc wireless network (MAWN). Specifically, the membership of nodes within the back-bone network or networks will be assigned in such as way as to maximize reliability subject to a constraint on cost. The constraint may also be considered as a non-monetary cost, such as weight, volume, power, or the like. When a cost is assigned to each component, a maximum cost threshold is assigned to the network, and the method is run; the result is an optimized allocation of the radios enabling back-bone network(s) to provide the most reliable network possible without exceeding the allowable cost. The method is intended for use directly as part of the architectural design process of a cluster-based MAWN to efficiently determine an optimal or near-optimal design solution. It is capable of optimizing the topology based upon all-terminal reliability (ATR), all-operating terminal reliability (AoTR), or two-terminal reliability (2TR)

  4. Exploring network operations for data and information networks

    Science.gov (United States)

    Yao, Bing; Su, Jing; Ma, Fei; Wang, Xiaomin; Zhao, Xiyang; Yao, Ming

    2017-01-01

    Barabási and Albert, in 1999, formulated scale-free models based on some real networks: World-Wide Web, Internet, metabolic and protein networks, language or sexual networks. Scale-free networks not only appear around us, but also have high qualities in the world. As known, high quality information networks can transfer feasibly and efficiently data, clearly, their topological structures are very important for data safety. We build up network operations for constructing large scale of dynamic networks from smaller scale of network models having good property and high quality. We focus on the simplest operators to formulate complex operations, and are interesting on the closeness of operations to desired network properties.

  5. Epidemic spreading in weighted networks: an edge-based mean-field solution.

    Science.gov (United States)

    Yang, Zimo; Zhou, Tao

    2012-05-01

    Weight distribution greatly impacts the epidemic spreading taking place on top of networks. This paper presents a study of a susceptible-infected-susceptible model on regular random networks with different kinds of weight distributions. Simulation results show that the more homogeneous weight distribution leads to higher epidemic prevalence, which, unfortunately, could not be captured by the traditional mean-field approximation. This paper gives an edge-based mean-field solution for general weight distribution, which can quantitatively reproduce the simulation results. This method could be applied to characterize the nonequilibrium steady states of dynamical processes on weighted networks.

  6. An analysis of periodic solutions of bi-directional associative memory networks with time-varying delays

    International Nuclear Information System (INIS)

    Cao Jinde; Jiang Qiuhao

    2004-01-01

    In this Letter, several sufficient conditions are derived for the existence and uniqueness of periodic oscillatory solution for bi-directional associative memory (BAM) networks with time-varying delays by employing a new Lyapunov functional and an elementary inequality, and all other solutions of the BAM networks converge exponentially to the unique periodic solution. These criteria are presented in terms of system parameters and have important leading significance in the design and applications of periodic neural circuits for delayed BAM. As an illustration, two numerical examples are worked out using the results obtained

  7. PrECast: An Efficient Crypto-Free Solution for Broadcast-Based Attacks in IPv4 Networks

    Directory of Open Access Journals (Sweden)

    Dalal Hanna

    2018-05-01

    Full Text Available Broadcasting is one of the essential features in the Internet Protocol Ver 4 (IPv4. Attackers often exploit this feature of the IP protocol to launch several attacks against a network or an individual host. Attackers may either be a part of a Local Area Network (LAN or outside a LAN to launch these attacks. There are numerous papers available in the literature to solve problems resulting from IP broadcasting. However, all these solutions target a specific problem that results from IP broadcasting. Furthermore, these solutions use either a computationally-intensive cryptographic scheme, the a priori relation between the host and the network or a modified protocol stack at every host. In this paper, we provide a seamless and transparent solution to eliminate IP broadcasting and thus eliminate all problems related to IP broadcasting. Our proposed solution is crypto-free and does not need any modification to the protocol stack.

  8. Super-Group Field Cosmology in Batalin-Vilkovisky Formulation

    Science.gov (United States)

    Upadhyay, Sudhaker

    2016-09-01

    In this paper we study the third quantized super-group field cosmology, a model in multiverse scenario, in Batalin-Vilkovisky (BV) formulation. Further, we propose the superfield/super-antifield dependent BRST symmetry transformations. Within this formulation we establish connection between the two different solutions of the quantum master equation within the BV formulation.

  9. Emergency Communications Network for Disasters Management in Venezuela

    Science.gov (United States)

    Burguillos, C.; Deng, H.

    2018-04-01

    The integration and use of different space technology applications for disasters management, play an important role at the time of prevents the causes and mitigates the effects of the natural disasters. Nevertheless, the space technology counts with the appropriate technological resources to provide the accurate and timely information required to support in the decision making in case of disasters. Considering the aforementioned aspects, in this research is presented the design and implementation of an Emergency Communications Network for Disasters Management in Venezuela. Network based on the design of a topology that integrates the satellites platforms in orbit operation under administration of Venezuelan state, such as: the communications satellite VENESAT-1 and the remote sensing satellites VRSS-1 and VRSS-2; as well as their ground stations with the aim to implement an emergency communications network to be activated in case of disasters which affect the public and private communications infrastructures in Venezuela. In this regard, to design the network several technical and operational specifications were formulated, between them: Emergency Strategies to Maneuver the VRSS-1 and VRSS-2 satellites for optimal images capture and processing, characterization of the VENESAT-1 transponders and radiofrequencies for emergency communications services, technologies solutions formulation and communications links design for disaster management. As result, the emergency network designed allows to put in practice diverse communications technologies solutions and different scheme or media for images exchange between the areas affected for disasters and the entities involved in the disasters management tasks, providing useful data for emergency response and infrastructures recovery.

  10. Energy Efficient Monitoring for Intrusion Detection in Battery-Powered Wireless Mesh Networks

    KAUST Repository

    Hassanzadeh, Amin

    2011-07-18

    Wireless Mesh Networks (WMN) are easy-to-deploy, low cost solutions for providing networking and internet services in environments with no network infrastructure, e.g., disaster areas and battlefields. Since electric power is not readily available in such environments battery-powered mesh routers, operating in an energy efficient manner, are required. To the best of our knowledge, the impact of energy efficient solutions, e.g., involving duty-cycling, on WMN intrusion detection systems, which require continuous monitoring, remains an open research problem. In this paper we propose that carefully chosen monitoring mesh nodes ensure continuous and complete detection coverage, while allowing non-monitoring mesh nodes to save energy through duty-cycling. We formulate the monitoring node selection problem as an optimization problem and propose distributed and centralized solutions for it, with different tradeoffs. Through extensive simulations and a proof-of-concept hardware/software implementation we demonstrate that our solutions extend the WMN lifetime by 8%, while ensuring, at the minimum, a 97% intrusion detection rate.

  11. Admission Control Threshold in Cellular Relay Networks with Power Adjustment

    Directory of Open Access Journals (Sweden)

    Lee Ki-Dong

    2009-01-01

    Full Text Available Abstract In the cellular network with relays, the mobile station can benefit from both coverage extension and capacity enhancement. However, the operation complexity increases as the number of relays grows up. Furthermore, in the cellular network with cooperative relays, it is even more complex because of an increased dimension of signal-to-noise ratios (SNRs formed in the cooperative wireless transmission links. In this paper, we propose a new method for admission capacity planning in a cellular network using a cooperative relaying mechanism called decode-and-forward. We mathematically formulate the dropping ratio using the randomness of "channel gain." With this, we formulate an admission threshold planning problem as a simple optimization problem, where we maximize the accommodation capacity (in number of connections subject to two types of constraints. (1 A constraint that the sum of the transmit powers of the source node and relay node is upper-bounded where both nodes can jointly adjust the transmit power. (2 A constraint that the dropping ratio is upper-bounded by a certain threshold value. The simplicity of the problem formulation facilitates its solution in real-time. We believe that the proposed planning method can provide an attractive guideline for dimensioning a cellular relay network with cooperative relays.

  12. On Network Coded Distributed Storage

    DEFF Research Database (Denmark)

    Cabrera Guerrero, Juan Alberto; Roetter, Daniel Enrique Lucani; Fitzek, Frank Hanns Paul

    2016-01-01

    systems typically rely on expensive infrastructure with centralized control to store, repair and access the data. This approach introduces a large delay for accessing and storing the data driven in part by a high RTT between users and the cloud. These characteristics are at odds with the massive increase......This paper focuses on distributed fog storage solutions, where a number of unreliable devices organize themselves in Peer-to-Peer (P2P) networks with the purpose to store reliably their data and that of other devices and/or local users and provide lower delay and higher throughput. Cloud storage...... of devices and generated data in coming years as well as the requirements of low latency in many applications. We focus on characterizing optimal solutions for maintaining data availability when nodes in the fog continuously leave the network. In contrast with state-of-the-art data repair formulations, which...

  13. Protocol design and analysis for cooperative wireless networks

    CERN Document Server

    Song, Wei; Jin, A-Long

    2017-01-01

    This book focuses on the design and analysis of protocols for cooperative wireless networks, especially at the medium access control (MAC) layer and for crosslayer design between the MAC layer and the physical layer. It highlights two main points that are often neglected in other books: energy-efficiency and spatial random distribution of wireless devices. Effective methods in stochastic geometry for the design and analysis of wireless networks are also explored. After providing a comprehensive review of existing studies in the literature, the authors point out the challenges that are worth further investigation. Then, they introduce several novel solutions for cooperative wireless network protocols that reduce energy consumption and address spatial random distribution of wireless nodes. For each solution, the book offers a clear system model and problem formulation, details of the proposed cooperative schemes, comprehensive performance analysis, and extensive numerical and simulation results that validate th...

  14. A GPU-based solution for fast calculation of the betweenness centrality in large weighted networks

    Directory of Open Access Journals (Sweden)

    Rui Fan

    2017-12-01

    Full Text Available Betweenness, a widely employed centrality measure in network science, is a decent proxy for investigating network loads and rankings. However, its extremely high computational cost greatly hinders its applicability in large networks. Although several parallel algorithms have been presented to reduce its calculation cost for unweighted networks, a fast solution for weighted networks, which are commonly encountered in many realistic applications, is still lacking. In this study, we develop an efficient parallel GPU-based approach to boost the calculation of the betweenness centrality (BC for large weighted networks. We parallelize the traditional Dijkstra algorithm by selecting more than one frontier vertex each time and then inspecting the frontier vertices simultaneously. By combining the parallel SSSP algorithm with the parallel BC framework, our GPU-based betweenness algorithm achieves much better performance than its CPU counterparts. Moreover, to further improve performance, we integrate the work-efficient strategy, and to address the load-imbalance problem, we introduce a warp-centric technique, which assigns many threads rather than one to a single frontier vertex. Experiments on both realistic and synthetic networks demonstrate the efficiency of our solution, which achieves 2.9× to 8.44× speedups over the parallel CPU implementation. Our algorithm is open-source and free to the community; it is publicly available through https://dx.doi.org/10.6084/m9.figshare.4542405. Considering the pervasive deployment and declining price of GPUs in personal computers and servers, our solution will offer unprecedented opportunities for exploring betweenness-related problems and will motivate follow-up efforts in network science.

  15. The Henry-Saltwater Intrusion Benchmark – Alternatives in Multiphysics Formulations and Solution Strategies

    Directory of Open Access Journals (Sweden)

    E Holzbecher

    2016-03-01

    Full Text Available In a classical paper Henry set up a conceptual model for simulating saltwater intrusion into coastal aquifers. Up to now the problem has been taken up by software developers and modellers as a benchmark for codes simulating coupled flow and transport in porous media. The Henry test case has been treated using different numerical methods based on various formulations of differential equations. We compare several of these approaches using multiphysics software. We model the problem using Finite Elements, utilizing the primitive variables and the streamfunction approach, both with and without using the Oberbeck-Boussinesq assumption. We compare directly coupled solvers with segregated solver strategies. Changing finite element orders and mesh refinement, we find that models based on the streamfunction converge 2-4 times faster than runs based on primitive variables. Concerning the solution strategy, we find an advantage of Picard iterations compared to monolithic Newton iterations.

  16. Existence and global exponential stability of periodic solution of memristor-based BAM neural networks with time-varying delays.

    Science.gov (United States)

    Li, Hongfei; Jiang, Haijun; Hu, Cheng

    2016-03-01

    In this paper, we investigate a class of memristor-based BAM neural networks with time-varying delays. Under the framework of Filippov solutions, boundedness and ultimate boundedness of solutions of memristor-based BAM neural networks are guaranteed by Chain rule and inequalities technique. Moreover, a new method involving Yoshizawa-like theorem is favorably employed to acquire the existence of periodic solution. By applying the theory of set-valued maps and functional differential inclusions, an available Lyapunov functional and some new testable algebraic criteria are derived for ensuring the uniqueness and global exponential stability of periodic solution of memristor-based BAM neural networks. The obtained results expand and complement some previous work on memristor-based BAM neural networks. Finally, a numerical example is provided to show the applicability and effectiveness of our theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    Science.gov (United States)

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper. PMID:22163914

  18. Wearable and implantable wireless sensor network solutions for healthcare monitoring.

    Science.gov (United States)

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper.

  19. Concurrent conditional clustering of multiple networks: COCONETS.

    Directory of Open Access Journals (Sweden)

    Sabrina Kleessen

    Full Text Available The accumulation of high-throughput data from different experiments has facilitated the extraction of condition-specific networks over the same set of biological entities. Comparing and contrasting of such multiple biological networks is in the center of differential network biology, aiming at determining general and condition-specific responses captured in the network structure (i.e., included associations between the network components. We provide a novel way for comparison of multiple networks based on determining network clustering (i.e., partition into communities which is optimal across the set of networks with respect to a given cluster quality measure. To this end, we formulate the optimization-based problem of concurrent conditional clustering of multiple networks, termed COCONETS, based on the modularity. The solution to this problem is a clustering which depends on all considered networks and pinpoints their preserved substructures. We present theoretical results for special classes of networks to demonstrate the implications of conditionality captured by the COCONETS formulation. As the problem can be shown to be intractable, we extend an existing efficient greedy heuristic and applied it to determine concurrent conditional clusters on coexpression networks extracted from publically available time-resolved transcriptomics data of Escherichia coli under five stresses as well as on metabolite correlation networks from metabolomics data set from Arabidopsis thaliana exposed to eight environmental conditions. We demonstrate that the investigation of the differences between the clustering based on all networks with that obtained from a subset of networks can be used to quantify the specificity of biological responses. While a comparison of the Escherichia coli coexpression networks based on seminal properties does not pinpoint biologically relevant differences, the common network substructures extracted by COCONETS are supported by

  20. An exact approach for aggregated formulations

    DEFF Research Database (Denmark)

    Gamst, Mette; Spoorendonk, Simon; Røpke, Stefan

    Aggregating formulations is a powerful approach for problems to take on tractable forms. Aggregation may lead to loss of information, i.e. the aggregated formulation may be an approximation of the original problem. In branch-and-bound context, aggregation can also complicate branching, e.g. when...... optimality cannot be guaranteed by branching on aggregated variables. We present a generic exact solution method to remedy the drawbacks of aggregation. It combines the original and aggregated formulations and applies Benders' decomposition. We apply the method to the Split Delivery Vehicle Routing Problem....

  1. Incorporating electrokinetic effects in the porochemoelastic inclined wellbore formulation and solution

    Directory of Open Access Journals (Sweden)

    Vinh X. Nguyen

    2010-03-01

    Full Text Available The porochemoelectroelastic analytical models and solutions have been used to describe the response of chemically active and electrically charged saturated porous media such as clays, shales, and biological tissues. However, these attempts have been restricted to one-dimensional consolidation problems, which are very limited in practice and not general enough to serve as benchmark solutions for numerical validation. This work summarizes the general linear porochemoelectroelastic formulation and presents the solution of an inclined wellbore drilled in a fluid-saturated chemically active and ionized formation, such as shale, and subjected to a three-dimensional in-situ state of stress. The analytical solution to this geometry incorporates the coupled solid deformation and simultaneous fluid/ion flows induced by the combined influences of pore pressure, chemical potential, and electrical potential gradients under isothermal conditions. The formation pore fluid is modeled as an electrolyte solution comprised of a solvent and one type of dissolved cation and anion. The analytical approach also integrates into the solution the quantitative use of the cation exchange capacity (CEC commonly obtained from laboratory measurements on shale samples. The results for stresses and pore pressure distributions due to the coupled electrochemical effects are illustrated and plotted in the vicinity of the inclined wellbore and compared with the classical porochemoelastic and poroelastic solutions.Modelos analíticos poroelásticos incluindo acoplamento químico e elétrico e soluções têm sido utilizados paradescrever a resposta de meios porosos saturados ativos química e eletricamente tais como argilas, folhelhos e tecidos biológicos. Entretanto tais tentativas têm sido restritas a problemas de consolidação unidimensional os quais exibem limitações na prática não constituindo exemplos realistas para validação de soluções numéricas. Este trabalho

  2. Convergence and periodic solutions for the input impedance of a standard ladder network

    International Nuclear Information System (INIS)

    Ucak, C; Acar, C

    2007-01-01

    The input impedance of an infinite ladder network is computed by using the recursive relation and by assuming that the input impedance does not change when a new block is added to the network. However, this assumption is not true in general and standard textbooks do not always treat these networks correctly. This paper develops a general solution to obtain the input impedance of a standard ladder network of impedances and admittances for any number of blocks. Then, this result is used to provide the convergence condition for the infinite ladder network. The conditions which lead to periodic input impedance are exploited. It is shown that there are infinite numbers of periodic points and no paradoxical behaviour exists in the standard ladder network

  3. Entropy of network ensembles

    Science.gov (United States)

    Bianconi, Ginestra

    2009-03-01

    In this paper we generalize the concept of random networks to describe network ensembles with nontrivial features by a statistical mechanics approach. This framework is able to describe undirected and directed network ensembles as well as weighted network ensembles. These networks might have nontrivial community structure or, in the case of networks embedded in a given space, they might have a link probability with a nontrivial dependence on the distance between the nodes. These ensembles are characterized by their entropy, which evaluates the cardinality of networks in the ensemble. In particular, in this paper we define and evaluate the structural entropy, i.e., the entropy of the ensembles of undirected uncorrelated simple networks with given degree sequence. We stress the apparent paradox that scale-free degree distributions are characterized by having small structural entropy while they are so widely encountered in natural, social, and technological complex systems. We propose a solution to the paradox by proving that scale-free degree distributions are the most likely degree distribution with the corresponding value of the structural entropy. Finally, the general framework we present in this paper is able to describe microcanonical ensembles of networks as well as canonical or hidden-variable network ensembles with significant implications for the formulation of network-constructing algorithms.

  4. Security in software-defined wireless sensor networks: threats, challenges and potential solutions

    CSIR Research Space (South Africa)

    Pritchard, SW

    2017-07-01

    Full Text Available have focused on low resource cryptography methods to secure the network [27] - [29], [33]. Cryptography methods are separated into symmetric cryptography and asymmetric cryptography. While symmetric cryptography solutions are preferred due to low... implementation cost and efficiency [5], they present many problems when managing large networks and attempts to improve this cryptography for WSNs [11] have resulted in the cost of resources. Symmetric cryptography is also difficult to implement in software...

  5. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    Science.gov (United States)

    Lee, Charles H.; Cheung, Kar-Ming

    2012-01-01

    In this paper, we propose to solve the constrained optimization problem in two phases. The first phase uses heuristic methods such as the ant colony method, particle swarming optimization, and genetic algorithm to seek a near optimal solution among a list of feasible initial populations. The final optimal solution can be found by using the solution of the first phase as the initial condition to the SQP algorithm. We demonstrate the above problem formulation and optimization schemes with a large-scale network that includes the DSN ground stations and a number of spacecraft of deep space missions.

  6. Energy-Aware Routing in Multiple Domains Software-Defined Networks

    Directory of Open Access Journals (Sweden)

    Adriana FERNÁNDEZ-FERNÁNDEZ

    2016-12-01

    Full Text Available The growing energy consumption of communication networks has attracted the attention of the networking researchers in the last decade. In this context, the new architecture of Software-Defined Networks (SDN allows a flexible programmability, suitable for the power-consumption optimization problem. In this paper we address the issue of designing a novel distributed routing algorithm that optimizes the power consumption in large scale SDN with multiple domains. The solution proposed, called DEAR (Distributed Energy-Aware Routing, tackles the problem of minimizing the number of links that can be used to satisfy a given data traffic demand under performance constraints such as control traffic delay and link utilization. To this end, we present a complete formulation of the optimization problem that considers routing requirements for control and data plane communications. Simulation results confirm that the proposed solution enables the achievement of significant energy savings.

  7. Business Collaboration in Food Networks: Incremental Solution Development

    Directory of Open Access Journals (Sweden)

    Harald Sundmaeker

    2014-10-01

    Full Text Available The paper will present an approach for an incremental solution development that is based on the usage of the currently developed Internet based FIspace business collaboration platform. Key element is the clear segmentation of infrastructures that are either internal or external to the collaborating business entity in the food network. On the one hand, the approach enables to differentiate between specific centralised as well as decentralised ways for data storage and hosting of IT based functionalities. The selection of specific dataexchange protocols and data models is facilitated. On the other hand, the supported solution design and subsequent development is focusing on reusable “software Apps” that can be used on their own and are incorporating a clear added value for the business actors. It will be outlined on how to push the development and introduction of Apps that do not require basic changes of the existing infrastructure. The paper will present an example that is based on the development of a set of Apps for the exchange of product quality related information in food networks, specifically addressing fresh fruits and vegetables. It combines workflow support for data exchange from farm to retail as well as to provide quality feedback information to facilitate the business process improvement. Finally, the latest status of theFIspace platform development will be outlined. Key features and potential ways for real users and software developers in using the FIspace platform that is initiated by science and industry will be outlined.

  8. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    Directory of Open Access Journals (Sweden)

    Ashraf Darwish

    2011-05-01

    Full Text Available Wireless sensor network (WSN technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper.

  9. Short-term dissolution experiments on various cement formulations in standard Canadian shield saline solution in the presence of clay

    International Nuclear Information System (INIS)

    Heimann, R.B.; Stanchell, M.A.T.

    1986-12-01

    A commercially available sulphate-resisting portland cement (SRPC) and three cement formulations derived from it by adding 10 and 20 vol% silica fume or 35 vol% fly-ash have been leached in Standard Canadian Shield Saline Solution (SCSSS) with added calcium-montmorillonite or sodium-montmorillonite at 150 degrees C for 14 days. The leach solutions have been analyzed by atomic absorption spectroscopy for silicon, magensium, iron and potassium, and by inductively coupled plasma spectrometry for aluminum and phosphorous. The surfaces of the leached samples have been investigated by scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy, and by X-ray powder diffraction methods. Cumulative pore size distrubtion curves have been recorded for as-cured and leached cement samples. It has been shown that the presence of clay accelerates the rate of dissolution of the various cements, and that the pH of the leaching solutions plays a dominant role in the elemental release kinetics

  10. New results of almost periodic solutions for cellular neural networks with mixed delays

    International Nuclear Information System (INIS)

    Zhao Weirui; Zhang Huanshui

    2009-01-01

    In this paper, for cellular neural networks with mixed delays, we prove some new results on the existence of almost periodic solutions by contraction principle. The global exponential stability of almost periodic solutions is discussed further, and conditions for exponential convergence are given. The conditions we obtained are weaker than the previously known ones and can be easily reduced to several special cases.

  11. Optimal Thermal Unit Commitment Solution integrating Renewable Energy with Generator Outage

    Directory of Open Access Journals (Sweden)

    S. Sivasakthi

    2017-06-01

    Full Text Available The increasing concern of global climate changes, the promotion of renewable energy sources, primarily wind generation, is a welcome move to reduce the pollutant emissions from conventional power plants. Integration of wind power generation with the existing power network is an emerging research field. This paper presents a meta-heuristic algorithm based approach to determine the feasible dispatch solution for wind integrated thermal power system. The Unit Commitment (UC process aims to identify the best feasible generation scheme of the committed units such that the overall generation cost is reduced, when subjected to a variety of constraints at each time interval. As the UC formulation involves many variables and system and operational constraints, identifying the best solution is still a research task. Nowadays, it is inevitable to include power system reliability issues in operation strategy. The generator failure and malfunction are the prime influencing factor for reliability issues hence they have considered in UC formulation of wind integrated thermal power system. The modern evolutionary algorithm known as Grey Wolf Optimization (GWO algorithm is applied to solve the intended UC problem. The potential of the GWO algorithm is validated by the standard test systems. Besides, the ramp rate limits are also incorporated in the UC formulation. The simulation results reveal that the GWO algorithm has the capability of obtaining economical resolutions with good solution quality.

  12. A network of experimental forests and ranges: Providing soil solutions for a changing world

    Science.gov (United States)

    Mary Beth. Adams

    2010-01-01

    The network of experimental forests and ranges of the USDA Forest Service represents significant opportunities to provide soil solutions to critical issues of a changing world. This network of 81 experimental forests and ranges encompasses broad geographic, biological, climatic and physical scales, and includes long-term data sets, and long-term experimental...

  13. Network Coding for Backhaul Offloading in D2D Cooperative Fog Data Networks

    Directory of Open Access Journals (Sweden)

    Ben Quinton

    2018-01-01

    Full Text Available Future distributed data networks are expected to be assisted by users cooperation and coding schemes. Given the explosive increase in the end-users’ demand for download of the content from the servers, in this paper, the implementation of instantly decodable network coding (IDNC is considered in full-duplex device-to-device (D2D cooperative fog data networks. In particular, this paper is concerned with designing efficient transmission schemes to offload traffic from the expensive backhaul of network servers by employing IDNC and users cooperation. The generalized framework where users send request for multiple packets and the transmissions are subject to erasure is considered. The optimal problem formulation is presented using the stochastic shortest path (SSP technique over the IDNC graph with induced subgraphs. However, as the optimal solution suffers from the intractability of being NP-hard, it is not suitable for real-time communications. The complexity of the problem is addressed by presenting a greedy heuristic algorithm used over the proposed graph model. The paper shows that by implementing IDNC in a full-duplex cooperative D2D network model significant reduction in the number of downloads required from the servers can be achieved, which will result in offloading of the backhaul servers and thus saving valuable servers’ resources. It is also shown that the performance of the proposed heuristic algorithm is very close to the optimal solution with much lower computational complexity.

  14. Sterilization of solutions for parenterals products. Problem analysis

    Directory of Open Access Journals (Sweden)

    Yanelys Montes-González

    2017-09-01

    Full Text Available The solutions for the formulation of parenteral products must be sterile before the aseptic formulation process. For this reason, different methods of sterilization referred in the literature are analyzed. Thermodynamic criteria that rule the sterilization are presented. Furthermore, previous experiences in the sterilization of solutions for the formulation of parental products in an autoclave are analyzed, that take large time of processing and only low volumes of solution can be handled. Using jacketed stirred tanks for the sterilization may solve the problem and, therefore, criteria for the design of the later that allow to process high volumes of solution for the formulation of parenteral products are shown.

  15. Tensor network method for reversible classical computation

    Science.gov (United States)

    Yang, Zhi-Cheng; Kourtis, Stefanos; Chamon, Claudio; Mucciolo, Eduardo R.; Ruckenstein, Andrei E.

    2018-03-01

    We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017), 10.1038/ncomms15303]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.

  16. Optimal Node Placement in Underwater Wireless Sensor Networks

    KAUST Repository

    Felamban, M.

    2013-03-25

    Wireless Sensor Networks (WSN) are expected to play a vital role in the exploration and monitoring of underwater areas which are not easily reachable by humans. However, underwater communication via acoustic waves is subject to several performance limitations that are very different from those used for terresstrial networks. In this paper, we investigate node placement for building an initial underwater WSN infrastructure. We formulate this problem as a nonlinear mathematical program with the objective of minimizing the total transmission loss under a given number of sensor nodes and targeted coverage volume. The obtained solution is the location of each node represented via a truncated octahedron to fill out the 3D space. Experiments are conducted to verify the proposed formulation, which is solved using Matlab optimization tool. Simulation is also conducted using an ns-3 simulator, and the simulation results are consistent with the obtained results from mathematical model with less than 10% error.

  17. Dual-mode ultraflow access networks: a hybrid solution for the access bottleneck

    Science.gov (United States)

    Kazovsky, Leonid G.; Shen, Thomas Shunrong; Dhaini, Ahmad R.; Yin, Shuang; De Leenheer, Marc; Detwiler, Benjamin A.

    2013-12-01

    Optical Flow Switching (OFS) is a promising solution for large Internet data transfers. In this paper, we introduce UltraFlow Access, a novel optical access network architecture that offers dual-mode service to its end-users: IP and OFS. With UltraFlow Access, we design and implement a new dual-mode control plane and a new dual-mode network stack to ensure efficient connection setup and reliable and optimal data transmission. We study the impact of the UltraFlow system's design on the network throughput. Our experimental results show that with an optimized system design, near optimal (around 10 Gb/s) OFS data throughput can be attained when the line rate is 10Gb/s.

  18. Estimating the Capacity of Urban Transportation Networks with an Improved Sensitivity Based Method

    Directory of Open Access Journals (Sweden)

    Muqing Du

    2015-01-01

    Full Text Available The throughput of a given transportation network is always of interest to the traffic administrative department, so as to evaluate the benefit of the transportation construction or expansion project before its implementation. The model of the transportation network capacity formulated as a mathematic programming with equilibrium constraint (MPEC well defines this problem. For practical applications, a modified sensitivity analysis based (SAB method is developed to estimate the solution of this bilevel model. The high-efficient origin-based (OB algorithm is extended for the precise solution of the combined model which is integrated in the network capacity model. The sensitivity analysis approach is also modified to simplify the inversion of the Jacobian matrix in large-scale problems. The solution produced in every iteration of SAB is restrained to be feasible to guarantee the success of the heuristic search. From the numerical experiments, the accuracy of the derivatives for the linear approximation could significantly affect the converging of the SAB method. The results also show that the proposed method could obtain good suboptimal solutions from different starting points in the test examples.

  19. Fluid and solute transport in a network of channels

    International Nuclear Information System (INIS)

    Moreno, L.; Neretnieks, I.

    1991-09-01

    A three-dimensional channel network model is presented. The fluid flow and solute transport are assumed to take place through a network of connected channels. The channels are generated assuming that the conductances are lognormally distributed. The flow is calculated resolving the pressure distribution and the sole transport is calculated by using a particle tracking technique. The model includes diffusion into the rock matrix and sorption within the matrix in addition to advection along the channel network. Different approaches are used to describe the channel volume and its relation to the conductivity. To quantify the diffusion into the rock matrix the size of the flow wetted surface (contact surface between the channel and the rock) is needed in addition to the diffusion properties and the sorption capacity of the rock. Two different geometries were simulated: regional parallel flow and convergent flow toward a tunnel. In the generation of the channel network, it is found that its connectivity is reduced when the standard deviation in conductances is increased. For large standard deviations, the water conducting channels are found to be few. Standard deviations for the distribution of the effluent channel flowrates were calculated. Comparisons were made with experimental data from drifts and tunnels as well as boreholes as a means to validate the model. (au) (31 refs.)

  20. Formulation of Thermosensitive Hydrogel Containing Cyclodextrin ...

    African Journals Online (AJOL)

    Materials. Chitosan (deacetylation degree, DDA = 80 %) was obtained from HiMedia Laboratories Pvt. ... Sterile formulations were ... Chilled β-GP aqueous solution (sterilized through ..... generally decreasing away from the center of the tumor.

  1. Significance of Strain in Formulation in Theory of Solid Mechanics

    Science.gov (United States)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    2003-01-01

    The basic theory of solid mechanics was deemed complete circa 1860 when St. Venant provided the strain formulation or the field compatibility condition. The strain formulation was incomplete. The missing portion has been formulated and identified as the boundary compatibility condition (BCC). The BCC, derived through a variational formulation, has been verified through integral theorem and solution of problems. The BCC, unlike the field counterpart, do not trivialize when expressed in displacements. Navier s method and the stiffness formulation have to account for the extra conditions especially at the inter-element boundaries in a finite element model. Completion of the strain formulation has led to the revival of the direct force calculation methods: the Integrated Force Method (IFM) and its dual (IFMD) for finite element analysis, and the completed Beltrami-Michell formulation (CBMF) in elasticity. The benefits from the new methods in elasticity, in finite element analysis, and in design optimization are discussed. Existing solutions and computer codes may have to be adjusted for the compliance of the new conditions. Complacency because the discipline is over a century old and computer codes have been developed for half a century can lead to stagnation of the discipline.

  2. Adjoint-consistent formulations of slip models for coupled electroosmotic flow systems

    KAUST Repository

    Garg, Vikram V

    2014-09-27

    Background Models based on the Helmholtz `slip\\' approximation are often used for the simulation of electroosmotic flows. The objectives of this paper are to construct adjoint-consistent formulations of such models, and to develop adjoint-based numerical tools for adaptive mesh refinement and parameter sensitivity analysis. Methods We show that the direct formulation of the `slip\\' model is adjoint inconsistent, and leads to an ill-posed adjoint problem. We propose a modified formulation of the coupled `slip\\' model, which is shown to be well-posed, and therefore automatically adjoint-consistent. Results Numerical examples are presented to illustrate the computation and use of the adjoint solution in two-dimensional microfluidics problems. Conclusions An adjoint-consistent formulation for Helmholtz `slip\\' models of electroosmotic flows has been proposed. This formulation provides adjoint solutions that can be reliably used for mesh refinement and sensitivity analysis.

  3. Flow model for open-channel reach or network

    Science.gov (United States)

    Schaffranek, R.W.

    1987-01-01

    Formulation of a one-dimensional model for simulating unsteady flow in a single open-channel reach or in a network of interconnected channels is presented. The model is both general and flexible in that it can be used to simulate a wide range of flow conditions for various channel configurations. It is based on a four-point (box), implicit, finite-difference approximation of the governing nonlinear flow equations with user-definable weighting coefficients to permit varying the solution scheme from box-centered to fully forward. Unique transformation equations are formulated that permit correlation of the unknowns at the extremities of the channels, thereby reducing coefficient matrix and execution time requirements. Discharges and water-surface elevations computed at intermediate locations within a channel are determined following solution of the transformation equations. The matrix of transformation and boundary-condition equations is solved by Gauss elimination using maximum pivot strategy. Two diverse applications of the model are presented to illustrate its broad utility. (USGS)

  4. A Network-Based Impact Measure for Propagated Losses in a Supply Chain Network Consisting of Resilient Components

    Directory of Open Access Journals (Sweden)

    Jesus Felix Bayta Valenzuela

    2018-01-01

    Full Text Available The topology of a supply chain network affects the impacts of disruptions in it. We formulate a network-based measure of the impact of a disruption loss in a supply chain propagating downstream from an originating node. The measure takes into account the loss profile of the originating node, the structure of the supply network, and the resilience of the network components. We obtain an analytical expression for the impact measure under a beta-distributed initial loss (generalizable to any continuous distribution supported on the interval 0,1, under a breakthrough scenario (in which a fraction of the initial production loss reaches a focal company downstream as opposed to containment upstream or at the originating point. Furthermore, we obtain a closed-form solution for a supply chain network with a k-ary tree topology; a numerical study is performed for a scale-free network and a random network. Our proposed approach enables the evaluation of potential losses for a focal company considering its supply chain network structure, which may help the company to plan or redesign a robust and resilient network in response to different types of disruptions.

  5. Optimal design of an IP/MPLS over DWDM network

    Directory of Open Access Journals (Sweden)

    Eduardo Canale

    2014-04-01

    Full Text Available Different approaches for deploying resilient optical networks of low cost constitute a traditional group of NP-Hard problems that have been widely studied. Most of them are based on the construction of low cost networks that fulfill connectivity constraints. However, recent trends to virtualize optical networks over the legacy fiber infrastructure, modified the nature of network design problems and turned inappropriate many of these models and algorithms. In this paper we study a design problem arising from the deployment of an IP/MPLS network over an existing DWDM infrastructure. Besides cost and resiliency, this problem integrates traffic and capacity constraints. We present: an integer programming formulation for the problem, theoretical results, and describe how several metaheuristics were applied in order to find good quality solutions, for a real application case of a telecommunications company.

  6. Stability of Almost Periodic Solution for a General Class of Discontinuous Neural Networks with Mixed Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2013-01-01

    Full Text Available The global exponential stability issues are considered for almost periodic solution of the neural networks with mixed time-varying delays and discontinuous neuron activations. Some sufficient conditions for the existence, uniqueness, and global exponential stability of almost periodic solution are achieved in terms of certain linear matrix inequalities (LMIs, by applying differential inclusions theory, matrix inequality analysis technique, and generalized Lyapunov functional approach. In addition, the existence and asymptotically almost periodic behavior of the solution of the neural networks are also investigated under the framework of the solution in the sense of Filippov. Two simulation examples are given to illustrate the validity of the theoretical results.

  7. Casein Films: The Effects of Formulation, Environmental Conditions and the Addition of Citric Pectin on the Structure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Laetitia M. Bonnaillie

    2014-07-01

    Full Text Available Thin casein films for food packaging applications reportedly possess good strength and low oxygen permeability, but low elasticity and high sensitivity to moisture. Modifying the films to target specific behaviors depending on environmental conditions can enable a variety of commercial applications for casein-based films. The mechanical properties of solvent-cast (15% solids calcium-caseinate/glycerol films (CaCas:Gly ratio of 3:1 were characterized as a function of processing and environmental conditions, including film thickness, solution formulation and ambient humidity (from 22% to 70% relative humidity (RH at ~20 °C. At constant RH, the elongation at break (EAB had a strong positive dependence on the film thickness. When RH increased, the tensile strength (TS and modulus (E decreased approximately linearly, while EAB increased. From 0.05% to 1% (w/w of citric pectin (CP was then incorporated into CaCas/Gly films following seven different formulations (mixing sequences, to alter the protein network and to evaluate the effects of CP on the tensile properties of CaCas/Gly/CP films. At constant film thickness and ~60% RH, the addition of 0.1% or 1.0% CP to the films considerably increased or decreased EAB, TS and E in different directions and to different extents, depending on the formulation, while optical micrographs also showed vastly differing network configurations, suggesting complex formulation- and stoichiometry-dependent casein-pectin interactions within the dried films. Depending on the desired film properties and utilization conditions, pectin may be a useful addition to casein film formulations for food packaging applications.

  8. Existence and stability of periodic solution in impulsive Hopfield neural networks with finite distributed delays

    International Nuclear Information System (INIS)

    Yang Xiaofan; Liao Xiaofeng; Evans, David J.; Tang Yuanyan

    2005-01-01

    In this Letter, we introduce a class of Hopfield neural networks with periodic impulses and finite distributed delays. We then derive a sufficient condition for the existence and global exponential stability of a unique periodic solution of the networks, which assumes neither the differentiability nor the monotonicity of the activation functions. Our condition extends and generalizes a known condition for the global exponential periodicity of continuous Hopfield neural networks with finite distributed delays

  9. On the solution of a rational matrix equation arising in G-networks

    NARCIS (Netherlands)

    B. Meini (Beatrice); T. Nesti (Tommaso)

    2017-01-01

    textabstractWe consider the problem of solving a rational matrix equation arising in the solution of G-networks. We propose and analyze two numerical methods: a fixed point iteration and the Newton–Raphson method. The fixed point iteration is shown to be globally convergent with linear convergence

  10. Energy optimization for upstream data transfer in 802.15.4 beacon-enabled star formulation

    Science.gov (United States)

    Liu, Hua; Krishnamachari, Bhaskar

    2008-08-01

    Energy saving is one of the major concerns for low rate personal area networks. This paper models energy consumption for beacon-enabled time-slotted media accessing control cooperated with sleeping scheduling in a star network formulation for IEEE 802.15.4 standard. We investigate two different upstream (data transfer from devices to a network coordinator) strategies: a) tracking strategy: the devices wake up and check status (track the beacon) in each time slot; b) non-tracking strategy: nodes only wake-up upon data arriving and stay awake till data transmitted to the coordinator. We consider the tradeoff between energy cost and average data transmission delay for both strategies. Both scenarios are formulated as optimization problems and the optimal solutions are discussed. Our results show that different data arrival rate and system parameters (such as contention access period interval, upstream speed etc.) result in different strategies in terms of energy optimization with maximum delay constraints. Hence, according to different applications and system settings, different strategies might be chosen by each node to achieve energy optimization for both self-interested view and system view. We give the relation among the tunable parameters by formulas and plots to illustrate which strategy is better under corresponding parameters. There are two main points emphasized in our results with delay constraints: on one hand, when the system setting is fixed by coordinator, nodes in the network can intelligently change their strategies according to corresponding application data arrival rate; on the other hand, when the nodes' applications are known by the coordinator, the coordinator can tune the system parameters to achieve optimal system energy consumption.

  11. On the fairlie's Moyal formulation of M(atrix)-theory

    International Nuclear Information System (INIS)

    Hssaini, M.; Sedra, M.B.; Bennai, M.; Maroufi, B.

    2000-07-01

    Starting from the Moyal formulation of M-theory in the large N-limit, we propose to reexamine the associated membrane equations of motion in 10 dimensions formulated in terms of Poisson bracket. Among the results obtained, we rewrite the coupled first order Nahm's equations into a simple form leading in turn to their systematic relation with SU(∞) Yang Mills equations of motion. The former are interpreted as the vanishing condition of some conserved currents which we propose. We also develop an algebraic analysis in which an ansatz is considered and find an explicit form for the membrane solution of our problem. Typical solutions known in literature can also emerge as special cases of the proposed solution. (author)

  12. Modeling Renewable Penertration Using a Network Economic Model

    Science.gov (United States)

    Lamont, A.

    2001-03-01

    This paper evaluates the accuracy of a network economic modeling approach in designing energy systems having renewable and conventional generators. The network approach models the system as a network of processes such as demands, generators, markets, and resources. The model reaches a solution by exchanging prices and quantity information between the nodes of the system. This formulation is very flexible and takes very little time to build and modify models. This paper reports an experiment designing a system with photovoltaic and base and peak fossil generators. The level of PV penetration as a function of its price and the capacities of the fossil generators were determined using the network approach and using an exact, analytic approach. It is found that the two methods agree very closely in terms of the optimal capacities and are nearly identical in terms of annual system costs.

  13. A Stochastic Multiobjective Optimization Framework for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shibo He

    2010-01-01

    Full Text Available In wireless sensor networks (WSNs, there generally exist many different objective functions to be optimized. In this paper, we propose a stochastic multiobjective optimization approach to solve such kind of problem. We first formulate a general multiobjective optimization problem. We then decompose the optimization formulation through Lagrange dual decomposition and adopt the stochastic quasigradient algorithm to solve the primal-dual problem in a distributed way. We show theoretically that our algorithm converges to the optimal solution of the primal problem by using the knowledge of stochastic programming. Furthermore, the formulation provides a general stochastic multiobjective optimization framework for WSNs. We illustrate how the general framework works by considering an example of the optimal rate allocation problem in multipath WSNs with time-varying channel. Extensive simulation results are given to demonstrate the effectiveness of our algorithm.

  14. Using Wireless Network Coding to Replace a Wired with Wireless Backhaul

    DEFF Research Database (Denmark)

    Thomsen, Henning; De Carvalho, Elisabeth; Popovski, Petar

    2014-01-01

    of wireless emulated wire (WEW), based on two-way relaying and network coding. This setup leads to a new type of broadcast problem, with decoding conditions that are specific to the requirement for equivalence to the wired backhaul. We formulate and solve the associated optimization problems. The proposed...... approach is a convincing argument that wireless backhauling solutions should be designed and optimized for two-way communication....

  15. WaterNet: The NASA water cycle solutions network - Danubian regional applications

    International Nuclear Information System (INIS)

    Matthews, Dave; Brilly, Mitja; Kobold, Mira; Zagar, Mark; Houser, Paul

    2008-01-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. This paper provides an overview and it discusses the concept of solutions networks focusing on the WaterNet. It invites Danubian research and applications teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team will develop WaterNet by engaging relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an 'actionable database' that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related Water Research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base and Community of Practice. WaterNet will then develop strategies to connect researchers and decision-makers via innovative communication strategies, improved user access to NASA and EU - Danubian resources, improved water cycle research community appreciation for user requirements, improved policymaker, management and stakeholder knowledge of research and application products, and improved identification of pathways for progress. Finally, WaterNet will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. This paper provides examples of several NASA products based on remote sensing and land data assimilation systems that integrate remotely sensed and in

  16. Solution of weakly compressible isothermal flow in landfill gas collection networks

    Science.gov (United States)

    Nec, Y.; Huculak, G.

    2017-12-01

    Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy-Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein.

  17. Non-autonomous equations with unpredictable solutions

    Science.gov (United States)

    Akhmet, Marat; Fen, Mehmet Onur

    2018-06-01

    To make research of chaos more amenable to investigating differential and discrete equations, we introduce the concepts of an unpredictable function and sequence. The topology of uniform convergence on compact sets is applied to define unpredictable functions [1,2]. The unpredictable sequence is defined as a specific unpredictable function on the set of integers. The definitions are convenient to be verified as solutions of differential and discrete equations. The topology is metrizable and easy for applications with integral operators. To demonstrate the effectiveness of the approach, the existence and uniqueness of the unpredictable solution for a delay differential equation are proved as well as for quasilinear discrete systems. As a corollary of the theorem, a similar assertion for a quasilinear ordinary differential equation is formulated. The results are demonstrated numerically, and an application to Hopfield neural networks is provided. In particular, Poincaré chaos near periodic orbits is observed. The completed research contributes to the theory of chaos as well as to the theory of differential and discrete equations, considering unpredictable solutions.

  18. Optimal satisfaction degree in energy harvesting cognitive radio networks

    International Nuclear Information System (INIS)

    Li Zan; Liu Bo-Yang; Si Jiang-Bo; Zhou Fu-Hui

    2015-01-01

    A cognitive radio (CR) network with energy harvesting (EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model (HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree (WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user (SU) and the interference to the primary user (PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming (MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution (DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service (Qos). Numerical results are given to verify our analysis. (paper)

  19. New convergence behavior of solutions to Cohen-Grossberg neural networks with delays and time-varying coefficients

    International Nuclear Information System (INIS)

    Liu Bingwen

    2008-01-01

    In this Letter the convergence behavior of Cohen-Grossberg neural networks with delays and time-varying coefficients are considered. Some sufficient conditions are established to ensure that the solutions of the networks converge locally exponentially to zero point, which are new and complement of previously known results

  20. A Game-theoretic Framework for Network Coding Based Device-to-Device Communications

    KAUST Repository

    Douik, Ahmed S.; Sorour, Sameh; Tembine, Hamidou; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2016-01-01

    This paper investigates the delay minimization problem for instantly decodable network coding (IDNC) based deviceto- device (D2D) communications. In D2D enabled systems, users cooperate to recover all their missing packets. The paper proposes a game theoretic framework as a tool for improving the distributed solution by overcoming the need for a central controller or additional signaling in the system. The session is modeled by self-interested players in a non-cooperative potential game. The utility functions are designed so as increasing individual payoff results in a collective behavior achieving both a desirable system performance in a shared network environment and the Nash equilibrium. Three games are developed whose first reduces the completion time, the second the maximum decoding delay and the third the sum decoding delay. The paper, further, improves the formulations by including a punishment policy upon collision occurrence so as to achieve the Nash bargaining solution. Learning algorithms are proposed for systems with complete and incomplete information, and for the imperfect feedback scenario. Numerical results suggest that the proposed game-theoretical formulation provides appreciable performance gain against the conventional point-to-multipoint (PMP), especially for reliable user-to-user channels.

  1. A Game-theoretic Framework for Network Coding Based Device-to-Device Communications

    KAUST Repository

    Douik, Ahmed

    2016-06-29

    This paper investigates the delay minimization problem for instantly decodable network coding (IDNC) based deviceto- device (D2D) communications. In D2D enabled systems, users cooperate to recover all their missing packets. The paper proposes a game theoretic framework as a tool for improving the distributed solution by overcoming the need for a central controller or additional signaling in the system. The session is modeled by self-interested players in a non-cooperative potential game. The utility functions are designed so as increasing individual payoff results in a collective behavior achieving both a desirable system performance in a shared network environment and the Nash equilibrium. Three games are developed whose first reduces the completion time, the second the maximum decoding delay and the third the sum decoding delay. The paper, further, improves the formulations by including a punishment policy upon collision occurrence so as to achieve the Nash bargaining solution. Learning algorithms are proposed for systems with complete and incomplete information, and for the imperfect feedback scenario. Numerical results suggest that the proposed game-theoretical formulation provides appreciable performance gain against the conventional point-to-multipoint (PMP), especially for reliable user-to-user channels.

  2. Global existence of periodic solutions of BAM neural networks with variable coefficients

    International Nuclear Information System (INIS)

    Guo Shangjiang; Huang Lihong; Dai Binxiang; Zhang Zhongzhi

    2003-01-01

    In this Letter, we study BAM (bidirectional associative memory) networks with variable coefficients. By some spectral theorems and a continuation theorem based on coincidence degree, we not only obtain some new sufficient conditions ensuring the existence, uniqueness, and global exponential stability of the periodic solution but also estimate the exponentially convergent rate. Our results are less restrictive than previously known criteria and can be applied to neural networks with a broad range of activation functions assuming neither differentiability nor strict monotonicity. Moreover, these conclusions are presented in terms of system parameters and can be easily verified for the globally Lipschitz and the spectral radius being less than 1. Therefore, our results should be useful in the design and applications of periodic oscillatory neural circuits for neural networks with delays

  3. State-Space Formulation for Circuit Analysis

    Science.gov (United States)

    Martinez-Marin, T.

    2010-01-01

    This paper presents a new state-space approach for temporal analysis of electrical circuits. The method systematically obtains the state-space formulation of nondegenerate linear networks without using concepts of topology. It employs nodal/mesh systematic analysis to reduce the number of undesired variables. This approach helps students to…

  4. Global convergence of periodic solution of neural networks with discontinuous activation functions

    International Nuclear Information System (INIS)

    Huang Lihong; Guo Zhenyuan

    2009-01-01

    In this paper, without assuming boundedness and monotonicity of the activation functions, we establish some sufficient conditions ensuring the existence and global asymptotic stability of periodic solution of neural networks with discontinuous activation functions by using the Yoshizawa-like theorem and constructing proper Lyapunov function. The obtained results improve and extend previous works.

  5. Formulation of marketing information and communication strategies in Taiwan tourism industry

    OpenAIRE

    Lee, Tzong-Ru; Kuo, Yu-Hsuan; Hilletofth, Per

    2013-01-01

    Purpose: The purpose of this research is to formulate marketing information and communication (ICT) strategies for Taiwan tourism industry. Design/methodology/approach: This research uses a literature review to identify problems and solutions of Taiwan’s tourism industry. One of the identified problems is used as an example to formulate marketing ICT strategies. Findings: This research has identified twenty-five main problems and forty-eight solutions of Taiwan’s tourism industry and formulat...

  6. Development of formulation device for periodontal disease.

    Science.gov (United States)

    Sato, Yasuhiko; Oba, Takuma; Watanabe, Norio; Danjo, Kazumi

    2012-01-01

    In addition to providing standard surgical treatment that removes the plaque and infected tissues, medications that can regenerate periodontal tissue are also required in the treatment of periodontal disease. As a form of regenerative medication, various growth factors are expected to be used while treating periodontal disease. A protein-like growth factor is often developed as a lyophilized product with dissolution liquid, considering its instability in the solution state. We have clarified that the formulation for periodontal disease needs to be viscous. When the lyophilized product was dissolved using a sticky solution, various problems were encountered, difficulty in dissolving and air bubbles, for example, and some efforts were needed to prepare the formulation. In this research, to identify the problem of preparing a viscous formulation, a lyophilized product (placebo) and sticky liquid were prepared by using vial and ampoule as the conventional containers. Based on these problems, a prototype administration device was developed, and its functionality was confirmed. As a result, it was suggested that the device with a useful mixing system that could shorten the preparation time was developed.

  7. Conductivity enhancement of silver nanowire networks via simple electrolyte solution treatment and solvent washing

    Science.gov (United States)

    Gu, Jiahui; Wang, Xuelin; Chen, Hongtao; Yang, Shihua; Feng, Huanhuan; Ma, Xing; Ji, Hongjun; Wei, Jun; Li, Mingyu

    2018-06-01

    As a promising replacement material for indium tin oxide in flexible electronics, silver nanowires (AgNWs) usually need complicated post-treatment to reduce the high contact resistance across the intersections when used as transparent conductive films. In this work, a widely applicable nano-joining method for improving the overall conductivity of AgNW networks with different kinds of electrolyte solutions is presented. By treatment with an electrolyte solution with appropriate ionic strengths, the insulating surfactant layer (polyvinylpyrrolidone, PVP) on the AgNWs could be desorbed, and the AgNW network could be densified. The sheet resistance of the AgNW film on a glass slide is reduced by 60.9% (from 67.5 to 26.4 Ohm sq‑1) with a transmittance of 92.5%. High-resolution transmission electron microscopy analysis indicates that atomic diffusion occurs at the intersection of two AgNWs. Thus, metallurgical bonding on the nanometer scale is achieved across the junctions of the AgNWs, leading to a significant enhancement in the conductivity of the AgNW network.

  8. Solution of weakly compressible isothermal flow in landfill gas collection networks

    Energy Technology Data Exchange (ETDEWEB)

    Nec, Y [Thompson Rivers University, Kamloops, British Columbia (Canada); Huculak, G, E-mail: cranberryana@gmail.com, E-mail: greg@gnhconsulting.ca [GNH Consulting, Delta, British Columbia (Canada)

    2017-12-15

    Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy–Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein. (paper)

  9. Solution of weakly compressible isothermal flow in landfill gas collection networks

    International Nuclear Information System (INIS)

    Nec, Y; Huculak, G

    2017-01-01

    Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy–Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein. (paper)

  10. A combined finite element-boundary integral formulation for solution of two-dimensional scattering problems via CGFFT. [Conjugate Gradient Fast Fourier Transformation

    Science.gov (United States)

    Collins, Jeffery D.; Volakis, John L.; Jin, Jian-Ming

    1990-01-01

    A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary-integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principal advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.

  11. Designing a Fuzzy Strategic Integrated Multiechelon Agile Supply Chain Network

    Directory of Open Access Journals (Sweden)

    Morteza Abbasi

    2013-01-01

    Full Text Available This paper integrates production, distribution and logistics activities at the strategic decision making level, where the objective is to design a multiechelon supply chain network considering agility as a key design criterion. A network with five echelons of supply chains including suppliers, plants, distribution centers, cross-docks, and customer zones is addressed in this paper. The problem has been mathematically formulated as a biobjective optimization model that aims to minimize the cost (fixed and variable and maximize the plant flexibility and volume flexibility. A novel multiobjective parallel simulating annealing algorithm (MOPSA is proposed to obtain the Pareto-optimal solutions of the problem. The performance of the proposed solution algorithm is compared with two well-known metaheuristics, namely, nondominated sorting genetic algorithm (NSGA-II and Pareto archive evolution strategy (PAES. Computational results show that MOPSA outperforms the other metaheuristics.

  12. Cloud point extraction of vanadium in pharmaceutical formulations, dialysate and parenteral solutions using 8-hydroxyquinoline and nonionic surfactant

    International Nuclear Information System (INIS)

    Khan, Sumaira; Kazi, Tasneem G.; Baig, Jameel A.; Kolachi, Nida F.; Afridi, Hassan I.; Wadhwa, Sham Kumar; Shah, Abdul Q.; Kandhro, Ghulam A.; Shah, Faheem

    2010-01-01

    A cloud point extraction (CPE) method has been developed for the determination of trace quantity of vanadium ions in pharmaceutical formulations (PF), dialysate (DS) and parenteral solutions (PS). The CPE of vanadium (V) using 8-hydroxyquinoline (oxine) as complexing reagent and mediated by nonionic surfactant (Triton X-114) was investigated. The parameters that affect the extraction efficiency of CPE, such as pH of sample solution, concentration of oxine and Triton X-114, equilibration temperature and time period for shaking were investigated in detail. The validity of CPE of V was checked by standard addition method in real samples. The extracted surfactant-rich phase was diluted with nitric acid in ethanol, prior to subjecting electrothermal atomic absorption spectrometry. Under these conditions, the preconcentration of 50 mL sample solutions, allowed raising an enrichment factor of 125-fold. The lower limit of detection obtained under the optimal conditions was 42 ng/L. The proposed method has been successfully applied to the determination of trace quantity of V in various pharmaceutical preparations with satisfactory results. The concentration ranges of V in PF, DS and PS samples were found in the range of 10.5-15.2, 0.65-1.32 and 1.76-6.93 μg/L, respectively.

  13. Cerebellum-inspired neural network solution of the inverse kinematics problem.

    Science.gov (United States)

    Asadi-Eydivand, Mitra; Ebadzadeh, Mohammad Mehdi; Solati-Hashjin, Mehran; Darlot, Christian; Abu Osman, Noor Azuan

    2015-12-01

    The demand today for more complex robots that have manipulators with higher degrees of freedom is increasing because of technological advances. Obtaining the precise movement for a desired trajectory or a sequence of arm and positions requires the computation of the inverse kinematic (IK) function, which is a major problem in robotics. The solution of the IK problem leads robots to the precise position and orientation of their end-effector. We developed a bioinspired solution comparable with the cerebellar anatomy and function to solve the said problem. The proposed model is stable under all conditions merely by parameter determination, in contrast to recursive model-based solutions, which remain stable only under certain conditions. We modified the proposed model for the simple two-segmented arm to prove the feasibility of the model under a basic condition. A fuzzy neural network through its learning method was used to compute the parameters of the system. Simulation results show the practical feasibility and efficiency of the proposed model in robotics. The main advantage of the proposed model is its generalizability and potential use in any robot.

  14. A Practical Solution for Time Synchronization in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    COCA, E.

    2012-11-01

    Full Text Available Time synchronization in wireless sensor node networks is a hot topic. Many papers present various software algorithms and hardware solutions to keep accurate time information on mobile nodes. In terms of real life applications wireless sensor nodes are preferred in many domains, starting with simple room monitoring and finishing with pipeline surveillance projects. Positioning applications are far more restrictive on timekeeping accuracy, as for the velocity of nodes calculations precise time or time difference values are needed. The accuracy of time information on nodes has to be always correlated with the application requirements. In this paper, we present some considerations regarding time synchronization linked with specific needs for individual practical applications. A practical low energy method of time keeping at node level is proposed and tested. The performances of the proposed solution in terms of short and long term stability and energy requirements are analyzed and compared with existing solutions. Simulation and experimental results, some advantages and disadvantages of the method are presented at the end of the paper.

  15. Green mobile networks a networking perspective

    CERN Document Server

    Ansari, Nirwan

    2016-01-01

    Combines the hot topics of energy efficiency and next generation mobile networking, examining techniques and solutions. Green communications is a very hot topic. Ever increasing mobile network bandwidth rates significantly impacts on operating costs due to aggregate network energy consumption. As such, design on 4G networks and beyond has increasingly started to focus on 'energy efficiency' or so-called 'green' networks. Many techniques and solutions have been proposed to enhance the energy efficiency of mobile networks, yet no book has provided an in-depth analysis of the energy consumption issues in mobile networks nor offers detailed theories, tools and solutions for solving the energy efficiency problems.

  16. First-order design of geodetic networks using the simulated annealing method

    Science.gov (United States)

    Berné, J. L.; Baselga, S.

    2004-09-01

    The general problem of the optimal design for a geodetic network subject to any extrinsic factors, namely the first-order design problem, can be dealt with as a numeric optimization problem. The classic theory of this problem and the optimization methods are revised. Then the innovative use of the simulated annealing method, which has been successfully applied in other fields, is presented for this classical geodetic problem. This method, belonging to iterative heuristic techniques in operational research, uses a thermodynamical analogy to crystalline networks to offer a solution that converges probabilistically to the global optimum. Basic formulation and some examples are studied.

  17. The Radiation Problem from a Vertical Hertzian Dipole Antenna above Flat and Lossy Ground: Novel Formulation in the Spectral Domain with Closed-Form Analytical Solution in the High Frequency Regime

    Directory of Open Access Journals (Sweden)

    K. Ioannidi

    2014-01-01

    Full Text Available We consider the problem of radiation from a vertical short (Hertzian dipole above flat lossy ground, which represents the well-known “Sommerfeld radiation problem” in the literature. The problem is formulated in a novel spectral domain approach, and by inverse three-dimensional Fourier transformation the expressions for the received electric and magnetic (EM field in the physical space are derived as one-dimensional integrals over the radial component of wavevector, in cylindrical coordinates. This formulation appears to have inherent advantages over the classical formulation by Sommerfeld, performed in the spatial domain, since it avoids the use of the so-called Hertz potential and its subsequent differentiation for the calculation of the received EM field. Subsequent use of the stationary phase method in the high frequency regime yields closed-form analytical solutions for the received EM field vectors, which coincide with the corresponding reflected EM field originating from the image point. In this way, we conclude that the so-called “space wave” in the literature represents the total solution of the Sommerfeld problem in the high frequency regime, in which case the surface wave can be ignored. Finally, numerical results are presented, in comparison with corresponding numerical results based on Norton’s solution of the problem.

  18. Validation of a stability-indicating hydrophilic interaction liquid chromatographic method for the quantitative determination of vitamin k3 (menadione sodium bisulfite) in injectable solution formulation.

    Science.gov (United States)

    Ghanem, Mashhour M; Abu-Lafi, Saleh A; Hallak, Hussein O

    2013-01-01

    A simple, specific, accurate, and stability-indicating method was developed and validated for the quantitative determination of menadione sodium bisulfite in the injectable solution formulation. The method is based on zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) coupled with a photodiode array detector. The desired separation was achieved on the ZIC-HILIC column (250 mm × 4.6 mm, 5 μm) at 25°C temperature. The optimized mobile phase consisted of an isocratic solvent mixture of 200mM ammonium acetate (NH4AC) solution and acetonitrile (ACN) (20:80; v/v) pH-adjusted to 5.7 by glacial acetic acid. The mobile phase was fixed at 0.5 ml/min and the analytes were monitored at 261 nm using a photodiode array detector. The effects of the chromatographic conditions on the peak retention, peak USP tailing factor, and column efficiency were systematically optimized. Forced degradation experiments were carried out by exposing menadione sodium bisulfite standard and the injectable solution formulation to thermal, photolytic, oxidative, and acid-base hydrolytic stress conditions. The degradation products were well-resolved from the main peak and the excipients, thus proving that the method is a reliable, stability-indicating tool. The method was validated as per ICH and USP guidelines (USP34/NF29) and found to be adequate for the routine quantitative estimation of menadione sodium bisulfite in commercially available menadione sodium bisulfite injectable solution dosage forms.

  19. Variable thickness transient ground-water flow model. Volume 1. Formulation

    International Nuclear Information System (INIS)

    Reisenauer, A.E.

    1979-12-01

    Mathematical formulation for the variable thickness transient (VTT) model of an aquifer system is presented. The basic assumptions are described. Specific data requirements for the physical parameters are discussed. The boundary definitions and solution techniques of the numerical formulation of the system of equations are presented

  20. Wireless three-hop networks with stealing II : exact solutions through boundary value problems

    NARCIS (Netherlands)

    Guillemin, F.; Knessl, C.; Leeuwaarden, van J.S.H.

    2013-01-01

    We study the stationary distribution of a random walk in the quarter plane arising in the study of three-hop wireless networks with stealing. Our motivation is to find exact tail asymptotics (beyond logarithmic estimates) for the marginal distributions, which requires an exact solution for the

  1. A matrix formulation of Frobenius power series solutions using products of 4X4 matrices

    Directory of Open Access Journals (Sweden)

    Jeremy Mandelkern

    2015-08-01

    Full Text Available In Coddington and Levison [7, p. 119, Thm. 4.1] and Balser [4, p. 18-19, Thm. 5], matrix formulations of Frobenius theory, near a regular singular point, are given using 2X2 matrix recurrence relations yielding fundamental matrices consisting of two linearly independent solutions together with their quasi-derivatives. In this article we apply a reformulation of these matrix methods to the Bessel equation of nonintegral order. The reformulated approach of this article differs from [7] and [4] by its implementation of a new ``vectorization'' procedure that yields recurrence relations of an altogether different form: namely, it replaces the implicit 2X2 matrix recurrence relations of both [7] and [4] by explicit 4X4 matrix recurrence relations that are implemented by means only of 4X4 matrix products. This new idea of using a vectorization procedure may further enable the development of symbolic manipulator programs for matrix forms of the Frobenius theory.

  2. Notes on a PDE system for biological network formation

    KAUST Repository

    Haskovec, Jan

    2016-01-22

    We present new analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transport networks. The model describes the pressure field using a Darcy’s type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. The analytical part extends the results of Haskovec et al. (2015) regarding the existence of weak and mild solutions to the whole range of meaningful relaxation exponents. Moreover, we prove finite time extinction or break-down of solutions in the spatially one-dimensional setting for certain ranges of the relaxation exponent. We also construct stationary solutions for the case of vanishing diffusion and critical value of the relaxation exponent, using a variational formulation and a penalty method. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on mixed finite elements and study the qualitative properties of network structures for various parameter values. Furthermore, we indicate numerically that some analytical results proved for the spatially one-dimensional setting are likely to be valid also in several space dimensions.

  3. Liner Service Network Design

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard

    . The research field of liner shipping network design is relatively young and many open research questions exists. Among others, a unified and rich mathematical model formulating the main characteristics of the business domain has not been clearly described and exact methods for such mathematical models...... management is of great concern to liner shippers as 70-80% of vessel round trips experience delays in at least one port. A novel mathematical model for handling a disruption using a series of recovery techniques is presented as the The Vessel Schedule Recovery Problem. The model has been applied to four real...... is based upon improving the constructed solution by applying an IP model as a large scale neighbourhood to each service in the network. The IP is based on estimating the benefit of inserting and removing port calls within a predefined neighborhood of candidate ports. Furthermore, the heuristic applies...

  4. Resilience of LTE networks against smart jamming attacks: Wideband model

    KAUST Repository

    Aziz, Farhan M.

    2015-12-03

    LTE/LTE-A networks have been successfully providing advanced broadband services to millions of users worldwide. Lately, it has been suggested to use LTE networks for mission-critical applications like public safety, smart grid and military communications. We have previously shown that LTE networks are vulnerable to Denial-of-Service (DOS) and loss of service attacks from smart jammers. In this paper, we extend our previous work on resilience of LTE networks to wideband multipath fading channel, SINR estimation in frequency domain and computation of utilities based on observable parameters under the framework of single-shot and repeated games with asymmetric information. In a single-shot game formulation, network utility is severely compromised at its solutions, i.e. at the Nash Equilibria (NE). We propose evolved repeated-game strategy algorithms to combat smart jamming attacks that can be implemented in existing deployments using current technology. © 2015 IEEE.

  5. Optimal traffic control in highway transportation networks using linear programming

    KAUST Repository

    Li, Yanning

    2014-06-01

    This article presents a framework for the optimal control of boundary flows on transportation networks. The state of the system is modeled by a first order scalar conservation law (Lighthill-Whitham-Richards PDE). Based on an equivalent formulation of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can be extended to an arbitrary transportation network, preserving linear constraints. Unlike previously investigated transportation network control schemes, this framework leverages the intrinsic properties of the Halmilton-Jacobi equation, and does not require any discretization or boolean variables on the link. Hence this framework is very computational efficient and provides the globally optimal solution. The feasibility of this framework is illustrated by an on-ramp metering control example.

  6. A multiobjective optimization framework for multicontaminant industrial water network design.

    Science.gov (United States)

    Boix, Marianne; Montastruc, Ludovic; Pibouleau, Luc; Azzaro-Pantel, Catherine; Domenech, Serge

    2011-07-01

    The optimal design of multicontaminant industrial water networks according to several objectives is carried out in this paper. The general formulation of the water allocation problem (WAP) is given as a set of nonlinear equations with binary variables representing the presence of interconnections in the network. For optimization purposes, three antagonist objectives are considered: F(1), the freshwater flow-rate at the network entrance, F(2), the water flow-rate at inlet of regeneration units, and F(3), the number of interconnections in the network. The multiobjective problem is solved via a lexicographic strategy, where a mixed-integer nonlinear programming (MINLP) procedure is used at each step. The approach is illustrated by a numerical example taken from the literature involving five processes, one regeneration unit and three contaminants. The set of potential network solutions is provided in the form of a Pareto front. Finally, the strategy for choosing the best network solution among those given by Pareto fronts is presented. This Multiple Criteria Decision Making (MCDM) problem is tackled by means of two approaches: a classical TOPSIS analysis is first implemented and then an innovative strategy based on the global equivalent cost (GEC) in freshwater that turns out to be more efficient for choosing a good network according to a practical point of view. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Zero-sum two-player game theoretic formulation of affine nonlinear discrete-time systems using neural networks.

    Science.gov (United States)

    Mehraeen, Shahab; Dierks, Travis; Jagannathan, S; Crow, Mariesa L

    2013-12-01

    In this paper, the nearly optimal solution for discrete-time (DT) affine nonlinear control systems in the presence of partially unknown internal system dynamics and disturbances is considered. The approach is based on successive approximate solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in optimal control. Successive approximation approach for updating control and disturbance inputs for DT nonlinear affine systems are proposed. Moreover, sufficient conditions for the convergence of the approximate HJI solution to the saddle point are derived, and an iterative approach to approximate the HJI equation using a neural network (NN) is presented. Then, the requirement of full knowledge of the internal dynamics of the nonlinear DT system is relaxed by using a second NN online approximator. The result is a closed-loop optimal NN controller via offline learning. A numerical example is provided illustrating the effectiveness of the approach.

  8. Optical Networks Solutions planning - performances - management

    DEFF Research Database (Denmark)

    Fenger, Christian

    2002-01-01

    It has been a decisive goal in the compilation of this thesis to make us capable of realizing the future national and regional telecommunication networks in an efficient and resource optimal way. By future telecommunication network is assumed an all optical network where the information in transit...... are kept optical and not converted into the optical domain. The focus is on the scientific results achieved throughout the Ph.D. period. Five subjects – all increasing the understanding of optical networks – are studied. Static wavelength routed optical networks are studied. Management on terms...... of lightpath allocation and design is considered. By using statistical models (simultaneous analysis of many networks) the correspondence between parameters determining the network topology and the performance of the optical network is found. These dependencies are important knowledge in the process...

  9. Community-Based Social Networks: Generation of Power Law Degree Distribution and IP Solutions to the KPP

    Science.gov (United States)

    Wu, Wentao

    2012-01-01

    The objective of this thesis is two-fold: (1) to investigate the degree distribution property of community-based social networks (CSNs) and (2) to provide solutions to a pertinent problem, the Key Player Problem. In the first part of this thesis, we consider a growing community-based network in which the ability of nodes competing for links to new…

  10. Conflict free network coding for distributed storage networks

    KAUST Repository

    Al-Habob, Ahmed A.

    2015-06-01

    © 2015 IEEE. In this paper, we design a conflict free instantly decodable network coding (IDNC) solution for file download from distributed storage servers. Considering previously downloaded files at the clients from these servers as side information, IDNC can speed up the current download process. However, transmission conflicts can occur since multiple servers can simultaneously send IDNC combinations of files to the same client, which can tune to only one of them at a time. To avoid such conflicts and design more efficient coded download patterns, we propose a dual conflict IDNC graph model, which extends the conventional IDNC graph model in order to guarantee conflict free server transmissions to each of the clients. We then formulate the download time minimization problem as a stochastic shortest path problem whose action space is defined by the independent sets of this new graph. Given the intractability of the solution, we design a channel-aware heuristic algorithm and show that it achieves a considerable reduction in the file download time, compared to applying the conventional IDNC approach separately at each of the servers.

  11. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying

    Directory of Open Access Journals (Sweden)

    Goedele Craye

    2015-12-01

    Full Text Available In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS as a solubilizer, was explored as a production method for co-amorphous simvastatin–lysine (SVS-LYS at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD and differential scanning calorimetry (DSC showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a “spring and parachute” effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions was observed when SLS was spray-dried with SVS (and LYS. In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  12. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying.

    Science.gov (United States)

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Laitinen, Riikka

    2015-12-03

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a "spring and parachute" effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  13. Approximate solutions of pulse transport in turbulent flow in narrow fuel element bundle geometries, using the FE method

    International Nuclear Information System (INIS)

    Kaiser, H.G.

    1985-01-01

    The author is concerned with the flow conditions in case of narrow fuel element grids of pressurised-water reactors. Starting from the mathematical formulation of the flow processes for incompressible, isothermal flows, models of the turbulence characteristics are being developed. Besides turbulence models, and network structure the finite element method is treated as numeric solution process. Finally the results are summarized and discussed. (HAG) [de

  14. Network Coded Cooperation Over Time-Varying Channels

    DEFF Research Database (Denmark)

    Khamfroush, Hana; Roetter, Daniel Enrique Lucani; Barros, João

    2014-01-01

    transmissions, e.g., in terms of the rate of packet transmission or the energy consumption. A comprehensive analysis of the MDP solution is carried out under different network conditions to extract optimal rules of packet transmission. Inspired by the extracted rules, we propose two near-optimal heuristics......In this paper, we investigate the optimal design of cooperative network-coded strategies for a three-node wireless network with time-varying, half-duplex erasure channels. To this end, we formulate the problem of minimizing the total cost of transmitting M packets from source to two receivers...... as a Markov Decision Process (MDP). The actions of the MDP model include the source and the type of transmission to be used in a given time slot given perfect knowledge of the system state. The cost of packet transmission is defined such that it can incorporate the difference between broadcast and unicast...

  15. Post-processing application of chemical solutions for control of Listeria monocytogenes, cultured under different conditions, on commercial smoked sausage formulated with and without potassium lactate-sodium diacetate.

    Science.gov (United States)

    Geornaras, Ifigenia; Skandamis, Panagiotis N; Belk, Keith E; Scanga, John A; Kendall, Patricia A; Smith, Gary C; Sofos, John N

    2006-12-01

    This study evaluated post-processing chemical solutions for their antilisterial effects on commercial smoked sausage formulated with or without 1.5% potassium lactate plus 0.05% sodium diacetate, and contaminated (approximately 3-4 log cfu/cm(2)) with 10-strain composite Listeria monocytogenes inocula prepared under various conditions. Inoculated samples were left untreated, or were immersed (2 min, 25 +/- 2 degrees C) in solutions of acetic acid (2.5%), lactic acid (2.5%), potassium benzoate (5%) or Nisaplin (0.5%, equivalent to 5000 IU/ml of nisin) alone, and in sequence (Nisaplin followed by acetic acid, lactic acid or potassium benzoate), before vacuum packaging and storage at 10 degrees C (48 days). Acetic acid, lactic acid or potassium benzoate applied alone reduced initial L. monocytogenes populations by 0.4-1.5 log cfu/cm(2), while treatments including Nisaplin caused reductions of 2.1-3.3 log cfu/cm(2). L. monocytogenes on untreated sausage formulated with antimicrobials had a lag phase duration of 10.2 days and maximum specific growth rate (mu(max)) of 0.089 per day, compared to no lag phase and mu(max) of 0.300 per day for L. monocytogenes on untreated product that did not contain antimicrobials in the formulation. The immersion treatments inhibited growth of the pathogen for 4.9-14.8 days on sausage formulated without potassium lactate-sodium diacetate; however, in all cases significant (P meat processors in their efforts to select required regulatory alternatives for control of post-processing contamination in meat products.

  16. Existence and Globally Asymptotic Stability of Equilibrium Solution for Fractional-Order Hybrid BAM Neural Networks with Distributed Delays and Impulses

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2017-01-01

    Full Text Available This paper investigates the existence and globally asymptotic stability of equilibrium solution for Riemann-Liouville fractional-order hybrid BAM neural networks with distributed delays and impulses. The factors of such network systems including the distributed delays, impulsive effects, and two different fractional-order derivatives between the U-layer and V-layer are taken into account synchronously. Based on the contraction mapping principle, the sufficient conditions are derived to ensure the existence and uniqueness of the equilibrium solution for such network systems. By constructing a novel Lyapunov functional composed of fractional integral and definite integral terms, the globally asymptotic stability criteria of the equilibrium solution are obtained, which are dependent on the order of fractional derivative and network parameters. The advantage of our constructed method is that one may directly calculate integer-order derivative of the Lyapunov functional. A numerical example is also presented to show the validity and feasibility of the theoretical results.

  17. An Integrated Approach for Reliable Facility Location/Network Design Problem with Link Disruption

    Directory of Open Access Journals (Sweden)

    Davood Shishebori

    2015-05-01

    Full Text Available Proposing a robust designed facility location is one of the most effective ways to hedge against unexpected disruptions and failures in a transportation network system. This paper considers the combined facility location/network design problem with regard to transportation link disruptions and develops a mixed integer linear programming formulation to model it. With respect to the probability of link disruptions, the objective function of the model minimizes the total costs, including location costs, link construction costs and also the expected transportation costs. An efficient hybrid algorithm based on LP relaxation and variable neighbourhood search metaheuristic is developed in order to solve the mathematical model. Numerical results demonstrate that the proposed hybrid algorithm has suitable efficiency in terms of duration of solution time and determining excellent solution quality.

  18. Optimal placement of capacitors in a radial network using conic and mixed integer linear programming

    Energy Technology Data Exchange (ETDEWEB)

    Jabr, R.A. [Electrical, Computer and Communication Engineering Department, Notre Dame University, P.O. Box: 72, Zouk Mikhael, Zouk Mosbeh (Lebanon)

    2008-06-15

    This paper considers the problem of optimally placing fixed and switched type capacitors in a radial distribution network. The aim of this problem is to minimize the costs associated with capacitor banks, peak power, and energy losses whilst satisfying a pre-specified set of physical and technical constraints. The proposed solution is obtained using a two-phase approach. In phase-I, the problem is formulated as a conic program in which all nodes are candidates for placement of capacitor banks whose sizes are considered as continuous variables. A global solution of the phase-I problem is obtained using an interior-point based conic programming solver. Phase-II seeks a practical optimal solution by considering capacitor sizes as discrete variables. The problem in this phase is formulated as a mixed integer linear program based on minimizing the L1-norm of deviations from the phase-I state variable values. The solution to the phase-II problem is obtained using a mixed integer linear programming solver. The proposed method is validated via extensive comparisons with previously published results. (author)

  19. CIRCUIT-DESIGN SOLUTIONS AND INFORMATION SUPPORT OF CITY ELECTRIC NETWORKS IN THE CONDITIONS OF THE SMART GRID

    Directory of Open Access Journals (Sweden)

    M. I. Fursanov

    2017-01-01

    Full Text Available The structure, circuit-design solutions and information support of the city electric networks in the conditions of the SMART GRID have been analyzed. It is demonstrated that the new conditions of functioning of electric power engineering, increasing demands for its technological state and reliability in most countries determined the transition to a restructuring of electrical networks to be based on the SMART GRID (intelligent power networks innovative new structure. The definitions of the SMART GRID, its various attributes and characteristics in most developed countries including Belarus are presented. It is revealed that the existing and future circuit and constructive solutions that can automate the process of managing modes of urban electric networks under the SMART GRID conditions are manifold. At present, the most common in distribution networks are the sources of distributed generation (combustion turbines, wind turbines, photovoltaic installations, mini-hydro, etc.. The patterns and problems of information traceability of a traditional urban networks of the unified energy system of Belarus have been analyzed, and it is demonstrated that in the conditions of the SMART GRID most of the problems of the control mode that are characteristic for traditional distribution networks 6–10 kV and 0.38 kV, lose their relevance. Therefore, the present article presents and features the main directions of development of automatic control modes of the SMART GRID.

  20. A multiyear DG-incorporated framework for expansion planning of distribution networks using binary chaotic shark smell optimization algorithm

    International Nuclear Information System (INIS)

    Ahmadigorji, Masoud; Amjady, Nima

    2016-01-01

    In this paper, a new model for MEPDN (multiyear expansion planning of distribution networks) is proposed. By solving this model, the optimal expansion scheme of primary (i.e. medium voltage) distribution network including the reinforcement pattern of primary feeders as well as location and size of DG (distributed generators) during an ascertained planning period is determined. Furthermore, the time-based feature of proposed model allows it to specify the investments/reinforcements time (i.e. year). Moreover, a minimum load shedding-based analytical approach for optimizing the network's reliability is introduced. The associated objective function of proposed model is minimizing the total investment and operation costs. To solve the formulated MEPDN model as a complex multi-dimensional optimization problem, a new evolutionary algorithm-based solution method called BCSSO (Binary Chaotic Shark Smell Optimization) is presented. The effectiveness of the proposed MEPDN model and solution approach is illustrated by applying them on two widely-used test cases including 12-bus and 33-bus distribution network and comparing the acquired results with the results of other solution methods. - Highlights: • A multiyear expansion planning model for distribution network is presented. • A new evolutionary algorithm-based solution approach is proposed. • A minimum load shedding-based analytical method for EENS minimization is suggested. • The efficacy of the proposed solution approach is broadly investigated.

  1. Solid effervescent formulations as new approach for topical minoxidil delivery.

    Science.gov (United States)

    Pereira, Maíra N; Schulte, Heidi L; Duarte, Natane; Lima, Eliana M; Sá-Barreto, Livia L; Gratieri, Tais; Gelfuso, Guilherme M; Cunha-Filho, Marcilio S S

    2017-01-01

    Currently marketed minoxidil formulations present inconveniences that range from a grease hard aspect they leave on the hair to more serious adverse reactions as scalp dryness and irritation. In this paper we propose a novel approach for minoxidil sulphate (MXS) delivery based on a solid effervescent formulation. The aim was to investigate whether the particle mechanical movement triggered by effervescence would lead to higher follicle accumulation. Preformulation studies using thermal, spectroscopic and morphological analysis demonstrated the compatibility between effervescent salts and the drug. The effervescent formulation demonstrated a 2.7-fold increase on MXS accumulation into hair follicles casts compared to the MXS solution (22.0±9.7μg/cm 2 versus 8.3±4.0μg/cm 2 ) and a significant drug increase (around 4-fold) in remaining skin (97.1±29.2μg/cm 2 ) compared to the drug solution (23.5±6.1μg/cm 2 ). The effervescent formulations demonstrated a prominent increase of drug permeation highly dependent on the effervescent mixture concentration in the formulation, confirming the hypothesis of effervescent reaction favoring drug penetration. Clinically, therapy effectiveness could be improved, increasing the administration interval, hence, patient compliance. More studies to investigate the follicular targeting potential and safety of new formulations are needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Micosoft Excel Sensitivity Analysis for Linear and Stochastic Program Feed Formulation

    Science.gov (United States)

    Sensitivity analysis is a part of mathematical programming solutions and is used in making nutritional and economic decisions for a given feed formulation problem. The terms, shadow price and reduced cost, are familiar linear program (LP) terms to feed formulators. Because of the nonlinear nature of...

  3. Millimetre-Wave Backhaul for 5G Networks: Challenges and Solutions

    Directory of Open Access Journals (Sweden)

    Wei Feng

    2016-06-01

    Full Text Available The trend for dense deployment in future 5G mobile communication networks makes current wired backhaul infeasible owing to the high cost. Millimetre-wave (mm-wave communication, a promising technique with the capability of providing a multi-gigabit transmission rate, offers a flexible and cost-effective candidate for 5G backhauling. By exploiting highly directional antennas, it becomes practical to cope with explosive traffic demands and to deal with interference problems. Several advancements in physical layer technology, such as hybrid beamforming and full duplexing, bring new challenges and opportunities for mm-wave backhaul. This article introduces a design framework for 5G mm-wave backhaul, including routing, spatial reuse scheduling and physical layer techniques. The associated optimization model, open problems and potential solutions are discussed to fully exploit the throughput gain of the backhaul network. Extensive simulations are conducted to verify the potential benefits of the proposed method for the 5G mm-wave backhaul design.

  4. Stable architectures for deep neural networks

    Science.gov (United States)

    Haber, Eldad; Ruthotto, Lars

    2018-01-01

    Deep neural networks have become invaluable tools for supervised machine learning, e.g. classification of text or images. While often offering superior results over traditional techniques and successfully expressing complicated patterns in data, deep architectures are known to be challenging to design and train such that they generalize well to new data. Critical issues with deep architectures are numerical instabilities in derivative-based learning algorithms commonly called exploding or vanishing gradients. In this paper, we propose new forward propagation techniques inspired by systems of ordinary differential equations (ODE) that overcome this challenge and lead to well-posed learning problems for arbitrarily deep networks. The backbone of our approach is our interpretation of deep learning as a parameter estimation problem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-posedness of deep learning and use this new understanding to develop new network architectures. We relate the exploding and vanishing gradient phenomenon to the stability of the discrete ODE and present several strategies for stabilizing deep learning for very deep networks. While our new architectures restrict the solution space, several numerical experiments show their competitiveness with state-of-the-art networks.

  5. An efficient finite element solution for gear dynamics

    International Nuclear Information System (INIS)

    Cooley, C G; Parker, R G; Vijayakar, S M

    2010-01-01

    A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, housing structures, and other deformable components.

  6. Formulation of lubricating grease using Beeswax thickener

    Science.gov (United States)

    Suhaila, N.; Japar, A.; Aizudin, M.; Aziz, A.; Najib Razali, Mohd

    2018-04-01

    The issues on environmental pollution has brought the industries to seek the alternative green solutions for lubricating grease formulation. The significant challenges in producing modified grease are in which considering the chosen thickener as one of the environmental friendly material. The main purposes of the current research were to formulate lubricant grease using different types of base oils and to study the effect of thickener on the formulated lubricant grease. Used oil and motor oil were used as the base oils for the grease preparation. Beeswax and Damar were used as thickener and additive. The grease is tested based on its consistency, stability and oil bleeding. The prepared greases achieved grease consistency of grade 2 and 3 except for grease with unfiltered used oil. Grease formulated with used oil and synthetic oil tend to harden and loss its lubricating ability under high temperature compared to motor oil’ grease. Grease modification using environmental friendly thickener were successfully formulated but it is considered as a low temperature grease as the beeswax have low melting point of 62°C-65°C.

  7. Partially blind instantly decodable network codes for lossy feedback environment

    KAUST Repository

    Sorour, Sameh

    2014-09-01

    In this paper, we study the multicast completion and decoding delay minimization problems for instantly decodable network coding (IDNC) in the case of lossy feedback. When feedback loss events occur, the sender falls into uncertainties about packet reception at the different receivers, which forces it to perform partially blind selections of packet combinations in subsequent transmissions. To determine efficient selection policies that reduce the completion and decoding delays of IDNC in such an environment, we first extend the perfect feedback formulation in our previous works to the lossy feedback environment, by incorporating the uncertainties resulting from unheard feedback events in these formulations. For the completion delay problem, we use this formulation to identify the maximum likelihood state of the network in events of unheard feedback and employ it to design a partially blind graph update extension to the multicast IDNC algorithm in our earlier work. For the decoding delay problem, we derive an expression for the expected decoding delay increment for any arbitrary transmission. This expression is then used to find the optimal policy that reduces the decoding delay in such lossy feedback environment. Results show that our proposed solutions both outperform previously proposed approaches and achieve tolerable degradation even at relatively high feedback loss rates.

  8. Optimal design of a gas transmission network: A case study of the Turkish natural gas pipeline network system

    Science.gov (United States)

    Gunes, Ersin Fatih

    Turkey is located between Europe, which has increasing demand for natural gas and the geographies of Middle East, Asia and Russia, which have rich and strong natural gas supply. Because of the geographical location, Turkey has strategic importance according to energy sources. To supply this demand, a pipeline network configuration with the optimal and efficient lengths, pressures, diameters and number of compressor stations is extremely needed. Because, Turkey has a currently working and constructed network topology, obtaining an optimal configuration of the pipelines, including an optimal number of compressor stations with optimal locations, is the focus of this study. Identifying a network design with lowest costs is important because of the high maintenance and set-up costs. The quantity of compressor stations, the pipeline segments' lengths, the diameter sizes and pressures at compressor stations, are considered to be decision variables in this study. Two existing optimization models were selected and applied to the case study of Turkey. Because of the fixed cost of investment, both models are formulated as mixed integer nonlinear programs, which require branch and bound combined with the nonlinear programming solution methods. The differences between these two models are related to some factors that can affect the network system of natural gas such as wall thickness, material balance compressor isentropic head and amount of gas to be delivered. The results obtained by these two techniques are compared with each other and with the current system. Major differences between results are costs, pressures and flow rates. These solution techniques are able to find a solution with minimum cost for each model both of which are less than the current cost of the system while satisfying all the constraints on diameter, length, flow rate and pressure. These results give the big picture of an ideal configuration for the future state network for the country of Turkey.

  9. ATLAAS-P2P: a two layer network solution for easing the resource discovery process in unstructured networks

    OpenAIRE

    Baraglia, Ranieri; Dazzi, Patrizio; Mordacchini, Matteo; Ricci, Laura

    2013-01-01

    ATLAAS-P2P is a two-layered P2P architecture for developing systems providing resource aggregation and approximated discovery in P2P networks. Such systems allow users to search the desired resources by specifying their requirements in a flexible and easy way. From the point of view of resource providers, this system makes available an effective solution supporting providers in being reached by resource requests.

  10. Treating network junctions in finite volume solution of transient gas flow models

    Science.gov (United States)

    Bermúdez, Alfredo; López, Xián; Vázquez-Cendón, M. Elena

    2017-09-01

    A finite volume scheme for the numerical solution of a non-isothermal non-adiabatic compressible flow model for gas transportation networks on non-flat topography is introduced. Unlike standard Euler equations, the model takes into account wall friction, variable height and heat transfer between the pipe and the environment which are source terms. The case of one single pipe was considered in a previous reference by the authors, [8], where a finite volume method with upwind discretization of the flux and source terms has been proposed in order to get a well-balanced scheme. The main goal of the present paper is to go a step further by considering a network of pipes. The main issue is the treatment of junctions for which container-like 2D finite volumes are introduced. The couplings between pipes (1D) and containers (2D) are carefully described and the conservation properties are analyzed. Numerical tests including real gas networks are solved showing the performance of the proposed methodology.

  11. Towards Optimal Event Detection and Localization in Acyclic Flow Networks

    KAUST Repository

    Agumbe Suresh, Mahima

    2012-01-03

    Acyclic flow networks, present in many infrastructures of national importance (e.g., oil & gas and water distribution systems), have been attracting immense research interest. Existing solutions for detecting and locating attacks against these infrastructures, have been proven costly and imprecise, especially when dealing with large scale distribution systems. In this paper, to the best of our knowledge for the first time, we investigate how mobile sensor networks can be used for optimal event detection and localization in acyclic flow networks. Sensor nodes move along the edges of the network and detect events (i.e., attacks) and proximity to beacon nodes with known placement in the network. We formulate the problem of minimizing the cost of monitoring infrastructure (i.e., minimizing the number of sensor and beacon nodes deployed), while ensuring a degree of sensing coverage in a zone of interest and a required accuracy in locating events. We propose algorithms for solving these problems and demonstrate their effectiveness with results obtained from a high fidelity simulator.

  12. Fast Deploy Radiation Monitoring Array Emergency Solution Based on GPS and Cellular Network

    International Nuclear Information System (INIS)

    Vax, E.; Broide, A.; Manor, A.; Marcus, E.; Seif, R.; Nir, J.; Kadmon, Y.; Sattinger, D.; Levinson, S.; Tal, N.

    2004-01-01

    Radiation monitoring of a possible contaminating source is highly important for safety and risk analysis. Since the monitoring must cover the whole contaminated area, the standard solution is to scatter an array of numerous fixed detectors in advance. The Fast Deploy Radiation Monitoring Array (FDRMA) is a solution that does not require coverage of the entire area. The FDRMA is a compact, world wide applicative, seamless and novel solution, designed for emergency cases. The system consists of GPS and IP cellular network, which make it mobile and therefore suitable for global use. The most significant advantage of the FDRMA system is minimizing the exposure time of the monitoring teams, while maintaining flexibility of the deployment area, as opposed to the Vehicle Monitoring System (VMS) [1] or the standard solution mentioned above. A detailed description of the proposed FDRMA system and its comparison to a fixed detectors' array is presented in this work

  13. An extension of implicit Monte Carlo diffusion: Multigroup and the difference formulation

    International Nuclear Information System (INIS)

    Cleveland, Mathew A.; Gentile, Nick A.; Palmer, Todd S.

    2010-01-01

    Implicit Monte Carlo (IMC) and Implicit Monte Carlo Diffusion (IMD) are approaches to the numerical solution of the equations of radiative transfer. IMD was previously derived and numerically tested on grey, or frequency-integrated problems . In this research, we extend Implicit Monte Carlo Diffusion (IMD) to account for frequency dependence, and we implement the difference formulation as a source manipulation variance reduction technique. We derive the relevant probability distributions and present the frequency dependent IMD algorithm, with and without the difference formulation. The IMD code with and without the difference formulation was tested using both grey and frequency dependent benchmark problems. The Su and Olson semi-analytic Marshak wave benchmark was used to demonstrate the validity of the code for grey problems . The Su and Olson semi-analytic picket fence benchmark was used for the frequency dependent problems . The frequency dependent IMD algorithm reproduces the results of both Su and Olson benchmark problems. Frequency group refinement studies indicate that the computational cost of refining the group structure is likely less than that of group refinement in deterministic solutions of the radiation diffusion methods. Our results show that applying the difference formulation to the IMD algorithm can result in an overall increase in the figure of merit for frequency dependent problems. However, the creation of negatively weighted particles from the difference formulation can cause significant numerical instabilities in regions of the problem with sharp spatial gradients in the solution. An adaptive implementation of the difference formulation may be necessary to focus its use in regions that are at or near thermal equilibrium.

  14. Element free Galerkin formulation of composite beam with longitudinal slip

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Dzulkarnain; Mokhtaram, Mokhtazul Haizad [Department of Civil Engineering, Universiti Selangor, Bestari Jaya, Selangor (Malaysia); Badli, Mohd Iqbal; Yassin, Airil Y. Mohd [Faculty of Civil Engineering, Universiti Teknologi Malaysia, Skudai, Johor (Malaysia)

    2015-05-15

    Behaviour between two materials in composite beam is assumed partially interact when longitudinal slip at its interfacial surfaces is considered. Commonly analysed by the mesh-based formulation, this study used meshless formulation known as Element Free Galerkin (EFG) method in the beam partial interaction analysis, numerically. As meshless formulation implies that the problem domain is discretised only by nodes, the EFG method is based on Moving Least Square (MLS) approach for shape functions formulation with its weak form is developed using variational method. The essential boundary conditions are enforced by Langrange multipliers. The proposed EFG formulation gives comparable results, after been verified by analytical solution, thus signify its application in partial interaction problems. Based on numerical test results, the Cubic Spline and Quartic Spline weight functions yield better accuracy for the EFG formulation, compares to other proposed weight functions.

  15. Chemical-milling solution for invar alloy

    Science.gov (United States)

    Batiuk, W.

    1980-01-01

    Excellent surface finishes and tolerances are achieved using two formulations. Solution A gives finish of 3.17 micrometers after milling at 57 to 63 deg C. Constituents of A are: Hydrofluoric acid (70%), 5,8 oz/gal; nitric acid (40-42) degrees Baume), 40 oz/gal. Alternative solution gives 2.16 micrometer finish, and differs from A by addition of 7% phosphoric acid. Formulations eliminate channeling at root fillets, dishing, island formation, and overhangs.

  16. Spurious solutions in few-body equations

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Gloeckle, W.

    1979-01-01

    After Faddeev and Yakubovskii showed how to write connected few-body equations which are free from discrete spurious solutions various authors have proposed different connected few-body scattering equations. Federbush first pointed out that Weinberg's formulation admits the existence of discrete spurious solutions. In this paper we investigate the possibility and consequence of the existence of spurious solutions in some of the few-body formulations. Contrary to a proof by Hahn, Kouri, and Levin and by Bencze and Tandy the channel coupling array scheme of Kouri, Levin, and Tobocman which is also the starting point of a formulation by Hahn is shown to admit spurious solutions. We can show that the set of six coupled four-body equations proposed independently by Mitra, Gillespie, Sugar, and Panchapakesan, by Rosenberg, by Alessandrini, and by Takahashi and Mishima and the seven coupled four-body equations proposed by Sloan and related by matrix multipliers to basic sets which correspond uniquely to the Schroedinger equation. These multipliers are likely to give spurious solutions to these equations. In all these cases spuriosities are shown to have no hazardous consequence if one is interested in studying the scattering problem

  17. Studies on a network of complex neurons

    Science.gov (United States)

    Chakravarthy, Srinivasa V.; Ghosh, Joydeep

    1993-09-01

    In the last decade, much effort has been directed towards understanding the role of chaos in the brain. Work with rabbits reveals that in the resting state the electrical activity on the surface of the olfactory bulb is chaotic. But, when the animal is involved in a recognition task, the activity shifts to a specific pattern corresponding to the odor that is being recognized. Unstable, quasiperiodic behavior can be found in a class of conservative, deterministic physical systems called the Hamiltonian systems. In this paper, we formulate a complex version of Hopfield's network of real parameters and show that a variation on this model is a conservative system. Conditions under which the complex network can be used as a Content Addressable memory are studied. We also examine the effect of singularities of the complex sigmoid function on the network dynamics. The network exhibits unpredictable behavior at the singularities due to the failure of a uniqueness condition for the solution of the dynamic equations. On incorporating a weight adaptation rule, the structure of the resulting complex network equations is shown to have an interesting similarity with Kosko's Adaptive Bidirectional Associative Memory.

  18. Revisiting the two formulations of Bianchi identities and their implications on moduli stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Pramod [ICTP - International Centre for Theoretical Physics,Strada Costiera 11, Trieste 34151 (Italy)

    2016-08-24

    In the context of non-geometric type II orientifold compactifications, there have been two formulations for representing the various NS-NS Bianchi-identities. In the first formulation, the standard three-form flux (H{sub 3}), the geometric flux (ω) and the non-geometric fluxes (Q and R) are expressed by using the real six-dimensional indices (e.g. H{sub ijk},ω{sub ij}{sup k},Q{sub i}{sup jk} and R{sup ijk}), and this formulation has been heavily utilized for simplifying the scalar potentials in toroidal-orientifolds. On the other hand, relevant for the studies beyond toroidal backgrounds, a second formulation is utilized in which all flux components are written in terms of various involutively even/odd (2,1)- and (1,1)-cohomologies of the complex threefold. In the lights of recent model building interests and some observations made in http://dx.doi.org/10.1088/1126-6708/2007/08/043, http://dx.doi.org/10.1088/1126-6708/2007/12/058, in this article, we revisit two most commonly studied toroidal examples in detail to illustrate that the present forms of these two formulations are not completely equivalent. To demonstrate the same, we translate all the identities of the first formulation into cohomology ingredients, and after a tedious reshuffling of the subsequent constraints, interestingly we find that all the identities of the second formulation are embedded into the first formulation which has some additional constraints. In addition, we look for the possible solutions of these Bianchi identities in a detailed analysis, and we find that some solutions can reduce the size of scalar potential very significantly, and in some cases are too strong to break the no-scale structure completely. Finally, we also comment on the influence of imposing some of the solutions of Bianchi identities in studying moduli stabilization.

  19. A method of network topology optimization design considering application process characteristic

    Science.gov (United States)

    Wang, Chunlin; Huang, Ning; Bai, Yanan; Zhang, Shuo

    2018-03-01

    Communication networks are designed to meet the usage requirements of users for various network applications. The current studies of network topology optimization design mainly considered network traffic, which is the result of network application operation, but not a design element of communication networks. A network application is a procedure of the usage of services by users with some demanded performance requirements, and has obvious process characteristic. In this paper, we first propose a method to optimize the design of communication network topology considering the application process characteristic. Taking the minimum network delay as objective, and the cost of network design and network connective reliability as constraints, an optimization model of network topology design is formulated, and the optimal solution of network topology design is searched by Genetic Algorithm (GA). Furthermore, we investigate the influence of network topology parameter on network delay under the background of multiple process-oriented applications, which can guide the generation of initial population and then improve the efficiency of GA. Numerical simulations show the effectiveness and validity of our proposed method. Network topology optimization design considering applications can improve the reliability of applications, and provide guidance for network builders in the early stage of network design, which is of great significance in engineering practices.

  20. Chemical analysis of multicomponent aqueous solutions using a system of nonselective sensor and artificial neural networks

    International Nuclear Information System (INIS)

    Vlasov, Yu.G.; Legin, A.V.; Rudnitskaya, A.M.; Amiko, A.D.; Natale, K.D.

    1997-01-01

    With the aim of creating a multisensor system for determining heavy-metal cations (Cu 2+ , Pb 2+ , Cd 2+ , and Zn 2+ ) and inorganic anions (Cl - , F - , and SO 4 2- ), measurements in mixed solutions were carried out with the use of an array of sensors based on chalcogenide glass electrodes, and the possibility of using various methods of mathematical processing of the resulting intricate signals was studied. Three methods of data processing were used: multilinear regression, partial least squares, and artificial neural networks. It was found that the multisensor system proposed were suitable for determining all of the analytes with an accuracy of 1-10%. Because the responses of sensors in solutions of complex composition deviated from linearity, the lowest determination errors were obtained with the use of an artificial neural network. As to the method of data securing (nonselective response of a sensor array) and processing (artificial neural network), the multisensor system developed may be considered a prototype of a device of the electronic tongue type

  1. Delay reduction in multi-hop device-to-device communication using network coding

    KAUST Repository

    Douik, Ahmed S.

    2015-08-12

    This paper considers the problem of reducing the broadcast delay of wireless networks using instantly decodable network coding (IDNC) based device-to-device (D2D) communications. In D2D-enabled networks, devices help hasten the recovery of the lost packets of devices in their transmission range by sending network coded packets. To solve the problem, the different events occurring at each device are identified so as to derive an expression for the probability distribution of the decoding delay. The joint optimization problem over the set of transmitting devices and the packet combinations of each is formulated. Due to the high complexity of finding the optimal solution, this paper focuses on cooperation without interference between the transmitting users. The optimal solution, in such interference-less scenario, is expressed using a graph theory approach by introducing the cooperation graph. Extensive simulations compare the decoding delay experienced in the Point to Multi-Point (PMP), the fully connected D2D (FC-D2D) and the more practical partially connected D2D (PC-D2D) configurations and suggest that the PC-D2D outperforms the FC-D2D in all situations and provides an enormous gain for poorly connected networks.

  2. REUSING STOCKS SOLUTIONS WITH DIFFERENT FORMULATED FOR ORCHID FERTILIZER ACCLIMATIZATION PHASE

    Directory of Open Access Journals (Sweden)

    C. G. C. Issa

    2018-04-01

    Full Text Available Orchids are ornamental plants that stand out by their colors, types, shapes, size, beauty. Additionally, some species have aromas. This diversity of orchids makes it be greatly appreciated as potted plants, landscaping, with high commercial value. The aim of this study was to evaluate the development of orchids at different levels of fertilization by reusing nutrients added to the culture medium for cultivation in vitro is also analyzing the different times of acclimatization. The micropropagated orchids removed from the growth chamber, were transported to greenhouse composing the different treatments for acclimatization (0, 10, 20, 30, 40 and 50 days. To be transplanted were placed in pine bark substrate and Sphagnum being placed in trays. After 30 days the seedlings were transplanted to styrofoam trays was initiated plant fertilization weekly with different formulated by administering 5 ml each (1 humic acid, 2nd potassium nitrate (KNO3, 3rd humic acid + Nitrate potassium (KNO3, 4th calcium chloride (CaCl2, 5 ° control. Six months after withdrawal of the growth room the plants was carried out the evaluation of the experiment where the plant survival was evaluated by the number of shoots, number of leaves, the length of the largest leaf and root presence. The experimental design was completely randomized in a factorial 6x5, with the time of acclimatization (0, 10, 20, 30, 40 and 50 days the first factor and the second, the type of fertilizer used (4 formulated and the witness with 8 replicates per treatment. The data were submitted to deviance analysis in the software R. In this study, the need to fertilize with nutrient rich formulations for orchids in the acclimatization phase was contacted and that these should remain for a few days inside the jars in a greenhouse environment.

  3. A Game Theoretic Approach to Minimize the Completion Time of Network Coded Cooperative Data Exchange

    KAUST Repository

    Douik, Ahmed S.

    2014-05-11

    In this paper, we introduce a game theoretic framework for studying the problem of minimizing the completion time of instantly decodable network coding (IDNC) for cooperative data exchange (CDE) in decentralized wireless network. In this configuration, clients cooperate with each other to recover the erased packets without a central controller. Game theory is employed herein as a tool for improving the distributed solution by overcoming the need for a central controller or additional signaling in the system. We model the session by self-interested players in a non-cooperative potential game. The utility function is designed such that increasing individual payoff results in a collective behavior achieving both a desirable system performance in a shared network environment and the Pareto optimal solution. Through extensive simulations, our approach is compared to the best performance that could be found in the conventional point-to-multipoint (PMP) recovery process. Numerical results show that our formulation largely outperforms the conventional PMP scheme in most practical situations and achieves a lower delay.

  4. A Game Theoretic Approach to Minimize the Completion Time of Network Coded Cooperative Data Exchange

    KAUST Repository

    Douik, Ahmed S.; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim; Sorour, Sameh; Tembine, Hamidou

    2014-01-01

    In this paper, we introduce a game theoretic framework for studying the problem of minimizing the completion time of instantly decodable network coding (IDNC) for cooperative data exchange (CDE) in decentralized wireless network. In this configuration, clients cooperate with each other to recover the erased packets without a central controller. Game theory is employed herein as a tool for improving the distributed solution by overcoming the need for a central controller or additional signaling in the system. We model the session by self-interested players in a non-cooperative potential game. The utility function is designed such that increasing individual payoff results in a collective behavior achieving both a desirable system performance in a shared network environment and the Pareto optimal solution. Through extensive simulations, our approach is compared to the best performance that could be found in the conventional point-to-multipoint (PMP) recovery process. Numerical results show that our formulation largely outperforms the conventional PMP scheme in most practical situations and achieves a lower delay.

  5. Global existence of periodic solutions on a simplified BAM neural network model with delays

    International Nuclear Information System (INIS)

    Zheng Baodong; Zhang Yazhuo; Zhang Chunrui

    2008-01-01

    A simplified n-dimensional BAM neural network model with delays is considered. Some results of Hopf bifurcations occurring at the zero equilibrium as the delay increases are exhibited. Global existence of periodic solutions are established using a global Hopf bifurcation result of Wu [Wu J. Symmetric functional-differential equations and neural networks with memory. Trans Am Math Soc 1998;350:4799-838], and a Bendixson criterion for higher dimensional ordinary differential equations due to Li and Muldowney [Li MY, Muldowney J. On Bendixson's criterion. J Differ Equations 1994;106:27-39]. Finally, computer simulations are performed to illustrate the analytical results found

  6. Sensitive Constrained Optimal PMU Allocation with Complete Observability for State Estimation Solution

    Directory of Open Access Journals (Sweden)

    R. Manam

    2017-12-01

    Full Text Available In this paper, a sensitive constrained integer linear programming approach is formulated for the optimal allocation of Phasor Measurement Units (PMUs in a power system network to obtain state estimation. In this approach, sensitive buses along with zero injection buses (ZIB are considered for optimal allocation of PMUs in the network to generate state estimation solutions. Sensitive buses are evolved from the mean of bus voltages subjected to increase of load consistently up to 50%. Sensitive buses are ranked in order to place PMUs. Sensitive constrained optimal PMU allocation in case of single line and no line contingency are considered in observability analysis to ensure protection and control of power system from abnormal conditions. Modeling of ZIB constraints is included to minimize the number of PMU network allocations. This paper presents optimal allocation of PMU at sensitive buses with zero injection modeling, considering cost criteria and redundancy to increase the accuracy of state estimation solution without losing observability of the whole system. Simulations are carried out on IEEE 14, 30 and 57 bus systems and results obtained are compared with traditional and other state estimation methods available in the literature, to demonstrate the effectiveness of the proposed method.

  7. Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations.

    Science.gov (United States)

    Xiao, Lin; Liao, Bolin; Li, Shuai; Chen, Ke

    2018-02-01

    In order to solve general time-varying linear matrix equations (LMEs) more efficiently, this paper proposes two nonlinear recurrent neural networks based on two nonlinear activation functions. According to Lyapunov theory, such two nonlinear recurrent neural networks are proved to be convergent within finite-time. Besides, by solving differential equation, the upper bounds of the finite convergence time are determined analytically. Compared with existing recurrent neural networks, the proposed two nonlinear recurrent neural networks have a better convergence property (i.e., the upper bound is lower), and thus the accurate solutions of general time-varying LMEs can be obtained with less time. At last, various different situations have been considered by setting different coefficient matrices of general time-varying LMEs and a great variety of computer simulations (including the application to robot manipulators) have been conducted to validate the better finite-time convergence of the proposed two nonlinear recurrent neural networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Multiobjective Optimization of Water Distribution Networks Using Fuzzy Theory and Harmony Search

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2015-07-01

    Full Text Available Thus far, various phenomenon-mimicking algorithms, such as genetic algorithm, simulated annealing, tabu search, shuffled frog-leaping, ant colony optimization, harmony search, cross entropy, scatter search, and honey-bee mating, have been proposed to optimally design the water distribution networks with respect to design cost. However, flow velocity constraint, which is critical for structural robustness against water hammer or flow circulation against substance sedimentation, was seldom considered in the optimization formulation because of computational complexity. Thus, this study proposes a novel fuzzy-based velocity reliability index, which is to be maximized while the design cost is simultaneously minimized. The velocity reliability index is included in the existing cost optimization formulation and this extended multiobjective formulation is applied to two bench-mark problems. Results show that the model successfully found a Pareto set of multiobjective design solutions in terms of cost minimization and reliability maximization.

  9. Ray convergence in a flux-like propagation formulation.

    Science.gov (United States)

    Harrison, Chris H

    2013-06-01

    The energy flux formulation of waveguide propagation is closely related to the incoherent mode sum, and its simplicity has led to development of efficient computational algorithms for reverberation and target echo strength, but it lacks the effects of convergence or modal interference. By starting with the coherent mode sum and rejecting the most rapid interference but retaining beats on a scale of a ray cycle distance it is shown that convergence can be included in a hybrid formulation requiring minimal extra computation. Three solutions are offered by evaluating the modal intensity cross terms using Taylor expansions. In the most efficient approach the double summation of the cross terms is reduced to a single numerical sum by solving the other summation analytically. The other two solutions are a local range average and a local depth average. Favorable comparisons are made between these three solutions and the wave model Orca with, and without, spatial averaging in an upward refracting duct. As a by-product, it is shown that the running range average is very close to the mode solution excluding its fringes, given a relation between averaging window size and effective number of modes which, in turn, is related to the waveguide invariant.

  10. Linear triangle finite element formulation for multigroup neutron transport analysis with anisotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lillie, R.A.; Robinson, J.C.

    1976-05-01

    The discrete ordinates method is the most powerful and generally used deterministic method to obtain approximate solutions of the Boltzmann transport equation. A finite element formulation, utilizing a canonical form of the transport equation, is here developed to obtain both integral and pointwise solutions to neutron transport problems. The formulation is based on the use of linear triangles. A general treatment of anisotropic scattering is included by employing discrete ordinates-like approximations. In addition, multigroup source outer iteration techniques are employed to perform group-dependent calculations. The ability of the formulation to reduce substantially ray effects and its ability to perform streaming calculations are demonstrated by analyzing a series of test problems. The anisotropic scattering and multigroup treatments used in the development of the formulation are verified by a number of one-dimensional comparisons. These comparisons also demonstrate the relative accuracy of the formulation in predicting integral parameters. The applicability of the formulation to nonorthogonal planar geometries is demonstrated by analyzing a hexagonal-type lattice. A small, high-leakage reactor model is analyzed to investigate the effects of varying both the spatial mesh and order of angular quadrature. This analysis reveals that these effects are more pronounced in the present formulation than in other conventional formulations. However, the insignificance of these effects is demonstrated by analyzing a realistic reactor configuration. In addition, this final analysis illustrates the importance of incorporating anisotropic scattering into the finite element formulation. 8 tables, 29 figures.

  11. Linear triangle finite element formulation for multigroup neutron transport analysis with anisotropic scattering

    International Nuclear Information System (INIS)

    Lillie, R.A.; Robinson, J.C.

    1976-05-01

    The discrete ordinates method is the most powerful and generally used deterministic method to obtain approximate solutions of the Boltzmann transport equation. A finite element formulation, utilizing a canonical form of the transport equation, is here developed to obtain both integral and pointwise solutions to neutron transport problems. The formulation is based on the use of linear triangles. A general treatment of anisotropic scattering is included by employing discrete ordinates-like approximations. In addition, multigroup source outer iteration techniques are employed to perform group-dependent calculations. The ability of the formulation to reduce substantially ray effects and its ability to perform streaming calculations are demonstrated by analyzing a series of test problems. The anisotropic scattering and multigroup treatments used in the development of the formulation are verified by a number of one-dimensional comparisons. These comparisons also demonstrate the relative accuracy of the formulation in predicting integral parameters. The applicability of the formulation to nonorthogonal planar geometries is demonstrated by analyzing a hexagonal-type lattice. A small, high-leakage reactor model is analyzed to investigate the effects of varying both the spatial mesh and order of angular quadrature. This analysis reveals that these effects are more pronounced in the present formulation than in other conventional formulations. However, the insignificance of these effects is demonstrated by analyzing a realistic reactor configuration. In addition, this final analysis illustrates the importance of incorporating anisotropic scattering into the finite element formulation. 8 tables, 29 figures

  12. Investigation of an artificial intelligence technology--Model trees. Novel applications for an immediate release tablet formulation database.

    Science.gov (United States)

    Shao, Q; Rowe, R C; York, P

    2007-06-01

    This study has investigated an artificial intelligence technology - model trees - as a modelling tool applied to an immediate release tablet formulation database. The modelling performance was compared with artificial neural networks that have been well established and widely applied in the pharmaceutical product formulation fields. The predictability of generated models was validated on unseen data and judged by correlation coefficient R(2). Output from the model tree analyses produced multivariate linear equations which predicted tablet tensile strength, disintegration time, and drug dissolution profiles of similar quality to neural network models. However, additional and valuable knowledge hidden in the formulation database was extracted from these equations. It is concluded that, as a transparent technology, model trees are useful tools to formulators.

  13. The effects of formulation on the immunostimulatory activity of dihydroheptaprenol.

    Science.gov (United States)

    Roth, James A; Hibbard, Beth; Frank, Dagmar E; Kesl, Lyle; Robb, Edward J

    2002-01-01

    Holstein steer calves received a single injection of Miglyol (Sasol Chemical Industries, Ltd.) subcutaneously as a placebo, dihydroheptaprenol (DHP) (4 mg/kg) emulsified with lecithin subcutaneously, DHP in solution in Miglyol (4 mg/kg) subcutaneously, or DHP in solution in Miglyol (4 mg/kg) intranasally. The DHP emulsified in lecithin emulsion administered subcutaneously caused a substantial increase in body temperature, total leukocyte count, total neutrophil count, neutrophil cytochrome-c reduction, and neutrophil iodination 24 hours after administration and, for some of the parameters, at 48 hours. The DHP formulation in Miglyol did not have any of these effects when administered subcutaneously or intranasally. The carrier and formulation of DHP apparently have major effects on the biologic activity of DHP.

  14. Optimal allocation and adaptive VAR control of PV-DG in distribution networks

    International Nuclear Information System (INIS)

    Fu, Xueqian; Chen, Haoyong; Cai, Runqing; Yang, Ping

    2015-01-01

    Highlights: • A methodology for optimal PV-DG allocation based on a combination of algorithms. • Dealing with the randomicity of solar power energy using CCSP. • Presenting a VAR control strategy to balance the technical demands. • Finding the Pareto solutions using MOPSO and SVM. • Evaluating the Pareto solutions using WRSR. - Abstract: The development of distributed generation (DG) has brought new challenges to power networks. One of them that catches extensive attention is the voltage regulation problem of distribution networks caused by DG. Optimal allocation of DG in distribution networks is another well-known problem being widely investigated. This paper proposes a new method for the optimal allocation of photovoltaic distributed generation (PV-DG) considering the non-dispatchable characteristics of PV units. An adaptive reactive power control model is introduced in PV-DG allocation as to balance the trade-off between the improvement of voltage quality and the minimization of power loss in a distribution network integrated with PV-DG units. The optimal allocation problem is formulated as a chance-constrained stochastic programming (CCSP) model for dealing with the randomness of solar power energy. A novel algorithm combining the multi-objective particle swarm optimization (MOPSO) with support vector machines (SVM) is proposed to find the Pareto front consisting of a set of possible solutions. The Pareto solutions are further evaluated using the weighted rank sum ratio (WRSR) method to help the decision-maker obtain the desired solution. Simulation results on a 33-bus radial distribution system show that the optimal allocation method can fully take into account the time-variant characteristics and probability distribution of PV-DG, and obtain the best allocation scheme

  15. Formulating viscous hydrodynamics for large velocity gradients

    International Nuclear Information System (INIS)

    Pratt, Scott

    2008-01-01

    Viscous corrections to relativistic hydrodynamics, which are usually formulated for small velocity gradients, have recently been extended from Navier-Stokes formulations to a class of treatments based on Israel-Stewart equations. Israel-Stewart treatments, which treat the spatial components of the stress-energy tensor τ ij as dynamical objects, introduce new parameters, such as the relaxation times describing nonequilibrium behavior of the elements τ ij . By considering linear response theory and entropy constraints, we show how the additional parameters are related to fluctuations of τ ij . Furthermore, the Israel-Stewart parameters are analyzed for their ability to provide stable and physical solutions for sound waves. Finally, it is shown how these parameters, which are naturally described by correlation functions in real time, might be constrained by lattice calculations, which are based on path-integral formulations in imaginary time

  16. Effect of Amphiphiles on the Rheology of Triglyceride Networks

    Science.gov (United States)

    Seth, Jyoti

    2014-11-01

    Networks of aggregated crystallites form the structural backbone of many products from the food, cosmetic and pharmaceutical industries. Such materials are generally formulated by cooling a saturated solution to yield the desired solid fraction. Crystal nucleation and growth followed by aggregation leads to formation of a space percolating fractal-network. It is understood that microstructural hierarchy and particle-particle interactions determine material behavior during processing, storage and use. In this talk, rheology of suspensions of triglycerides (TAG, like tristearin) will be explored. TAGs exhibit a rich assortment of polymorphs and form suspensions that are evidently sensitive to surface modifying additives like surfactants and polymers. Here, a theoretical framework will be presented for suspensions containing TAG crystals interacting via pairwise potentials. The work builds on existing models of fractal aggregates to understand microstructure and its correlation with material rheology. Effect of amphiphilic additives is derived through variation of particle-particle interactions. Theoretical predictions for storage modulus will be compared against experimental observations and data from the literature and micro structural predictions against microscopy. Such a theory may serve as a step towards predicting short and long-term behavior of aggregated suspensions formulated via crystallization.

  17. Modeling Network Interdiction Tasks

    Science.gov (United States)

    2015-09-17

    118 xiii Table Page 36 Computation times for weighted, 100-node random networks for GAND Approach testing in Python ...in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 38 Accuracy measures for weighted, 100-node random networks for GAND...networks [15:p. 1]. A common approach to modeling network interdiction is to formulate the problem in terms of a two-stage strategic game between two

  18. Transdermal delivery of diclofenac using water-in-oil microemulsion: formulation and mechanistic approach of drug skin permeation.

    Science.gov (United States)

    Thakkar, Priyanka J; Madan, Parshotam; Lin, Senshang

    2014-05-01

    The objective of the present investigation was to enhance skin permeation of diclofenac using water-in-oil microemulsion and to elucidate its skin permeation mechanism. The w/o microemulsion formulations were selected based on constructed pseudoternary phase diagrams depending on water solubilization capacity and thermodynamic stability. These formulations were also subjected to physical characterization based on droplet size, viscosity, pH and conductivity. Permeation of diclofenac across rat skin using side-by-side permeation cells from selected w/o microemulsion formulations were evaluated and compared with control formulations. The selected w/o microemulsion formulations were thermodynamically stable, and incorporation of diclofenac sodium into microemulsion did not affect the phase behavior of system. All microemulsion formulations had very low viscosity (11-17 cps) and droplet size range of 30-160 nm. Microemulsion formulations exhibited statistically significant increase in diclofenac permeation compared to oily solution, aqueous solution and oil-Smix solution. Higher skin permeation of diclofenac was observed with low Smix concentration and smaller droplet size. Increase in diclofenac loading in aqueous phase decreased the partition of diclofenac. Diclofenac from the oil phase of microemulsion could directly partition into skin, while diclofenac from the aqueous droplets was carried through skin by carrier effect.

  19. Pharmaceutical Perspective on Opalescence and Liquid-Liquid Phase Separation in Protein Solutions.

    Science.gov (United States)

    Raut, Ashlesha S; Kalonia, Devendra S

    2016-05-02

    Opalescence in protein solutions reduces aesthetic appeal of a formulation and can be an indicator of the presence of aggregates or precursor to phase separation in solution signifying reduced product stability. Liquid-liquid phase separation of a protein solution into a protein-rich and a protein-poor phase has been well-documented for globular proteins and recently observed for monoclonal antibody solutions, resulting in physical instability of the formulation. The present review discusses opalescence and liquid-liquid phase separation (LLPS) for therapeutic protein formulations. A brief discussion on theoretical concepts based on thermodynamics, kinetics, and light scattering is presented. This review also discusses theoretical concepts behind intense light scattering in the vicinity of the critical point termed as "critical opalescence". Both opalescence and LLPS are affected by the formulation factors including pH, ionic strength, protein concentration, temperature, and excipients. Literature reports for the effect of these formulation factors on attractive protein-protein interactions in solution as assessed by the second virial coefficient (B2) and the cloud-point temperature (Tcloud) measurements are also presented. The review also highlights pharmaceutical implications of LLPS in protein solutions.

  20. Medical image segmentation by a constraint satisfaction neural network

    International Nuclear Information System (INIS)

    Chen, C.T.; Tsao, E.C.K.; Lin, W.C.

    1991-01-01

    This paper proposes a class of Constraint Satisfaction Neural Networks (CSNNs) for solving the problem of medical image segmentation which can be formulated as a Constraint Satisfaction Problem (CSP). A CSNN consists of a set of objects, a set of labels for each object, a collection of constraint relations linking the labels of neighboring objects, and a topological constraint describing the neighborhood relationship among various objects. Each label for a particular object indicates one possible interpretation for that object. The CSNN can be viewed as a collection of neurons that interconnect with each other. The connections and the topology of a CSNN are used to represent the constraints in a CSP. The mechanism of the neural network is to find a solution that satisfies all the constraints in order to achieve a global consistency. The final solution outlines segmented areas and simultaneously satisfies all the constraints. This technique has been applied to medical images and the results show that this CSNN method is a very promising approach for image segmentation

  1. On Event Detection and Localization in Acyclic Flow Networks

    KAUST Repository

    Suresh, Mahima Agumbe

    2013-05-01

    Acyclic flow networks, present in many infrastructures of national importance (e.g., oil and gas and water distribution systems), have been attracting immense research interest. Existing solutions for detecting and locating attacks against these infrastructures have been proven costly and imprecise, particularly when dealing with large-scale distribution systems. In this article, to the best of our knowledge, for the first time, we investigate how mobile sensor networks can be used for optimal event detection and localization in acyclic flow networks. We propose the idea of using sensors that move along the edges of the network and detect events (i.e., attacks). To localize the events, sensors detect proximity to beacons, which are devices with known placement in the network. We formulate the problem of minimizing the cost of monitoring infrastructure (i.e., minimizing the number of sensors and beacons deployed) in a predetermined zone of interest, while ensuring a degree of coverage by sensors and a required accuracy in locating events using beacons. We propose algorithms for solving the aforementioned problem and demonstrate their effectiveness with results obtained from a realistic flow network simulator.

  2. Energy efficient wireless sensor networks by using a fuzzy-based solution

    Science.gov (United States)

    Tirrito, Salvatore; Nicolosi, Giuseppina

    2016-12-01

    Wireless Sensor Networks are characterized by a distributed architecture realized by a set of autonomous electronic devices able to sense data from the surrounding environment and to communicate among them. These devices are battery powered since they may be used even to monitor hazardous events in inaccessible areas. As a consequence, it is preferable to assure the adoption of energy management solutions in order to extend the WSN lifetime, as far as possible. Moreover, it is crucial to guarantee that the nodes receive the transmitted data correctly. It is clear that trading off power optimization and quality of service has become one the most important concerns when dealing with modern systems based on WSNs. This paper introduces a solution based on a Fuzzy Logic Controller (FLC) focusing on the minimization of energy consumption of wireless sensor nodes. This is made possible because the sleeping time of these nodes is dynamically regulated by a FLC.

  3. Solution Algorithm for a New Bi-Level Discrete Network Design Problem

    Directory of Open Access Journals (Sweden)

    Qun Chen

    2013-12-01

    Full Text Available A new discrete network design problem (DNDP was pro-posed in this paper, where the variables can be a series of integers rather than just 0-1. The new DNDP can determine both capacity improvement grades of reconstruction roads and locations and capacity grades of newly added roads, and thus complies with the practical projects where road capacity can only be some discrete levels corresponding to the number of lanes of roads. This paper designed a solution algorithm combining branch-and-bound with Hooke-Jeeves algorithm, where feasible integer solutions are recorded in searching the process of Hooke-Jeeves algorithm, lend -ing itself to determine the upper bound of the upper-level problem. The thresholds for branch cutting and ending were set for earlier convergence. Numerical examples are given to demonstrate the efficiency of the proposed algorithm.

  4. Prediction of activity coefficients at infinite dilution for organic solutes in ionic liquids by artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Nami, Faezeh [Department of Chemistry, Shahid Beheshti University, G.C., Evin-Tehran 1983963113 (Iran, Islamic Republic of); Deyhimi, Farzad, E-mail: f-deyhimi@sbu.ac.i [Department of Chemistry, Shahid Beheshti University, G.C., Evin-Tehran 1983963113 (Iran, Islamic Republic of)

    2011-01-15

    To our knowledge, this work illustrates for the first time the ability of artificial neural network (ANN) to predict activity coefficients at infinite dilution for organic solutes in ionic liquids (ILs). Activity coefficient at infinite dilution ({gamma}{sup {infinity}}) is a useful parameter which can be used for the selection of effective solvent in the separation processes. Using a multi-layer feed-forward network with Levenberg-Marquardt optimization algorithm, the resulting ANN model generated activity coefficient at infinite dilution data over a temperature range of 298 to 363 K. The unavailable input data concerning softness (S) of organic compounds (solutes) and dipole moment ({mu}) of ionic liquids were calculated using GAMESS suites of quantum chemistry programs. The resulting ANN model and its validation are based on the investigation of up to 24 structurally different organic compounds (alkanes, alkenes, alkynes, cycloalkanes, aromatics, and alcohols) in 16 common imidazolium-based ionic liquids, at different temperatures within the range of 298 to 363 K (i.e. a total number of 914 {gamma}{sub Solute}{sup {infinity}}for each IL data point). The results show a satisfactory agreement between the predicted ANN and experimental data, where, the root mean square error (RMSE) and the determination coefficient (R{sup 2}) of the designed neural network were found to be 0.103, 0.996 for training data and 0.128, 0.994 for testing data, respectively.

  5. Prediction of activity coefficients at infinite dilution for organic solutes in ionic liquids by artificial neural network

    International Nuclear Information System (INIS)

    Nami, Faezeh; Deyhimi, Farzad

    2011-01-01

    To our knowledge, this work illustrates for the first time the ability of artificial neural network (ANN) to predict activity coefficients at infinite dilution for organic solutes in ionic liquids (ILs). Activity coefficient at infinite dilution (γ ∞ ) is a useful parameter which can be used for the selection of effective solvent in the separation processes. Using a multi-layer feed-forward network with Levenberg-Marquardt optimization algorithm, the resulting ANN model generated activity coefficient at infinite dilution data over a temperature range of 298 to 363 K. The unavailable input data concerning softness (S) of organic compounds (solutes) and dipole moment (μ) of ionic liquids were calculated using GAMESS suites of quantum chemistry programs. The resulting ANN model and its validation are based on the investigation of up to 24 structurally different organic compounds (alkanes, alkenes, alkynes, cycloalkanes, aromatics, and alcohols) in 16 common imidazolium-based ionic liquids, at different temperatures within the range of 298 to 363 K (i.e. a total number of 914 γ Solute ∞ for each IL data point). The results show a satisfactory agreement between the predicted ANN and experimental data, where, the root mean square error (RMSE) and the determination coefficient (R 2 ) of the designed neural network were found to be 0.103, 0.996 for training data and 0.128, 0.994 for testing data, respectively.

  6. Matching Theory for Channel Allocation in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    L. Cao

    2016-12-01

    Full Text Available For a cognitive radio network (CRN in which a set of secondary users (SUs competes for a limited number of channels (spectrum resources belonging to primary users (PUs, the channel allocation is a challenge and dominates the throughput and congestion of the network. In this paper, the channel allocation problem is first formulated as the 0-1 integer programming optimization, with considering the overall utility both of primary system and secondary system. Inspired by matching theory, a many-to-one matching game is used to remodel the channel allocation problem, and the corresponding PU proposing deferred acceptance (PPDA algorithm is also proposed to yield a stable matching. We compare the performance and computation complexity between these two solutions. Numerical results demonstrate the efficiency and obtain the communication overhead of the proposed scheme.

  7. Formulation and solution of the classical seashell problem. Pt. 1. Seashell geometry

    Energy Technology Data Exchange (ETDEWEB)

    Illert, C.

    1987-07-01

    Despite an extensive scholarly literature dating back to classical times, seashell geometries have hitherto resisted rigorous theoretical analysis, leaving applied scientists to adopt a directionless empirical approach toward classification. The voluminousness of recent palaeontological literature demonstrates the importance of this problem to applied scientists, but in no way reflects corresponding conceptual or theoretical advances beyond the XIX century thinking which was so ably summarized by Sir D'Arcy Wentworth Thompson in 1917. However, in this foundation paper for the newly emerging science of theoretical conchology, unifying theoretical considerations for the first time, permits a rigorous formulation and a complete solution of the problem of biological shell geometries. Shell coiling about the axis of symmetry can be deduced from first principles using energy considerations associated with incremental growth. The present paper shows that those shell apertures which are incurved ('cowrielike'), outflared ('stromblike') or even backturned ('opisthostomoidal') are merely special cases of a much broader spectrum of 'allowable' energy-efficient growth trajectories (tensile elastic clockspring spirals), many of which were widely used by Cretaceous ammonites. Energy considerations also dictate shell growth along the axis of symmetry, thus seashell spires can be understood in terms of certain special figures of revolution (Moebius elastic conoids), the better-known coeloconoidal and cyrtoconoidal shell spires being only two special cases arising from a whole class of topologically possible, energy efficient and biologically observed geometries. The 'wires' and 'conoids' of the present paper are instructive conceptual simplifications sufficient for present purposes. A second paper will later deal with generalized tubular surfaces in three dimensions.

  8. Advanced Distribution Network Modelling with Distributed Energy Resources

    Science.gov (United States)

    O'Connell, Alison

    three-phase optimal power flow method is developed. The formulation has the capability to provide optimal solutions for distribution system control variables, for a chosen objective function, subject to required constraints. It can, therefore, be utilised for numerous technologies and applications. The three-phase optimal power flow is employed to manage various distributed resources, such as photovoltaics and storage, as well as distribution equipment, including tap changers and switches. The flexibility of the methodology allows it to be applied in both an operational and a planning capacity. The three-phase optimal power flow is employed in an operational planning capacity to determine volt-var curves for distributed photovoltaic inverters. The formulation finds optimal reactive power settings for a number of load and solar scenarios and uses these reactive power points to create volt-var curves. Volt-var curves are determined for 10 PV systems on a test feeder. A universal curve is also determined which is applicable to all inverters. The curves are validated by testing them in a power flow setting over a 24-hour test period. The curves are shown to provide advantages to the feeder in terms of reduction of voltage deviations and unbalance, with the individual curves proving to be more effective. It is also shown that adding a new PV system to the feeder only requires analysis for that system. In order to represent the uncertainties that inherently occur on distribution systems, an information gap decision theory method is also proposed and integrated into the three-phase optimal power flow formulation. This allows for robust network decisions to be made using only an initial prediction for what the uncertain parameter will be. The work determines tap and switch settings for a test network with demand being treated as uncertain. The aim is to keep losses below a predefined acceptable value. The results provide the decision maker with the maximum possible variation in

  9. Autonomous learning by simple dynamical systems with a discrete-time formulation

    Science.gov (United States)

    Bilen, Agustín M.; Kaluza, Pablo

    2017-05-01

    We present a discrete-time formulation for the autonomous learning conjecture. The main feature of this formulation is the possibility to apply the autonomous learning scheme to systems in which the errors with respect to target functions are not well-defined for all times. This restriction for the evaluation of functionality is a typical feature in systems that need a finite time interval to process a unit piece of information. We illustrate its application on an artificial neural network with feed-forward architecture for classification and a phase oscillator system with synchronization properties. The main characteristics of the discrete-time formulation are shown by constructing these systems with predefined functions.

  10. Application of hanging drop technique to optimize human IgG formulations.

    Science.gov (United States)

    Li, Guohua; Kasha, Purna C; Late, Sameer; Banga, Ajay K

    2010-01-01

    The purpose of this work is to assess the hanging drop technique in screening excipients to develop optimal formulations for human immunoglobulin G (IgG). A microdrop of human IgG and test solution hanging from a cover slide and undergoing vapour diffusion was monitored by a stereomicroscope. Aqueous solutions of IgG in the presence of different pH, salt concentrations and excipients were prepared and characterized. Low concentration of either sodium/potassium phosphate or McIlvaine buffer favoured the solubility of IgG. Addition of sucrose favoured the stability of this antibody while addition of NaCl caused more aggregation. Antimicrobial preservatives were also screened and a complex effect at different buffer conditions was observed. Dynamic light scattering, differential scanning calorimetry and size exclusion chromatography studies were performed to further validate the results. In conclusion, hanging drop is a very easy and effective approach to screen protein formulations in the early stage of formulation development.

  11. Improved surfactants formulation for remediation of oil sludge recovery

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma Syed Ahmad; Shahidan Radiman

    2000-01-01

    Surfactant enhanced remediation based on mobilisation of the residual NAPLs (oil sludge) which is radioactive depends on the tendency of the surfactants to lower interfacial tension. Mobilisation has greater potential than solubilisation to increase the rate of remediation. Optimised surfactants formulation was determined with concentration of Aqua 2000 and D Bond of 1% wt respectively, sodium chloride concentration of 2 gmL -1 and addition of 3% wt butanol as cosolvent. The formulation was of benefit not only able to decrease further the interfacial tension of aqueous solution containing oil emulsion, but also to make possible to be more mobile and destruction of mixed liquid crystals that formed. Formation of liquid crystals can hinders significantly recovery efficiency of aqueous solution containing oil emulsion in field remediation work. In a 100 litres soil column experiment conducted containing oil emulsion in field sludge soil and using the surfactants formulation for flushing, miniemulsion formed sizes maintained at average size between 125 nm and 280 nm before and after remediation. Total oil and grease concentration removed from the soil were significant due to the decreased in oil emulsion sizes, increase mobility and solubility. (Author)

  12. A Nondominated Genetic Algorithm Procedure for Multiobjective Discrete Network Design under Demand Uncertainty

    Directory of Open Access Journals (Sweden)

    Bian Changzhi

    2015-01-01

    Full Text Available This paper addresses the multiobjective discrete network design problem under demand uncertainty. The OD travel demands are supposed to be random variables with the given probability distribution. The problem is formulated as a bilevel stochastic optimization model where the decision maker’s objective is to minimize the construction cost, the expectation, and the standard deviation of total travel time simultaneously and the user’s route choice is described using user equilibrium model on the improved network under all scenarios of uncertain demand. The proposed model generates globally near-optimal Pareto solutions for network configurations based on the Monte Carlo simulation and nondominated sorting genetic algorithms II. Numerical experiments implemented on Nguyen-Dupuis test network show trade-offs among construction cost, the expectation, and standard deviation of total travel time under uncertainty are obvious. Investment on transportation facilities is an efficient method to improve the network performance and reduce risk under demand uncertainty, but it has an obvious marginal decreasing effect.

  13. Modeling IoT-Based Solutions Using Human-Centric Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Álvaro Monares

    2014-08-01

    Full Text Available The Internet of Things (IoT has inspired solutions that are already available for addressing problems in various application scenarios, such as healthcare, security, emergency support and tourism. However, there is no clear approach to modeling these systems and envisioning their capabilities at the design time. Therefore, the process of designing these systems is ad hoc and its real impact is evaluated once the solution is already implemented, which is risky and expensive. This paper proposes a modeling approach that uses human-centric wireless sensor networks to specify and evaluate models of IoT-based systems at the time of design, avoiding the need to spend time and effort on early implementations of immature designs. It allows designers to focus on the system design, leaving the implementation decisions for a next phase. The article illustrates the usefulness of this proposal through a running example, showing the design of an IoT-based solution to support the first responses during medium-sized or large urban incidents. The case study used in the proposal evaluation is based on a real train crash. The proposed modeling approach can be used to design IoT-based systems for other application scenarios, e.g., to support security operatives or monitor chronic patients in their homes.

  14. Modeling IoT-based solutions using human-centric wireless sensor networks.

    Science.gov (United States)

    Monares, Álvaro; Ochoa, Sergio F; Santos, Rodrigo; Orozco, Javier; Meseguer, Roc

    2014-08-25

    The Internet of Things (IoT) has inspired solutions that are already available for addressing problems in various application scenarios, such as healthcare, security, emergency support and tourism. However, there is no clear approach to modeling these systems and envisioning their capabilities at the design time. Therefore, the process of designing these systems is ad hoc and its real impact is evaluated once the solution is already implemented, which is risky and expensive. This paper proposes a modeling approach that uses human-centric wireless sensor networks to specify and evaluate models of IoT-based systems at the time of design, avoiding the need to spend time and effort on early implementations of immature designs. It allows designers to focus on the system design, leaving the implementation decisions for a next phase. The article illustrates the usefulness of this proposal through a running example, showing the design of an IoT-based solution to support the first responses during medium-sized or large urban incidents. The case study used in the proposal evaluation is based on a real train crash. The proposed modeling approach can be used to design IoT-based systems for other application scenarios, e.g., to support security operatives or monitor chronic patients in their homes.

  15. Fairness-Aware Energy-Efficient Resource Allocation for AF Co-Operative OFDMA Networks

    KAUST Repository

    Bedeer, Ebrahim

    2015-09-23

    In this paper, we adopt an energy-efficiency (EE) metric, named worst-EE, that is suitable for EE fairness optimization in the uplink transmission of amplify-and-forward (AF) cooperative orthogonal frequency division multiple access (OFDMA) networks. More specifically, we assign subcarriers and allocate powers for mobile and relay stations in order to maximize the worst-EE, i.e., to maximize the EE of the mobile station (MS) with the lowest EE value, subject to MSs transmit power, relay station (RS) transmit power, and MSs quality-of-service (QoS) constraints. The formulated primal max-min optimization problem is nonconvex fractional mixed integer nonlinear program, i.e., NP-hard to solve. We provide a novel optimization framework that studies the structure of the primal problem and prove that the dual min-max optimization problem attains the same optimal solution of the primal problem. Additionally, we propose a modified Dinkelbach algorithm, named dual Dinkelbach, to achieve the optimal solution of the dual problem in a polynomial time complexity. We further exploit the structure of the obtained optimal solution and develop a low complexity suboptimal heuristic. Numerical results show the effectiveness of the proposed algorithm to improve the network performance in terms of fairness between MSs, worst-EE, and average network transmission rate when compared to traditional schemes that maximize the EE of the whole network. Presented results also show that the suboptimal heuristic balances the achieved performance and the computational complexity.

  16. Fairness-Aware Energy-Efficient Resource Allocation for AF Co-Operative OFDMA Networks

    KAUST Repository

    Bedeer, Ebrahim; Alorainy, Abdulaziz; Hossain, Md. Jahangir; Amin, Osama; Alouini, Mohamed-Slim

    2015-01-01

    In this paper, we adopt an energy-efficiency (EE) metric, named worst-EE, that is suitable for EE fairness optimization in the uplink transmission of amplify-and-forward (AF) cooperative orthogonal frequency division multiple access (OFDMA) networks. More specifically, we assign subcarriers and allocate powers for mobile and relay stations in order to maximize the worst-EE, i.e., to maximize the EE of the mobile station (MS) with the lowest EE value, subject to MSs transmit power, relay station (RS) transmit power, and MSs quality-of-service (QoS) constraints. The formulated primal max-min optimization problem is nonconvex fractional mixed integer nonlinear program, i.e., NP-hard to solve. We provide a novel optimization framework that studies the structure of the primal problem and prove that the dual min-max optimization problem attains the same optimal solution of the primal problem. Additionally, we propose a modified Dinkelbach algorithm, named dual Dinkelbach, to achieve the optimal solution of the dual problem in a polynomial time complexity. We further exploit the structure of the obtained optimal solution and develop a low complexity suboptimal heuristic. Numerical results show the effectiveness of the proposed algorithm to improve the network performance in terms of fairness between MSs, worst-EE, and average network transmission rate when compared to traditional schemes that maximize the EE of the whole network. Presented results also show that the suboptimal heuristic balances the achieved performance and the computational complexity.

  17. Artificial intelligence in pharmaceutical product formulation: neural computing

    Directory of Open Access Journals (Sweden)

    Svetlana Ibrić

    2009-10-01

    Full Text Available The properties of a formulation are determined not only by the ratios in which the ingredients are combined but also by the processing conditions. Although the relationships between the ingredient levels, processing conditions, and product performance may be known anecdotally, they can rarely be quantified. In the past, formulators tended to use statistical techniques to model their formulations, relying on response surfaces to provide a mechanism for optimazation. However, the optimization by such a method can be misleading, especially if the formulation is complex. More recently, advances in mathematics and computer science have led to the development of alternative modeling and data mining techniques which work with a wider range of data sources: neural networks (an attempt to mimic the processing of the human brain; genetic algorithms (an attempt to mimic the evolutionary process by which biological systems self-organize and adapt, and fuzzy logic (an attempt to mimic the ability of the human brain to draw conclusions and generate responses based on incomplete or imprecise information. In this review the current technology will be examined, as well as its application in pharmaceutical formulation and processing. The challenges, benefits and future possibilities of neural computing will be discussed.

  18. Optimal satisfaction degree in energy harvesting cognitive radio networks

    Science.gov (United States)

    Li, Zan; Liu, Bo-Yang; Si, Jiang-Bo; Zhou, Fu-Hui

    2015-12-01

    A cognitive radio (CR) network with energy harvesting (EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model (HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree (WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user (SU) and the interference to the primary user (PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming (MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution (DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service (Qos). Numerical results are given to verify our analysis. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the Doctorial Programs Foundation of the Ministry of Education of China (Grant No. 20110203110011), and the 111 Project (Grant No. B08038).

  19. Nonlinear Vibration of Oscillation Systems using Frequency-Amplitude Formulation

    Directory of Open Access Journals (Sweden)

    A. Fereidoon

    2012-01-01

    Full Text Available In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifth-order nonlinearity for two examples using He's Frequency-Amplitude Formulation (HFAF.The effectiveness and convenience of the method is illustrated in these examples. It will be shown that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems.

  20. A network dynamics approach to chemical reaction networks

    Science.gov (United States)

    van der Schaft, A. J.; Rao, S.; Jayawardhana, B.

    2016-04-01

    A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.

  1. Optimal multicasting in a multi-line-rate ethernet-over-WDM network

    Science.gov (United States)

    Harve, Shruthi; Batayneh, Marwan; Mukherjee, Biswanath

    2009-11-01

    Ethernet is the dominant transport technology for Local Area Networks. Efforts are now under way to use carrier-grade Ethernet in backbone networks of different service providers. With the advent of applications such as IPTV and Videoon- Demand, there is need for techniques to route multicast traffic over the Ethernet backbone networks. Here, we address the problem of Routing and Wavelength Assignment (RWA) of a set of multicast requests in a Multi-Line-Rate Ethernet backbone network with the objective of minimizing the cost of setting up the network, in terms of the Service Provider's Capital Expenditure (CAPEX). We present an Auxiliary Graph based heuristic algorithm that routes each multicast request on a light-tree structure, and assigns minimum cost wavelengths along the route. We compare the properties of the algorithm to the optimal solution given by a mathematical model formulated as an Integer Linear Program (ILP), and show that they compare very well. We also find that the algorithm is most cost-effective when the incoming requests are processed in descending order of their bandwidth requirements.

  2. Relation between the reducibility structures and between the master actions in the Witten formulation and the Berkovits formulation of open superstring field theory

    International Nuclear Information System (INIS)

    Iimori, Yuki; Torii, Shingo

    2015-01-01

    Developing the analysis in http://dx.doi.org/10.1007/JHEP03(2014)044 [http://arxiv.org/abs/1312.1677] by the present authors et al., we clarify the relation between the Witten formulation and the Berkovits formulation of open superstring field theory at the level of the master action, namely the solution to the classical master equation in the Batalin-Vilkovisky formalism, which is the key for the path-integral quantization. We first scrutinize the reducibility structure, a detailed gauge structure containing the information about ghost string fields. Then, extending the condition for partial gauge fixing introduced in the above-mentioned paper to the sector of ghost string fields, we investigate the master action. We show that the reducibility structure and the master action under partial gauge fixing of the Berkovits formulation can be regarded as the regularized versions of those in the Witten formulation.

  3. Dynamically Partitionable Autoassociative Networks as a Solution to the Neural Binding Problem

    Directory of Open Access Journals (Sweden)

    Kenneth Jeffrey Hayworth

    2012-09-01

    Full Text Available An outstanding question in theoretical neuroscience is how the brain solves the neural binding problem. In vision, binding can be summarized as the ability to represent that certain properties belong to one object while other properties belong to a different object. I review the binding problem in visual and other domains, and review its simplest proposed solution – the anatomical binding hypothesis. This hypothesis has traditionally been rejected as a true solution because it seems to require a type of one-to-one wiring of neurons that would be impossible in a biological system (as opposed to an engineered system like a computer. I show that this requirement for one-to-one wiring can be loosened by carefully considering how the neural representation is actually put to use by the rest of the brain. This leads to a solution where a symbol is represented not as a particular pattern of neural activation but instead as a piece of a global stable attractor state. I introduce the Dynamically Partitionable AutoAssociative Network (DPAAN as an implementation of this solution and show how DPANNs can be used in systems which perform perceptual binding and in systems that implement syntax-sensitive rules. Finally I show how the core parts of the cognitive architecture ACT-R can be neurally implemented using a DPAAN as ACT-R’s global workspace. Because the DPAAN solution to the binding problem requires only ‘flat’ neural representations (as opposed to the phase encoded representation hypothesized in neural synchrony solutions it is directly compatible with the most well developed neural models of learning, memory, and pattern recognition.

  4. QoS Differentiated and Fair Packet Scheduling in Broadband Wireless Access Networks

    Directory of Open Access Journals (Sweden)

    Zhang Yan

    2009-01-01

    Full Text Available This paper studies the packet scheduling problem in Broadband Wireless Access (BWA networks. The key difficulties of the BWA scheduling problem lie in the high variability of wireless channel capacity and the unknown model of packet arrival process. It is difficult for traditional heuristic scheduling algorithms to handle the situation and guarantee satisfying performance in BWA networks. In this paper, we introduce learning-based approach for a better solution. Specifically, we formulate the packet scheduling problem as an average cost Semi-Markov Decision Process (SMDP. Then, we solve the SMDP by using reinforcement learning. A feature-based linear approximation and the Temporal-Difference learning technique are employed to produce a near optimal solution of the corresponding SMDP problem. The proposed algorithm, called Reinforcement Learning Scheduling (RLS, has in-built capability of self-training. It is able to adaptively and timely regulate its scheduling policy according to the instantaneous network conditions. Simulation results indicate that RLS outperforms two classical scheduling algorithms and simultaneously considers: (i effective QoS differentiation, (ii high bandwidth utilization, and (iii both short-term and long-term fairness.

  5. Global stability of almost periodic solution of shunting inhibitory cellular neural networks with variable coefficients

    International Nuclear Information System (INIS)

    Chen Ling; Zhao Hongyong

    2008-01-01

    The paper investigates the almost periodicity of shunting inhibitory cellular neural networks with delays and variable coefficients. Several sufficient conditions are established for the existence and globally exponential stability of almost periodic solutions by employing fixed point theorem and differential inequality technique. The results of this paper are new and they complement previously known results

  6. Langevin formulation of quantum dynamics

    International Nuclear Information System (INIS)

    Roncadelli, M.

    1989-03-01

    We first show that nonrelativistic quantum mechanics formulated at imaginary-(h/2 π) can formally be viewed as the Fokker-Planck description of a frictionless brownian motion, which occurs (in general) in an absorbing medium. We next offer a new formulation of quantum mechanics, which is basically the Langevin treatment of this brownian motion. Explicitly, we derive a noise-average representation for the transition probability W(X'',t''|X',t'), in terms of the solutions to a Langevin equation with a Gaussian white-noise. Upon analytic continuation back to real-(h/2 π),W(X'',t''|X',t') becomes the propagator of the original Schroedinger equation. Our approach allows for a straightforward application to quantum dynamical problems of the mathematical techniques of classical stochastic processes. Moreover, computer simulations of quantum mechanical systems can be carried out by using numerical programs based on the Langevin dynamics. (author). 19 refs, 1 tab

  7. Cyclic deformation-induced solute transport in tissue scaffolds with computer designed, interconnected, pore networks: experiments and simulations.

    Science.gov (United States)

    Den Buijs, Jorn Op; Dragomir-Daescu, Dan; Ritman, Erik L

    2009-08-01

    Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid-structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold.

  8. A new viscosity model for waste glass formulations

    International Nuclear Information System (INIS)

    Sadler, A.L.K.

    1996-01-01

    Waste glass formulation requires prediction, with reasonable accuracy, of properties over much wider ranges of composition than are typically encountered in any single industrial application. Melt viscosity is one such property whose behavior must be predicted in formulating new waste glasses. A model was developed for silicate glasses which relates the Arrhenius activation energy for flow to an open-quotes effectiveclose quotes measure of non-bridging oxygen content in the melt, NBO eff . The NBO eff parameter incorporates the differing effects of modifying cations on the depolymerization of the silicate network. The activation energy-composition relationship implied by the model is in accordance with experimental behavior. The model was validated against two different databases, with satisfactory results

  9. Mixed finite-element formulations in piezoelectricity and flexoelectricity.

    Science.gov (United States)

    Mao, Sheng; Purohit, Prashant K; Aravas, Nikolaos

    2016-06-01

    Flexoelectricity, the linear coupling of strain gradient and electric polarization, is inherently a size-dependent phenomenon. The energy storage function for a flexoelectric material depends not only on polarization and strain, but also strain-gradient. Thus, conventional finite-element methods formulated solely on displacement are inadequate to treat flexoelectric solids since gradients raise the order of the governing differential equations. Here, we introduce a computational framework based on a mixed formulation developed previously by one of the present authors and a colleague. This formulation uses displacement and displacement-gradient as separate variables which are constrained in a 'weighted integral sense' to enforce their known relation. We derive a variational formulation for boundary-value problems for piezo- and/or flexoelectric solids. We validate this computational framework against available exact solutions. Our new computational method is applied to more complex problems, including a plate with an elliptical hole, stationary cracks, as well as tension and shear of solids with a repeating unit cell. Our results address several issues of theoretical interest, generate predictions of experimental merit and reveal interesting flexoelectric phenomena with potential for application.

  10. Resource Allocation for OFDMA-Based Cognitive Radio Networks with Application to H.264 Scalable Video Transmission

    Directory of Open Access Journals (Sweden)

    Coon JustinP

    2011-01-01

    Full Text Available Resource allocation schemes for orthogonal frequency division multiple access- (OFDMA- based cognitive radio (CR networks that impose minimum and maximum rate constraints are considered. To demonstrate the practical application of such systems, we consider the transmission of scalable video sequences. An integer programming (IP formulation of the problem is presented, which provides the optimal solution when solved using common discrete programming methods. Due to the computational complexity involved in such an approach and its unsuitability for dynamic cognitive radio environments, we propose to use the method of lift-and-project to obtain a stronger formulation for the resource allocation problem such that the integrality gap between the integer program and its linear relaxation is reduced. A simple branching operation is then performed that eliminates any noninteger values at the output of the linear program solvers. Simulation results demonstrate that this simple technique results in solutions very close to the optimum.

  11. Development and applications of the channel network model for simulations of flow and solute transport in fractured rock

    International Nuclear Information System (INIS)

    Gylling, B.

    1997-01-01

    The Channel Network model and its computer implementation, the code CHAN3D, for simulations of fluid flow and transport of solutes have been developed. The tool may be used for performance and safety assessments of deep lying repositories in fractured rocks for nuclear and other hazardous wastes, e.g. chemical wastes. It may also be used to simulate and interpret field experiments of flow and transport in large or small scale. Fluid flow and solute transport in fractured media are of interest in the performance assessment of a repository for hazardous waste, located at depth in crystalline rock, with potential release of solutes. Fluid flow in fractured rock is found to be very unevenly distributed due to the heterogeneity of the medium. The water will seek the easiest path, channels, under a prevailing pressure gradient. Solutes in the flowing water may be transported through preferential paths and migrate from the water in the fractures into the stagnant water in the rock matrix. There, sorbing solutes may be sorbed on the micro surfaces within the matrix. The diffusion into the matrix and the sorption process may significantly retard the transport of species and increase the time available for radionuclide decay. Channelling and matrix diffusion contribute to the dispersion of solutes in the water. Important for performance assessment is that channeling may cause a portion of the solutes to arrive much faster than the rest of the solutes. Simulations of field experiments at the Aespoe Hard Rock Laboratory using the Channel Network model have been performed. The application of the model to the site and the simulation results of the pumping and tracer tests are presented. The results show that the model is capable of describing the hydraulic gradient and of predicting flow rates and tracer transport obtained in the experiments. The data requirements for the Channel Network model have been investigated to determine which data are the most important for predictions

  12. An ILP based memetic algorithm for finding minimum positive influence dominating sets in social networks

    Science.gov (United States)

    Lin, Geng; Guan, Jian; Feng, Huibin

    2018-06-01

    The positive influence dominating set problem is a variant of the minimum dominating set problem, and has lots of applications in social networks. It is NP-hard, and receives more and more attention. Various methods have been proposed to solve the positive influence dominating set problem. However, most of the existing work focused on greedy algorithms, and the solution quality needs to be improved. In this paper, we formulate the minimum positive influence dominating set problem as an integer linear programming (ILP), and propose an ILP based memetic algorithm (ILPMA) for solving the problem. The ILPMA integrates a greedy randomized adaptive construction procedure, a crossover operator, a repair operator, and a tabu search procedure. The performance of ILPMA is validated on nine real-world social networks with nodes up to 36,692. The results show that ILPMA significantly improves the solution quality, and is robust.

  13. Mesh networks: an optimum solution for AMR

    Energy Technology Data Exchange (ETDEWEB)

    Mimno, G.

    2003-12-01

    Characteristics of mesh networks and the advantage of using them in automatic meter reading equipment (AMR) are discussed. Mesh networks are defined as being similar to a fishing net made of knots and links. In mesh networks the knots represent meter sites and the links are the radio paths between the meter sites and the neighbourhood concentrator. In mesh networks any knot in the communications chain can link to any other and the optimum path is calculated by the network by hopping from meter to meter until the radio message reaches a concentrator. This mesh communications architecture is said to be vastly superior to many older types of radio-based meter reading technologies; its main advantage is that it not only significantly improves the economics of fixed network deployment, but also supports time-of-use metering, remote disconnect services and advanced features, such as real-time pricing, demand response, and other efficiency measures, providing a better return on investment and reliability.

  14. Ocular pharmacokinetics of bimatoprost formulated in DuraSite compared to bimatoprost 0.03% ophthalmic solution in pigmented rabbit eyes

    Directory of Open Access Journals (Sweden)

    Shafiee A

    2013-07-01

    Full Text Available Afshin Shafiee,1 Lyle M Bowman,2 Eddie Hou,2 Kamran Hosseini1,3 1Preclinical, 2Development, 3Clinical, InSite Vision, Alameda, CA, USA Purpose: To compare the aqueous humor (AH and iris-ciliary body (ICB concentration of bimatoprost in rabbit eyes treated with ISV-215 (0.03% bimatoprost formulated in DuraSite with the marketed product bimatoprost 0.03% ophthalmic solution. Methods: The left eye of rabbits received a single topical instillation of either ISV-215 (n = 32 eyes or bimatoprost 0.03% (n = 32 eyes. At predetermined time points, levels of bimatoprost and bimatoprost acid in the AH and the ICB were quantified by HPLC-MS/MS. Results: Both bimatoprost and bimatoprost acid were detected in the AH and the ICB within 15 minutes of dosing. Bimatoprost acid concentrations in both compartments were markedly higher than bimatoprost. There was a statistically significant (P < 0.01 increase in the concentration of the prodrug in the AH and its acid form in the ICB in animals treated with ISV-215 compared to bimatoprost 0.03%. In the ISV-215-treated rabbit eyes, the highest concentrations of bimatoprost and bimatoprost acid were in the ICB and AH, respectively, while in the bimatoprost 0.03%-treated eyes, no differences in the drug content of the selected ocular tissues were observed. Conclusions: Bimatoprost 0.03% formulated in DuraSite has superior ocular distribution and area under the curve compared to bimatoprost 0.03% in rabbit eyes. This improvement in the pharmacokinetic parameters of ISV-215 may provide us with a better platform to optimize a bimatoprost formulation that offers the same degree of efficacy in lowering intraocular pressure and improved therapeutic index in glaucomatous patients by lessening the ocular side effects associated with long-term use of topical prostaglandin F2α analogs. Keywords: drug delivery, intraocular pressure, glaucoma, aqueous humor, prostaglandin (PGF2α analogs

  15. Wireless Sensor Network for Advanced Energy Management Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Theisen; Bin Lu, Charles J. Luebke

    2009-09-23

    Eaton has developed an advanced energy management solution that has been deployed to several Industries of the Future (IoF) sites. This demonstrated energy savings and reduced unscheduled downtime through an improved means for performing predictive diagnostics and energy efficiency estimation. Eaton has developed a suite of online, continuous, and inferential algorithms that utilize motor current signature analysis (MCSA) and motor power signature analysis (MPSA) techniques to detect and predict the health condition and energy usage condition of motors and their connect loads. Eaton has also developed a hardware and software platform that provided a means to develop and test these advanced algorithms in the field. Results from lab validation and field trials have demonstrated that the developed advanced algorithms are able to detect motor and load inefficiency and performance degradation. Eaton investigated the performance of Wireless Sensor Networks (WSN) within various industrial facilities to understand concerns about topology and environmental conditions that have precluded broad adoption by the industry to date. A Wireless Link Assessment System (WLAS), was used to validate wireless performance under a variety of conditions. Results demonstrated that wireless networks can provide adequate performance in most facilities when properly specified and deployed. Customers from various IoF expressed interest in applying wireless more broadly for selected applications, but continue to prefer utilizing existing, wired field bus networks for most sensor based applications that will tie into their existing Computerized Motor Maintenance Systems (CMMS). As a result, wireless technology was de-emphasized within the project, and a greater focus placed on energy efficiency/predictive diagnostics. Commercially available wireless networks were only utilized in field test sites to facilitate collection of motor wellness information, and no wireless sensor network products were

  16. Glass-water interphase reactivity with calcium rich solutions

    International Nuclear Information System (INIS)

    Chave, T.; Frugier, P.; Gin, S.; Chave, T.; Ayral, A.

    2011-01-01

    The effect of calcium on synthetic glass alteration mechanisms has been studied. It is known that the higher the calcium content in the glass, the higher the forward rate. However, in a confined medium reaching apparent saturation state and a pH (90 degrees C) around 9, synthetic calcium-bearing glasses are those with the lowest alteration rates. This work brings new and fundamental evidence toward understanding the alteration mechanisms: the rate-decreasing effect of calcium exists even if the calcium comes from the solution. Calcium from solution reacts with silica network in the hydrated layer at the glass surface. The calcium effect on the alteration kinetics is explained by the condensation of a passivating reactive interphase (PRI) whose passivating properties are strongly enhanced when calcium participates in its construction. These experiments provide new evidence of the role of condensation mechanisms in glass alteration. This better understanding of the calcium effect on glass long-term behavior will be useful both for improving glass formulations and for understanding the influence of the water composition. (authors)

  17. Review of Literature on Mentorship Networks in Medicine: Where Are We Now and Where Are We Going?

    Science.gov (United States)

    Mickelson, Jennifer Judith

    Mentorship is imperative in medical training and conceptual frameworks for mentoring continue to evolve. This study is an integrated review of the literature on mentoring networks. A systematic review of the literature on mentoring networks identified 943 articles from multiple databases. 24 relevant articles under went qualitative analysis. An iterative approach was taken to formulate themes, subthemes and codes. Three major themes were identified. The first theme was that group or peer networks meet evolving and dynamic or changing needs through training and career development. A prominent subtheme was identified which was the need for mentees to be the architects or directors of their evolving mentorship networks. The second theme identified was that mentorship networks offered a solution to barriers associated with the dyad model of mentorship. The third theme was the importance of the informality or "voluntary marriages", as distinguished from structured formal programs, to create meaningful mentorship networks. Future directions of study include examining how to empower mentees to facilitate and direct their mentorship networks.

  18. Comments on lump solutions in SFT

    International Nuclear Information System (INIS)

    Bonora, Loriano; Tolla, Driba D.

    2016-01-01

    We analyze a recently proposed scheme to construct analytic lump solutions in open SFT. We argue that in order for the scheme to be operative and to guarantee background independence it must be implemented in the same 2D conformal field theory in which SFT is formulated. We outline and discuss two different possible approaches. Next we reconsider an older proposal for analytic lump solutions and implement a few improvements. In the course of the analysis we formulate a distinction between regular and singular gauge transformations and advocate the necessity of defining a topology in the space of string fields. (orig.)

  19. Comments on lump solutions in SFT

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, Loriano; Tolla, Driba D. [International School for Advanced Studies (SISSA), Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy)

    2016-04-15

    We analyze a recently proposed scheme to construct analytic lump solutions in open SFT. We argue that in order for the scheme to be operative and to guarantee background independence it must be implemented in the same 2D conformal field theory in which SFT is formulated. We outline and discuss two different possible approaches. Next we reconsider an older proposal for analytic lump solutions and implement a few improvements. In the course of the analysis we formulate a distinction between regular and singular gauge transformations and advocate the necessity of defining a topology in the space of string fields. (orig.)

  20. Jamming Attack in Wireless Sensor Network: From Time to Space

    Science.gov (United States)

    Sun, Yanqiang; Wang, Xiaodong; Zhou, Xingming

    Classical jamming attack models in the time domain have been proposed, such as constant jammer, random jammer, and reactive jammer. In this letter, we consider a new problem: given k jammers, how does the attacker minimize the pair-wise connectivity among the nodes in a Wireless Sensor Network (WSN)? We call this problem k-Jammer Deployment Problem (k-JDP). To the best of our knowledge, this is the first attempt at considering the position-critical jamming attack against wireless sensor network. We mainly make three contributions. First, we prove that the decision version of k-JDP is NP-complete even in the ideal situation where the attacker has full knowledge of the topology information of sensor network. Second, we propose a mathematical formulation based on Integer Programming (IP) model which yields an optimal solution. Third, we present a heuristic algorithm HAJDP, and compare it with the IP model. Numerical results show that our heuristic algorithm is computationally efficient.

  1. Visionary network 2030. Technology vision for future distribution network

    International Nuclear Information System (INIS)

    Kumpulainen, L.; Laaksonen, H.; Komulainen, R.

    2006-11-01

    Objective of this research was to create the long term vision of a distribution network technology to be used for the near future rebuild and necessary R and D efforts. Present status of the grid was briefly handled and created scenarios for the operational environment changes and available technology International view was used for getting familiar with the present solutions and future expectations in other countries. Centralised power generation is supposed to form the majority, but also the distributed generation will play more and more important role, which is hard to predict due to the uncertainty of the development of the regulation. Higher reliability and safety in major faults are expected from the future network with the reasonable costs. Impact of the climate change and impregnant using restrictions cause difficulties especially for the overhead lines in the forests. In the rural network also the ageing is the problem. For the urban networks the land usage and environmental issues get more challenging and the network reinforcement is necessary due to the increased use of electricity. As a result several technical solutions are available. Additions to the technology today, several new solutions were introduced. Important solutions in the future network are supposed to be the wide range of underground cable, high degree utilisation of the communication and network automation solutions, considerable shorter protection zones and new layout solution. In a long run the islanding enabled by the distributed energy systems and totally new network structures and solutions based on power electronics are supposed to improve the power quality and profitability. Separate quality classes in network design principally are also supposed to be approved. Getting into the vision needs also the Roadmap project, which coordinates and focuses the development of the industry. So the limited national development resources can be effectively utilised. A coordinated national

  2. Integrated Job Scheduling and Network Routing

    DEFF Research Database (Denmark)

    Gamst, Mette; Pisinger, David

    2013-01-01

    We consider an integrated job scheduling and network routing problem which appears in Grid Computing and production planning. The problem is to schedule a number of jobs at a finite set of machines, such that the overall profit of the executed jobs is maximized. Each job demands a number of resou...... indicate that the algorithm can be used as an actual scheduling algorithm in the Grid or as a tool for analyzing Grid performance when adding extra machines or jobs. © 2012 Wiley Periodicals, Inc.......We consider an integrated job scheduling and network routing problem which appears in Grid Computing and production planning. The problem is to schedule a number of jobs at a finite set of machines, such that the overall profit of the executed jobs is maximized. Each job demands a number...... of resources which must be sent to the executing machine through a network with limited capacity. A job cannot start before all of its resources have arrived at the machine. The scheduling problem is formulated as a Mixed Integer Program (MIP) and proved to be NP-hard. An exact solution approach using Dantzig...

  3. Artificial Neural Network Model to Estimate the Viscosity of Polymer Solutions for Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Pan-Sang Kang

    2016-06-01

    Full Text Available Polymer flooding is now considered a technically- and commercially-proven method for enhanced oil recovery (EOR. The viscosity of the injected polymer solution is the key property for successful polymer flooding. Given that the viscosity of a polymer solution has a non-linear relationship with various influential parameters (molecular weight, degree of hydrolysis, polymer concentration, cation concentration of polymer solution, shear rate, temperature and that measurement of viscosity based on these parameters is a time-consuming process, the range of solution samples and the measurement conditions need to be limited and precise. Viscosity estimation of the polymer solution is effective for these purposes. An artificial neural network (ANN was applied to the viscosity estimation of FlopaamTM 3330S, FlopaamTM 3630S and AN-125 solutions, three commonly-used EOR polymers. The viscosities measured and estimated by ANN and the Carreau model using Lee’s correlation, the only method for estimating the viscosity of an EOR polymer solution in unmeasured conditions, were compared. Estimation accuracy was evaluated by the average absolute relative deviation, which has been widely used for accuracy evaluation of the results of ANN models. In all conditions, the accuracy of the ANN model is higher than that of the Carreau model using Lee’s correlation.

  4. A Corrected Formulation of the Multilayer Model (MLM) for Inferring Gaseous Dry Deposition to Vegetated Surfaces

    Science.gov (United States)

    Saylor, Rick D.; Wolfe, Glenn M.; Meyers, Tilden P.; Hicks, Bruce B.

    2014-01-01

    The Multilayer Model (MLM) has been used for many years to infer dry deposition fluxes from measured trace species concentrations and standard meteorological measurements for national networks in the U.S., including the U.S. Environmental Protection Agency's Clean Air Status and Trends Network (CASTNet). MLM utilizes a resistance analogy to calculate deposition velocities appropriate for whole vegetative canopies, while employing a multilayer integration to account for vertically varying meteorology, canopy morphology and radiative transfer within the canopy. However, the MLM formulation, as it was originally presented and as it has been subsequently employed, contains a non-physical representation related to the leaf-level quasi-laminar boundary layer resistance that affects the calculation of the total canopy resistance. In this note, the non-physical representation of the canopy resistance as originally formulated in MLM is discussed and a revised, physically consistent, formulation is suggested as a replacement. The revised canopy resistance formulation reduces estimates of HNO3 deposition velocities by as much as 38% during mid-day as compared to values generated by the original formulation. Inferred deposition velocities for SO2 and O3 are not significantly altered by the change in formulation (less than 3%). Inferred deposition loadings of oxidized and total nitrogen from CASTNet data may be reduced by 10-20% and 5-10%, respectively, for the Eastern U. S. when employing the revised formulation of MLM as compared to the original formulation.

  5. Evaluating Suspension Formulations of Theophylline Cocrystals With Artificial Sweeteners.

    Science.gov (United States)

    Aitipamula, Srinivasulu; Wong, Annie B H; Kanaujia, Parijat

    2018-02-01

    Pharmaceutical cocrystals have garnered significant interest as potential solids to address issues associated with formulation development of drug substances. However, studies concerning the understanding of formulation behavior of cocrystals are still at the nascent stage. We present results of our attempts to evaluate suspension formulations of cocrystals of an antiasthmatic drug, theophylline, with 2 artificial sweeteners. Stability, solubility, drug release, and taste of the suspension formulations were evaluated. Suspension that contained cocrystal with acesulfame showed higher drug release rate, while a cocrystal with saccharin showed a significant reduction in drug release rate. The cocrystal with saccharin was found stable in suspension for over 9 weeks at accelerated test condition; in contrast, the cocrystal with acesulfame was found unstable. Taste analysis using an electronic taste-sensing system revealed improved sweetness of the suspension formulations with cocrystals. Theophylline has a narrow therapeutic index with a short half-life which necessitates frequent dosing. This adversely impacts patient compliance and enhances risk of gastrointestinal and cardiovascular adverse effects. The greater thermodynamic stability, sweetness, and sustained drug release of the suspension formulation of theophylline-saccharin could offer an alternative solution to the short half-life of theophylline and make it a promising formulation for treating asthmatic pediatric and geriatric patients. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Formulation and Evaluation of Bioadhesive Cyproheptadine Tablets ...

    African Journals Online (AJOL)

    Results: The shear stress of 3 % solution of HPMC was greater than that of an equivalent concentration of Carbopol 934P. The values of K, n, R2 and detachment force for the optimized formulation (F0) were 0.269, 0.696, 0.964 and 0.066 Newton (N), respectively, and showed good correlation with the predicted values, thus ...

  7. In vitro testing of thiolated poly(aspartic acid) from ophthalmic formulation aspects.

    Science.gov (United States)

    Budai-Szű Cs, Mária; Horvát, Gabriella; Gyarmati, Benjámin; Szilágyi, Barnabás Áron; Szilágyi, András; Csihi, Tímea; Berkó, Szilvia; Szabó-Révész, Piroska; Mori, Michela; Sandri, Giuseppina; Bonferoni, Maria Cristina; Caramella, Carla; Csányi, Erzsébet

    2016-08-01

    Ocular drug delivery formulations must meet anatomical, biopharmaceutical, patient-driven and regulatory requirements. Mucoadhesive polymers can serve as a better alternative to currently available ophthalmic formulations by providing improved bioavailability. If all requirements are addressed, a polymeric formulation resembling the tear film of the eye might be the best solution. The optimum formulation must not have high osmotic activity, should provide appropriate surface tension, pH and refractive index, must be non-toxic and should be transparent and mucoadhesive. We would like to highlight the importance of in vitro polymer testing from a pharmaceutical aspect. We, therefore, carried out physical-chemical investigations to verify the suitability of certain systems for ophthalmic formulations. In this work, in situ gelling, mucoadhesive thiolated poly(aspartic acid)s were tested from ophthalmic formulation aspects. The results of preformulation measurements indicate that these polymers can be used as potential carriers in ophthalmic drug delivery.

  8. Formulation of similarity porous media systems

    International Nuclear Information System (INIS)

    Anderson, R.M.; Ford, W.T.; Ruttan, A.; Strauss, M.J.

    1982-01-01

    The mathematical formulation of the Porous Media System (PMS) describing two-phase, immiscible, compressible fluid flow in linear, homogeneous porous media is reviewed and expanded. It is shown that families of common vertex, coaxial parabolas and families of parallel lines are the only families of curves on which solutions of the PMS may be constant. A coordinate transformation is used to change the partial differential equations of the PMS to a system of ordinary differential equations, referred to as a similarity Porous Media System (SPMS), in which the independent variable denotes movement from curve to curve in a selected family of curves. Properties of solutions of the first boundary value problem are developed for the SPMS

  9. DA 5505: a novel topical formulation of terbinafine that enhances skin penetration and retention.

    Science.gov (United States)

    Thapa, Raj Kumar; Han, Sang-Duk; Park, Hyoung Geun; Son, Miwon; Jun, Joon Ho; Kim, Jong Oh

    2015-01-01

    Topical fungal infections can become severe if left untreated. Efficient treatment modalities for topical fungal infections aid the penetration of antifungal agents deep into viable skin layers. Terbinafine is a fungicidal agent that inhibits ergosterol, an essential fungal component. The main objective of this study was to evaluate skin permeation and retention of a terbinafine-loaded solution containing chitosan as a film former. Comparative assessment of skin permeation and retention was performed using a prepared formulation (DA 5505) and marketed formulations of terbinafine in murine and porcine skin. To mimic fungal infection of skin, keratinized skin was induced in NC/Nga mice. In comparison with the marketed formulations, DA 5505 exhibited significantly better skin permeation. The flux, permeation coefficient, and enhancement ratio of terbinafine were remarkably increased by DA 5505 in comparison with the marketed formulations, and lag time was dramatically reduced. DA 5505 significantly increased cumulative terbinafine retention in viable skin layers in comparison with the marketed solution, suggesting enhanced efficacy. Furthermore, DA 5505 exhibited superior skin permeation in normal skin and keratinized skin. Thus, the DA 5505 formulation has the potential to effectively deliver terbinafine to superficial and deep cutaneous fungal infections.

  10. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal

    2015-08-13

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.

  11. Design of a Generic and Flexible Data Structure for Efficient Formulation of Large Scale Network Problems

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Sarup, Bent; Sin, Gürkan

    2013-01-01

    structure for efficient formulation of enterprise-wide optimization problems is presented. Through the integration of the described data structure in our synthesis and design framework, the problem formulation workflow is automated in a software tool, reducing time and resources needed to formulate large......The formulation of Enterprise-Wide Optimization (EWO) problems as mixed integer nonlinear programming requires collecting, consolidating and systematizing large amount of data, coming from different sources and specific to different disciplines. In this manuscript, a generic and flexible data...... problems, while ensuring at the same time data consistency and quality at the application stage....

  12. Opalescence in monoclonal antibody solutions and its correlation with intermolecular interactions in dilute and concentrated solutions.

    Science.gov (United States)

    Raut, Ashlesha S; Kalonia, Devendra S

    2015-04-01

    Opalescence indicates physical instability of a formulation because of the presence of aggregates or liquid-liquid phase separation in solution and has been reported for monoclonal antibody (mAb) formulations. Increased solution opalescence can be attributed to attractive protein-protein interactions (PPIs). Techniques including light scattering, AUC, or membrane osmometry are routinely employed to measure PPIs in dilute solutions, whereas opalescence is seen at relatively higher concentrations, where both long- and short-range forces contribute to overall PPIs. The mAb molecule studied here shows a unique property of high opalescence because of liquid-liquid phase separation. In this study, opalescence measurements are correlated to PPIs measured in diluted and concentrated solutions using light scattering (kD ) and high-frequency rheology (G'), respectively. Charges on the molecules were calculated using zeta potential measurements. Results indicate that high opalescence and phase separation are a result of the attractive interactions in solution; however, the presence of attractive interactions do not always imply phase separation. Temperature dependence of opalescence suggests that thermodynamic contribution to opalescence is significant and Tcloud can be utilized as a potential tool to assess attractive interactions in solution. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Energy-aware virtual network embedding in flexi-grid optical networks

    Science.gov (United States)

    Lin, Rongping; Luo, Shan; Wang, Haoran; Wang, Sheng; Chen, Bin

    2018-01-01

    Virtual network embedding (VNE) problem is to map multiple heterogeneous virtual networks (VN) on a shared substrate network, which mitigate the ossification of the substrate network. Meanwhile, energy efficiency has been widely considered in the network design. In this paper, we aim to solve the energy-aware VNE problem in flexi-grid optical networks. We provide an integer linear programming (ILP) formulation to minimize the power increment of each arriving VN request. We also propose a polynomial-time heuristic algorithm where virtual links are embedded sequentially to keep a reasonable acceptance ratio and maintain a low energy consumption. Numerical results show the functionality of the heuristic algorithm in a 24-node network.

  14. New knotted solutions of Maxwell's equations

    International Nuclear Information System (INIS)

    Hoyos, Carlos; Sircar, Nilanjan; Sonnenschein, Jacob

    2015-01-01

    In this paper we have further developed the study of topologically non-trivial solutions of vacuum electrodynamics. We have discovered a novel method of generating such solutions by applying conformal transformations with complex parameters on known solutions expressed in terms of Bateman's variables. This has enabled us to obtain a wide class of solutions from the basic configuration, such as constant electromagnetic fields and plane-waves. We have introduced a covariant formulation of Bateman's construction and discussed the conserved charges associated with the conformal group as well as a set of four types of conserved helicities. We have also given a formulation in terms of quaternions. This led to a simple map between the electromagnetic knotted and linked solutions into flat connections of SU(2) gauge theory. We have computed the corresponding Chern–Simons charge in a class of solutions and the charge takes integer values. (paper)

  15. New formulations on the finite element method for boundary value problems with internal/external boundary layers

    International Nuclear Information System (INIS)

    Pereira, Luis Carlos Martins

    1998-06-01

    New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)

  16. Non-linear Vibration of Oscillation Systems using Frequency-Amplitude Formulation

    DEFF Research Database (Denmark)

    Fereidoon, A.; Ghadimi, M.; Barari, Amin

    2012-01-01

    In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifthorder nonlinearity for two examples using He’s Frequency Amplitude Formulation (HFAF).The effectiveness and convenience of the method is illustrated in these examples. It will be shown that t...... that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems....

  17. Thermodynamic description of the Al–Mg–Si system using a new formulation for the temperature dependence of the excess Gibbs energy

    International Nuclear Information System (INIS)

    Tang, Ying; Du, Yong; Zhang, Lijun; Yuan, Xiaoming; Kaptay, George

    2012-01-01

    Highlights: ► An exponential formulation to describe ternary excess Gibbs energy is proposed. ► Theoretical analysis is performed to verify stability of phase using new formulation. ► Al–Mg–Si system and its boundary binaries have been assessed by the new formulation. ► Present calculations for Al–Mg–Si system are more reasonable than previous ones. - Abstract: An exponential formulation was proposed to replace the linear interaction parameter in the Redlich–Kister (R–K) polynomial for the excess Gibbs energy of ternary solution phase. The theoretical analysis indicates that the proposed new exponential formulation can not only avoid the artificial miscibility gap at high temperatures but also describe the ternary system well. A thermodynamic description for the Al–Mg–Si system and its boundary binaries was then performed by using both R–K linear and exponential formulations. The inverted miscibility gaps occurring in the Mg–Si and the Al–Mg–Si systems at high temperatures due to the use of R–K linear polynomials are avoided by using the new formulation. Besides, the thermodynamic properties predicted with the new formulation confirm the general thermodynamic belief that the solution phase approaches to the ideal solution at infinite temperatures, which cannot be described with the traditional R–K linear polynomials.

  18. Sensor Network Localization with Imprecise Distances

    NARCIS (Netherlands)

    Cao, M.; Morse, A.S.; Anderson, B.D.O.

    2006-01-01

    An approach to formulate geometric relations among distances between nodes as equality constraints is introduced in this paper to study the localization problem with imprecise distance information in sensor networks. These constraints can be further used to formulate optimization problems for

  19. An Airway Network Flow Assignment Approach Based on an Efficient Multiobjective Optimization Framework

    Directory of Open Access Journals (Sweden)

    Xiangmin Guan

    2015-01-01

    Full Text Available Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology.

  20. Gaussian process regression for sensor networks under localization uncertainty

    Science.gov (United States)

    Jadaliha, M.; Xu, Yunfei; Choi, Jongeun; Johnson, N.S.; Li, Weiming

    2013-01-01

    In this paper, we formulate Gaussian process regression with observations under the localization uncertainty due to the resource-constrained sensor networks. In our formulation, effects of observations, measurement noise, localization uncertainty, and prior distributions are all correctly incorporated in the posterior predictive statistics. The analytically intractable posterior predictive statistics are proposed to be approximated by two techniques, viz., Monte Carlo sampling and Laplace's method. Such approximation techniques have been carefully tailored to our problems and their approximation error and complexity are analyzed. Simulation study demonstrates that the proposed approaches perform much better than approaches without considering the localization uncertainty properly. Finally, we have applied the proposed approaches on the experimentally collected real data from a dye concentration field over a section of a river and a temperature field of an outdoor swimming pool to provide proof of concept tests and evaluate the proposed schemes in real situations. In both simulation and experimental results, the proposed methods outperform the quick-and-dirty solutions often used in practice.

  1. Biopharmaceutical formulations for pre-filled delivery devices.

    Science.gov (United States)

    Jezek, Jan; Darton, Nicholas J; Derham, Barry K; Royle, Nikki; Simpson, Iain

    2013-06-01

    Pre-filled syringes are becoming an increasingly popular format for delivering biotherapeutics conveniently and cost effectively. The device design and stable liquid formulations required to enable this pre-filled syringe format are technically challenging. In choosing the materials and process conditions to fabricate the syringe unit, their compatibility with the biotherapeutic needs to be carefully assessed. The biothereaputic stability demanded for the production of syringe-compatible low-viscosity liquid solutions requires critical excipient choices to be made. The purpose of this review is to discuss key issues related to the stability aspects of biotherapeutics in pre-filled devices. This includes effects on both physical and chemical stability due to a number of stress conditions the product is subjected to, as well as interactions with the packaging system. Particular attention is paid to the control of stability by formulation. We anticipate that there will be a significant move towards polymer primary packaging for most drugs in the longer term. The timescales for this will depend on a number of factors and hence will be hard to predict. Formulation will play a critical role in developing successful products in the pre-filled syringe format, particularly with the trend towards concentrated biotherapeutics. Development of novel, smart formulation technologies will, therefore, be increasingly important.

  2. Application of UV Imaging in Formulation Development.

    Science.gov (United States)

    Sun, Yu; Østergaard, Jesper

    2017-05-01

    Efficient drug delivery is dependent on the drug substance dissolving in the body fluids, being released from dosage forms and transported to the site of action. A fundamental understanding of the interplay between the physicochemical properties of the active compound and pharmaceutical excipients defining formulation behavior after exposure to the aqueous environments and pharmaceutical performance is critical in pharmaceutical development, manufacturing and quality control of drugs. UV imaging has been explored as a tool for qualitative and quantitative characterization of drug dissolution and release with the characteristic feature of providing real-time visualization of the solution phase drug transport in the vicinity of the formulation. Events occurring during drug dissolution and release, such as polymer swelling, drug precipitation/recrystallization, or solvent-mediated phase transitions related to the structural properties of the drug substance or formulation can be monitored. UV imaging is a non-intrusive and simple-to-operate analytical technique which holds potential for providing a mechanistic foundation for formulation development. This review aims to cover applications of UV imaging in the early and late phase pharmaceutical development with a special focus on the relation between structural properties and performance. Potential areas of future advancement and application are also discussed.

  3. Density of nitric acid solutions of plutonium; Densite des solutions nitriques de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Guibergia, J P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The report is intended to furnish an expression making it possible to determine the density of a nitric acid solution of plutonium. Under certain defined experimental conditions, the equation found makes it possible to deduce, for a solution whose concentration, free acidity and temperature are known, the corresponding value of the density of that solution. (author) [French] L'expose a pour but de donner une formule permettant la determination de la densite d'une solution nitrique de plutonium. Suivant certaines conditions experimentales precisees, l'equation trouvee permet, pour une solution dont la concentration, l'acidite libre nitrique et la temperature sont donnees, de deduire la valeur correspondant de la densite de cette solution. (auteur)

  4. Numerical performance of the parabolized ADM (PADM) formulation of General Relativity

    OpenAIRE

    Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei

    2007-01-01

    In a recent paper the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a mixed hyperbolic - second-order parabolic, well-posed system. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation...

  5. Decision Network for Blue Green Solutions to Influence Policy Impact Assessments

    Science.gov (United States)

    Mijic, A.; Theodoropoulos, G.; El Hattab, M. H.; Brown, K.

    2017-12-01

    Sustainable Urban Drainage Systems (SuDS) deliver ecosystems services that can potentially yield multiple benefits to the urban environment. These benefits can be achieved through optimising SUDS' integration with the local environment and water resources, creating so-called Blue Green Solutions (BGS). The BGS paradigm, however, presents several challenges, in particular quantifying the benefits and creating the scientific evidence-base that can persuade high-level decision-makers and stakeholders to implement BGS at large scale. This work presents the development of the easily implemented and tailored-made approach that allows a robust assessment of the BGS co-benefits, and can influence the types of information that are included in policy impact assessments. The Analytic Network Process approach is used to synthesise the available evidence on the co-benefits of the BGS. The approach enables mapping the interactions between individual BGS selection criteria, and creates a platform to assess the synergetic benefits that arise from components interactions. By working with Government departments and other public and private sector stakeholders, this work has produced a simple decision criteria-based network that will enable the co-benefits and trade-offs of BGS to be quantified and integrated into UK policy appraisals.

  6. Dynamic sink assignment for efficient energy consumption in wireless sensor networks

    KAUST Repository

    Oikonomou, Konstantinos N.

    2012-04-01

    Efficient energy consumption is a challenging problem in wireless sensor networks (WSNs) and closely related to extending network lifetime. The usual way of tackling this issue for topologies with fixed link weight and fixed sink location, has been shown to be severely affected by the energy hole problem. In this paper, the energy consumption problem is initially studied for WSNs with fixed sink assignment and it is analytically shown that energy consumption is minimized when the sink is assigned to the node that is the solution of a suitably formulated 1-median problem. This motivates the introduction of a dynamic environment where link weights change based on the energy level and the aggregate traffic load of the adjacent nodes. Then, the sink is adaptively allowed to move among neighbor nodes, according to a scalable sink migration strategy. Simulation results support the analytical claims demonstrating energy consumption reduction and an additional network lifetime increment when migration is employed in the dynamic environment. © 2012 IEEE.

  7. Estimating the size of the solution space of metabolic networks

    Directory of Open Access Journals (Sweden)

    Mulet Roberto

    2008-05-01

    Full Text Available Abstract Background Cellular metabolism is one of the most investigated system of biological interactions. While the topological nature of individual reactions and pathways in the network is quite well understood there is still a lack of comprehension regarding the global functional behavior of the system. In the last few years flux-balance analysis (FBA has been the most successful and widely used technique for studying metabolism at system level. This method strongly relies on the hypothesis that the organism maximizes an objective function. However only under very specific biological conditions (e.g. maximization of biomass for E. coli in reach nutrient medium the cell seems to obey such optimization law. A more refined analysis not assuming extremization remains an elusive task for large metabolic systems due to algorithmic limitations. Results In this work we propose a novel algorithmic strategy that provides an efficient characterization of the whole set of stable fluxes compatible with the metabolic constraints. Using a technique derived from the fields of statistical physics and information theory we designed a message-passing algorithm to estimate the size of the affine space containing all possible steady-state flux distributions of metabolic networks. The algorithm, based on the well known Bethe approximation, can be used to approximately compute the volume of a non full-dimensional convex polytope in high dimensions. We first compare the accuracy of the predictions with an exact algorithm on small random metabolic networks. We also verify that the predictions of the algorithm match closely those of Monte Carlo based methods in the case of the Red Blood Cell metabolic network. Then we test the effect of gene knock-outs on the size of the solution space in the case of E. coli central metabolism. Finally we analyze the statistical properties of the average fluxes of the reactions in the E. coli metabolic network. Conclusion We propose a

  8. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations.

    Science.gov (United States)

    Nuchuchua, O; Every, H A; Hofland, G W; Jiskoot, W

    2014-11-01

    In this study, we evaluated the influence of supercritical carbon dioxide (scCO2) spray drying conditions, in the absence of organic solvent, on the ability to produce dry protein/trehalose formulations at 1:10 and 1:4 (w/w) ratios. When using a 4L drying vessel, we found that decreasing the solution flow rate and solution volume, or increasing the scCO2 flow rate resulted in a significant reduction in the residual water content in dried products (Karl Fischer titration). The best conditions were then used to evaluate the ability to scale the scCO2 spray drying process from 4L to 10L chamber. The ratio of scCO2 and solution flow rate was kept constant. The products on both scales exhibited similar residual moisture contents, particle morphologies (SEM), and glass transition temperatures (DSC). After reconstitution, the lysozyme activity (enzymatic assay) and structure (circular dichroism, HP-SEC) were fully preserved, but the sub-visible particle content was slightly increased (flow imaging microscopy, nanoparticle tracking analysis). Furthermore, the drying condition was applicable to other proteins resulting in products of similar quality as the lysozyme formulations. In conclusion, we established scCO2 spray drying processing conditions for protein formulations without an organic solvent that holds promise for the industrial production of dry protein formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution

    Directory of Open Access Journals (Sweden)

    Wilson Rodríguez Calderón

    2015-04-01

    Full Text Available When we need to determine the solution of a nonlinear equation there are two options: closed-methods which use intervals that contain the root and during the iterative process reduce the size of natural way, and, open-methods that represent an attractive option as they do not require an initial interval enclosure. In general, we know open-methods are more efficient computationally though they do not always converge. In this paper we are presenting a divergence case analysis when we use the method of fixed point iteration to find the normal height in a rectangular channel using the Manning equation. To solve this problem, we propose applying two strategies (developed by authors that allow to modifying the iteration function making additional formulations of the traditional method and its convergence theorem. Although Manning equation is solved with other methods like Newton when we use the iteration method of fixed-point an interesting divergence situation is presented which can be solved with a convergence higher than quadratic over the initial iterations. The proposed strategies have been tested in two cases; a study of divergence of square root of real numbers was made previously by authors for testing. Results in both cases have been successful. We present comparisons because are important for seeing the advantage of proposed strategies versus the most representative open-methods.

  10. Fleet deployment, network design and hub location of liner shipping companies

    DEFF Research Database (Denmark)

    Gelareh, Shahin; Pisinger, David

    2011-01-01

    A mixed integer linear programming formulation is proposed for the simultaneous design of network and fleet deployment of a deep-sea liner service provider. The underlying network design problem is based on a 4-index (5-index by considering capacity type) formulation of the hub location problem...

  11. Application of High-Resolution Ultrasonic Spectroscopy for analysis of complex formulations. Compressibility of solutes and solute particles in liquid mixtures

    International Nuclear Information System (INIS)

    Buckin, V

    2012-01-01

    The paper describes key aspects of interpretation of compressibility of solutes in liquid mixtures obtained through high-resolution measurements of ultrasonic parameters. It examines the fundamental relationships between the characteristics of solutes and the contributions of solutes to compressibility of liquid mixtures expressed through apparent adiabatic compressibility of solutes, and adiabatic compressibility of solute particles. In addition, it analyses relationships between the adiabatic compressibility of solutes and the measured ultrasonic characteristics of mixtures. Especial attention is given to the effects of solvents on the measured adiabatic compressibility of solutes and on concentration increment of ultrasonic velocity of solutes in mixtures.

  12. Antifungal Screening of Bridelia ferruginea Benth (Euphorbiaceae Stem Bark Extract in Mouthwash Formulations

    Directory of Open Access Journals (Sweden)

    Aremu Olusola Isaac

    2017-06-01

    Full Text Available The plant Bridelia ferruginea Benth (Euphorbiaceae has been known for its use in the management of oral thrush ethnomedicinally in various parts of Africa, a practice which has been justified by results of certain scientific studies. The aim of this study was to develop an appropriate dosage formulation, a mouthwash and evaluate the antifungal potential of this dosage formulation against a major causative organism of oral thrush, Candida albicans. Extraction of the stem bark was carried out with boiled distilled water, the extract was formulated into mouthwashes at concentrations of 0.5, 1.0, 1.5, 2.0 and 2.5%w/v. All formulations contained viscosity imparting agent, a sweetener and a preservative. Physical characterisation, viscosity, pH and palatability of the mouthwash formulations were determined. Agar-well diffusion method was used to assess antifungal activity of the formulations against Candida albicans and Nystatin oral suspension was used as reference compound. The results showed that Bridelia ferruginea stem bark extract mouthwash solutions were brown in colour, had agreeable odour and sweet astringent taste. The pH for all concentrations was in the range 5.41-5.63. The viscosity at spindle no 2, 60rpm range between 0.226-0.238 Pa.S for all concentrations studied. The formulations had antifungal activity against Candida albicans. The highest concentration (2.5%w/v gave mean zone of inhibition of 25.50±0.71mm that was comparable with Nystatin oral suspension 28.00±1.41mm, a reference compound. The foregoing suggests that with little modification in the formulation especially the adjustment of the pH, Bridellia ferruginea mouthwash solutions may be developed into commercially useful preparations.

  13. Formulation and evaluation of a bioadhesive patch for buccal delivery of tizanidine

    Directory of Open Access Journals (Sweden)

    Mohamed S. Pendekal

    2012-06-01

    Full Text Available Tizanidine hydrochloride (THCl is an antispasmodic agent which undergoes extensive first pass metabolism making it a possible candidate for buccal delivery. The aim of this study was to prepare a monolayered buccal patch containing THCl using the emulsification solvent evaporation method. Fourteen formulations were prepared using the polymers Eudragit® RS 100 or Eudragit® RL 100 and chitosan. Polymer solutions in acetone were combined with a THCl aqueous solution (in some cases containing chitosan by homogenization at 9000 rpm for 2 min in the presence of triethyl citrate as plasticizer and cast in novel Teflon molds. Physicochemical properties such as film thickness, in vitro drug release and in vitro mucoadhesion were evaluated after which permeation across sheep buccal mucosa was examined in terms of flux and lag time. Formulations prepared using a Eudragit® polymer alone exhibited satisfactory physicomechanical properties but lacked a gradual in vitro drug release pattern. Incorporation of chitosan into formulations resulted in the formation of a porous structure which did exhibit gradual release of drug. In conclusion, THCl can be delivered by a buccal patch formulated as a blend of Eudragit® and chitosan, the latter being necessary to achieve gradual drug release.

  14. A Piecewise Deterministic Markov Toy Model for Traffic/Maintenance and Associated Hamilton–Jacobi Integrodifferential Systems on Networks

    International Nuclear Information System (INIS)

    Goreac, Dan; Kobylanski, Magdalena; Martinez, Miguel

    2016-01-01

    We study optimal control problems in infinite horizon whxen the dynamics belong to a specific class of piecewise deterministic Markov processes constrained to star-shaped networks (corresponding to a toy traffic model). We adapt the results in Soner (SIAM J Control Optim 24(6):1110–1122, 1986) to prove the regularity of the value function and the dynamic programming principle. Extending the networks and Krylov’s “shaking the coefficients” method, we prove that the value function can be seen as the solution to a linearized optimization problem set on a convenient set of probability measures. The approach relies entirely on viscosity arguments. As a by-product, the dual formulation guarantees that the value function is the pointwise supremum over regular subsolutions of the associated Hamilton–Jacobi integrodifferential system. This ensures that the value function satisfies Perron’s preconization for the (unique) candidate to viscosity solution.

  15. A Piecewise Deterministic Markov Toy Model for Traffic/Maintenance and Associated Hamilton–Jacobi Integrodifferential Systems on Networks

    Energy Technology Data Exchange (ETDEWEB)

    Goreac, Dan, E-mail: Dan.Goreac@u-pem.fr; Kobylanski, Magdalena, E-mail: Magdalena.Kobylanski@u-pem.fr; Martinez, Miguel, E-mail: Miguel.Martinez@u-pem.fr [Université Paris-Est, LAMA (UMR 8050), UPEMLV, UPEC, CNRS (France)

    2016-10-15

    We study optimal control problems in infinite horizon whxen the dynamics belong to a specific class of piecewise deterministic Markov processes constrained to star-shaped networks (corresponding to a toy traffic model). We adapt the results in Soner (SIAM J Control Optim 24(6):1110–1122, 1986) to prove the regularity of the value function and the dynamic programming principle. Extending the networks and Krylov’s “shaking the coefficients” method, we prove that the value function can be seen as the solution to a linearized optimization problem set on a convenient set of probability measures. The approach relies entirely on viscosity arguments. As a by-product, the dual formulation guarantees that the value function is the pointwise supremum over regular subsolutions of the associated Hamilton–Jacobi integrodifferential system. This ensures that the value function satisfies Perron’s preconization for the (unique) candidate to viscosity solution.

  16. Combined Rate and Power Allocation with Link Scheduling in Wireless Data Packet Relay Networks with Fading Channels

    OpenAIRE

    Subhrakanti Dey; Minyi Huang

    2007-01-01

    We consider a joint rate and power control problem in a wireless data traffic relay network with fading channels. The optimization problem is formulated in terms of power and rate selection, and link transmission scheduling. The objective is to seek high aggregate utility of the relay node when taking into account buffer load management and power constraints. The optimal solution for a single transmitting source is computed by a two-layer dynamic programming algorithm which leads to optimal ...

  17. Analytical Solutions for Rumor Spreading Dynamical Model in a Social Network

    Science.gov (United States)

    Fallahpour, R.; Chakouvari, S.; Askari, H.

    2015-03-01

    In this paper, Laplace Adomian decomposition method is utilized for evaluating of spreading model of rumor. Firstly, a succinct review is constructed on the subject of using analytical methods such as Adomian decomposion method, Variational iteration method and Homotopy Analysis method for epidemic models and biomathematics. In continue a spreading model of rumor with consideration of forgetting mechanism is assumed and subsequently LADM is exerted for solving of it. By means of the aforementioned method, a general solution is achieved for this problem which can be readily employed for assessing of rumor model without exerting any computer program. In addition, obtained consequences for this problem are discussed for different cases and parameters. Furthermore, it is shown the method is so straightforward and fruitful for analyzing equations which have complicated terms same as rumor model. By employing numerical methods, it is revealed LADM is so powerful and accurate for eliciting solutions of this model. Eventually, it is concluded that this method is so appropriate for this problem and it can provide researchers a very powerful vehicle for scrutinizing rumor models in diverse kinds of social networks such as Facebook, YouTube, Flickr, LinkedIn and Tuitor.

  18. Formulation and make-up of simulated cement modified water

    International Nuclear Information System (INIS)

    Gdowski, G.

    1997-01-01

    This procedure describes the formulation and make-up of Simulated Cement-Modified Waters (SCMW), which are aqueous solutions to be used for Activity E-20-50 Long-Term Corrosion Studies. These solutions simulate the changes to representative Yucca Mountain water chemistry because of prolonged contact with aged cement. The representative water was chosen as J-13 well water [Harrar, 1990]. J-13 well water is obtained from ground water that is in contact with the Topopah Spring tuff, which is the repository horizon rock

  19. Physical states in the canonical tensor model from the perspective of random tensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Narain, Gaurav [The Institute for Fundamental Study “The Tah Poe Academia Institute”,Naresuan University, Phitsanulok 65000 (Thailand); Sasakura, Naoki [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Sato, Yuki [National Institute for Theoretical Physics,School of Physics and Centre for Theoretical Physics,University of the Witwartersrand, WITS 2050 (South Africa)

    2015-01-07

    Tensor models, generalization of matrix models, are studied aiming for quantum gravity in dimensions larger than two. Among them, the canonical tensor model is formulated as a totally constrained system with first-class constraints, the algebra of which resembles the Dirac algebra of general relativity. When quantized, the physical states are defined to be vanished by the quantized constraints. In explicit representations, the constraint equations are a set of partial differential equations for the physical wave-functions, which do not seem straightforward to be solved due to their non-linear character. In this paper, after providing some explicit solutions for N=2,3, we show that certain scale-free integration of partition functions of statistical systems on random networks (or random tensor networks more generally) provides a series of solutions for general N. Then, by generalizing this form, we also obtain various solutions for general N. Moreover, we show that the solutions for the cases with a cosmological constant can be obtained from those with no cosmological constant for increased N. This would imply the interesting possibility that a cosmological constant can always be absorbed into the dynamics and is not an input parameter in the canonical tensor model. We also observe the possibility of symmetry enhancement in N=3, and comment on an extension of Airy function related to the solutions.

  20. Operations research problems statements and solutions

    CERN Document Server

    Poler, Raúl; Díaz-Madroñero, Manuel

    2014-01-01

    The objective of this book is to provide a valuable compendium of problems as a reference for undergraduate and graduate students, faculty, researchers and practitioners of operations research and management science. These problems can serve as a basis for the development or study of assignments and exams. Also, they can be useful as a guide for the first stage of the model formulation, i.e. the definition of a problem. The book is divided into 11 chapters that address the following topics: Linear programming, integer programming, non linear programming, network modeling, inventory theory, queue theory, tree decision, game theory, dynamic programming and markov processes. Readers are going to find a considerable number of statements of operations research applications for management decision-making. The solutions of these problems are provided in a concise way although all topics start with a more developed resolution. The proposed problems are based on the research experience of the authors in real-world com...

  1. Sustained release of intravitreal flurbiprofen from a novel drug-in-liposome-in-hydrogel formulation.

    Science.gov (United States)

    Pachis, K; Blazaki, S; Tzatzarakis, M; Klepetsanis, P; Naoumidi, E; Tsilimbaris, M; Antimisiaris, S G

    2017-11-15

    A novel Flurbiprofen (FLB)-in-liposome-in-hydrogel formulation was developed, as a method to sustain the release and increase the ocular bioavailability of FLB following intravitreal injection. For this, FLB loading into liposomes was optimized and liposomes were entrapped in thermosensitive hydrogels consisted of Pluronic F-127 (P). FLB solution, liposomes, and FLB dissolved in hydrogel were also used as control formulations. Actively loaded liposomes were found to be optimal for high FLB loading and small size, while in vitro studies revealed that P concentration of 18% (w/v) was best to retain the integrity of the hydrogel-dispersed liposome, compared to a 20% concentration. The in vitro release of FLB was significantly sustained when FLB-liposomes were dispersed in the hydrogel compared to hydrogel dissolved FLB, as well as the other control formulations. In vivo studies were carried out in pigmented rabbits which were injected through a 27G needle with 1mg/mL FLB in the different formulation-types. Ophthalmic examinations after intravitreal injection of all FLB formulations, revealed no evidence of inflammation, hemorrhage, uveitis or endophthalmitis. Pharmacokinetic analysis results confirm that the hybrid drug delivery system increases the bioavailability (by 1.9 times compared to solution), and extends the presence of the drug in the vitreous cavity, while liposome and hydrogel formulations demonstrate intermediate performance. Furthermore the hybrid system increases MRT of FLB in aqueous humor and retina/choroid tissues, compared to all the control formulations. Currently the potential therapeutic advances of FLB sustained release formulations for IVT administration are being evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Joint Hybrid Backhaul and Access Links Design in Cloud-Radio Access Networks

    KAUST Repository

    Dhifallah, Oussama Najeeb

    2015-09-06

    The cloud-radio access network (CRAN) is expected to be the core network architecture for next generation mobile radio systems. In this paper, we consider the downlink of a CRAN formed of one central processor (the cloud) and several base station (BS), where each BS is connected to the cloud via either a wireless or capacity-limited wireline backhaul link. The paper addresses the joint design of the hybrid backhaul links (i.e., designing the wireline and wireless backhaul connections from the cloud to the BSs) and the access links (i.e., determining the sparse beamforming solution from the BSs to the users). The paper formulates the hybrid backhaul and access link design problem by minimizing the total network power consumption. The paper solves the problem using a two-stage heuristic algorithm. At one stage, the sparse beamforming solution is found using a weighted mixed 11/12 norm minimization approach; the correlation matrix of the quantization noise of the wireline backhaul links is computed using the classical rate-distortion theory. At the second stage, the transmit powers of the wireless backhaul links are found by solving a power minimization problem subject to quality-of-service constraints, based on the principle of conservation of rate by utilizing the rates found in the first stage. Simulation results suggest that the performance of the proposed algorithm approaches the global optimum solution, especially at high signal-to-interference-plus-noise ratio (SINR).

  3. Solution of the mathematical adjoint equations for an interface current nodal formulation

    International Nuclear Information System (INIS)

    Yang, W.S.; Taiwo, T.A.; Khalil, H.

    1994-01-01

    Two techniques for solving the mathematical adjoint equations of an interface current nodal method are described. These techniques are the ''similarity transformation'' procedure and a direct solution scheme. A theoretical basis is provided for the similarity transformation procedure originally proposed by Lawrence. It is shown that the matrices associated with the mathematical and physical adjoint equations are similar to each other for the flat transverse leakage approximation but not for the quadratic leakage approximation. It is also shown that a good approximate solution of the mathematical adjoint for the quadratic transverse leakage approximation is obtained by applying the similarity transformation for the flat transverse leakage approximation to the physical adjoint solution. The direct solution scheme, which was developed as an alternative to the similarity transformation procedure, yields the correct mathematical adjoint solution for both flat and quadratic transverse leakage approximations. In this scheme, adjoint nodal equations are cast in a form very similar to that of the forward equations by employing a linear transformation of the adjoint partial currents. This enables the use of the forward solution algorithm with only minor modifications for solving the mathematical adjoint equations. By using the direct solution scheme as a reference method, it is shown that while the results computed with the similarity transformation procedure are approximate, they are sufficiently accurate for calculations of global and local reactivity changes resulting from coolant voiding in a liquid-metal reactor

  4. SPAN: A Network Providing Integrated, End-to-End, Sensor-to-Database Solutions for Environmental Sciences

    Science.gov (United States)

    Benzel, T.; Cho, Y. H.; Deschon, A.; Gullapalli, S.; Silva, F.

    2009-12-01

    In recent years, advances in sensor network technology have shown great promise to revolutionize environmental data collection. Still, wide spread adoption of these systems by domain experts has been lacking, and these have remained the purview of the engineers who design them. While there are many data logging options for basic data collection in the field currently, scientists are often required to visit the deployment sites to retrieve their data and manually import it into spreadsheets. Some advanced commercial software systems do allow scientists to collect data remotely, but most of these systems only allow point-to-point access, and require proprietary hardware. Furthermore, these commercial solutions preclude the use of sensors from other manufacturers or integration with internet based database repositories and compute engines. Therefore, scientists often must download and manually reformat their data before uploading it to the repositories if they wish to share their data. We present an open-source, low-cost, extensible, turnkey solution called Sensor Processing and Acquisition Network (SPAN) which provides a robust and flexible sensor network service. At the deployment site, SPAN leverages low-power generic embedded processors to integrate variety of commercially available sensor hardware to the network of environmental observation systems. By bringing intelligence close to the sensed phenomena, we can remotely control configuration and re-use, establish rules to trigger sensor activity, manage power requirements, and control the two-way flow of sensed data as well as control information to the sensors. Key features of our design include (1) adoption of a hardware agnostic architecture: our solutions are compatible with several programmable platforms, sensor systems, communication devices and protocols. (2) information standardization: our system supports several popular communication protocols and data formats, and (3) extensible data support: our

  5. Numerical simulation of viscoelastic free‐surface flows using a streamfunction/log‐conformation formulation and the volume‐of‐fluid method

    DEFF Research Database (Denmark)

    Comminal, Raphael Benjamin

    materials, where viscoelastic effects cause dynamical instabilities, despite the very simple geometry. This thesis reviews the popular differential constitutive models derived from molecular theories of dilute polymer solutions, polymer networks, and entangled polymer melts, as well as the inelastic...... streamfunction formulation is formally more accurate than the velocity–pressure decoupled method, because it is immune of decoupling errors. Moreover, the absence of decoupling enhances the stability of the calculation. The governing equations (conservation laws and constitutive models) are discretized......–linear–interface–construction technique. In addition, a new Cellwise Conservative Unsplit (CCU) advection scheme is presented. The CCU scheme updates the liquid volume fractions based on cellwise backward‐tracking of the liquid volumes. The algorithm calculates non‐overlapping and conforming adjacent donating regions, which ensures...

  6. Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design.

    Science.gov (United States)

    Vandecruys, Roger; Peeters, Jef; Verreck, Geert; Brewster, Marcus E

    2007-09-05

    Assessing the effect of excipients on the ability to attain and maintain supersaturation of drug-based solution may provide useful information for the design of solid formulations. Judicious selection of materials that affect either the extent or stability of supersaturating drug delivery systems may be enabling for poorly soluble drug candidates or other difficult-to-formulate compounds. The technique suggested herein is aimed at providing a screening protocol to allow preliminary assessment of these factors based on small to moderate amounts of drug substance. A series of excipients were selected that may, by various mechanisms, affect supersaturation including pharmaceutical polymers such as HMPC and PVP, surfactants such as Polysorbate 20, Cremophor RH40 and TPGS and hydrophilic cyclodextrins such as HPbetaCD. Using a co-solvent based method and 25 drug candidates, the data suggested, on the whole, that the surfactants and the selected cyclodextrin seemed to best augment the extent of supersaturation but had variable benefits as stabilizers, while the pharmaceutical polymers had useful effect on supersaturation stability but were less helpful in increasing the extent of supersaturation. Using these data, a group of simple solid dosage forms were prepared and tested in the dog for one of the drug candidates. Excipients that gave the best extent and stability for the formed supersaturated solution in the screening assay also gave the highest oral bioavailability in the dog.

  7. Dynamic Vehicle Scheduling for Working Service Network with Dual Demands

    Directory of Open Access Journals (Sweden)

    Bing Li

    2017-01-01

    Full Text Available This study aims to develop some models to aid in making decisions on the combined fleet size and vehicle assignment in working service network where the demands include two types (minimum demands and maximum demands, and vehicles themselves can act like a facility to provide services when they are stationary at one location. This type of problem is named as the dynamic working vehicle scheduling with dual demands (DWVS-DD and formulated as a mixed integer programming (MIP. Instead of a large integer program, the problem is decomposed into small local problems that are guided by preset control parameters. The approach for preset control parameters is given. By introducing them into the MIP formulation, the model is reformulated as a piecewise form. Further, a piecewise method by updating preset control parameters is proposed for solving the reformulated model. Numerical experiments show that the proposed method produces better solution within reasonable computing time.

  8. Pintadas network

    OpenAIRE

    Cruz, Maria do Carmo Meirelles T.

    2006-01-01

    The Pintadas Network has been organized in Pintadas, a small municipality (11.254 inhabitants) in Bahia, located in the semi-arid region. It has been composed by civil society organizacions (social, productive, cultural and religious organizations and a credit cooperative), with support from the local town hall and from national and international institutions. The Network is a space for articulation, which intends to formulate, execute, follow-up, inspect and evaluate the municipal public pol...

  9. Efficient inference of overlapping communities in complex networks

    DEFF Research Database (Denmark)

    Fruergaard, Bjarne Ørum; Herlau, Tue

    2014-01-01

    We discuss two views on extending existing methods for complex network modeling which we dub the communities first and the networks first view, respectively. Inspired by the networks first view that we attribute to White, Boorman, and Breiger (1976)[1], we formulate the multiple-networks stochastic...

  10. A new continuous-time formulation for scheduling crude oil operations

    International Nuclear Information System (INIS)

    Reddy, P. Chandra Prakash; Karimi, I.A.; Srinivasan, R.

    2004-01-01

    In today's competitive business climate characterized by uncertain oil markets, responding effectively and speedily to market forces, while maintaining reliable operations, is crucial to a refinery's bottom line. Optimal crude oil scheduling enables cost reduction by using cheaper crudes intelligently, minimizing crude changeovers, and avoiding ship demurrage. So far, only discrete-time formulations have stood up to the challenge of this important, nonlinear problem. A continuous-time formulation would portend numerous advantages, however, existing work in this area has just begun to scratch the surface. In this paper, we present the first complete continuous-time mixed integer linear programming (MILP) formulation for the short-term scheduling of operations in a refinery that receives crude from very large crude carriers via a high-volume single buoy mooring pipeline. This novel formulation accounts for real-world operational practices. We use an iterative algorithm to eliminate the crude composition discrepancy that has proven to be the Achilles heel for existing formulations. While it does not guarantee global optimality, the algorithm needs only MILP solutions and obtains excellent maximum-profit schedules for industrial problems with up to 7 days of scheduling horizon. We also report the first comparison of discrete- vs. continuous-time formulations for this complex problem. (Author)

  11. THE NONISOTHERMAL STAGE OF MAGNETIC STAR FORMATION. I. FORMULATION OF THE PROBLEM AND METHOD OF SOLUTION

    International Nuclear Information System (INIS)

    Kunz, Matthew W.; Mouschovias, Telemachos Ch.

    2009-01-01

    We formulate the problem of the formation and subsequent evolution of fragments (or cores) in magnetically supported, self-gravitating molecular clouds in two spatial dimensions. The six-fluid (neutrals, electrons, molecular and atomic ions, positively charged, negatively charged, and neutral grains) physical system is governed by the radiation, nonideal magnetohydrodynamic equations. The magnetic flux is not assumed to be frozen in any of the charged species. Its evolution is determined by a newly derived generalized Ohm's law, which accounts for the contributions of both elastic and inelastic collisions to ambipolar diffusion and Ohmic dissipation. The species abundances are calculated using an extensive chemical-equilibrium network. Both MRN and uniform grain size distributions are considered. The thermal evolution of the protostellar core and its effect on the dynamics are followed by employing the gray flux-limited diffusion approximation. Realistic temperature-dependent grain opacities are used that account for a variety of grain compositions. We have augmented the publicly available Zeus-MP code to take into consideration all these effects and have modified several of its algorithms to improve convergence, accuracy, and efficiency. Results of magnetic star formation simulations that accurately track the evolution of a protostellar fragment from a density ≅10 3 cm -3 to a density ≅10 15 cm -3 , while rigorously accounting for both nonideal MHD processes and radiative transfer, are presented in a separate paper.

  12. Artificial neural network combined with principal component analysis for resolution of complex pharmaceutical formulations.

    Science.gov (United States)

    Ioele, Giuseppina; De Luca, Michele; Dinç, Erdal; Oliverio, Filomena; Ragno, Gaetano

    2011-01-01

    A chemometric approach based on the combined use of the principal component analysis (PCA) and artificial neural network (ANN) was developed for the multicomponent determination of caffeine (CAF), mepyramine (MEP), phenylpropanolamine (PPA) and pheniramine (PNA) in their pharmaceutical preparations without any chemical separation. The predictive ability of the ANN method was compared with the classical linear regression method Partial Least Squares 2 (PLS2). The UV spectral data between 220 and 300 nm of a training set of sixteen quaternary mixtures were processed by PCA to reduce the dimensions of input data and eliminate the noise coming from instrumentation. Several spectral ranges and different numbers of principal components (PCs) were tested to find the PCA-ANN and PLS2 models reaching the best determination results. A two layer ANN, using the first four PCs, was used with log-sigmoid transfer function in first hidden layer and linear transfer function in output layer. Standard error of prediction (SEP) was adopted to assess the predictive accuracy of the models when subjected to external validation. PCA-ANN showed better prediction ability in the determination of PPA and PNA in synthetic samples with added excipients and pharmaceutical formulations. Since both components are characterized by low absorptivity, the better performance of PCA-ANN was ascribed to the ability in considering all non-linear information from noise or interfering excipients.

  13. Pharmacokinetic comparison of different flubendazole formulations in pigs: A further contribution to its development as a macrofilaricide molecule

    Directory of Open Access Journals (Sweden)

    L. Ceballos

    2015-12-01

    Full Text Available Despite the well established ivermectin activity against microfilaria, the success of human filariasis control programmes requires the use of a macrofilaricide compound. Different in vivo trials suggest that flubendazole (FLBZ, an anthelmintic benzimidazole compound, is a highly efficacious and potent macrofilaricide. However, since serious injection site reactions were reported in humans after the subcutaneous FLBZ administration, the search for alternative pharmaceutical strategies to improve the systemic availability of FLBZ has acquired special relevance both in human and veterinary medicine. The goal of the current experimental work was to compare the pharmacokinetic plasma behavior of FLBZ, and its metabolites, formulated as either an aqueous hydroxypropyl- β -cyclodextrin-solution (HPBCD, an aqueous carboxymethyl cellulose-suspension (CMC or a Tween 80-based formulation, in pigs. Animals were allocated into three groups and treated (2 mg/kg with FLBZ formulated as either a HPBCD-solution (oral, CMC-suspension (oral or Tween 80-based formulation (subcutaneous. Only trace amounts of FLBZ parent drug and its reduced metabolite were measured after administration of the different FLBZ formulations in pigs. The hydrolyzed FLBZ (H-FLBZ metabolite was the main analyte recovered in the bloodstream in pigs treated with the three experimental FLBZ formulations. The oral administration of the HPBCD-solution accounted for significantly higher (P < 0.05 Cmax and AUC (23.1 ± 4.4 μg h/mL values for the main metabolite (H-FLBZ, compared with those observed for the oral CMC-suspension (AUC = 3.5 ± 1.0 μg h/mL and injectable Tween 80-based formulation (AUC: 7.5 ± 1.7 μg h/mL. The oral administration of the HPBCD-solution significantly improved the poor absorption pattern (indirectly assessed as the H-FLBZ plasma concentrations observed after the oral administration of the FLBZ-CMC suspension or the subcutaneous injection of the

  14. Develop a solution for protecting and securing enterprise networks from malicious attacks

    Science.gov (United States)

    Kamuru, Harshitha; Nijim, Mais

    2014-05-01

    as they are configured on a per-zone basis. Depending on the type of screen being configured, there may be additional settings beyond simply blocking the traffic. Attack prevention is also a native function of any firewall. Juniper Firewall handles traffic on a per-flow basis. We can use flows or sessions as a way to determine whether traffic attempting to traverse the firewall is legitimate. We control the state-checking components resident in Juniper Firewall by configuring "flow" settings. These settings allow you to configure state checking for various conditions on the device. You can use flow settings to protect against TCP hijacking, and to generally ensure that the fire-wall is performing full state processing when desired. We take a case study of attack on a network and perform study of the detection of the malicious packets on a Net screen Firewall. A new solution for securing enterprise networks will be developed here.

  15. Optimal Control of Scalar Conservation Laws Using Linear/Quadratic Programming: Application to Transportation Networks

    KAUST Repository

    Li, Yanning

    2014-03-01

    This article presents a new optimal control framework for transportation networks in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi (H-J) equation and the commonly used triangular fundamental diagram, we pose the problem of controlling the state of the system on a network link, in a finite horizon, as a Linear Program (LP). We then show that this framework can be extended to an arbitrary transportation network, resulting in an LP or a Quadratic Program. Unlike many previously investigated transportation network control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e., discontinuities in the state of the system). As it leverages the intrinsic properties of the H-J equation used to model the state of the system, it does not require any approximation, unlike classical methods that are based on discretizations of the model. The computational efficiency of the method is illustrated on a transportation network. © 2014 IEEE.

  16. Optimal Control of Scalar Conservation Laws Using Linear/Quadratic Programming: Application to Transportation Networks

    KAUST Repository

    Li, Yanning; Canepa, Edward S.; Claudel, Christian

    2014-01-01

    This article presents a new optimal control framework for transportation networks in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi (H-J) equation and the commonly used triangular fundamental diagram, we pose the problem of controlling the state of the system on a network link, in a finite horizon, as a Linear Program (LP). We then show that this framework can be extended to an arbitrary transportation network, resulting in an LP or a Quadratic Program. Unlike many previously investigated transportation network control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e., discontinuities in the state of the system). As it leverages the intrinsic properties of the H-J equation used to model the state of the system, it does not require any approximation, unlike classical methods that are based on discretizations of the model. The computational efficiency of the method is illustrated on a transportation network. © 2014 IEEE.

  17. Renormgroup symmetry for solution functionals

    International Nuclear Information System (INIS)

    Shirkov, D.V.; Kovalev, V.F.

    2004-01-01

    The paper contains generalization of the renormgroup algorithm for boundary value problems of mathematical physics and related concept of the renormgroup symmetry, formulated earlier by the authors with reference to models based on differential equations. These algorithm and symmetry are formulated now for models with nonlocal (integral) equations. We discuss in detail and illustrate by examples the applications of the generalized algorithm to models with nonlocal terms which appear as linear functionals of the solution. (author)

  18. A Comprehensive Review of Boundary Integral Formulations of Acoustic Scattering Problems

    Directory of Open Access Journals (Sweden)

    S.I. Zaman

    2000-12-01

    Full Text Available This is a review presenting an overview of the developments in boundary integral formulations of the acoustic scattering problems. Generally, the problem is formulated in one of two ways viz. Green’s representation formula, and the Layer-theoretic formulation utilizing either a simple-layer or a double-layer potential. The review presents and expounds the major contributions in this area over the last four decades. The need for a robust and improved formulation of the exterior scattering problem (Neumann or Dirichlet arose due to the fact that the classical formulation failed to yield a unique solution at (acoustic wave-numbers which correspond to eigenvalues (eigenfrequencies of the corresponding interior scattering problem. Moreover, this correlation becomes more pronounced as the wave-numbers become larger i.e. as the (acoustic frequency increases. The robust integral formulations which are discussed here yield Fredholms integral equations of the second kind which are more amenable to computation than the first kind. However, the integral equation involves a hypersingular kernel which creates ill-conditioning in the final matrix representation. This is circumvented by a regularisation technique. An extensive useful list of references is also presented here for researchers in this area.

  19. Optimal sensor placement for leak location in water distribution networks using genetic algorithms.

    Science.gov (United States)

    Casillas, Myrna V; Puig, Vicenç; Garza-Castañón, Luis E; Rosich, Albert

    2013-11-04

    This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs). The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs) are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach.

  20. Optimal Sensor Placement for Leak Location in Water Distribution Networks Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Luis E. Garza-Castañón

    2013-11-01

    Full Text Available This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs. The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach.

  1. Optimal Sensor Placement for Leak Location in Water Distribution Networks Using Genetic Algorithms

    Science.gov (United States)

    Casillas, Myrna V.; Puig, Vicenç; Garza-Castañón, Luis E.; Rosich, Albert

    2013-01-01

    This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs). The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs) are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach. PMID:24193099

  2. Road networks as collections of minimum cost paths

    Science.gov (United States)

    Wegner, Jan Dirk; Montoya-Zegarra, Javier Alexander; Schindler, Konrad

    2015-10-01

    We present a probabilistic representation of network structures in images. Our target application is the extraction of urban roads from aerial images. Roads appear as thin, elongated, partially curved structures forming a loopy graph, and this complex layout requires a prior that goes beyond standard smoothness and co-occurrence assumptions. In the proposed model the network is represented as a union of 1D paths connecting distant (super-)pixels. A large set of putative candidate paths is constructed in such a way that they include the true network as much as possible, by searching for minimum cost paths in the foreground (road) likelihood. Selecting the optimal subset of candidate paths is posed as MAP inference in a higher-order conditional random field. Each path forms a higher-order clique with a type of clique potential, which attracts the member nodes of cliques with high cumulative road evidence to the foreground label. That formulation induces a robust PN -Potts model, for which a global MAP solution can be found efficiently with graph cuts. Experiments with two road data sets show that the proposed model significantly improves per-pixel accuracies as well as the overall topological network quality with respect to several baselines.

  3. Size-exclusion partitioning of neutral solutes in crosslinked polymer networks: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Pérez, Manuel; Maroto-Centeno, José Alberto [Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700 Linares, Jaén (Spain); Adroher-Benítez, Irene [Grupo de Física de Fluidos y Biocoloides, Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)

    2014-05-28

    In this work, the size-exclusion partitioning of neutral solutes in crosslinked polymer networks has been studied through Monte Carlo simulations. Two models that provide user-friendly expressions to predict the partition coefficient have been tested over a wide range of volume fractions: Ogston's model (especially devised for fibrous media) and the pore model. The effects of crosslinking and bond stiffness have also been analyzed. Our results suggest that the fiber model can acceptably account for size-exclusion effects in crosslinked gels. Its predictions are good for large solutes if the fiber diameter is assumed to be the effective monomer diameter. For solutes sizes comparable to the monomer dimensions, a smaller fiber diameter must be used. Regarding the pore model, the partition coefficient is poorly predicted when the pore diameter is estimated as the distance between adjacent crosslinker molecules. On the other hand, our results prove that the pore sizes obtained from the pore model by fitting partitioning data of swollen gels are overestimated.

  4. Size-exclusion partitioning of neutral solutes in crosslinked polymer networks: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Quesada-Pérez, Manuel; Maroto-Centeno, José Alberto; Adroher-Benítez, Irene

    2014-01-01

    In this work, the size-exclusion partitioning of neutral solutes in crosslinked polymer networks has been studied through Monte Carlo simulations. Two models that provide user-friendly expressions to predict the partition coefficient have been tested over a wide range of volume fractions: Ogston's model (especially devised for fibrous media) and the pore model. The effects of crosslinking and bond stiffness have also been analyzed. Our results suggest that the fiber model can acceptably account for size-exclusion effects in crosslinked gels. Its predictions are good for large solutes if the fiber diameter is assumed to be the effective monomer diameter. For solutes sizes comparable to the monomer dimensions, a smaller fiber diameter must be used. Regarding the pore model, the partition coefficient is poorly predicted when the pore diameter is estimated as the distance between adjacent crosslinker molecules. On the other hand, our results prove that the pore sizes obtained from the pore model by fitting partitioning data of swollen gels are overestimated

  5. Formulation, evaluation and comparison of the herbal shampoo with the commercial shampoos

    OpenAIRE

    Khaloud Al Badi; Shah A. Khan

    2014-01-01

    The study aimed to formulate a pure herbal shampoo and to evaluate and compare its physicochemical properties with the marketed synthetic and herbal shampoos. The herbal shampoo was formulated by adding the extracts of Acacia concinna, Sapindus mukorossi, Phyllanthus emblica, Ziziphus spina-christi and Citrus aurantifolia in different proportions to a 10% aqueous gelatin solution. Small amount of methyl paraben was added as a preservative and pH was adjusted with citric acid. Several tests su...

  6. Neural Network Molecule: a Solution of the Inverse Biometry Problem through Software Support of Quantum Superposition on Outputs of the Network of Artificial Neurons

    Directory of Open Access Journals (Sweden)

    Vladimir I. Volchikhin

    2017-12-01

    Full Text Available Introduction: The aim of the study is to accelerate the solution of neural network biometrics inverse problem on an ordinary desktop computer. Materials and Methods: To speed up the calculations, the artificial neural network is introduced into the dynamic mode of “jittering” of the states of all 256 output bits. At the same time, too many output states of the neural network are logarithmically folded by transitioning to the Hamming distance space between the code of the image “Own” and the codes of the images “Alien”. From the database of images of “Alien” 2.5 % of the most similar images are selected. In the next generation, 97.5 % of the discarded images are restored with GOST R 52633.2-2010 procedures by crossing parent images and obtaining descendant images from them. Results: Over a period of about 10 minutes, 60 generations of directed search for the solution of the inverse problem can be realized that allows inversing matrices of neural network functionals of dimension 416 inputs to 256 outputs with restoration of up to 97 % information on unknown biometric parameters of the image “Own”. Discussion and Conclusions: Supporting for 10 minutes of computer time the 256 qubit quantum superposition allows on a conventional computer to bypass the actual infinity of analyzed states in 5050 (50 to 50 times more than the same computer could process realizing the usual calculations. The increase in the length of the supported quantum superposition by 40 qubits is equivalent to increasing the processor clock speed by about a billion times. It is for this reason that it is more profitable to increase the number of quantum superpositions supported by the software emulator in comparison with the creation of a more powerful processor.

  7. A multi-period distribution network design model under demand uncertainty

    Science.gov (United States)

    Tabrizi, Babak H.; Razmi, Jafar

    2013-05-01

    Supply chain management is taken into account as an inseparable component in satisfying customers' requirements. This paper deals with the distribution network design (DND) problem which is a critical issue in achieving supply chain accomplishments. A capable DND can guarantee the success of the entire network performance. However, there are many factors that can cause fluctuations in input data determining market treatment, with respect to short-term planning, on the one hand. On the other hand, network performance may be threatened by the changes that take place within practicing periods, with respect to long-term planning. Thus, in order to bring both kinds of changes under control, we considered a new multi-period, multi-commodity, multi-source DND problem in circumstances where the network encounters uncertain demands. The fuzzy logic is applied here as an efficient tool for controlling the potential customers' demand risk. The defuzzifying framework leads the practitioners and decision-makers to interact with the solution procedure continuously. The fuzzy model is then validated by a sensitivity analysis test, and a typical problem is solved in order to illustrate the implementation steps. Finally, the formulation is tested by some different-sized problems to show its total performance.

  8. Modelling Blended Solutions for Higher Education: Teaching, Learning, and Assessment in the Network and Mobile Technology Era

    Science.gov (United States)

    Bocconi, Stefania; Trentin, Guglielmo

    2014-01-01

    The article addresses the role of network and mobile technologies in enhancing blended solutions with a view to (a) enriching the teaching/learning processes, (b) exploiting the opportunities it offers for their observability, and hence for their monitoring and formative/summative assessment. It will also discuss how such potential can only be…

  9. Effects of Formulated Glyphosate and Adjuvant Tank Mixes on Atomization from Aerial Application Flat Fan Nozzles

    Science.gov (United States)

    2012-01-01

    Bradley K. Fritz,1 W. Clint Hoffmann,1 and W. E. Bagley2 Effects of Formulated Glyphosate and Adjuvant Tank Mixes on Atomization from Aerial...Application Flat Fan Nozzles REFERENCE: Fritz, Bradley K., Hoffmann, W. Clint, and Bagley, W. E., “Effects of Formulated Glyphosate and Adjuvant Tank Mixes on...factors. Twelve spray-solution treatments were evaluated, ten of which contained a formulated glyphosate product and nine of these con- tained an

  10. Energy-aware virtual network embedding in flexi-grid networks.

    Science.gov (United States)

    Lin, Rongping; Luo, Shan; Wang, Haoran; Wang, Sheng

    2017-11-27

    Network virtualization technology has been proposed to allow multiple heterogeneous virtual networks (VNs) to coexist on a shared substrate network, which increases the utilization of the substrate network. Efficiently mapping VNs on the substrate network is a major challenge on account of the VN embedding (VNE) problem. Meanwhile, energy efficiency has been widely considered in the network design in terms of operation expenses and the ecological awareness. In this paper, we aim to solve the energy-aware VNE problem in flexi-grid optical networks. We provide an integer linear programming (ILP) formulation to minimize the electricity cost of each arriving VN request. We also propose a polynomial-time heuristic algorithm where virtual links are embedded sequentially to keep a reasonable acceptance ratio and maintain a low electricity cost. Numerical results show that the heuristic algorithm performs closely to the ILP for a small size network, and we also demonstrate its applicability to larger networks.

  11. Model checking optimal finite-horizon control for probabilistic gene regulatory networks.

    Science.gov (United States)

    Wei, Ou; Guo, Zonghao; Niu, Yun; Liao, Wenyuan

    2017-12-14

    Probabilistic Boolean networks (PBNs) have been proposed for analyzing external control in gene regulatory networks with incorporation of uncertainty. A context-sensitive PBN with perturbation (CS-PBNp), extending a PBN with context-sensitivity to reflect the inherent biological stability and random perturbations to express the impact of external stimuli, is considered to be more suitable for modeling small biological systems intervened by conditions from the outside. In this paper, we apply probabilistic model checking, a formal verification technique, to optimal control for a CS-PBNp that minimizes the expected cost over a finite control horizon. We first describe a procedure of modeling a CS-PBNp using the language provided by a widely used probabilistic model checker PRISM. We then analyze the reward-based temporal properties and the computation in probabilistic model checking; based on the analysis, we provide a method to formulate the optimal control problem as minimum reachability reward properties. Furthermore, we incorporate control and state cost information into the PRISM code of a CS-PBNp such that automated model checking a minimum reachability reward property on the code gives the solution to the optimal control problem. We conduct experiments on two examples, an apoptosis network and a WNT5A network. Preliminary experiment results show the feasibility and effectiveness of our approach. The approach based on probabilistic model checking for optimal control avoids explicit computation of large-size state transition relations associated with PBNs. It enables a natural depiction of the dynamics of gene regulatory networks, and provides a canonical form to formulate optimal control problems using temporal properties that can be automated solved by leveraging the analysis power of underlying model checking engines. This work will be helpful for further utilization of the advances in formal verification techniques in system biology.

  12. Teleradiology network system using the web medical image conference system with a new information security solution

    Science.gov (United States)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kusumoto, Masahiro; Kaneko, Masahiro; Kakinuma, Ryutaru; Moriyama, Noriyuki

    2012-02-01

    We have developed the teleradiology network system with a new information security solution that provided with web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. We are studying the secret sharing scheme and the tokenization as a method safely to store or to transmit the confidential medical information used with the teleradiology network system. The confidential medical information is exposed to the risk of the damage and intercept. Secret sharing scheme is a method of dividing the confidential medical information into two or more tallies. Individual medical information cannot be decoded by using one tally at all. Our method has the function of automatic backup. With automatic backup technology, if there is a failure in a single tally, there is redundant data already copied to other tally. Confidential information is preserved at an individual Data Center connected through internet because individual medical information cannot be decoded by using one tally at all. Therefore, even if one of the Data Centers is struck and information is damaged due to the large area disaster like the great earthquake of Japan, the confidential medical information can be decoded by using the tallies preserved at the data center to which it escapes damage. Moreover, by using tokenization, the history information of dividing the confidential medical information into two or more tallies is prevented from lying scattered by replacing the history information with another character string (Make it to powerlessness). As a result, information is available only to those who have rightful access it and the sender of a message and the message itself are verified at the receiving point. We propose a new information transmission method and a new information storage method with a new information security solution.

  13. Determination of methadone hydrochloride in a maintenance dosage formulation.

    Science.gov (United States)

    Hoffmann, T J; Thompson, R D

    1975-07-01

    A colorimetric method for direct quantitative assay of methadone hydrochloride in liquid oral dosage forms is presented. The procedure involves the formation of a dye complex with bromothymol blue buffer solution. The resultant complex is extracted with benzene and measured spectrophotometrically. Duplicate tests on the formulation showed 99.2% of the labeled amount of methadone.

  14. Exact and heuristic solutions to the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann; Archetti, Claudia; Madsen, Oli B.G.

    -pallet, which can be loaded in 3 stacks in a standard 40 foot container. Different exact and heuristic solution approaches to the DTSPMS have been implemented and tested. The exact approaches are based on different mathematical formulations of the problem which are solved using branch-and-cut. One formulation...... instances. The implemented heuristics include tabu search, simulated annealing and large neighbourhood search. Particularly the LNS approach shows promising results. It finds the known optimal solution of smaller instances (15 orders) within 10 seconds in most cases, and in 3 minutes it finds solutions...

  15. Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints

    International Nuclear Information System (INIS)

    Zhang Yunong; Li Zhan

    2009-01-01

    In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventional gradient-based neural networks (GNN), such a ZNN model makes full use of the time-derivative information of time-varying coefficient. The resultant ZNN model is theoretically proved to have global exponential convergence to the time-varying theoretical optimal solution of the investigated time-varying convex quadratic program. Computer-simulation results further substantiate the effectiveness, efficiency and novelty of such ZNN model and method.

  16. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.; Ho, Pin-Han; Wu, Bin; Tapolcai, Janos; Shihada, Basem

    2011-01-01

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure-dependent protection is employed. The paper introduces a novel framework of real-time failure localization in all-optical WDM mesh networks, called monitoring-burst (m-burst), which aims to initiate a graceful compromise between consumed monitoring resources and monitoring delay. Different from any previously reported solution, the proposed m-burst framework has a single monitoring node (MN) which launches optical bursts along a set of pre-defined close-loop routes, called monitoring cycles (m-cycles), to probe the links along the m-cycles. Bursts along different m-cycles are kept non-overlapping through any link of the network. By identifying the lost bursts due to single link failure events only, the MN can unambiguously localize the failed link in at least 3-connected networks. We will justify the feasibility and applicability of the proposed m-burst framework in the scenario of interest. To avoid possible collision among optical bursts launched by the MN, we define the problem of collision-free scheduling and formulate it into an integer linear program (ILP) in order to minimize the monitoring delay. Numerical results demonstrate the effectiveness of the proposed framework and the proposed solution.

  17. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.

    2011-10-10

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure-dependent protection is employed. The paper introduces a novel framework of real-time failure localization in all-optical WDM mesh networks, called monitoring-burst (m-burst), which aims to initiate a graceful compromise between consumed monitoring resources and monitoring delay. Different from any previously reported solution, the proposed m-burst framework has a single monitoring node (MN) which launches optical bursts along a set of pre-defined close-loop routes, called monitoring cycles (m-cycles), to probe the links along the m-cycles. Bursts along different m-cycles are kept non-overlapping through any link of the network. By identifying the lost bursts due to single link failure events only, the MN can unambiguously localize the failed link in at least 3-connected networks. We will justify the feasibility and applicability of the proposed m-burst framework in the scenario of interest. To avoid possible collision among optical bursts launched by the MN, we define the problem of collision-free scheduling and formulate it into an integer linear program (ILP) in order to minimize the monitoring delay. Numerical results demonstrate the effectiveness of the proposed framework and the proposed solution.

  18. Decentralized session initiation protocol solution in ad hoc networks

    Science.gov (United States)

    Han, Lu; Jin, Zhigang; Shu, Yantai; Dong, Linfang

    2006-10-01

    With the fast development of ad hoc networks, SIP has attracted more and more attention in multimedia service. This paper proposes a new architecture to provide SIP service for ad hoc users, although there is no centralized SIP server deployed. In this solution, we provide the SIP service by the introduction of two nodes: Designated SIP Server (DS) and its Backup Server (BDS). The nodes of ad hoc network designate DS and BDS when they join the session nodes set and when some pre-defined events occur. A new sip message type called REGISTRAR is presented so nodes can send others REGISTRAR message to declare they want to be DS. According to the IP information taken in the message, an algorithm works like the election of DR and BDR in OSPF protocol is used to vote DS and BDS SIP servers. Naturally, the DS will be replaced by BDS when the DS is down for predicable or unpredictable reasons. To facilitate this, the DS should register to the BDS and transfer a backup of the SIP users' database. Considering the possibility DS or BDS may abruptly go down, a special policy is given. When there is no DS and BDS, a new election procedure is triggered just like the startup phase. The paper also describes how SIP works normally in the decentralized model as well as the evaluation of its performance. All sessions based on SIP in ad hoc such as DS voting have been tested in the real experiments within a 500m*500m square area where about 30 random nodes are placed.

  19. UV-radiation curing of simultaneous interpenetrating polymer network hydrogels for enhanced heavy metal ion removal

    International Nuclear Information System (INIS)

    Wang, Jingjing; Liu, Fang

    2012-01-01

    Highlights: ► Simultaneous IPN hydrogels were prepared by hybrid photopolymerization of AM and DVE-3. ► The synergistic complexation was found in the adsorption studies. ► The simultaneous IPN hydrogels could be used as fast-responsive and renewable sorbent materials. - Abstract: Simultaneous interpenetrating polymer network (IPN) hydrogels have been prepared by UV-initiated polymerization of a mixture of acrylamide (AM) and triethylene glycol divinyl ether (DVE-3). The consumption of each monomer upon UV-irradiation was monitored in situ by real-time infrared (RTIR) spectroscopy. The acrylamide monomer AM was shown to polymerize faster and more extensively than the vinyl ether monomer DVE-3, which was further consumed upon storage of the sample in the dark, due to the living character of the cationic polymerization. The IPN hydrogels were used to remove heavy metal ions from aqueous solution under the non-competitive condition. The effects of pH values of the feed solution and the DVE-3 content in the formulation on the adsorption capacity were investigated. The results indicated that the adsorption capacity of the IPN hydrogels increased with the pH values and DVE-3 content in the formulation. Furthermore, the synergistic complexation of metal ions with two polymer networks in the IPN was found in the adsorption studies. Adsorption kinetics and regeneration studies suggested that the IPN hydrogels could be used as fast-responsive and renewable sorbent materials in heavy metal removing processes.

  20. New formulation of Hardin-Pope equations for aeroacoustics

    DEFF Research Database (Denmark)

    Ekaterinaris, J.A.

    1999-01-01

    Dynamics, Vol. 6, No. 5-6, 1994, pp. 334-340). This method requires detailed information about the unsteady aerodynamic flowfield, which usually is obtained from a computational fluid dynamics solution. A new, conservative formulation of the equations governing acoustic disturbances is presented....... The conservative form of the governing equations is obtained after application of a transformation of variables that produces a set of inhomogeneous equations similar to the conservation-law form of the compressible Euler equations. The source term of these equations depends only on the derivatives...... of the hydrodynamic variables. Explicit time marching is performed. A high-order accurate, upwind-biased numerical scheme is used for numerical solution of the conservative equations. The convective fluxes are evaluated using upwind-biased formulas and flux-vector splitting. Solutions are obtained for the acoustic...

  1. Formulation and in vitro/in vivo evaluation of levodopa transdermal delivery systems.

    Science.gov (United States)

    Lee, Kyung Eun; Choi, Yun Jung; Oh, Byu Ree; Chun, In Koo; Gwak, Hye Sun

    2013-11-18

    This study aims to investigate the feasibility of Levodopa transdermal delivery systems (TDSs). Levodopa TDSs were formulated using various vehicles and permeation enhancers, and in vitro permeation and in vivo pharmacokinetic studies were carried out. In the in vitro study, ester-type vehicles showed relatively high enhancing effects; propylene glycol monocaprylate and propylene glycol monolaurate showed the highest permeation fluxes from both solution and pressure sensitive adhesive (PSA) TDS formulations. Lag time was dramatically shortened with PSA TDS formulations as compared with solution formulations. In the in vivo study, the addition of fatty acids increased blood drug concentrations regardless of the kind or concentration of fatty acid; the AUCinf increased up to 8.7 times as compared with propylene glycol (PG) alone. PSA TDS containing 10% linoleic acid exhibited prolonged Tmax as compared with oral form. Total clearance of L-dopa from PSA TDSs was significantly lower than from oral form (up to 86.8 times). Especially, PSA TDS containing 10% linoleic acid (LOA) revealed 76.2 fold higher AUCinf than oral administration. Based on our results, the L-dopa PSA TDS containing PG with 10% LOA could be used as a good adjuvant therapy for Parkinson's disease patients who experience symptom fluctuation by L-dopa oral administration. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Knowledge-fused differential dependency network models for detecting significant rewiring in biological networks.

    Science.gov (United States)

    Tian, Ye; Zhang, Bai; Hoffman, Eric P; Clarke, Robert; Zhang, Zhen; Shih, Ie-Ming; Xuan, Jianhua; Herrington, David M; Wang, Yue

    2014-07-24

    Modeling biological networks serves as both a major goal and an effective tool of systems biology in studying mechanisms that orchestrate the activities of gene products in cells. Biological networks are context-specific and dynamic in nature. To systematically characterize the selectively activated regulatory components and mechanisms, modeling tools must be able to effectively distinguish significant rewiring from random background fluctuations. While differential networks cannot be constructed by existing knowledge alone, novel incorporation of prior knowledge into data-driven approaches can improve the robustness and biological relevance of network inference. However, the major unresolved roadblocks include: big solution space but a small sample size; highly complex networks; imperfect prior knowledge; missing significance assessment; and heuristic structural parameter learning. To address these challenges, we formulated the inference of differential dependency networks that incorporate both conditional data and prior knowledge as a convex optimization problem, and developed an efficient learning algorithm to jointly infer the conserved biological network and the significant rewiring across different conditions. We used a novel sampling scheme to estimate the expected error rate due to "random" knowledge. Based on that scheme, we developed a strategy that fully exploits the benefit of this data-knowledge integrated approach. We demonstrated and validated the principle and performance of our method using synthetic datasets. We then applied our method to yeast cell line and breast cancer microarray data and obtained biologically plausible results. The open-source R software package and the experimental data are freely available at http://www.cbil.ece.vt.edu/software.htm. Experiments on both synthetic and real data demonstrate the effectiveness of the knowledge-fused differential dependency network in revealing the statistically significant rewiring in biological

  3. Trapping proton transfer intermediates in the disordered hydrogen-bonded network of cryogenic hydrofluoric acid solutions.

    Science.gov (United States)

    Ayotte, Patrick; Plessis, Sylvain; Marchand, Patrick

    2008-08-28

    A molecular-level description of the structural and dynamical aspects that are responsible for the weak acid behaviour of dilute hydrofluoric acid solutions and their unusual increased acidity at near equimolar concentrations continues to elude us. We address this problem by reporting reflection-absorption infrared spectra (RAIRS) of cryogenic HF-H(2)O binary mixtures at various compositions prepared as nanoscopic films using molecular beam techniques. Optical constants for these cryogenic solutions [n(omega) and k(omega)] are obtained by iteratively solving Fresnel equations for stratified media. Modeling of the experimental RAIRS spectra allow for a quantitative interpretation of the complex interplay between multiple reflections, optical interference and absorption effects. The evolution of the strong absorption features in the intermediate 1000-3000 cm(-1) range with increasing HF concentration reveals the presence of various ionic dissociation intermediates that are trapped in the disordered H-bonded network of cryogenic hydrofluoric acid solutions. Our findings are discussed in light of the conventional interpretation of why hydrofluoric acid is a weak acid revealing molecular-level details of the mechanism for HF ionization that may be relevant to analogous elementary processes involved in the ionization of weak acids in aqueous solutions.

  4. Self-similar cosmological solutions with dark energy. I. Formulation and asymptotic analysis

    International Nuclear Information System (INIS)

    Harada, Tomohiro; Maeda, Hideki; Carr, B. J.

    2008-01-01

    Based on the asymptotic analysis of ordinary differential equations, we classify all spherically symmetric self-similar solutions to the Einstein equations which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=(γ-1)μ with 0 1). However, in the latter case there is an additional parameter associated with the weak discontinuity at the sonic point and the solutions are only asymptotically 'quasi-Friedmann', in the sense that they exhibit an angle deficit at large distances. In the 0<γ<2/3 case, there is no sonic point and there exists a one-parameter family of solutions which are genuinely asymptotically Friedmann at large distances. We find eight classes of asymptotic behavior: Friedmann or quasi-Friedmann or quasistatic or constant-velocity at large distances, quasi-Friedmann or positive-mass singular or negative-mass singular at small distances, and quasi-Kantowski-Sachs at intermediate distances. The self-similar asymptotically quasistatic and quasi-Kantowski-Sachs solutions are analytically extendible and of great cosmological interest. We also investigate their conformal diagrams. The results of the present analysis are utilized in an accompanying paper to obtain and physically interpret numerical solutions

  5. Optimal routing of hazardous substances in time-varying, stochastic transportation networks

    International Nuclear Information System (INIS)

    Woods, A.L.; Miller-Hooks, E.; Mahmassani, H.S.

    1998-07-01

    This report is concerned with the selection of routes in a network along which to transport hazardous substances, taking into consideration several key factors pertaining to the cost of transport and the risk of population exposure in the event of an accident. Furthermore, the fact that travel time and the risk measures are not constant over time is explicitly recognized in the routing decisions. Existing approaches typically assume static conditions, possibly resulting in inefficient route selection and unnecessary risk exposure. The report described the application of recent advances in network analysis methodologies to the problem of routing hazardous substances. Several specific problem formulations are presented, reflecting different degrees of risk aversion on the part of the decision-maker, as well as different possible operational scenarios. All procedures explicitly consider travel times and travel costs (including risk measures) to be stochastic time-varying quantities. The procedures include both exact algorithms, which may require extensive computational effort in some situations, as well as more efficient heuristics that may not guarantee a Pareto-optimal solution. All procedures are systematically illustrated for an example application using the Texas highway network, for both normal and incident condition scenarios. The application illustrates the trade-offs between the information obtained in the solution and computational efficiency, and highlights the benefits of incorporating these procedures in a decision-support system for hazardous substance shipment routing decisions

  6. Cognitive Dynamic Optical Networks

    DEFF Research Database (Denmark)

    de Miguel, Ignacio; Duran, Ramon J.; Lorenzo, Ruben M.

    2013-01-01

    Cognitive networks are a promising solution for the control of heterogeneous optical networks. We review their fundamentals as well as a number of applications developed in the framework of the EU FP7 CHRON project.......Cognitive networks are a promising solution for the control of heterogeneous optical networks. We review their fundamentals as well as a number of applications developed in the framework of the EU FP7 CHRON project....

  7. Development and Evaluation of Herbal Formulations for Hair Growth

    Directory of Open Access Journals (Sweden)

    Lipi Purwal

    2008-01-01

    Full Text Available Hair formulation of Emblica officinalis (Euphorbiaceae, Bacopa, monnieri (Scrophulariaceae, Trigonella foenumgraecum (Leguminosae, Murraya koenigii (Rutaceae in various concentrations in the form of herbal oil were studied for their hair growth activity. Each drug was tested for their hair growth activity in a concentration range for 1-10% separately. Based on these results mixture of crude drugs Murraya koeniigi, leaf (Rutaceae, Bacopa monnieri, leaf (Scrophulariaceae, Trigonella foenumgraecum (Leguminosae, Murraya koenigii (Rutaceae were prepared in varying concentration in the form of herbal hair oil by three different oils preparation techniques and were tested for hair growth activity. The result revealed that the hair growth activity of each drug was found proportional to the concentration range tested. Similarly higher concentrations of drug in the formulation were found to have higher hair growth activities. But looking towards the formulation viscosity the maximum concentration of combined drug was found to be 30% at their maximum level. The formulation containing 7.5% of each drug used for the study and showed excellent hair growth activity with standard (2% minoxidil ethanolic solution by an enlargement of follicular size and prolongation of the anagen phase. It holds the promise of potent herbal alternative for minoxidil. Excellent results of hair growth were seen in formulation prepared by cloth pouch decoction method of oils preparation technique.

  8. Path Integral Formulation of Anomalous Diffusion Processes

    OpenAIRE

    Friedrich, Rudolf; Eule, Stephan

    2011-01-01

    We present the path integral formulation of a broad class of generalized diffusion processes. Employing the path integral we derive exact expressions for the path probability densities and joint probability distributions for the class of processes under consideration. We show that Continuous Time Random Walks (CTRWs) are included in our framework. A closed expression for the path probability distribution of CTRWs is found in terms of their waiting time distribution as the solution of a Dyson ...

  9. Leveraging percolation theory to single out influential spreaders in networks

    Science.gov (United States)

    Radicchi, Filippo; Castellano, Claudio

    2016-06-01

    Among the consequences of the disordered interaction topology underlying many social, technological, and biological systems, a particularly important one is that some nodes, just because of their position in the network, may have a disproportionate effect on dynamical processes mediated by the complex interaction pattern. For example, the early adoption of a commercial product by an opinion leader in a social network may change its fate or just a few superspreaders may determine the virality of a meme in social media. Despite many recent efforts, the formulation of an accurate method to optimally identify influential nodes in complex network topologies remains an unsolved challenge. Here, we present the exact solution of the problem for the specific, but highly relevant, case of the susceptible-infected-removed (SIR) model for epidemic spreading at criticality. By exploiting the mapping between bond percolation and the static properties of the SIR model, we prove that the recently introduced nonbacktracking centrality is the optimal criterion for the identification of influential spreaders in locally tree-like networks at criticality. By means of simulations on synthetic networks and on a very extensive set of real-world networks, we show that the nonbacktracking centrality is a highly reliable metric to identify top influential spreaders also in generic graphs not embedded in space and for noncritical spreading.

  10. Scalable and practical multi-objective distribution network expansion planning

    NARCIS (Netherlands)

    Luong, N.H.; Grond, M.O.W.; Poutré, La J.A.; Bosman, P.A.N.

    2015-01-01

    We formulate the distribution network expansion planning (DNEP) problem as a multi-objective optimization (MOO) problem with different objectives that distribution network operators (DNOs) would typically like to consider during decision making processes for expanding their networks. Objectives are

  11. Evolution of magnetic field and atmospheric response. I - Three-dimensional formulation by the method of projected characteristics. II - Formulation of proper boundary equations. [stellar magnetohydrodynamics

    Science.gov (United States)

    Nakagawa, Y.

    1981-01-01

    The method described as the method of nearcharacteristics by Nakagawa (1980) is renamed the method of projected characteristics. Making full use of properties of the projected characteristics, a new and simpler formulation is developed. As a result, the formulation for the examination of the general three-dimensional problems is presented. It is noted that since in practice numerical solutions must be obtained, the final formulation is given in the form of difference equations. The possibility of including effects of viscous and ohmic dissipations in the formulation is considered, and the physical interpretation is discussed. A systematic manner is then presented for deriving physically self-consistent, time-dependent boundary equations for MHD initial boundary problems. It is demonstrated that the full use of the compatibility equations (differential equations relating variations at two spatial locations and times) is required in determining the time-dependent boundary conditions. In order to provide a clear physical picture as an example, the evolution of axisymmetric global magnetic field by photospheric differential rotation is considered.

  12. An integer optimization algorithm for robust identification of non-linear gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Chemmangattuvalappil Nishanth

    2012-09-01

    Full Text Available Abstract Background Reverse engineering gene networks and identifying regulatory interactions are integral to understanding cellular decision making processes. Advancement in high throughput experimental techniques has initiated innovative data driven analysis of gene regulatory networks. However, inherent noise associated with biological systems requires numerous experimental replicates for reliable conclusions. Furthermore, evidence of robust algorithms directly exploiting basic biological traits are few. Such algorithms are expected to be efficient in their performance and robust in their prediction. Results We have developed a network identification algorithm to accurately infer both the topology and strength of regulatory interactions from time series gene expression data in the presence of significant experimental noise and non-linear behavior. In this novel formulism, we have addressed data variability in biological systems by integrating network identification with the bootstrap resampling technique, hence predicting robust interactions from limited experimental replicates subjected to noise. Furthermore, we have incorporated non-linearity in gene dynamics using the S-system formulation. The basic network identification formulation exploits the trait of sparsity of biological interactions. Towards that, the identification algorithm is formulated as an integer-programming problem by introducing binary variables for each network component. The objective function is targeted to minimize the network connections subjected to the constraint of maximal agreement between the experimental and predicted gene dynamics. The developed algorithm is validated using both in silico and experimental data-sets. These studies show that the algorithm can accurately predict the topology and connection strength of the in silico networks, as quantified by high precision and recall, and small discrepancy between the actual and predicted kinetic parameters

  13. Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation

    OpenAIRE

    Salinas, Branden A; Sathish, Hasige A; Bishop, Steven M; Harn, Nick; Carpenter, John F; Randolph, Theodore W

    2010-01-01

    Opalescence and high viscosities can pose challenges for high concentration formulation of antibodies. Both phenomena result from protein-protein intermolecular interactions that can be modulated with solution ionic strength. We studied a therapeutic monoclonal antibody that exhibits high viscosity in solutions at low ionic strength (~20 centipoise (cP) at 90 mg/mL and 23°C) and significant opalescence at isotonic ionic strength (approximately 100 nephelometric turbidity units at 90 mg/mL and...

  14. Flow Formulation-based Model for the Curriculum-based Course Timetabling Problem

    DEFF Research Database (Denmark)

    Bagger, Niels-Christian Fink; Kristiansen, Simon; Sørensen, Matias

    2015-01-01

    problem. This decreases the number of integer variables signicantly and improves the performance compared to the basic formulation. It also shows competitiveness with other approaches based on mixed integer programming from the literature and improves the currently best known lower bound on one data...... instance in the benchmark data set from the second international timetabling competition.......In this work we will present a new mixed integer programming formulation for the curriculum-based course timetabling problem. We show that the model contains an underlying network model by dividing the problem into two models and then connecting the two models back into one model using a maximum ow...

  15. Using heuristic algorithms for capacity leasing and task allocation issues in telecommunication networks under fuzzy quality of service constraints

    Science.gov (United States)

    Huseyin Turan, Hasan; Kasap, Nihat; Savran, Huseyin

    2014-03-01

    Nowadays, every firm uses telecommunication networks in different amounts and ways in order to complete their daily operations. In this article, we investigate an optimisation problem that a firm faces when acquiring network capacity from a market in which there exist several network providers offering different pricing and quality of service (QoS) schemes. The QoS level guaranteed by network providers and the minimum quality level of service, which is needed for accomplishing the operations are denoted as fuzzy numbers in order to handle the non-deterministic nature of the telecommunication network environment. Interestingly, the mathematical formulation of the aforementioned problem leads to the special case of a well-known two-dimensional bin packing problem, which is famous for its computational complexity. We propose two different heuristic solution procedures that have the capability of solving the resulting nonlinear mixed integer programming model with fuzzy constraints. In conclusion, the efficiency of each algorithm is tested in several test instances to demonstrate the applicability of the methodology.

  16. Green chemistry volumetric titration kit for pharmaceutical formulations: Econoburette

    Directory of Open Access Journals (Sweden)

    Man Singh

    2009-08-01

    Full Text Available Stopcock SC and Spring Sp models of Econoburette (Calibrated, RTC (NR, Ministry of Small Scale Industries, Government of India, developed for semimicro volumetric titration of pharmaceutical formulations are reported. These are economized and risk free titration where pipette is replaced by an inbuilt pipette and conical flask by inbuilt bulb. A step of pipetting of stock solution by mouth is deleted. It is used to allow solution exposure to user’s body. This risk is removed and even volatile and toxic solutions are titrated with full proof safety. Econoburette minimizes use of materials and time by 90 % and prevent discharge of polluting effluent to environment. Few acid and base samples are titrated and an analysis of experimental expenditure is described in the papers.

  17. A Centrality-Based Security Game for Multi-Hop Networks

    NARCIS (Netherlands)

    Riehl, James Robert; Cao, Ming

    2018-01-01

    We formulate a network security problem as a zero-sum game between an attacker who tries to disrupt a network by disabling one or more nodes, and the nodes of the network who must allocate limited resources in defense of the network. The utility of the zero-sum game can be one of several network

  18. Hamiltonian formulation of systems with balanced loss-gain and exactly solvable models

    Science.gov (United States)

    Ghosh, Pijush K.; Sinha, Debdeep

    2018-01-01

    A Hamiltonian formulation of generic many-body systems with balanced loss and gain is presented. It is shown that a Hamiltonian formulation is possible only if the balancing of loss and gain terms occurs in a pairwise fashion. It is also shown that with the choice of a suitable co-ordinate, the Hamiltonian can always be reformulated in the background of a pseudo-Euclidean metric. If the equations of motion of some of the well-known many-body systems like Calogero models are generalized to include balanced loss and gain, it appears that the same may not be amenable to a Hamiltonian formulation. A few exactly solvable systems with balanced loss and gain, along with a set of integrals of motion are constructed. The examples include a coupled chain of nonlinear oscillators and a many-particle Calogero-type model with four-body inverse square plus two-body pair-wise harmonic interactions. For the case of nonlinear oscillators, stable solution exists even if the loss and gain parameter has unbounded upper range. Further, the range of the parameter for which the stable solutions are obtained is independent of the total number of the oscillators. The set of coupled nonlinear equations are solved exactly for the case when the values of all the constants of motions except the Hamiltonian are equal to zero. Exact, analytical classical solutions are presented for all the examples considered.

  19. Redesign of a supply network by considering stochastic demand

    Directory of Open Access Journals (Sweden)

    Juan Camilo Paz

    2015-09-01

    Full Text Available This paper presents the problem of redesigning a supply network of large scale by considering variability of the demand. The central problematic takes root in determining strategic decisions of closing and adjusting of capacity of some network echelons and the tactical decisions concerning to the distribution channels used for transporting products. We have formulated a deterministic Mixed Integer Linear Programming Model (MILP and a stochastic MILP model (SMILP whose objective functions are the maximization of the EBITDA (Earnings before Interest, Taxes, Depreciation and Amortization. The decisions of Network Design on stochastic model as capacities, number of warehouses in operation, material and product flows between echelons, are determined in a single stage by defining an objective function that penalizes unsatisfied demand and surplus of demand due to demand changes. The solution strategy adopted for the stochastic model is a scheme denominated as Sample Average Approximation (SAA. The model is based on the case of a Colombian company dedicated to production and marketing of foodstuffs and supplies for the bakery industry. The results show that the proposed methodology was a solid reference for decision support regarding to the supply networks redesign by considering the expected economic contribution of products and variability of the demand.

  20. Multilayered complex network datasets for three supply chain network archetypes on an urban road grid.

    Science.gov (United States)

    Viljoen, Nadia M; Joubert, Johan W

    2018-02-01

    This article presents the multilayered complex network formulation for three different supply chain network archetypes on an urban road grid and describes how 500 instances were randomly generated for each archetype. Both the supply chain network layer and the urban road network layer are directed unweighted networks. The shortest path set is calculated for each of the 1 500 experimental instances. The datasets are used to empirically explore the impact that the supply chain's dependence on the transport network has on its vulnerability in Viljoen and Joubert (2017) [1]. The datasets are publicly available on Mendeley (Joubert and Viljoen, 2017) [2].

  1. A Linear Programming Approach to Routing Control in Networks of Constrained Nonlinear Positive Systems with Concave Flow Rates

    Science.gov (United States)

    Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric

    2014-01-01

    We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.

  2. [Effect of concomitant use of dental drug on the properties of recombinant human basic fibroblast growth factor formulation for periodontal disease].

    Science.gov (United States)

    Sato, Yasuhiko; Oba, Takuma; Danjo, Kazumi

    2013-01-01

    We have discussed the essential property for periodontal disease medication using protein, such as recombinant human basic fibroblast growth factor (rhbFGF). In our previous study, the criteria of thickener for the medication, viscosity, flowability etc., were set. The aim of this study was to evaluate the physical and chemical effect of concomitant use of general dental drug or device on thickener properties for the clinical use of viscous rhbFGF formulation. Viscous formulation was prepared with six cellulose derivatives, two types hydroxy propyl cellulose (HPC), three types hydroxy ethyl cellulose (HEC) and methyl cellulose (MC). Antibiotic ointment, local anesthetic, bone graft substitute, agent for gargle and mouthwashes, were chosen as general dental drug and device. These drugs and device were mixed with the viscous formulations and the change of viscosity and flowability, the remaining ratio of rhbFGF were evaluated. When the various thickener solutions were mixed with the liquid drugs, viscosity and flowability did not changed much. However, in the case of MC solution, viscous property declined greatly when MC solution was mixed with cationic surfactant for gargle. The flowabilities of thickener solutions were declined with insoluble bone graft. The stabilities of rhbFGF in thickener solutions were no problem for 24 hours even in the case of mixing with dental drug or device. Our findings suggested that the viscous rhbFGF formulations prepared in this research were not substantially affected by the concomitant use of dental drug or device, especially the formulation with HPC or HEC was useful.

  3. System network planning expansion using mathematical programming, genetic algorithms and tabu search

    International Nuclear Information System (INIS)

    Sadegheih, A.; Drake, P.R.

    2008-01-01

    In this paper, system network planning expansion is formulated for mixed integer programming, a genetic algorithm (GA) and tabu search (TS). Compared with other optimization methods, GAs are suitable for traversing large search spaces, since they can do this relatively rapidly and because the use of mutation diverts the method away from local minima, which will tend to become more common as the search space increases in size. GA's give an excellent trade off between solution quality and computing time and flexibility for taking into account specific constraints in real situations. TS has emerged as a new, highly efficient, search paradigm for finding quality solutions to combinatorial problems. It is characterized by gathering knowledge during the search and subsequently profiting from this knowledge. The attractiveness of the technique comes from its ability to escape local optimality. The cost function of this problem consists of the capital investment cost in discrete form, the cost of transmission losses and the power generation costs. The DC load flow equations for the network are embedded in the constraints of the mathematical model to avoid sub-optimal solutions that can arise if the enforcement of such constraints is done in an indirect way. The solution of the model gives the best line additions and also provides information regarding the optimal generation at each generation point. This method of solution is demonstrated on the expansion of a 10 bus bar system to 18 bus bars. Finally, a steady-state genetic algorithm is employed rather than generational replacement, also uniform crossover is used

  4. Energy-Efficient User Association Strategy for Hyperdense Heterogeneous Networking in the Fifth Generation Systems

    Directory of Open Access Journals (Sweden)

    Lei Li

    2015-01-01

    Full Text Available Redesigning user association strategies to improve energy efficiency (EE has been viewed as one of the promising shifting paradigms for the fifth generation (5G cellular networks. In this paper, we investigate how to optimize users’ association to enhance EE for hyper dense heterogeneous networking in the 5G cellular networks, where the low-power node (LPN much outnumbers the high-power node (HPN. To characterize that densely deployed LPNs would undertake a majority of high-rate services, while HPNs mainly support coverage; the EE metric is defined as average weighted EE of access nodes with the unit of bit per joule. Then, the EE optimization objective function is formulated and proved to be nonconvex. Two mathematical transformation techniques are presented to solve the nonconvex problem. In the first case, the original problem is reformulated as an equivalent problem involving the maximization of a biconcave function. In the second case, it is equivalent to a concave minimization problem. We focus on the solution of the biconcave framework, and, by exploiting the biconcave structure, a novel iterative algorithm based on dual theory is proposed, where a partially optimal solution can be achieved. Simulation results have verified the effectiveness of the proposed algorithm.

  5. Flowshop Scheduling Using a Network Approach | Oladeinde ...

    African Journals Online (AJOL)

    In this paper, a network based formulation of a permutation flow shop problem is presented. Two nuances of flow shop problems with different levels of complexity are solved using different approaches to the linear programming formulation. Key flow shop parameters inclosing makespan of the flow shop problems were ...

  6. Determining Regulatory Networks Governing the Differentiation of Embryonic Stem Cells to Pancreatic Lineage

    Science.gov (United States)

    Banerjee, Ipsita

    2009-03-01

    Knowledge of pathways governing cellular differentiation to specific phenotype will enable generation of desired cell fates by careful alteration of the governing network by adequate manipulation of the cellular environment. With this aim, we have developed a novel method to reconstruct the underlying regulatory architecture of a differentiating cell population from discrete temporal gene expression data. We utilize an inherent feature of biological networks, that of sparsity, in formulating the network reconstruction problem as a bi-level mixed-integer programming problem. The formulation optimizes the network topology at the upper level and the network connectivity strength at the lower level. The method is first validated by in-silico data, before applying it to the complex system of embryonic stem (ES) cell differentiation. This formulation enables efficient identification of the underlying network topology which could accurately predict steps necessary for directing differentiation to subsequent stages. Concurrent experimental verification demonstrated excellent agreement with model prediction.

  7. OUT-OF-SCHOOL EDUCATIONAL INSTITUTIONS NETWORK AS THE PART OF URBAN SUSTEM

    Directory of Open Access Journals (Sweden)

    MERYLOVA I. O.

    2017-02-01

    Full Text Available Summary. Formulation of the problem. Abstract. Formulation of the problem. The solution of urban development problems of an extensive and accessible network of out-of-school educational institutions, the formation of proposals for the placement of out-of-school institutions in the structure of the building and functional and planning features of the organization of territories of out-of-school institutions has systemically character. The system approach involves studying not only the internal functional structure of the territory, buildings and structures, but also the analysis of the connections of out-of-school institutions with all urban buildings, with industrial enterprises and research organizations, with a network of public service institutions and with other educational establishments. Article purpose: to analyze theoretical research in the field of urban planning, which should be taken into account when developing principles and methods for optimizing the network of out-of-school educational institutions. Conclusions. The research found that the systematic approach implies relation of out-of-school educational institutions with all urban environment, as well as with industrial enterprises and research organizations, with a network of public service institutions and, most importantly, with other educational establishments. The formation of a network of out-of-school educational institutions directly depends on the tendency of the development of social-pedagogical programs and the reform of the educational sector as a whole. The main system properties of a network of out-of-school educational institutions were determined. It was found that the cooperation of the resources of out-of-school and general education institutions is one of the effective ways to develop continuing education. In the state programs of educational reform is noted that the cooperation of the resources between the out-of-school institutions and general educational

  8. On the network thermodynamics of mass action chemical reaction networks

    NARCIS (Netherlands)

    Schaft, A.J. van der; Rao, S.; Jayawardhana, B.

    In this paper we elaborate on the mathematical formulation of mass action chemical reaction networks as recently given in van der Schaft, Rao, Jayawardhana (2012). We show how the reference chemical potentials define a specific thermodynamical equilibrium, and we discuss the port-Hamiltonian

  9. Liquid Secondary Waste Grout Formulation and Waste Form Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, B. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle M. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-23

    This report describes the results from liquid secondary waste (LSW) grout formulation and waste form qualification tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate new formulations for preparing a grout waste form with high-sulfate secondary waste simulants and the release of key constituents from these grout monoliths. Specific objectives of the LSW grout formulation and waste form qualification tests described in this report focused on five activities: 1.preparing new formulations for the LSW grout waste form with high-sulfate LSW simulants and solid characterization of the cured LSW grout waste form; 2.conducting the U.S. Environmental Protection Agency (EPA) Method 1313 leach test (EPA 2012) on the grout prepared with the new formulations, which solidify sulfate-rich Hanford Tank Waste Treatment and Immobilization Plant (WTP) off-gas condensate secondary waste simulant, using deionized water (DIW); 3.conducting the EPA Method 1315 leach tests (EPA 2013) on the grout monoliths made with the new dry blend formulations and three LSW simulants (242-A evaporator condensate, Environmental Restoration Disposal Facility (ERDF) leachate, and WTP off-gas condensate) using two leachants, DIW and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water (VZPW); 4.estimating the 99Tc desorption Kd (distribution coefficient) values for 99Tc transport in oxidizing conditions to support the IDF performance assessment (PA); 5.estimating the solubility of 99Tc(IV)-bearing solid phases for 99Tc transport in reducing conditions to support the IDF PA.

  10. On Applicability of Network Coding Technique for 6LoWPAN-based Sensor Networks.

    Science.gov (United States)

    Amanowicz, Marek; Krygier, Jaroslaw

    2018-05-26

    In this paper, the applicability of the network coding technique in 6LoWPAN-based sensor multihop networks is examined. The 6LoWPAN is one of the standards proposed for the Internet of Things architecture. Thus, we can expect the significant growth of traffic in such networks, which can lead to overload and decrease in the sensor network lifetime. The authors propose the inter-session network coding mechanism that can be implemented in resource-limited sensor motes. The solution reduces the overall traffic in the network, and in consequence, the energy consumption is decreased. Used procedures take into account deep header compressions of the native 6LoWPAN packets and the hop-by-hop changes of the header structure. Applied simplifications reduce signaling traffic that is typically occurring in network coding deployments, keeping the solution usefulness for the wireless sensor networks with limited resources. The authors validate the proposed procedures in terms of end-to-end packet delay, packet loss ratio, traffic in the air, total energy consumption, and network lifetime. The solution has been tested in a real wireless sensor network. The results confirm the efficiency of the proposed technique, mostly in delay-tolerant sensor networks.

  11. A topological approach to the existence of solutions for nonlinear differential equations with piecewise constant argument

    International Nuclear Information System (INIS)

    Huang Zhenkun; Wang Xinghua; Xia Yonghui

    2009-01-01

    In this paper, we investigate qualitative behavior of nonlinear differential equations with piecewise constant argument (PCA). A topological approach of Wazewski-type which gives sufficient conditions to guarantee that the graph of at least one solution stays in a given domain is formulated. Moreover, our results are also suitable for a class of general system of discrete equations. By using a regular polyfacial set, we apply our developed topological approach to cellular neural networks (CNNs) with PCA. Some new results are attained to reveal dynamic behavior of CNNs with PCA and discrete-time CNNs. Finally, an illustrative example of CNNs with PCA shows usefulness and effectiveness of our results.

  12. Negative energy solutions and symmetries

    International Nuclear Information System (INIS)

    Sidharth, B.G.

    2011-01-01

    We revisit the negative energy solutions of the Dirac (and Klein–Gordon) equation, which become relevant at very high energies in the context of the Feshbach–Villars formulation, and study several symmetries which follow therefrom. Significant consequences are briefly examined. (author)

  13. Hub location problems in transportation networks

    DEFF Research Database (Denmark)

    Gelareh, Shahin; Nickel, Stefan

    2011-01-01

    In this paper we propose a 4-index formulation for the uncapacitated multiple allocation hub location problem tailored for urban transport and liner shipping network design. This formulation is very tight and most of the tractable instances for MIP solvers are optimally solvable at the root node....... also introduce fixed cost values for Australian Post (AP) dataset....

  14. First field trial of Virtual Network Operator oriented network on demand (NoD) service provisioning over software defined multi-vendor OTN networks

    Science.gov (United States)

    Li, Yajie; Zhao, Yongli; Zhang, Jie; Yu, Xiaosong; Chen, Haoran; Zhu, Ruijie; Zhou, Quanwei; Yu, Chenbei; Cui, Rui

    2017-01-01

    A Virtual Network Operator (VNO) is a provider and reseller of network services from other telecommunications suppliers. These network providers are categorized as virtual because they do not own the underlying telecommunication infrastructure. In terms of business operation, VNO can provide customers with personalized services by leasing network infrastructure from traditional network providers. The unique business modes of VNO lead to the emergence of network on demand (NoD) services. The conventional network provisioning involves a series of manual operation and configuration, which leads to high cost in time. Considering the advantages of Software Defined Networking (SDN), this paper proposes a novel NoD service provisioning solution to satisfy the private network need of VNOs. The solution is first verified in the real software defined multi-domain optical networks with multi-vendor OTN equipment. With the proposed solution, NoD service can be deployed via online web portals in near-real time. It reinvents the customer experience and redefines how network services are delivered to customers via an online self-service portal. Ultimately, this means a customer will be able to simply go online, click a few buttons and have new services almost instantaneously.

  15. Ocular disposition of the hemiglutarate ester prodrug of ∆⁹-Tetrahydrocannabinol from various ophthalmic formulations.

    Science.gov (United States)

    Hingorani, Tushar; Adelli, Goutham R; Punyamurthula, Nagendra; Gul, Waseem; Elsohly, Mahmoud A; Repka, Michael A; Majumdar, Soumyajit

    2013-08-01

    The overall goal of this project is to enhance ocular delivery of ∆(9)-Tetrahydrocannabinol (THC) through the topical route. Solubility, stability and in vitro transcorneal permeability of the relatively hydrophilic hemiglutarate ester derivative, THC-HG, was studied in the presence of surfactants. The solutions were characterized with respect to micelle size, zeta potential and solution viscosity. In vivo studies were carried out in New Zealand albino rabbits. A previously reported promising THC-HG ion-pair formulation was also studied in vivo. Aqueous solubility and stability and in vitro transcorneal permeability of THC-HG was enhanced significantly in the presence of surfactants. THC levels in the ocular tissues (except cornea) were found to be below detection limits from mineral oil, surfactant or emulsion based formulations containing THC. In contrast, micellar and ion pair based THC-HG formulations produced significantly higher total THC concentrations in the anterior ocular chamber. In this study, although delivery of THC to the anterior chamber ocular tissues could be significantly increased through the prodrug and formulation approaches tested, further studies are needed to increase penetration to the back-of-the eye.

  16. Outage Analysis and Optimization of SWIPT in Network-Coded Two-Way Relay Networks

    Directory of Open Access Journals (Sweden)

    Ruihong Jiang

    2017-01-01

    Full Text Available This paper investigates the outage performance of simultaneous wireless information and power transfer (SWIPT in network-coded two-way relay systems, where a relay first harvests energy from the signals transmitted by two sources and then uses the harvested energy to forward the received information to the two sources. We consider two transmission protocols, power splitting two-way relay (PS-TWR and time switching two-way relay (TS-TWR protocols. We present two explicit expressions for the system outage probability of the two protocols and further derive approximate expressions for them in high and low SNR cases. To explore the system performance limits, two optimization problems are formulated to minimize the system outage probability. Since the problems are nonconvex and have no known solution methods, a genetic algorithm- (GA- based algorithm is designed. Numerical and simulation results validate our theoretical analysis. It is shown that, by jointly optimizing the time assignment and SWIPT receiver parameters, a great performance gain can be achieved for both PS-TWR and TS-TWR. Moreover, the optimized PS-TWR always outperforms the optimized TS-TWR in terms of outage performance. Additionally, the effects of parameters including relay location and transmit powers are also discussed, which provide some insights for the SWIPT-enabled two-way relay networks.

  17. On the use of harmony search algorithm in the training of wavelet neural networks

    Science.gov (United States)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2015-10-01

    Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.

  18. CPAC: Energy-Efficient Data Collection through Adaptive Selection of Compression Algorithms for Sensor Networks

    Science.gov (United States)

    Lee, HyungJune; Kim, HyunSeok; Chang, Ik Joon

    2014-01-01

    We propose a technique to optimize the energy efficiency of data collection in sensor networks by exploiting a selective data compression. To achieve such an aim, we need to make optimal decisions regarding two aspects: (1) which sensor nodes should execute compression; and (2) which compression algorithm should be used by the selected sensor nodes. We formulate this problem into binary integer programs, which provide an energy-optimal solution under the given latency constraint. Our simulation results show that the optimization algorithm significantly reduces the overall network-wide energy consumption for data collection. In the environment having a stationary sink from stationary sensor nodes, the optimized data collection shows 47% energy savings compared to the state-of-the-art collection protocol (CTP). More importantly, we demonstrate that our optimized data collection provides the best performance in an intermittent network under high interference. In such networks, we found that the selective compression for frequent packet retransmissions saves up to 55% energy compared to the best known protocol. PMID:24721763

  19. Quantum Monte Carlo formulation of volume polarization in dielectric continuum theory

    NARCIS (Netherlands)

    Amovilli, Claudio; Filippi, Claudia; Floris, Franca Maria

    2008-01-01

    We present a novel formulation based on quantum Monte Carlo techniques for the treatment of volume polarization due to quantum mechanical penetration of the solute charge density in the solvent domain. The method allows to accurately solve Poisson’s equation of the solvation model coupled with the

  20. Evolution of a Network of Vortex Loops in He-II: Exact Solution of the Rate Equation

    International Nuclear Information System (INIS)

    Nemirovskii, Sergey K.

    2006-01-01

    The evolution of a network of vortex loops in He-II due to the fusion and breakdown of vortex loops is studied. We perform investigation on the base of the ''rate equation'' for the distribution function n(l) of number of loops of length l. By use of the special ansatz we have found the exact powerlike solution of the rate equation in a stationary case. That solution is the famous equilibrium distribution n(l)∝l -5/2 obtained earlier from thermodynamic arguments. Our result, however, is not equilibrium; it describes the state with two mutual fluxes of the length (or energy) in l space. Analyzing this solution we drew several results on the structure and dynamics of the vortex tangle in the superfluid turbulent helium. In particular, we obtained that the mean radius of the curvature is of the order of interline space and that the decay of the vortex tangle obeys the Vinen equation. We also evaluated the full rate of reconnection

  1. Evolution of a network of vortex loops in He-II: exact solution of the rate equation.

    Science.gov (United States)

    Nemirovskii, Sergey K

    2006-01-13

    The evolution of a network of vortex loops in He-II due to the fusion and breakdown of vortex loops is studied. We perform investigation on the base of the "rate equation" for the distribution function n(l) of number of loops of length l. By use of the special ansatz we have found the exact power-like solution of the rate equation in a stationary case. That solution is the famous equilibrium distribution n(l) proportional l(-5/2) obtained earlier from thermodynamic arguments. Our result, however, is not equilibrium; it describes the state with two mutual fluxes of the length (or energy) in l space. Analyzing this solution we drew several results on the structure and dynamics of the vortex tangle in the superfluid turbulent helium. In particular, we obtained that the mean radius of the curvature is of the order of interline space and that the decay of the vortex tangle obeys the Vinen equation. We also evaluated the full rate of reconnection.

  2. Formulation, Characterization and Pulmonary Deposition of Nebulized Celecoxib Encapsulated Nanostructured Lipid Carriers

    Science.gov (United States)

    Patlolla, Ram R.; Chougule, Mahavir; Patel, Apurva R.; Jackson, Tanise; Tata, Prasad NV; Singh, Mandip

    2010-01-01

    The aim of the current study was to encapsulate celecoxib (Cxb) in the Nanostructured Lipid Carrier (Cxb-NLC) nanoparticles and evaluate the lung disposition of nanoparticles following nebulization in Balb/c mice. Cxb-NLC nanoparticles were prepared with Cxb, Compritol, Miglyol and sodium taurocholate using high-pressure homogenization. Cxb-NLC nanoparticles were characterized for physical and aerosol properties. In-vitro cytotoxicity studies were performed with A549 cells. The lung deposition and pharmacokinetic parameters of Cxb-NLC and Cxb solution (Cxb-Soln) formulations were determined using Inexpose™ system and Pari LC star jet nebulizer. The particle size and entrapment efficiency of Cxb-NLC formulation were 217 ± 20 nm and > 90%, respectively. The Cxb-NLC released the drug in controlled fashion, and in vitro aersolization of Cxb-NLC formulation showed FPF of 75.6 ± 4.6 %, MMAD of 1.6 ±0.13 μm and GSD of 1.2 ± 0.21. Cxb-NLC showed dose and time dependent cytotoxicity against A549 cells. Nebulization of Cxb-NLC demonstrated 4 fold higher AUCt/D in lung tissues compared to Cxb-Soln. The systemic clearance of Cxb-NLC was slower (0.93 L/h) compared to Cxb-Soln (20.03 L/h). Cxb encapsulated NLC were found to be stable and aerodynamic properties were within the respirable limits. Aerosolization of Cxb-NLC improved the Cxb pulmonary bioavailability compared to solution formulation which will potentially lead to better patient compliance with minimal dosing intervals. PMID:20153385

  3. Formulation and stability of an extemporaneous 0.02% chlorhexidine digluconate ophthalmic solution

    Directory of Open Access Journals (Sweden)

    Shu-Chiao Lin

    2015-12-01

    Conclusion: The acetate-buffered 0.02% chlorhexidine digluconate ophthalmic solution stored in light-resistant high-density polyethylene eyedroppers demonstrated excellent stability at 2–25°C for 6 months after being sealed and for 1 month after opening. This finding will enable us to prepare 0.02% chlorhexidine digluconate ophthalmic solutions based on a doctor's prescription.

  4. Economic assessment of smart grids solutions. Analysis carried out by the distribution network operators. Executive Summary 2017. The new paths of electricity

    International Nuclear Information System (INIS)

    2017-05-01

    The economic viability of the Smart grids solutions is a key concern. This was highlighted in a letter from the ministries for the Environment, Sustainable Development and Energy and for the Economy, Industry and Digital Technology, which requested additional information regarding this question with regard to the distribution and transmission networks. Enedis and ADEeF (Association gathering electricity distributors in France), have realized a study on the economic assessment of smart grids solutions, in order to analyze associated costs and benefits. This study is part of a global approach conducted by the Ministries and in collaboration with ADEME and RTE. The functions featured in this study concern the transmission substation and MV network: Operational planning system, Extension of self-healing capabilities of the distribution network, Centralised dynamic voltage control, Self-adaptive reactive power control by MV producers, Active power curtailment of MV production, Use of flexibility for demand constraints. The results presented in this study are coherent with actual investment decisions and foreshadow future action plans

  5. Designing container shipping network under changing demand and freight rates

    Directory of Open Access Journals (Sweden)

    C. Chen

    2010-03-01

    Full Text Available This paper focuses on the optimization of container shipping network and its operations under changing cargo demand and freight rates. The problem is formulated as a mixed integer non-linear programming problem (MINP with an objective of maximizing the average unit ship-slot profit at three stages using analytical methodology. The issues such as empty container repositioning, ship-slot allocating, ship sizing, and container configuration are simultaneously considered based on a series of the matrices of demand for a year. To solve the model, a bi-level genetic algorithm based method is proposed. Finally, numerical experiments are provided to illustrate the validity of the proposed model and algorithms. The obtained results show that the suggested model can provide a more realistic solution to the issues on the basis of changing demand and freight rates and arrange a more effective approach to the optimization of container shipping network structures and operations than does the model based on the average demand.

  6. Multilayered complex network datasets for three supply chain network archetypes on an urban road grid

    Directory of Open Access Journals (Sweden)

    Nadia M. Viljoen

    2018-02-01

    Full Text Available This article presents the multilayered complex network formulation for three different supply chain network archetypes on an urban road grid and describes how 500 instances were randomly generated for each archetype. Both the supply chain network layer and the urban road network layer are directed unweighted networks. The shortest path set is calculated for each of the 1 500 experimental instances. The datasets are used to empirically explore the impact that the supply chain's dependence on the transport network has on its vulnerability in Viljoen and Joubert (2017 [1]. The datasets are publicly available on Mendeley (Joubert and Viljoen, 2017 [2]. Keywords: Multilayered complex networks, Supply chain vulnerability, Urban road networks

  7. ATHENA [Advanced Thermal Hydraulic Energy Network Analyzer] solutions to developmental assessment problems

    International Nuclear Information System (INIS)

    Carlson, K.E.; Ransom, V.H.; Roth, P.A.

    1987-03-01

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code has been developed to perform transient simulation of the thermal hydraulic systems that may be found in fusion reactors, space reactors, and other advanced systems. As an assessment of current capability the code was applied to a number of physical problems, both conceptual and actual experiments. Results indicate that the numerical solution to the basic conservation equations is technically sound, and that generally good agreement can be obtained when modeling relevant hydrodynamic experiments. The assessment also demonstrates basic fusion system modeling capability and verifies compatibility of the code with both CDC and CRAY mainframes. Areas where improvements could be made include constitutive modeling, which describes the interfacial exchange term. 13 refs., 84 figs

  8. Formulating a poorly water soluble drug into an oral solution suitable for paediatric patients; lorazepam as a model drug

    NARCIS (Netherlands)

    A.C. Van Der Vossen (Anna C.); I. Van Der Velde (Iris); O. Smeets (Oscar); Postma, D.J.; Eckhardt, M.; A. Vermes (Andras); B.C.P. Koch (Birgit C. P.); A.G. Vulto (Arnold); L.M. Hanff (Lidwien)

    2017-01-01

    textabstractIntroduction Many drugs are unavailable in suitable oral paediatric dosage forms, and pharmacists often have to compound drugs to provide paediatric patients with an acceptable formulation in the right dose. Liquid formulations offer the advantage of dosing flexibility and ease of

  9. An ayurvedic formulation Sankat Mochan: A potent anthelmintic medicine

    Directory of Open Access Journals (Sweden)

    Khomendra Kumar Sarwa

    2017-01-01

    Full Text Available Aim and Object: Sankat Mochan is an ayurvedic formulation used in the urban and rural area of India. This polyherbal formulation is used for general stomach problems including abdominal cramping and diarrhea. The present investigation evaluated the anthelmintic activity of an aqueous solution of an ayurvedic medicine Sankat Mochan. Materials and Method: Various concentrations (1%, 5%, and 10% of medicine were used for anthelmintic activity on Pheretima posthuma. Piperazine citrate (10 mg/ml was used as a reference standard and distilled water as a control. Result and Conclusion: The result showed that the Sankat Mochan possess anthelmintic activity more potent than that of piperazine citrate. Thus, Sankat Mochan may be used as a potent anthelmintic agent against helminthiasis.

  10. Solution of combinatorial optimization problems by an accelerated hopfield neural network. Kobai kasokugata poppu firudo nyuraru netto ni yoru kumiawase saitekika mondai no kaiho

    Energy Technology Data Exchange (ETDEWEB)

    Ohori, T.; Yamamoto, H.; Setsu, Nenso; Watanabe, K. (Hokkaido Inst. of Technology, Hokkaido (Japan))

    1994-04-20

    The accelerated approximate solution of combinatorial optimization problems by symmetry integrating hopfield neural network (NN) has been applied to many combinatorial problems such as the traveling salesman problem, the network planning problem, etc. However, the hopfield NN converges to local minimum solutions very slowly. In this paper, a general inclination model composed by introducing an accelerated parameter to the hopfield model is proposed, and it has been shown that the acceleration parameter can make the model converge to the local minima more quickly. Moreover, simulation experiments for random quadratic combinatorial problems with two and twenty-five variables were carried out. The results show that the acceleration of convergence makes the attraction region of the local minimum change and the accuracy of solution worse. If an initial point is selected around the center of unit hyper cube, solutions with high accuracy not affected by the acceleration parameter can be obtained. 9 refs., 8 figs., 3 tabs.

  11. RECOVERY ACT - Robust Optimization for Connectivity and Flows in Dynamic Complex Networks

    Energy Technology Data Exchange (ETDEWEB)

    Balasundaram, Balabhaskar [Oklahoma State Univ., Stillwater, OK (United States); Butenko, Sergiy [Texas A & M Univ., College Station, TX (United States); Boginski, Vladimir [Univ. of Florida, Gainesville, FL (United States); Uryasev, Stan [Univ. of Florida, Gainesville, FL (United States)

    2013-12-25

    The goal of this project was to study robust connectivity and flow patterns of complex multi-scale systems modeled as networks. Networks provide effective ways to study global, system level properties, as well as local, multi-scale interactions at a component level. Numerous applications from power systems, telecommunication, transportation, biology, social science, and other areas have benefited from novel network-based models and their analysis. Modeling and optimization techniques that employ appropriate measures of risk for identifying robust clusters and resilient network designs in networks subject to uncertain failures were investigated in this collaborative multi-university project. In many practical situations one has to deal with uncertainties associated with possible failures of network components, thereby affecting the overall efficiency and performance of the system (e.g., every node/connection has a probability of partial or complete failure). Some extreme examples include power grid component failures, airline hub failures due to weather, or freeway closures due to emergencies. These are also situations in which people, materials, or other resources need to be managed efficiently. Important practical examples include rerouting flow through power grids, adjusting flight plans, and identifying routes for emergency services and supplies, in the event network elements fail unexpectedly. Solutions that are robust under uncertainty, in addition to being economically efficient, are needed. This project has led to the development of novel models and methodologies that can tackle the optimization problems arising in such situations. A number of new concepts, which have not been previously applied in this setting, were investigated in the framework of the project. The results can potentially help decision-makers to better control and identify robust or risk-averse decisions in such situations. Formulations and optimal solutions of the considered problems need

  12. A new LP formulation of the admission control problem modelled as an MDP under average reward criterion

    Science.gov (United States)

    Pietrabissa, Antonio

    2011-12-01

    The admission control problem can be modelled as a Markov decision process (MDP) under the average cost criterion and formulated as a linear programming (LP) problem. The LP formulation is attractive in the present and future communication networks, which support an increasing number of classes of service, since it can be used to explicitly control class-level requirements, such as class blocking probabilities. On the other hand, the LP formulation suffers from scalability problems as the number C of classes increases. This article proposes a new LP formulation, which, even if it does not introduce any approximation, is much more scalable: the problem size reduction with respect to the standard LP formulation is O((C + 1)2/2 C ). Theoretical and numerical simulation results prove the effectiveness of the proposed approach.

  13. A note on the uniqueness of 2D elastostatic problems formulated by different types of potential functions

    Science.gov (United States)

    Guerrero, José Luis Morales; Vidal, Manuel Cánovas; Nicolás, José Andrés Moreno; López, Francisco Alhama

    2018-05-01

    New additional conditions required for the uniqueness of the 2D elastostatic problems formulated in terms of potential functions for the derived Papkovich-Neuber representations, are studied. Two cases are considered, each of them formulated by the scalar potential function plus one of the rectangular non-zero components of the vector potential function. For these formulations, in addition to the original (physical) boundary conditions, two new additional conditions are required. In addition, for the complete Papkovich-Neuber formulation, expressed by the scalar potential plus two components of the vector potential, the additional conditions established previously for the three-dimensional case in z-convex domain can be applied. To show the usefulness of these new conditions in a numerical scheme two applications are numerically solved by the network method for the three cases of potential formulations.

  14. A New IMS Based Inter-working Solution

    Science.gov (United States)

    Zhu, Zhongwen; Brunner, Richard

    With the evolution of third generation network, more and more multimedia services are developed and deployed. Any new service to be deployed in IMS network is required to inter-work with existing Internet communities or legacy terminal users in order to appreciate the end users, who are the main drivers for the service to succeed. The challenge for Inter-working between IMS (IP Multimedia Subsystem) and non-IMS network is “how to handle recipient’s address”. This is because each network has its own routable address schema. For instance, the address for Google Talk user is xmpp:xyz@google.com, which is un-routable in IMS network. Hereafter a new Inter-working (IW) solution between IMS and non-IMS network is proposed for multimedia services that include Instant Messaging, Chat, and File transfer, etc. It is an end-to-end solution built on IMS infrastructure. The Public Service Identity (PSI) defined in 3GPP standard (3rd Generation Partnership Project) is used to allow terminal clients to allocate this IW service. When sending the SIP (Session Initial Protocol) request out for multimedia services, the terminal includes the recipient’s address in the payload instead of the “Request-URI” header. In the network, the proposed solution provides the mapping rules between different networks in MM-IW (Multimedia IW). The detailed technical description and the corresponding use cases are present. The comparison with other alternatives is made. The benefits of the proposed solution are highlighted.

  15. An efficient algorithm for the generalized Foldy-Lax formulation

    Science.gov (United States)

    Huang, Kai; Li, Peijun; Zhao, Hongkai

    2013-02-01

    Consider the scattering of a time-harmonic plane wave incident on a two-scale heterogeneous medium, which consists of scatterers that are much smaller than the wavelength and extended scatterers that are comparable to the wavelength. In this work we treat those small scatterers as isotropic point scatterers and use a generalized Foldy-Lax formulation to model wave propagation and capture multiple scattering among point scatterers and extended scatterers. Our formulation is given as a coupled system, which combines the original Foldy-Lax formulation for the point scatterers and the regular boundary integral equation for the extended obstacle scatterers. The existence and uniqueness of the solution for the formulation is established in terms of physical parameters such as the scattering coefficient and the separation distances. Computationally, an efficient physically motivated Gauss-Seidel iterative method is proposed to solve the coupled system, where only a linear system of algebraic equations for point scatterers or a boundary integral equation for a single extended obstacle scatterer is required to solve at each step of iteration. The convergence of the iterative method is also characterized in terms of physical parameters. Numerical tests for the far-field patterns of scattered fields arising from uniformly or randomly distributed point scatterers and single or multiple extended obstacle scatterers are presented.

  16. Heuristic for solving capacitor allocation problems in electric energy radial distribution networks

    Directory of Open Access Journals (Sweden)

    Maria A. Biagio

    2012-04-01

    Full Text Available The goal of the capacitor allocation problem in radial distribution networks is to minimize technical losses with consequential positive impacts on economic and environmental areas. The main objective is to define the size and location of the capacitors while considering load variations in a given horizon. The mathematical formulation for this planning problem is given by an integer nonlinear mathematical programming model that demands great computational effort to be solved. With the goal of solving this problem, this paper proposes a methodology that is composed of heuristics and Tabu Search procedures. The methodology presented explores network system characteristics of the network system reactive loads for identifying regions where procedures of local and intensive searches should be performed. A description of the proposed methodology and an analysis of computational results obtained which are based on several test systems including actual systems are presented. The solutions reached are as good as or better than those indicated by well referenced methodologies. The technique proposed is simple in its use and does not require calibrating an excessive amount of parameters, making it an attractive alternative for companies involved in the planning of radial distribution networks.

  17. Designing Camera Networks by Convex Quadratic Programming

    KAUST Repository

    Ghanem, Bernard; Wonka, Peter; Cao, Yuanhao

    2015-01-01

    be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution

  18. Peridynamic Formulation for Coupled Thermoelectric Phenomena

    Directory of Open Access Journals (Sweden)

    Migbar Assefa

    2017-01-01

    Full Text Available Modeling of heat and electrical current flow simultaneously in thermoelectric convertor using classical theories do not consider the influence of defects in the material. This is because traditional methods are developed based on partial differential equations (PDEs and lead to infinite fluxes at the discontinuities. The usual way of solving such PDEs is by using numerical technique, like Finite Element Method (FEM. Although FEM is robust and versatile, it is not suitable to model evolving discontinuities. To avoid such shortcomings, we propose the concept of peridynamic theory to derive the balance of energy and charge equations in the coupled thermoelectric phenomena. Therefore, this paper presents the transport of heat and charge in thermoelectric material in the framework of peridynamic (PD theory. To illustrate the reliability of the PD formulation, numerical examples are presented and results are compared with those from literature, analytical solutions, or finite element solutions.

  19. Community-centred Networks and Networking among Companies, Educational and Cultural Institutions and Research

    DEFF Research Database (Denmark)

    Konnerup, Ulla; Dirckinck-Holmfeld, Lone

    2010-01-01

    This article presents visions for community-centred networks and networking among companies, educational and cultural institutions and research based on blended on- and off-line collaboration and communication. Our point of departure is the general vision of networking between government, industry...... and research as formulated in the Triple Helix Model (Etzkowitz 2008). The article draws on a case study of NoEL, a network on e-learning among business, educational and cultural institutions and research, all in all 21 partners from all around Denmark. Focus is how networks and networking change character......’ in Networked Learning, Wenger et al. 2009; The analysis concerns the participation structure and how the network activities connect local work practices and research, and how technology and online communication contribute to a change from participation in offline and physical network activities into online...

  20. Mathematical formulation and numerical simulation of bird flu infection process within a poultry farm

    Science.gov (United States)

    Putri, Arrival Rince; Nova, Tertia Delia; Watanabe, M.

    2016-02-01

    Bird flu infection processes within a poultry farm are formulated mathematically. A spatial effect is taken into account for the virus concentration with a diffusive term. An infection process is represented in terms of a traveling wave solutions. For a small removal rate, a singular perturbation analysis lead to existence of traveling wave solutions, that correspond to progressive infection in one direction.

  1. A service flow model for the liner shipping network design problem

    DEFF Research Database (Denmark)

    Plum, Christian Edinger Munk; Pisinger, David; Sigurd, Mikkel M.

    2014-01-01

    . The formulation alleviates issues faced by arc flow formulations with regards to handling multiple calls to the same port. A problem which has not been fully dealt with earlier by LSNDP formulations. Multiple calls are handled by introducing service nodes, together with port nodes in a graph representation...... of the network and a penalty for not flowed cargo. The model can be used to design liner shipping networks to utilize a container carrier’s assets efficiently and to investigate possible scenarios of changed market conditions. The model is solved as a Mixed Integer Program. Results are presented for the two...

  2. Thermal processing of EVA encapsulants and effects of formulation additives

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F.J.; Glick, S.H. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    The authors investigated the in-situ processing temperatures and effects of various formulation additives on the formation of ultraviolet (UV) excitable chromophores, in the thermal lamination and curing of ethylene-vinyl acetate (EVA) encapsulants. A programmable, microprocessor-controlled, double-bag vacuum laminator was used to study two commercial as formulated EVA films, A9918P and 15295P, and solution-cast films of Elvaxrm (EVX) impregnated with various curing agents and antioxidants. The results show that the actual measured temperatures of EVA lagged significantly behind the programmed profiles for the heating elements and were affected by the total thermal mass loaded inside the laminator chamber. The antioxidant Naugard P{trademark}, used in the two commercial EVA formulations, greatly enhances the formation of UV-excitable, short chromophores upon curing, whereas other tested antioxidants show little effect. A new curing agent chosen specifically for the EVA formulation modification produces little or no effect on chromophore formation, no bubbling problems in the glass/EVX/glass laminates, and a gel content of {approximately}80% when cured at programmed 155{degrees}C for 4 min. Also demonstrated is the greater discoloring effect with higher concentrations of curing-generated chromophores.

  3. The covariant formulation of f ( T ) gravity

    International Nuclear Information System (INIS)

    Krššák, Martin; Saridakis, Emmanuel N

    2016-01-01

    We show that the well-known problem of frame dependence and violation of local Lorentz invariance in the usual formulation of f ( T ) gravity is a consequence of neglecting the role of spin connection. We re-formulate f ( T ) gravity starting from, instead of the ‘pure tetrad’ teleparallel gravity, the covariant teleparallel gravity, using both the tetrad and the spin connection as dynamical variables, resulting in a fully covariant, consistent, and frame-independent version of f ( T ) gravity, which does not suffer from the notorious problems of the usual, pure tetrad, f ( T ) theory. We present the method to extract solutions for the most physically important cases, such as the Minkowski, the Friedmann–Robertson–Walker (FRW) and the spherically symmetric ones. We show that in covariant f ( T ) gravity we are allowed to use an arbitrary tetrad in an arbitrary coordinate system along with the corresponding spin connection, resulting always in the same physically relevant field equations. (paper)

  4. Numerical performance of the parabolized ADM formulation of general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei

    2008-01-01

    In a recent paper [Vasileios Paschalidis, Phys. Rev. D 78, 024002 (2008).], the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner (ADM) formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a well-posed system which resembles the structure of mixed hyperbolic-second-order parabolic partial differential equations. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation of PADM and studies its accuracy and stability in a series of standard numerical tests. Numerical properties of PADM are compared with those of standard ADM and its hyperbolic Kidder, Scheel, Teukolsky (KST) extension. The PADM scheme is numerically stable, convergent, and second-order accurate. The new formulation has better control of the constraint-violating modes than ADM and KST.

  5. Optimal Coordination of Distance and Directional Overcurrent Relays Considering Different Network Topologies

    Directory of Open Access Journals (Sweden)

    Y. Damchi

    2015-09-01

    Full Text Available Most studies in relay coordination have focused solely on coordination of overcurrent relays while distance relays are used as the main protection of transmission lines. Since, simultaneous coordination of these two types of relays can provide a better protection, in this paper, a new approach is proposed for simultaneous coordination of distance and directional overcurrent relays (D&DOCRs. Also, pursued by most of the previously published studies, the settings of D&DOCRs are usually determined based on a main network topology which may result in mis-coordination of relays when changes occur in the network topology. In the proposed method, in order to have a robust coordination, network topology changes are taken into account in the coordination problem. In the new formulation, coordination constraints for different network topologies are added to those of the main topology. A complex nonlinear optimization problem is derived to find the desirable relay settings. Then, the problem is solved using hybridized genetic algorithm (GA with linear programming (LP method (HGA. The proposed method is evaluated using the IEEE 14-bus test system. According to the results, a feasible and robust solution is obtained for D&DOCRs coordination while all constraints, which are due to different network topologies, are satisfied.

  6. A Poisson equation formulation for pressure calculations in penalty finite element models for viscous incompressible flows

    Science.gov (United States)

    Sohn, J. L.; Heinrich, J. C.

    1990-01-01

    The calculation of pressures when the penalty-function approximation is used in finite-element solutions of laminar incompressible flows is addressed. A Poisson equation for the pressure is formulated that involves third derivatives of the velocity field. The second derivatives appearing in the weak formulation of the Poisson equation are calculated from the C0 velocity approximation using a least-squares method. The present scheme is shown to be efficient, free of spurious oscillations, and accurate. Examples of applications are given and compared with results obtained using mixed formulations.

  7. Networking CD-ROMs: The Decision Maker's Guide to Local Area Network Solutions.

    Science.gov (United States)

    Elshami, Ahmed M.

    In an era when patrons want access to CD-ROM resources but few libraries can afford to buy multiple copies, CD-ROM local area networks (LANs) are emerging as a cost-effective way to provide shared access. To help librarians make informed decisions, this manual offers information on: (1) the basics of LANs, a "local area network primer";…

  8. Parabolized Navier-Stokes solutions of separation and trailing-edge flows

    Science.gov (United States)

    Brown, J. L.

    1983-01-01

    A robust, iterative solution procedure is presented for the parabolized Navier-Stokes or higher order boundary layer equations as applied to subsonic viscous-inviscid interaction flows. The robustness of the present procedure is due, in part, to an improved algorithmic formulation. The present formulation is based on a reinterpretation of stability requirements for this class of algorithms and requires only second order accurate backward or central differences for all streamwise derivatives. Upstream influence is provided for through the algorithmic formulation and iterative sweeps in x. The primary contribution to robustness, however, is the boundary condition treatment, which imposes global constraints to control the convergence path. Discussed are successful calculations of subsonic, strong viscous-inviscid interactions, including separation. These results are consistent with Navier-Stokes solutions and triple deck theory.

  9. Data Quality Control: Challenges, Methods, and Solutions from an Eco-Hydrologic Instrumentation Network

    Science.gov (United States)

    Eiriksson, D.; Jones, A. S.; Horsburgh, J. S.; Cox, C.; Dastrup, D.

    2017-12-01

    Over the past few decades, advances in electronic dataloggers and in situ sensor technology have revolutionized our ability to monitor air, soil, and water to address questions in the environmental sciences. The increased spatial and temporal resolution of in situ data is alluring. However, an often overlooked aspect of these advances are the challenges data managers and technicians face in performing quality control on millions of data points collected every year. While there is general agreement that high quantities of data offer little value unless the data are of high quality, it is commonly understood that despite efforts toward quality assurance, environmental data collection occasionally goes wrong. After identifying erroneous data, data managers and technicians must determine whether to flag, delete, leave unaltered, or retroactively correct suspect data. While individual instrumentation networks often develop their own QA/QC procedures, there is a scarcity of consensus and literature regarding specific solutions and methods for correcting data. This may be because back correction efforts are time consuming, so suspect data are often simply abandoned. Correction techniques are also rarely reported in the literature, likely because corrections are often performed by technicians rather than the researchers who write the scientific papers. Details of correction procedures are often glossed over as a minor component of data collection and processing. To help address this disconnect, we present case studies of quality control challenges, solutions, and lessons learned from a large scale, multi-watershed environmental observatory in Northern Utah that monitors Gradients Along Mountain to Urban Transitions (GAMUT). The GAMUT network consists of over 40 individual climate, water quality, and storm drain monitoring stations that have collected more than 200 million unique data points in four years of operation. In all of our examples, we emphasize that scientists

  10. Combinatorial optimization networks and matroids

    CERN Document Server

    Lawler, Eugene

    2011-01-01

    Perceptively written text examines optimization problems that can be formulated in terms of networks and algebraic structures called matroids. Chapters cover shortest paths, network flows, bipartite matching, nonbipartite matching, matroids and the greedy algorithm, matroid intersections, and the matroid parity problems. A suitable text or reference for courses in combinatorial computing and concrete computational complexity in departments of computer science and mathematics.

  11. Study on mid and long-term strategic plan formulation for newly-constructed NPP

    International Nuclear Information System (INIS)

    Song Lin

    2014-01-01

    Mid and Long-term strategic plan plays a key role for the management of a newly constructed nuclear power company. Among others, process, goals, and risk management, are the primary concerns during plan preparing. The article analyzed these three areas for Fuqing NPP, including the formulating process for the plan, the mid and long-term goal setting of the company, the major risk analysis and countermeasure selection therefore. Through that solutions and suggestions for strategic plan formulation were concluded for newly-constructed NPP. (author)

  12. A Hierarchical Dispatch Structure for Distribution Network Pricing

    OpenAIRE

    Yuan, Zhao; Hesamzadeh, Mohammad Reza

    2015-01-01

    This paper presents a hierarchical dispatch structure for efficient distribution network pricing. The dispatch coordination problem in the context of hierarchical network operators are addressed. We formulate decentralized generation dispatch into a bilevel optimization problem in which main network operator and the connected distribution network operator optimize their costs in two levels. By using Karush-Kuhn-Tucker conditions and Fortuny-Amat McCarl linearization, the bilevel optimization ...

  13. Grid refinement model in lattice Boltzmann method for stream function-vorticity formulations

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Myung Seob [Dept. of Mechanical Engineering, Dongyang Mirae University, Seoul (Korea, Republic of)

    2015-03-15

    In this study, we present a grid refinement model in the lattice Boltzmann method (LBM) for two-dimensional incompressible fluid flow. That is, the model combines the desirable features of the lattice Boltzmann method and stream function-vorticity formulations. In order to obtain an accurate result, very fine grid (or lattice) is required near the solid boundary. Therefore, the grid refinement model is used in the lattice Boltzmann method for stream function-vorticity formulation. This approach is more efficient in that it can obtain the same accurate solution as that in single-block approach even if few lattices are used for computation. In order to validate the grid refinement approach for the stream function-vorticity formulation, the numerical simulations of lid-driven cavity flows were performed and good results were obtained.

  14. Robust and efficient solution procedures for association models

    DEFF Research Database (Denmark)

    Michelsen, Michael Locht

    2006-01-01

    Equations of state that incorporate the Wertheim association expression are more difficult to apply than conventional pressure explicit equations, because the association term is implicit and requires solution for an internal set of composition variables. In this work, we analyze the convergence...... behavior of different solution methods and demonstrate how a simple and efficient, yet globally convergent, procedure for the solution of the equation of state can be formulated....

  15. Combined Helmholtz Integral Equation - Fourier series formulation of acoustical radiation and scattering problems

    CSIR Research Space (South Africa)

    Fedotov, I

    2006-07-01

    Full Text Available The Combined Helmholtz Integral Equation – Fourier series Formulation (CHIEFF) is based on representation of a velocity potential in terms of Fourier series and finding the Fourier coefficients of this expansion. The solution could be substantially...

  16. The Fermi-Pasta-Ulam Model Periodic Solutions

    CERN Document Server

    Arioli, G; Terracini, S

    2003-01-01

    We introduce two novel methods for studying periodic solutions of the FPU beta-model, both numerically and rigorously. One is a variational approach, based on the dual formulation of the problem, and the other involves computer-assisted proofs. These methods are used e.g. to construct a new type of solutions, whose energy is spread among several modes, associated with closely spaced resonances.

  17. Cooperative Content Distribution over Wireless Networks for Energy and Delay Minimization

    KAUST Repository

    Atat, Rachad

    2012-06-01

    Content distribution with mobile-to-mobile cooperation is studied. Data is sent to mobile terminals on a long range link then the terminals exchange the content using an appropriate short range wireless technology. Unicasting and multicasting are investigated, both on the long range and short range links. Energy minimization is formulated as an optimization problem for each scenario, and the optimal solutions are determined in closed form. Moreover, the schemes are applied in public safety vehicular networks, where Long Term Evolution (LTE) network is used for the long range link, while IEEE 802.11 p is considered for inter-vehicle collaboration on the short range links. Finally, relay-based multicasting is applied in high speed trains for energy and delay minimization. Results show that cooperative schemes outperform non-cooperative ones and other previous related work in terms of energy and delay savings. Furthermore, practical implementation aspects of the proposed methods are also discussed.

  18. Hamiltonian formulation of reduced magnetohydrodynamics

    International Nuclear Information System (INIS)

    Morrison, P.J.; Hazeltine, R.D.

    1983-07-01

    Reduced magnetohydrodynamics (RMHD) has become a principal tool for understanding nonlinear processes, including disruptions, in tokamak plasmas. Although analytical studies of RMHD turbulence have been useful, the model's impressive ability to simulate tokamak fluid behavior has been revealed primarily by numerical solution. The present work describes a new analytical approach, not restricted to turbulent regimes, based on Hamiltonian field theory. It is shown that the nonlinear (ideal) RMHD system, in both its high-beta and low-beta versions, can be expressed in Hanmiltonian form. Thus a Poisson bracket, [ , ], is constructed such that each RMHD field quantitity, xi/sub i/, evolves according to xi/sub i/ = [xi/sub i/,H], where H is the total field energy. The new formulation makes RMHD accessible to the methodology of Hamiltonian mechanics; it has lead, in particular, to the recognition of new RMHD invariants and even exact, nonlinear RMHD solutions. A canonical version of the Poisson bracket, which requires the introduction of additional fields, leads to a nonlinear variational principle for time-dependent RMHD

  19. Structure-Function Network Mapping and Its Assessment via Persistent Homology

    Science.gov (United States)

    2017-01-01

    Understanding the relationship between brain structure and function is a fundamental problem in network neuroscience. This work deals with the general method of structure-function mapping at the whole-brain level. We formulate the problem as a topological mapping of structure-function connectivity via matrix function, and find a stable solution by exploiting a regularization procedure to cope with large matrices. We introduce a novel measure of network similarity based on persistent homology for assessing the quality of the network mapping, which enables a detailed comparison of network topological changes across all possible thresholds, rather than just at a single, arbitrary threshold that may not be optimal. We demonstrate that our approach can uncover the direct and indirect structural paths for predicting functional connectivity, and our network similarity measure outperforms other currently available methods. We systematically validate our approach with (1) a comparison of regularized vs. non-regularized procedures, (2) a null model of the degree-preserving random rewired structural matrix, (3) different network types (binary vs. weighted matrices), and (4) different brain parcellation schemes (low vs. high resolutions). Finally, we evaluate the scalability of our method with relatively large matrices (2514x2514) of structural and functional connectivity obtained from 12 healthy human subjects measured non-invasively while at rest. Our results reveal a nonlinear structure-function relationship, suggesting that the resting-state functional connectivity depends on direct structural connections, as well as relatively parsimonious indirect connections via polysynaptic pathways. PMID:28046127

  20. Mobile Virtual Private Networking

    Science.gov (United States)

    Pulkkis, Göran; Grahn, Kaj; Mårtens, Mathias; Mattsson, Jonny

    Mobile Virtual Private Networking (VPN) solutions based on the Internet Security Protocol (IPSec), Transport Layer Security/Secure Socket Layer (SSL/TLS), Secure Shell (SSH), 3G/GPRS cellular networks, Mobile IP, and the presently experimental Host Identity Protocol (HIP) are described, compared and evaluated. Mobile VPN solutions based on HIP are recommended for future networking because of superior processing efficiency and network capacity demand features. Mobile VPN implementation issues associated with the IP protocol versions IPv4 and IPv6 are also evaluated. Mobile VPN implementation experiences are presented and discussed.

  1. Incremental Optimization of Hub and Spoke Network for the Spokes’ Numbers and Flow

    Directory of Open Access Journals (Sweden)

    Yanfeng Wang

    2015-01-01

    Full Text Available Hub and spoke network problem is solved as part of a strategic decision making process which may have a profound effect on the future of enterprises. In view of the existing network structure, as time goes on, the number of spokes and the flow change because of different sources of uncertainty. Hence, the incremental optimization of hub and spoke network problem is considered in this paper, and the policy makers should adopt a series of strategies to cope with the change, such as setting up new hubs, adjusting the capacity level of original hubs, or closing some original hubs. The objective is to minimize the total cost, which includes the setup costs for the new hubs, the closure costs, and the adjustment costs for the original hubs as well as the flow routing costs. Two mixed-integer linear programming formulations are proposed and analyzed for this problem. China Deppon Logistics as an example is performed to present computational analysis, and we analyze the changes in the solutions driven by the number of spokes and the flow. The tests also allow an analysis to consider the effect of variation in parameters on network.

  2. Validation of flexible multibody dynamics beam formulations using benchmark problems

    Energy Technology Data Exchange (ETDEWEB)

    Bauchau, Olivier A., E-mail: obauchau@umd.edu [University of Maryland (United States); Betsch, Peter [Karlsruhe Institute of Technology (Germany); Cardona, Alberto [CIMEC (UNL/Conicet) (Argentina); Gerstmayr, Johannes [Leopold-Franzens Universität Innsbruck (Austria); Jonker, Ben [University of Twente (Netherlands); Masarati, Pierangelo [Politecnico di Milano (Italy); Sonneville, Valentin [Université de Liège (Belgium)

    2016-05-15

    As the need to model flexibility arose in multibody dynamics, the floating frame of reference formulation was developed, but this approach can yield inaccurate results when elastic displacements becomes large. While the use of three-dimensional finite element formulations overcomes this problem, the associated computational cost is overwhelming. Consequently, beam models, which are one-dimensional approximations of three-dimensional elasticity, have become the workhorse of many flexible multibody dynamics codes. Numerous beam formulations have been proposed, such as the geometrically exact beam formulation or the absolute nodal coordinate formulation, to name just two. New solution strategies have been investigated as well, including the intrinsic beam formulation or the DAE approach. This paper provides a systematic comparison of these various approaches, which will be assessed by comparing their predictions for four benchmark problems. The first problem is the Princeton beam experiment, a study of the static large displacement and rotation behavior of a simple cantilevered beam under a gravity tip load. The second problem, the four-bar mechanism, focuses on a flexible mechanism involving beams and revolute joints. The third problem investigates the behavior of a beam bent in its plane of greatest flexural rigidity, resulting in lateral buckling when a critical value of the transverse load is reached. The last problem investigates the dynamic stability of a rotating shaft. The predictions of eight independent codes are compared for these four benchmark problems and are found to be in close agreement with each other and with experimental measurements, when available.

  3. A general real-time formulation for multi-rate mass transfer problems

    Directory of Open Access Journals (Sweden)

    O. Silva

    2009-08-01

    Full Text Available Many flow and transport phenomena, ranging from delayed storage in pumping tests to tailing in river or aquifer tracer breakthrough curves or slow kinetics in reactive transport, display non-equilibrium (NE behavior. These phenomena are usually modeled by non-local in time formulations, such as multi-porosity, multiple processes non equilibrium, continuous time random walk, memory functions, integro-differential equations, fractional derivatives or multi-rate mass transfer (MRMT, among others. We present a MRMT formulation that can be used to represent all these models of non equilibrium. The formulation can be extended to non-linear phenomena. Here, we develop an algorithm for linear mass transfer, which is accurate, computationally inexpensive and easy to implement in existing groundwater or river flow and transport codes. We illustrate this approach by application to published data involving NE groundwater flow and solute transport in rivers and aquifers.

  4. Fast network centrality analysis using GPUs

    Directory of Open Access Journals (Sweden)

    Shi Zhiao

    2011-05-01

    Full Text Available Abstract Background With the exploding volume of data generated by continuously evolving high-throughput technologies, biological network analysis problems are growing larger in scale and craving for more computational power. General Purpose computation on Graphics Processing Units (GPGPU provides a cost-effective technology for the study of large-scale biological networks. Designing algorithms that maximize data parallelism is the key in leveraging the power of GPUs. Results We proposed an efficient data parallel formulation of the All-Pairs Shortest Path problem, which is the key component for shortest path-based centrality computation. A betweenness centrality algorithm built upon this formulation was developed and benchmarked against the most recent GPU-based algorithm. Speedup between 11 to 19% was observed in various simulated scale-free networks. We further designed three algorithms based on this core component to compute closeness centrality, eccentricity centrality and stress centrality. To make all these algorithms available to the research community, we developed a software package gpu-fan (GPU-based Fast Analysis of Networks for CUDA enabled GPUs. Speedup of 10-50× compared with CPU implementations was observed for simulated scale-free networks and real world biological networks. Conclusions gpu-fan provides a significant performance improvement for centrality computation in large-scale networks. Source code is available under the GNU Public License (GPL at http://bioinfo.vanderbilt.edu/gpu-fan/.

  5. Two-dimensional finite element solution for the simultaneous transport of water and solutes through a nonhomogeneous aquifer under transient saturated unsaturated flow conditions

    International Nuclear Information System (INIS)

    Gureghian, A.B.

    1979-01-01

    A mathematical model of ground water transport through an aquifer is presented. The solute of interest is a metal tracer or radioactive material which may undergo decay through a sorbing unconfined aquifer. The subject is developed under the following headings: flow equation, solute equation, boundary conditions, finite element formulation, element formulation, solution scheme (flow equation, solute equation), results and discussions, water movement in a ditch drained aquifer under transient state, water and solute movement in a homogeneous and unsaturated soil, transport of 226 Ra in nonhomogeneous aquifer, tailings pond lined, and tailings pond unlined. It is concluded that this mathematical model may have a wide variety of applications. The uranium milling industry may find it useful to evaluate the hydrogeological suitability of their disposal sites. It may prove suited for the design of clay disposal ponds destined to hold hazardous liquids. It may also provide a means of estimating the long-term impact of radionuclides or other pollutants on the quality of ground water. 31 references, 9 figures, 3 tables

  6. Scaling Laws in Chennai Bus Network

    OpenAIRE

    Chatterjee, Atanu; Ramadurai, Gitakrishnan

    2015-01-01

    In this paper, we study the structural properties of the complex bus network of Chennai. We formulate this extensive network structure by identifying each bus stop as a node, and a bus which stops at any two adjacent bus stops as an edge connecting the nodes. Rigorous statistical analysis of this data shows that the Chennai bus network displays small-world properties and a scale-free degree distribution with the power-law exponent, $\\gamma > 3$.

  7. Formulation of Biocides Increases Antimicrobial Potency and Mitigates the Enrichment of Nonsusceptible Bacteria in Multispecies Biofilms

    Science.gov (United States)

    Forbes, Sarah; Cowley, Nicola; Mistry, Hitesh; Amézquita, Alejandro

    2017-01-01

    ABSTRACT The current investigation aimed to generate data to inform the development of risk assessments of biocide usage. Stabilized domestic drain biofilm microcosms were exposed daily over 6 months to increasing concentrations (0.01% to 1%) of the biocide benzalkonium chloride (BAC) in a simple aqueous solution (BAC-s) or in a complex formulation (BAC-f) representative of a domestic cleaning agent. Biofilms were analyzed by culture, differentiating by bacterial functional group and by BAC or antibiotic susceptibility. Bacterial isolates were identified by 16S rRNA sequencing, and changes in biofilm composition were assessed by high-throughput sequencing. Exposure to BAC-f resulted in significantly larger reductions in levels of viable bacteria than exposure to BAC-s, while bacterial diversity greatly decreased during exposure to both BAC-s and BAC-f, as evidenced by sequencing and viable counts. Increases in the abundance of bacteria exhibiting reduced antibiotic or BAC susceptibility following exposure to BAC at 0.1% were significantly greater for BAC-s than BAC-f. Bacteria with reduced BAC and antibiotic susceptibility were generally suppressed by higher BAC concentrations, and formulation significantly enhanced this effect. Significant decreases in the antimicrobial susceptibility of bacteria isolated from the systems before and after long-term BAC exposure were not detected. In summary, dose-dependent suppression of bacterial viability by BAC was enhanced by formulation. Biocide exposure decreased bacterial diversity and transiently enriched populations of organisms with lower antimicrobial susceptibility, and the effects were subsequently suppressed by exposure to 1% BAC-f, the concentration most closely reflecting deployment in formulated products. IMPORTANCE Assessment of the risks of biocide use has been based mainly on the exposure of axenic cultures of bacteria to biocides in simple aqueous solutions. The current investigation aimed to assess the

  8. Worst-Case Cooperative Jamming for Secure Communications in CIoT Networks.

    Science.gov (United States)

    Li, Zhen; Jing, Tao; Ma, Liran; Huo, Yan; Qian, Jin

    2016-03-07

    The Internet of Things (IoT) is a significant branch of the ongoing advances in the Internet and mobile communications. The use of a large number of IoT devices makes the spectrum scarcity problem even more serious. The usable spectrum resources are almost entirely occupied, and thus, the increasing radio access demands of IoT devices cannot be met. To tackle this problem, the Cognitive Internet of Things (CIoT) has been proposed. In a CIoT network, secondary users, i.e., sensors and actuators, can access the licensed spectrum bands provided by licensed primary users (such as telephones). Security is a major concern in CIoT networks. However, the traditional encryption method at upper layers (such as symmetric cryptography and asymmetric cryptography) may be compromised in CIoT networks, since these types of networks are heterogeneous. In this paper, we address the security issue in spectrum-leasing-based CIoT networks using physical layer methods. Considering that the CIoT networks are cooperative networks, we propose to employ cooperative jamming to achieve secrecy transmission. In the cooperative jamming scheme, a certain secondary user is employed as the helper to harvest energy transmitted by the source and then uses the harvested energy to generate an artificial noise that jams the eavesdropper without interfering with the legitimate receivers. The goal is to minimize the signal to interference plus noise ratio (SINR) at the eavesdropper subject to the quality of service (QoS) constraints of the primary traffic and the secondary traffic. We formulate the considered minimization problem into a two-stage robust optimization problem based on the worst-case Channel State Information of the Eavesdropper. By using semi-definite programming (SDP), the optimal solutions of the transmit covariance matrices can be obtained. Moreover, in order to build an incentive mechanism for the secondary users, we propose an auction framework based on the cooperative jamming scheme

  9. Transport of fluid and solutes in the body I. Formulation of a mathematical model.

    Science.gov (United States)

    Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L

    1999-09-01

    A compartmental model of short-term whole body fluid, protein, and ion distribution and transport is formulated. The model comprises four compartments: a vascular and an interstitial compartment, each with an embedded cellular compartment. The present paper discusses the assumptions on which the model is based and describes the equations that make up the model. Fluid and protein transport parameters from a previously validated model as well as ionic exchange parameters from the literature or from statistical estimation [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1228-H1240, 1999] are used in formulating the model. The dynamic model has the ability to simulate 1) transport across the capillary membrane of fluid, proteins, and small ions and their distribution between the vascular and interstitial compartments; 2) the changes in extracellular osmolarity; 3) the distribution and transport of water and ions associated with each of the cellular compartments; 4) the cellular transmembrane potential; and 5) the changes of volume in the four fluid compartments. The validation and testing of the proposed model against available experimental data are presented in the companion paper.

  10. Network switching strategy for energy conservation in heterogeneous networks.

    Directory of Open Access Journals (Sweden)

    Yujae Song

    Full Text Available In heterogeneous networks (HetNets, the large-scale deployment of small base stations (BSs together with traditional macro BSs is an economical and efficient solution that is employed to address the exponential growth in mobile data traffic. In dense HetNets, network switching, i.e., handovers, plays a critical role in connecting a mobile terminal (MT to the best of all accessible networks. In the existing literature, a handover decision is made using various handover metrics such as the signal-to-noise ratio, data rate, and movement speed. However, there are few studies on handovers that focus on energy efficiency in HetNets. In this paper, we propose a handover strategy that helps to minimize energy consumption at BSs in HetNets without compromising the quality of service (QoS of each MT. The proposed handover strategy aims to capture the effect of the stochastic behavior of handover parameters and the expected energy consumption due to handover execution when making a handover decision. To identify the validity of the proposed handover strategy, we formulate a handover problem as a constrained Markov decision process (CMDP, by which the effects of the stochastic behaviors of handover parameters and consequential handover energy consumption can be accurately reflected when making a handover decision. In the CMDP, the aim is to minimize the energy consumption to service an MT over the lifetime of its connection, and the constraint is to guarantee the QoS requirements of the MT given in terms of the transmission delay and call-dropping probability. We find an optimal policy for the CMDP using a combination of the Lagrangian method and value iteration. Simulation results verify the validity of the proposed handover strategy.

  11. Formulation of Ionic-Liquid Electrolyte To Expand the Voltage Window of Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, Katherine L.; Beidaghi, Majid; Gogotsi, Yury

    2015-03-18

    An effective method to expand the operating potential window (OPW) of electrochemical capacitors based on formulating the ionic-liquid (IL) electrolytes is reported. Using model electrochemical cells based on two identical onion-like carbon (OLC) electrodes and two different IL electrolytes and their mixtures, it was shown that the asymmetric behavior of the electrolyte cation and anion toward the two electrodes limits the OPW of the cell and therefore its energy density. Also, a general solution to this problem is proposed by formulating the IL electrolyte mixtures to balance the capacitance of electrodes in a symmetric supercapacitor.

  12. Integral equation solution for truncated slab structures by using a fringe current formulation

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Toccafondi, A.; Maci, S.

    1999-01-01

    Full-wave solutions of truncated dielectric slab problems are interesting for a variety of engineering applications, in particular patch antennas on finite ground planes. For this application a canonical reference solution is that of a semi-infinite slab illuminated by a line source. Standard int...

  13. modeling and optimization of an electric power distribution network

    African Journals Online (AJOL)

    user

    EDNEPP) was solved by a mixed binary integer programming (MBIP) formulation of the network, where the steady-state operation of the network was modelled with non-linear mathematical expressions. The non-linear terms are linearized, using ...

  14. New nanomicelle curcumin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment.

    Science.gov (United States)

    Li, Mengshuang; Xin, Meng; Guo, Chuanlong; Lin, Guiming; Wu, Xianggen

    2017-11-01

    A stable topical ophthalmic curcumin formulation with high solubility, stability, and efficacy is needed for pharmaceutical use in clinics. The objective of this article was to describe a novel curcumin containing a nanomicelle formulation using a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (PVCL-PVA-PEG) graft copolymer. Nanomicelle curcumin was formulated and optimized and then further evaluated for in vitro cytotoxicity/in vivo ocular irritation, in vitro cellular uptake/in vivo corneal permeation, and in vitro antioxidant activity/in vivo anti-inflammatory efficacy. The solubility, chemical stability, and antioxidant activity were greatly improved after the encapsulation of the PVCL-PVA-PEG nanomicelles. The nanomicelle curcumin ophthalmic solution was simple to prepare and the nanomicelles are stable to the storage conditions, and it had good cellular tolerance. Nanomicelle curcumin also had excellent ocular tolerance in rabbits. The use of nanomicelles significantly improved in vitro cellular uptake and in vivo corneal permeation as well as improved anti-inflammatory efficacy when compared with a free curcumin solution. These findings indicate that nanomicelles could be promising topical delivery systems for the ocular administration of curcumin.

  15. Information network architectures

    Science.gov (United States)

    Murray, N. D.

    1985-01-01

    Graphs, charts, diagrams and outlines of information relative to information network architectures for advanced aerospace missions, such as the Space Station, are presented. Local area information networks are considered a likely technology solution. The principle needs for the network are listed.

  16. ATM security via "Stargate" solution

    OpenAIRE

    Hensley, Katrina; Ludden, Fredrick

    1999-01-01

    Approved for public release, distribution unlimited. In today's world of integrating voice, video and data into a single network, Asynchronous Transfer Mode (ATM) networks have become prevalent in the Department of Defense. The Department of Defense's critical data will have to pass through public networks, which causes concern for security. This study presents an efficient solution aimed at authenticating communications over public ATM networks. The authenticating device, Stargate, utiliz...

  17. A Novel Linear Programming Formulation of Maximum Lifetime Routing Problem in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Cetin, Bilge Kartal; Prasad, Neeli R.; Prasad, Ramjee

    2011-01-01

    In wireless sensor networks, one of the key challenge is to achieve minimum energy consumption in order to maximize network lifetime. In fact, lifetime depends on many parameters: the topology of the sensor network, the data aggregation regime in the network, the channel access schemes, the routing...... protocols, and the energy model for transmission. In this paper, we tackle the routing challenge for maximum lifetime of the sensor network. We introduce a novel linear programming approach to the maximum lifetime routing problem. To the best of our knowledge, this is the first mathematical programming...

  18. Formulation of stiffness equation for a three-dimensional isoparametric element with elastic-plastic material and large deformation

    International Nuclear Information System (INIS)

    Chang, T.Y.; Prachuktam, S.; Reich, M.

    1975-01-01

    The formulation of the stiffness equation for an 8 to 21 node isoparametric element with elastic-plastic material and large deformation is presented. The formulation has been implemented in a nonlinear finite element program for the analysis of three-dimensional continuums. To demonstrate the utility of the formulation, a thick-walled cylinder was analyzed and the results are compared favorably with a known solution. The element type presented can be applied not only to 3-D continuums, but also to plate or shell structures, for which degenerated isoparametric elements may be used

  19. Formulation and development of bicontinuous nanostructured liquid crystalline particles of efavirenz.

    Science.gov (United States)

    Avachat, Amelia M; Parpani, Shreekrishna S

    2015-02-01

    Efavirenz is a lipophilic non-nucleoside reverse transcriptase inhibitor used in the first-line pediatric therapeutic cocktail. Due to its high lipophilicity (logP = 5.4) and poor aqueous solubility (intrinsic water solubility = 8.3 μg/mL) efavirenz has low bioavailability. A 30 mg/mL solution in a medium-chain triglyceride vehicle is the only pediatric formulation available with an oral bioavailability 20% lower than the solid form. The current work was aimed at formulating and characterizing liquid crystal nanoparticles for oral delivery of efavirenz to improve oral bioavailability, provide sustained release, minimize side effects and drug resistance. Formulation of cubosomes was done by two methods; sonication and spray drying. Sonication gave highest entrapment efficiency and least particle size. Further, monoolein was substituted with phytantriol as monoolein gets degraded in the presence of lipase when administered orally with consequent loss of liquid crystalline structure. It was confirmed that there was no difference in particle size, entrapment efficiency and nature of product formed by using monoolein or phytantriol. The best formulation was found to be F9, having particle size 104.19 ± 0.21 nm and entrapment efficiency 91.40 ± 0.10%. In vitro release at the end of 12h was found to be 56.45% and zeta potential to be -23.14 mV which stabilized the cubic phase dispersions. It was further characterized for TEM, small angle X-ray scattering (SAXS), DSC and stability studies. SAXS revealed Pn3m space group, indicating a diamond cubic phase which was further confirmed by TEM. Pharmacokinetics of EFV was studied in male Wistar rats. EFV-loaded cubosome dispersions exhibited 1.93 and 1.62-fold increase in peak plasma concentration (Cmax) and 1.48 and 1.42-fold increase in AUC in comparison to that of a suspension prepared with the contents of EFV capsules suspended in 1.5% carboxymethylcellulose PBS solution (pH 5.0), and an EFV solution in medium

  20. Antimicrobial activity of a new intact skin antisepsis formulation.

    Science.gov (United States)

    Russo, Antonello; Viotti, Pier Luigi; Vitali, Matteo; Clementi, Massimo

    2003-04-01

    Different antiseptic formulations have shown limitations when applied to disinfecting intact skin, notably short-term tolerability and/or efficacy. The purpose of this study was optimizing a new antiseptic formulation specifically targeted at intact skin disinfection and evaluating its in vitro microbicidal activity and in vivo efficacy. The biocidal properties of the antiseptic solution containing 0.5% chloramine-T diluted in 50% isopropyl alcohol (Cloral; Eurospital SpA Trieste, Italy) were measured in vitro versus gram-positive-, gram-negative-, and acid-alcohol-resistant germs and fungi with standard suspension tests in the presence of fetal bovine serum. Virus-inhibiting activity was evaluated in vitro against human cytomegalovirus, herpes simplex virus, poliovirus, hepatitis B virus, and hepatitis C virus. Tests used different methods for the different biologic and in vitro replication capacity of these human viruses. Lastly, Cloral tolerability and skin colonization retardation efficacy after disinfection were studied in vivo. The antiseptic under review showed fast and sustained antimicrobial activity. The efficacy of Cloral against clinically important bacterial and viral pathogens and fungi was highlighted under the experimental conditions described in this article. Finally, microbial regrowth lag and no side effects were documented in vivo after disinfection of 11 volunteers. A stable chloramine-T solution in isopropyl alcohol may be suggested for intact skin antisepsis.

  1. Performance Evaluation of Distributed Mobility Management Protocols: Limitations and Solutions for Future Mobile Networks

    Directory of Open Access Journals (Sweden)

    J. Carmona-Murillo

    2017-01-01

    Full Text Available Mobile Internet data traffic has experienced an exponential growth over the last few years due to the rise of demanding multimedia content and the increasing number of mobile devices. Seamless mobility support at the IP level is envisioned as a key architectural requirement in order to deal with the ever-increasing demand for data and to efficiently utilize a plethora of different wireless access networks. Current efforts from both industry and academia aim to evolve the mobility management protocols towards a more distributed operation to tackle shortcomings of fully centralized approaches. However, distributed solutions face several challenges that can result in lower performance which might affect real-time and multimedia applications. In this paper, we conduct an analytical and simulated evaluation of the main centralized and proposed Distributed Mobility Management (DMM solutions. Our results show that, in some scenarios, when users move at high speed and/or when the mobile node is running long-lasting applications, the DMM approaches incur high signaling cost and long handover latency.

  2. Comments on "A Closed-Form Solution to Tensor Voting: Theory and Applications".

    Science.gov (United States)

    Maggiori, Emmanuel; Lotito, Pablo; Manterola, Hugo Luis; del Fresno, Mariana

    2014-12-01

    We comment on a paper that describes a closed-form formulation to Tensor Voting, a technique to perceptually group clouds of points, usually applied to infer features in images. The authors proved an analytic solution to the technique, a highly relevant contribution considering that the original formulation required numerical integration, a time-consuming task. Their work constitutes the first closed-form expression for the Tensor Voting framework. In this work we first observe that the proposed formulation leads to unexpected results which do not satisfy the constraints for a Tensor Voting output, hence they cannot be interpreted. Given that the closed-form expression is said to be an analytic equivalent solution, unexpected outputs should not be encountered unless there are flaws in the proof. We analyzed the underlying math to find which were the causes of these unexpected results. In this commentary we show that their proposal does not in fact provide a proper analytic solution to Tensor Voting and we indicate the flaws in the proof.

  3. Network Convergence

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Network Convergence. User is interested in application and content - not technical means of distribution. Boundaries between distribution channels fade out. Network convergence leads to seamless application and content solutions.

  4. Formulation, Characterization and Physicochemical Evaluation of Potassium Citrate Effervescent Tablets

    Directory of Open Access Journals (Sweden)

    Fatemeh Fattahi

    2013-02-01

    Full Text Available Purpose: The aim of this study was to design and formulation of potassium citrate effervescent tablet for reduction of calcium oxalate and urate kidney stones in patients suffering from kidney stones. Methods: In this study, 13 formulations were prepared from potassium citrate and effervescent base in different concentration. The flowability of powders and granules was studied. Then effervescent tablets were prepared by direct compression, fusion and wet granulation methods. The prepared tablets were evaluated for hardness, friability, effervescent time, pH, content uniformity. To amend taste of formulations, different flavoring agents were used and then panel test was done by using Latin Square method by 30 volunteers. Results: Formulations obtained from direct compression and fusion methods had good flow but low hardness. Wet granulation improves flowability and other physicochemical properties such as acceptable hardness, effervescence time ≤3 minutes, pH<6, friability < 1%, water percentage < 0.5% and accurate content uniformity. In panel test, both of combination flavors; (orange - lemon and (strawberry - raspberry had good acceptability. Conclusion: The prepared tablets by wet granulation method using PVP solution had more tablet hardness. It is a reproducible process and suitable to produce granules that are compressed into effervescent tablets due to larger agglomerates.

  5. Application of 1 D Finite Element Method in Combination with Laminar Solution Method for Pipe Network Analysis

    Science.gov (United States)

    Dudar, O. I.; Dudar, E. S.

    2017-11-01

    The features of application of the 1D dimensional finite element method (FEM) in combination with the laminar solutions method (LSM) for the calculation of underground ventilating networks are considered. In this case the processes of heat and mass transfer change the properties of a fluid (binary vapour-air mix). Under the action of gravitational forces it leads to such phenomena as natural draft, local circulation, etc. The FEM relations considering the action of gravity, the mass conservation law, the dependence of vapour-air mix properties on the thermodynamic parameters are derived so that it allows one to model the mentioned phenomena. The analogy of the elastic and plastic rod deformation processes to the processes of laminar and turbulent flow in a pipe is described. Owing to this analogy, the guaranteed convergence of the elastic solutions method for the materials of plastic type means the guaranteed convergence of the LSM for any regime of a turbulent flow in a rough pipe. By means of numerical experiments the convergence rate of the FEM - LSM is investigated. This convergence rate appeared much higher than the convergence rate of the Cross - Andriyashev method. Data of other authors on the convergence rate comparison for the finite element method, the Newton method and the method of gradient are provided. These data allow one to conclude that the FEM in combination with the LSM is one of the most effective methods of calculation of hydraulic and ventilating networks. The FEM - LSM has been used for creation of the research application programme package “MineClimate” allowing to calculate the microclimate parameters in the underground ventilating networks.

  6. Delay reduction in lossy intermittent feedback for generalized instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.

    2013-10-01

    In this paper, we study the effect of lossy intermittent feedback loss events on the multicast decoding delay performance of generalized instantly decodable network coding. These feedback loss events create uncertainty at the sender about the reception statues of different receivers and thus uncertainty to accurately determine subsequent instantly decodable coded packets. To solve this problem, we first identify the different possibilities of uncertain packets at the sender and their probabilities. We then derive the expression of the mean decoding delay. We formulate the Generalized Instantly Decodable Network Coding (G-IDNC) minimum decoding delay problem as a maximum weight clique problem. Since finding the optimal solution is NP-hard, we design a variant of the algorithm employed in [1]. Our algorithm is compared to the two blind graph update proposed in [2] through extensive simulations. Results show that our algorithm outperforms the blind approaches in all the situations and achieves a tolerable degradation, against the perfect feedback, for large feedback loss period. © 2013 IEEE.

  7. Delay reduction in lossy intermittent feedback for generalized instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.; Sorour, Sameh; Alouini, Mohamed-Slim; Ai-Naffouri, Tareq Y.

    2013-01-01

    In this paper, we study the effect of lossy intermittent feedback loss events on the multicast decoding delay performance of generalized instantly decodable network coding. These feedback loss events create uncertainty at the sender about the reception statues of different receivers and thus uncertainty to accurately determine subsequent instantly decodable coded packets. To solve this problem, we first identify the different possibilities of uncertain packets at the sender and their probabilities. We then derive the expression of the mean decoding delay. We formulate the Generalized Instantly Decodable Network Coding (G-IDNC) minimum decoding delay problem as a maximum weight clique problem. Since finding the optimal solution is NP-hard, we design a variant of the algorithm employed in [1]. Our algorithm is compared to the two blind graph update proposed in [2] through extensive simulations. Results show that our algorithm outperforms the blind approaches in all the situations and achieves a tolerable degradation, against the perfect feedback, for large feedback loss period. © 2013 IEEE.

  8. Translation invariant time-dependent solutions to massive gravity II

    Science.gov (United States)

    Mourad, J.; Steer, D. A.

    2014-06-01

    This paper is a sequel to JCAP 12 (2013) 004 and is also devoted to translation-invariant solutions of ghost-free massive gravity in its moving frame formulation. Here we consider a mass term which is linear in the vielbein (corresponding to a β3 term in the 4D metric formulation) in addition to the cosmological constant. We determine explicitly the constraints, and from the initial value formulation show that the time-dependent solutions can have singularities at a finite time. Although the constraints give, as in the β1 case, the correct number of degrees of freedom for a massive spin two field, we show that the lapse function can change sign at a finite time causing a singular time evolution. This is very different to the β1 case where time evolution is always well defined. We conclude that the β3 mass term can be pathological and should be treated with care.

  9. Collaborative-Large scale Engineering Assessment Networks for Environmental Research: The Overview

    Science.gov (United States)

    Moo-Young, H.

    2004-05-01

    A networked infrastructure for engineering solutions and policy alternatives is necessary to assess, manage, and protect complex, anthropogenic ally stressed environmental resources effectively. Reductionist and discrete disciplinary methodologies are no longer adequate to evaluate and model complex environmental systems and anthropogenic stresses. While the reductonist approach provides important information regarding individual mechanisms, it cannot provide complete information about how multiple processes are related. Therefore, it is not possible to make accurate predictions about system responses to engineering interventions and the effectiveness of policy options. For example, experts cannot agree on best management strategies for contaminated sediments in riverine and estuarine systems. This is due, in part to the fact that existing models do not accurately capture integrated system dynamics. In addition, infrastructure is not available for investigators to exchange and archive data, to collaborate on new investigative methods, and to synthesize these results to develop engineering solutions and policy alternatives. Our vision for the future is to create a network comprising field facilities and a collaboration of engineers, scientists, policy makers, and community groups. This will allow integration across disciplines, across different temporal and spatial scales, surface and subsurface geographies, and air sheds and watersheds. Benefits include fast response to changes in system health, real-time decision making, and continuous data collection that can be used to anticipate future problems, and to develop sound engineering solutions and management decisions. CLEANER encompasses four general aspects: 1) A Network of environmental field facilities instrumented for the acquisition and analysis of environmental data; 2) A Virtual Repository of Data and information technology for engineering modeling, analysis and visualization of data, i.e. an environmental

  10. Power and delay optimisation in multi-hop wireless networks

    KAUST Repository

    Xia, Li

    2014-02-05

    In this paper, we study the optimisation problem of transmission power and delay in a multi-hop wireless network consisting of multiple nodes. The goal is to determine the optimal policy of transmission rates at various buffer and channel states in order to minimise the power consumption and the queueing delay of the whole network. With the assumptions of interference-free links and independently and identically distributed (i.i.d.) channel states, we formulate this problem using a semi-open Jackson network model for data transmission and a Markov model for channel states transition. We derive a difference equation of the system performance under any two different policies. The necessary and sufficient condition of optimal policy is obtained. We also prove that the system performance is monotonic with respect to (w.r.t.) the transmission rate and the optimal transmission rate can be either maximal or minimal. That is, the ‘bang-bang’ control is an optimal control. This optimality structure greatly reduces the problem complexity. Furthermore, we develop an iterative algorithm to find the optimal solution. Finally, we conduct the simulation experiments to demonstrate the effectiveness of our approach. We hope our work can shed some insights on solving this complicated optimisation problem.

  11. A new evolutionary solution method for dynamic expansion planning of DG-integrated primary distribution networks

    International Nuclear Information System (INIS)

    Ahmadigorji, Masoud; Amjady, Nima

    2014-01-01

    Highlights: • A new dynamic distribution network expansion planning model is presented. • A Binary Enhanced Particle Swarm Optimization (BEPSO) algorithm is proposed. • A Modified Differential Evolution (MDE) algorithm is proposed. • A new bi-level optimization approach composed of BEPSO and MDE is presented. • The effectiveness of the proposed optimization approach is extensively illustrated. - Abstract: Reconstruction in the power system and appearing of new technologies for generation capacity of electrical energy has led to significant innovation in Distribution Network Expansion Planning (DNEP). Distributed Generation (DG) includes the application of small/medium generation units located in power distribution networks and/or near the load centers. Appropriate utilization of DG can affect the various technical and operational indices of the distribution network such as the feeder loading, energy losses and voltage profile. In addition, application of DG in proper size is an essential tool to achieve the DG maximum potential benefits. In this paper, a time-based (dynamic) model for DNEP is proposed to determine the optimal size, location and installation year of DG in distribution system. Also, in this model, the Optimal Power Flow (OPF) is exerted to determine the optimal generation of DGs for every potential solution in order to minimize the investment and operation costs following the load growth in a specified planning period. Besides, the reinforcement requirements of existing distribution feeders are considered, simultaneously. The proposed optimization problem is solved by the combination of evolutionary methods of a new Binary Enhanced Particle Swarm Optimization (BEPSO) and Modified Differential Evolution (MDE) to find the optimal expansion strategy and solve OPF, respectively. The proposed planning approach is applied to two typical primary distribution networks and compared with several other methods. These comparisons illustrate the

  12. Trends in Optical Networks

    Indian Academy of Sciences (India)

    Integrated TDM/IP Service Network: Built using next-generation SDH · Case 2: ISP Backbone over SONET/SDH · Solution for the PoPs · Solution for the Gateway site · Case 3: Ethernet Leased Line Services over Existing Infrastructure · Transport for Mobile Voice/Data Networks · Functions needed for mapping Ethernet to ...

  13. Minoxidil Skin Delivery from Nanoemulsion Formulations Containing Eucalyptol or Oleic Acid: Enhanced Diffusivity and Follicular Targeting

    Science.gov (United States)

    Abd, Eman; Benson, Heather A. E.; Roberts, Michael S.; Grice, Jeffrey E.

    2018-01-01

    In this work, we examined enhanced skin delivery of minoxidil applied in nanoemulsions incorporating skin penetration enhancers. Aliquots of fully characterized oil-in-water nanoemulsions (1 mL), containing minoxidil (2%) and the skin penetration enhancer oleic acid or eucalyptol as oil phases, were applied to full-thickness excised human skin in Franz diffusion cells, while aqueous solutions (1 mL) containing minoxidil were used as controls. Minoxidil in the stratum corneum (SC), hair follicles, deeper skin layers, and flux through the skin over 24 h was determined, as well as minoxidil solubility in the formulations and in the SC. The nanoemulsions significantly enhanced the permeation of minoxidil through skin compared with control solutions. The eucalyptol formulations (NE) promoted minoxidil retention in the SC and deeper skin layers more than did the oleic acid formulations, while the oleic acid formulations (NO) gave the greatest hair follicle penetration. Minoxidil maximum flux enhancement was associated with increases in both minoxidil SC solubility and skin diffusivity in both nanoemulsion systems. The mechanism of enhancement appeared to be driven largely by increased diffusivity, rather than increased partitioning into the stratum corneum, supporting the concept of enhanced fluidity and disruption of stratum corneum lipids. PMID:29370122

  14. Minoxidil Skin Delivery from Nanoemulsion Formulations Containing Eucalyptol or Oleic Acid: Enhanced Diffusivity and Follicular Targeting

    Directory of Open Access Journals (Sweden)

    Eman Abd

    2018-01-01

    Full Text Available In this work, we examined enhanced skin delivery of minoxidil applied in nanoemulsions incorporating skin penetration enhancers. Aliquots of fully characterized oil-in-water nanoemulsions (1 mL, containing minoxidil (2% and the skin penetration enhancer oleic acid or eucalyptol as oil phases, were applied to full-thickness excised human skin in Franz diffusion cells, while aqueous solutions (1 mL containing minoxidil were used as controls. Minoxidil in the stratum corneum (SC, hair follicles, deeper skin layers, and flux through the skin over 24 h was determined, as well as minoxidil solubility in the formulations and in the SC. The nanoemulsions significantly enhanced the permeation of minoxidil through skin compared with control solutions. The eucalyptol formulations (NE promoted minoxidil retention in the SC and deeper skin layers more than did the oleic acid formulations, while the oleic acid formulations (NO gave the greatest hair follicle penetration. Minoxidil maximum flux enhancement was associated with increases in both minoxidil SC solubility and skin diffusivity in both nanoemulsion systems. The mechanism of enhancement appeared to be driven largely by increased diffusivity, rather than increased partitioning into the stratum corneum, supporting the concept of enhanced fluidity and disruption of stratum corneum lipids.

  15. Achieving Network Level Privacy in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sungyoung Lee

    2010-02-01

    Full Text Available Full network level privacy has often been categorized into four sub-categories: Identity, Route, Location and Data privacy. Achieving full network level privacy is a critical and challenging problem due to the constraints imposed by the sensor nodes (e.g., energy, memory and computation power, sensor networks (e.g., mobility and topology and QoS issues (e.g., packet reach-ability and timeliness. In this paper, we proposed two new identity, route and location privacy algorithms and data privacy mechanism that addresses this problem. The proposed solutions provide additional trustworthiness and reliability at modest cost of memory and energy. Also, we proved that our proposed solutions provide protection against various privacy disclosure attacks, such as eavesdropping and hop-by-hop trace back attacks.

  16. Machine Perfusion of Porcine Livers with Oxygen-Carrying Solution Results in Reprogramming of Dynamic Inflammation Networks

    Directory of Open Access Journals (Sweden)

    David Sadowsky

    2016-11-01

    Full Text Available Background: Ex vivo machine perfusion (MP can better preserve organs for transplantation. We have recently reported on the first application of a MP protocol in which liver allografts were fully oxygenated, under dual pressures and subnormothermic conditions, with a new hemoglobin-based oxygen carrier solution specifically developed for ex vivo utilization. In those studies, MP improved organ function post-operatively and reduced inflammation in porcine livers. Herein, we sought to refine our knowledge regarding the impact of MP by defining dynamic networks of inflammation in both tissue and perfusate. Methods: Porcine liver allografts were preserved either with MP (n = 6 or with cold static preservation (CSP; n = 6, then transplanted orthotopically after 9 h of preservation. Fourteen inflammatory mediators were measured in both tissue and perfusate during liver preservation at multiple time points, and analyzed using Dynamic Bayesian Network (DyBN inference to define feedback interactions, as well as Dynamic Network Analysis (DyNA to define the time-dependent development of inflammation networks.Results: Network analyses of tissue and perfusate suggested an NLRP3 inflammasome-regulated response in both treatment groups, driven by the pro-inflammatory cytokine interleukin (IL-18 and the anti-inflammatory mediator IL-1 receptor antagonist (IL-1RA. Both DyBN and DyNA suggested a reduced role of IL-18 and increased role of IL-1RA with MP, along with increased liver damage with CSP. DyNA also suggested divergent progression of responses over the 9 h preservation time, with CSP leading to a stable pattern of IL-18-induced liver damage and MP leading to a resolution of the pro-inflammatory response. These results were consistent with prior clinical, biochemical, and histological findings after liver transplantation. Conclusion: Our results suggest that analysis of dynamic inflammation networks in the setting of liver preservation may identify novel

  17. A generalized transport-velocity formulation for smoothed particle hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chi; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A.

    2017-05-15

    The standard smoothed particle hydrodynamics (SPH) method suffers from tensile instability. In fluid-dynamics simulations this instability leads to particle clumping and void regions when negative pressure occurs. In solid-dynamics simulations, it results in unphysical structure fragmentation. In this work the transport-velocity formulation of Adami et al. (2013) is generalized for providing a solution of this long-standing problem. Other than imposing a global background pressure, a variable background pressure is used to modify the particle transport velocity and eliminate the tensile instability completely. Furthermore, such a modification is localized by defining a shortened smoothing length. The generalized formulation is suitable for fluid and solid materials with and without free surfaces. The results of extensive numerical tests on both fluid and solid dynamics problems indicate that the new method provides a unified approach for multi-physics SPH simulations.

  18. Spectral/hp least-squares finite element formulation for the Navier-Stokes equations

    International Nuclear Information System (INIS)

    Pontaza, J.P.; Reddy, J.N.

    2003-01-01

    We consider the application of least-squares finite element models combined with spectral/hp methods for the numerical solution of viscous flow problems. The paper presents the formulation, validation, and application of a spectral/hp algorithm to the numerical solution of the Navier-Stokes equations governing two- and three-dimensional stationary incompressible and low-speed compressible flows. The Navier-Stokes equations are expressed as an equivalent set of first-order equations by introducing vorticity or velocity gradients as additional independent variables and the least-squares method is used to develop the finite element model. High-order element expansions are used to construct the discrete model. The discrete model thus obtained is linearized by Newton's method, resulting in a linear system of equations with a symmetric positive definite coefficient matrix that is solved in a fully coupled manner by a preconditioned conjugate gradient method. Spectral convergence of the L 2 least-squares functional and L 2 error norms is verified using smooth solutions to the two-dimensional stationary Poisson and incompressible Navier-Stokes equations. Numerical results for flow over a backward-facing step, steady flow past a circular cylinder, three-dimensional lid-driven cavity flow, and compressible buoyant flow inside a square enclosure are presented to demonstrate the predictive capability and robustness of the proposed formulation

  19. Competitive Strategy Formulation Through the Fields and Weapons of the Competition Model: Verification of Applicability and Adaptation for a Network of Gymnastics Academies

    Directory of Open Access Journals (Sweden)

    Renato Zanuto Pereira

    2013-09-01

    Full Text Available Porter and RBV theorists, although clearly expose their concepts of competitive strategy, does not clearly show how to employ them for the competitive business strategy formulation, which complicates the practical application. This motivated the authors of this article searching as other theorists circumvent this difficulty and found the fields and weapons of the competition model (CAC developed by Contador, model that combines and integrates the concepts of Porter and RBV. The CAC, simultaneously analog and symbolic model, qualitative and quantitative, consistently structured and scientifically validated by many studies in companies, primordially serves to understand, explain and increase enterprise competitiveness. Contador epistemologically verified the adherence to reality to the companies of their concepts and constructs. To fill the gap of the aforementioned concepts, Contador proposed a process of formulating competitive strategy. As this process has been tested a few times, the authors decided to conduct the study reported herein, whose objective was verify if this process is sufficient for proposing competitive strategies that would increase the competitiveness of a network of gyms. Through an exploratory qualitative and quantitative research and based on Popperian hypothetical-deductive method, it was found the sufficiency of the process because all business strategies proposals were accepted by the principal owner of the gym and only 4.5% operational strategic actions suggested were not, which led to the acceptance of the hypothesis.

  20. Lukasiewicz-Topos Models of Neural Networks, Cell Genome and Interactome Nonlinear Dynamic Models

    CERN Document Server

    Baianu, I C

    2004-01-01

    A categorical and Lukasiewicz-Topos framework for Lukasiewicz Algebraic Logic models of nonlinear dynamics in complex functional systems such as neural networks, genomes and cell interactomes is proposed. Lukasiewicz Algebraic Logic models of genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous logical models of both genetic activities and neural networks. An algebraic formulation of variable 'next-state functions' is extended to a Lukasiewicz Topos with an n-valued Lukasiewicz Algebraic Logic subobject classifier description that represents non-random and nonlinear network activities as well as their transformations in developmental processes and carcinogenesis.

  1. Wronskians, generalized Wronskians and solutions to the Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Ma Wenxiu

    2004-01-01

    A bridge going from Wronskian solutions to generalized Wronskian solutions of the Korteweg-de Vries (KdV) equation is built. It is then shown that generalized Wronskian solutions can be viewed as Wronskian solutions. The idea is used to generate positons, negatons and their interaction solutions to the KdV equation. Moreover, general positons and negatons are constructed through the Wronskian formulation. A few new exact solutions to the KdV equation are explicitly presented as examples of Wronskian solutions

  2. A study of the enhanced sensitizing capacity of a contact allergen in lipid vesicle formulations

    International Nuclear Information System (INIS)

    Simonsson, Carl; Madsen, Jakob Torp; Graneli, Annette; Andersen, Klaus E.; Karlberg, Ann-Therese; Jonsson, Charlotte A.; Ericson, Marica B.

    2011-01-01

    The growing focus on nanotechnology and the increased use of nano-sized structures, e.g. vesicles, in topical formulations has led to safety concerns. We have investigated the sensitizing capacity and penetration properties of a fluorescent model compound, rhodamine B isothiocyanate (RBITC), when administered in micro- and nano-scale vesicle formulations. The sensitizing capacity of RBITC was studied using the murine local lymph node assay (LLNA) and the skin penetration properties were compared using diffusion cells in combination with two-photon microscopy (TPM). The lymph node cell proliferation, an indicator of a compounds sensitizing capacity, increased when RBITC was applied in lipid vesicles as compared to an ethanol:water (Et:W) solution. Micro-scale vesicles showed a slightly higher cell proliferative response compared to nano-scale vesicles. TPM imaging revealed that the vesicle formulations improved the skin penetration of RBITC compared to the Et:W solution. A strong fluorescent region in the stratum corneum and upper epidermis implies elevated association of RBITC to these skin layers when formulated in lipid vesicles. In conclusion, the results indicate that there could be an elevated risk of sensitization when haptens are delivered in vehicles containing lipid vesicles. Although the size of the vesicles seems to be of minor importance, further studies are needed before a more generalized conclusion can be drawn. It is likely that the enhanced sensitizing capacity is a consequence of the improved penetration and increased formation of hapten-protein complexes in epidermis when RBITC is delivered in ethosomal formulations. - Graphical Abstract: Display Omitted

  3. Interdisciplinary and physics challenges of network theory

    Science.gov (United States)

    Bianconi, Ginestra

    2015-09-01

    Network theory has unveiled the underlying structure of complex systems such as the Internet or the biological networks in the cell. It has identified universal properties of complex networks, and the interplay between their structure and dynamics. After almost twenty years of the field, new challenges lie ahead. These challenges concern the multilayer structure of most of the networks, the formulation of a network geometry and topology, and the development of a quantum theory of networks. Making progress on these aspects of network theory can open new venues to address interdisciplinary and physics challenges including progress on brain dynamics, new insights into quantum technologies, and quantum gravity.

  4. Standardization of Unani polyherbal formulation, Qurse-e-Hummaz: A comprehensive approach

    Directory of Open Access Journals (Sweden)

    Y T Kamal

    2016-01-01

    Full Text Available Background: An increase in the awareness about the advantages of the traditional system of medicines has led to the commercialization of the formulations used for the treatments. Manufacture of these medicines to meet this increasing demand has resulted in a decline in their quality, primarily due to a lack of adequate regulations pertaining to this sector of medicine. Hence, it is necessary to come up with a systematic approach to develop well-designed methodologies for the standardization of polyherbal formulations which are used in traditional systems of medicine. Materials and Methods: Qurs-e-Hummaz formulations were prepared by a qualified “Hakim” (Unani medical practitioner of Faculty of Unani Medicine, Hamdard University, as per the formula and instruction given in National Formulary of Unani Medicine. Results: Various quality control parameters such as organoleptic evaluations (color, odor, taste, and consistency, physicochemical evaluations (loss on drying, disintegration time, moisture content, total ash, acid insoluble ash, water soluble ash, pH of 1 and 10% solution, extractive values, water soluble matter, alcohol-soluble matter, and total phenolic content and thin layer chromatography fingerprint profiling have been carried out in triplicate. The evaluation of contaminants such as heavy metals, aflatoxins, pesticide residues, and microbial contamination has also been carried out in the formulation. Conclusion: Help in maintaining the quality and batch to batch consistency of many important polyherbal formulations.

  5. Gelatin behaviour in dilute aqueous solution : designing a nanoparticulate formulation

    OpenAIRE

    Farrugia, Claude; Groves, Michael J.

    1999-01-01

    Although it has been claimed that nanoparticles can be produced from gelatin, a naturally occurring polypeptide, the commercial conversion of animal collagen to gelatin results in a heterogeneous product with a wide molecular-weight range. This is probably responsible for the widely observed variation in the experimental conditions required for nanoparticle formation. In this study, 0.2% w/v aqueous B225 gelatin solutions were incubated under various conditions of time, temperature, pH an...

  6. INFLUENCES ON AND FROM THE SEGMENTATION OF NETWORKS - HYPOTHESES AND TESTS

    NARCIS (Netherlands)

    BAERVELDT, C; SNIJDERS, T

    This article discusses (a) the influence of network structure on the diffusion of (new) cultural behavior within the network and (b) the influence of external events, especially of social programs, on the diffusion of (new) cultural behavior, and on the network structure. Hypotheses are formulated

  7. The Regularized Fast Hartley Transform Optimal Formulation of Real-Data Fast Fourier Transform for Silicon-Based Implementation in Resource-Constrained Environments

    CERN Document Server

    Jones, Keith

    2010-01-01

    The Regularized Fast Hartley Transform provides the reader with the tools necessary to both understand the proposed new formulation and to implement simple design variations that offer clear implementational advantages, both practical and theoretical, over more conventional complex-data solutions to the problem. The highly-parallel formulation described is shown to lead to scalable and device-independent solutions to the latency-constrained version of the problem which are able to optimize the use of the available silicon resources, and thus to maximize the achievable computational density, th

  8. A System to Produce Precise Global GPS Network Solutions for all Geodetic GPS Stations in the World

    Science.gov (United States)

    Blewitt, G.; Kreemer, C. W.

    2010-12-01

    We have developed an end-to-end system that automatically seeks and routinely retrieves geodetic GPS data from ~5000 stations (currently) around the globe, reduces the data into unique, daily global network solutions, and produces high precision time series for station coordinates ready for time-series analysis, geophysical modeling and interpretation. Moreover, “carrier range” data are produced for all stations, enabling epoch-by-epoch tracking of individual station motions by precise point positioning for investigation of sub-daily processes, such as post-seismic after-slip and ocean tidal loading. Solutions are computed in a global reference frame aligned to ITRF, and optionally in user-specified continental-scale reference frames that can filter out common-mode signals to enhance regional strain anomalies. We describe the elements of this system, the underlying signal processing theory, the products, operational statistics, and scientific applications of our system. The system is fundamentally based on precise point positioning using JPL's GIPSY OASIS II software, coupled with ambiguity resolution and a global network adjustment of ~300,000 parameters per day using our newly developed Ambizap3 software. The system is designed to easily and efficiently absorb stations that deliver data very late, by recycling prior computations in the network adjustment, such that the resulting network solution is identical to starting from scratch. Thus, it becomes possible to trawl continuously the Internet for late arriving data, or for newly discovered data, and seamlessly update all GPS station time series using the new information content. As new stations are added to the processing archive, automated e-mail requests are made to H.-G. Scherneck's server at Chalmers University to compute ocean loading coefficients used by the station motion model. Rinex file headers are parsed and compared with alias tables in order to infer the correct receiver type and antenna

  9. Authentication and Data Security in ITS Telecommunications Solutions

    Directory of Open Access Journals (Sweden)

    Tomas Zelinka

    2014-04-01

    Full Text Available Paper presents telecommunications security issues with dynamically changing networking. Paper also presents performance indicators of authentication as an integral part of the approach to non-public information. Expected level of security depend on relevant ITS services requirements, different solutions require different levels of quality. Data volumes transferred both in private data vehicle on board networks as well as between vehicles and infrastructure or other vehicles significantly and progressively grow. This trend leads to increase of the fatal problems if security of the wide area networks is not relevantly treated. Relevant communications security treatment becomes crucial part of the ITS telecommunications solution because probability of hazards appearances grow if vehicles networks are integrated in the dynamically organized wide area networks. Besides of available "off shelf" security tools solution based on non-public universal identifier with dynamical extension and data selection according to actor role or category is presented including performances indicators for the authentication process.

  10. Life Cycle Network Modeling Framework and Solution Algorithms for Systems Analysis and Optimization of the Water-Energy Nexus

    Directory of Open Access Journals (Sweden)

    Daniel J. Garcia

    2015-07-01

    Full Text Available The water footprint of energy systems must be considered, as future water scarcity has been identified as a major concern. This work presents a general life cycle network modeling and optimization framework for energy-based products and processes using a functional unit of liters of water consumed in the processing pathway. We analyze and optimize the water-energy nexus over the objectives of water footprint minimization, maximization of economic output per liter of water consumed (economic efficiency of water, and maximization of energy output per liter of water consumed (energy efficiency of water. A mixed integer, multiobjective nonlinear fractional programming (MINLFP model is formulated. A mixed integer linear programing (MILP-based branch and refine algorithm that incorporates both the parametric algorithm and nonlinear programming (NLP subproblems is developed to boost solving efficiency. A case study in bioenergy is presented, and the water footprint is considered from biomass cultivation to biofuel production, providing a novel perspective into the consumption of water throughout the value chain. The case study, optimized successively over the three aforementioned objectives, utilizes a variety of candidate biomass feedstocks to meet primary fuel products demand (ethanol, diesel, and gasoline. A minimum water footprint of 55.1 ML/year was found, economic efficiencies of water range from −$1.31/L to $0.76/L, and energy efficiencies of water ranged from 15.32 MJ/L to 27.98 MJ/L. These results show optimization provides avenues for process improvement, as reported values for the energy efficiency of bioethanol range from 0.62 MJ/L to 3.18 MJ/L. Furthermore, the proposed solution approach was shown to be an order of magnitude more efficient than directly solving the original MINLFP problem with general purpose solvers.

  11. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  12. Delay reduction in persistent erasure channels for generalized instantly decodable network coding

    KAUST Repository

    Sorour, Sameh

    2013-06-01

    In this paper, we consider the problem of minimizing the decoding delay of generalized instantly decodable network coding (G-IDNC) in persistent erasure channels (PECs). By persistent erasure channels, we mean erasure channels with memory, which are modeled as a Gilbert-Elliott two-state Markov model with good and bad channel states. In this scenario, the channel erasure dependence, represented by the transition probabilities of this channel model, is an important factor that could be exploited to reduce the decoding delay. We first formulate the G-IDNC minimum decoding delay problem in PECs as a maximum weight clique problem over the G-IDNC graph. Since finding the optimal solution of this formulation is NP-hard, we propose two heuristic algorithms to solve it and compare them using extensive simulations. Simulation results show that each of these heuristics outperforms the other in certain ranges of channel memory levels. They also show that the proposed heuristics significantly outperform both the optimal strict IDNC in the literature and the channel-unaware G-IDNC algorithms. © 2013 IEEE.

  13. Delay reduction in persistent erasure channels for generalized instantly decodable network coding

    KAUST Repository

    Sorour, Sameh; Aboutorab, Neda; Sadeghi, Parastoo; Karim, Mohammad Shahriar; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2013-01-01

    In this paper, we consider the problem of minimizing the decoding delay of generalized instantly decodable network coding (G-IDNC) in persistent erasure channels (PECs). By persistent erasure channels, we mean erasure channels with memory, which are modeled as a Gilbert-Elliott two-state Markov model with good and bad channel states. In this scenario, the channel erasure dependence, represented by the transition probabilities of this channel model, is an important factor that could be exploited to reduce the decoding delay. We first formulate the G-IDNC minimum decoding delay problem in PECs as a maximum weight clique problem over the G-IDNC graph. Since finding the optimal solution of this formulation is NP-hard, we propose two heuristic algorithms to solve it and compare them using extensive simulations. Simulation results show that each of these heuristics outperforms the other in certain ranges of channel memory levels. They also show that the proposed heuristics significantly outperform both the optimal strict IDNC in the literature and the channel-unaware G-IDNC algorithms. © 2013 IEEE.

  14. Development of Novel Formulations to Enhance in Vivo Transdermal Permeation of Tocopherol

    Directory of Open Access Journals (Sweden)

    Nada Aly H.

    2014-09-01

    Full Text Available Tocopherol represents a big challenge for transdermal permeation owing to its extreme hydrophobicity and large molecular mass. The aim of the present study was to develop alpha-tocopherol (T topical formulations and evaluate their ex vivo and in vivo permeation. Franz diffusion cells were used for ex vivo permeation, and neonatal rats were used for in vivo permeation. Seven gel formulations and 21 liquid formulations were investigated for physical stability, viscosity and permeation of T. Analysis of T was performed by a validated HPLC method using a UV detector. The ex vivo permeation from gel and emulsion formulations was very poor (0.001-0.015 %. Highest permeation was observed from monophasic liquid formulations containing dimethyl sulfoxide (DMSO, tocopheryl polyethylene glycols (TPGs, propylene glycol, ethanol and 9.5 % T. The in vivo results demonstrated higher retention in the epidermis compared to subcutaneous tissues, 1377 and 1.13 μg g-1, respectively. Increasing T concentration from 4.8 to 9.5 % did not increase the amount permeated or % of T retained. It was concluded that simple solutions of T in the presence of DMSO and TPGs were more promising systems for effective transdermal permeation compared to gel, emulsion or oleaginous systems.

  15. The solutions of affine and conformal affine Toda field theory

    International Nuclear Information System (INIS)

    Papadopoulos, G.; Spence, B.

    1994-02-01

    We give new formulations of the solutions of the field equations of the affine Toda and conformal affine Toda theories on a cylinder and two-dimensional Minkowski space-time. These solutions are parameterised in terms of initial data and the resulting covariant phase spaces are diffeomorphic to the Hamiltonian ones. We derive the fundamental Poisson brackets of the parameters of the solutions and give the general static solutions for the affine theory. (authors). 10 refs

  16. WDM Core Networks : regenerator placement and green networking

    OpenAIRE

    Youssef , Mayssa

    2011-01-01

    As Operators strive today to optimize their networks, considerations of cost, availability, eco-sustainability, and quality of service are beginning to converge. Solutions that reduce capital and operational expenditures not only save money, but also tend to reduce the environmental impact. In "opaque" networks, optical signals undergo expensive electrical regeneration systematically at each node. In "transparent" networks, signal quality deteriorates due to the accumulation of physical impai...

  17. Efficient traveltime solutions of the acoustic TI eikonal equation

    KAUST Repository

    Waheed, Umair bin

    2015-02-01

    Numerical solutions of the eikonal (Hamilton-Jacobi) equation for transversely isotropic (TI) media are essential for imaging and traveltime tomography applications. Such solutions, however, suffer from the inherent higher-order nonlinearity of the TI eikonal equation, which requires solving a quartic polynomial for every grid point. Analytical solutions of the quartic polynomial yield numerically unstable formulations. Thus, it requires a numerical root finding algorithm, adding significantly to the computational load. Using perturbation theory we approximate, in a first order discretized form, the TI eikonal equation with a series of simpler equations for the coefficients of a polynomial expansion of the eikonal solution, in terms of the anellipticity anisotropy parameter. Such perturbation, applied to the discretized form of the eikonal equation, does not impose any restrictions on the complexity of the perturbed parameter field. Therefore, it provides accurate traveltime solutions even for models with complex distribution of velocity and anisotropic anellipticity parameter, such as that for the complicated Marmousi model. The formulation allows for large cost reduction compared to using the direct TI eikonal solver. Furthermore, comparative tests with previously developed approximations illustrate remarkable gain in accuracy in the proposed algorithm, without any addition to the computational cost.

  18. HIV Clients as Agents for Prevention: A Social Network Solution

    Directory of Open Access Journals (Sweden)

    Sarah Ssali

    2012-01-01

    Full Text Available HIV prevention efforts to date have not explored the potential for persons living with HIV to act as change agents for prevention behaviour in their social networks. Using egocentric social network analysis, this study examined the prevalence and social network correlates of prevention advocacy behaviours (discussing HIV in general; encouraging abstinence or condom use, HIV testing, and seeking HIV care enacted by 39 HIV clients in Uganda. Participants engaged in each prevention advocacy behaviour with roughly 50–70% of the members in their network. The strongest determinant of engaging in prevention advocacy with more of one’s network members was having a greater proportion of network members who knew one’s HIV seropositive status, as this was associated with three of the four advocacy behaviours. These findings highlight the potential for PLHA to be key change agents for HIV prevention within their networks and the importance of HIV disclosure in facilitating prevention advocacy.

  19. New formulations for tsunami runup estimation

    Science.gov (United States)

    Kanoglu, U.; Aydin, B.; Ceylan, N.

    2017-12-01

    We evaluate shoreline motion and maximum runup in two folds: One, we use linear shallow water-wave equations over a sloping beach and solve as initial-boundary value problem similar to the nonlinear solution of Aydın and Kanoglu (2017, Pure Appl. Geophys., https://doi.org/10.1007/s00024-017-1508-z). Methodology we present here is simple; it involves eigenfunction expansion and, hence, avoids integral transform techniques. We then use several different types of initial wave profiles with and without initial velocity, estimate shoreline properties and confirm classical runup invariance between linear and nonlinear theories. Two, we use the nonlinear shallow water-wave solution of Kanoglu (2004, J. Fluid Mech. 513, 363-372) to estimate maximum runup. Kanoglu (2004) presented a simple integral solution for the nonlinear shallow water-wave equations using the classical Carrier and Greenspan transformation, and further extended shoreline position and velocity to a simpler integral formulation. In addition, Tinti and Tonini (2005, J. Fluid Mech. 535, 33-64) defined initial condition in a very convenient form for near-shore events. We use Tinti and Tonini (2005) type initial condition in Kanoglu's (2004) shoreline integral solution, which leads further simplified estimates for shoreline position and velocity, i.e. algebraic relation. We then use this algebraic runup estimate to investigate effect of earthquake source parameters on maximum runup and present results similar to Sepulveda and Liu (2016, Coast. Eng. 112, 57-68).

  20. Molecular mechanism of the viscosity of aqueous glucose solutions

    Science.gov (United States)

    Bulavin, L. A.; Zabashta, Yu. F.; Khlopov, A. M.; Khorol'skii, A. V.

    2017-01-01

    Experimental relations are obtained for the viscosity of aqueous glucose solutions in the temperature range of 10-80°C and concentration range 0.01-2.5%. It is found that the concentration dependence of fluidity is linear when the concentration is higher than a certain value and varies at different temperatures. The existence of such a dependence indicates that the mobilities of solvent and solute molecules are independent of the concentration of solutions. This assumption is used to construct a theoretical model, in which the structure of an aqueous glucose solution is presented as a combination of two weakly interacting networks formed by hydrogen bonds between water molecules and between glucose molecules. Theoretical relations are obtained using this model of network solution structure for the concentration and temperature dependence of solution viscosity. Experimental data are used to calculate the activation energies for water ( U w = 3.0 × 10-20 J) and glucose molecules ( U g = 2.8 × 10-20 J). It is shown that the viscosity of a solution in such a network structure is governed by the Brownian motion of solitons along the chains of hydrogen bonds. The weak interaction between networks results in the contributions to solution fluidity made by the motion of solitons in both of them being almost independent.