WorldWideScience

Sample records for solutions melts blends

  1. Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending + melt compounding

    DEFF Research Database (Denmark)

    Madaleno, Liliana Andreia Oliveira; Schjødt-Thomsen, Jan; Pinto, José Cruz

    2010-01-01

    Two types of montmorillonite (MMT), natural sodium montmorillonite (Na-MMT) and organically modified montmorillonite (OMMT), in different amounts of 1, 2, 5, 10 and 25 phr (parts per hundred resin), were dispersed in rigid poly (vinyl chloride) by two different methods solution blending...... and solution blending + melt compounding The effects on morphology, thermal and mechanical properties of the PVC/MMT nanocomposites were studied by varying the amount of Na-MMT and OMMT in both methods SEM and XRD analysis revealed that possible intercalated and exfoliated structures were obtained in all...... prepared by solution blending + melt compounding method Experimental values for 1 and 2 phr are larger than the calculated values which directly suggest that the MMT particles are exfoliated (C) 2010 Elsevier Ltd All rights reserved...

  2. An empirical model for the melt viscosity of polymer blends

    International Nuclear Information System (INIS)

    Dobrescu, V.

    1981-01-01

    On the basis of experimental data for blends of polyethylene with different polymers an empirical equation is proposed to describe the dependence of melt viscosity of blends on component viscosities and composition. The model ensures the continuity of viscosity vs. composition curves throughout the whole composition range, the possibility of obtaining extremum values higher or lower than the viscosities of components, allows the calculation of flow curves of blends from the flow curves of components and their volume fractions. (orig.)

  3. Enhancing the Dyeability of Polypropylene Fibers by Melt Blending with Polyethylene Terephthalate

    Directory of Open Access Journals (Sweden)

    Fereshteh Mirjalili

    2013-01-01

    Full Text Available Attempts were made to modify polypropylene fibers by melt blending with polyethylene terephthalate in order to enhance the dyeability of the resultant fiber. Five blends of polypropylene/polyethylene terephthalate/compatibilizer were prepared and subsequently spun into fibers. Three disperse dyes were used to dye such modified fibers at boiling and 130°C. The dyeing performance of the blend fibers, as well as the morphological, chemical, thermal, and mechanical properties, of the corresponding blends was characterized by means of spectrophotometry, polarized optical microscopy, scanning electron microscopy (SEM, FT-IR spectroscopy, differential scanning calorimetry (DSC, and tensile testing.

  4. Emerging melt quality control solution technologies for aluminium melt

    Directory of Open Access Journals (Sweden)

    Arturo Pascual, Jr

    2009-11-01

    Full Text Available The newly developed “MTS 1500” Melt Treatment System is performing the specifi cally required melt treatment operations like degassing, cleaning, modification and/or grain refinement by an automated process in one step and at the same location. This linked process is saving time, energy and metal losses allowing - by automated dosage of the melt treatment agents - the production of a consistent melt quality batch after batch. By linking the MTS Metal Treatment System with sensors operating on-line in the melt, i.e., with a hydrogen sensor “Alspek H”, a fully automated control of parts of the process chain like degassing is possible. This technology does guarantee a pre-specifi ed and documented melt quality in each melt treatment batch. Furthermore, to ensure that castings are consistent and predictable there is a growing realization that critical parameters such as metal cleanliness must be measured prior to casting. There exists accepted methods for measuring the cleanliness of an aluminum melt but these can be both slow and costly. A simple, rapid and meaningful method of measuring and bench marking the cleanliness of an aluminum melt has been developed to offer the foundry a practical method of measuring melt cleanliness. This paper shows the structure and performance of the integrated MTS melt treatment process and documents achieved melt quality standards after degassing, cleaning, modifi cation and grain refi nement operations under real foundry conditions. It also provides an insight on a melt cleanliness measuring device “Alspek MQ” to provide foundry men better tools in meeting the increasing quality and tighter specifi cation demand from the industry.

  5. Raman structural study of melt-mixed blends of isotactic polypropylene with polyethylene of various densities

    Science.gov (United States)

    Prokhorov, K. A.; Nikolaeva, G. Yu; Sagitova, E. A.; Pashinin, P. P.; Guseva, M. A.; Shklyaruk, B. F.; Gerasin, V. A.

    2018-04-01

    We report a Raman structural study of melt-mixed blends of isotactic polypropylene with two grades of polyethylene: linear high-density and branched low-density polyethylenes. Raman methods, which had been suggested for the analysis of neat polyethylene and isotactic polypropylene, were modified in this study for quantitative analysis of polyethylene/polypropylene blends. We revealed the dependence of the degree of crystallinity and conformational composition of macromolecules in the blends on relative content of the blend components and preparation conditions (quenching or annealing). We suggested a simple Raman method for evaluation of the relative content of the components in polyethylene/polypropylene blends. The degree of crystallinity of our samples, evaluated by Raman spectroscopy, is in good agreement with the results of analysis by differential scanning calorimetry.

  6. Blends of poly(hydroxybutyrate and poly (epsilon-caprolactone obtained from melting mixture

    Directory of Open Access Journals (Sweden)

    Maria Cecília M. Antunes

    2005-06-01

    Full Text Available Poly(3-hydroxybutyrate (PHB is a thermoplastic polyester with a great potential owing to its biodegradability, bioreabsorbation and biological synthesis from a renewable source. Despite these characteristics, the applications of this polymer are very restricted due to its poor mechanical properties and thermal instability at temperatures above its melting point (around 175°C. Among the possibilities of improvement of these materials, the development of blends is a relatively fast and inexpensive option. Poly(epsilon-caprolactone (PCL is a semi-crystalline polymer that may be used as a biomaterial. It presents good mechanical properties, a low melting point (around 55 °C, and could be a good option to develop PHB blends, maintaining the biodegradability and bioreabsorption properties. The objective of the present work was to obtain blends of PHB and PCL by melting mixture in an internal mixer. The compositions varied from 0 to 30 wt% of PCL. DSC, DMA, and SEM were used to characterize the blends. The blends were found to be imiscible with no indication of interaction either the amorphous or crystalline state. The morphology shows PHB as the matrix and PCL as the dispersed phase.

  7. Swelling and tribological properties of melt-mixed fluoroelastomer/nitrile rubber blends under crude oil

    Science.gov (United States)

    Tagelsir, Yasin; Li, San-Xi; Lv, Xiaoren; Wang, Shijie; Wang, Song; Osman, Zeinab

    2018-01-01

    The melt-mixed fluoroelastomer (FKM)/ nitrile rubber (NBR) blends of (90/10, 80/20, 70/30, 60/40 and 50/50) ratios with same hardness were prepared, and their swelling and tribological properties under crude oil were investigated for the purpose of developing high performance cost-effective elastomers meeting requirement of oil extraction progressive cavity pump stator. Differential scanning calorimetry confirmed compatible blend system for all blends. Field emission scanning electron microscopy (FE-SEM) showed co-continuous morphology of 200-400 nm phase size for all blends, expect FKM/NBR (90/10) which exhibited partially continuous phase morphology of 100-250 nm phase size. The results of swelling and linear wear tests under crude oil indicated that swelling percentage, coefficient of friction and specific wear rate of FKM/NBR blends were much better than NBR, with FKM/NBR (90/10 and 80/20) showing swelling percentage and specific wear rate very close to FKM. Attenuated total reflectance-Fourier transform infrared spectroscopy disclosed that fracture of macromolecular chains was the main mechanochemical effect of unswollen and swollen worn surfaces, in addition to oxygenated degradation detected with increasing NBR ratio in the blends. The fracture of macromolecular chains resulted in slight fatigue wear mechanism, which was also confirmed by FE-SEM of the worn surfaces.

  8. Calculation procedure for formulating lauric and palmitic fat blends based on the grouping of triacylglycerol melting points

    Directory of Open Access Journals (Sweden)

    B. P. Nusantoro

    2018-01-01

    Full Text Available A calculation procedure for formulating lauric and palmitic fat blends has been developed based on grouping TAG melting points. This procedure offered more flexibility in choosing the initial fats and oils and eventually gave deeper insight into the existing chemical compositions and better prediction on the physicochemical properties and microstructure of the fat blends. The amount of high, medium and low melting TAGs could be adjusted using the given calculation procedure to obtain the desired functional properties in the fat blends. Solid fat contents and melting behavior of formulated fat blends showed particular patterns with respect to ratio adjustments of the melting TAG groups. These outcomes also suggested that both TAG species and their quantity had a significant influence on the crystallization behavior of the fat blends. Palmitic fat blends, in general, were found to exhibit higher SFC values than those of Lauric fat blends. Instead of the similarity in crystal microstructure, lauric fat blends were stabilized at β polymorph while palmitic fat blends were stabilized at β’ polymorph.

  9. Calculation procedure for formulating lauric and palmitic fat blends based on the grouping of triacylglycerol melting points

    International Nuclear Information System (INIS)

    Nusantoro, B.P.; Yanty, N.A.M.; Van de Walle, D.; Hidayat, C.; Danthine, S.; Dewettinck, K.

    2017-01-01

    A calculation procedure for formulating lauric and palmitic fat blends has been developed based on grouping TAG melting points. This procedure offered more flexibility in choosing the initial fats and oils and eventually gave deeper insight into the existing chemical compositions and better prediction on the physicochemical properties and microstructure of the fat blends. The amount of high, medium and low melting TAGs could be adjusted using the given calculation procedure to obtain the desired functional properties in the fat blends. Solid fat contents and melting behavior of formulated fat blends showed particular patterns with respect to ratio adjustments of the melting TAG groups. These outcomes also suggested that both TAG species and their quantity had a significant influence on the crystallization behavior of the fat blends. Palmitic fat blends, in general, were found to exhibit higher SFC values than those of Lauric fat blends. Instead of the similarity in crystal microstructure, lauric fat blends were stabilized at β polymorph while palmitic fat blends were stabilized at β’ polymorph. [es

  10. Crystallization and melting behavior of nanoclay-containing polypropylene/poly(trimethylene terephthalate blends

    Directory of Open Access Journals (Sweden)

    S. H. Jafari

    2012-02-01

    Full Text Available This contribution concerns preparation and characterization of polypropylene (PP/poly(trimethylene terephthalate (PTT melt-mixed blends in the presence of organically-modified montmorillonite nanoclays and functional compatibilizers. Immiscibility and nanocomposite formation were confirmed via transmission electron microscopy. An intercalated structure was observed by wide angle X-ray diffraction technique. Crystallization, and melting characteristics were studied by differential scanning calorimetry in both isothermal and non-isothermal modes, supplemented by temperature modulated DSC (TMDSC. A concurrent crystallization was found for both polymeric components in the blends. Whereas blending favored PP crystallizability, it interrupted that of PTT. The addition compatibilizers interfered with rate, temperature, and degree of crystallization of PP and PTT. On the contrary, nanoclays incorporation increased crystallizability of each individual component. However, as for blend nanocomposite samples, the way the crystallization behavior changed was established to depend on the type of nanoclay. Based on kinetic analysis, isothermal crystallization nucleation followed athermal mechanism, while that of non-isothermal obeyed thermal mode. Addition of nanoclays shifted nucleation mechanism from athermal to thermal mode.

  11. Blending Of Radioactive Salt Solutions In Million Gallon Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2012-12-10

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

  12. Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002

    International Nuclear Information System (INIS)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2013-01-01

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

  13. Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R. [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)

    2013-07-01

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

  14. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite

    International Nuclear Information System (INIS)

    Tewatia, Arya; Hendrix, Justin; Dong, Zhizhong; Taghon, Meredith; Tse, Stephen; Chiu, Gordon; Mayo, William E.; Kear, Bernard; Nosker, Thomas; Lynch, Jennifer

    2017-01-01

    Using a high shear melt-processing method, graphene-reinforced polymer matrix composites (G-PMCs) were produced with good distribution and particle–matrix interaction of bi/trilayer graphene at 2 wt. % and 5 wt. % in poly ether ether ketone (2Gn-PEEK and 5Gn-PEEK). The morphology, structure, thermal properties, and mechanical properties of PEEK, 2Gn-PEEK and 5 Gn-PEEK were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), flexural mechanical testing, and dynamic mechanical analysis (DMA). Addition of graphene to PEEK induces surface crystallization, increased percent crystallinity, offers a composite that is thermally stable until 550 °C and enhances thermomechanical properties. Results show that graphene was successfully melt-blended within PEEK using this method.

  15. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tewatia, Arya; Hendrix, Justin [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Dong, Zhizhong [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Taghon, Meredith [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Tse, Stephen [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Chiu, Gordon; Mayo, William E.; Kear, Bernard; Nosker, Thomas [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Lynch, Jennifer, E-mail: jklynch@rci.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States)

    2017-02-15

    Using a high shear melt-processing method, graphene-reinforced polymer matrix composites (G-PMCs) were produced with good distribution and particle–matrix interaction of bi/trilayer graphene at 2 wt. % and 5 wt. % in poly ether ether ketone (2Gn-PEEK and 5Gn-PEEK). The morphology, structure, thermal properties, and mechanical properties of PEEK, 2Gn-PEEK and 5 Gn-PEEK were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), flexural mechanical testing, and dynamic mechanical analysis (DMA). Addition of graphene to PEEK induces surface crystallization, increased percent crystallinity, offers a composite that is thermally stable until 550 °C and enhances thermomechanical properties. Results show that graphene was successfully melt-blended within PEEK using this method.

  16. Development of foams from linear polypropylene (PP) and high melt strength polypropylene (HMSPP) polymeric blends

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth Carvalho Leite

    2009-01-01

    Foamed polymers are future materials, with a comprehensive application field. They can be used in order to improve appearance of insulation structures, for example, or to reduce costs involving materials. This work address to Isotactic Polypropylene / High Melt Strength Polypropylene blends, for foams production. Rheological behavior of polymer melt, especially referring to viscosity in processing temperature, plays a decisive role in applications where dominates extensional flow, as in case of foaming. If the viscosity is very low, it will correspond to a low melt strength, as in case of linear homopolymer (Isotact PP), and the foam will be prejudiced, due to the impossibility of expansion. Otherwise, if the viscosity is very high, with a high melt strength, the foam will collapse immediately after its formation. In order to get foams with an homogeneous and defined cellular structure, there were accomplished blends, 50% in weight, between linear homopolymer (isotactic PP) and HMSPP, from PP modified as per gamma radiation, in acetylene environment and at a 12.5 kGy doses. Extrusion process used a soluble foaming methodology, according to a processing/dissolution principle, which involves the dissolution of a Physical Blowing Agent (PBA), under 30 bar pressure, homogeneously mixed with polymeric melt. Extrusion conditions, that generally involve temperature, pressure and viscoelastic material flow control were experimentally investigated to define prevalent characteristics for producing foams. Nitrogen was the used PBA and process extrusion parameters were adapted to PP, HMSPP and their 50% in weight mixtures thereof. Major PP and HMSPP characteristics were obtained via melt Index and melt strength and thermal analyses (DSC/TGA), in order to make viable and to reproduce foaming as per extrusion process. Foams cellular morphology of PP, HMSPP and their 50% in weight mixtures thereof was investigated, with and without talc addition, as nucleating agent, by using

  17. Mutual interaction between high and low stereo-regularity components for crystallization and melting behaviors of polypropylene blend fibers

    Science.gov (United States)

    Kawai, Kouya; Kohri, Youhei; Takarada, Wataru; Takebe, Tomoaki; Kanai, Toshitaka; Kikutani, Takeshi

    2016-03-01

    Crystallization and melting behaviors of blend fibers of two types of polypropylene (PP), i.e. high stereo-regularity/high molecular weight PP (HPP) and low stereo-regularity/low molecular weight PP (LPP), was investigated. Blend fibers consisting of various HPP/LPP compositions were prepared through the melt spinning process. Differential scanning calorimetry (DSC), temperature modulated DSC (TMDSC) and wide-angle X-ray diffraction (WAXD) analysis were applied for clarifying the crystallization and melting behaviors of individual components. In the DSC measurement of blend fibers with high LPP composition, continuous endothermic heat was detected between the melting peaks of LPP at around 40 °C and that of HPP at around 160 °C. Such endothermic heat was more distinct for the blend fibers with higher LPP composition indicating that the melting of LPP in the heating process was hindered because of the presence of HPP crystals. On the other hand, heat of crystallization was detected at around 90 °C in the case of blend fibers with LPP content of 30 to 70 wt%, indicating that the crystallization of HPP component was taking place during the heating of as-spun blend fibers in the DSC measurement. Through the TMDSC analysis, re-organization of the crystalline structure through the simultaneous melting and re-crystallization was detected in the cases of HPP and blend fibers, whereas re-crystallization was not detected during the melting of LPP fibers. In the WAXD analysis during the heating of fibers, amount of a-form crystal was almost constant up to the melting in the case of single component HPP fibers, whereas there was a distinct increase of the intensity of crystalline reflections from around 100 °C, right after the melting of LPP in the case of blend fibers. These results suggested that the crystallization of HPP in the spinning process as well as during the conditioning process after spinning was hindered by the presence of LPP.

  18. Mutual interaction between high and low stereo-regularity components for crystallization and melting behaviors of polypropylene blend fibers

    International Nuclear Information System (INIS)

    Kawai, Kouya; Takarada, Wataru; Kikutani, Takeshi; Kohri, Youhei; Takebe, Tomoaki; Kanai, Toshitaka

    2016-01-01

    Crystallization and melting behaviors of blend fibers of two types of polypropylene (PP), i.e. high stereo-regularity/high molecular weight PP (HPP) and low stereo-regularity/low molecular weight PP (LPP), was investigated. Blend fibers consisting of various HPP/LPP compositions were prepared through the melt spinning process. Differential scanning calorimetry (DSC), temperature modulated DSC (TMDSC) and wide-angle X-ray diffraction (WAXD) analysis were applied for clarifying the crystallization and melting behaviors of individual components. In the DSC measurement of blend fibers with high LPP composition, continuous endothermic heat was detected between the melting peaks of LPP at around 40 °C and that of HPP at around 160 °C. Such endothermic heat was more distinct for the blend fibers with higher LPP composition indicating that the melting of LPP in the heating process was hindered because of the presence of HPP crystals. On the other hand, heat of crystallization was detected at around 90 °C in the case of blend fibers with LPP content of 30 to 70 wt%, indicating that the crystallization of HPP component was taking place during the heating of as-spun blend fibers in the DSC measurement. Through the TMDSC analysis, re-organization of the crystalline structure through the simultaneous melting and re-crystallization was detected in the cases of HPP and blend fibers, whereas re-crystallization was not detected during the melting of LPP fibers. In the WAXD analysis during the heating of fibers, amount of a-form crystal was almost constant up to the melting in the case of single component HPP fibers, whereas there was a distinct increase of the intensity of crystalline reflections from around 100 °C, right after the melting of LPP in the case of blend fibers. These results suggested that the crystallization of HPP in the spinning process as well as during the conditioning process after spinning was hindered by the presence of LPP.

  19. Mutual interaction between high and low stereo-regularity components for crystallization and melting behaviors of polypropylene blend fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Kouya; Takarada, Wataru; Kikutani, Takeshi, E-mail: kikutani.t.aa@m.titech.ac.jp [Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Kohri, Youhei; Takebe, Tomoaki [Performance Materials Laboratories, Idemitsu Kosan Co.,Ltd. (Japan); Kanai, Toshitaka [KT Polymer (Japan)

    2016-03-09

    Crystallization and melting behaviors of blend fibers of two types of polypropylene (PP), i.e. high stereo-regularity/high molecular weight PP (HPP) and low stereo-regularity/low molecular weight PP (LPP), was investigated. Blend fibers consisting of various HPP/LPP compositions were prepared through the melt spinning process. Differential scanning calorimetry (DSC), temperature modulated DSC (TMDSC) and wide-angle X-ray diffraction (WAXD) analysis were applied for clarifying the crystallization and melting behaviors of individual components. In the DSC measurement of blend fibers with high LPP composition, continuous endothermic heat was detected between the melting peaks of LPP at around 40 °C and that of HPP at around 160 °C. Such endothermic heat was more distinct for the blend fibers with higher LPP composition indicating that the melting of LPP in the heating process was hindered because of the presence of HPP crystals. On the other hand, heat of crystallization was detected at around 90 °C in the case of blend fibers with LPP content of 30 to 70 wt%, indicating that the crystallization of HPP component was taking place during the heating of as-spun blend fibers in the DSC measurement. Through the TMDSC analysis, re-organization of the crystalline structure through the simultaneous melting and re-crystallization was detected in the cases of HPP and blend fibers, whereas re-crystallization was not detected during the melting of LPP fibers. In the WAXD analysis during the heating of fibers, amount of a-form crystal was almost constant up to the melting in the case of single component HPP fibers, whereas there was a distinct increase of the intensity of crystalline reflections from around 100 °C, right after the melting of LPP in the case of blend fibers. These results suggested that the crystallization of HPP in the spinning process as well as during the conditioning process after spinning was hindered by the presence of LPP.

  20. Preparation of acetaminophen capsules containing beads prepared by hot-melt direct blend coating.

    Science.gov (United States)

    Pham, Loan; Christensen, John M

    2014-02-01

    Twelve hydrophobic coating agents were assessed for their effects on drug release after coating sugar cores by a flexible hot-melt coating method using direct blending. Drug-containing pellets were also produced and used as cores. The cores were coated with single or double wax layers containing acetaminophen (APAP). The harder the wax, the slower the resultant drug releases from single-coated beads. Wax coating can be deposited on cores up to 28% of the beads final weight and reaching 58% with wax and drug. Carnauba-coated beads dissolved in approximately 6 h releasing 80% of the loaded drug. Applying another wax layer extended drug release over 20 h, while still delivering 80% of the loaded drug. When drug-containing pellets (33-58% drug loading) were used as cores, double wax-coated pellets exhibited a near zero-order drug release for 16 h, releasing 80% of the loaded drug delivering 18 mg/h. The simple process of hot-melt coating by direct blending of pellet-containing drug-coated formulations provides excellent options for immediate and sustained release formulations when higher lipid coating or drug loading is warranted. Predicted plasma drug concentration time profiles using convolution and in vitro drug release properties of the beads were performed for optimal formulations.

  1. Preparation of flexible PLA/PEG-POSS nanocomposites by melt blending and radiation crosslinking

    International Nuclear Information System (INIS)

    Jung, Chang-Hee; Hwang, In-Tae; Jung, Chan-Hee; Choi, Jae-Hak

    2014-01-01

    In this study, poly(lactic acid) (PLA)/poly(ethylene glycol)-functionalized polyhedral oligomeric silsesquioxane (PEG-POSS) nanocomposites with or without triallyl isocyanurate (TAIC) were investigated by melt blending and electron beam irradiation to enhance the flexibility of PLA. Based on the results of the crosslinking degree measurements, the PLA/PEG-POSS nanocomposites were crosslinked by electron beam irradiation in the presence of triallyl isocyanurate (TAIC) and their crosslinking degree reached up to 80% based on the absorbed dose and their compositions. From the results of the FE-SEM and EDX Si-mapping, the crosslinked PLA/PEG-POSS nanocomposites were homogenous without a micro-phase separation or radiation-induced morphological change. Based on the results of the tensile test, the PLA/PEG-POSS nanocomposites containing 15 wt% PEG-POSS exhibited the highest flexibility, and their tensile strength showed a maximum value of 44.5 MPa after electron beam irradiation at an absorbed dose of 100 kGy in the presence of TAIC, which is comparable to non-biodegradable polypropylene. The results of the dynamic mechanical analysis revealed that the crosslinked PLA/PEG-POSS nanocomposites exhibited a higher thermal resistance above their melting temperature in comparison to that of the neat PLA, although their glass transition temperature was lower than that of the neat PLA. The enzymatic biodegradation test revealed that the PLA/PEG-POSS nanocomposites were biodegradable even though their biodegradability was deteriorated in comparison to that of the neat PLA. - Highlights: • PLA/PEG-POSS nanocomposites were prepared by melt blending. • The nanocomposites containing TAIC were crosslinked by electron beam irradiation. • The mechanical properties of the nanocomposites were comparable to polypropylene. • The crosslinked nanocomposites can be biodegradable

  2. STUDY ON REDUCING AND MELTING BEHAVIOR OF MILL SCALE/PETROLEUM COKE BLEND

    Directory of Open Access Journals (Sweden)

    Bruno Deves Flores

    2015-07-01

    Full Text Available Self-reducing tests were carried out under isothermal and non-isothermal condition in a muffle furnace, aiming to assess the reduction and melting of a self-reducing blend of mill scale and petroleum coke (85-15% in weight. The products obtained were analyzed by mass loss and wet analysis. Further investigations for the products from the non-isothermal condition were done by X-ray diffraction, nude eye inspection and carbon analyzer. It was observed that mass loss fraction and metallization degree are directly related and both increase with time and temperature. In the non-isothermal maximum mass loss was achieved in 8 minutes, reaching metallization degrees above 90%. It was observed that the reduction of iron oxide occurs mainly in solid state and the smelting of the samples is directly related to the iron carburization process. Thus, the use of self-reducing mixtures shows a possible way to recycle mill scale.

  3. Thermo-oxidative degradation study of melt-processed polyethylene and its blend with polyamide using time-resolved rheometry

    CSIR Research Space (South Africa)

    Salehiyan, Reza

    2017-05-01

    Full Text Available Time-resolved mechanical spectroscopy (TRMS) was conducted to study the thermo-oxidative degradation of linear low density polyethylene (LLDPE) samples with different thermal histories and their blends with a polyamide (PA6) in the melt state. Neat...

  4. Morphology, melting behavior, and non-isothermal crystallization of poly(butylene terephthalate)/poly(ethylene-co-methacrylic acid) blends

    International Nuclear Information System (INIS)

    Huang, J.-W.; Wen, Y.-L.; Kang, C.-C.; Yeh, M.-Y.; Wen, S.-B.

    2007-01-01

    The morphology, melting behavior, and non-isothermal crystallization of poly(butylene terephthalate) (PBT) and poly(ethylene-co-methacrylic acid) (PEMA) blends were studied with scanning electron microscopy, X-ray diffraction and differential scanning calorimetry (DSC). PEMA forms immiscible, yet compatible, blends with PBT. Subsequent DSC scans on melt-crystallized samples exhibited two melting endotherms (T mI and T mII ). The presence of PEMA would facilitate the recrystallization during heating scan and retard PBT molecular chains to form a perfect crystal in cooling crystallization. The dispersion phases of molten PEMA acts as nucleating agents to enhance the crystallization rate of PBT. The solidified PBT could act as nucleating agents to enhance the crystallization of PEMA, but also retard the molecular mobility to reduce crystallization rate. The U* and K g of Hoffman-Lauritzen theory were also determined by Vyazovkin's methods to support the interpretation

  5. Crossover to entangled dynamics in polymer solutions and melts

    International Nuclear Information System (INIS)

    Schweizer, K.S.; Szamel, G.

    1995-01-01

    A statistical dynamical theory of the crossover from unentangled Rouse dynamics to entangled behavior is constructed for chain polymer solutions and melts. Both time and spatial crossovers in long chain fluids, and the degree of polymerization crossover for short polymers, are treated. The analysis is based on a microscopic theory of the perturbative dynamical corrections to Rouse theory arising from chain connectivity and intermolecular excluded volume forces. The dependence of crossover properties such as the plateau shear modulus and entanglement time and length scale on solution density, solvent quality, and chain statistical segment length are derived by combining the dynamical theory with equilibrium liquid state integral equation methods. Scaling relations are obtained which appear to be in general accord with most experiments on both solutions and melts. The physical origin of the predicted scaling behaviors is the fractional power law temporal decay of the entanglement friction memory function on intermediate time scales, and power law reduced density dependence of the equilibrium force correlations. The theory is also applied to compute the dependence of the chain normal mode relaxation times on polymer density and chain length. Favorable qualitative comparisons with recent neutron spin echo experiments are made. copyright 1995 American Institute of Physics

  6. New Evidences on the Process Sensitivity of Some Renewable Blends Based on Starch considering Their Melt Rheological Properties

    Directory of Open Access Journals (Sweden)

    Doina Dimonie

    2016-01-01

    Full Text Available The degradability and processability of new renewable materials based on starch and PVOH were studied using the melt flow index (MFI method by measuring the melt rheological properties which depend not only on the extrusion conditions and material formulation but also on the macromolecule characteristics which can be modified by chemical degradation. These results were correlated with other material properties like color and cross-linking degree. The obtained results show that flowing in the melted state of the studied materials is accompanied by a second process of chains chemical degradation. It was observed that, at the same level of additivation, under identical extrusion conditions, the melted blends with corn starch as main component are highly mechanically sensitive and degrade mostly by chains scission and those with PVOH as major component are highly temperature sensitive and degrade mainly by cross-linking. The obtained results show also that each PVOH-starch blend requires particular formulation and individual windows of melt processing conditions. These results are a good proof that the MFI method is a good path to study the degradability and moldability of process sensitive polymeric materials like those based on starch and PVOH.

  7. Renormalization of the one-loop theory of fluctuations in polymer blends and diblock copolymer melts.

    Science.gov (United States)

    Grzywacz, Piotr; Qin, Jian; Morse, David C

    2007-12-01

    Attempts to use coarse-grained molecular theories to calculate corrections to the random-phase approximation (RPA) for correlations in polymer mixtures have been plagued by an unwanted sensitivity to the value of an arbitrary cutoff length, i.e., by an ultraviolet (UV) divergence. We analyze the UV divergence of the inverse structure factor S(-1)(k) predicted by a "one-loop" approximation similar to that used in several previous studies. We consider both miscible homopolymer blends and disordered diblock copolymer melts. We show, in both cases, that all UV divergent contributions can be absorbed into a renormalization of the values of the phenomenological parameters of a generalized self-consistent field theory (SCFT). This observation allows the construction of an UV convergent theory of corrections to SCFT phenomenology. The UV-divergent one-loop contribution to S(-1)(k) is shown to be the sum of (i) a k -independent contribution that arises from a renormalization of the effective chi parameter, (ii) a k-dependent contribution that arises from a renormalization of monomer statistical segment lengths, (iii) a contribution proportional to k(2) that arises from a square-gradient contribution to the one-loop fluctuation free energy, and (iv) a k-dependent contribution that is inversely proportional to the degree of polymerization, which arises from local perturbations in fluid structure near chain ends and near junctions between blocks in block copolymers.

  8. Melting and crystallization behavior of partially miscible high density polyethylene/ethylene vinyl acetate copolymer (HDPE/EVA) blends

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang; Zou, Huawei, E-mail: hwzou@163.com; Liang, Mei, E-mail: liangmeiww@163.com; Cao, Ya

    2014-06-01

    Highlights: • HDPE/EVA blends undergo phase separation, making it an interesting topic to investigate the relationships between miscibility and crystallization. • Influences from blending on the crystallization kinetics were successfully evaluated by Friedman's and Khanna's method. • X-ray diffraction studies revealed that blending with EVA the unit length of the unit cell of the HDPE increases. • Thermal fractionation method was successfully used to characterize the co-crystallization in HDPE/EVA blends. - Abstract: Crystallization studies on HDPE/EVA blends and the individual components were performed with differential scanning calorimetry (DSC) technique and wide angle X-ray scattering (WAXS). Influences of blending on the crystallization kinetics of each component in HDPE/EVA mixture were evaluated by Friedman's activation energy and Khanna's crystallization rate coefficient (CRC). The addition of more HDPE into the EVA matrix causes more heterogeneous nucleation while the addition of EVA would hinder the nucleation of HDPE at the beginning of cooling process. Inter-molecular interaction in the melt facilitated the crystallization of both EVA and HDPE components. X-ray diffraction studies revealed that HDPE and EVA have orthorhombic unit cell. Blending with EVA did not affect the crystalline structure of HDPE. In addition, a little shift of (1 1 0), (2 0 0) and (0 2 0) crystalline peaks toward lower 2θ values of samples indicating a little increase of unit cell parameters of the orthorhombic unit cell of polyethylene. Thermal fractionation results showed that co-crystallization took place in the HDPE/EVA blend. All those results indicated that the polymer pair we choose was partially miscible.

  9. Fuzzy set implementation for controlling and evaluation of factors affecting melting, crystallinity and interaction in polymer blends

    International Nuclear Information System (INIS)

    Al-Rawajfeh, Aiman Eid; Mamlook, Rustom

    2008-01-01

    In this study, the factors (i.e. weight fractions, crystallization temperatures and interaction such as hydrogen bonding) affecting melting, crystallinity, interaction parameters and miscibility of polymer blends (PB) have been studied by implementation of a fuzzy set. The interaction parameters were calculated using the Nishi-Wang equation, which is based on the Flory-Huggins theory. The values of interaction parameters χ 12 were negative for all blend compositions suggesting that χ 12 depends on the volume fraction (Φ) of the polymer. The various characteristics for the case study was synthesized and converted into relative weights w.r.t fuzzy set method. The fuzzy set analysis for the case study reveal increase as confirmed by the experimental data. The application of the fuzzy set methodology offers reasonable prediction and assessment for detecting yield in polymer blends

  10. Interactive Tutoring in Blended Studies: Hindrances and Solutions

    Directory of Open Access Journals (Sweden)

    Asim Ismail Ilyas (Al-Titinchy

    2016-01-01

    Full Text Available This paper distinguishes between traditional teaching known as lecturing (the teacher centered approach; and tutoring (the contemporary technology-oriented interactive teaching/learning approach. It is based on the implementation of tutoring strategies of ‘blended studies’  at the Arab Open University. It investigates the application of modern interactive teaching/learning strategies, specifying some hindering factors in the AOU-Jordan Branch context. The factors include four variables: tutors, students, course material and assessment. The paper is based on qualitative research in terms of a real teaching/leaning context, using both observation and conversation with learners, besides the use of some quantitative data retrieved from a questionnaire in which learners’ views are sought regarding a number of relevant matters. A number of suggested solutions related to each of the hindering factors are presented, which if applied, may secure shifting the balance of the teaching/learning process to a more interactive technology-based tutoring level, which in turn will enhance learners’ opportunities for the attainment of better academic standards, and secure a higher degree of achievement of the shared educational goals of learners and the educational institution they study in.

  11. Preparation, melting behavior and thermal stability of poly(lactic acid)/poly(propylene carbonate) blends processed by vane extruder

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Wei, E-mail: zw55624@163.com; Chen, Rongyuan; Zhang, Haichen; Qu, Jinping, E-mail: jpqu@scut.edu.cn [National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640 (China)

    2016-03-09

    Poly (lactic acid) (PLA)/Poly (propylene carbonate) (PPC) blends were prepared by vane extruder which is a type of novel polymer processing extruder based on elongation force field. Scanning electron microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric (TG) were used respectively to analyze the compatibility, the melting behavior and thermal stability properties of PLA/PPC blends affected by the different content of PPC. The results showed that with the increase of the PPC content, the glass transition temperature of PLA was reduced, and the glass transition temperature of PPC was increased, which indicated that PLA and PPC had partial compatibility. The cold crystallization temperature of PLA increased with the increase of the PPC content, which showed that PPC hindered the cold crystallization process of PLA. The addition of PPC had little impact on the melting process of PLA, and the melting temperature of PLA was almost kept the same value. Thermogravimetric analysis showed that the thermal stability of PPC was worse than that of PLA, the addition of PPC reduced the thermal stability of PLA.

  12. Melting diagram of hydrogen-deuterium solutions for pressures up to 100 atm

    International Nuclear Information System (INIS)

    Bereznyak, N.G.; Sheinina, A.A.

    1985-01-01

    Curves of the onset of melting of hydrogen-deuterium solutions of three different concentrations versus the vapor pressure up to ∼140 atm are measured. The topology of the melting diagram of H 2 --D 2 solutions at elevated pressures is determined. The isotope separation coefficients between the liquid and solid phases are calculated

  13. On the solution of petrochemical blending problems with classical ...

    African Journals Online (AJOL)

    In this paper a comparison of classical metaheuristic techniques over dierent sizes of petro- chemical blending problems is presented. Three problems are taken from the literature and used for initial comparisons and parameter setting. A fourth instance of real world size is then introduced and the best performing algorithm ...

  14. Supporting Blended-Learning: Tool Requirements and Solutions with OWLish

    Science.gov (United States)

    Álvarez, Ainhoa; Martín, Maite; Fernández-Castro, Isabel; Urretavizcaya, Maite

    2016-01-01

    Currently, most of the educational approaches applied to higher education combine face-to-face (F2F) and computer-mediated instruction in a Blended-Learning (B-Learning) approach. One of the main challenges of these approaches is fully integrating the traditional brick-and-mortar classes with online learning environments in an efficient and…

  15. On the solution of petrochemical blending problems with classical ...

    African Journals Online (AJOL)

    Methods of local search received attention in both theoretical computer ...... The commercial software package Lingo [13] was not able to load the input .... report, Sandia National Laboratories, Center for Computational Engineering. ... [24] Toklu YC, 2005, Aggregate blending using genetic algorithms, Computer-Aided Civil ...

  16. Universal aspects of macromolecules in polymer blends, solutions, and supercritical mixtures

    International Nuclear Information System (INIS)

    Melnichenko, Y.B.; Wignall, G.D.; Schwahn, D.

    2002-01-01

    We demonstrate that macromolecules in miscible polymer blends may behave as good, Θ, and poor polymeric solvents for each other. We construct a conceptual phase diagram, delineating the range of validity of the random-phase approximation, outside of which polymers contract or expand beyond their unperturbed dimensions, contrary to common assumptions. Remarkably, the correlation length for polymer blends, solutions, and supercritical mixtures collapses onto a master curve, reflecting universal behavior for macromolecules in polymeric and small-molecule Θ solvents

  17. Observations of crystallization and melting in poly(ethylene oxide)/poly(methyl methacrylate) blends by hot-stage atomic-force microscopy

    NARCIS (Netherlands)

    Pearce, R.; Vancso, Gyula J.

    1998-01-01

    The binary blend of poly(ethylene oxide)/atactic poly(methyl methacrylate) is examined using hot-stage atomic-force microscopy (AFM) in conjunction with differential scanning calorimetry and optical microscopy. It was found possible to follow in real time the melting process, which reveals itself to

  18. Theory of melt polyelectrolyte blends and block copolymers: Phase behavior, surface tension, and microphase periodicity

    Energy Technology Data Exchange (ETDEWEB)

    Sing, Charles E. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Zwanikken, Jos W.; Olvera de la Cruz, Monica [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-01-21

    Polymer mixtures such as blends or block copolymers are of great interest in energy applications and functional materials, and often, one or more of these species contain charges. The traditional fashion in which such materials are studied uses Self-Consistent Field Theory (SCFT) methods that incorporate electrostatics using Poisson-Boltzmann (PB) theory. We adapt a new and rigorous approach that does not rely on the mean-field assumptions inherent in the PB theory and instead uses Liquid State (LS) integral equation theory to articulate charge correlations that are completely neglected in PB. We use this theory to calculate phase diagrams for both blends and block copolyelectrolytes using SCFT-LS and demonstrate how their phase behavior is highly dependent on chain length, charge fraction, charge size, and the strength of Coulombic interactions. Beyond providing phase behavior of blends and block copolyelectrolytes, we can use this theory to investigate the interfacial properties such as surface tension and block copolyelectrolyte lamellar spacing. Lamellar spacing provides a way to directly compare the SCFT-LS theory to the results of experiments. SCFT-LS will provide conceptual and mathematical clarification of the role of charge correlations in these systems and aid in the design of materials based on charge polymers.

  19. Theory of melt polyelectrolyte blends and block copolymers: Phase behavior, surface tension, and microphase periodicity

    International Nuclear Information System (INIS)

    Sing, Charles E.; Zwanikken, Jos W.; Olvera de la Cruz, Monica

    2015-01-01

    Polymer mixtures such as blends or block copolymers are of great interest in energy applications and functional materials, and often, one or more of these species contain charges. The traditional fashion in which such materials are studied uses Self-Consistent Field Theory (SCFT) methods that incorporate electrostatics using Poisson-Boltzmann (PB) theory. We adapt a new and rigorous approach that does not rely on the mean-field assumptions inherent in the PB theory and instead uses Liquid State (LS) integral equation theory to articulate charge correlations that are completely neglected in PB. We use this theory to calculate phase diagrams for both blends and block copolyelectrolytes using SCFT-LS and demonstrate how their phase behavior is highly dependent on chain length, charge fraction, charge size, and the strength of Coulombic interactions. Beyond providing phase behavior of blends and block copolyelectrolytes, we can use this theory to investigate the interfacial properties such as surface tension and block copolyelectrolyte lamellar spacing. Lamellar spacing provides a way to directly compare the SCFT-LS theory to the results of experiments. SCFT-LS will provide conceptual and mathematical clarification of the role of charge correlations in these systems and aid in the design of materials based on charge polymers

  20. Thermal Analysis, Mechanical and Rheological Behaviour of Melt Manufactured Polyethylene/Liquid Crystal Polymer Blends

    Directory of Open Access Journals (Sweden)

    Ilze ELKSNITE

    2011-07-01

    Full Text Available Modification of properties of conventional thermoplastics with thermotropic liquid crystal polymers, from one hand, allows decrease their viscosities, substantially facilitating processing conditions, and, from another hand, allows increase their exploitation properties. Orientation of the labile structure of liquid crystal polymer in extrusion or injection moulding causes specific reinforcement (so-called self-reinforcement to occur in the blends containing liquid crystal polymer. Up to now the effect of self-reinforcement is mostly investigated in the blends, containing considerable amount of liquid crystal polymer. In this research the effect of minor amounts of liquid crystalline co-polyester modifier on the properties of polyethylene is investigated. Various compositions of laboratory synthesized hydroxybenzoic acid /polyethylene terephtalate copolymer containing polyethylene composites have been manufactured by thermoplastic blending. It has been observed that 1 modulus of elasticity, yield strength and ultimate strength increase with raising the content of liquid crystalline modifier; 2 void content in the investigated polyethylene/liquid crystal copolymer composites is not greater that 1 %; 3 addition of liquid crystalline co-polyester modifier improves arrangement of PE crystalline phase.http://dx.doi.org/10.5755/j01.ms.17.2.483

  1. Ion solvation in polymer blends and block copolymer melts: effects of chain length and connectivity on the reorganization of dipoles.

    Science.gov (United States)

    Nakamura, Issei

    2014-05-29

    We studied the thermodynamic properties of ion solvation in polymer blends and block copolymer melts and developed a dipolar self-consistent field theory for polymer mixtures. Our theory accounts for the chain connectivity of polymerized monomers, the compressibility of the liquid mixtures under electrostriction, the permanent and induced dipole moments of monomers, and the resultant dielectric contrast among species. In our coarse-grained model, dipoles are attached to the monomers and allowed to rotate freely in response to electrostatic fields. We demonstrate that a strong electrostatic field near an ion reorganizes dipolar monomers, resulting in nonmonotonic changes in the volume fraction profile and the dielectric function of the polymers with respect to those of simple liquid mixtures. For the parameter sets used, the spatial variations near an ion can be in the range of 1 nm or larger, producing significant differences in the solvation energy among simple liquid mixtures, polymer blends, and block copolymers. The solvation energy of an ion depends substantially on the chain length in block copolymers; thus, our theory predicts the preferential solvation of ions arising from differences in chain length.

  2. Applications of disorder-induced melting concept to critical-solute-accumulation processes

    International Nuclear Information System (INIS)

    Lam, N.Q.; Okamoto, P.R.; Heuer, J.K.

    2001-01-01

    A generalized version of the Lindemann melting criterion has recently been used to develop a unified thermodynamic description of disorder-induced amorphization and heat-induced melting. This concept of amorphization as a melting process is based on the fact that the melting temperature of a defective crystal driven far from equilibrium will decrease relative to that of its defect-free equilibrium state. The broader view of melting provides a new perspective of damage-accumulation processes such as radiation damage, ion implantation, ion beam mixing, plastic deformation, and fracture. For example, within this conceptual framework, disorder-induced amorphization is simply polymorphous melting of a critically disordered crystal at temperatures below the glass transition temperature. In the present communication, we discuss the application of the concept to two specific cases: amorphous phase formation during ion implantation and solute segregation-induced intergranular fracture

  3. Blended learning as a solution to practice-related problems in vocational schools

    DEFF Research Database (Denmark)

    Kjærgaard, Hanne Wacher; Duch, Henriette Skjærbæk; Mark, Lene

    Four different types of vocational schools have experimented with blended learning as a way of dealing with problems faced in their students’ theoretical and practical training and the interplay between these. A large part of this has involved the need for differentiated teaching...... as will be illustrated through selected cases. The foci of the cases are: •How can students be part of school-based teaching and learning during periods of practical training? •How can authentic practice be brought into school-based practical training? •How may blended learning assist and support students who...... are otherwise challenged in terms of meeting the prescribed competence goals? Methodologically, scenarios have been employed as a tool for defining the practice-related problems teachers meet in their practice and describing ways in which blended learning may present solutions. Subsequently, the solutions have...

  4. Functional porous composites by blending with solution-processable molecular pores.

    Science.gov (United States)

    Jiang, S; Chen, L; Briggs, M E; Hasell, T; Cooper, A I

    2016-05-25

    We present a simple method for rendering non-porous materials porous by solution co-processing with organic cage molecules. This method can be used both for small functional molecules and for polymers, thus creating porous composites by molecular blending, rather than the more traditional approach of supporting functional molecules on pre-frabricated porous supports.

  5. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be

  6. A Blended Learning Solution and the Impacts on Attendance and Learning Outcomes

    Directory of Open Access Journals (Sweden)

    Ismo Hakala

    2011-05-01

    Full Text Available Blended learning based on lecture videos and face-to-face teaching provides good opportunities for students for participation in education, regardless of time or place. The article describes a blended learning solution that is based on face-to-face teaching and the use of streaming lecture videos as it has developed in connection with master studies in mathematical information technology. The particular focus of this article is on the use of lecture videos and the impacts of blended learning on participation in education and on learning outcomes. According to the results, lecture videos have become very popular among students. Moreover the use of lecture videos increases participation activeness, and the increase in participation has a positive impact on completion of courses. However, the use of lecture videos does not seem to have any clear-cut effect on grades obtained.

  7. Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites.

    Science.gov (United States)

    Schmitt, H; Prashantha, K; Soulestin, J; Lacrampe, M F; Krawczak, P

    2012-07-01

    Novel bionanocomposites based on halloysite nanotubes as nanofillers and plasticized starch as polymeric matrix were successfully prepared by melt-extrusion for the first time. Both modified and non modified halloysites were added at different weight contents. The structural, morphological, thermal and mechanical properties of plasticized starch/halloysites nanocomposites were investigated. Melt-compounding appears to be a suitable process to uniformly disperse nanotubes in the plasticized starch matrix. Interactions between plasticized starch and halloysites in the nanocomposites and microstructure modifications were monitored using Fourier transfer infrared spectroscopy, X-ray diffraction and dynamic mechanical analysis. Addition of halloysite nanotubes slightly enhances the thermal stability of starch (onset temperature of degradation delayed to higher temperatures). The tensile mechanical properties of starch are also significantly improved (up to +144% for Young's modulus and up to +29% for strength) upon addition of both modified and unmodified halloysites, interestingly without loss of ductility. Modified halloysites lead to significantly higher Young's modulus than unmodified halloysites. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Ambipolar Small-Molecule:Polymer Blend Semiconductors for Solution-Processable Organic Field-Effect Transistors.

    Science.gov (United States)

    Kang, Minji; Hwang, Hansu; Park, Won-Tae; Khim, Dongyoon; Yeo, Jun-Seok; Kim, Yunseul; Kim, Yeon-Ju; Noh, Yong-Young; Kim, Dong-Yu

    2017-01-25

    We report on the fabrication of an organic thin-film semiconductor formed using a blend solution of soluble ambipolar small molecules and an insulating polymer binder that exhibits vertical phase separation and uniform film formation. The semiconductor thin films are produced in a single step from a mixture containing a small molecular semiconductor, namely, quinoidal biselenophene (QBS), and a binder polymer, namely, poly(2-vinylnaphthalene) (PVN). Organic field-effect transistors (OFETs) based on QBS/PVN blend semiconductor are then assembled using top-gate/bottom-contact device configuration, which achieve almost four times higher mobility than the neat QBS semiconductor. Depth profile via secondary ion mass spectrometry and atomic force microscopy images indicate that the QBS domains in the films made from the blend are evenly distributed with a smooth morphology at the bottom of the PVN layer. Bias stress test and variable-temperature measurements on QBS-based OFETs reveal that the QBS/PVN blend semiconductor remarkably reduces the number of trap sites at the gate dielectric/semiconductor interface and the activation energy in the transistor channel. This work provides a one-step solution processing technique, which makes use of soluble ambipolar small molecules to form a thin-film semiconductor for application in high-performance OFETs.

  9. Resistive switching characteristics of solution-processed organic-inorganic blended films for flexible memory applications

    Science.gov (United States)

    Baek, Il-Jin; Cho, Won-Ju

    2018-02-01

    We developed a hybrid organic-inorganic resistive random access memory (ReRAM) device that uses a solution-process to overcome the disadvantages of organic and inorganic materials for flexible memory applications. The drawbacks of organic and inorganic materials are a poor electrical characteristics and a lack of flexibility, respectively. We fabricated a hybrid organic-inorganic switching layer of ReRAM by blending HfOx or AlOx solution with PMMA solution and investigated the resistive switching behaviour in Ti/PMMA/Pt, Ti/PMMA-HfOx/Pt and Ti/PMMA-AlOx/Pt structures. It is found that PMMA-HfOx or PMMA-AlOx hybrid switching layer has a larger memory window, more stable durability and retention characteristics, and a better set/reset voltage distribution than PMMA layer. Further, it is confirmed that the flexibility of the PMMA-HfOx and PMMA-AlOx blended films was almost similar to that of the organic PMMA film. Thus, the solution-processed organic-inorganic blended films are considered a promising material for a non-volatile memory device on a flexible or wearable electronic system.

  10. Glacier Melting Increases the Solute Concentrations of Himalayan Glacial Lakes.

    Science.gov (United States)

    Salerno, Franco; Rogora, Michela; Balestrini, Raffaella; Lami, Andrea; Tartari, Gabriele A; Thakuri, Sudeep; Godone, Danilo; Freppaz, Michele; Tartari, Gianni

    2016-09-06

    Over the past two decades, we observed a substantial rise in ionic content that was mainly determined by the sulfate concentration at 20 remote high elevation lakes located in central southern Himalaya. At LCN9, which was monitored on an annual basis for the last 20 years, the sulfate concentrations increased over 4-fold. Among the main causes, we exclude a change in the composition of wet atmospheric deposition, as well as a possible influence of decrease in seasonal snow cover duration, which could have exposed larger basin surfaces to alteration processes. Glacier retreat likely was the main factor responsible for the observed increase of sulfate concentrations. We attribute this chemical changes mainly to the sulfide oxidation processes that occur in subglacial environments. Moreover, we observe that the weakened monsoon of the past two decades has only partially contributed to the lakes enrichment through runoff waters that are more concentrated in solutes or lowering the water table, resulting in more rock exposed to air and enhanced mineral oxidation.

  11. Concentrated Polymer Solutions are Different from Melts: Role of Entanglement Molecular Weight

    DEFF Research Database (Denmark)

    Huang, Qian; Mednova, Olga; Rasmussen, Henrik K.

    2013-01-01

    We compare viscoelastic properties of several polystyrene solutions and melts with the same number of entanglements. It is demonstrated that the modulus and time can be shifted such that the linear viscoelastic properties are identical provided the number of entanglements are identical. However...

  12. A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics

    KAUST Repository

    Kiefer, David; Yu, Liyang; Fransson, Erik; Gó mez, André s; Primetzhofer, Daniel; Amassian, Aram; Campoy-Quiles, Mariano; Mü ller, Christian

    2016-01-01

    Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm−1 and Seebeck coefficient from 100 to 60 μV K−1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m−1 K−1 gives rise to a thermoelectric Figure of merit ZT ∼ 10−4 that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.

  13. A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics

    KAUST Repository

    Kiefer, David

    2016-09-01

    Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm−1 and Seebeck coefficient from 100 to 60 μV K−1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m−1 K−1 gives rise to a thermoelectric Figure of merit ZT ∼ 10−4 that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.

  14. Thermodynamics of oxygen solutions in Fe-40% Ni-15% Cr melts containing Mn, Si, Ti, Al

    International Nuclear Information System (INIS)

    Dashevskij, V.Ya.; Makarova, N.N.; Grigorovich, K.V.; Kashin, V.I.; Polikarpova, N.V.

    2000-01-01

    Thermodynamic analysis and experimental studied are performed for oxygen solutions in Fe-40% Ni-15% Cr melts where Mn, Si, Ti, Al are used as reducing agents. It is revealed that in the alloys studied the affinity of reducing agents to oxygen essentially lower than in liquid iron, nickel and Fe-40% Ni alloy. This is explained by the fact that the oxygen activity in melts noticeably decreases due to a high chromium content whereas the activity of reducing elements increases in a rather less degree. The agreement between analytical and experimental results confirms the validity of the calculation technique [ru

  15. Tuning the processability, morphology and biodegradability of clay incorporated PLA/LLDPE blends via selective localization of nanoclay induced by melt mixing sequence

    Directory of Open Access Journals (Sweden)

    S. H. Jafari

    2013-01-01

    Full Text Available Polylactic acid (PLA/linear low density polyethylene (LLDPE blend nanocomposites based on two different commercial-grade nanoclays, Cloisite® 30B and Cloisite® 15A, were produced via different melt mixing procedures in a counter-rotating twin screw extruder. The effects of mixing sequence and clay type on morphological and rheological behaviors as well as degradation properties of the blends were investigated. The X-ray diffraction (XRD results showed that generally the level of exfoliation in 30B based nanocomposites was better than 15A based nanocomposites. In addition, due to difference in hydrophilicity and kind of modifiers in these two clays, the effect of 30B on refinement of dispersed phase and enhancement of biodegradability of PLA/LLDPE blend was much more remarkable than that of 15A nanoclay. Unlike the one step mixing process, preparation of nanocomposites via a two steps mixing process improved the morphology. Based on the XRD and TEM (transmission electron microscopic results, it is found that the mixing sequence has a remarkable influence on dispersion and localization of the major part of 30B nanoclay in the PLA matrix. Owing to the induced selective localization of nanoclays in PLA phase, the nanocomposites prepared through a two steps mixing sequence exhibited extraordinary biodegradability, refiner morphology and better melt elasticity.

  16. Properties of PP/MWCNT-COOH /PP composites made by melt mixing versus solution cast /melt mixing methods

    International Nuclear Information System (INIS)

    Reinholds, I; Roja, Z; Zicans, J; Meri, R Merijs; Bitenieks, J

    2015-01-01

    An approach on improvement of the properties of polypropylene / carbon nanotube (PP/CNT) composites is reported. PP blend compositions with carboxylic acid functionalized multi-walled carbon nanotubes (MWCNT-COOH) at filler content 1.0 wt.% were researched. One part of the composites was manufactured by direct thermoplastic mixing PP with the filler, but the other one was made from solution casted masterbatch with the following thermoplastic mixing. An increase of mechanical properties (Young's modulus, storage modulus and tensile strength), compared to an increase of glass transition temperature indicated a reinforcement effect of CNTs on PP matrix, determined from the tensile tests and differential mechanical analysis (DMA), while the elongation was reduced, compared to PP matrix. By differential scanning calorimetry (DSC) analysis, the effect of nanofiller on the reorganization of PP crystallites was observed. A noticeable enhanced effect on increase of the crystallization temperature was indicated for masterbatch manufactured composite. An increase of thermal stability was also observed, compared to pristine PP and the composite made by direct thermoplastic mixing PP with the filler

  17. Toughening of poly(lactic acid without sacrificing stiffness and strength by melt-blending with polyamide 11 and selective localization of halloysite nanotubes

    Directory of Open Access Journals (Sweden)

    B. J. Rashmi

    2015-08-01

    Full Text Available This paper aims at improving the mechanical behavior of biobased brittle amorphous polylactide (PLA by extrusion melt-blending with biobased semi-crystalline polyamide 11 (PA11 and addition of halloysite nanotubes (HNT. The morphological analysis of the PLA/PA11/HNT blends shows a strong interface between the two polymeric phases due to hydrogen bonding, and the migration of HNTs towards PA11 phase inducing their selective localization in one of the polymeric phases of the blend. A ‘salami-like’ structure is formed revealing a HNTs-rich tubular-like (fibrillar PA11 phase. Moreover, HNTs localized in the dispersed phase act as nucleating agents for PA11. Compared to neat PLA, this leads to a remarkable improvement in tensile and impact properties (elongation at break is multiplied by a factor 43, impact strength by 2, whereas tensile strength and stiffness are almost unchanged. The toughening mechanism is discussed based on the combined effect of resistance to crack propagation and nanotubes load bearing capacity due to the existence of the fibrillar structure. Thus, blending brittle PLA with PA11 and HNT nanotubes results in tailor-made PLA-based compounds with enhanced ductility without sacrificing stiffness and strength.

  18. Crystallization and melting behavior of poly(ethylene oxide) and its blend with styrene-based ionomer using time-resolved SAXS/WAXS experiments

    Energy Technology Data Exchange (ETDEWEB)

    Slusarczyk, CzesLaw, E-mail: cslusarczyk@ath.bielsko.pl [Institute of Textile Engineering and Polymer Materials, University of Bielsko-BiaLa, ul. Willowa 2, 43-309 Bielsko-BiaLa (Poland)

    2011-10-15

    Time-resolved synchrotron wide- and small-angle X-ray scattering experiments were used to investigate the crystallization behavior and microstructure development of neat poly(ethylene oxide) (PEO) and its 50/50 blend with ionomer containing 6.4 mol% of sodium acrylate. The apparent lateral crystal sizes D{sub (120)} and D{sub (112)/(004)} were derived from the WAXS profiles. It was found that D{sub (120)} and D{sub (112)/(004)} of PEO in the blend are almost independent of temperature and are smaller when compared to those of neat PEO sample. The evolution of morphological parameters extracted from time-resolved SAXS profiles such as the long period L, the lamellar crystal thickness l{sub C} and the amorphous layer thickness l{sub A}, shows that the crystallization process of neat PEO follows the nucleation theory. The lamellar crystal thickness l{sub C} shows a single linear dependence on inverse supercooling, over the whole temperature range investigated. In contrast, the crystallization process of PEO in the blend (i.e. in the presence of interactions with the ionomer) follows the nucleation theory only in the narrow supercooling range. It was found also that the morphology of the blend consists of a broad population of lamellar crystal thicknesses. During heating lamellae melt in the reversed sequence of their formation.

  19. Experimental study of natural convection melting of ice in salt solutions

    International Nuclear Information System (INIS)

    Fang, L.J.; Cheung, F.B.; Linehan, J.H.; Pedersen, D.R.

    1984-01-01

    The solid-liquid interface morphology and the micro-physical process near the moving phase boundary during natural convection melting of a horizontal layer of ice by an overlying pool of salt solution were studied experimentally. A cathetometer which amplifies the interface region was used to measure the ice melting rate. Also measured were the temperature transients of the liquid pool. Within the temperature and the density ratio ranges explored, the ice melting rate was found to be very sensitive to the ratio of pool-to-ice melt density but independent of pool-to-ice temperature difference. By varying the density ratio, three different flow regimes and morphologies of the solid-liquid interface were observed, with melt streamers emanating from the crests of the wavy interface into the pool in all three cases. The measured wavelengths (spacing) between the streamers for four different pairs of materials were correlated with the density ratio and found to agree favorably with the predictions of Taylor instability theory

  20. Bridging the Gap between Polymer Melts and Solutions in Extensional Rheology

    DEFF Research Database (Denmark)

    Huang, Qian; Hengeller, Ludovica; Alvarez, Nicolas J.

    2015-01-01

    Since its inception, the tube model of polymer dynamics has undergone several modifications to account for observed experimental trends. One trend that has yet to be captured by a modified version of the tube model is the observed experimental difference between concentrated polymer solutions...... per chain and are diluted in the same solvent (oligomeric styrene). We show that the difference in nonlinear rheological behavior between polystyrene melts reported by Bach et al.1 and polystyrene solutions reported by Bhattacharjee et al.2 and Sridhar et al.3 can be bridged by changing...... the polystyrene concentration. The results presented represent a unique benchmark for all future modifications to the tube model....

  1. Considerations in modelling the melting of fuel containing fission products and solute oxides

    International Nuclear Information System (INIS)

    Akbari, F.; Welland, M.J.; Lewis, B.J.; Thompson, W.T.

    2005-01-01

    It is well known that the oxidation of a defected fuel element by steam gives rise to an increase in O/U ratio with a consequent lowering of the incipient melting temperature. Concurrently, the hyperstoichiometry reduces the thermal conductivity thereby raising the centerline fuel pellet temperature for a fixed linear power. The development of fission products soluble in the UO 2 phase or, more important, the deliberate introduction of additive oxides in advanced CANDU fuel bundle designs further affects and generally lowers the incipient melting temperature. For these reasons, the modeling of the molten (hyperstoichiometric) UO 2 phase containing several solute oxides (ZrO 2 , Ln 2 O 3 and AnO 2 ) is advancing in the expectation of developing a moving boundary heat and mass transfer model aimed at better defining the limits of safe operating practice as burnup advances. The paper describes how the molten phase stability model is constructed. The redistribution of components across the solid-liquid interface that attends the onset of melting of a non-stoichiometric UO 2 containing several solutes will be discussed. The issues of how to introduce boundary conditions into heat transfer calculations consistent with the requirements of the Phase Rule will be addressed. The Stefan problem of a moving boundary associated with the solid/liquid interface sets this treatment apart from conventional heat and mass transfer problems. (author)

  2. Solution processing of polymer semiconductor: Insulator blends-Tailored optical properties through liquid-liquid phase separation control

    KAUST Repository

    Hellmann, Christoph

    2014-12-17

    © 2014 Wiley Periodicals, Inc. It has been demonstrated that the 0-0 absorption transition of poly(3-hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid-liquid phase separation process during solution deposition. Pronounced J-like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid-liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid-liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out-set of semiconductor:insulator architectures of pre-defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles.

  3. Solution processing of polymer semiconductor: Insulator blends-Tailored optical properties through liquid-liquid phase separation control

    KAUST Repository

    Hellmann, Christoph; Treat, Neil D.; Scaccabarozzi, Alberto D.; Razzell Hollis, Joseph; Fleischli, Franziska D.; Bannock, James H.; de Mello, John; Michels, Jasper J.; Kim, Ji-Seon; Stingelin, Natalie

    2014-01-01

    © 2014 Wiley Periodicals, Inc. It has been demonstrated that the 0-0 absorption transition of poly(3-hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid-liquid phase separation process during solution deposition. Pronounced J-like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid-liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid-liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out-set of semiconductor:insulator architectures of pre-defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles.

  4. An ordered metallic glass solid solution phase that grows from the melt like a crystal

    International Nuclear Information System (INIS)

    Chapman, Karena W.; Chupas, Peter J.; Long, Gabrielle G.; Bendersky, Leonid A.; Levine, Lyle E.; Mompiou, Frédéric; Stalick, Judith K.; Cahn, John W.

    2014-01-01

    We report structural studies of an Al–Fe–Si glassy solid that is a solid solution phase in the classical thermodynamic sense. We demonstrate that it is neither a frozen melt nor nanocrystalline. The glass has a well-defined solubility limit and rejects Al during formation from the melt. The pair distribution function of the glass reveals chemical ordering out to at least 12 Å that resembles the ordering within a stable crystalline intermetallic phase of neighboring composition. Under isothermal annealing at 305 °C the glass first rejects Al, then persists for approximately 1 h with no detectable change in structure, and finally is transformed by a first-order phase transition to a crystalline phase with a structure that is different from that within the glass. It is possible that this remarkable glass phase has a fully ordered atomic structure that nevertheless possesses no long-range translational symmetry and is isotropic

  5. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals.

    Science.gov (United States)

    Niazi, Muhammad R; Li, Ruipeng; Qiang Li, Er; Kirmani, Ahmad R; Abdelsamie, Maged; Wang, Qingxiao; Pan, Wenyang; Payne, Marcia M; Anthony, John E; Smilgies, Detlef-M; Thoroddsen, Sigurdur T; Giannelis, Emmanuel P; Amassian, Aram

    2015-11-23

    Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm(2) V(-1) s(-1), low threshold voltages oforganic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.

  6. Growth of binary solid solution single crystals and calculation of melt surface displacement velocity

    International Nuclear Information System (INIS)

    Agamaliyev, Z.A.; Tahirov, V.I.; Hasanov, Z.Y.; Quliyev, A.F.

    2007-01-01

    A binary solid solution single crystal growth method has been worked out. Cylinder feeding alloy with complex content distribution and truncated cone crucible are used. Second component distribution coefficient is more than unit. Content distribution along grown crystal is found by solving continuity equation. After reaching dynamic equilibrium state second component concentration in grown crystal is saturated the value of which is less than the average ona in the feeding alloy. Using the method Ge-Si perfect single crystals has been grown. Calculation method of melt surface displacement velocity has been offered as well

  7. Thermodynamic modeling of acidic gas solubility in aqueous solutions of MEA, MDEA and MEA-MDEA blends

    DEFF Research Database (Denmark)

    Vrachnos, Ath.; Kontogeorgis, Georgios; Voutsas, EC

    2006-01-01

    and extended in this study to the absorption of carbon dioxide into aqueous monoethanolamine (MEA) solutions and aqueous MDEA-MEA blends. The results of the model are compared with experimental data taken from the literature. Very satisfactory predictions of acidic gas vapor-liquid equilibrium over MDEA, MEA...

  8. Modelling Blended Solutions for Higher Education: Teaching, Learning, and Assessment in the Network and Mobile Technology Era

    Science.gov (United States)

    Bocconi, Stefania; Trentin, Guglielmo

    2014-01-01

    The article addresses the role of network and mobile technologies in enhancing blended solutions with a view to (a) enriching the teaching/learning processes, (b) exploiting the opportunities it offers for their observability, and hence for their monitoring and formative/summative assessment. It will also discuss how such potential can only be…

  9. Polystyrene/Hyperbranched Polyester Blends and Reactive Polystyrene/Hyperbranched Polyester Blends

    National Research Council Canada - National Science Library

    Mulkern, Thomas

    1999-01-01

    .... In this work, the incorporation of HBPs in thermoplastic blends was investigated. Several volume fractions of hydroxyl functionalized hyperbranched polyesters were melt blended with nonreactive polystyrene (PS...

  10. VOLATILECALC: A silicate melt-H2O-CO2 solution model written in Visual Basic for excel

    Science.gov (United States)

    Newman, S.; Lowenstern, J. B.

    2002-01-01

    We present solution models for the rhyolite-H2O-CO2 and basalt-H2O-CO2 systems at magmatic temperatures and pressures below ~ 5000 bar. The models are coded as macros written in Visual Basic for Applications, for use within MicrosoftR Excel (Office'98 and 2000). The series of macros, entitled VOLATILECALC, can calculate the following: (1) Saturation pressures for silicate melt of known dissolved H2O and CO2 concentrations and the corresponding equilibrium vapor composition; (2) open- and closed-system degassing paths (melt and vapor composition) for depressurizing rhyolitic and basaltic melts; (3) isobaric solubility curves for rhyolitic and basaltic melts; (4) isoplethic solubility curves (constant vapor composition) for rhyolitic and basaltic melts; (5) polybaric solubility curves for the two end members and (6) end member fugacities of H2O and CO2 vapors at magmatic temperatures. The basalt-H2O-CO2 macros in VOLATILECALC are capable of calculating melt-vapor solubility over a range of silicate-melt compositions by using the relationships provided by Dixon (American Mineralogist 82 (1997) 368). The output agrees well with the published solution models and experimental data for silicate melt-vapor systems for pressures below 5000 bar. ?? 2002 Elsevier Science Ltd. All rights reserved.

  11. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals

    KAUST Repository

    Niazi, Muhammad Rizwan; Li, Ruipeng; Li, Erqiang; Kirmani, Ahmad R.; Abdelsamie, Maged; Wang, Qingxiao; Pan, Wenyang; Payne, Marcia M.; Anthony, John E.; Smilgies, Detlef-M.; Thoroddsen, Sigurdur T; Giannelis, Emmanuel P.; Amassian, Aram

    2015-01-01

    Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm2 V−1 s−1, low threshold voltages of<1 V and low subthreshold swings <0.5 V dec−1). Our findings demonstrate that careful control over phase separation and crystallization can yield solution-printed polycrystalline organic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.

  12. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals

    KAUST Repository

    Niazi, Muhammad Rizwan

    2015-11-23

    Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm2 V−1 s−1, low threshold voltages of<1 V and low subthreshold swings <0.5 V dec−1). Our findings demonstrate that careful control over phase separation and crystallization can yield solution-printed polycrystalline organic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.

  13. Removal of Arsenic (V) from Aqueous Solutions Using Chitosan-Red Scoria and Chitosan-Pumice Blends.

    Science.gov (United States)

    Asere, Tsegaye Girma; Mincke, Stein; De Clercq, Jeriffa; Verbeken, Kim; Tessema, Dejene A; Fufa, Fekadu; Stevens, Christian V; Du Laing, Gijs

    2017-08-09

    In different regions across the globe, elevated arsenic contents in the groundwater constitute a major health problem. In this work, a biopolymer chitosan has been blended with volcanic rocks (red scoria and pumice) for arsenic (V) removal. The effect of three blending ratios of chitosan and volcanic rocks (1:2, 1:5 and 1:10) on arsenic removal has been studied. The optimal blending ratio was 1:5 (chitosan: volcanic rocks) with maximum adsorption capacity of 0.72 mg/g and 0.71 mg/g for chitosan: red scoria (Ch-Rs) and chitosan: pumice (Ch-Pu), respectively. The experimental adsorption data fitted well a Langmuir isotherm ( R ² > 0.99) and followed pseudo-second-order kinetics. The high stability of the materials and their high arsenic (V) removal efficiency (~93%) in a wide pH range (4 to 10) are useful for real field applications. Moreover, the blends could be regenerated using 0.05 M NaOH and used for several cycles without losing their original arsenic removal efficiency. The results of the study demonstrate that chitosan-volcanic rock blends should be further explored as a potential sustainable solution for removal of arsenic (V) from water.

  14. Evaluation of Graphite Fiber/Polyimide PMCs from Hot Melt vs Solution Prepreg

    Science.gov (United States)

    Shin, E. Eugene; Sutter, James K.; Eakin, Howard; Inghram, Linda; McCorkle, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Thesken, John; Fink, Jeffrey E.

    2002-01-01

    Carbon fiber reinforced high temperature polymer matrix composites (PMC) have been extensively investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines. The initial phase involves development of comprehensive composite material-process-structure-design-property-in-service performance correlations and database, especially for a high stiffness facesheet of various sandwich structures. Overview of the program plan, technical approaches and current multi-team efforts will be presented. During composite fabrication, it was found that the two large volume commercial prepregging methods (hot-melt vs. solution) resulted in considerably different composite cure behavior. Details of the process-induced physical and chemical modifications in the prepregs, their effects on composite processing, and systematic cure cycle optimization studies will be discussed. The combined effects of prepregging method and cure cycle modification on composite properties and isothermal aging performance were also evaluated.

  15. Evaluation of Graphite Fiber/Polyimide PMCs from Hot Melt versus Solution Prepreg

    Science.gov (United States)

    Shin, Eugene E.; Sutter, James K.; Eakin, Howard; Inghram, Linda; McCorkle, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Thesken, John; Fink, Jeffrey E.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Carbon fiber reinforced high temperature polymer matrix composites (PMC) have been extensively investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines. The initial phase involves development of comprehensive composite material-process-structure-design-property in-service performance correlations and database, especially for a high stiffness facesheet of various sandwich structures. Overview of the program plan, technical approaches and current multi-team efforts will be presented. During composite fabrication, it was found that the two large volume commercial prepregging methods (hot-melt vs. solution) resulted in considerably different composite cure behavior. Details of the process-induced physical and chemical modifications in the prepregs, their effects on composite processing, and systematic cure cycle optimization studies will be discussed. The combined effects of prepregging method and cure cycle modification on composite properties and isothermal aging performance were also evaluated.

  16. Solution processed ternary blend nano-composite charge regulation layer to enhance inverted OLED performances

    Science.gov (United States)

    Kaçar, Rifat; Mucur, Selin Pıravadılı; Yıldız, Fikret; Dabak, Salih; Tekin, Emine

    2018-04-01

    Inverted bottom-emission organic light emitting diodes (IBOLEDs) have attracted increasing attention due to their exceptional air stability and applications in active-matrix displays. For gaining high IBOLED device efficiencies, it is crucial to develop an effective strategy to make the bottom electrode easy for charge injection and transport. Charge selectivity, blocking the carrier flow towards the unfavourable side, plays an important role in determining charge carrier balance and accordingly radiative recombination efficiency. It is therefore highly desirable to functionalize an interfacial layer which will perform many different tasks simultaneously. Here, we contribute to the hole-blocking ability of the zinc oxide/polyethyleneimine (ZnO:PEI) nano-composite (NC) interlayer with the intention of increasing the OLED device efficiency. With this purpose in mind, a small amount of 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBi) was added as a hole-blocking molecule into the binary blend of ZnO and PEI solution. The device with a ternary ZnO:PEI:TPBi NC interlayer achieved a maximum current efficiency of 38.20 cd A-1 and a power efficiency of 34.29 lm W-1 with a luminance of 123 200 cd m-2, which are high performance parameters for inverted device architecture. The direct comparisons of device performances incorporating ZnO only, ZnO/PEI bilayers, and ZnO:PEI binary NC counterparts were also performed, which shed light on the origin of device performance enhancement.

  17. Synthesis and Characterization of Solution and Melt Processible Poly(Acrylonitrile-Co-Methyl Acrylate) Statistical Copolymers

    Science.gov (United States)

    Pisipati, Padmapriya

    Polyacrylonitrile (PAN) and its copolymers are used in a wide variety of applications ranging from textiles to purification membranes, packaging material and carbon fiber precursors. High performance polyacrylonitrile copolymer fiber is the most dominant precursor for carbon fibers. Synthesis of very high molecular weight poly(acrylonitrile-co-methyl acrylate) copolymers with weight average molecular weights of at least 1.7 million g/mole were synthesized on a laboratory scale using low temperature, emulsion copolymerization in a closed pressure reactor. Single filaments were spun via hybrid dry-jet gel solution spinning. These very high molecular weight copolymers produced precursor fibers with tensile strengths averaging 954 MPa with an elastic modulus of 15.9 GPa (N = 296). The small filament diameters were approximately 5 im. Results indicated that the low filament diameter that was achieved with a high draw ratio, combined with the hybrid dry-jet gel spinning process lead to an exponential enhancement of the tensile properties of these fibers. Carbon fibers for polymer matrix composites are currently derived from polyacrylonitrile copolymer fiber precursors where solution spinning accounts for ˜40 % of the total fiber production cost. To expand carbon fiber applications into the automotive industry, the cost of the carbon fiber needs to be reduced from 8 to ˜3-5. In order to develop an alternative melt processing route several benign plasticizers have been investigated. A low temperature, persulfate-metabisulfite initiated emulsion copolymerization was developed to synthesize poly(acrylonitrile-co-methyl acrylate) copolymers with acrylonitrile contents between 91-96 wt% with a molecular weight range of 100-200 kg/mol. This method was designed for a potential industrial scale up. Furthermore, water was investigated as a potential melting point depressant for these copolymers. Twenty-five wt% water lead to a decrease in the Tm of a 93/7 wt/wt % poly

  18. On the chain length dependence of local correlations in polymer melts and a perturbation theory of symmetric polymer blends.

    Science.gov (United States)

    Morse, David C; Chung, Jun Kyung

    2009-06-14

    The self-consistent field (SCF) approach to the thermodynamics of dense polymer liquids is based on the idea that short-range correlations in a polymer liquid are almost independent of how monomers are connected into polymers over larger scales. Some limits of this idea are explored in the context of a perturbation theory for symmetric polymer blends. We consider mixtures of two structurally identical polymers, A and B, in which the AB monomer pair interaction differs slightly from the AA and BB interactions by an amount proportional to a parameter alpha. An expansion of the free energy to first order in alpha yields an excess free energy of mixing per monomer of the form alphaz(N)phi(A)phi(B) in both lattice and continuum models, where z(N) is a measure of the number of intermolecular near neighbors per monomer in a one-component (alpha=0) reference liquid with chains of length N. The quantity z(N) decreases slightly with increasing N because the concentration of intramolecular near neighbors is slightly higher for longer chains, creating a slightly deeper intermolecular correlation hole. We predict that z(N)=z(infinity)[1+betaN(-1/2)], where N is an invariant degree of polymerization and beta=(6/pi)(3/2) is a universal coefficient. This and related predictions about the slight N dependence of local correlations are confirmed by comparison to simulations of a continuum bead-spring model and to published lattice Monte Carlo simulations. We show that a renormalized one-loop theory for blends correctly describes this N dependence of local liquid structure. We also propose a way to estimate the effective interaction parameter appropriate for comparisons of simulation data to SCF theory and to coarse-grained theories of corrections to SCF theory, which is based on an extrapolation of perturbation theory to the limit N-->infinity.

  19. Low-temperature solution-processed zinc oxide field effect transistor by blending zinc hydroxide and zinc oxide nanoparticle in aqueous solutions

    Science.gov (United States)

    Shin, Hyeonwoo; Kang, Chan-mo; Baek, Kyu-Ha; Kim, Jun Young; Do, Lee-Mi; Lee, Changhee

    2018-05-01

    We present a novel methods of fabricating low-temperature (180 °C), solution-processed zinc oxide (ZnO) transistors using a ZnO precursor that is blended with zinc hydroxide [Zn(OH)2] and zinc oxide hydrate (ZnO • H2O) in an ammonium solution. By using the proposed method, we successfully improved the electrical performance of the transistor in terms of the mobility (μ), on/off current ratio (I on/I off), sub-threshold swing (SS), and operational stability. Our new approach to forming a ZnO film was systematically compared with previously proposed methods. An atomic forced microscopic (AFM) image and an X-ray photoelectron spectroscopy (XPS) analysis showed that our method increases the ZnO crystallite size with less OH‑ impurities. Thus, we attribute the improved electrical performance to the better ZnO film formation using the blending methods.

  20. Comparison of Chain Conformation of Poly(vinyl alcohol) in Solutions and Melts from Quantum Chemistry Based Molecular Dynamics Simulations

    Science.gov (United States)

    Jaffe, Richard; Han, Jie; Matsuda, Tsunetoshi; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Confirmations of 2,4-dihydroxypentane (DHP), a model molecule for poly(vinyl alcohol), have been studied by quantum chemistry (QC) calculations and molecular dynamics (MD) simulations. QC calculations at the 6-311G MP2 level show the meso tt conformer to be lowest in energy followed by the racemic tg, due to intramolecular hydrogen bond between the hydroxy groups. The Dreiding force field has been modified to reproduce the QC conformer energies for DHP. MD simulations using this force field have been carried out for DHP molecules in the gas phase, melt, and CHCl3 and water solutions. Extensive intramolecular hydrogen bonding is observed for the gas phase and CHCl3 solution, but not for the melt or aqueous solution, Such a condensed phase effect due to intermolecular interactions results in a drastic change in chain conformations, in agreement with experiments.

  1. Phase Behavior, Thermal Stability and Rheological Properties of PPEK/PC Blends

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Phase behavior, thermal stability and rheological properties of the blends of poly(phthalazinone ether ketone) (PPEK)with bisphenol-A polycarbonate (PC) prepared by solution coprecipitation were studied using differential scanning calorimetry (DSC), Frourier-Transform IR spectroscopy (FT-IR), thermogravimetric analysis (TGA) and capillary rheometer. The DSC results indicated that PPEK/PC blends are almost immiscible in full compositions. FT-IR investigation showed that there were no apparent specific interactions between the constituent polymers. The blends keep excellent thermal stability and the addition of PC degrades the thermal stability of blends to some degree. The thermal degradation processes of the blends are much similar to that of PC. The studies on rheological properties of blends show that blending PPEK with PC is beneficial to reducing the melt viscosity and improving the appearance of PPEK.

  2. Topology and Shape Control for Assemblies of Block Copolymer Blends in Solution

    KAUST Repository

    Moreno Chaparro, Nicolas; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor; Calo, Victor M.

    2015-01-01

    We study binary blends of asymmetric diblock copolymers (AB/AC) in selective solvents with a mesoscale model. We investigate the morphological transitions induced by the concentration of the AC block copolymer and the difference in molecular weight between the AB and AC copolymers, when segments B and C exhibit hydrogen-bonding interactions. To the best of our knowledge, this is the first work modeling mixtures of block copolymers with large differences in molecular weight. The coassembly mechanism localizes the AC molecules at the interface of A and B domains and induces the swelling of the B-rich domains. The coil size of the large molecular weight block copolymer depends only on the concentration of the short block copolymer (AC or AB), regardless of the B–C interactions. However, the B–C interactions control the morphological transitions that occur in these blends.

  3. Topology and Shape Control for Assemblies of Block Copolymer Blends in Solution

    KAUST Repository

    Moreno Chaparro, Nicolas

    2015-10-27

    We study binary blends of asymmetric diblock copolymers (AB/AC) in selective solvents with a mesoscale model. We investigate the morphological transitions induced by the concentration of the AC block copolymer and the difference in molecular weight between the AB and AC copolymers, when segments B and C exhibit hydrogen-bonding interactions. To the best of our knowledge, this is the first work modeling mixtures of block copolymers with large differences in molecular weight. The coassembly mechanism localizes the AC molecules at the interface of A and B domains and induces the swelling of the B-rich domains. The coil size of the large molecular weight block copolymer depends only on the concentration of the short block copolymer (AC or AB), regardless of the B–C interactions. However, the B–C interactions control the morphological transitions that occur in these blends.

  4. Lipídios estruturados obtidos a partir da mistura de gordura de frango, sua estearina e triacilgliceróis de cadeia média: II- pontos de amolecimento e fusão Structured lipids from chicken fat, its stearin, and medium chain triacyglycerol blends: II- softening and melting points

    Directory of Open Access Journals (Sweden)

    Ming Chih Chiu

    2008-01-01

    Full Text Available The aim of the present work is to investigate the effects of blending and chemical interesterification reactions on the softening and melting behavior of chicken fat, its stearin and medium chain triacylglycerols, and blends thereof in various ratios. Chemical interesterification is a promising alternative to the current processes of modifying the physical properties of fats. In the experimental design 7 samples corresponding to 7 different blend proportions were used. The results were represented in triangular diagrams. The addition of stearin influenced the softening and melting points. The mixture response surface methodology proved to be an extremely useful tool for the optimization of the fat mixtures.

  5. A one pot solution blending method for highly conductive poly (methyl methacrylate)-highly reduced graphene nanocomposites

    Science.gov (United States)

    Balasubramaniyan, R.; Pham, Viet Hung; Jang, Jinhee; Hur, Seung Hyun; Chung, Jin Suk

    2013-11-01

    PMMA-HRG (Poly (methyl methacrylate)-highly reduced graphene) nanocomposites were prepared by a solution blending method, and the effect of HRG loading on the electrical, mechanical, and thermal properties of the materials was studied. PMMA-HRG nanocomposites achieved a percolation threshold of 0.37 vol.% (0.039 S/m) and a maximum electrical conductivity as high as 85 S/m at a loading of 2.7 vol. %. The homogeneous dispersion of HRG sheets overcame aggregation in solution and gave a uniformly distributed single layer graphene in the PMMA matrix. The T g of PMMA-HRG increased by 19°C with a loading of 0.27 vol. %, and the storage modulus of the nanocomposites increased by 37% in the glassy region with a loading of 2.7 vol. %.

  6. Blended language learning: An effective solution but not without its challenges

    Directory of Open Access Journals (Sweden)

    Christopher Johnson

    2014-09-01

    Full Text Available The study discussed in this investigation is part of a larger collaborative initiative between Laureate Education and Cambridge University Press (LEP-CUP collaboration. This second phase of the research, completed in 2013, aimed to further explore the conclusions from phase 1 and set out to identify effective and appropriate best practice blended learning models within the network. A study was set up with 36 teachers, all experienced ELT teachers with differing levels of experience in blended language teaching, who took part in extended focus groups discussions sessions prompted by a series of questions. Responses from these groups of teachers indicated that a flipped classroom model is beginning to develop. The authors of this study found evidence of changing approaches to language teaching, changes that are not without their challenges, but for a number of the teachers who participated in this research sample these changes are bringing considerable benefit to their teaching experience. This study offered teachers another opportunity to become change managers for students who need to acquire the autonomous, life-long learning skills of the 21st as they transition into professional life. The scope of this study cannot address and solve all of the issues involved in this process, but it provides a step towards that end. DOI: 10.18870/hlrc.v4i3.213

  7. Estimation of effect of inorganic salts on state of melts and carbamide solutions

    International Nuclear Information System (INIS)

    Dymnikov, N.S.; Yakunin, N.A.; Baranov, A.V.; Moryganov, A.P.

    1995-01-01

    The character of coordination in the systems carbamide-LiCl and carbamide-CaCl 2 has been shown on the basis of IR spectroscopy data. Interrelation between complexing in the melt carbamide-inorganic salt and thermal resistance of amide compound has been ascertained. 3 refs.; 3 figs

  8. Organisation and melting of solution grown truncated lozenge polyethylene single crystals

    NARCIS (Netherlands)

    Loos, J.; Tian, M.

    2003-01-01

    Morphological features and the melting behaviour of truncated lozenge crystals have been studied. For the crystals investigated, the heights of the (110) and the (200) sectors were measured to be 14.5 and 12.7 nm, respectively, using atomic force microscopy (AFM) in contact and non-contact mode.

  9. Single track and single layer formation in selective laser melting of niobium solid solution alloy

    Directory of Open Access Journals (Sweden)

    Yueling GUO

    2018-04-01

    Full Text Available Selective laser melting (SLM was employed to fabricate Nb-37Ti-13Cr-2Al-1Si (at% alloy, using pre-alloyed powders prepared by plasma rotating electrode processing (PREP. A series of single tracks and single layers under different processing parameters was manufactured to evaluate the processing feasibility by SLM, including laser power, scanning speed, and hatch distance. Results showed that continuous single tracks could be fabricated using proper laser powers and scanning velocities. Both the width of a single track and its penetration depth into a substrate increased with an increase of the linear laser beam energy density (LED, i.e., an increase of the laser power and a decrease of the scanning speed. Nb, Ti, Si, Cr, and Al elements distributed heterogeneously over the melt pool in the form of swirl-like patterns. An excess of the hatch distance was not able to interconnect neighboring tracks. Under improper processing parameters, a balling phenomenon occurred, but could be eliminated with an increased LED. This work testified the SLM-processing feasibility of Nb-based alloy and promoted the application of SLM to the manufacture of niobium-based alloys. Keywords: Additive manufacturing, Melt pool, Niobium alloy, Powder metallurgy, Selective laser melting

  10. A Moodle-based blended learning solution for physiology education in Montenegro: a case study.

    Science.gov (United States)

    Popovic, Natasa; Popovic, Tomo; Rovcanin Dragovic, Isidora; Cmiljanic, Oleg

    2018-03-01

    This study evaluates the impact of web-based blended learning in the physiology course at the Faculty of Medicine, University of Montenegro. The two main goals of the study were: to determine the impact of e-learning on student success in mastering the course, and to assess user satisfaction after the introduction of e-learning. The study compared a group of students who attended the physiology course before, with a group of students who attended the physiology course after the Moodle platform was fully implemented as an educational tool. Formative and summative assessment scores were compared between these two groups. The impact of high vs. low Moodle use on the assessment scores was analyzed. The satisfaction among Moodle users was assessed by the survey. The study found that attendance of face-to-face lectures had a positive impact on academic performance. The introduction of Moodle in the presented model of teaching increased interest of students, attendance of face-to-face lectures, as well as formative and summative scores. High frequency of Moodle use was not always associated with better academic performance, suggesting that the introduction of a new method of teaching was most likely equally accepted by low- and high-achieving students. Most of the students agreed that Moodle was easy to use and it complemented traditional teaching very well, but it could not completely replace traditional face-to-face lectures. The study supports continuing the use of web-based learning in a form of blended learning for physiology, as well as for other courses in medical education.

  11. Anodic solution of alkali earth alloys in potassium chloride-sodium chloride melts

    International Nuclear Information System (INIS)

    Volkovich, A.V.

    1997-01-01

    Generalized results of studying the process of anodic dissolution of alkaline-earth metal alloys with zinc, aluminium and copper in the melts of KCl-NaCl equimolar mixture containing alkaline-earth metal chlorides, are presented. It is shown that during dissolution of both pure liquid metals and their alloys there is no electrode polarization in the range of the current densities lower or comparable in their values to corrosion current

  12. Physical-biopolymer characterization of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) blended with natural rubber latex

    Energy Technology Data Exchange (ETDEWEB)

    Kuntanoo, K., E-mail: thip-kk@hotmail.com [Graduate School of Khon Kaen University, Khon Kaen, 40002 Thailand (Thailand); Promkotra, S., E-mail: sarunya@kku.ac.th [Department of Geotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 Thailand (Thailand); Kaewkannetra, P., E-mail: paknar@kku.ac.th [Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 Thailand (Thailand)

    2015-03-30

    A biopolymer of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is blended with bio-based materials, natural rubber latex, to improve their microstructures. The various ratios between PHBV and natural rubber latex are examined to develop their mechanical properties. In general, physical properties of PHBV are hard, brittle and low flexible while natural rubber (NR) is presented itself as high elastic materials. Concentrations of the PHBV solution are constituted at 1%, 2% and 3% (w/v). The mixtures of their PHBV solutions to natural rubber latex are produced the blended films in three different ratios of 4:6, 5:5 and 6:4, respectively. They are characterized by appearance analyses which are the scanning electron microscope (SEM), universal testing machine (UTM) and differential scanning calorimetry (DSC). The SEM photomicrographs of the blended films and the controlled PHBV can provide the void distribution in the range of 12-14% and 19-21%, respectively. For mechanical properties of the blended films, the various elastic moduli of 1%, 2% and 3% (w/v) PHBV are the average of 773, 956 and 1,007 kPa, respectively. The tensile strengths of the blends increase with the increased concentrations of PHBV, similarly trend to the elastic modulus. The crystallization and melting behavior of unmixed PHBV and the blends are determined by DSC. Melting transition temperatures (T{sub m}) of the unmixed PHBV are stated two melting peak at 154°C and 173°C. Besides, the melting peaks of the blends alter in the range of 152-156°C and 168-171°C, respectively. According to morphology of the blends, the void distribution decreases twice compared to the unmixed PHBV. The results of mechanical properties and thermal analysis indicate that the blended PHBV can be developed their properties by more resilient and wide range of temperature than usual.

  13. Cold Storage Stability of Blend Oil from Soybean Oil and Palm Oil with Different Melting Points%大豆油调和不同熔点棕榈液油的冷藏试验

    Institute of Scientific and Technical Information of China (English)

    吴苏喜; 刘立萍; 李慧; Ooi Cheng KEAT

    2012-01-01

    In order to provide references for preparing blend oil from soybean oil and palm oil with different melting points, the effects of different types and amounts of anti-crystallization agent and soybean oil-to-palm oil ratio on the cold storage stability of blend oil were studied. The best anti-crystallization agent was hydroxyl stearin at a dose of 0.025%. The blend oil A composed of 70% soybean oil, 30% palm olein with melting point of 10 ℃ and 0.025% hydroxy stearin could be kept transparent for more than 16 hours at 0 ℃ and more than 72 h at 5℃. The blend oil B composed of 70% soybean oil, 30% palm olein with melting point of 18 ℃ and 0.025% hydroxy stearin could be kept transparent for more than 30 h at 10℃. The blend oil C composed of 60% soybean oil, 40% palm olein with melting point of 18 ℃ and 0.025% hydroxy stearin could be kept transparent for more than 20 h at 15℃. The blend oil D composed of 60% soybean oil, 40% μm olein with melting point of 24℃ and 0.025% hydroxy stearin could be kept transparent for more than 10 h.%为了制备适应不同储存温度的豆油.棕榈液油调和油,以大豆油与不同熔点棕榈液油为原料,采用冷藏试验方法优化抑晶剂种类、用量和调和油配方。结果表明,羟基硬脂精是效果最佳的抑晶剂,其最佳添加量为0.025%;调和油1(豆油70%+10℃棕榈油30%+羟基硬脂精0.025%)在0℃环境下储存可保持16h以上澄清透亮,在5℃条件可保持72h以上澄清透亮;调和油2(豆油70%+18℃棕榈油30%+羟基硬脂精0.025%)在10℃环境下可保持30h以上澄清透亮;调和油3(豆油60%+18℃棕榈油40%+羟基硬脂精0.025%)在15℃环境下可保持20h以上澄清透亮;调和油4(豆油60%+24℃棕榈油40%+羟基硬脂精0.025%)在20℃环境下可保持10h以上澄清透亮。

  14. The effect of starch amylose content on the morphology andproperties of melt-processed butyl-etherified starch/poly[(butylenesuccinate)-co-adipate] blends

    CSIR Research Space (South Africa)

    Maubane, Lesego T

    2017-01-01

    Full Text Available structures. Thermogravimetric analysis revealed that the thermal stability of the blends decreased with increasing starch loading for all starch types with varying amylose content; however, the nature of the starch controlled the mechanical properties...

  15. Miscibility evolution of polycarbonate/polystyrene blends during compounding

    DEFF Research Database (Denmark)

    Chuai, Chengzhi; Almdal, Kristoffer; Johannsen, Ib

    2002-01-01

    The miscibility evolution of polycarbonate/polystyrene (PC/PS) blends during the compounding process in three blending methods of industrial relevance, namely melt blending, remelt blending in a twin-screw extruder and third melt blending in an injection molding machine, was investigated...... polymer in the other. The observed solubility strongly depends on blend composition and blending method. The T-g measurements showed maximum mutual solubility around 50/50 composition. The miscibility of PC/PS blended after the third stage (melt injection molding) was higher than that after the first...... by measuring their glass transition temperatures (T-g) and their specific heat increment (DeltaC(p)). Differential scanning calorimetry (DSC) was used to examine nine blend compositions. Shifts in glass transition temperature (T-g) of the two phases in melt-mixed PC/PS blends suggest partial miscibility of one...

  16. Morphology Development in Solution-Processed Functional Organic Blend Films: An In Situ Viewpoint.

    Science.gov (United States)

    Richter, Lee J; DeLongchamp, Dean M; Amassian, Aram

    2017-05-10

    Solution-processed organic films are a facile route to high-speed, low cost, large-area deposition of electrically functional components (transistors, solar cells, emitters, etc.) that can enable a diversity of emerging technologies, from Industry 4.0, to the Internet of things, to point-of-use heath care and elder care. The extreme sensitivity of the functional performance of organic films to structure and the general nonequilibrium nature of solution drying result in extreme processing-performance correlations. In this Review, we highlight insights into the fundamentals of solution-based film deposition afforded by recent state-of-the-art in situ measurements of functional film drying. Emphasis is placed on multimodal studies that combine surface-sensitive X-ray scattering (GIWAXS or GISAXS) with optical characterization to clearly define the evolution of solute structure (aggregation, crystallinity, and morphology) with film thickness.

  17. Morphology Development in Solution-Processed Functional Organic Blend Films: An In Situ Viewpoint

    KAUST Repository

    Richter, Lee J.

    2017-04-17

    Solution-processed organic films are a facile route to high-speed, low cost, large-area deposition of electrically functional components (transistors, solar cells, emitters, etc.) that can enable a diversity of emerging technologies, from Industry 4.0, to the Internet of things, to point-of-use heath care and elder care. The extreme sensitivity of the functional performance of organic films to structure and the general nonequilibrium nature of solution drying result in extreme processing-performance correlations. In this Review, we highlight insights into the fundamentals of solution-based film deposition afforded by recent state-of-the-art in situ measurements of functional film drying. Emphasis is placed on multimodal studies that combine surface-sensitive X-ray scattering (GIWAXS or GISAXS) with optical characterization to clearly define the evolution of solute structure (aggregation, crystallinity, and morphology) with film thickness.

  18. Solution-processed small molecule-polymer blend organic thin-film transistors with hole mobility greater than 5 cm 2/Vs

    KAUST Repository

    Smith, Jeremy N.

    2012-04-10

    Using phase-separated organic semiconducting blends containing a small molecule, as the hole transporting material, and a conjugated amorphous polymer, as the binder material, we demonstrate solution-processed organic thin-film transistors with superior performance characteristics that include; hole mobility >5 cm 2/Vs, current on/off ratio ≥10 6 and narrow transistor parameter spread. These exceptional characteristics are attributed to the electronic properties of the binder polymer and the advantageous nanomorphology of the blend film. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Solution-processed small molecule-polymer blend organic thin-film transistors with hole mobility greater than 5 cm 2/Vs

    KAUST Repository

    Smith, Jeremy N.; Zhang, Weimin; Sougrat, Rachid; Zhao, Kui; Li, Ruipeng; Cha, Dong Kyu; Amassian, Aram; Heeney, Martin J.; McCulloch, Iain A.; Anthopoulos, Thomas D.

    2012-01-01

    Using phase-separated organic semiconducting blends containing a small molecule, as the hole transporting material, and a conjugated amorphous polymer, as the binder material, we demonstrate solution-processed organic thin-film transistors with superior performance characteristics that include; hole mobility >5 cm 2/Vs, current on/off ratio ≥10 6 and narrow transistor parameter spread. These exceptional characteristics are attributed to the electronic properties of the binder polymer and the advantageous nanomorphology of the blend film. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Morphology Development in Solution-Processed Functional Organic Blend Films: An In Situ Viewpoint

    KAUST Repository

    Richter, Lee J.; DeLongchamp, Dean M.; Amassian, Aram

    2017-01-01

    .0, to the Internet of things, to point-of-use heath care and elder care. The extreme sensitivity of the functional performance of organic films to structure and the general nonequilibrium nature of solution drying result in extreme processing-performance correlations

  1. High-performance porous polylactide stereocomplex crystallite scaffolds prepared by solution blending and salt leaching.

    Science.gov (United States)

    Xie, Yan; Lan, Xiao-Rong; Bao, Rui-Ying; Lei, Yang; Cao, Zhi-Qiang; Yang, Ming-Bo; Yang, Wei; Wang, Yun-Bing

    2018-09-01

    Biodegradable stereocomplex crystallite polylactide (SC-PLA) porous scaffolds with well-defined pore structures, high heat resistance, mechanical strength, and solvent resistance together with good biocompatibility, were obtained through solution casting of mixed poly(l-lactide) and poly(d-lactide) solution and subsequent leaching of sodium chloride particles. The pore structure of the SC-PLA scaffolds can be perfectly maintained after a high-pressure sterilization treatment at 121 °C, owing to the extensive formation of stereocomplex crystallites in the scaffolds. In vivo pilot study demonstrates that the fibroblasts of rats can infiltrate into the SC-PLA scaffolds well through the open pores. Degradation tests in phosphate-buffered saline solution reveal that the structure of SC-PLA scaffolds was quite stable due to the enhanced hydrolysis-resistance and improved mechanical properties of the scaffolds. These results reveal that SC-PLA scaffolds with good biocompatibility are potentially to be used as implanted biomaterials for the regeneration and restoration of tissues or organs. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    International Nuclear Information System (INIS)

    Kruger, A.A.; Olson, R.A.; Tennis, P.D.

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO 3 , quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite

  3. Morphology Evolution of Polycarbonate-Polystyrene Blends During Compounding

    DEFF Research Database (Denmark)

    Chuai, Chengzhi; Almdal, Kristoffer; Johannsen, Ib

    2001-01-01

    The morphology evolution of polycarbonate-polystyrene (PC/PS) blends during the compounding process in three blending methods of industrial relevance, namely melt blending, re-melt blending in a twin-screw extruder and tri-melt blending in an injection-moulding machine, was investigated using......-empirical model. The results show that the formation of co-continuous morphology strongly depends on blend composition and melt blending method, whereas the model prediction for phase inversion deviates from the experimental values. Further, we found that the initial mechanism of morphology evolution involves...... scanning electron microscopy (SEM) Co examine nine blend compositions. Blends were prepared at compositions where phase inversion was expected to occur according to model predictions. The experimental results were compared to the values of the point of phase inversion calculated with the semi...

  4. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tucho, Wakshum M., E-mail: wakshum.m.tucho@uis.no [Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, N-4036 Stavanger (Norway); Cuvillier, Priscille [Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, N-4036 Stavanger (Norway); Sjolyst-Kverneland, Atle [Roxar/Emerson Process Management, POB 112, 4065 Stavanger (Norway); Hansen, Vidar [Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, N-4036 Stavanger (Norway)

    2017-03-24

    The microstructure of Additive Manufactured (AM) Inconel 718 in general and Selective Laser Melting (SLM), in particular is different from the material produced by conventional methods due to the rapid solidification process associated with the former. As a result, the widely adapted standard solution heat treatment temperature (<1100 °C) for conventional material is found to be not high enough for materials fabricated with SLM method in order to dissolve Laves and other microsegregated phases for releasing the ageing constituents (Nb, Ti, Al) sufficiently into the alloy matrix. In this study, sample of Inconel 718 fabricated with SLM method were solution heat-treated to 1100 °C or 1250 °C at different hold times to investigate the dissolution of macro- and micro-segregated precipitates. Investigations of microstructure and segregation in as-printed and solution heat-treated states have been studied using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM). Measurement of material hardness was performed with Vickers hardness tests. The microstructure of the as-printed parts exhibit non-columnar grains, but contain well-shaped columnar/cellular sub-grains. The intergranular boundaries are decorated with high density of dislocations and segregated particles. Tremendous stress relief and grain coarsening were observed with solution heat treatment. In particular, at 1250 °C annealing, the sub-grains, including precipitates and dislocation networks along the sub-grain boundaries, were entirely dissolved. However, the 1100/1250 °C solution heat treatment scheme could not dissolve microsegregated precipitates and carbides completely. Details of the analysis on microstructure, dissolution of precipitates and hardness are presented.

  5. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment

    International Nuclear Information System (INIS)

    Tucho, Wakshum M.; Cuvillier, Priscille; Sjolyst-Kverneland, Atle; Hansen, Vidar

    2017-01-01

    The microstructure of Additive Manufactured (AM) Inconel 718 in general and Selective Laser Melting (SLM), in particular is different from the material produced by conventional methods due to the rapid solidification process associated with the former. As a result, the widely adapted standard solution heat treatment temperature (<1100 °C) for conventional material is found to be not high enough for materials fabricated with SLM method in order to dissolve Laves and other microsegregated phases for releasing the ageing constituents (Nb, Ti, Al) sufficiently into the alloy matrix. In this study, sample of Inconel 718 fabricated with SLM method were solution heat-treated to 1100 °C or 1250 °C at different hold times to investigate the dissolution of macro- and micro-segregated precipitates. Investigations of microstructure and segregation in as-printed and solution heat-treated states have been studied using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM). Measurement of material hardness was performed with Vickers hardness tests. The microstructure of the as-printed parts exhibit non-columnar grains, but contain well-shaped columnar/cellular sub-grains. The intergranular boundaries are decorated with high density of dislocations and segregated particles. Tremendous stress relief and grain coarsening were observed with solution heat treatment. In particular, at 1250 °C annealing, the sub-grains, including precipitates and dislocation networks along the sub-grain boundaries, were entirely dissolved. However, the 1100/1250 °C solution heat treatment scheme could not dissolve microsegregated precipitates and carbides completely. Details of the analysis on microstructure, dissolution of precipitates and hardness are presented.

  6. Mechanical properties, morphology, and hydrolytic degradation behavior of polylactic acid / natural rubber blends

    Science.gov (United States)

    Buys, Y. F.; Aznan, A. N. A.; Anuar, H.

    2018-01-01

    Due to its biodegradability and renewability, polylactic acid (PLA) has been receiving enormous attention as a potential candidate to replace petroleum based polymers. However, PLA has limitation due to its inherent brittleness. In order to overcome this limitation, blending PLA with elastomeric materials such as natural rubber (NR) are commonly reported. In previous, several researches on PLA/NR blend had been reported, with most of them evaluated the mechanical properties. On the other hand, study of degradation behavior is significance of importance, as controlling materials degradation is required in some applications. This research studied the effect of blend composition on mechanical properties, morphology development, and hydrolytic degradation behavior of PLA/NR blends. Various compositions of PLA/NR blends were prepared by melt blending technique. Tensile test and impact test of the blends were performed to evaluate the mechanical properties. Addition of NR improved the elongation at break and impact strength of the blends, but reduced the tensile strength and stiffness of the specimens. Dynamic Mechanical Analysis (DMA) measurements of the blends displayed two peaks at temperature -70˚C which corresponded to T g of NR and 65˚C which corresponded to T g of PLA. Field Emission Scanning Electron Microscopy (FE-SEM) micrograph of 70/30 PLA/NR specimen also showed two distinct phases, which lead to indication that PLA/NR blends are immiscible. Hydrolytic degradation behavior was evaluated by measuring the remaining weight of the samples immersed in sodium hydroxide solution for a predetermined times. It was shown that the degradation behavior of PLA/NR blends is affected by composition of the blends, with 100 PLA and 70/30 PLA/NR blend showed the fastest degradation rate and 100 NR displayed the slowest one.

  7. Non-isothermal crystallization of PET/PLA blends

    International Nuclear Information System (INIS)

    Chen, Huipeng; Pyda, Marek; Cebe, Peggy

    2009-01-01

    Binary blends of poly(ethylene terephthalate) with poly(lactic acid), PET/PLA, were studied by differential scanning calorimetry and X-ray scattering. The PET/PLA blends, prepared by solution casting, were found to be miscible in the melt over the entire composition range. Both quenched amorphous and semicrystalline blends exhibit a single, composition dependent glass transition temperature. We report the non-isothermal crystallization of (a) PET, with and without the presence of PLA crystals and (b) PLA, with and without the presence of PET crystals. PET can crystallize in all blends, regardless of whether PLA is amorphous or crystalline, and degree of crystallinity of PET decreases as PLA content increases. In contrast, PLA crystallization is strongly affected by the mobility of the PET fraction. When PET is wholly amorphous, PLA can crystallize even in 70/30 blends, albeit weakly. But when PET is crystalline, PLA cannot crystallize when its own content drops below 0.90. These different behaviors may possibly be related to the tendency of each polymer to form constrained chains, i.e., to form the rigid amorphous fraction, or RAF. PET is capable of forming a large amount of RAF, whereas relatively smaller amount of RAF forms in PLA. Like the crystals, the rigid amorphous fraction of one polymer component may inhibit the growth of crystals of the other blend partner.

  8. A close-form solution to predict the total melting time of an ablating slab in contact with a plasma

    International Nuclear Information System (INIS)

    Yeh, F.-B.

    2007-01-01

    An exact melt-through time is derived for a one-dimensional heated slab in contact with a plasma when the melted material is immediately removed. The plasma is composed of a collisionless presheath and sheath on a slab, which partially reflects and secondarily emits ions and electrons. The energy transport from plasma to the surface accounting for the presheath and sheath is determined from the kinetic analysis. This work proposes a semi-analytical model to calculate the total melting time of a slab based on a direct integration of the unsteady heat conduction equation, and provides quantitative results applicable to control the total melting time of the slab. The total melting time as a function of plasma parameters and thermophysical properties of the slab are obtained. The predicted energy transmission factor as a function of dimensionless wall potential agrees well with the experimental data. The effects of reflectivities of the ions and electrons on the wall, electron-to-ion source temperature ratio at the presheath edge, charge number, ion-to-electron mass ratio, ionization energy, plasma flow work-to-heat conduction ratios, Stefan number, melting temperature, Biot number and bias voltage on the total melting time of the slab are quantitatively provided in this work

  9. Phase diagrams in blends of poly(3-hydroxybutyric acid with various aliphatic polyesters

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available Phase behavior with immiscibility, miscibility, crystalline morphology, and kinetic analysis in blends of poly(3-hydroxybutyric acid (PHB with aliphatic polyesters such as poly(butylene adipate (PBA, poly(ethylene adipate (PEA, poly(trimethylene adipate (PTA, or poly(ethylene succinate (PESu, respectively, were explored mainly using differential scanning calorimeter (DSC and polarized-light optical microscopy (POM. Immiscibility phase behavior with reversible upper-critical-solution-temperature (UCST is common in the PHB/polyester blends. The polyester/polyester blend of PHB/PTA is partially miscible with no UCST in melt and amorphous glassy states within a composition range of PTA less than 50 wt%. The miscible crystalline/crystalline blend exhibits ring-banded spherulites at Tc = 50~100°C, with inter-ring spacing dependent on Tc. All immiscible or partially miscible PHB/polyester blends, by contrast, exhibit disrupted ringbanded spherulites or discrete spherical phase domains upon cooling from UCST to crystallization. The blends of PHB with all other aliphatic polyesters, such as PESu, PEA, PBA, etc. are only partially miscible or immiscible with an upper critical solution temperature (UCST at 180~221°C depending on blend composition. UCST with reversibility was verified.

  10. Barriers to defect melting in chemo-epitaxial directed self-assembly of lamellar-forming diblock copolymer/homopolymer blends

    Science.gov (United States)

    Izumi, Kenichi; Kim, Bongkeun; Laachi, Nabil; Delaney, Kris T.; Carilli, Michael; Fredrickson, Glenn H.

    2015-03-01

    We investigate energy barriers and minimum energy paths (MEPs) for transitions from dislocation-pair defects to perfect lamellae in self-assembly of AB-diblock copolymer plus A- or B-homopolymer blends using self-consistent field theory (SCFT) and the numerical string method. For neutral substrates, all minimum energy paths discovered by the string method show two successive energy barriers. The two-barrier qualitative nature of the MEPs appears not to depend on the presence or absence of small amounts of homopolymer. For the first energy barrier, the barrier height shows pronounced increase with addition of A-homopolymer due to localization of A-homopolymer on the T-junction core of the dislocation. For chemo-epitaxially patterned substrates (stripes of A-attractive substrate alternating with neutral substrate), the presence of A-attractive stripes helps draw the system towards a perfect lamellar configuration, and energy barriers along the MEP are reduced, in some cases disappearing entirely. Our findings provide guidance on how the presence of homopolymer and chemo-epitaxial prepatterns affect the stability of defective morphologies.

  11. Blended Learning

    NARCIS (Netherlands)

    Van der Baaren, John

    2009-01-01

    Van der Baaren, J. (2009). Blended Learning. Presentation given at the Mini symposium 'Blended Learning the way to go?'. November, 5, 2009, The Hague, The Netherlands: Netherlands Defence Academy (NDLA).

  12. Blended Learning

    OpenAIRE

    Bauerová, Andrea

    2013-01-01

    This thesis is focused on a new approach of education called blended learning. The history and developement of Blended Learning is described in the first part. Then the methods and tools of Blended Learning are evaluated and compared to the traditional methods of education. At the final part an efficient developement of the educational programs is emphasized.

  13. A strategy for achieving low percolation and high electrical conductivity in melt-blended polycarbonate (PC/multiwall carbon nanotube (MWCNT nanocomposites: Electrical and thermo-mechanical properties

    Directory of Open Access Journals (Sweden)

    B. B. Khatua

    2013-06-01

    Full Text Available In this work, polycarbonate (PC/multiwall carbon nanotube (MWCNT nanocomposites were prepared by simple melt mixing at a temperature (~350°C well above the processing temperature of PC, followed by compression molding, that exhibited percolation threshold as low as of 0.11 wt% and high electrical conductivity of 1.38x10–3 S•cm–1 at only 0.5 wt% MWCNT loading. Due to the lower interfacial energy between MWCNT and PC, the carbon nanotubes are excellently dispersed and formed continuous conductive network structure throughout the host polymer. AC electrical conductivity and dielectric permittivity of PC/MWCNT nanocomposites were characterized in a broad frequency range, 101–107 Hz. Low percolation threshold (pc of 0.11 wt% and the critical exponent (t of ~3.38 was resulted from scaling law equation. The linear plot of logσDC vs. p–1/3 supported the presence of tunneling conduction among MWCNTs. The thermal property and storage modulus of PC were increased with the incorporation of little amount of MWCNTs. Transmission electron microscopy (TEM and field emission scanning electron microscopy (FESEM confirmed the homogeneous dispersion and distribution of MWCNTs throughout the matrix phase.

  14. Phosphonium–based ionic liquid as dispersing agent for MWCNT in melt-mixing polystyrene blends: Rheology, electrical properties and EMI shielding effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Soares da Silva, Jéssica P. [Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas, 21941-598, Rio de Janeiro (Brazil); Soares, Bluma G., E-mail: bluma@metalmat.ufrj.br [Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas, 21941-598, Rio de Janeiro (Brazil); Universidade Federal do Rio de Janeiro, Programa de Engenharia Metalurgica e de Materiais - COPPE, Centro de Tecnologia, 21941-972, Rio de Janeiro (Brazil); Livi, Sebastien [Université de Lyon, F-69003, Lyon (France); INSA Lyon, F-69621, Villeurbanne (France); CNRS, UMR 5223, Ingénierie des Matériaux Polymères (France); Barra, Guilherme M.O. [Universidade Federal de Santa Catarina, Departamento de Engenharia Mecânica, Florianópolis, SC (Brazil)

    2017-03-01

    Conducting nanocomposites composed with polystyrene (PS) and multi-walled carbon nanotubes (MWCNT) were prepared by melt mixing procedure assisted by trihexyl-(tetradecyl)-phosphonium combined with bis(trifluoromethylsulfonyl) amide counteranion (TFSI) as the ionic liquid (IL). The non-covalent functionalization of MWCNT with the IL was confirmed by Raman spectroscopy and thermogravimetric analysis. The functionalized MWCNT provided better dispersion of the MWCNT within PS matrix, as indicated by transmission electron microscopy (TEM), and also an electrical conductivity as high as 10{sup −1} S/m with 0.66 m% of MWCNT combined with 3.34 m% of IL. This value is around four orders of magnitude higher when compared to nanocomposites with similar amount of untreated MWCNT. From rheological studies, it was observed that the transition between liquid-like to solid-like behavior occurred at lower frequencies for the systems containing functionalized MWCNT. Moreover, an improvement of around 170% in the electromagnetic interference shielding effectiveness (EMI SE) in the X-band frequency range was observed for the nanocomposites containing 1% of MWCNT non-covalently functionalized with the IL, that is, 1% of MWCNT and 5% of IL. - Highlights: • MWCNT well dispersed in PS matrix, in the presence of ionic liquid. • Outstanding electric conductivity of PS/MWCNT nanocomposite. • Improved EMI shielding effectiveness by addition of ionic liquid in PS/MWCNT nanocomposite.

  15. Polymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Naik, Sanjeev

    2017-08-22

    The present invention provides, among other things, extruded blends of aliphatic polycarbonates and polyolefins. In one aspect, provided blends comprise aliphatic polycarbonates such as poly(propylene carbonate) and a lesser amount of a crystalline or semicrystalline polymer. In certain embodiments, provided blends are characterized in that they exhibit unexpected improvements in their elongation properties. In another aspect, the invention provides methods of making such materials and applications of the materials in applications such as the manufacture of consumer packaging materials.

  16. Reduction of Charge Traps and Stability Enhancement in Solution-Processed Organic Field-Effect Transistors Based on a Blended n-Type Semiconductor.

    Science.gov (United States)

    Campos, Antonio; Riera-Galindo, Sergi; Puigdollers, Joaquim; Mas-Torrent, Marta

    2018-05-09

    Solution-processed n-type organic field-effect transistors (OFETs) are essential elements for developing large-area, low-cost, and all organic logic/complementary circuits. Nonetheless, the development of air-stable n-type organic semiconductors (OSCs) lags behind their p-type counterparts. The trapping of electrons at the semiconductor-dielectric interface leads to a lower performance and operational stability. Herein, we report printed small-molecule n-type OFETs based on a blend with a binder polymer, which enhances the device stability due to the improvement of the semiconductor-dielectric interface quality and a self-encapsulation. Both combined effects prevent the fast deterioration of the OSC. Additionally, a complementary metal-oxide semiconductor-like inverter is fabricated depositing p-type and n-type OSCs simultaneously.

  17. Effect of chain extension on rheology and tensile properties of PHB and PHB-PLA blends

    Science.gov (United States)

    Bousfield, Glenn

    Poly(3-hydroxybutyrate), referred to as PHB, is a bacterially-synthesized and biodegradable polymer which is being considered as a substitute for non-biodegradable bulk polymers like polypropylene. PHB is naturally extremely isotactic and naturally has a very high degree of crystallinity, resulting in a stiff but brittle material. The stability of PHB crystals also means that the melting point of the polymer is approximately 170°C, high with respect to similar polymers. For instance, the melting point of poly(4-hydroxybutyrate) is only 53°C (Saito, Nakamura, Hiramitsu, & Doi, 1996). Above 170°C, PHB is subject to a thermomechanical degradation mechanism, meaning that the polymer cannot be melted without degrading. One possible solution to the problem of degradation is to add a chain extender to the molten polymer to increase average molecular weight to counteract the molecular weight lost to degradation. In this work, a variety of chain extenders (JoncrylRTM ADR 4368-C, pyromellitic dianhydride, hexamethylene diisocyanate, polycarbodiimide) were compounded with a random copolymer of 98 mol% 3-hydroxybutyrate and 2 mol% 3-hydroxyvalerate (referred to as PHB) in concentrations ranging from 0.25% to 4%, to determine which chain extender functionality worked best with PHB. Molecular weight change was inferred from torque monitored during compounding, and from complex viscosity determined from parallel-plate rheology. None of the chain extenders changed the rate of degradation of PHB, although Joncryl increased the complex viscosity of the polymer. PHB was also blended with Poly(L-lactic acid), referred to as PLLA in PHB/PLLA ratios of 100/0, 75/25, 50/50, 25/75 and 0/100, to determine the effect of blending on the thermal stability of PHB. Again, thermal stability was determined by monitoring torque during compounding and by measuring complex viscosity through parallel-plate rheology. Blends in which PHB was the more abundant phase, as well as the 50% PHB/50% PLA

  18. Calculation procedure for formulating lauric and palmitic fat blends based on the grouping of triacylglycerol melting points; Procedimiento de cálculo para la formulación de mezclas de grasas lauricas y palmíticas basadas en el agrupamiento de puntos de fusión de triacilgliceroles

    Energy Technology Data Exchange (ETDEWEB)

    Nusantoro, B.P.; Yanty, N.A.M.; Van de Walle, D.; Hidayat, C.; Danthine, S.; Dewettinck, K.

    2017-07-01

    A calculation procedure for formulating lauric and palmitic fat blends has been developed based on grouping TAG melting points. This procedure offered more flexibility in choosing the initial fats and oils and eventually gave deeper insight into the existing chemical compositions and better prediction on the physicochemical properties and microstructure of the fat blends. The amount of high, medium and low melting TAGs could be adjusted using the given calculation procedure to obtain the desired functional properties in the fat blends. Solid fat contents and melting behavior of formulated fat blends showed particular patterns with respect to ratio adjustments of the melting TAG groups. These outcomes also suggested that both TAG species and their quantity had a significant influence on the crystallization behavior of the fat blends. Palmitic fat blends, in general, were found to exhibit higher SFC values than those of Lauric fat blends. Instead of the similarity in crystal microstructure, lauric fat blends were stabilized at β polymorph while palmitic fat blends were stabilized at β’ polymorph. [Spanish] Se ha desarrollado un procedimiento de cálculo para la formulación de mezclas de grasas lauricas y palmíticas basándose en la agrupación de puntos de fusión de TAG. Este procedimiento ofreció más flexibilidad en la elección de las grasas y aceites iniciales y, dio una visión más profunda de las composiciones químicas existentes y una mejor predicción sobre las propiedades físico-químicas y la microestructura de las mezclas de grasas. La cantidad de TAGs de fusión alta, media y baja se pudo ajustar usando el procedimiento de cálculo dado para obtener las propiedades funcionales deseadas en las mezclas de grasas. El contenido de grasa sólida y el comportamiento de fusión de las mezclas de grasas formuladas mostraron patrones particulares con respecto a los ajustes de relación de los grupos de fusión de TAG. Estos resultados tambi

  19. Blended learning

    DEFF Research Database (Denmark)

    Staugaard, Hans Jørgen

    2012-01-01

    Forsøg på at indkredse begrebet blended learning i forbindelse med forberedelsen af projekt FlexVid.......Forsøg på at indkredse begrebet blended learning i forbindelse med forberedelsen af projekt FlexVid....

  20. Blended Learning

    Science.gov (United States)

    Imbriale, Ryan

    2013-01-01

    Teachers always have been and always will be the essential element in the classroom. They can create magic inside four walls, but they have never been able to create learning environments outside the classroom like they can today, thanks to blended learning. Blended learning allows students and teachers to break free of the isolation of the…

  1. Blended learning

    DEFF Research Database (Denmark)

    Dau, Susanne

    2016-01-01

    Blended Learning has been implemented, evaluated and researched for the last decades within different educational areas and levels. Blended learning has been coupled with different epistemological understandings and learning theories, but the fundamental character and dimensions of learning...... in blended learning are still insufficient. Moreover, blended learning is a misleading concept described as learning, despite the fact that it fundamentally is an instructional and didactic approach (Oliver & Trigwell, 2005) addressing the learning environment (Inglis, Palipoana, Trenhom & Ward, 2011......) instead of the learning processes behind. Much of the existing research within the field seems to miss this perspective. The consequence is a lack of acknowledgement of the driven forces behind the context and the instructional design limiting the knowledge foundation of learning in blended learning. Thus...

  2. Blends of polyester ionomers with polar polymers: Interactions, reactions, and compatibilization

    Science.gov (United States)

    Boykin, Timothy Lamar

    The compatibility of amorphous and semicrystalline polyester ionomers with various polar polymers (i.e., polyesters and polyamides) has been investigated for their potential use as minor component compatibilizers. The degree of compatibility (i.e., ranging from incompatible to miscible) between the polyester ionomers and the polar polymers was determined by evaluating the effect of blend composition on the melting behavior and phase behavior of binary blends. In addition, the origin of compatibility and/or incompatibility for each of the binary blends (i.e., polyamide/ionomer and polyester/ionomer) was determined by evaluating blends prepared by both solution and melt mixed methods. Subsequent to investigation of the binary blends, the effect of polyester ionomer addition on the compatibility of polyamide/polyester blends was investigated by evaluating the mechanical properties and phase morphology of ionomer compatibilized polyamide/polyester blends. Polyester ionomers (amorphous and semicrystalline) were shown to exhibit a high degree of compatibility (even miscibility) with polyamides, such as nylon 6,6 (N66). Compatibility was attributed to specific interactions between the metal counterion of the polyester ionomer and the amide groups of N66. The degree of compatibility (or miscibility) was shown to be dependent on the counterion type of the ionomer, with the highest degree exhibited by blends containing the divalent form of the polyester ionomers. Although polyester ionomers were shown to exhibit incompatibility with both poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), increasing the time of melt processing significantly enhanced the compatibility of the polyester ionomers with both PET and PBT. The observed enhancement in compatibility was attributed to ester-ester interchange between the polyester blend components, which was confirmed by NMR spectroscopy. The addition of polyester ionomers as a minor component compatibilizer (i

  3. Corrosion Behavior in 3.5% NaCl Solutions of γ-TiAl Processed by Electron Beam Melting Process

    Directory of Open Access Journals (Sweden)

    Asiful Hossain Seikh

    2015-12-01

    Full Text Available In this work, the corrosion behavior of γ-TiAl alloy produced by electron beam melting (EBM process in 3.5% NaCl solution was reported. The study has been performed using potentiodynamic polarization resistance and electrochemical impedance spectroscopy techniques and complemented by scanning electron microscopy investigations. All measurements were carried out after different periods of alloy exposure in the chloride solutions and at different temperatures. The results showed that the EBM produced γ-TiAl alloy has excellent corrosion resistance confirmed by the high values of polarization resistance and the low values of corrosion current and corrosion rate. With increase in immersion time, the corrosion potential moved to a higher positive value with a decrease in corrosion current and corrosion rate, which suggests an improvement in corrosion resistance. On the other hand, the increase of temperature was found to significantly increase the corrosion of the processed γ-TiAl alloy.

  4. Equation of liquidus curve of primary crystallization of congruently melting of Asub(m)Bsub(n) compound in regular solutions approximation

    International Nuclear Information System (INIS)

    Glazov, V.M.; Pavlova, L.M.; Moskvinova, N.A.

    1975-01-01

    A general solution was obtained for the Prigozhin and Defey equation on the basis of which a liquidus equation was derived describing the primary crystallization of Asub(m)Bsub(n)-type compounds. The Prigozhin and Defey equation described a general case of the melting process of having a narrow homogeneity region at a certain temperature T:(Asub(m)Bsub(n))sub(s) reversible m(A)sub(L) n(B)sub(L). They have obtained a differential equation for the liquids curve describing the equilibrium state between the primary Asub(m)Bsub(n) crystals and the liquid solution. The obtained equation was tested by a comparison with the experimental liquidus curves corresponding to the primary crystallization of gallium and indium sesquitellurides in Ga-Te and In-Te systems. The liquidus curves were made more precise by means of a detailed thermographic study of a series of melts located to the right and left of Ga 2 Te 3 and In 2 Te 3 compounds. Computer calculations of liquidus curves corresponding to the primary crystallization of Ga 2 Te 3 and In 2 Te 3 were carried out with the aid of the last of the above-mentioned equations. The obtained results show that the derived equations can be used in studying the nature of intermolecular reactions in systems in which congruent intermediate phases of complex composition are present

  5. Introducing blended e-learning course design

    DEFF Research Database (Denmark)

    Gyamfi, Samuel Adu; Ryberg, Thomas

    2012-01-01

    In the face of diminishing education budgets in higher education, blended learning has been found to be a viable and effective approach to deliver high-quality, up-to-date, on-demand solutions to developing cross-curricular skills of undergraduates. However, research has also shown that blended...... learning solutions do not often live up to the potential of the approach or fail to produce the intended results because the students are not always equipped to handle the technical, psychological and organisational challenges of blended learning approaches. This project surveyed seventy-five first year...... the students’ e-readiness for an implementation of a blend-ed course design....

  6. Low density polyethylene (LDPE) / poli (3-hydroxy-butyrate) (PHB) blends filled with castor oil cake

    International Nuclear Information System (INIS)

    Rocha, M.C.G.; Oliveira, C.I.R. de; Sanches, M.C.; Coelho, N.N.

    2014-01-01

    Blends of PHB and LDPE were prepared by melt mixing in a Haake internal mixer. Castor oil pressed cake was used as filler for the blends. In order to improve the interfacial adhesion between the filler and the polymers, a mercerization process with 5% NaOH solution was employed. This process was evaluated by several techniques such as: X-Ray diffraction, infrared spectroscopy and scanning electron microscopy (SEM). The mechanical properties were evaluated by traditional tensile stress-strain tests (ASTM D- 638). The obtained results showed that the mercerization process leads to better adhesion properties. The Young Modulus of the blends presented a tendency to increase with the addition of the castor oil cake.(author)

  7. Solution structure of the 3'-5' cyclic dinucleotide d. A combined NMR, UV melting, and molecular mechanics study

    International Nuclear Information System (INIS)

    Blommers, M.J.J.; Haasnoot, C.A.G.; Walters, J.A.L.I.; van der Marel, G.A.; van Boom, J.H.; Hilbers, C.W.

    1988-01-01

    The 3'-5' cyclic dinucleotide d 1 H and 13 C NMR experiments, UV-melting experiments, and molecular mechanics calculations. The 1 H and 13 C NMR spectra were analyzed by means of 2-dimensional NMR experiments. J-Coupling analysis of the 1D and 2D 1 H and 13 C spectra was used to determine the conformation of the ring systems in the molecule. It appeared that at low temperature (283 K) the deoxyribose sugars adopt a N-type conformation. The geometry is best described by an intermediate between the 3 2 T and 3 E forms. In addition, the authors were able to derive all other torsion angles in the phosphate backbone ring system, i.e., α + , β/sup t/, γ + , δ (=89/degrees/), ε/sup t/ and /zeta/ + . When the molecule is subjected to an energy minimization procedure (using the program AMBER), the sugar ring system retains, practically speaking, the torsion angles found from the NMR experiments, while the torsion angles around the glycosidic bond adopt a value of 175/degrees/ in the minimum energy conformation. UV-melting experiments indicate that two molecules can form a dimer in which the adenine bases are intercalated. The feasibility of this structure is indicated by molecular mechanics calculations. At higher temperatures the dimer is converted into separate monomers. In the monomer form the sugars exhibit S-pucker 20% of the time. Concomitantly with the conversion of the N- to the S-conformation, the torsion angles α and γ change

  8. Kinetics of CO2 with primary and secondary amines in aqueous solutions I. Zwitterion deprotonation kinetics for DEA and DIPA in aqueous blends of alkanolamines

    NARCIS (Netherlands)

    Littel, R.J.; Littel, R.J.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    The deprotonation kinetics of the DEA—CO2 and the DIPA—CO2 zwitterions have been studied in aqueous blends of amines at 298 K. Amine mixtures investigated were: DEA—TEA, DEA—MDEA, DEA—DMMEA, DEA—DEMEA, DIPA—TEA. DIPA—MDEA, DIPA—DMMEA, DIPA—DEMEA. For each blend the zwitterion deprotonation constant

  9. Cumulates, Dykes and Pressure Solution in the Ice-Salt Mantle of Europa: Geological Consequences of Pressure Dependent Liquid Compositions and Volume Changes During Ice-Salt Melting Reactions.

    Science.gov (United States)

    Day, S.; Asphaug, E.; Bruesch, L.

    2002-12-01

    Water-salt analogue experiments used to investigate cumulate processes in silicate magmas, along with observations of sea ice and ice shelf behaviour, indicate that crystal-melt separation in water-salt systems is a rapid and efficient process even on scales of millimetres and minutes. Squeezing-out of residual melts by matrix compaction is also predicted to be rapid on geological timescales. We predict that the ice-salt mantle of Europa is likely to be strongly stratified, with a layered structure predictable from density and phase relationships between ice polymorphs, aqueous saline solutions and crystalline salts such as hydrated magnesium sulphates (determined experimentally by, inter alia, Hogenboom et al). A surface layer of water ice flotation cumulate will be separated from denser salt cumulates by a cotectic horizon. This cotectic horizon will be both the site of subsequent lowest-temperature melting and a level of neutral buoyancy for the saline melts produced. Initial melting will be in a narrow depth range owing to increasing melting temperature with decreasing pressure: the phase relations argue against direct melt-though to the surface unless vesiculation occurs. Overpressuring of dense melts due to volume expansion on cotectic melting is predicted to lead to lateral dyke emplacement and extension above the dyke tips. Once the liquid leaves the cotectic, melting of water ice will involve negative volume change. Impact-generated melts will drain downwards through the fractured zones beneath crater floors. A feature in the complex crater Mannan'an, with elliptical ring fractures around a conical depression with a central pit, bears a close resemblance to Icelandic glacier collapse cauldrons produced by subglacial eruptions. Other structures resembling Icelandic cauldrons occur along Europan banded structures, while resurgence of ice rubble within collapse structures may produce certain types of chaos region. More general contraction of the ice mantle

  10. Numerical solutions of multi-dimensional solidification/melting problems by the dual reciprocity boundary element method

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Shin, Won Ky [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available. 22 refs., 3 figs. (Author)

  11. Numerical solutions of multi-dimensional solidification/melting problems by the dual reciprocity boundary element method

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Shin, Won Ky

    1997-01-01

    This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available

  12. Numerical solutions of multi-dimensional solidification/melting problems by the dual reciprocity boundary element method

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Shin, Won Ky [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available. 22 refs., 3 figs. (Author)

  13. A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: Morphology and physicochemical properties.

    Science.gov (United States)

    Aydogdu, Ayca; Sumnu, Gulum; Sahin, Serpil

    2018-02-01

    The objective of this study was to fabricate and characterize Hydroxypropyl methylcellulose (HPMC) -based homogenous nanofibers by using electrospinning method. As the concentrations of the solutions increased, viscosity and electrical conductivity of the solutions increased. The morphology of the fibers changed from the beaded structure to the uniform fiber structure by increasing the concentrations of the solutions. Water vapor permeability (WVP) of electrospun HPMC nanofibers decreased with increasing polymer concentration. The shift in wavelengths, the change in intensity of FTIR peaks and melting point depression were the evidence of miscibility of HPMC/PEO blends. Nanofibers showing both melting temperature (T m ) and glass transition temperature (T g ) had semicrystalline structure. By combining PEO with HPMC, the thermal stability of nanofibers was increased. Hence, this study suggests homogenous biopolymer-based nanofibers with low WVP and high thermal stability which can have potential applications in food packaging field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Recycling of waste printed circuit boards with simultaneous enrichment of special metals by using alkaline melts: A green and strategically advantageous solution.

    Science.gov (United States)

    Stuhlpfarrer, Philipp; Luidold, Stefan; Antrekowitsch, Helmut

    2016-04-15

    The increasing consumption of electric and electronic equipment has led to a rise in toxic waste. To recover the metal fraction, a separation of the organic components is necessary because harmful substances such as chlorine, fluorine and bromine cause ecological damage, for example in the form of dioxins and furans at temperature above 400°C. Hence, an alternative, environmentally friendly approach was investigated exploiting that a mixture of caustic soda and potassium hydroxide in eutectic composition melts below 200°C, enabling a fast cracking of the long hydrocarbon chains. The trials demonstrate the removal of organic compounds without a loss of copper and precious metals, as well as a suppressed formation of hazardous off-gases. In order to avoid an input of alkaline elements into the furnace and ensuing problems with refractory materials, a washing step generates a sodium and potassium hydroxide solution, in which special metals like indium, gallium and germanium are enriched. Their concentrations facilitate the recovery of these elements, because otherwise they become lost in the typical recycling processes. The aim of this work was to find an environmental solution for the separation of plastics and metals as well as a strategically important answer for the recycling of printed circuit boards and mobile phones. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Recycling of waste printed circuit boards with simultaneous enrichment of special metals by using alkaline melts: A green and strategically advantageous solution

    Energy Technology Data Exchange (ETDEWEB)

    Stuhlpfarrer, Philipp, E-mail: philipp-johannes.stuhlpfarrer@stud.unileoben.ac.at; Luidold, Stefan; Antrekowitsch, Helmut

    2016-04-15

    Highlights: • Removal of plastics. • Enrichment of In, Ga and Ge. • Low temperature. • No dioxines. - Abstract: The increasing consumption of electric and electronic equipment has led to a rise in toxic waste. To recover the metal fraction, a separation of the organic components is necessary because harmful substances such as chlorine, fluorine and bromine cause ecological damage, for example in the form of dioxins and furans at temperature above 400 °C. Hence, an alternative, environmentally friendly approach was investigated exploiting that a mixture of caustic soda and potassium hydroxide in eutectic composition melts below 200 °C, enabling a fast cracking of the long hydrocarbon chains. The trials demonstrate the removal of organic compounds without a loss of copper and precious metals, as well as a suppressed formation of hazardous off-gases. In order to avoid an input of alkaline elements into the furnace and ensuing problems with refractory materials, a washing step generates a sodium and potassium hydroxide solution, in which special metals like indium, gallium and germanium are enriched. Their concentrations facilitate the recovery of these elements, because otherwise they become lost in the typical recycling processes. The aim of this work was to find an environmental solution for the separation of plastics and metals as well as a strategically important answer for the recycling of printed circuit boards and mobile phones.

  16. Recycling of waste printed circuit boards with simultaneous enrichment of special metals by using alkaline melts: A green and strategically advantageous solution

    International Nuclear Information System (INIS)

    Stuhlpfarrer, Philipp; Luidold, Stefan; Antrekowitsch, Helmut

    2016-01-01

    Highlights: • Removal of plastics. • Enrichment of In, Ga and Ge. • Low temperature. • No dioxines. - Abstract: The increasing consumption of electric and electronic equipment has led to a rise in toxic waste. To recover the metal fraction, a separation of the organic components is necessary because harmful substances such as chlorine, fluorine and bromine cause ecological damage, for example in the form of dioxins and furans at temperature above 400 °C. Hence, an alternative, environmentally friendly approach was investigated exploiting that a mixture of caustic soda and potassium hydroxide in eutectic composition melts below 200 °C, enabling a fast cracking of the long hydrocarbon chains. The trials demonstrate the removal of organic compounds without a loss of copper and precious metals, as well as a suppressed formation of hazardous off-gases. In order to avoid an input of alkaline elements into the furnace and ensuing problems with refractory materials, a washing step generates a sodium and potassium hydroxide solution, in which special metals like indium, gallium and germanium are enriched. Their concentrations facilitate the recovery of these elements, because otherwise they become lost in the typical recycling processes. The aim of this work was to find an environmental solution for the separation of plastics and metals as well as a strategically important answer for the recycling of printed circuit boards and mobile phones.

  17. The effect of surface depletion on the work function of arc-melted dilute solution tungsten-iridium alloys

    International Nuclear Information System (INIS)

    D'Cruz, L.A.; Bosch, D.R.; Jacobson, D.L.

    1991-01-01

    The requirements of thermionic electrode materials have emphasized the need for substantial improvements in microstructural stability, strength, and creep resistance at service temperature in excess of 2,500K. The present work extends an earlier study of the effective work function trends of a series of dilute solution tungsten, iridium alloys with iridium contents of 1, 3, and 5 wt%. Since the lifetime of candidate electrode materials is an important consideration, the present work attempts to evaluate the repeatability of the work function trends in these alloys. The effective work function was obtained from measurements of the current emitted from the electrode surface under UHV conditions in the temperature range of 1,800-2,500K using a Vacuum Emission Vehicle (VEV). The data generated in this work have been compared with data obtained in earlier studies performed on these alloys. It was found that the magnitude of the effective work function of these alloys was affected by changes in the subsurface iridium concentration. Furthermore, these alloys exhibited a dependence of the work function on temperature, after prolonged exposure to elevated temperatures. Such a temperature dependence can be explained by diffusion-controlled changes in the coverage of an iridium monolayer on the surface. It is proposed that the significant difference in effective work function trends obtained after prolonged exposure to elevated temperatures is a direct consequence of changes in the coverage of an iridium-rich monolayer on the electrode surface. The constitution of such a surface layer, however, would be governed by composition changes in the subsurface regions of the electrode caused thermally-activated transport processes

  18. Study of Enzymatic Degradation Comparison of CPP/Bionolle and CPP/PCL Blend with Modic

    International Nuclear Information System (INIS)

    Nikham; Makuuchi, K.; Yoshii, Fumeo

    2000-01-01

    Melt-blending poly propylene-co-ethylene (CPP)/poly butylene succinate (Bionolle), CPP/polyεcaprolactone (PCL) with polypropylene grafted maleic anhydride (Modic) as compatibilizer has been studied. The effect of Modic concentration on the compatibility was evaluated using the ultimate elongation at break, tensile strength and SEM micrographs. The Result show that 20 wt % and 10 % wt of Medic appears to be an optimum concentration for CPP/Bionolle and CPP/PCL blend respectively, as indicated by relatively high elongation at breaks, tensile strength and formation of co-continuous phase in the blend morphology. Enzymatic degradation of the CPP/Bionolle and CPP/PCL blend with 10 wt % of Modic was carried out using lipase AK enzyme in the phospate buffer solution pH 7.0 and incubated at the fixed temperature for 8 days. The result show that about 15 % and 86 % weight loss film of composition CPP/Bionolle>25/75 and CPP/PCL >25/75 blend respectively has been reached

  19. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...... viscosity, of up to a factor of 7 times the Trouton limit of 3 times the zero-shear viscosity....

  20. Morphology and melt rheology of nylon 11/clay nanocomposites

    NARCIS (Netherlands)

    He, Xiaofeng; Yang, Jun; Zhu, Lianchao; Wang, Biao; Sun, Guangping; Lv, Pengfei; Phang, In Yee; Liu, Tianxi

    2006-01-01

    Nylon 11 (PA11)/clay nanocomposites have been prepared by melt-blending, followed by melt-extrusion through a capillary. Transmission electron microscopy shows that the exfoliated clay morphology is dominant for low nanofiller content, while the intercalated one is prevailing for high filler

  1. Tuning the nano/micro-structure and properties of melt-processed ternary composites of polypropylene/ethylene vinyl acetate blend and nanoclay: The influence of kinetic and thermodynamic parameters

    CSIR Research Space (South Africa)

    Mofokeng, Tladi G

    2017-09-01

    Full Text Available The present study reports the dependence of the nano/micro-structure and properties of polypropylene (PP)/ethylene vinyl acetate (EVA)/nanoclay ternary composites on the kinetics and thermodynamics of the melt-mixing process. The size of dispersed...

  2. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  3. PEO + PVP blended polymer composite

    Indian Academy of Sciences (India)

    Blended polymer films of polyethylene oxide + polyvinyl pyrrolidone (PEO + PVP) containing transition metal (TM) ions like Fe3+, Co2+ and Ni2+ have been synthesized by a solution casting method. For these films, structural, thermal, magnetic and optical properties have been studied. X-ray diffraction results reveal the ...

  4. Study of PP/Polybutene Blends Modified by Gamma Irradiation and HMS-PP/Polybutene Blends

    International Nuclear Information System (INIS)

    Lugao, A. B.

    2006-01-01

    The polypropylene (PP) has been applied to a wide range of production due to its various excellent properties such as cheapness, high stiffness, chemical resistance, no environmental pollution when incinerated, low specific density and good mechanical properties. However, PP is a linear polymer which exhibits low melt strength. One of the effective approaches to achieve high melt strength (HMS) is to add chain branches onto backbone polymers. High melt strength polypropylene (HMS-PP) has been recently developed and introduced in the market by the major international polypropylene producers. As a consequence different methods have been applied to modify polypropylenes by chain branches. The technology obtained by IPEN together with EMBRARAD and BRASKEM comprises chain branches added onto backbone species using gamma radiation, which is generated from a Co 6 0 source. Such radiation is very convenient in order to improve polymer materials by grafting, crosslinking and degradation. Another important approach to the development of polymer materials is based on the combination of different polymers into a new product having some of the desired properties of each component. In this work, gamma irradiation technique was used to induce chemical changes in commercial polypropylene (HMS-PP) that was after blended with polybutene and in polypropylene/polybutene blends. The samples were irradiated with a 60 C o source at doses of 12,5 and 20kGy in the presence of acetylene. It was investigated how the two different routes of blends processing can modify their properties. Indeed the results from melt flow, gel fraction and rheology reveal the influence of the process route in the blends properties. Effects on the elongation at break and break strength were observed by the results of mechanical tests. The results from rheology demonstrated an increase in melt strength and drawability of the blends

  5. Magnetic and microstructural investigation of high-coercivity net-shape Nd-Fe-B-type magnets produced from spark-plasma-sintered melt-spun ribbons blended with DyF3

    Science.gov (United States)

    Žagar, Kristina; Kocjan, Andraž; Kobe, Spomenka

    2016-04-01

    Nanostructured Nd-Fe-B-type materials produced by melt-spinning (MS) are used in a variety of applications in the electronics, automotive, and sensor industries. The very rapid MS process leads to flake-like powders with metastable, nanoscale, Nd2Fe14B grains. These powders are then formed into net-shaped, isotropic, polymer-bonded magnets, or they are hot formed into fully dense, metallic magnets that are isotropic and anisotropic. These fully dense magnets are usually produced with a conventional hot press without the inclusion of additives prior to the hot pressing. As a result, their properties, particularly the coercivity (Hci), are insufficient at automotive-relevant temperatures of 100-150 °C since the material Hci has a large temperature coefficient. In this study, we instead add a thin layer of DyF3 to the melt-spun ribbons prior to their hot consolidation in order to enhance the coercivity through a diffusion-based, partial substitution of the Nd by Dy. This is accomplished by applying extremely rapid, spark-plasma sintering to minimize any growth of the nanoscale Nd2Fe14B grains during consolidation. The result is a very high-coercivity magnet with drastically reduced amounts of heavy rare earths that is suitable for high-temperature applications. This work clearly demonstrates how rapidly formed, metastable states can provide us with properties that are unobtainable with conventional techniques.

  6. Structural characterization of HDPE/LLDPE blend-based nano composites obtained by different blending sequence

    International Nuclear Information System (INIS)

    Passador, Fabio R.; Ruvolo Filho, Adhemar; Pessan, Luiz A.

    2011-01-01

    The blending sequence affects the morphology formation of the nanocomposites. In this work, the blending sequences were explored to determine its influence in the rheological behavior of HDPE/LLDPE/OMMT nanocomposites. The nanocomposites were obtained by melt-intercalation using a mixture of LLDPE-g-MA and HDPE-g-MA as compatibilizer system in a torque rheometer at 180 deg C and five blending sequences were studied. The materials structures were characterized by wide angle X-ray diffraction (WAXD) and by rheological properties. The nanoclay's addition increased the shear viscosity at low shear rates, changing the behavior of HDPE/LLDPE matrix to a Bingham model behavior with an apparent yield stress. Intense interactions were obtained for the blending sequence where LLDPE and/or LLDPE-g-MA were first reinforced with organoclay since the intercalation process occurs preferentially in the amorphous phase. (author)

  7. Preparation of porous PLLA/PCL blend by a combination of PEO phase and NaCl particulate leaching in PLLA/PCL/PEO/NaCl blend

    Czech Academy of Sciences Publication Activity Database

    Ezzati, P.; Ghasemi, I.; Karrabi, M.; Azizi, H.; Fortelný, Ivan

    2014-01-01

    Roč. 23, č. 10 (2014), s. 757-766 ISSN 1026-1265 Institutional support: RVO:61389013 Keywords : PLLA/PCL/PEO ternary blend * bio -scaffold * melts blending Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.806, year: 2014

  8. Silk fibroin/pullulan blend films: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shivananda, C. S.; Rao, B. Lakshmeesha; Madhukumar, R.; Asha, S. [Department of Studies in Physics, Mangalore University, Mangalagangotri – 574 199 (India); Sarojini, B. K. [Department of Industrial Chemistry, Mangalore University, Mangalagangotri, Mangalore –574 199 (India); Somashekhar, R. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore – 570 006 (India); Sangappa, Y., E-mail: syhalabhavi@yahoo.co.in [Department of Studies in Physics, Mangalore University, Mangalagangotri – 574 199 (India); School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2016-05-23

    In this work silk fibroin/pullulan blend films have been prepared by solution casting method. The blend films were examined for structural, and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results indicate that with the introduction of pullulan, the interaction between SF and pullulan in the blend films induced the conformation transition of SF films and amorphous phase increases with increasing pullulan ratio. The thermal properties of the blend films were improved significantly in the blend films.

  9. Magnetic and microstructural investigation of high-coercivity net-shape Nd–Fe–B-type magnets produced from spark-plasma-sintered melt-spun ribbons blended with DyF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Žagar, Kristina, E-mail: kristina.zagar@ijs.si; Kocjan, Andraž; Kobe, Spomenka

    2016-04-01

    Nanostructured Nd–Fe–B-type materials produced by melt-spinning (MS) are used in a variety of applications in the electronics, automotive, and sensor industries. The very rapid MS process leads to flake-like powders with metastable, nanoscale, Nd{sub 2}Fe{sub 14}B grains. These powders are then formed into net-shaped, isotropic, polymer-bonded magnets, or they are hot formed into fully dense, metallic magnets that are isotropic and anisotropic. These fully dense magnets are usually produced with a conventional hot press without the inclusion of additives prior to the hot pressing. As a result, their properties, particularly the coercivity (H{sub ci}), are insufficient at automotive-relevant temperatures of 100–150 °C since the material H{sub ci} has a large temperature coefficient. In this study, we instead add a thin layer of DyF{sub 3} to the melt-spun ribbons prior to their hot consolidation in order to enhance the coercivity through a diffusion-based, partial substitution of the Nd by Dy. This is accomplished by applying extremely rapid, spark-plasma sintering to minimize any growth of the nanoscale Nd{sub 2}Fe{sub 14}B grains during consolidation. The result is a very high-coercivity magnet with drastically reduced amounts of heavy rare earths that is suitable for high-temperature applications. This work clearly demonstrates how rapidly formed, metastable states can provide us with properties that are unobtainable with conventional techniques. - Highlights: • We produced high coercivity magnets with drastically reduced amounts of HRE. • Microstructural analysis was conducted of the “free” and “wheel” side of Dy-treated Nd{sub 2}Fe{sub 14}B ribbons. • Dy-diffusion mechanism into ribbons depending on processing parameters is shown.

  10. Dynamic filtration and static adsorption of lead ions in aqueous solution by use of blended polysulfone membranes with nano size MCM-41 particles coated by polyaniline.

    Science.gov (United States)

    Toosi, Mohammad Reza; Emami, Mohammad Reza Sarmasti; Hajian, Sudeh

    2018-05-11

    MCM-41 mesopore was prepared by hydrothermal method and used for synthesis of polyaniline/MCM-41 nanocomposite via in situ polymerization. The nanocomposite was blended with polysulfone to prepare mixed matrix membrane in different content of nanocomposite by phase inversion method. Structural and surface properties of the samples were characterized by SEM, XRD, FTIR, AFM, TGA, BET, and zeta potential measurements. Effect of the nanocomposite content on the hydrophilicity, porosity, and permeability of the membrane was determined. Membrane performance was evaluated for removal of lead ions in dynamic filtration and static adsorption. The membranes were found as effective adsorptive filters for removal of lead ions via interactions between active sites of nanocomposite in membrane structure and lead ions during filtration. Results of batch experiments proved adsorptive mechanism of membranes for removal of lead ions with the maximum adsorption capacity of 19.6 mg/g.

  11. Reactive modification of polyesters and their blends

    Science.gov (United States)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring

  12. Monitoring of polymer melt processing

    International Nuclear Information System (INIS)

    Alig, Ingo; Steinhoff, Bernd; Lellinger, Dirk

    2010-01-01

    The paper reviews the state-of-the-art of in-line and on-line monitoring during polymer melt processing by compounding, extrusion and injection moulding. Different spectroscopic and scattering techniques as well as conductivity and viscosity measurements are reviewed and compared concerning their potential for different process applications. In addition to information on chemical composition and state of the process, the in situ detection of morphology, which is of specific interest for multiphase polymer systems such as polymer composites and polymer blends, is described in detail. For these systems, the product properties strongly depend on the phase or filler morphology created during processing. Examples for optical (UV/vis, NIR) and ultrasonic attenuation spectra recorded during extrusion are given, which were found to be sensitive to the chemical composition as well as to size and degree of dispersion of micro or nanofillers in the polymer matrix. By small-angle light scattering experiments, process-induced structures were detected in blends of incompatible polymers during compounding. Using conductivity measurements during extrusion, the influence of processing conditions on the electrical conductivity of polymer melts with conductive fillers (carbon black or carbon nanotubes) was monitored. (topical review)

  13. On The compatibility and dynamic vulcanization of Pom/Nbr blends

    International Nuclear Information System (INIS)

    Mortezaee, M.; Naveed Family, M.H.; Mehrabzadeh, M.

    2001-01-01

    Polymer blends based on polyacetal butadiene rubber were prepared by melt blending technique. The mixing parameters such ad temperature, time and speed of mixing were varied to obtain a wide range of properties. The mixing parameters were optimized by evaluating the mechanical properties of the blend over a wide range of mixing conditions. The morphology of the blend indicated a two-phase structure. This study describes an attempt to improve the tensile strength of Pom/Nbr blends by means of compatibility and dynamic vulcanization. A commercial compatibility, maleic anhydride (Ma), has been used to control the phase morphology of the blend system. Dicumyl peroxide is used to dynamically vulcanize the Nbr elastomer in the blend. The tensile strength of the compatibility systems showed improvement. Dynamic vulcanization raises elastic recovery and tensile modulus of the blends, but the elongation at break decreases

  14. Thermal and curl properties of PET/PP blend fibers compatibilized ...

    Indian Academy of Sciences (India)

    67

    blend fibers were prepared using a melt-spinning system, and their curl properties were investigated. ... by extrusion and injection molding processes. ..... Inuwa I M, Hassan A, Samsudin S A, Kassim M H M and Jawaid M 2014. Polym.

  15. Effect of Multiwalled Carbon Nanotubes on the Properties of EPDM/NBR Dissimilar Elastomer Blends

    NARCIS (Netherlands)

    Hoikkanen, M.; Poikelispää, M.; Das, A.; Honkanen, M.; Dierkes, Wilma K.; Vuorinen, J.

    2015-01-01

    In the presence of multiwalled carbon nanotubes (MWCNT), polar nitrile-butadiene rubber (NBR) and nonpolar ethylene propylene diene rubber (EPDM) blends were prepared following a melt mixing method. For the preparation of MWCNT filled EPDM/NBR blends, two mixing methods were used: direct mixing and

  16. Absorption of Carbon Dioxide in the aqueous solution of Diethanolamine (DEA) blended with 1-Butyl-1-Methylpyrrolidinium Trifluoromethanesulfonate [BmPyrr][OTf] at high pressure

    Science.gov (United States)

    Jamaludin, S. N.; Salleh, R. M.

    2018-03-01

    Solubility data of carbon dioxide (CO2) in aqueous Diethanolamine (DEA) blended with 1-Butyl-1-Methylpyrrolidinium Trifluoromethanesulfonate [Bmpyrr][OTf] were measured at temperature 313.15K, 323.15K, 333.15K and pressure from 500psi up to 700 psi. The experiments covered over the concentration range of 0-10wt% for [Bmpyrr][OTf] and 30-40wt% for DEA. The solubility of CO2 was evaluated by measuring the pressure drop in high pressure stirred absorption cell reactor. The experimental results showed that CO2 loading in all DEA-[BmPyrr][OTf] mixtures studied increases with increasing of CO2 partial pressure and temperature. It was also found that the CO2 loading capacity increase significantly as the concentration of [Bmpyrr][OTf] increases. Jou and Mather model was used to predict the solubility of CO2 in the mixtures where the experimental data were correlated as a function of temperature and CO2 partial pressure. It was found that the model was successful in predicting the solubility behavior of the aqueous DEA-[Bmpyrr][OTf] systems considered in this study.

  17. Fabrication and Characterization of Electrospun Wool Keratin/Poly(vinyl alcohol) Blend Nanofibers

    OpenAIRE

    Shuai Li; Xu-Hong Yang

    2014-01-01

    Wool keratin/poly(vinyl alcohol) (PVA) blend nanofibers were fabricated using the electrospinning method in formic acid solutions with different weight ratios of keratin to PVA. The resultant blend nanofibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and tensile test. SEM images showed that the diameter of the blend nanofibers was affected by the content of keratin in blend solution...

  18. Modification of polymer blends by irradiation

    International Nuclear Information System (INIS)

    Zuchowska, D.; Zagorski, Z.P.

    1999-01-01

    Modification of polymers, especially of polyolefin-elastomer blends (e. g. ethylene/propylene/diene terpolymer, ethylene propylene copolymer, ethylene/vinyl acetate copolymer etc.), by irradiation with a beam of fast electrons is discussed. Irradiation of polymer blends usually results in enhanced interactions between the constituents, caused among other things, by grafting induced at the polymer interphase. As a result, mechanical properties are affected to an extent depending on the proportion and type of constituent polymers, stabilizer content and radiation dose. Breaking strength (σ) relative elongation at break (ε) and melt flow rate (MFR), were examined for a triblock styrene/butadiene/styrene (SBS) copolymer, polypropylene (PP), and a PP-SBS blend (50:50 by wt.). In PP, the content of the crystal phase was determined. Irradiation was found to make SBS crosslink, as a result, σ rose by 25% and ε remained unaffected. PP was found to become degraded upon irradiation (MFR rose as much as 16 times), thereby σ and ε decreased considerably. In pure PP, the content of the crystal phase was found to increase. The variations of σ and ε in the irradiated PP-SBS blend follow a tendency similar to that in the SBS copolymer examined. This fact suggests the SBS copolymer to have a decisive effect on the macroscopic properties of the PP-SBS blend. (author)

  19. Low density polyethylene (LDPE) / poli (3-hydroxy-butyrate) (PHB) blends filled with castor oil cake; Misturas de polietileno de baixa densidade (PEBD) e poli(3-hidroxibutirato) (PHB) carregados com torta de mamona (TM)

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.C.G.; Oliveira, C.I.R. de; Sanches, M.C.; Coelho, N.N., E-mail: mrocha@iprj.uerj.br [Universidade do Estado do Rio de Janeiro (IP/UERJ), Rio de Janeiro, RJ (Brazil). Instituto Politecnico

    2014-07-01

    Blends of PHB and LDPE were prepared by melt mixing in a Haake internal mixer. Castor oil pressed cake was used as filler for the blends. In order to improve the interfacial adhesion between the filler and the polymers, a mercerization process with 5% NaOH solution was employed. This process was evaluated by several techniques such as: X-Ray diffraction, infrared spectroscopy and scanning electron microscopy (SEM). The mechanical properties were evaluated by traditional tensile stress-strain tests (ASTM D- 638). The obtained results showed that the mercerization process leads to better adhesion properties. The Young Modulus of the blends presented a tendency to increase with the addition of the castor oil cake.(author)

  20. Preparation and Characterization of Keratin/Alginate Blend Microparticles

    OpenAIRE

    Srisuwan, Yaowalak; Srihanam, Prasong

    2018-01-01

    The water-in-oil (W/O) emulsification-diffusion method was used for construction of keratin (Ker), alginate (Alg), and Ker/Alg blend microparticles. The Ker, Alg, and Ker/Alg blend solutions were used as the water phase, while ethyl acetate was used as the oil phase. Firstly, different concentrations of Ker solution was used to find suitable content. 1.6% w/v Ker solution was blended with the same concentration of the Alg solution for further microparticle construction. Results from scanning ...

  1. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    Science.gov (United States)

    Senna, Magdy M.; Mostafa, Abo El-Khair B.; Mahdy, Sanna R.; El-Naggar, Abdel Wahab M.

    2016-11-01

    Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  2. Blended polymer materials extractable with supercritical carbon dioxide

    Science.gov (United States)

    Cai, Mei

    Supercritical carbon dioxide is drawing more and more attention because of its unique solvent properties along with being environmentally friendly. Historically most of the commercial interests of supercritical carbon dioxide extraction are in the food industry, pharmaceutical industry, environmental preservation and polymer processing. Recently attention has shifted from the extraction of relatively simple molecules to more complex systems with a much broader range of physical and chemical transformations. However the available data show that a lot of commercially valuable substances are not soluble in supercritical carbon dioxide due to their polar structures. This fact really limits the application of SCF extraction technology to much broader industrial applications. Therefore, the study of a polymer's solubility in a given supercritical fluid and its thermodynamic behavior becomes one of the most important research topics. The major objective of this dissertation is to develop a convenient and economic way to enhance the polymer's solubility in supercritical carbon dioxide. Further objective is to innovate a new process of making metal casting parts with blended polymer materials developed in this study. The key technique developed in this study to change a polymer's solubility in SCF CO2 is to thermally blend a commercially available and CO2 non-soluble polymer material with a low molecular weight CO2 soluble organic chemical that acts as a co-solute. The mixture yields a plastic material that can be completely solubilized in SCF CO2 over a range of temperatures and pressures. It also exhibits a variety of physical properties (strength, hardness, viscosity, etc.) depending on variations in the mixture ratio. The three organic chemicals investigated as CO2 soluble materials are diphenyl carbonate, naphthalene, and benzophenone. Two commercial polymers, polyethylene glycol and polystyrene, have been investigated as CO2 non-soluble materials. The chemical

  3. Blending of palm oil, palm stearin and palm kernel oil in the preparation of table and pastry margarine.

    Science.gov (United States)

    Norlida, H M; Md Ali, A R; Muhadhir, I

    1996-01-01

    Palm oil (PO ; iodin value = 52), palm stearin (POs1; i.v. = 32 and POs2; i.v. = 40) and palm kernel oil (PKO; i.v. = 17) were blended in ternary systems. The blends were then studied for their physical properties such as melting point (m.p.), solid fat content (SFC), and cooling curve. Results showed that palm stearin increased the blends melting point while palm kernel oil reduced it. To produce table margarine with melting point (m.p.) below 40 degrees C, the POs1 should be added at level of pastry margarine.

  4. Mechanical properties of polyketone terpolymer/rubber blends

    NARCIS (Netherlands)

    Zuiderduin, W.C.J.; Vlasveld, D.P.N.; Huetink, Han; Gaymans, R.J.

    2004-01-01

    Blends of aliphatic polyketone terpolymer and a core-shell rubber (CSR) were melt processed with varying CSR concentration of 0– 40 wt%. The obtained morphology was of finely dispersed CSR particles in the polyketone matrix. The thermal properties of the matrix polymer remained unaffected by the

  5. Morphological, rheological and mechanical characterization of polypropylene nanocomposite blends.

    Science.gov (United States)

    Rosales, C; Contreras, V; Matos, M; Perera, R; Villarreal, N; García-López, D; Pastor, J M

    2008-04-01

    In the present work, the effectiveness of styrene/ethylene-butylene/styrene rubbers grafted with maleic anhydride (MA) and a metallocene polyethylene (mPE) as toughening materials in binary and ternary blends with polypropylene and its nanocomposite as continuous phases was evaluated in terms of transmission electron microscopy (TEM), scanning electron microscopy (SEM), oscillatory shear flow and dynamic mechanical thermal analysis (DMA). The flexural modulus and heat distortion temperature values were determined as well. A metallocene polyethylene and a polyamide-6 were used as dispersed phases in these binary and ternary blends produced via melt blending in a corotating twin-screw extruder. Results showed that the compatibilized blends prepared without clay are tougher than those prepared with the nanocomposite of PP as the matrix phase and no significant changes in shear viscosity, melt elasticity, flexural or storage moduli and heat distortion temperature values were observed between them. However, the binary blend with a nanocomposite of PP as matrix and metallocene polyethylene phase exhibited better toughness, lower shear viscosity, flexural modulus, and heat distortion temperature values than that prepared with polyamide-6 as dispersed phase. These results are related to the degree of clay dispersion in the PP and to the type of morphology developed in the different blends.

  6. Knocking Down Barriers: How California Superintendents Are Implementing Blended Learning

    Science.gov (United States)

    Horn, Michael B.; Gu, Anna; Evans, Meg

    2014-01-01

    School districts across the United States are implementing blended learning to boost student achievement. The authors convened several California school district superintendents to answer the questions: "What are the barriers, real or perceived, to implementing blended learning in your district?" and "Have you found solutions to or…

  7. Manufacturing and characterization of encapsulated microfibers with different molecular weight poly(ε-caprolactone) (PCL) resins using a melt electrospinning technique

    International Nuclear Information System (INIS)

    Lee, Jason K; Ko, Junghyuk; Jun, Martin B G; Lee, Patrick C

    2016-01-01

    Encapsulated structures of poly(ε-caprolactone) microfibers were successfully fabricated through two distinct melt electrospinning methods: melt coaxial and melt-blending electrospinning methods. Both methods resulted in encapsulated microfibers, but the resultant microfibers had different morphologies. Melt coaxial electrospinning formed a dual, semi-concentric structure, whereas melt-blending electrospinning resulted in an islands-in-a-sea fiber structure (i.e. a multiple-core structure). The encapsulated microfibers were produced using a custom-designed melt coaxial electrospinning device and the microfibers were characterized using a scanning electron microscope. To analyze the properties of the melt blended encapsulated fibers and coaxial fibers, the microfiber mesh specimens were collected. The mechanical properties of each microfiber mesh were analyzed through a tensile test. The coaxial microfiber meshes were post processed with a femtosecond laser machine to create dog-bone shaped tensile test specimens, while the melt blended microfiber meshes were kept as-fabricated. The tensile experiments undertaken with coaxial microfiber specimens resulted in an increase in tensile strength compared to 10 k and 45 k monolayer specimens. However, melt blended microfiber meshes did not result in an increase in tensile strength. The melt blended microfiber mesh results indicate that by using greater amounts of 45 k PCL resin within the microstructure, the resulting fibers obtain a higher tensile strength. (paper)

  8. Engineering Polymer Blends for Impact Damage Mitigation

    Science.gov (United States)

    Gordon, Keith L.; Smith, Russell W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Structures containing polymers such as DuPont's Surlyn® 8940, demonstrate puncture healing when impacted by a 9 millimeter projectile traveling from speeds near 300 meters per second (1,100 feet per second) to hypervelocity impacts in the micrometeoroid velocity range of 5 kilometers per second (16,000 feet per second). Surlyn® 8940 puncture heals over a temperature range of minus 30 degrees Centigrade to plus 70 degrees Centigrade and shows potential for use in pressurized vessels subject to impact damage. However, such polymers are difficult to process and limited in applicability due to their low thermal stability, poor chemical resistance and overall poor mechanical properties. In this work, several puncture healing engineered melt formulations were developed. Moldings of melt blend formulations were impacted with a 5.56 millimeter projectile with a nominal velocity of 945 meters per second (3,100 feet per second) at about 25 degrees Centigrade, 50 degrees Centigrade and 100 degrees Centigrade, depending upon the specific blend being investigated. Self-healing tendencies were determined using surface vacuum pressure tests and tensile tests after penetration using tensile dog-bone specimens (ASTM D 638-10). For the characterization of tensile properties both pristine and impacted specimens were tested to obtain tensile modulus, yield stress and tensile strength, where possible. Experimental results demonstrate a range of new puncture healing blends which mitigate damage in the ballistic velocity regime.

  9. Phenomenology of polymer solution dynamics

    National Research Council Canada - National Science Library

    Phillies, George D. J

    2011-01-01

    ... solutions, not dilute solutions or polymer melts. From centrifugation and solvent dynamics to viscosity and diffusion, experimental measurements and their quantitative representations are the core of the discussion...

  10. Cesium and its analogs, rubidium and potassium, in rhombohedral [NaZr2(PO4)3 type] and cubic (langbeinite type) phosphates: 2. Properties: behavior on heating, in aqueous solutions, and in salt melts

    International Nuclear Information System (INIS)

    Orlova, A.I.; Orlova, V.A.; Buchirin, A.V.; Korchenkin, K.K.; Beskrovnyj, A.I.; ); Demarin, V.T.

    2005-01-01

    The properties (behavior on heating, in aqueous solutions, and in salt melts) of orthophosphates A 2 RM(PO 4 ) 3 , A 2 B 0.5 Zr 1.5 (PO 4 ) 3 , and ABR 2 (PO 4 ) 3 [A = K, Rb, Cs; B = Mg, Sr, Ba; R = Ga, Fe, Cr, Ln (Ce-Lu)] crystallizing in the structure of langbeinite mineral (cubic system, space group P2 1 3, Z = 4) were studied and compared with those of NaZr 2 (PO 4 ) 3 type phosphates. The thermal transformations of the structure and the influence of temperature on the distortion of the framework-forming polyhedra were examined. The volatilization of cesium, in particular, from the solid phase in the course of its formation, was evaluated. The rates of cesium and barium leaching at 90 and 95 deg C were determined [ru

  11. Shape memory behaviour of radiation-crosslinked PCL/PMVS blends

    International Nuclear Information System (INIS)

    Zhu Guangming; Xu Shuogui; Wang Jinhua; Zhang Longbin

    2006-01-01

    The performance and radiation crosslinking of polycaprolactone (PCL) and polymethylvinylsiloxane (PMVS) blends has been investigated. Radiation crosslinking of PCL/PMVS blends followed the Charlesby-Pinner equation, and PMVS promoted the radiation crosslinking of the blends. As the concentration of PMVS increased, the gelation dose and the ratio of degradation to crosslinking (p 0 /q 0 ) decreased and the efficiency of radiation crosslinking increased. The elastic modulus below the melting point of PCL of radiation-crosslinked PCL/PMVS blends decreased with the increase of PMVS, and increased above the melting point. The crosslinked PCL/PMVS blends exhibited excellent shape memory effects, and the ratios of deformation to recovery were more than 95%

  12. A Comparison of Student Satisfaction between Traditional and Blended Technology Course Offerings in Physical Education

    Science.gov (United States)

    Vernadakis, Nikolaos; Giannousi, Maria; Tsitskari, Efi; Antoniou, Panagiotis; Kioumourtzoglou, Efthimis

    2012-01-01

    Blended learning With the concerns and dissatisfaction with e-learning, educators are searching for alternative instructional delivery solutions to relieve the above problems. The blended e-learning system has been presented as a promising alternative learning approach. While blended learning has been recognized as having a number of advantages,…

  13. Molecular modifications-mechanical behaviour relationships for gamma irradiated LLDPE/PA6 blends

    International Nuclear Information System (INIS)

    Valenza, A.; Spadaro, G.; Calderaro, E.

    1994-01-01

    The molecular modifications, due to γ radiation under vacuum, of linear low density polyethylene/polyamide 6 blends are presented and related to their mechanical behaviour. Solubility and melt viscosity tests indicate that in blends the polyethylene component undergoes mainly crosslinking phenomena, whereas the main effect on polyamide is chain branching. According to these molecular modifications, the most relevant effect is the increase of the tensile modulus for the polyethylene rich blends and the increase of the impact strength for the polyamide rich blends. (author)

  14. Comprehensive Study on Thermal and Dynamic Mechanical Behavior of PET/PEN Blends

    Directory of Open Access Journals (Sweden)

    Hossien Ali Khonakdar

    2013-10-01

    Full Text Available The effects of interchange reactions on the crystallization, melting, and dynamic mechanical thermal behavior of poly(ethylene terephthalate/poly(ethylene naphthalate (PET/PEN blends prepared by melt mixing have been investigated. The occurrence of interchange reactions has been verified by proton nuclear magnetic resonance (1H NMR. Differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA were used to study the effect of transesterification reaction on crystallinity, melting and dynamic mechanical properties of the blends. It was found that by extension of transesterification, the miscibility of the blend increased. Time and temperature of mixing were most important parameters affecting the transesterification level. On blending, the melt crystallinity of poly(ethylene terephthalate was reduced and in contrast that of poly(ethylene naphthalate was increased; where melt crystallization temperatures of both phases were depressed. A single composition-dependent glass transition peak, which was indicative of miscibility, was detected in second heating thermograms of the blends. It was observed that cold crystallization of poly(ethylene terephthalate phase decreases while that of poly(ethylene naphthalate was suppressed on blending. It was found that each phase crystallized individually and a melting point depression which was an indication of compatibility was evident at the same time. Dynamic mechanical analysis confirmed the proton nuclear magnetic resonance and differential scanning calorimetry results. The secondary viscoelastic transitions of each phase in blend samples were also probed. Increment of peak area in the loss factor has implied the miscibility of blend due to formation of poly(ethylene terephthalate/poly(ethylene naphthalate random copolymer.

  15. Thermal and mechanical properties of injection molded recycled high density polyethylene blends with virgin isotactic polypropylene

    International Nuclear Information System (INIS)

    Madi, N.K.

    2013-01-01

    Highlights: ► Recycled high density polyethylene and isotactic polypropylene blends have been prepared by melt compounding. ► Thermal study showed that iPP is not well dispersed into the rHDPE matrix. ► Tensile testing shows that there is strong correlation between the thermal properties and the tensile behavior of rHDPE/ipp blends. - Abstract: Polymer blending has become an important field in polymer research and especially in the area of recycling. In this research the target was to reduce the polymer waste problem. Therefore, recycled high density polyethylene (rHDPE) and virgin isotactic polypropylene (vPP) blends containing upto 30 wt% of vPP have been prepared by melt compounding method using injection molding at 220 °C. The thermal properties, thermal degradation and the mechanical properties of the polymer blends were studied using differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), and tensile testing method. DSC study shows that in all the blends there are two melting peaks, one around the melting temperature of rHDPE and another one around the melting point of vPP, indicating that vPP is not well dispersed into the rHDPE matrix. The changes in the heat of fusion for the rHDPE/iPP polymer blends versus vPP content suggests that incorporating vPP affects the crystallinity of the system. TGA analysis of the polymer blends shows that parts of rHDPE with 95/5 upto 80/20 of vPP are mostly stable composition which brings about valuable stabilization to the rHDPE. Tensile testing shows that there is strong correlation between the thermal properties and the tensile behavior of rHDPE/vpp blends

  16. Compatibilizing Bulk Polymer Blends by Using Organoclays

    Science.gov (United States)

    Si, Mayu; Gersappe, Dilip; Zhang, Wenhua; Ade, Harald; Rafailovich, Miriam; Sokolov, Jonathan; Rudomen, Gregory; Schwartz, Bradley; Fisher, Robert

    2004-03-01

    We investigated the compatiblizing performance of organoclays on melt mixed binary and tertiary polymer blends, such as, PS/PMMA, PC/SAN, PS/PMMA/PVC and PS/PMMA/PE. These polymer blends were characterized by TEM, STXM, DSC and DMA. TEM and STXM photographs show that the addition of organoclays into polymer blends drastically reduces the average domain size of the component phases. And the organoclay goes to the interfacial region between the different polymers and effectively slows down the domain size increasing during high temperature annealing. DMA and DSC results show the effect of organoclays on the mechanical properties and glass transitions temperature, which indicates the compatibilization on the molecular level. The generalized compatibilization induced by the nanoscale fillers for blends can be explained in terms of mean field models where the reduction of interfacial tension induced by in-situ grafting is counterbalanced by the increased bending energy due to the rigidity of the filler. This in turn can be shown to be a function of the degree of exfoliation, aspect ratio, and polymer filler interactions. Supported by NSF funded MRSEC at Stony Brook

  17. Decentralized Blended Acquisition

    NARCIS (Netherlands)

    Berkhout, A.J.

    2013-01-01

    The concept of blending and deblending is reviewed, making use of traditional and dispersed source arrays. The network concept of distributed blended acquisition is introduced. A million-trace robot system is proposed, illustrating that decentralization may bring about a revolution in the way we

  18. Influence of boehmite nanoparticle loading on the mechanical, thermal, and rheological properties of biodegradable polylactide/ poly(e-caprolactone) blends

    CSIR Research Space (South Africa)

    Agwuncha, SC

    2015-01-01

    Full Text Available Blends of polylactide (PLA) and poly(e-caprolactone) (PCL) were melt-processed with boehmite (BAI) nanoparticles to produce ternary biocomposites with the intent of broadening the potential applications of PLA. The mechanical properties...

  19. Biopolymer blends based on polylactic acid and polyhydroxy butyrate-co-valerate: effect of clay on mechanical and thermal properties

    CSIR Research Space (South Africa)

    John, MJ

    2015-11-01

    Full Text Available Biodegradable polymer blends consisting of polylactic acid (PLA) and polyhydroxy butyrate-co-valerate (PHBV) have been prepared by melt mixing in a twin screw extruder and followed by injection molding technique. Cereplast PLA containing starch...

  20. Preparation and Characterization of HPMC/PVP Blend Films Plasticized with Sorbitol

    OpenAIRE

    Somashekarappa, H.; Prakash, Y.; Hemalatha, K.; Demappa, T.; Somashekar, R.

    2013-01-01

    The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC) and Polyvinylpyrrolidone (PVP) blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS) method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the f...

  1. A blend of Sodium Humate/SLES/Herbal Oils

    Directory of Open Access Journals (Sweden)

    Yeliz Akyiğit

    2013-08-01

    Full Text Available A blend of sodium humate (SH with anionic surfactants such as sodium lauryl ether sulfate (SLES was prepared by solution mixing at medium of herbal oils at 25, 50 and 75°C. Its miscibility studies were carried out by using physical techniques over an extended range of concentration and composition in buffer solution. In addition, to ascertain the state of miscibility of the blends, they were investigated by using UV-visible spectrophotometer and Fourier transform infrared (FTIR. These values revealed that the blend is miscible when the sodium humate content is more than %60 in the blend at all temperatures. There were no important differences in the characteristics of the blends at different temperatures.It was thought that the mechanism ofthe complex formation is realized by making strong intermolecular interaction like hydrogen bonds between the carbonyl groups in humic acid and hydroxyl groups in fatty acids.

  2. Evaluation of miscibility of poly(epichlorohydrin-co-ethylene oxide) and poly(methylmethacrylate) blends

    International Nuclear Information System (INIS)

    Turchete, Renato; Felisberti, Maria Isabel

    1999-01-01

    The miscibility of blends of poly(methylmethacrylate), (PMMA) and poly(epichlorohydrin-co-ethylene oxide), (ECO) were investigated by differential scanning calorimetry. The ECO was fractionated using two different systems: a solvent-non solvent system and by cooling the solution in tetrahydrofuran in the temperature range from 20 to 0 deg C. The fractions with different composition and molecular weight were used to prepare the blends by casting from solution in tetrahydrofuran. The blends exhibit two glass transitions shifted in relation to the glass transitions of the pure polymers, indicating a partial miscibility. Blends containing copolymer richer in epichlorohydrin segments were more miscible than blends of non-fractionated ECO. (author)

  3. Stability of traditionally processed vegetable oils and their blends ...

    African Journals Online (AJOL)

    physicochemical properties which included acid value, saponification value, peroxide value, iodine ... The oils and their blends were stored in two different conditions; one batch at the air-tight .... about 0.5 ml of starch indicator solution was.

  4. Tank 21 and Tank 24 Blend and Feed Study: Blending Times, Settling Times, and Transfers

    International Nuclear Information System (INIS)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-01-01

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 (micro)m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion ( 60 days) settling times in Tank 21.

  5. Binary blend Nanoparticles with defined morphology

    International Nuclear Information System (INIS)

    Ghazy, O.A.H.

    2008-01-01

    The word blend in linguistics means a word formed from two parts of two words. In polymer science polymer blends means polymer mixtures, a class of materials analogues to the metal alloys. Blending of polymers is a simple and economic way to create new materials meeting specific desired properties. The other alternative is to synthesize such materials eventually facing the organic chemistry design difficulties. The low entropy of mixing polymers makes the process thermodynamically unfavorable, unless there are some specific interactions between the mixed polymers. As a result, in thermal equilibrium typically a phase separation between the blend components takes place. The main challenge facing the blending of polymers is the control of the length scale of the phase separation. One of the most important applications, where the control of the phase separation is crucial for the performance is the organic solar cells. In organic solar cells a blend of an electron donating polymer and electron accepting one is formed. The dimensions of the phase separation between the two polymers should be in the range of the exciton diffusion length [1-3] (in semiconductors, exciton diffusion length is the average distance traveled by the electron-hole pair before recombination). Only under this condition the charge transfer at the interface between the two polymer layers can take place and the solar cell performs efficiently. The thin polymer blend layers for such applications are commonly deposited by spin coating from solution containing both polymers. The morphology of the thin layer prepared in this way is highly influenced by the preparation conditions such as the surface properties of the substrate, the solvent from which the blend was deposited, the temperature, and the annealing temperature [4-9]. Therefore controlling the length scale of phase separation in layers casted or spin coated from solutions is difficult and is a matter of trials and errors. Recently a novel

  6. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  7. Thermal, Mechanical and Water Resistance Properties of LDPE/Starch Bio-Based Polymer Blends for Food Packing Applications

    OpenAIRE

    Berber Yamak, Hale

    2016-01-01

    In this study, low density polyethylene, LDPE was melt blended with starch using twin screw extruder to form biodegradable polymer blends. The LDPE/starch blend films used in food packing were obtained by hot pressing of the granules produced by extrusion process. The starch content was varied from 0 to 40 wt% of LDPE. To provide fine starch dispersion, glycerol and zinc stearate were used as plasticizer and compatibilizer, respectively. The effect of starch content on the properties of LDPE ...

  8. Entanglement in miscible blends

    Science.gov (United States)

    Watanabe, Hiroshi

    2010-03-01

    The entanglement length Le of polymer chains (corresponding to the entanglement molecular weight Me) is not an intrinsic material parameter but changes with the interaction with surrounding chains. For miscible blends of cis-polyisoprene (PI) and poly(tert-butyl styrene) (PtBS), changes of Le on blending was examined. It turned out that the Le averaged over the number fractions of the Kuhn segments of the components (PI and PtBS) satisfactorily describes the viscoelastic behavior of pseudo-monodisperse blends in which the terminal relaxation time is the same for PI and PtBS.

  9. Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

    CERN Document Server

    SAE Aerospace Standards. London

    2012-01-01

    Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

  10. Melting of Dense Sodium

    International Nuclear Information System (INIS)

    Gregoryanz, Eugene; Degtyareva, Olga; Hemley, Russell J.; Mao, Ho-kwang; Somayazulu, Maddury

    2005-01-01

    High-pressure high-temperature synchrotron diffraction measurements reveal a maximum on the melting curve of Na in the bcc phase at ∼31 GPa and 1000 K and a steep decrease in melting temperature in its fcc phase. The results extend the melting curve by an order of magnitude up to 130 GPa. Above 103 GPa, Na crystallizes in a sequence of phases with complex structures with unusually low melting temperatures, reaching 300 K at 118 GPa, and an increased melting temperature is observed with further increases in pressure

  11. MOOC Blended learning ontwikkelen

    NARCIS (Netherlands)

    Verjans, Steven

    2015-01-01

    Presentatie over het ontwerpen van leeractiviteiten (learning design) tijdens de zesde live sessie van de MOOC Blended learning ontwikkelen. Met gebruikmaking van presentatiematerialen van Diana Laurillard, Grainne Conole, Helen Beetham, Jos Fransen, Pieter Swager, Helen Keegan, Corinne Weisgerber.

  12. Fuel Property Blend Model

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wagnon, Scott J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhang, Kuiwen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kukkadapu, Goutham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-12

    The object of this project is to develop chemical models and associated correlations to predict the blending behavior of bio-derived fuels when mixed with conventional fuels like gasoline and diesel fuels.

  13. Thermal characterizations of the paraffin wax/low density polyethylene blends as a solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soojong; Moon, Heejang; Kim, Jinkon, E-mail: jkkim@kau.ac.kr

    2015-08-10

    Highlights: • Regression rate of blends fuel is higher than polymer fuel. • LDPE is an effective mixing ingredient for the combustion efficiency. • Blends fuel is a uniform mixture with two degradation steps. • LDPE plays a positive role for the low sensitivity to the thermal deformation • Blends with low LDPE content can be an effective fuel for hybrid rocket application. - Abstract: Thermal characterizations of a novel solid fuel for hybrid rocket application, based on the paraffin wax blends with low density polyethylene (LDPE) concentration of 5% (SF-5) and 10% (SF-10) were conducted. Both the increased regression rate in comparison with the polymeric fuel, and the improved combustion efficiency in comparison with the pure paraffin fuel reveal that the blend fuels achieve higher combustion performance. The morphology of the shape stabilized paraffin wax/LDPE blends was characterized by the scanning electron microscopy (SEM). Although the SEM observation indicated the blends have uniform mixtures, they showed two degradation steps confirming the immiscibility of components in the crystalline phase from thermogravimetric analysis (TGA). The differential scanning calorimeter (DSC) results showed that the melting temperature of LDPE in the blends decreased with an increase of paraffin wax content. The decreasing total specific melting enthalpy of blended fuels with decreasing paraffin wax content is in fairly good agreement with the additive rule. In thermomechanical analysis (TMA), the linear coefficient of thermal expansion (LCTE) seems to decrease with an increase of LDPE loading, however, the loaded LDPE do merely affect the LCTE in case of the blends with low LDPE concentration. It was found that a blend of low concentration of LDPE with a relatively high concentration of paraffin wax can lead to a potential novel fuel for rocket application, a contrary case with respect to the field of phase change materials (PCM) where a blend of high concentration

  14. Thermal characterizations of the paraffin wax/low density polyethylene blends as a solid fuel

    International Nuclear Information System (INIS)

    Kim, Soojong; Moon, Heejang; Kim, Jinkon

    2015-01-01

    Highlights: • Regression rate of blends fuel is higher than polymer fuel. • LDPE is an effective mixing ingredient for the combustion efficiency. • Blends fuel is a uniform mixture with two degradation steps. • LDPE plays a positive role for the low sensitivity to the thermal deformation • Blends with low LDPE content can be an effective fuel for hybrid rocket application. - Abstract: Thermal characterizations of a novel solid fuel for hybrid rocket application, based on the paraffin wax blends with low density polyethylene (LDPE) concentration of 5% (SF-5) and 10% (SF-10) were conducted. Both the increased regression rate in comparison with the polymeric fuel, and the improved combustion efficiency in comparison with the pure paraffin fuel reveal that the blend fuels achieve higher combustion performance. The morphology of the shape stabilized paraffin wax/LDPE blends was characterized by the scanning electron microscopy (SEM). Although the SEM observation indicated the blends have uniform mixtures, they showed two degradation steps confirming the immiscibility of components in the crystalline phase from thermogravimetric analysis (TGA). The differential scanning calorimeter (DSC) results showed that the melting temperature of LDPE in the blends decreased with an increase of paraffin wax content. The decreasing total specific melting enthalpy of blended fuels with decreasing paraffin wax content is in fairly good agreement with the additive rule. In thermomechanical analysis (TMA), the linear coefficient of thermal expansion (LCTE) seems to decrease with an increase of LDPE loading, however, the loaded LDPE do merely affect the LCTE in case of the blends with low LDPE concentration. It was found that a blend of low concentration of LDPE with a relatively high concentration of paraffin wax can lead to a potential novel fuel for rocket application, a contrary case with respect to the field of phase change materials (PCM) where a blend of high concentration

  15. Crystallinity evaluation of polyhydroxybutyrate and polycaprolactone blends

    International Nuclear Information System (INIS)

    Cavalcante, Maxwell P.; Rodrigues, Elton Jorge R.; Tavares, Maria Ines B.

    2015-01-01

    Polyhydroxybutyrate, PHB, is a polymer obtained through bacterial or synthetic pathways. It has been used in the biomedical field as a matrix for drug delivery, medical implants and as scaffold material for tissue engineering. PHB has high structural organization, which makes it highly crystalline and brittle, making biodegradation difficult, reducing its employability. In order to enhance the mechanical and biological properties of PHB, blends with other polymers, biocompatible or not, are researched and produced. In this regard, blends of PHB and polycaprolactone, PCL, another biopolymer widely used in the biomedical industry, were obtained via solution casting and were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and low field nuclear magnetic resonance (LF-NMR). Results have shown a dependence between PHB's crystallinity index and PCL quantity employed to obtain the blends.(author)

  16. Blending into the mix

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.G.; Gibb, W.H.; Majid, K.A. [Power Technology (United Kingdom)

    1999-07-01

    Successful coal blending requires finding a careful balance between fuel costs and plant performance. A recent study of a Malaysian power plant shows how the utility (Tenaga Nasional Berhad (TNB)) could reduce fuel costs while avoiding boiler operating problems normally associated with firing low-grade coals. TNB`s Kaper 2220 MW power station in Selangor needed an improved method of coal blending for two new 500 MW units and for two existing 300 MW units. UK`s Power Technology was commissioned to identify what coal blends the boiler could tolerate. A Coal Quality Impact Model (CQIM) analysis of the effect of different coals and coal blends on combustion performance and economics, and a performance analysis of coal yard handling facility was made to determine whether the accuracy of the required blend could be achieved (using a Coal Handling Simulation, CHAS, software package). The CQIM study showed that the proportion of cheaper coals could be increased from 20% to 50% provided each shipment was adequately sampled. The CHAS study showed that use of a flat back reclaimer or modifications to the dry coal stove would allow accurate blending. 5 figs., 1 tab.

  17. Production of silk sericin/silk fibroin blend nanofibers

    Directory of Open Access Journals (Sweden)

    Zhang Xianhua

    2011-01-01

    Full Text Available Abstract Silk sericin (SS/silk fibroin (SF blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75 blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50 blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100 blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure.

  18. Technological properties and structure of titanate melts

    International Nuclear Information System (INIS)

    Morozov, A.A.

    2002-01-01

    Power substantiation of existence of tough stream of complex anion ([TiO 6 ] 8- ) as a prevalent unit in titanate melts is given on the base of up-to-date knowledge about structure of metallurgical slags and results of investigations of thermophysical properties of these melts. It is shown that high crystallization ability of titanate melts at technological temperatures is determined by heterogeneity of liquid state - by presence up to 30 % of dispersed particles of solid phase solutions in matrix liquid [ru

  19. Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance.

    Science.gov (United States)

    Zhang, Kunyu; Nagarajan, Vidhya; Misra, Manjusri; Mohanty, Amar K

    2014-08-13

    Multiphase blends of poly(lactic acid) (PLA), ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) terpolymer, and a series of renewable poly(ether-b-amide) elastomeric copolymer (PEBA) were fabricated through reactive melt blending in an effort to improve the toughness of the PLA. Supertoughened PLA blend showing impact strength of ∼500 J/m with partial break impact behavior was achieved at an optimized blending ratio of 70 wt % PLA, 20 wt % EMA-GMA, and 10 wt % PEBA. Miscibility and thermal behavior of the binary blends PLA/PEBA and PLA/EMA-GMA, and the multiphase blends were also investigated through differential scanning calorimetric (DSC) and dynamic mechanical analysis (DMA). Phase morphology and fracture surface morphology of the blends were studied through scanning electron microscopy (SEM) and atomic force microscopy (AFM) to understand the strong corelation between the morphology and its significant effect on imparting tremendous improvement in toughness. A unique "multiple stacked structure" with partial encapsulation of EMA-GMA and PEBA minor phases was observed for the PLA/EMA-GMA/PEBA (70/20/10) revealing the importance of particular blend composition in enhancing the toughness. Toughening mechanism behind the supertoughened PLA blends have been established by studying the impact fractured surface morphology at different zones of fracture. Synergistic effect of good interfacial adhesion and interfacial cavitations followed by massive shear yielding of the matrix was believed to contribute to the enormous toughening effect observed in these multiphase blends.

  20. NUMERICAL EVALUATION OF THE EFFECTS OF SOFT-MELTING PROPERTIES ON THE KINETIC OF (CAFE2 O4 -CA2 FE2 O5 FORMATION IN THE IRON ORE SINTERING PROCESS

    Directory of Open Access Journals (Sweden)

    José Adilson de Castro

    2013-03-01

    Full Text Available This paper presents a mathematical model able to predict the influence of soft-melting properties of the blend of raw materials used in the iron ore sintering process in the kinetic formation of calcium ferrite and di-calcium ferrite constituents. The model is based on the simultaneous solution of transport equations of Momentum, energy and chemical species in multiphase multicomponent systems coupled with the chemical reactions kinetics and phase transformations that occur within the sinter bed. The numerical solution is obtained using the finite volume method and the model is validated using monitoring data from an industrial scale sintering plant. After validation, the model was used to predict processing conditions using raw materials with different soft-melting properties. Results indicate that the temperatures of starting soft-melting, shrinkage and melting range are the main parameters to be controlled in order to attain liquid phases formation responsible to confer good mechanical and reducibility properties for the sinter product. In this study was found that raw materials with high soft-melting temperature and wilder temperature of mushy zone could decrease up to 30% the calcium ferrites formation and hence deteriorates the metallurgical properties of the sinter.

  1. Synchrotron x-ray spectroscopy of EuHN O3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly

    Science.gov (United States)

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.

  2. Interstitial micelles in binary blends of A B A triblock copolymers and homopolymers

    Science.gov (United States)

    Wołoszczuk, S.; Banaszak, M.

    2018-01-01

    We investigate triblock-homopolymer blends of types A1BA2/A and A1BA2/B, using a lattice Monte Carlo method. While the simulated triblock chains are compositionally symmetric in terms of the A-to-B volume ratio, the A1 block is significantly shorter than the A2 block. For the pure A1BA2 melt and the A1BA2 solutions in selective solvent the phase behavior is relatively well known, including existence and stability of the interstitial micelles which were discovered in previous Monte Carlo simulations. In this paper we study the stability of the interstitial micelles as a function of triblock volume fraction in selective homopolymers of either type A or type B, using two significantly different homopolymer chain lengths. We found that adding selective homopolymer of type A shifts the stability of the interstitial micelles into significantly higher temperatures. We also obtained, via self-assembly, intriguing new nanostructures which can be identified as ordered truncated octahedra. Finally, we established that the phase behavior of the triblock-homopolymer blends depends relatively weakly on the chain length of the added homopolymer.

  3. Model of interfacial melting

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Zuckermann, Martin J.

    1987-01-01

    A two-dimensional model is proposed to describe systems with phase transitions which take place in terms of crystalline as well as internal degrees of freedom. Computer simulation of the model shows that the interplay between the two sets of degrees of freedom permits observation of grain-boundar......-boundary formation and interfacial melting, a nonequilibrium process by which the system melts at the boundaries of a polycrystalline domain structure. Lipid membranes are candidates for systems with pronounced interfacial melting behavior....

  4. Preparation and Characterization of Keratin/Alginate Blend Microparticles

    Directory of Open Access Journals (Sweden)

    Yaowalak Srisuwan

    2018-01-01

    Full Text Available The water-in-oil (W/O emulsification-diffusion method was used for construction of keratin (Ker, alginate (Alg, and Ker/Alg blend microparticles. The Ker, Alg, and Ker/Alg blend solutions were used as the water phase, while ethyl acetate was used as the oil phase. Firstly, different concentrations of Ker solution was used to find suitable content. 1.6% w/v Ker solution was blended with the same concentration of the Alg solution for further microparticle construction. Results from scanning electron microscope analysis show that the microparticles have different shapes: spherical, bowl-like, porous, and hollow, with several sizes depending on the blend ratio. FTIR and TG analyses indicated that the secondary structure and thermal stability of the microparticles were influenced by the Ker/Alg blend ratio. The interaction between functional groups of keratin and alginate was the main factor for both β-sheet structure and Td,max values of the microparticles. The results suggested that Ker/Alg blend microparticles might be applied in many fields by varying the Ker/Alg ratio.

  5. Surface Hardening by Laser Skin Melting

    Science.gov (United States)

    1979-07-01

    typical cross-sectional view of a melt region. Various solutions includina Murakami’s reaqent, Vilella’s reagent and an oxalic acid solution were used...each type selectively revealinq different microstructu- ral features. A second etch in an oxalic acid /hydrochloric acid solution was used in the...genization due to vigorous hydrothermal mixing and liquid super- heating. Computations by Greenwald (13) from a heat flow model are graphically represented

  6. The relationship between sol fraction and radiation dose in radiation crosslinking of low-density polyethylene (LDPE)/ethylenevinylacetate copolymer (EVA) blend

    International Nuclear Information System (INIS)

    Zhang, W.X.; Liu, Y.T.; Sun, J.Z.

    1990-01-01

    In this paper, two different methods were used to prepare the blend of low-density polyethylene (LDPE) and ethylene vinyl acetate copolymer (EVA). One of them was mechanical blending, and the other was solution blending. The relationship between sol fraction and radiation dose of different weight ratio polymer blends has been studied. The method to calculate the β b value of polymer blend system (LDPE/EVA) has been established. (author)

  7. Thermodynamic Compatibility, Crystallizability, Thermal, Mechanical Properties and Oil Resistance Characteristics of Nanostructure Poly (ethylene-co-methyl acrylate/Poly(acrylonitrile-co-butadiene Blends

    Directory of Open Access Journals (Sweden)

    Murugan N.

    2017-12-01

    Full Text Available This paper addresses the compatibility, morphological characteristics, crystallization, physico-mechanical properties and thermal stability of the melt mixed EMA/NBR blends. FTIR spectroscopy reveals considerable physical interaction between the polymers that explain the compatibility of the blends. DSC results confirm the same (compatibility and reveals that NBR hinders EMA crystallization. Mechanical and thermal properties of the prepared EMA/NBR blends notably enhance with increasing the fraction of EMA in the blends. Morphology study exhibit the dispersed particles in spherical shape in the nanometer level. Swelling and oil resistance study have also been carried out in details to understand the performance behaviour of these blends at service condition

  8. Supporting School Leaders in Blended Learning with Blended Learning

    Science.gov (United States)

    Acree, Lauren; Gibson, Theresa; Mangum, Nancy; Wolf, Mary Ann; Kellogg, Shaun; Branon, Suzanne

    2017-01-01

    This study provides a mixed-methods case-study design evaluation of the Leadership in Blended Learning (LBL) program. The LBL program uses blended approaches, including face-to-face and online, to prepare school leaders to implement blended learning initiatives in their schools. This evaluation found that the program designers effectively…

  9. Non-uniformity of phase structure in immiscible polymer blends

    Czech Academy of Sciences Publication Activity Database

    Fortelný, Ivan; Lapčíková, Monika; Lednický, František; Starý, Zdeněk; Kruliš, Zdeněk

    2008-01-01

    Roč. 48, č. 3 (2008), s. 564-571 ISSN 0032-3888 R&D Projects: GA ČR GA106/06/0729; GA ČR GA106/06/0761 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer blends * melt mixing * non-uniform morphology Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.245, year: 2008

  10. Blended Learning Design

    DEFF Research Database (Denmark)

    Pedersen, Lise

    2015-01-01

    University College Lillebaelt has decided that 30 percent of all educational elements must be generated as blended learning by the end of the year 2015 as part of a modernization addressing following educational needs: 1. Blended learning can help match the expectations of the future students who...... learning. 4. Blended learning can contribute to supporting and improving efficiency of educational efforts. This can for instance be done through programmes for several classes by using video conferencing, allocating traditional face to face teaching to synchronous and asynchronous study activities produce...... digital materials which can be employed didactically and reused by the teachers. This can also mean that the particular competencies which teaches have in Svendborg can be used at other locations in UCL and disseminated to a larger group of students without further costs. Educational Innovation...

  11. Controlling the Solidification of Organic Photovoltaic Blends with Nucleating Agents

    KAUST Repository

    Nekuda Malik, Jennifer A.

    2014-11-20

    Blending fullerenes with a donor polymer for the fabrication of organic solar cells often leads to at least partial vitrification of one, if not both, components. For prototypical poly(3-hexylthiophene):fullerene blend, we show that the addition of a commercial nucleating agent, di(3,4-dimethyl benzylidene)sorbitol, to such binary blends accelerates the crystallization of the donor, resulting in an increase in its degree of crystallinity in as-cast structures. This allows manipulation of the extent of intermixing/ phase separation of the donor and acceptor directly from solution, offering a tool to improve device characteristics such as power conversion efficiency.

  12. Controlling the Solidification of Organic Photovoltaic Blends with Nucleating Agents

    KAUST Repository

    Nekuda Malik, Jennifer A.; Treat, Neil D.; Abdelsamie, Maged; Yu, Liyang; Li, Ruipeng; Smilgies, Detlef-M.; Amassian, Aram; Hawker, Craig J.; Chabinyc, Michael L.; Stingelin, Natalie

    2014-01-01

    Blending fullerenes with a donor polymer for the fabrication of organic solar cells often leads to at least partial vitrification of one, if not both, components. For prototypical poly(3-hexylthiophene):fullerene blend, we show that the addition of a commercial nucleating agent, di(3,4-dimethyl benzylidene)sorbitol, to such binary blends accelerates the crystallization of the donor, resulting in an increase in its degree of crystallinity in as-cast structures. This allows manipulation of the extent of intermixing/ phase separation of the donor and acceptor directly from solution, offering a tool to improve device characteristics such as power conversion efficiency.

  13. Enhanced performance of solution-processed broadband photodiodes by epitaxially blending MAPbBr3 quantum dots and ternary PbSxSe1-x quantum dots as the active layer

    Science.gov (United States)

    Sulaman, Muhammad; Yang, Shengyi; Jiang, Yurong; Tang, Yi; Zou, Bingsuo

    2017-12-01

    Organic-inorganic hybrid photodetectors attract more and more interest, since they can combine the advantages of both organic and inorganic materials into one device, and broadband photodetectors are widely used in many scientific and industrial fields. In this work, we demonstrate the enhanced-performance solution-processed broadband photodiodes by epitaxially blending organo-lead halide perovskite (MAPbBr3) colloidal quantum dots (CQDs) with ternary PbSxSe1-x CQDs as the active layer. As a result, the interfacial features of the hetero-epitaxial nanocomposite MAPbBr3:PbSxSe1-x enables the design and perception of functionalities that are not available for the single-phase constituents or layered devices. By combining the high electrical transport properties of MAPbBr3 QDs with the highly radiative efficiency of PbS0.4Se0.6 QDs, the photodiodes ITO/ZnO/PbS0.4Se0.6:MAPbBr3/Au exhibit a maximum photoresponsivity and specific detectivity of 21.48 A W-1 and 3.59 × 1013 Jones, 22.16 A W-1 and 3.70 × 1013 Jones at room temperature under 49.8 μW cm-2 532 nm laser and 62 μW cm-2 980 nm laser, respectively. This is higher than that of the layered photodiodes ITO/ZnO/PbS0.4Se0.6/MAPbBr3/Au, pure perovskite (MAPbBr3) (or PbS0.4Se0.6) QD-based photodiodes reported previously, and it is also better than the traditional inorganic semiconductor-based photodetectors. Our experimental results indicate that epitaxially-aligned nanocomposites (MAPbBr3:PbSxSe1-x) exhibit remarkable optoelectronic properties that are traceable to their atomic-scale crystalline coherence, and one can utilize the excellent photocarrier diffusion from PbSxSe1-x into the perovskite to enhance the device performance from the UV-visible to infrared region.

  14. AKRO/SF: Blend System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Blend was the system used by the NMFS Alaska Regional Office to monitor groundfish catch from 1991 until 2002. The Blend system combined data from industry...

  15. Synthesis of leucite, sanidine and a melt of sanidine at 930-10300C and 2 Kb: partition coefficients of Rb, Ca, Sr and Ba between these phases and hydrothermal solution of KCl. Geological utilizations

    International Nuclear Information System (INIS)

    Moreira, A.H.P.

    1988-01-01

    This work shows the results of hydrothermal experiments to determine the distribution coefficients of alcali and alcaline earth elements in trace concentrations between sanidine and liquids of same composition and between leucite and liquid. At 2 Kb pressure and 930 0 C for sanidine, 930 0 and 1030 0 C for leucite and 1030 0 C for a melt of sanidine composition the concentration of trace elements (TE) in the coexisting potassium bearing aqueous fluid phase was varied between 10 -1 to 10 -6 mole to one mol of K + . By use of radioactive tracers (Rb 86 , Ca 45 , Sr 85 , Ba 133 ) the concentrations in TE of the aqueous phase, the solids and melts has been determined. This indirect method will give a good aproximation of the behaviour of TE between a melt and crystallising solids. These aprotimations lead to following conclusions: a) during the crystallisation of leucite, this phase incorporates large quantities of Ba and Rb, depleting the residual melt in those elements. Sr and Ca, on the other hand are enriched in the residual melt. b) the crystallisation of sanidine depletes even more the residual melt in Ba, Sr shows similias behaviour, Rb and Ca, however, are enriched in the residual melt phase. (author) [pt

  16. Morphology, thermal properties and crystallization kinetics of ternary blends of the polylactide and starch biopolymers and nanoclay: The role of nanoclay hydrophobicity

    CSIR Research Space (South Africa)

    Wokadala, OC

    2015-08-01

    Full Text Available Polylactide/butylated-starch/nanoclay (70/25.5/4.5 wt%) composites were prepared by melt blending with nanoclays of varying hydrophobicity. Electron microscopy studies indicated that the interphase boundary interaction was highest in the clay...

  17. Blended Learning over Two Decades

    Science.gov (United States)

    Zhonggen, Yu; Yuexiu, Zhejiang

    2015-01-01

    The 21st century has witnessed vast amounts of research into blended learning since the conception of online learning formed the possibility of blended learning in the early 1990s. The theme of this paper is blended learning in mainstream disciplinary communities. In particular, the paper reports on findings from the last two decades which looked…

  18. Morphology stabilization of heterogeneous blends

    International Nuclear Information System (INIS)

    1980-01-01

    A heterogeneous elastomer blend is described, consisting of at least two elastomer components which are cross-linkable by irradiation and having a stabilized morphology formed by subjecting the blend to high energy radiation to a point from below to slightly above the gel dose of the blend. (author)

  19. Locally restricted blending of Blobtrees

    NARCIS (Netherlands)

    Groot, de Erwin; Wyvill, B.; Wetering, van de H.M.M.

    2009-01-01

    Blobtrees are volume representations particularly useful for models which require smooth blending. When blending is applied to two or more Blobtree models, extra volume will be created in between the two surfaces to form a smooth connection. Although it is easy to apply blending, it is hard to

  20. Processing influence on the morphology of PVDF/PMMA blends examined by scanning electron microscopy

    International Nuclear Information System (INIS)

    Freire, Estevao; Forte, Maria M.C.; Monteiro, Elisabeth E.C.

    2011-01-01

    PVDF/PMMA blends were melt blended in proportions of 20, 40 e 60% PVDF by weight in two different mixers, a low shear and a high shear mixer. The compositions obtained were examined by scanning electron microscopy. The results were correlated with the two types of processing and showed that the type of mixer affects the morphology of the blend. The morphologies obtained corroborated the NMR analysis demonstrating the phase separation phenomena and the effect of the type of mixer used in this study. (author)

  1. Solid state polymerization: its action on thermal and rheological properties of PET/PC reactive blends

    Directory of Open Access Journals (Sweden)

    Luis C. Mendes

    2013-01-01

    Full Text Available The solid state polymerization (SSP of PET/PC reactive extrusion blends - with and without cobalt catalyst - at different polymer ratios was studied. Thermal and rheological evaluations were performed. DSC results showed changes in the PET's Tg, Tch, Tm and Xc.. The melt flow rate (MFR decreased for PET and the blends. The intrinsic viscosity increased. The variation in calorimetric and rheological properties might be attributed to the PET's chain extension reactions - esterification and transesterification. These reactions led to an increase in the PET's molar mass, consequently shifting the PET's Tg to lower temperature and PET's crystallization, besides reducing the blend miscibility and flowability.

  2. Blending traditional and digital marketing

    Directory of Open Access Journals (Sweden)

    Raluca Dania TODOR

    2016-07-01

    Full Text Available It is a matter of fact that we are in the digital era and internet marketing and social media have a significant impact on the way consumers behave, companies do business and it is a must for companies to adapt to the new reality. Due to the fast evolution of the technology, the continuous increase in demand and supply, the supply chain elongation and the big amount of date, the only solution to face the major changes is the automation of all the processes. But even though the new era of communication is here, specialist suggest that companies should not ignore traditional methods, and to try to blend digital marketing with traditional campaigns in order to achieve their goals.

  3. Studies of PVC/ENR blends: blend compositions

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan; Nasir, M.; Baharin, A.

    2002-01-01

    Blends of poly(vinyl chloride/epoxidized natural rubber (PVC/ENR) were prepared by using Bra bender Plasticorder at compositions ranging from 0-100% PVC. They were blended at 150 degree C mixing temperature, 50 rpm rotor speed and 10 minutes mixing time. The blends were characterized for tensile strength , elongation at break, glass transition temperatures and Fourier transform infra red spectroscopy (FTIR). Results revealed that as the PVC content increases the blend behaviour changes from elastomeric to glassy. However the blends found to be compatible at all compositions. (Author)

  4. Melt inclusions: Chapter 6

    Science.gov (United States)

    ,; Lowenstern, J. B.

    2014-01-01

    Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.

  5. Mechanical properties of polyamide 6,6/low density polyethylene blend by ionizing radiation

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Feitosa, Marcos A.F.

    2007-01-01

    Polymer blending is a growing scientific and commercial development activity. In most of the cases, polymeric blends are formed by thermodynamically immiscible components. Such blends require the use of compatibilizers that, often, are copolymers, graft copolymers or any mean that improves the dispersion and adhesion of the blend phases. Compatibility of a polymer blend plays an important role in determining the blend properties for its end use. In this work, the improvement of mechanical properties of PA 6,6/LDPE 75/25% wt/wt composition blend, using electron radiation, was studied. Samples for mechanical test were melt-mixed in an extruder and then injection-molded. These samples were electron irradiated to overall doses of 50, 100, 150, 200 and 250 kGy. Tensile measurements have shown that the strength at break increases with an increase of radiation dose. Hardness Shore D measurements show that this property also increases as a function of radiation dose. On the other hand, Impact Izod tests show that the resistance to impact decreases with the increase of radiation dose. The behavior of these bulk and surface properties implies that ionizing radiation produces changes in the mechanical performance of the irradiated blend due to a combined radiation inducing effects, cross-linking and the compatibility of blend components. (author)

  6. Influence of blending sequence on the rheological behavior of HDPE/LLDPE/MMT nano composites

    International Nuclear Information System (INIS)

    Passador, F.R.; Pessan, L.A.; Ruvolo Filho, A.

    2010-01-01

    The blending sequence affects the rheological behavior and the morphology formation of the nanocomposites. In this work, the blending sequences were explored to see its influence in the rheological behavior of HDPE/LLDPE/MMT nanocomposites. The nanocomposites were obtained by melt-intercalation using HDPE-g-MA as a compatibilizer in a torque rheometer (Haake Rheomix 600p at 180 deg C and rotor speed of 80rpm) and five blending sequences were studied. The materials structures were characterized by wide angle X-ray diffraction (WAXD) and by rheological properties. The nanoclay's addition increased the shear viscosity at low shear rates, changing the behavior of HDPE/LLDPE matrix to a Bingham model behavior with an apparent yield stress. Intense interactions were obtained for the blending sequence where HDPE and HDPE-g-MA were first reinforced with organoclay and then the HDPE/HDPE-g-MA/organoclay nanocomposite was later blended with LLDPE. (author)

  7. Durability of Gamma Irradiated Polymer Impregnated Blended Cement Pastes

    International Nuclear Information System (INIS)

    Khattab, M.M.; Abdel-Rahman, H.A.; Younes, M.M.

    2010-01-01

    This study is focusing on durability and performance of the neat blended cement paste as well as those of the polymer-impregnated paste towards seawater and various concentrations of magnesium sulfate solutions up to 6 months of curing. The neat blended cement paste is prepared by a partial substitution of ordinary Portland cement with 5% of active rice husk ash (RHA). These samples were cured under tap water for 7 days. Similar samples were impregnated with unsaturated polyester resin (UPE) and subjected to various doses of gamma rays ranging from 10 to 50 kGy. The results showed that the irradiated impregnated specimens gave higher values of compressive strength than the neat blended cement paste specimens. On immersing the neat blended cement specimens and polymer impregnated specimens especially that irradiated at 30 kGy in seawater and different concentrations of magnesium sulfate solutions up to 6 months of curing, the results showed that the polymer impregnated blended cement (OPC-RHA-UPE) paste have a good resistance towards aggressive media as compared to the neat blended cement (OPC-RHA) paste. The results also indicated that the sea water has a greater corrosive effect than the magnesium sulfate solutions. These results were confirmed by scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP)

  8. INFLUENCE OF THE COOLING RATE AND THE BLEND RATIO ON THE PHYSICAL STABILTIY OF CO-AMORPHOUS NAPROXEN/INDOMETHACIN

    DEFF Research Database (Denmark)

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian

    2016-01-01

    Co-amorphisation represents a promising approach to increase the physical stability and dissolution rate of amorphous active pharmaceutical ingredients (APIs) as an alternative to polymer glass solutions. For amorphous and co-amorphous systems, it is reported that the preparation method and the b......Co-amorphisation represents a promising approach to increase the physical stability and dissolution rate of amorphous active pharmaceutical ingredients (APIs) as an alternative to polymer glass solutions. For amorphous and co-amorphous systems, it is reported that the preparation method...... and the blend ratio play major roles with regard to the resulting physical stability. Therefore, in the present study, co-amorphous naproxen-indomethacin (NAP/IND) was prepared by melt-quenching at three different cooling rates and at ten different NAP/IND blend ratios. The samples were analyzed using XRPD...... and FTIR, both directly after preparation and during storage to investigate their physical stabilities. All cooling methods led to fully amorphous samples, but with significantly different physical stabilities. Samples prepared by fast cooling had a higher degree of crystallinity after 300 d of storage...

  9. Polymer blends of polylactic acid (PLA) and polybutylene succinate-adipate

    Science.gov (United States)

    Ma, Wenguang

    A series of blends consisting of polylactic acid (PLA) and aliphatic succinate polyester (BionolleRTM #3000) had been prepared and investigated. The results of mechanical property investigations showed that using 20 wt% Bionolle#3000 can significantly increase the toughness of PLA. BionolleRTM #3000 also reduces the physical aging rate of PLA so blends remain tough longer. Conversely, the stiffness of BionolleRTM #3000 can be significantly increased by blending in PLA. DMA and DSC results show that PLA/BionolleRTM 3000 blends are not thermodynamically miscible, but are compatible blends. Studies have also been performed to determine the amount and rate of aerobic biodegradation of PLA/aliphatic succinate polyester blends in biologically active composting, enzymatic, and soil environments. The changes in molecular weight, molecular structure and thermal properties in the composting environment were also studied by GPC, NMR and DSC analyses. The research results showed BionolleRTM #3000 had a high degradation rate, while PLA had a low degradation rate. PLA/BionolleRTM #3000 blends had moderate degradation rates that increased with BionolleRTM #3000 content. The melt flow behavior of PLA/BionolleRTM #3000 blends has been studied by capillary rheometry. The relationship of the blends' viscosity with their composition, shear stress, shear rate, and temperature has been investigated. Power law index and activation energy of PLA, BionolleRTM #3000 and their blends have been calculated. The experimental and theoretical data can let us understand the processability of PLA/BionolleRTM #3000 blends. A scanning electron microscope (SEM) was used to investigate the morphological structure of the PLA/BionolleRTM #3000 blends. Micrographs of the samples made from different methods (blown film, extrudate and compression molding sheet) were taken; their differences in morphology were compared. For comparison, the micrographs of blend PLA/BionolleRTM #6000 was also studied. The

  10. On technology blending.

    OpenAIRE

    Rosenberg N

    1986-01-01

    ILO pub-WEP pub. Working paper on the blending of traditional technology and technological change in developing countries - argues that choice of technology should be compatible with labour intensive requirements and local level management and economic conditions; considers employment creation and economic implications; concludes that technology transfer should be selective. References.

  11. Apparatus for blending small particles

    International Nuclear Information System (INIS)

    Bradley, R.A.; Reese, C.R.; Sease, J.D.

    1975-01-01

    An apparatus is described for blending small particles and uniformly loading the blended particles in a receptacle. Measured volumes of various particles are simultaneously fed into a funnel to accomplish radial blending and then directed onto the apex of a conical splitter which collects the blended particles in a multiplicity of equal subvolumes. Thereafter the apparatus sequentially discharges the subvolumes for loading in a receptacle. A system for blending nuclear fuel particles and loading them into fuel rod molds is described in a preferred embodiment

  12. Core melt retention and cooling concept of the ERP

    Energy Technology Data Exchange (ETDEWEB)

    Weisshaeupl, H [SIEMENS/KWU, Erlangen (Germany); Yvon, M [Nuclear Power International, Paris (France)

    1996-12-01

    For the French/German European Pressurized Water Reactor (EPR) mitigative measures to cope with the event of a severe accident with core melt down are considered already at the design stage. Following the course of a postulated severe accident with reactor pressure vessel melt through one of the most important features of a future design must be to stabilize and cool the melt within the containment by dedicated measures. This measures should - as far as possible - be passive. One very promising solution for core melt retention seems to be a large enough spreading of the melt on a high temperature resistant protection layer with water cooling from above. This is the favorite concept for the EPR. In dealing with the retention of a molten core outside of the RPV several ``steps`` from leaving the RPV to finally stabilize the melt have to gone through. These steps are: collection of the melt; transfer of the melt; distribution of the melt; confining; cooling and stabilization. The technical features for the EPR solution of a large spreading of the melt are: Dedicated spreading chamber outside the reactor pit (area about 150 m{sup 2}); high temperature resistant protection layers (e.g. Zirconia bricks) at the bottom and part of the lateral structures (thus avoiding melt concrete interaction); reactor pit and spreading compartment are connected via a discharge channel which has a slope to the spreading area and is closed by a steel plate, which will resist the core melt for a certain time in order to allow a collection of the melt; the spreading compartments is connected with the In-Containment Refuelling Water Storage Tank (IRWST) with pipes for water flooding after spreading. These pipes are closed and will only be opened by the hot melt itself. It is shown how the course of the different steps mentioned above is processed and how each of these steps is automatically and passively achieved. (Abstract Truncated)

  13. Role of special interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly[(butylene succinate)-co-adipate

    CSIR Research Space (South Africa)

    Ojijo, Vincent O

    2012-12-01

    Full Text Available by scanning electron microscopy (SEM). SEM micrographs showed that PLA-rich blends had smaller droplet sizes when compared to the PBSArich blends, which got smaller with the reduction in PBSA content due to the differences in their melt viscosities...

  14. Effect of reactive agent and transesterification catalyst on properties of PLA/PBAT blends

    International Nuclear Information System (INIS)

    Pitivut, S; Suttiruengwong, S; Seadan, M

    2015-01-01

    This research aimed to study the properties of poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blends with two different reactive systems: free radical reaction through peroxide (Perkadox) and transesterification catalyst (tetrabutyl titanate; TBT). Two blends composed of PLA as a matrix phase with the composition of 80 and 70 percent by weight. PLA/PBAT blends with Perkadox were prepared in twin screw extruder, whereas PLA/PBAT blends with TBT were prepared in an internal mixer. The morphology of the blends was investigated by scanning electron microscope (SEM). Tensile and impact testingsof the blends were reported. In case of the blends with Perkadox, SEM micrographs revealed that the size of particles was substantially reduced when adding more Perkadox. Young's modulus and the tensile strength of all blend ratios were insignificantly changed, whereas the elongation at break was decreased when compared to non-reactive blends due to the possible crosslinking reaction as observed from melt flow index (MFI) values. When adding Perkadox, the impact strength of PLA/PBAT (80/20) remained almost unchanged. However, the impact strength of PLA/PBAT (70/30) was enhanced, increasing to 110% for 0.05 phr Perkadox. In case of the blends with TBT, SEM micrographs showed the decrease in the particle size of PBAT phase when adding TBT. Young's modulus and the tensile strength of all blend ratios were not different, but the elongation at break was improved when adding TBT owing to the transesterification reaction. For PLA/PBAT (80/20), the elongation at break was increased by 39%, whereas the elongation at break was increased by 15% for PLA/PLA (70/30). The impact strength of all blend ratios unaffected. (paper)

  15. Optical characterization of phase transitions in pure polymers and blends

    Energy Technology Data Exchange (ETDEWEB)

    Mannella, Gianluca A.; Brucato, Valerio; La Carrubba, Vincenzo, E-mail: vincenzo.lacarrubba@unipa.it [Department of Civil, Environmental, Aerospace and Materials Engineering (DICAM), University of Palermo, Viale delle Scienze, Ed. 8, 90128 Palermo (Italy)

    2015-12-17

    To study the optical properties of polymeric samples, an experimental apparatus was designed on purpose and set up. The sample is a thin film enclosed between two glass slides and a PTFE frame, with a very thin thermocouple placed on sample for direct temperature measurement. This sample holder was placed between two aluminum slabs, equipped with a narrow slit for optical measurements and with electrical resistances for temperature control. Sample was enlightened by a laser diode, whereas transmitted light was detected with a photodiode. Measurements were carried out on polyethylene-terephtalate (PET) and two different polyamides, tested as pure polymers and blends. The thermal history imposed to the sample consisted in a rapid heating from ambient temperature to a certain temperature below the melting point, a stabilization period, and then a heating at constant rate. After a second stabilization period, the sample was cooled. The data obtained were compared with DSC measurements performed with the same thermal history. In correspondence with transitions detected via DSC (e.g. melting, crystallization and cold crystallization), the optical signal showed a steep variation. In particular, crystallization resulted in a rapid decrease of transmitted light, whereas melting gave up an increase of light transmitted by the sample. Further variations in transmitted light were recorded for blends, after melting: those results may be related to other phase transitions, e.g. liquid-liquid phase separation. All things considered, the apparatus can be used to get reliable data on phase transitions in polymeric systems.

  16. Optical characterization of phase transitions in pure polymers and blends

    International Nuclear Information System (INIS)

    Mannella, Gianluca A.; Brucato, Valerio; La Carrubba, Vincenzo

    2015-01-01

    To study the optical properties of polymeric samples, an experimental apparatus was designed on purpose and set up. The sample is a thin film enclosed between two glass slides and a PTFE frame, with a very thin thermocouple placed on sample for direct temperature measurement. This sample holder was placed between two aluminum slabs, equipped with a narrow slit for optical measurements and with electrical resistances for temperature control. Sample was enlightened by a laser diode, whereas transmitted light was detected with a photodiode. Measurements were carried out on polyethylene-terephtalate (PET) and two different polyamides, tested as pure polymers and blends. The thermal history imposed to the sample consisted in a rapid heating from ambient temperature to a certain temperature below the melting point, a stabilization period, and then a heating at constant rate. After a second stabilization period, the sample was cooled. The data obtained were compared with DSC measurements performed with the same thermal history. In correspondence with transitions detected via DSC (e.g. melting, crystallization and cold crystallization), the optical signal showed a steep variation. In particular, crystallization resulted in a rapid decrease of transmitted light, whereas melting gave up an increase of light transmitted by the sample. Further variations in transmitted light were recorded for blends, after melting: those results may be related to other phase transitions, e.g. liquid-liquid phase separation. All things considered, the apparatus can be used to get reliable data on phase transitions in polymeric systems

  17. Fabrication and Characterization of Electrospun Wool Keratin/Poly(vinyl alcohol Blend Nanofibers

    Directory of Open Access Journals (Sweden)

    Shuai Li

    2014-01-01

    Full Text Available Wool keratin/poly(vinyl alcohol (PVA blend nanofibers were fabricated using the electrospinning method in formic acid solutions with different weight ratios of keratin to PVA. The resultant blend nanofibers were characterized by scanning electron microscopy (SEM, Fourier transform infrared (FTIR, X-ray diffraction (XRD, thermal gravimetric analysis (TGA, and tensile test. SEM images showed that the diameter of the blend nanofibers was affected by the content of keratin in blend solution. FTIR and XRD analyses data demonstrated that there were good interactions between keratin and PVA in the blended nanofibers caused by possibly hydrogen bonds. The TGA study revealed that the thermal stability of the blend nanofibers was between those of keratin and PVA. Tensile test indicated that the addition of PVA was able to improve the mechanical properties of the electrospun nanofibers.

  18. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid

  19. Flow boundary conditions for chain-end adsorbing polymer blends.

    Science.gov (United States)

    Zhou, Xin; Andrienko, Denis; Delle Site, Luigi; Kremer, Kurt

    2005-09-08

    Using the phenol-terminated polycarbonate blend as an example, we demonstrate that the hydrodynamic boundary conditions for a flow of an adsorbing polymer melt are extremely sensitive to the structure of the epitaxial layer. Under shear, the adsorbed parts (chain ends) of the polymer melt move along the equipotential lines of the surface potential whereas the adsorbed additives serve as the surface defects. In response to the increase of the number of the adsorbed additives the surface layer becomes thinner and solidifies. This results in a gradual transition from the slip to the no-slip boundary condition for the melt flow, with a nonmonotonic dependence of the slip length on the surface concentration of the adsorbed ends.

  20. Miscibility of polymer blends with engineering models

    DEFF Research Database (Denmark)

    Vassilis, Harismiadis; van Bergen, A. R. D.; Goncalves, Ana Saraiva

    1996-01-01

    compared. The van der Waals equation of state was recently shown to accurately correlate and predict vapor-liquid and liquid-liquid equilibria for binary polymer/solvent solutions. In this work, it is demonstrated that it correlates the upper critical solution behavior of polymer blends with excellent...... accuracy using the usual mixing and combining rules and a single temperature- and composition-independent binary interaction parameter. This interaction parameter can be predicted via a generalized expression that uses only the pure component equation-of-state parameters. Using this generalized expression...

  1. The potential use of mobile technology: enhancing accessibility and communication in a blended learning course

    OpenAIRE

    Mayisela, Tabisa

    2013-01-01

    Mobile technology is increasingly being used to support blended learning beyond computer centres. It has been considered as a potential solution to the problem of a shortage of computers for accessing online learning materials (courseware) in a blended learning course. The purpose of the study was to establish how the use of mobile technology could enhance accessibility and communication in a blended learning course. Data were solicitedfrom a purposive convenience sample of 36 students engage...

  2. Melting point of yttria

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-06-01

    Fourteen samples of 99.999 percent Y 2 O 3 were melted near the focus of a 250-W CO 2 laser. The average value of the observed melting point along the solid-liquid interface was 2462 +- 19 0 C. Several of these same samples were then melted in ultrahigh-purity oxygen, nitrogen, helium, or argon and in water vapor. No change in the observed temperature was detected, with the exception of a 20 0 C increase in temperature from air to helium gas. Post test examination of the sample characteristics, clarity, sphericity, and density is presented, along with composition. It is suggested that yttria is superior to alumina as a secondary melting-point standard

  3. Chemical and Enzymatic Hydrolysis of Polyurethane/Polylactide Blends

    Directory of Open Access Journals (Sweden)

    Joanna Brzeska

    2015-01-01

    Full Text Available Polyether-esterurethanes containing synthetic poly[(R,S-3-hydroxybutyrate] (R,S-PHB and polyoxytetramethylenediol in soft segments and polyesterurethanes with poly(ε-caprolactone and poly[(R,S-3-hydroxybutyrate] were blended with poly([D,L]-lactide (PLA. The products were tested in terms of their oil and water absorption. Oil sorption tests of polyether-esterurethane revealed their higher response in comparison to polyesterurethanes. Blending of polyether-esterurethanes with PLA caused the increase of oil sorption. The highest water sorption was observed for blends of polyether-esterurethane, obtained with 10% of R,S-PHB in soft segments. The samples mass of polyurethanes and their blends were almost not changed after incubation in phosphate buffer and trypsin and lipase solutions. Nevertheless the molecular weight of polymers was significantly reduced after degradation. It was especially visible in case of incubation of samples in phosphate buffer what suggested the chemical hydrolysis of polymer chains. The changes of surface of polyurethanes and their blends, after incubation in both enzymatic solutions, indicated on enzymatic degradation, which had been started despite the lack of mass lost. Polyurethanes and their blends, contained more R,S-PHB in soft segments, were degraded faster.

  4. Force induced DNA melting

    International Nuclear Information System (INIS)

    Santosh, Mogurampelly; Maiti, Prabal K

    2009-01-01

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f m , at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  5. Blended learning in anatomy

    DEFF Research Database (Denmark)

    Østergaard, Gert Værge; Brogner, Heidi Marie

    behind DBR is that new knowledge is generated through processes that simultaneously develop, test and improve a design, in this case, an educational design (1) The main principles used in the project is blended learning and flipped learning (2). …"I definitely learn best in practice, but the theory...... in working with the assignments in the classroom."... External assesor, observer and interviewer Based on the different evaluations, the conclusion are that the blended learning approach combined with the ‘flipped classroom’ is a very good way to learn and apply the anatomy, both for the students......The aim of the project was to bridge the gap between theory and practice by working more collaboratively, both peer-to-peer and between student and lecturer. Furthermore the aim was to create active learning environments. The methodology of the project is Design-Based Research (DBR). The idea...

  6. Theory of polymer blends

    International Nuclear Information System (INIS)

    Curro, J.G.; Schweizer, K.S.

    1989-01-01

    We have recently developed a new theoretical approach to the study of polymer liquids. The theory is based on the ''reference interaction site model'' (RISM theory) of Chandler and Andersen, which has been successful in describing the structure of small molecule liquids. We have recently extended our polymer RISM theory to the case of polymer blends. In the present investigation we have applied this theory to two special binary blends: (1) the athermal mixture where we isolate structural effects, and (2) the isotopic mixture in which structurally identical polymer chains interact with dissimilar attractive interactions. By studying these two special cases we are able to obtain insights into the molecular factors which control the miscibility in polymer mixtures. 18 refs., 2 figs

  7. Synthesis of geopolymer from biomass-coal ash blends

    Science.gov (United States)

    Samadhi, Tjokorde Walmiki; Wulandari, Winny; Prasetyo, Muhammad Iqbal; Fernando, Muhammad Rizki; Purbasari, Aprilina

    2017-09-01

    Geopolymer is an environmentally attractive Portland cement substitute, owing to its lower carbon footprint and its ability to consume various aluminosilicate waste materials as its precursors. This work describes the development of geopolymer formulation based on biomass-coal ash blends, which is predicted to be the prevalent type of waste when biomass-based thermal energy production becomes mainstream in Indonesia. The ash blends contain an ASTM Class F coal fly ash (FA), rice husk ash (RHA), and coconut shell ash (CSA). A mixture of Na2SiO3 and concentrated KOH is used as the activator solution. A preliminary experiment identified the appropriate activator/ash mass ratio to be 2.0, while the activator Na2SiO3/KOH ratio varies from 0.8 to 2.0 with increasing ash blend Si/Al ratio. Both non-blended FA and CSA are able to produce geopolymer mortars with 7-day compressive strength exceeding the Indonesian national SNI 15-2049-2004 standard minimum value of 2.0 MPa stipulated for Portland cement mortars. Ash blends have to be formulated with a maximum RHA content of approximately 50 %-mass to yield satisfactory 7-day strength. No optimum ash blend composition is identified within the simplex ternary ash blend compositional region. The strength decreases with Si/Al ratio of the ash blends due to increasing amount of unreacted silicate raw materials at the end of the geopolymer hardening period. Overall, it is confirmed that CSA and blended RHA are feasible raw materials for geopolymer production..

  8. COOLING COIL EFFECTS ON BLENDING IN A PILOT SCALE TANK

    International Nuclear Information System (INIS)

    Leishear, R.; Poirier, M.; Fowley, M.; Steeper, T.

    2010-01-01

    Blending, or mixing, processes in 1.3 million gallon nuclear waste tanks are complicated by the fact that miles of serpentine, vertical, cooling coils are installed in the tanks. As a step toward investigating blending interference due to coils in this type of tank, a 1/10.85 scale tank and pump model were constructed for pilot scale testing. A series of tests were performed in this scaled tank by adding blue dye to visualize blending, and by adding acid or base tracers to solution to quantify the time required to effectively blend the tank contents. The acid and base tests were monitored with pH probes, which were located in the pilot scale tank to ensure that representative samples were obtained. Using the probes, the hydronium ion concentration [H + ] was measured to ensure that a uniform concentration was obtained throughout the tank. As a result of pilot scale testing, a significantly improved understanding of mixing, or blending, in nuclear waste tanks has been achieved. Evaluation of test data showed that cooling coils in the waste tank model increased pilot scale blending times by 200% in the recommended operating range, compared to previous theoretical estimates of a 10-50% increase. Below the planned operating range, pilot scale blending times were increased by as much as 700% in a tank with coils installed. One pump, rather than two or more, was shown to effectively blend the tank contents, and dual pump nozzles installed parallel to the tank wall were shown to provide optimal blending. In short, experimental results varied significantly from expectations.

  9. Synthesizing optimal waste blends

    International Nuclear Information System (INIS)

    Narayan, V.; Diwekar, W.M.; Hoza, M.

    1996-01-01

    Vitrification of tank wastes to form glass is a technique that will be used for the disposal of high-level waste at Hanford. Process and storage economics show that minimizing the total number of glass logs produced is the key to keeping cost as low as possible. The amount of glass produced can be reduced by blending of the wastes. The optimal way to combine the tanks to minimize the vole of glass can be determined from a discrete blend calculation. However, this problem results in a combinatorial explosion as the number of tanks increases. Moreover, the property constraints make this problem highly nonconvex where many algorithms get trapped in local minima. In this paper the authors examine the use of different combinatorial optimization approaches to solve this problem. A two-stage approach using a combination of simulated annealing and nonlinear programming (NLP) is developed. The results of different methods such as the heuristics approach based on human knowledge and judgment, the mixed integer nonlinear programming (MINLP) approach with GAMS, and branch and bound with lower bound derived from the structure of the given blending problem are compared with this coupled simulated annealing and NLP approach

  10. Effects of Thermal Annealing Upon the Morphology of Polymer-Fullerene Blends

    KAUST Repository

    Verploegen, Eric

    2010-08-18

    Grazing incidence X-ray scattering (GIXS) is used to characterize the morphology of poly(3-hexylthiophene) (P3HT)-phenyl-C61-butyric acid methyl ester (PCBM) thin film bulk heterojunction (BHJ) blends as a function of thermal annealing temperature, from room temperature to 220 °C. A custom-built heating chamber for in situ GIXS studies allows for the morphological characterization of thin films at elevated temperatures. Films annealed with a thermal gradient allow for the rapid investigation of the morphology over a range of temperatures that corroborate the results of the in situ experiments. Using these techniques the following are observed: the melting points of each component; an increase in the P3HT coherence length with annealing below the P3HT melting temperature; the formation of well-oriented P3HT crystallites with the (100) plane parallel to the substrate, when cooled from the melt; and the cold crystallization of PCBM associated with the PCBM glass transition temperature. The incorporation of these materials into BHJ blends affects the nature of these transitions as a function of blend ratio. These results provide a deeper understanding of the physics of how thermal annealing affects the morphology of polymer-fullerene BHJ blends and provides tools to manipulate the blend morphology in order to develop high-performance organic solar cell devices. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effects of Thermal Annealing Upon the Morphology of Polymer-Fullerene Blends

    KAUST Repository

    Verploegen, Eric; Mondal, Rajib; Bettinger, Christopher J.; Sok, Seihout; Toney, Michael F.; Bao, Zhenan

    2010-01-01

    Grazing incidence X-ray scattering (GIXS) is used to characterize the morphology of poly(3-hexylthiophene) (P3HT)-phenyl-C61-butyric acid methyl ester (PCBM) thin film bulk heterojunction (BHJ) blends as a function of thermal annealing temperature, from room temperature to 220 °C. A custom-built heating chamber for in situ GIXS studies allows for the morphological characterization of thin films at elevated temperatures. Films annealed with a thermal gradient allow for the rapid investigation of the morphology over a range of temperatures that corroborate the results of the in situ experiments. Using these techniques the following are observed: the melting points of each component; an increase in the P3HT coherence length with annealing below the P3HT melting temperature; the formation of well-oriented P3HT crystallites with the (100) plane parallel to the substrate, when cooled from the melt; and the cold crystallization of PCBM associated with the PCBM glass transition temperature. The incorporation of these materials into BHJ blends affects the nature of these transitions as a function of blend ratio. These results provide a deeper understanding of the physics of how thermal annealing affects the morphology of polymer-fullerene BHJ blends and provides tools to manipulate the blend morphology in order to develop high-performance organic solar cell devices. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of EPDM-g-MAH on properties of HDPE/OBC blends

    Science.gov (United States)

    Li, M.; Yu, L. Y.; Li, P. F.; Bin, Y. H.; Zhang, H. J.

    2017-04-01

    In this paper, we take the HDPE as the matrix material, OBC as the toughening material, and EDPM-g-MAH as the compatibility agent, HDPE/OBC/EPDM-g-MAH blends were prepared by high speed mixing, melt extrusion, injection molding and so on. The effects of OBC and EPDM-g-MAH on mechanical properties, crystalline properties, fracture surface structure and rheological properties of HDPE were analyzed by universal tensile tester, melt mass flow rate test machine, DSC and SEM. Experimental results show that: with the addition of EPDM-g-MAH, the notched impact strength of the blends increased first and then decreased; HDPE/OBC blend containing 4% EPDM-g-MAH, OBC dispersion in the matrix is more uniform, particle size is significantly refined, melt flow has some improvement, Compared with HDPE/OBC blend materials, notched impact strength and elongation at break increased by 41.07% and 107.28% respectively, the toughness of the blend was greatly improved.

  13. Blended acquisition with dispersed source arrays

    NARCIS (Netherlands)

    Berkhout, A.J.

    2012-01-01

    Blended source arrays are historically configured with equal source units, such as broadband vibrators (land) and broadband air-gun arrays (marine). I refer to this concept as homogeneous blending. I have proposed to extend the blending concept to inhomogeneous blending, meaning that a blended

  14. Morphology and thermal properties of recycled polyacrylonitrile fiber blends with poly(ethylene terephthalate): Microstructural characterization

    CSIR Research Space (South Africa)

    Adegbola, TA

    2016-04-01

    Full Text Available The compounding of rPAN/PET [polyacrylonitrile/poly(ethylene terephthalate]; 30/70, 50/50, and 70/30 wt %) using a melt-blending technique was the main focus of this investigation. An X-ray diffraction study indicated the possibility of interphase...

  15. Irradiation of isotactic polypropylene and polypropylene/ethylene-propylene (diene-monomer) blends

    NARCIS (Netherlands)

    Gisbergen, van J.G.M.; Meijerink, J.I.; Overbergh, N.; Kleintjes, L.; Lemstra, P.J.

    1989-01-01

    The influence of electron beam irradiation on rheological properties and morphology of polypropylene and polypropylene/ethylene-propylene rubber blends was studied. Electron beam irradiation of isotactic PP causes pronounced chain scission (degradation) at dosis = 100 kGy. Melt viscosity can be

  16. Utilization of waste expanded polystyrene: Blends with silica-filled natural rubber

    International Nuclear Information System (INIS)

    Sekharan, Renju Vaikathusseril; Abraham, Beena Thattekatt; Thachil, Eby Thomas

    2012-01-01

    Highlights: ► Tensile strength of the silica filled blend is comparable with silica filled NR. ► Modulus and compression set were the best for compatibilized NR/EPS blends. ► Tear strength has increased by 25% for compatibilized blends. ► A 5% waste EPS can be incorporated into NR compounds as a waste management measure. -- Abstract: Expanded polystyrene (EPS) constitutes a considerable part of thermoplastic waste in the environment in terms of volume. In this study, this waste material has been utilized for blending with silica-reinforced natural rubber (NR). The NR/EPS (35/5) blends were prepared by melt mixing in a Brabender Plasticorder. Since NR and EPS are incompatible and immiscible a method has been devised to improve compatibility. For this, EPS and NR were initially grafted with maleic anhydride (MA) using dicumyl peroxide (DCP) to give a graft copolymer. Grafting was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy. This grafted blend was subsequently blended with more of NR during mill compounding. Morphological studies using Scanning Electron Microscopy (SEM) showed better dispersion of EPS in the compatibilized blend compared to the noncompatibilized blend. By this technique, the tensile strength, elongation at break, modulus, tear strength, compression set and hardness of the blend were found to be either at par with or better than that of virgin silica filled NR compound. It is also noted that the thermal properties of the blends are equivalent with that of virgin NR. The study establishes the potential of this method for utilising waste EPS.

  17. Electrochemistry of uranium in sodium chloroaluminate melts

    International Nuclear Information System (INIS)

    D'olieslager, W.; Meuris, F.; Heerman, L.

    1990-01-01

    The electrochemical behaviour of uranium was studied in basic, NaCl-saturated NaAlCl 4 melts at 175 deg C. Solutions of UO 3 exhibit two oxidation/reduction waves (cyclic voltammetry). Analysis of the peak currents (cyclic voltammetry), the limiting currents (pulse polarography) and the non-linear log i-t curves (anodic controlled potential coulometry) leads to the conclusion that uranium(IV) in the basic chloroaluminate melt exists as two different species in slow equilibrium with one another, of which only one species can be oxidized to U(VI). (author) 16 refs.; 7 figs.; 3 tabs

  18. Characterization of polyethylene terephthalate/polyaniline blends as potential antioxidant materials

    International Nuclear Information System (INIS)

    Nand, Ashveen V.; Ray, Sudip; Travas-Sejdic, Jadranka; Kilmartin, Paul A.

    2012-01-01

    Highlights: ► Successful incorporation of particulate polyaniline, consisting of nanorods, in PET was achieved. ► Interactions between PET and polyaniline in the blends were characterized using FTIR, XPS, DSC and DMTA. ► Polyaniline introduced free radical scavenging capacity in PET. - Abstract: Polyethylene terephthalate (PET) blends with a nanorod form of polyaniline (NR-PANI), formed by a falling pH synthesis, were prepared by dispersion in a melt of PET at 265 °C. Blends with 1, 2 and 3 wt% NR-PANI loading were prepared. Optical microscopy revealed an even distribution of NR-PANI particles within the PET matrix. The blends were characterized using FTIR, XPS, DSC and DMTA. Melt flow index values suggested hydrolysis of PET chains to lower molecular weight units when NR-PANI was blended. Some PET hydrolysis was also evident from the increasing oxygen to carbon ratios with an increased NR-PANI content in the blends. While the PET glass transition temperature remained relatively unaffected, the degree of PET crystallinity was increased with the addition of NR-PANI. The electrical conductivity as well as the free radical scavenging capacity of PET increased with greater NR-PANI loading in the matrix. The mechanical properties of PET, however, declined with NR-PANI loading suggesting a lack of adequate interfacial adhesion between the NR-PANI particles and the PET matrix.

  19. Applications of nonequilibrium melting concept to damage-accumulation processes

    International Nuclear Information System (INIS)

    Lam, N.Q.; Okamoto, P.R.

    1998-01-01

    The authors recent study of crystalline-to-amorphous transformation led to the successful development of a unified thermodynamic description of disorder-induced amorphization and heat-induced melting, based on a generalized version of the Lindemann melting criterion. The generalized criterion requires that the melting temperature of a defective crystal decreases with increasing static atomic disorder. Hence, any crystal can melt at temperatures below the melting point of its perfect crystalline state when driven far from equilibrium by introducing critical amounts of misfitting solute atoms and lattice imperfections, radiation damage, and/or tensile stresses. This conceptual approach to nonequilibrium melting provides new insight into long-standing materials problems such as brittle fracture, embrittlement, and environmentally-induced cracking, for example irradiation-assisted stress corrosion cracking

  20. The Webinar Integration Tool: A Framework for Promoting Active Learning in Blended Environments

    Science.gov (United States)

    Lieser, Ping; Taf, Steven D.; Murphy-Hagan, Anne

    2018-01-01

    This paper describes a three-stage process of developing a webinar integration tool to enhance the interaction of teaching and learning in blended environments. In the context of medical education, we emphasize three factors of effective webinar integration in blended learning: fostering better solutions for faculty and students to interact…

  1. The Potential Use of Mobile Technology: Enhancing Accessibility and Communication in a Blended Learning Course

    Science.gov (United States)

    Mayisela, Tabisa

    2013-01-01

    Mobile technology is increasingly being used to support blended learning beyond computer centres. It has been considered as a potential solution to the problem of a shortage of computers for accessing online learning materials (courseware) in a blended learning course. The purpose of the study was to establish how the use of mobile technology…

  2. Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.

    Science.gov (United States)

    Ambrosio, Archel M A; Allcock, Harry R; Katti, Dhirendra S; Laurencin, Cato T

    2002-04-01

    Biomaterials based on the polymers of lactic acid and glycolic acid and their copolymers are used or studied extensively as implantable devices for drug delivery, tissue engineering and other biomedical applications. Although these polymers have shown good biocompatibility, concerns have been raised regarding their acidic degradation products, which have important implications for long-term implantable systems. Therefore, we have designed a novel biodegradable polyphosphazene/poly(alpha-hydroxyester) blend whose degradation products are less acidic than those of the poly(alpha-hydroxyester) alone. In this study, the degradation characteristics of a blend of poly(lactide-co-glycolide) (50:50 PLAGA) and poly[(50% ethyl glycinato)(50% p-methylphenoxy) phosphazene] (PPHOS-EG50) were qualitatively and quantitatively determined with comparisons made to the parent polymers. Circular matrices (14mm diameter) of the PLAGA, PPHOS-EG50 and PLAGA-PPHOS-EG50 blend were degraded in non-buffered solutions (pH 7.4). The degraded polymers were characterized for percentage mass loss and molecular weight and the degradation medium was characterized for acid released in non-buffered solutions. The amounts of neutralizing base necessary to bring about neutral pH were measured for each polymer or polymer blend during degradation. The poly(phosphazene)/poly(lactide-co-glycolide) blend required significantly less neutralizing base in order to bring about neutral solution pH during the degradation period studied. The results indicated that the blend degraded at a rate intermediate to that of the parent polymers and that the degradation products of the polyphosphazene neutralized the acidic degradation products of PLAGA. Thus, results from these in vitro degradation studies suggest that the PLAGA-PPHOS-EG50 blend may provide a viable improvement to biomaterials based on acid-releasing organic polymers.

  3. Effects of electron beam irradiation on properties of corn starch undergone periodate oxidation mechanism blended with polyvinyl alcohol

    Science.gov (United States)

    Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C. T.; Yap, Bee-Fen; Rahmat, A. R.

    2018-02-01

    This work was performed to examine the properties of pristine PVOH and PVOH-starch blends under exposure of different irradiation dosages. The periodate oxidation method was used to produce dialdehyde starch. The application of low dosages of electron beam irradiation (≤10 kGy) has improved the tensile strength by forming crosslinking networks. However, the tensile strength drastically declined when radiated at 30 kGy due to the reduction of available hydroxyl groups inside polymer matrix for intermolecular interaction. Also, the incorporation of corn starch and dialdehyde starch has significantly reduced the melting temperature and enthalpy of melting of PVOH blends due to cessation of the hydrogen bonding between PVOH and starch molecules. The crystallite size for deflection planes (1 0 1), (1 0 1) and (2 0 0) for all PVOH blends was significant reduced when irradiated. The electron beam irradiation has also weakened the hydrophilic characteristic of all PVOH blends as evidenced in infrared and microscopy analysis.

  4. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  5. Carbon nanotubes in blends of polycaprolactone/thermoplastic starch.

    Science.gov (United States)

    Taghizadeh, Ata; Favis, Basil D

    2013-10-15

    Despite the importance of polymer-polymer multiphase systems, very little work has been carried out on the preferred localization of solid inclusions in such multiphase systems. In this work, carbon nanotubes (CNT) are dispersed with polycaprolactone (PCL) and thermoplastic starch (TPS) at several CNT contents via a combined solution/twin-screw extrusion melt mixing method. A PCL/CNT masterbatch was first prepared and then blended with 20 wt% TPS. Transmission and scanning electron microscopy images reveal a CNT localization principally in the TPS phase and partly at the PCL/TPS interface, with no further change by annealing. This indicates a strong driving force for the CNTs toward TPS. Young's model predicts that the nanotubes should be located at the interface. X-ray photoelectron spectroscopy (XPS) of extracted CNTs quantitatively confirms an encapsulation by TPS and reveals a covalent bonding of CNTs with thermoplastic starch. It appears likely that the nanotubes migrate to the interface, react with TPS and then are subsequently drawn into the low viscosity TPS phase. In a low shear rate/low shear stress internal mixer the nanotubes are found both in the PCL phase and at the PCL/TPS interface and have not completed the transit to the TPS phase. This latter result indicates the importance of choosing appropriate processing conditions in order to minimize kinetic effects. The addition of CNTs to PCL results in an increase in the crystallization temperature and a decrease in the percent crystallinity confirming the heterogeneous nucleating effect of the nanotubes. Finally, DMA analysis reveals a dramatic decrease in the starch rich phase transition temperature (~26 °C), for the system with nanotubes located in the TPS phase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Study on properties of poly(vinyl alcohol/polyacrylonitrile blend film

    Directory of Open Access Journals (Sweden)

    Guoquan Zhu

    2013-01-01

    Full Text Available In this work, a series of poly(vinyl alcohol (PVA/polyacrylonitrile (PAN blend films with different PAN mole contents were prepared by casting the polymer blend solution in dimethylsulfoxide (DMSO. Surface morphologies of PVA/PAN blend films were analyzed by Scanning Electronic Microscopy (SEM and Atomic Force Microscopy (AFM. Thermal, mechanical, and chemical properties of PVA/PAN blend films were investigated by Differential Scanning Calorimetry (DSC, Thermogravimetric Analysis (TGA, Tensile Tests, and Surface Contact Angle Tests. The results showed that the introduction of PAN could exert marked effects on the properties of PVA films.

  7. Effect of nanofiller on fibril formation in melt-drawn HDPE/PA6 microfibrillar composite

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Fortelný, Ivan; Kaprálková, Ludmila; Hromádková, Jiřina

    2015-01-01

    Roč. 55, č. 9 (2015), s. 2133-2139 ISSN 0032-3888 R&D Projects: GA ČR(CZ) GA13-15255S; GA ČR GAP106/11/1069 Institutional support: RVO:61389013 Keywords : nanocomposite * blend * melt drawing Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.719, year: 2015

  8. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hui, E-mail: penghui@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Liu, Chang [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Guo, Hongbo, E-mail: guo.hongbo@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Yuan, Yuan [Zhuzhou Seed Cemented Carbide Technology Co. Ltd, No. 1099 Xiangda Road, Zhuzhou, Hunan 412000 (China); Gong, Shengkai; Xu, Huibin [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China)

    2016-06-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  9. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    International Nuclear Information System (INIS)

    Peng, Hui; Liu, Chang; Guo, Hongbo; Yuan, Yuan; Gong, Shengkai; Xu, Huibin

    2016-01-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  10. Effect of thermoplastic polyurethane (TPU) on the thermal and mechanical properties of polylactic acid (PLA)/curcumin blends

    Science.gov (United States)

    Sharifah, I. S. S.; Adnan, M. D. A.; Nor Khairusshima, M. K.; Shaffiar, N. M.; Buys, Y. F.

    2018-01-01

    Polylactic acid (PLA) is known to be brittle by nature and thus limits the flexibility of the polymer. A possible solution to enhance the flexibility of PLA is to add a flexible polymeric based material such as thermoplastic polyurethane (TPU). In this study, 30-50 wt% of TPU was added into PLA/curcumin blends to improve its flexibility. Thermal analysis using differential scanning calorimetry shows that further additions of TPU at the expense of PLA did not affect the glass transition temperature, crystallisation temperature and melting temperature of the blends. Fibers of PLA/curcumin/TPU were successfully drawn and Single Fiber Tensile Test (SFTT) showed vast improvement in elongation at break. The initial addition of 30 wt% of TPU to the brittle PLA/curcumin composition causes a significant increase in elongation at break by 39 times and further additions at 50 wt %, the elongation at break increases by 105 times. However, with the increase in elongation, a decrease in strength and Young’s modulus was observed.

  11. Thermal characterization of the HDPE/LDPE blend (10/90) irradiated using γ-rays

    International Nuclear Information System (INIS)

    Puig, C.C.; Albano, C.; Laredo, E.; Quero, E.; Karam, A.

    2010-01-01

    Gamma irradiation effect over the properties of slow cooled and fast cooled HDPE/LDPE 10/90 blend was studied. The blend and the neat polyethylenes were irradiated at room temperature in the presence of air using the following doses (4.8 kGy/h): 0, 50, 150, 400 and 1000 kGy. Differential scanning calorimetry (DSC) experiments were carried out using the following heating rates: 5, 10 and 20 deg. C/min. DSC results for the slow and fast cooled blend showed traces with three melting peaks and with increasing irradiation dose two melting peaks were obtained, i.e. the high melting peak shifts toward lower temperatures to merge with the intermediate melting peak into one endotherm. No changes in crystal structure by X-ray diffraction were found as a result of samples irradiation. Radiation crosslinking prevents crystal rearrangements during heating in the DSC. Gel content and melt flow index (MFI) measurements showed that radiation induced a high degree of crosslinking for all samples; gel content values were above 50% and a drop of more than 90% in the MFI was found. Irradiation of slow cooled samples resulted in larger values of gel content and lower MFI values than for fast cooled samples, mainly because of the higher degree of crosslinking for the former.

  12. Thermal characterization of the HDPE/LDPE blend (10/90) irradiated using gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Puig, C.C., E-mail: cpuig@usb.v [Universidad Simon Bolivar, Departamento de Ciencia de los Materiales, Grupo de Polimeros USB, Apdo. 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Albano, C., E-mail: calbano@ivic.v [Instituto Venezolano de Investigaciones Cientificas (IVIC), Centro de Quimica, Laboratorio de Polimeros, Apdo. 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Universidad Central de Venezuela, Facultad de Ingenieria, Escuela de Ingenieria Quimica, Laboratorio de Polimeros, Caracas (Venezuela, Bolivarian Republic of); Laredo, E. [Universidad Simon Bolivar, Departamento de Fisica, Grupo de Fisica de Materiales Amorfos y Cristalinos, Apdo. 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Quero, E. [Universidad Simon Bolivar, Departamento de Ciencia de los Materiales, Grupo de Polimeros USB, Apdo. 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Karam, A. [Instituto Venezolano de Investigaciones Cientificas (IVIC), Centro de Quimica, Laboratorio de Polimeros, Apdo. 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2010-05-01

    Gamma irradiation effect over the properties of slow cooled and fast cooled HDPE/LDPE 10/90 blend was studied. The blend and the neat polyethylenes were irradiated at room temperature in the presence of air using the following doses (4.8 kGy/h): 0, 50, 150, 400 and 1000 kGy. Differential scanning calorimetry (DSC) experiments were carried out using the following heating rates: 5, 10 and 20 deg. C/min. DSC results for the slow and fast cooled blend showed traces with three melting peaks and with increasing irradiation dose two melting peaks were obtained, i.e. the high melting peak shifts toward lower temperatures to merge with the intermediate melting peak into one endotherm. No changes in crystal structure by X-ray diffraction were found as a result of samples irradiation. Radiation crosslinking prevents crystal rearrangements during heating in the DSC. Gel content and melt flow index (MFI) measurements showed that radiation induced a high degree of crosslinking for all samples; gel content values were above 50% and a drop of more than 90% in the MFI was found. Irradiation of slow cooled samples resulted in larger values of gel content and lower MFI values than for fast cooled samples, mainly because of the higher degree of crosslinking for the former.

  13. Entangled Polymer Melts in Extensional Flow

    DEFF Research Database (Denmark)

    Hengeller, Ludovica

    Many commercial materials derived from synthetic polymers exhibit a complex response under different processing operations such as fiber formation, injection moulding,film blowing, film casting or coatings. They can be processed both in the solid or in the melted state. Often they may contain two...... or more different polymers in addition to additives, fillers or solvents in order to modify the properties of the final product. Usually, it is also desired to improve the processability. For example the supplement of a high molecular weight component improves the stability in elongational flows....... Understanding the behaviour of polymer melts and solutions in complex non-linearflows is crucial for the design of polymeric materials and polymer processes. Through rheological characterization, in shear and extensional flow, of model polymer systems,i.e. narrow molar mass distribution polymer melts...

  14. The influence of sol on the behavior of melting and nonisothermal crystallization kinetic of radiation cross-linking HDPE

    International Nuclear Information System (INIS)

    Deng Pengyang; Xie Hongfeng; Deng Mingxiao; Zhong Xiaoguang

    2000-01-01

    By using DSC, the behavior of second melting and nonisothermal crystallization of pure gel pure sol and sol-gel blend of radiation crosslinking HDPE was studied. The authors found that, because of the existence of sol, there is notable difference between pure gel and pure sol or sol-gel blend. Under the same dose, the melting point and crystallization temperature of pure sol and sol-gel blend are higher than that of pure gel. At the same time, the authors also found that the Avrami exponent of original PE, pure sol and sol-gel blend is the similar to each other and different to that of pure gel, which means that the procedure of nucleation and growth of these samples is the same and also different to that of pure gel

  15. Melting of gold microclusters

    International Nuclear Information System (INIS)

    Garzon, I.L.; Jellinek, J.

    1991-01-01

    The transition from solid-like to liquid-like behavior in Au n , n=6, 7, 13, clusters is studied using molecular dynamics simulations. A Gupta-type potential with all-neighbour interactions is employed to incorporate n-body effects. The melting-like transition is described in terms of short-time averages of the kinetic energy per particle, root-mean-square bond length fluctuations and mean square displacements. A comparison between melting temperatures of Au n and Ni n clusters is presented. (orig.)

  16. Blended Learning on Campus

    DEFF Research Database (Denmark)

    Heilesen, Simon; Nielsen, Jørgen Lerche

    2004-01-01

    On the basis of a large-scale project implementing information and communication technology at Roskilde University, Denmark, this paper discusses ways of introducing technology-based blended learning in academic life. We examine some examples of use of systems for computer-mediated collabora......-tive learning and work in Danish Open University education as well as in courses on campus. We further suggest some possi-bilities for using technology in innovative ways, arguing that innovation is to be found, not in isolated instantiations of sys-tems, but in the form of a deliberate integration of all...... relevant ICT-features as a whole into the learning environment....

  17. Blended Learning Design

    DEFF Research Database (Denmark)

    Pedersen, Lise

    2015-01-01

    learning. 4. Blended learning can contribute to supporting and improving efficiency of educational efforts. This can for instance be done through programmes for several classes by using video conferencing, allocating traditional face to face teaching to synchronous and asynchronous study activities produce...... digital materials which can be employed didactically and reused by the teachers. This can also mean that the particular competencies which teaches have in Svendborg can be used at other locations in UCL and disseminated to a larger group of students without further costs. Educational Innovation...

  18. Preparation of LDPE/LNR Blend Via Emulsion Dispersion

    International Nuclear Information System (INIS)

    Rusli Daik; Yee Lee Ching

    2007-01-01

    Low density polyethylene (LDPE)/ liquid natural rubber (LNR) blends with the composition of 100LDPE/ 0LNR, 70LDPE/ 30LNR, 60LDPE/ 40LNR and 40LDPE/ 60LNR were prepared via dispersion of LDPE and LNR emulsion. LNR was obtained via photochemical sensitization of natural rubber (NR). Emulsion of LNR was prepared by using sodium dodecyl sulfate (SDS) and 1-hexanol as the emulsifier and co- emulsifier respectively. Emulsion of LDPE was prepared in the same way by using LDPE solution in carbon tetrachloride, SDS and 1-hexanol. LDPE/ LNR blends were prepared via mixing of LNR and LDPE emulsions. Mechanical properties of the blends were analyzed by tensile, hardness and impact test. Optimum mechanical properties were observed for composite with composition of 60LDPE/ 40LNR that showed the maximum value of stress and strain. The glass transition temperature, T g , of the blends as obtained from differential scanning calorimetric (DSC) showed that the blends were homogeneous. Morphology study by using scanning electron microscopy (SEM) also indicates the homogeneity of LDPE/ LNR blends produced. (author)

  19. Interesterification of engkabang (Shorea macrophylla) fat--canola oil blend with lipase from Candida antarctica to simulate the properties of lard.

    Science.gov (United States)

    Illiyin, Mohamed Roslan Nur; Marikkar, Jalaldeen Mohamed Nazrim; Loke, Mei Key; Shuhaimi, Musthafa; Mahiran, Basri; Miskandar, Mat Saari

    2014-01-01

    A study was carried out to compare the composition and thermal properties of lard (LD) and engkabang fat (EF) - canola oil (CaO) blend interesterified with Candida antartica lipase (C. antartica). A fat blend EF-4 (40% EF in CaO) was prepared and interesterified using C. antartica lipase at 60°C for different time intervals (6 h, 12 h and 24 h) with 200 rpm agitation. The fat blends before and after interesterification were compared to LD with respect to their slip melting points (SMP), fatty acid and triacyglycerol (TAG) compositions, melting, solidification and polymorphic properties. Result showed that the slip melting point (SMP) of the fat blend interesterified for 6 h was the closest to that of LD. The solid fat content (SFC) values of fat blends interesterified for 12 and 24 h were found to become equal to those of LD within the temperature range of 0 to 20°C. In addition, all three interesterified blends had SFC values similar to those of LD within the temperature range of 30-40°C. According to thermal analysis, the transition of the fat blend interesterified for 24 h appearing at -2.39°C was similar to the low melting thermal transition of LD and the transition of the fat blend interesterified for 12 h appearing at 26.25°C was similar to the high melting thermal transition of LD. However, there is no compatibility between LD and all three interesterified blends with regard to polymorphic behaviour.

  20. Influence of the use of organoclays on the morphology of PP/EPDM blends

    International Nuclear Information System (INIS)

    Ferreira, K.R.M.; Andrade, D.L.A.C.S.; Raposo, C.M.O.; Silva, S.M.L.

    2012-01-01

    This study evaluated the influence of different organoclays on morphology of PP/EPDM blends. Two organobentonite (MPH and MPTH), provided by Laboratory of physical chemistry of the Academic Unit of Mining and Geology/UFCG/Campina Grande/PB and a montmorillonite (Cloisite 20A - C20A), provided by Southern Clay Products (Texas/USA) were added to the PP/EPDM polymer blend in order to obtain nanocomposites containing 1 phr of organoclay. The blends of PP/EPDM/organoclay were prepared by melt intercalation process, in an internal mixer coupled to the Haake Torque Rheometer, operating at 180 ° C and 50 rpm for 15min. The samples were characterized by X-ray diffraction and scanning electron microscopy. The results show that the type of organoclay modified the morphology of PP/EPDM blends. (author)

  1. Facile fabrication of HDPE-g-MA/nanodiamond nanocomposites via one-step reactive blending.

    Science.gov (United States)

    Song, Ping'an; Yu, Youming; Wu, Qiang; Fu, Shenyuan

    2012-06-29

    In this letter, nanocomposites based on maleic anhydride grafted high density polyethylene (HDPE-g-MA) and amine-functionalized nanodiamond (ND) were fabricated via one-step reactive melt-blending, generating a homogeneous dispersion of ND, as evidenced by transmission electron microscope observations. Thermal analysis results suggest that addition of ND does not affect significantly thermal stability of polymer matrix in nitrogen. However, it was interestingly found that incorporating pure ND decreases the thermal oxidation degradation stability temperature, but blending amino-functionalized ND via reactive processing significantly enhances it of HDPE in air condition. Most importantly, cone tests revealed that both ND additives and reactive blending greatly reduce the heat release rate of HDPE. The results suggest that ND has a potential application as flame retardant alternative for polymers. Tensile results show that adding ND considerably enhances Young's modulus, and reactive blending leads to further improvement in Young's modulus while hardly reducing the elongation at break of HDPE.

  2. Electrical properties and features of the crystallization behaviour and the phase morphology of polyethylene blends

    International Nuclear Information System (INIS)

    Kolesov, I.S.; Radusch, H.-J.; Kolesov, S.N.

    1999-01-01

    It was discovered that polyethylene blends show a typical concentration dependence of the specific electrical resistance and the electrical strength measured by the surge voltage method. The concentration dependencies show two local maxima at definite blend compositions (ω LDPE = 0,2 to 0,4 and 0,7 to 0,8). The results of investigation of the melt and crystallization behavior as well as of the supermolecular structure of these blends point out that the changes caused by mixing in topology and packaging density of the inter-phases between the phases and crystallites have an influence on the electrical properties of the polyethylene blends in correspondence to the composition. The changed structure-property relationships are caused essentially by a possible co-crystallization of the components and by the interactions at separate seeds formation. (orig.)

  3. Melt electrospinning of biodegradable polyurethane scaffolds

    Science.gov (United States)

    Karchin, Ari; Simonovsky, Felix I.; Ratner, Buddy D.; Sanders, Joan E.

    2014-01-01

    Electrospinning from the melt, in contrast to from solution, is an attractive tissue engineering scaffold manufacturing process as it allows for the formation of small diameter fibers while eliminating potentially cytotoxic solvents. Despite this, there is a dearth of literature on scaffold formation via melt electrospinning. This is likely due to the technical challenges related to the need for a well-controlled high temperature setup and the difficulty in developing an appropriate polymer. In this paper, a biodegradable and thermally stable polyurethane (PU) is described specifically for use in melt electrospinning. Polymer formulations of aliphatic PUs based on (CH2)4-content diisocyanates, polycaprolactone (PCL), 1,4-butanediamine and 1,4-butanediol (BD) were evaluated for utility in the melt electrospinning process. The final polymer formulation, a catalyst-purified PU based on 1,4-butane diisocyanate, PCL and BD in a 4/1/3 molar ratio with a weight-average molecular weight of about 40 kDa, yielded a nontoxic polymer that could be readily electrospun from the melt. Scaffolds electrospun from this polymer contained point bonds between fibers and mechanical properties analogous to many in vivo soft tissues. PMID:21640853

  4. Radiation Effects on Mechanical Properties of LDPE/EVA blend

    International Nuclear Information System (INIS)

    Lee, Chung; Kim, Ki Yup; Im, Don Sun; Ryu, Boo Hyung

    2005-01-01

    Restricted properties and a limited use of homopolymers alone, have given rise to an exploration of composites, copolymers, blends, etc. Copolymers such as poly(ethylene-co-vinyl acetate) (EVA), poly(ethylene-co-butyl acrylate), poly(ethylene-co-ethyl acrylate) (EEA) have wide usages in different industry. Among the numerous ethylene copolymers, due to its wide range of properties depending on its vinyl acetate content, EVA has become one of the most useful copolymers in the electrical industry as a cable insulator, and in many other industries as a hot melt adhesive, a coating, etc. Several works looked at the influence of gamma rays on polymers. Zhang et al have blended EVA with PE because crosslinked PE has a low flexibility for use as a cable insulation. It was reported that the blend showed have a better elongation, flexibility and heat aging effect than PE, but its hardness and softening point were lower. In this study, the radiation degradation of LDPE/EVA blends as a function of the vinyl acetate contents was investigated by using TGA, gelation and elongation

  5. GLASS MELTING PHENOMENA, THEIR ORDERING AND MELTING SPACE UTILISATION

    Directory of Open Access Journals (Sweden)

    Němec L.

    2013-12-01

    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  6. Pengembangan Pembelajaran Blended Learning Pada Generasi Z

    Directory of Open Access Journals (Sweden)

    Agus Purnomo

    2017-10-01

    Full Text Available Every generation has beliefs, values, cultures, perspectives, interests, and different skills for life and work. The generation born in the early 2000s when the rapid development of such technology referred to as generation-z or net generation. Characters of this generation is very sensitive to technology and communication, meaning they have an advantage in the field of information and knowledge development. While the educators who were born in an earlier era are still not familiar with it so that educators often claimed to be "clueless" (stuttering technology. To address this need no new innovations in the learning process so that it complies with these characters. Combines conventional learning with communication media such as whatsapp and google drive is one easy solution social studies lesson on the generation-z. Learners who are accustomed to communicate using social networks can access the material and lesson plans that have been prepared with structured each meeting. So that they can read or prepare questions before the learning begins. The proportion of the use of e-learning in this study reached 35% so that it can be summed up as learning blended learning. This learning to stand on its information technology infrastructure and can be done anytime and anywhere. So learning blended learning has characteristics that are open, flexible, and can occur anywhere. Keywords: Generation Z and blended learning   http://dx.doi.org/10.17977/um022v1i12016p070

  7. Properties of PET/PLA Electrospun Blends

    Science.gov (United States)

    Li, Kevin; Cebe, Peggy

    2012-02-01

    Electrospun membranes were fabricated from poly(ethylene terephthalate), PET, co-spun with poly(lactic acid), PLA. The PLA contained 2% of the D-isomer, which served to limit the overall degree of crystallinity. Membranes were deposited from blended solutions of PET/PLA in hexafluoroisopropanol. The PET/PLA composition ranged from 0/100, 75/25, 50/50, 25/75, and 100/0. Electrospun membranes were made using either a static flat plate or a rotating wheel as the counter electrode, yielding unoriented mats or highly oriented tapes, respectively. We report on our investigation of the crystallinity, crystal perfection, and mechanical properties of these materials using differential scanning calorimetry, wide and small angle X-ray scattering, and dynamic mechanical analysis. In particular, we study the ability of one blend component (PET) to crystallize in the presence of existing crystals of the second blend component (PLA) which crystallizes first and at a lower temperature than PET.

  8. Classifying K-12 Blended Learning

    Science.gov (United States)

    Staker, Heather; Horn, Michael B.

    2012-01-01

    The growth of online learning in the K-12 sector is occurring both remotely through virtual schools and on campuses through blended learning. In emerging fields, definitions are important because they create a shared language that enables people to talk about the new phenomena. The blended-learning taxonomy and definitions presented in this paper…

  9. Blended Learning: An Innovative Approach

    Science.gov (United States)

    Lalima; Dangwal, Kiran Lata

    2017-01-01

    Blended learning is an innovative concept that embraces the advantages of both traditional teaching in the classroom and ICT supported learning including both offline learning and online learning. It has scope for collaborative learning; constructive learning and computer assisted learning (CAI). Blended learning needs rigorous efforts, right…

  10. Blended Learning: A Dangerous Idea?

    Science.gov (United States)

    Moskal, Patsy; Dziuban, Charles; Hartman, Joel

    2013-01-01

    The authors make the case that implementation of a successful blended learning program requires alignment of institutional, faculty, and student goals. Reliable and robust infrastructure must be in place to support students and faculty. Continuous evaluation can effectively track the impact of blended learning on students, faculty, and the…

  11. Empowering Learners through Blended Learning

    Science.gov (United States)

    Owston, Ron

    2018-01-01

    Blended learning appears to facilitate learner empowerment more readily than either face-to-face or fully online courses. This contention is supported by a review of literature on the affordances of blended learning that support Thomas and Velthouse's (1990) four conditions of empowerment: choice, meaningfulness, competence, and impact. Blended…

  12. The Basics of Blended Instruction

    Science.gov (United States)

    Tucker, Catlin R.

    2013-01-01

    Even though many of teachers do not have technology-rich classrooms, the rapidly evolving education landscape increasingly requires them to incorporate technology to customize student learning. Blended learning, with its mix of technology and traditional face-to-face instruction, is a great approach. Blended learning combines classroom learning…

  13. Crystallization behavior of partially miscible biodegradable poly(butylene succinate)/poly(ethylene succinate) blends

    International Nuclear Information System (INIS)

    He, Yi-Song; Zeng, Jian-Bing; Li, Shao-Long; Wang, Yu-Zhong

    2012-01-01

    Graphical abstract: Crystallization rate of PBS in the blends decreased first and then increased with increase in PES content, and that of PES increased steadily with increase in PBS content. The rich component formed a continuous phase and the other formed a dispersed phase of the blend. Crystal structures of PBS and PES were almost unchanged after blending with each other. Highlights: ► PBS/PES blend systems are partially miscible. ► Blending did not change the crystallization mechanisms of PBS and PES not affects the crystallization rates. ► The rich component formed the continuous phase while the poor component formed the dispersed phase of the blends. ► Crystal structures of PBS and PES were almost unchanged after blending with each other. - Abstract: Biodegradable blend of poly(butylene succinate) (PBS) and poly(ethylene succinate) (PES) was prepared by solution blending and casting method with chloroform as a mutual solvent. Miscibility of the blends was investigated by differential scanning calorimetry (DSC). The results indicated that PBS and PES were partially miscible. Crystallization kinetics, crystalline morphology and crystal structure of the blends were studied by DSC, polarized optical microscope (POM), and wide-angle X-ray diffraction (WAXD), respectively. Nonisothermal and isothermal crystallization kinetics suggested that the crystallizability of PBS in the blends decreased first and then increased with increase in PES content, and that of PES increased steadily with increase in PBS content. POM observation illustrated that the rich component formed a continuous phase and the other formed a dispersed phase. The results of WAXD indicated that the crystal structures of PBS and PES were almost unchanged before and after blending, since the positions of characteristic diffraction peaks of both components remain almost unchanged.

  14. Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity.

    Science.gov (United States)

    Bochmann, Esther S; Steffens, Kristina E; Gryczke, Andreas; Wagner, Karl G

    2018-03-01

    Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ® was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature (T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Structural analysis of nanocomposites based on HDPE/EPDM blends.

    Science.gov (United States)

    Zitzumbo, Roberto; Alonso, Sergio; Avalos, Felipe; Ortiz, José C; López-Manchado, Miguel A; Arroyo, Miguel

    2006-02-01

    Intercalated and exfoliated nanocomposites based on HDPE and EPDM blends with an organoclay have been obtained through the addition of EPDM-g-MA as a compatibilizer. The combined effect of clay and EPDM-g-MA on the rheological behaviour is very noticeable with a sensible increase in viscosity which suggests the formation of a structural net of percolation induced by the presence of intercalated and exfoliated silicate layer. As deduced from rheological studies, a morphology based on nanostructured micro-domains dispersed in HDPE continuous phase is proposed for EPDM/HDPE blend nanocomposites. XRD and SEM analysis suggest that two different transport phenomena take simultaneously place during the intercalation process in the melt. One due to diffusion of HDPE chains into the tactoid and the other to diffusion of EPDM-g-MA into the silicate galleries.

  16. MELT-IIIB: an updated version of the melt code

    International Nuclear Information System (INIS)

    Tabb, K.K.; Lewis, C.H.; O'Dell, L.D.; Padilla, A. Jr.; Smith, D.E.; Wilburn, N.P.

    1979-04-01

    The MELT series is a reactor modeling code designed to investigate a wide variety of hypothetical accident conditions, particularly the transient overpower sequence. MELT-IIIB is the latest in the series

  17. Electron spin resonance study of electron localization and dynamics in metal-molten salt solutions: comparison of M-MX and Ln-LnX sub 3 melts (M alkali metal, Ln = rare earth metal, X = halogen)

    CERN Document Server

    Terakado, O; Freyland, W

    2003-01-01

    We have studied the electron spin resonance (ESR) spectra in liquid K-KCl and M-(NaCl/KCl) sub e sub u sub t mixtures at different concentrations in salt-rich melts approaching the metal-nonmetal transition region. In both systems F-centre-like characteristics are found. Strongly exchange narrowed signals clearly indicate that fast electron exchange occurs on the picosecond timescale. In contrast, the ESR spectra of a (NdCl sub 2)(NdCl sub 3)-(LiCl/KCl) sub e sub u sub t melt are characterized by a large line width of the order of 10 sup 2 mT which decreases with increasing temperature. In this case, the g-factor and correlation time are consistent with the model of intervalence charge transfer, which is supported by recent conductivity and optical measurements. The different transport mechanisms will be discussed.

  18. Effects of Electron Beam Irradiation on Binary Polyamide-6 Blends with Metallocene Copolymers

    International Nuclear Information System (INIS)

    Rosales, C.

    2006-01-01

    A versatile way to produce new materials with high Izod impact strength and reduced heat deformations is the irradiation of compatibilized blends. The effect of electron beam irradiation and different types of dispersed phase grafted copolymers on thermal and mechanical properties, and SEM morphology of polyamide-6 (PA-6) blends were investigated. Two metallocene copolymers (mEPDM and mPOE) grafted in-situ with maleic anhydride and two commercial maleated copolymers (EPDM-g-MA and mEPR-g-MA) were employed in binary blends with PA6 as matrix. The blends were prepared by extrusion with a composition of 80 wt. % of PA-6. The influence of the radical or functional groups generated in the grafting and the irradiation processes (25, 50, 100 and 200 kGy) was found by ATR-FTIR. The blends exhibited the characteristic thermal behavior of immiscible systems. All compatibilizers employed influenced the melting and crystallization behavior of the blend components without irradiation and an improvement in interface adhesion was clearly observed by SEM micrographs. The sizes of the dispersed phase in the non-irradiated reactive blends were in agreement with the viscosity ratios of the blend components. High toughness materials were obtained with ethylene-polypropylene-diene (mEPDM) grafted copolymers without significant variations in their thermal properties and Izod impact strength at room temperature and -30 degree with the irradiation doses. However, the toughness of the blends with grafted metallocene polyethylenes was affected by the irradiation doses employed. Therefore, the gel content and tensile properties of the samples depended on the chain scission, crosslinking and/or grafting reactions of the blend components

  19. Relationship between morphologies and mechanical properties of hydroxypropyl methylcellulose/hydroxypropyl starch blends.

    Science.gov (United States)

    Wang, Yanfei; Zhang, Liang; Liu, Hongsheng; Yu, Long; Simon, George P; Zhang, Nuozi; Chen, Ling

    2016-11-20

    Edible films from the blending hydroxypropyl methylcellulose (HPMC) with hydroxypropyl starch (HPS) have been developed. This work focuses on the relationship between morphologies and mechanical properties of such systems. To aid understanding of blend morphology, a new technique used to identify the two phases through dying of the HPS by iodine has been developed, which provided a simple and convenient way to clearly distinguish between HPMC and HPS phases. It was found that the blend system is immiscible and there is phase transition point depending on blending ratio and solution concentration. The lower transparency point of the blend and phase transition reign of HPMC from continuous phase to separated phase correspond with the variation of tensile modulus. The modulus and elongation decreased with increased solution concentration, which is correlatable with the morphologies present, where it was found that the HPMC gradually changed from a continuous phase to a distinct phase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Thermoplastic elastomers blends based on linear low density polyethylene, ethylene-1-octene copolymers and ground rubber tire

    Directory of Open Access Journals (Sweden)

    Marisa Cristina Guimarães Rocha

    2014-01-01

    Full Text Available Blends of linear low density polyethylene (LLDPE ethylene-1-octene copolymers (EOC, with different 1-octene (OC content, and ground rubber tire (GRT were prepared by melt mixing in a twin screw extruder. Five different compositions of LLDPE/EOC/GRT blends were processed in the extruder to evaluate the effect of EOC addition to the LLDPE/GRT blends. The addition of EOC to LLDPE/GRT blends improves the mechanical properties. Besides, the replacement of 5% of GRT by EOC grades (OC = 20 or 30 wt % in the 50/50 LLDPE/GRT blend, leads to a significant increase of ultimate tensile properties. The EOC comonomer content affects the properties of LLDPE/EOC and LLDPE/EOC/GRT blends. Dynamical-mechanical analyses showed that, with the addition of EOC to LLDPE/GRT blends, the Tg of GRT and the Tg of EOC are closer. This effect is more pronounced when the EOC with the highest content of comonomer (30 wt % is added to LLDPE/GRT blend. In this case, only one peak related to the Tg of the rubber phase can be visualized in the amorphous region. These findings indicate that EOC may act as compatibilizer agent for LLDPE/GRT blends.

  1. Characterization of plasticized PEO-PAM blend polymer electrolyte system

    Science.gov (United States)

    Dave, Gargi; Kanchan, Dinesh

    2017-05-01

    Present study reports characterization studies of NaCF3SO3 based PEO-PAM Blend Polymer Electrolyte (BPE) system with varying amount of EC+PC as plasticizer prepared by solution cast technique. Structural analysis and surface topography have been performed using FTIR and SEM studies. To understand, thermal properties, DSC studies have been undertaken in the present paper

  2. Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair

    NARCIS (Netherlands)

    Neves, Sara C.; Moreira Teixeira, Liliana; Moroni, Lorenzo; Reis, Rui L.; van Blitterswijk, Clemens; Alves, Natália M.; Karperien, Hermanus Bernardus Johannes; Mano, João F.

    2011-01-01

    Chitosan (CHT)/poly(ɛ-caprolactone) (PCL) blend 3D fiber-mesh scaffolds were studied as possible support structures for articular cartilage tissue (ACT) repair. Micro-fibers were obtained by wet-spinning of three different polymeric solutions: 100:0 (100CHT), 75:25 (75CHT) and 50:50 (50CHT) wt.%

  3. Profiling Student Behaviour in a Blended Course: Closing the Gap Between Blended Teaching and Blended Learning

    NARCIS (Netherlands)

    Bos, Nynke; Brand-Gruwel, Saskia

    2018-01-01

    Blended learning is often associated with student-oriented learning in which students have varying degrees of control over their learning process. However, the current notion of blended learning is often a teacher- oriented approach in which the teacher identifies the used learning technologies and

  4. Blend or not to blend: a study investigating faculty members perceptions of blended teaching

    Directory of Open Access Journals (Sweden)

    Mehmet A Ocak

    2010-12-01

    Full Text Available This study examined faculty members’ perceptions of blended teaching from several perspectives. A total of 73 faculty members in Turkish Higher Education context participated in the study by completing an online survey that combined quantitative and qualitative approaches. Based on a data analysis, the faculty members’ perceptions were sorted into six categories: (a satisfaction with blended teaching, (b perceived impact on the role of the faculty, (c perceived impact on student learning, (d perceived impact on student motivation, (e advantages of blended teaching, and (f disadvantages of blended teaching. Findings indicated that faculty members were likely to agree that blended teaching provides a high degree of satisfaction and that it requires more time and commitment from the faculty. The faculty members perceived that blended teaching improves student learning and, to some extent, improves motivation. The faculty members also emphasized the importance of institutional support and the use of technology to mitigate student problems. This study presents these faculty members’ perceptions, which are helpful for those planning to implement a blended teaching approach, and makes suggestions for trouble-shooting and taking advantage of the opportunities in a blended environment successfully.

  5. [Phase transition in polymer blends and structure of ionomers and copolymers

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The main thrust of the program in the past 3 years are summarized: SAXS instrumentation development; structure and dynamics of macro- and supra-molecules, phase transitions in polymer blends and solutions, structure of ionomers, and fractals and anisotropic systems.

  6. Exciplex dynamics in a conjugated polymer blend of MDMO-PPV and PCNEPV

    NARCIS (Netherlands)

    Offermans, T.; Hal, van P.A.; Koetse, M.M.; Meskers, S.C.J.; Janssen, R.A.J.; Kafafi, Z.H.

    2005-01-01

    The photophysical properties of a solution processed blend of two semiconducting polymers with electron donating and electron accepting properties, respectively, as used in polymer photovoltaic devices have been investigated. In the binary mixture of

  7. Polypropylene (P P) /polystyrene (P S) blends modified by radiation induced methods. I. transparency and structure morphology

    International Nuclear Information System (INIS)

    El-Nagger, A.M.; Ibrahim, M.S.; Said, H.M.; Zahran, A.H.

    2002-01-01

    The compatibility of polypropylene (P P)/polystyrene (P S) polymer blends modified through gamma radiation or accelerated electrons has been investigated. Two methods were suggested; either by exposing pp component or by exposing the melt extruded mixed polymers to both type of radiation. The modified blends were characterized by measuring the colour interceptions and observing the structure morphology by scanning electron microscope (SEM). A method was proposed depending on the measurement of the transparency (L * ) of the films of pure polymers and their blend before and after they had been modified by high-energy radiation. The transparency values were used to calculate quantitatively the percentage compatibility of pp/ps blends. The results showed that irradiation process through the two methods used in this work improved the compatibility of P P/P S blends. However, modification through exposing the mixed polymers is more effective than exposing pp component prior to melt extrusion mixing. The modification through irradiating mixed blends gamma radiation tends to yield improved modification than with E B radiation. On the other hand, the fracture surfaces of the blends examined by SEM gives further supports to the results of transparency measurements

  8. Morphology evolution of poly(L-lactic acid) (PLLA), poly(.epsilon.-caprolactone) (PCL) and polyethylene oxide (PEO) ternary blend and their effects on mechanical properties for bio scaffold applications

    Czech Academy of Sciences Publication Activity Database

    Ezzati, P.; Ghasemi, I.; Karrabi, M.; Azizi, H.; Fortelný, Ivan

    2014-01-01

    Roč. 38, č. 4 (2014), s. 449-456 ISSN 0379-153X Institutional support: RVO:61389013 Keywords : PLLA/PCL/PEO ternary blend * bio scaffold * melt blending Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.528, year: 2014

  9. Hollow fibers made from a poly(3-hydroxybutyrate/poly-ε-caprolactone blend

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available Since poly(3-hydroxybutyrate (PHB is inherently brittle and possesses poor elastic properties, hollow fibers produced by melt spinning from pure PHB, as described in our earlier study [Macromolecular Materials and Engineering, 2010, 295/6, 585–594], do not meet the required needs regarding the mechanical performance. Besides hardly available PHB copolymers, also blend systems are known to enhance material properties and have thus been considered to be eligible to fabricate flexible or rather pliable hollow fibers based on PHB. Blends of PHB and poly-!-caprolactone (PCL are promising for the application in tissue engineering due to the inherent biocompatibility and biodegradability. A wide range of PHB/PCL compositions have been prepared by melt extrusion. Thermal and mechanical properties of the obtained specimens were analyzed in order to identify miscibility and degree of dispersion as well as to determine the influence on the overall mechanical performance. Even though these constituents are known to be immiscible, PHB/PCL 70/30 was proven to be an adequate composition. This blend showed a highly increased elongation and was found to be easily processable by melt spinning compared to pure PHB. From this blend well defined dimensionally stable bendable hollow fibers were fabricated.

  10. Effects of electron-beam irradation on some structural properties of granulated polymer blends

    International Nuclear Information System (INIS)

    Zenkiewicz, Marian; Czuprynska, Joanna; Polanski, Julian; Karasiewicz, Tomasz; Engelgard, Wlodzimierz

    2008-01-01

    The aim of this article was to show the effects of the electron radiation dose and presence of a compatibiliser on the peak melting temperature (T pm ) of the crystalline phase, crystallinity (X c ), and melt flow rate (MFR) of granulated blends of low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) as well as of blends of LDPE, HDPE, and PP. The purpose of applying the high-energy electron radiation with doses up to 300 kGy and of adding a compatibiliser was to enhance mechanical properties of the studied blends and, at the same time, to investigate the possibility of using this technique in the processes of recycling polymeric materials. As the compatibilisers, the styrene-ethylene/butylene-styrene elastomer grafted with maleic anhydride (SEBS-g-MA) and trimethylol propane trimethacrylate (TMPTA) were utilised; they were added at the amounts of 5, 10, and 15 wt% and 1, 2, and 3 wt%, respectively. The enhancement of mechanical properties was accompanied by the following effects, discussed in this article: (i) a decrease in the peak melting temperature upon the electron radiation for the crystalline phase of LDPE, HDPE, and PP that constituted the studied granulated blends and (ii) changes in MFR upon both the electron radiation and the addition of compatibilisers

  11. Solution Prototype

    DEFF Research Database (Denmark)

    Efeoglu, Arkin; Møller, Charles; Serie, Michel

    2013-01-01

    This paper outlines an artifact building and evaluation proposal. Design Science Research (DSR) studies usually consider encapsulated artifact that have relationships with other artifacts. The solution prototype as a composed artifact demands for a more comprehensive consideration in its systematic...... environment. The solution prototype that is composed from blending product and service prototype has particular impacts on the dualism of DSR’s “Build” and “Evaluate”. Since the mix between product and service prototyping can be varied, there is a demand for a more agile and iterative framework. Van de Ven......’s research framework seems to fit this purpose. Van de Ven allows for an iterative research approach to problem solving with flexible starting point. The research activity is the result between the iteration of two dimensions. This framework focuses on the natural evaluation, particularly on ex...

  12. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  13. Thermodynamics of Oligonucleotide Duplex Melting

    Science.gov (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  14. "Chemical contraction" in rubidium-bismuth melts

    Science.gov (United States)

    Khairulin, R. A.; Abdullaev, R. N.; Stankus, S. V.

    2017-10-01

    The density and thermal expansion of liquid rubidium and rubidium-bismuth alloy containing 25.0 at % Bi were measured by the gamma-ray attenuation technique at temperatures from liquidus to 1000 K. The results of this study were compared with the data obtained by other authors. The molar volume of the Rb75Bi25 melt strongly deviates from the additivity rule for ideal solutions.

  15. Pavement Snow Melting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.

    2005-01-01

    The design of pavement snow melting systems is presented based on criteria established by ASHRAE. The heating requirements depends on rate of snow fall, air temperature, relative humidity and wind velocity. Piping materials are either metal or plastic, however, due to corrosion problems, cross-linked polyethylene pipe is now generally used instead of iron. Geothermal energy is supplied to systems through the use of heat pipes, directly from circulating pipes, through a heat exchanger or by allowing water to flow directly over the pavement, by using solar thermal storage. Examples of systems in New Jersey, Wyoming, Virginia, Japan, Argentina, Switzerland and Oregon are presented. Key words: pavement snow melting, geothermal heating, heat pipes, solar storage, Wyoming, Virginia, Japan, Argentina, Klamath Falls.

  16. Transient fuel melting

    International Nuclear Information System (INIS)

    Roche, L.; Schmitz, F.

    1982-10-01

    The observation of micrographic documents from fuel after a CABRI test leads to postulate a specific mode of transient fuel melting during a rapid nuclear power excursion. When reaching the melt threshold, the bands which are characteristic for the solid state are broken statistically over a macroscopic region. The time of maintaining the fuel at the critical enthalpy level between solid and liquid is too short to lead to a phase separation. A significant life-time (approximately 1 second) of this intermediate ''unsolide'' state would have consequences on the variation of physical properties linked to the phase transition solid/liquid: viscosity, specific volume and (for the irradiated fuel) fission gas release [fr

  17. Mathematical model of melt flow channel granulator

    Directory of Open Access Journals (Sweden)

    A. A. Kiselev

    2016-01-01

    Full Text Available Granulation of carbohydrate-vitamin-mineral supplements based on molasses is performed at a high humidity (26 %, so for a stable operation of granulator it is necessary to reveal its melt flow pattern. To describe melt non-isothermal flow in the granulator a mathematical model with following initial equations: continuity equation, motion equation and rheological equation – was developed. The following assumptions were adopted: the melt flow in the granulator is a steady laminar flow; inertial and gravity forces can be ignored; melt is an incompressible fluid; velocity gradient in the flow direction is much smaller than in the transverse direction; the pressure gradient over the cross section of the channel is constant; the flow is hydrodynamically fully developed; effects impact on the channel inlet and outlet may be neglected. Due to the assumptions adopted, it can be considered that in this granulator only velocity components in the x-direction are significant and all the members of the equation with the components and their derivatives with respect to the coordinates y and z can be neglected. The resulting solutions were obtained: the equation for the mean velocity, the equation for determining the volume flow, the formula for calculating of mean time of the melt being in the granulator, the equation for determining the shear stress, the equation for determining the shear rate and the equation for determining the pressure loss. The results of calculations of the equations obtained are in complete agreement with the experimental data; deviation range is 16–19 %. The findings about the melt movement pattern in granulator allowed developing a methodology for calculating a rational design of the granulator molding unit.

  18. Effect of the gamma radiation in the properties of PEBD / amphiprotic starch blend

    International Nuclear Information System (INIS)

    Texeira, Magno F.H.B.I.; Caetano, Viviane F.; Ferreira, Flavia G.D.; Almeida, Yeda M.B. de; Vinhas, Gloria M.

    2009-01-01

    The degradation of the polyethylene of low density (PEBD) it can be accelerated through the addition of natural polymer, minimizing the impact caused by the residues discarded in the environment. In this work the effect of the radiation gamma was evaluated in the PEBD / amphiprotic starch blend, in the doses of 25, 60 and 120 kGy. This blend after exposed to gamma radiation was analyzed by differential scanning calorimeter (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and mechanical properties. The blends after irradiation in the doses of 60 and 25 kGy had not presented change in the melting point temperature. Already the blends radiated in the dose of 120 kGy presented two melting point temperatures. Through the analyses in the infrared was detected the presence of the group carbonyl and primary and secondary alcohols as a result of the structural alteration in function of the radiolytic degradation. In the mechanical rehearsals, the blends presented decrease in the specific deformation in the rupture and in the module of elasticity when irradiated in the doses of 25, 60 and 120 kGy, respectively. Already the tension results in the rupture stayed practically unaffected with the effect of the gamma radiation. (author)

  19. γ-Radiation (0-150 kGy) Effects on HDPE/LDPE Blends

    International Nuclear Information System (INIS)

    Albano, C.

    2006-01-01

    In the present work, irradiation with 60 C o source was employed to study the effect of γ-rays on some physical properties of HDPE/LDPE blends (0/100, 10/90, 25/75, 50/50, 75/25, 100/0), using various doses: 0, 50, 150 kGy. The blends were prepared by extrusion and plates were compression molded employing fast and slow cooling methods from the melt. Density, degree of crystallinity and mechanical properties were dependant on the cooling rate used and blend composition. Better properties were found for HDPE-rich blends. Mechanical properties showed no significant variations in tensile modulus and yield stress. Instead, a decrease in elongation at break, due to molecular crosslinking or branching reaction effects, with the raise of radiation dose was obtained. Density measurements and differential scanning calorimetry results failed to exhibit significant changes with radiation dose. Some qualitative aspects included changes in endotherms shape. These were attributed to the variation of in crystallite sizes, probably due to structural changes originated by crosslinking and chain scission reactions occurring as a result of γ-rays exposure. On the other hand, there was an abrupt reduction of the melt flow index (MFI) from the range of 16-9 dg/min for 0 kGy to non-fluidity for an exposure of 150 kGy; this behavior is another sign of high crosslinking, impairing the viscous fluidity of the blends

  20. On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications.

    Science.gov (United States)

    Arrieta, Marina Patricia; Samper, María Dolores; Aldas, Miguel; López, Juan

    2017-08-29

    Poly(lactic acid) (PLA) is the most used biopolymer for food packaging applications. Several strategies have been made to improve PLA properties for extending its applications in the packaging field. Melt blending approaches are gaining considerable interest since they are easy, cost-effective and readily available processing technologies at the industrial level. With a similar melting temperature and high crystallinity, poly(hydroxybutyrate) (PHB) represents a good candidate to blend with PLA. The ability of PHB to act as a nucleating agent for PLA improves its mechanical resistance and barrier performance. With the dual objective to improve PLAPHB processing performance and to obtain stretchable materials, plasticizers are frequently added. Current trends to enhance PLA-PHB miscibility are focused on the development of composite and nanocomposites. PLA-PHB blends are also interesting for the controlled release of active compounds in the development of active packaging systems. This review explains the most relevant processing aspects of PLA-PHB based blends such as the influence of polymers molecular weight, the PLA-PHB composition as well as the thermal stability. It also summarizes the recent developments in PLA-PHB formulations with an emphasis on their performance with interest in the sustainable food packaging field. PLA-PHB blends shows highly promising perspectives for the replacement of traditional petrochemical based polymers currently used for food packaging.

  1. Phase boundary in compatible and incompatible polymer blends studied by micro indentation test and microscopic observations

    International Nuclear Information System (INIS)

    Mina, M. F.; Akhtar, F.; Haque, M.E.

    2003-10-01

    The phase boundary of incompatible polymer blends such as poly (methyl methacrylate) (PMMA)/natural rubber (NR) and polyestyrene (PS)/NR as well as compatible blends such as PMMA/NR/epoxidizer NR (compatibilizer) and PS/NR/styrene-butadiene-styrene (SBS) block copolymer (compatibilizer) was studied by means of microhardness (H) technique and microscopy. Solution grown films of neat PMMA, PS and blended films of PMMA/NR, PS/NR, PMMA/NR/ENR and PS/NR/SBS were cast using a common solvent (toluene). While the neat PMMA and PS provide constant hardness values of 178 and 173 MPa, respectively, the binary (incompatible) and the ternary (compatible) blends show a conspicuous H-decrease (PMMA/NR=140 MPa, PS/NR=167 MPa, PMMA/NR/ENR=109 MPa and PS/NR/SBS=127 MPa). Scanning electron microscopy and optical microscopy reveal clear difference of the phase boundary of compatible (smooth boundary) and incompatible (sharp boundary) blends. Besides, the compatibilizer blends are characterised by the thinnest phase boundary (30 μm), which is found about 60 μm in the incompatible blends, showing a final hardness value that demonstrates the compatibilizer to be smoothly distributed in the interface between the two blend components. Results highlight that microindentation technique, in combination with microscopic observations, is a sensitive tool for studying the breadth and quality of the interphase boundary in non- or compatibilized polymer blends and other inhomogeneous materials. (author)

  2. Method to blend separator powders

    Science.gov (United States)

    Guidotti, Ronald A.; Andazola, Arthur H.; Reinhardt, Frederick W.

    2007-12-04

    A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

  3. Preparation and characterization of tragacanth-locust bean gum edible blend films.

    Science.gov (United States)

    Mostafavi, Fatemeh Sadat; Kadkhodaee, Rassoul; Emadzadeh, Bahareh; Koocheki, Arash

    2016-03-30

    The present work introduces the structure and physicomechanical properties of a novel blend film made from binary solutions of gum tragacanth (GT) and locust bean gum (LBG) at different mixing ratios. Apparent viscosities and surface tensions of individual and blend gum solutions were also investigated. The viscosity data indicated that there was a distinct synergism between the two gums at all mixing ratios. FTIR spectra showed the existence of noncovalent intermolecular interactions between gums. The surface tensions of binary solutions were significantly lower than those of individual gums which is advantageous for coating applications. All films had homogenous and smooth surface morphology and their transparency, water vapour barrier and mechanical properties were improved by incorporating LBG in blend. The results of this study suggest that GT-LBG blend film, owing to its desirable properties, has the potential to be used as a new degradable food packaging material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Stress relaxation of bi-disperse polystyrene melts

    DEFF Research Database (Denmark)

    Hengeller, Ludovica; Huang, Qian; Dorokhin, Andriy

    2016-01-01

    We present start-up of uniaxial extension followed by stress relaxation experiments of a bi-disperse 50 % by weight blend of 95k and 545k molecular weight polystyrene. We also show, for comparison, stress relaxation measurements of the polystyrene melts with molecular weight 95k and 545k, which...... are the components of the bi-disperse melt. The measurements show three separated relaxation regimes: a fast regime, a transition regime, and a slow regime. In the fast regime, the orientation of the long chains is frozen and the stress relaxation is due to stretch relaxation of the short chains primarily....... Conversely in the slow regime, the long chains have retracted and undergo relaxation of orientation in fully relaxed short chains....

  5. Donor-acceptor random copolyesters containing perylenebisimide (PBI) and oligo(p-phenylene vinylene) (OPV) by melt condensation polymerization: energy transfer studies.

    Science.gov (United States)

    Nisha, S Kumari; Asha, S K

    2013-10-31

    Novel copolyesters consisting of oligo(p-phenylene vinylene) (OPV) as donor (D) and perylenebisimide (PBI) as acceptor (A) were synthesized by melt polycondensation. Photoinduced energy transfer and photoinduced charge separation in these polyesters were studied in solution as well as in the solid state. Selective excitation of OPV moiety resulted in the energy transfer with >90% efficiency from OPV to PBI chromophore in the solution state. The direct excitation of PBI in the D-A copolyester resulted in reduced fluorescence emission of acceptor, indicating electron transfer between the D and A moieties. The effect of distance between donor and acceptor on the energy transfer efficiency from donor to acceptor was studied. Compared to a physical mixture of D and A polyesters alone, the energy transfer was 4 times more efficient in the D-A copolyester, highlighting the influence of covalently linking D and A in a single polymer chain. A strong fluorescence quenching (∼ 100%) of both chromophores in solid state indicated an efficient photoinduced charge transfer after photoexcitation of either D or A. Thus, OPV-PBI main chain copolyester is an excellent system for the study of energy- and electron-transfer processes in organic semiconductor. Reactive blend of D/A copolyester was also prepared by the transesterification reaction between D and A alone copolyesters. The energy transfer efficiency from D to A moiety upon selective excitation of D chromophore in the D/A copolyester blend was ∼4 times higher compared to a physical mixture of D and A alone copolyesters, which gave direct proof for the transesterification reaction in polyester/polyester reactive blending.

  6. Blended Training for Combat Medics

    Science.gov (United States)

    Fowlkes, Jennifer; Dickinson, Sandra; Lazarus, Todd

    2010-01-01

    Bleeding from extremity wounds is the number one cause of preventable death on the battlefield and current research stresses the importance of training in preparing every Soldier to use tourniquets. HapMed is designed to provide tourniquet application training to combat medics and Soldiers using a blended training solution encompassing information, demonstration, practice, and feedback. The system combines an instrumented manikin arm, PDA, and computer. The manikin arm provides several training options including stand-alone, hands-on skills training in which soldiers can experience the actual torque required to staunch bleeding from an extremity wound and be timed on tourniquet application. This is more realistic than using a block of wood to act as a limb, which is often how training is conducted today. Combining the manikin arm with the PDA allows instructors to provide scenario based training. In a classroom or field setting, an instructor can specify wound variables such as location, casualty size, and whether the wound is a tough bleed. The PDA also allows more detailed feedback to be provided. Finally, combining the manikin arm with game-based technologies, the third component, provides opportunities to build knowledge and to practice battlefield decision making. Not only do soldiers learn how to apply a tourniquet, but when to apply a tourniquet in combat. The purpose of the paper is to describe the learning science underlying the design of HapMed, illustrate the training system and ways it is being expanded to encompass other critical life-saving tasks, and report on feedback received from instructors and trainees at military training and simulation centers.

  7. Studies on the effect of compatibilizers on mechanical, thermal and flow properties of polycarbonate/poly (butylene terephthalate) blends

    Science.gov (United States)

    Kumar, Ravindra; Kar, Kamal K.; Kumar, Vijai

    2018-01-01

    Bisphenol-A polycarbonate (PC) and poly(butylene terephthalate) (PBT) were melt blended with ethylene-n-butylacrylate-glycidylmethacrylate terpolymer (E-BA-GMA) at various proportions in order to study the effects of compatibilizers on mechanical, thermal and flow properties of blends. Furthermore, on the basis of this study, PC and PBT were melt-blended at 60/40 proportion with three different compatibilizers viz., ethylene-n-butylacrylate copolymer (E-BA), E-BA-GMA and random copolymer of ethylene and glycidylmethacrylate (E-GMA) at 3 phr loading in a co-rotating twin screw extruder. Tensile, flexural and impact tests were carried out on injection molded samples of PC/PBT blends. The notched izod impact strength increases enormously (˜2-3 times) on addition of any one of the three compatibilizers, and elongation at break (%) also improves tremendously (3, 5 and 4 times) on incorporation of E-BA, E-BA-GMA and E-GMA copolymer, respectively while other mechanical properties decreases slightly (3%-8%) on addition of any one of these compatibilizers. The heat deflection temperature (HDT) raises ˜8 °C-9 °C on addition of either E-BA-GMA or E-GMA, while E-BA shows a negative effect on HDT. The melt flow index diminishes significantly (˜5%-20%) on incorporation of these compatibilizers. The morphology studies via scanning electron microscopy of these four blends were carried out to confirm the mechanical results.

  8. Effect of cavity inclination on a temperature and concentration controlled double diffusive convection at ice plate melting

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, M.; Ishikura, T. [Akita University, Department of Mechanical Engineering, Akita (Japan); Beer, H. [Technische Unversitat Darmstadt, Institut fur Technische Thermodynamik, Darmstadt (Germany)

    2005-03-01

    This paper is concerned with the double diffusive convection due to the melting of an ice plate into a calcium chloride aqueous solution inside a rectangular cavity. It is mainly considered the effect of the cavity inclination {theta} on the melting rate and the mean melting Nusselt- and Sherwood-numbers, experimentally as well as numerically. The ice plate melts spontaneously with decreasing temperature at the melting front even if initially there does not exist a temperature difference between the ice and the liquid. The concentration- and temperature-gradients near the melting front induce double diffusive convection in the liquid, which will affect the melting rate. Experiments reveal that the mean melting mass increases monotonically with increasing cavity inclination. The numerical analysis based on the laminar assumption predicts well the melting mass in the range of {theta}=0-90 , however, under-predicts the melting mass in the range of {theta}=90-180 as compared with the experimental results. (orig.)

  9. Effect of the High-Energy Electron Beam Irradiation on the Morphology and Mechanical Properties of PE/EVA Blends

    International Nuclear Information System (INIS)

    Razavi Aghjeh, M. K.

    2006-01-01

    The main objective of the present work was to study the effect of electron beam irradiation on the morphology and mechanical properties of PE/EVA blends. The melt compounding of the blends were carried out in an internal mixer. The small amount of the prepared blend samples were rapidly quenched in liquid nitrogen and the remained were compression molded into sheets. Sheets and quenched samples were then irradiated by a 10 MeV electron beam accelerator using different dose levels. The morphological studies for both, sheeted and quenched blends were performed on cryogenically fractured surfaces by using SEM technique. The mechanical properties of the sheeted samples were evaluated according to ASTM D638. The results of mechanical properties showed that, increasing in irradiation dose increases the tensile strength and decreases the elongation at break in all blend compositions. On the other hand, it was found that, for PE/EVA blends the extent of tensile strength increase, and elongation at break decrease, are more appreciable in compare to the neat PE and EVA. These results suggest that, the blend interface is more susceptible for irradiation induced crosslinking. This is because of more affinity of PE and EVA macroradicals to termination with together in compare to own macroradicals.The results of morphological studies showed that, irradiation can stabilize the blend morphology especially in co-continues regions, where the morphology is more unstable due to the heat coarsening

  10. The properties of poly(lactic acid)/starch blends with a functionalized plant oil: tung oil anhydride.

    Science.gov (United States)

    Xiong, Zhu; Li, Chao; Ma, Songqi; Feng, Jianxian; Yang, Yong; Zhang, Ruoyu; Zhu, Jin

    2013-06-05

    Bio-sourced polymers, polylactide (PLA) and starch, have been melt-blended by lab-scale co-extruder with tung oil anhydride (TOA) as the plasticizer. The ready reaction between the maleic anhydride on TOA and the hydroxyl on starch led TOA molecules to accumulate on starch and increased the compatibility of PLA/starch blends, which was confirmed by FT-IR analyses and SEM. The TOA could change the mechanical properties and physical behaviors of PLA/starch blends. DSC and DMA analysis show that the TOA layer on starch has an effect on the thermal behavior of PLA in the ternary blend. The enrichment of TOA on starch improves the toughness and impact strength of the PLA/starch blends. The adding amount of TOA in PLA/starch blends primarily determined the compatibility and mechanical properties of the resulted ternary blends. The tensile and impact fracture modes of the PLA/starch blend with or without TOA has also been investigated by SEM analysis. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. High molecular weight poly(L-lactide) and poly(ethylene oxide) blends : Thermal characterization and physical properties

    NARCIS (Netherlands)

    Nijenhuis, AJ; Colstee, E; Grijpma, DW; Pennings, AJ

    1996-01-01

    The miscibility of high molecular weight poly(L-lactide) (PLLA) with high molecular weight poly(ethylene oxide) (PEG) was studied by differential scanning calorimetry. Ail blends containing up to 50 weight% PEO showed single glass transition temperatures. The PLLA and PEO melting temperatures were

  12. Performance of Blended Learning in University Teaching:

    Directory of Open Access Journals (Sweden)

    Michael Reiss

    2010-07-01

    Full Text Available Blended learning as a combination of classroom teaching and e-learning has become a widely represented standard in employee and management development of companies. The exploratory survey “Blended Learning@University” conducted in 2008 investigated the integration of blended learning in higher education. The results of the survey show that the majority of participating academic teachers use blended learning in single courses, but not as a program of study and thus do not exploit the core performance potential of blended learning. According to the study, the main driver of blended learning performance is its embeddedness in higher education. Integrated blended programs of study deliver the best results. In blended learning, learning infrastructure (in terms of software, culture, skills, funding, content providing, etc. does not play the role of a performance driver but serves as an enabler for blended learning.

  13. Fracture studies of poly(propylene)/elastomer blend with β-form nucleating agent

    International Nuclear Information System (INIS)

    Bai Hongwei; Wang Yong; Zhang Danli; Xiao Chengquan; Song Bo; Li Yanli; Han Liang

    2009-01-01

    Poly(propylene)/elastomer blends with β-form nucleating agent (β-NA) aryl amides compound (TMB-5) were prepared. The effects of β-NA on crystallization, melting behaviors and elastomer morphologies of PP/elastomer blends were studied through polarization optical microscope (POM), differential scanning calorimetry (DSC) and scanning electronic microscope (SEM). The fracture behaviors, including notched Izod impact fracture and single-edge notched tensile (SENT) fracture, were comparatively studied to establish the role of NA in improving the fracture toughness of PP/elastomer blends. Our results showed that the presence of β-NA leads to determinable β-PP formation in the blends, and as a consequence the fracture toughness of the blend is improved dramatically. Compared with notched Izod impact testing, which can efficiently characterize the fracture toughness of the blends only at lower elastomer content, SENT testing provides more detail of fracture behavior in all the compositions. Furthermore, SENT test shows that the significant improvement in fracture toughness of PP/elastomer/β-NA is contributed to the simultaneous enhancement of crack initiation energy and crack propagation energy, but largely dominated by crack propagation stage.

  14. MISCIBILITY AND THERMAL DEGRADATION KINETICS OF POLY-β-ALANINE/POLY(3-HYDROXYPROPIONATE BLENDS

    Directory of Open Access Journals (Sweden)

    Efkan CATIKER

    2016-11-01

    Full Text Available Poly-β-alanine (PBA and poly(3-hidroxypropionate (PHP were synthesized via base-catalyzed hydrogen transfer polymerization (HTP of acrylamide and acrylic acid, respectively. Blends of PBA/PHP with different composition (PHP content, 5% to 75% were studied using FTIR, DSC, TGA, XRD and polarized optical microscope to reveal both miscibility and thermal degradation kinetics of PBA/PHP blends.  Optical images of blends were transparent and entirely uniform. Characteristic IR bands of both components shifted in higher frequencies with increasing fraction of other component.  Melting temperature (Tm, thermal decomposition temperatures (Td and enthalpy of fusion (ΔHf of PHP decreased with increasing PBA fraction in blends. Thermal degradation kinetics of both components were studied by Freeman-Carroll method. Activation energies of thermal degradations of blend components were determined with a good regression coefficients (at least 0.994. Activation energies of decomposition decreased from 224.14 to 86.125 kJmol-1 with increasing PHP content. XRD spectra of blends exhibited lower peak intensities than those of neat polymers. The spectroscopic, thermal and optic methods revealed that PBA and PHP were miscible with a good compatibility in amorphous phase.

  15. Study of Polymeric Luminescent Blend (PC/PMMA) Doped with Europium Complex under Gamma-Iradiation

    International Nuclear Information System (INIS)

    Parra, D. F.

    2006-01-01

    Spectroscopic properties of blends formed by bisphenol-A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) doped with europium in organic complex were studied. Polymeric luminescent blends are potential materials for many applications; however, little information has been reported concerning the stability under thermal and radiation conditions. Luminescent films were synthesized from europium thenoyltrifluoroacetonate at different concentrations doped in PC/PMMA blends. Films produced of the luminescent polymer blend were irradiated in a 60 C o source. Their luminescent properties, in the solid state, as well as, the thermal oxidative resistance after gamma irradiation was investigated. These systems were characterized by elemental analysis, thermogravimetry (TGA), differential scanning calorimetry (DSC) and infrared spectroscopy (FTIR). Based on TGA data, the thermal stability of PC/PMMA:(tta)3 system is higher than the polymer blend. The DSC results indicated that those new systems are chemically stables. The emission spectra of the Eu 3 +-tta complex doped in the PC/PMMA recorded at 298 and 77 K exhibited the characteristic bands arising from the 5 D 0 →7 F J transitions (J = 0-6). The luminescence intensity decreases with increasing of precursor concentration in the doped polymer obtained by chemical reaction. This result is different from that of samples obtained by physical method in melting doping. The blend was irradiated under ionizing radiation of 60 C o source. After irradiation of the luminescent films the physical properties of luminescence, thermal and oxidative stability were evaluated.(Fapesp and Cnpq financial support)

  16. Rock melting technology and geothermal drilling

    Science.gov (United States)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  17. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends.

    Science.gov (United States)

    Zhao, Haibin; Zhao, Guoqun

    2016-01-01

    In view of their complementary properties, blending polylactide (PLA) with poly (ε-caprolactone) (PCL) becomes a good choice to improve PLA's properties without compromising its biodegradability. A series of blends of biodegradable PLA and PCL with different mass fraction were prepared by melt mixing. Standard tensile bars were produced by both conventional and microcellular injection molding to study their mechanical and thermal properties. With the increase in PCL content, the blend showed decreased tensile strength and modulus; however, elongation was dramatically increased. With the addition of PCL, the failure mode changed from brittle fracture of the neat PLA to ductile fracture of the blend as demonstrated by tensile test. Various theoretical models based on dispersion and interface adhesion were used to predict the Young's modulus and the results shows the experimental data are consistent with the predictions of the foam model and Kerner-Uemura-Takayangi model. The thermal behavior of the blends was investigated by DSC and TGA. The melting temperature and the degree of crystallinity of PCL in the PLA/PCL did not significantly change with the PCL content increasing in the whole range of blends composition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Blending Words Found In Social Media

    Directory of Open Access Journals (Sweden)

    Giyatmi Giyatmi

    2017-12-01

    Full Text Available There are many new words from the social media such as Netizen, Trentop, and Delcon. Those words include in blending. Blending is one of word formations combining two clipped words to form a brand new word. The researchers are interested in analyzing blend words used in the social media such as Instagram, Twitter, Facebook, and Blackberry Messenger. This research aims at (1 finding blend words used in the social media (2 describing kinds of blend words used in social media (3 describing the process of blend word formation used in the social media. This research uses some theories dealing with definition of blending and kinds of blending. This research belongs to descriptive qualitative research. Data of the research are English blend words used in social media. Data sources of this research are websites consisting of some English words used in social media and some social media users as the informant. Techniques of data collecting in this research are observation and simak catat. Observation is by observing some websites consisting of some English words used in social media. Simak catat is done by taking some notes on the data and encoding in symbols such as No/Blend words/Kinds of Blending. The researchers use source triangulation to check the data from the researchers with the informant and theory triangulation to determine kinds of blending and blend word formation in social media. There are115 data of blend words. Those data consists of 65 data of Instagram, 47 data of Twitter, 1 datum of Facebook, and 2 data of Blackberry Messenger. There are 2 types of blending used in social media;108 data of blending with clipping and 7 data of blending with overlapping. There are 10 ways of blend word formation found in this research.

  19. Lattice cluster theory for polymer melts with specific interactions

    International Nuclear Information System (INIS)

    Xu, Wen-Sheng; Freed, Karl F.

    2014-01-01

    Despite the long-recognized fact that chemical structure and specific interactions greatly influence the thermodynamic properties of polymer systems, a predictive molecular theory that enables systematically addressing the role of chemical structure and specific interactions has been slow to develop even for polymer melts. While the lattice cluster theory (LCT) provides a powerful vehicle for understanding the influence of various molecular factors, such as monomer structure, on the thermodynamic properties of polymer melts and blends, the application of the LCT has heretofore been limited to the use of the simplest polymer model in which all united atom groups within the monomers of a species interact with a common monomer averaged van der Waals energy. Thus, the description of a compressible polymer melt involves a single van der Waals energy. As a first step towards developing more realistic descriptions to aid in the analysis of experimental data and the design of new materials, the LCT is extended here to treat models of polymer melts in which the backbone and side groups have different interaction strengths, so three energy parameters are present, namely, backbone-backbone, side group-side group, and backbone-side group interaction energies. Because of the great algebraic complexity of this extension, we retain maximal simplicity within this class of models by further specializing this initial study to models of polymer melts comprising chains with poly(n-α-olefin) structures where only the end segments on the side chains may have different, specific van der Waals interaction energies with the other united atom groups. An analytical expression for the LCT Helmholtz free energy is derived for the new model. Illustrative calculations are presented to demonstrate the degree to which the thermodynamic properties of polymer melts can be controlled by specific interactions

  20. Method of melting solid waste

    International Nuclear Information System (INIS)

    Ootsuka, Katsuyuki; Mizuno, Ryokichi; Kuwana, Katsumi; Sawada, Yoshihisa; Komatsu, Fumiaki.

    1982-01-01

    Purpose: To enable the volume reduction treatment of a HEPA filter containing various solid wastes, particularly acid digestion residue, or an asbestos separator at a relatively low temperature range. Method: Solid waste to be heated and molten is high melting point material treated by ''acid digestion treatment'' for treating solid waste, e.g. a HEPA filter or polyvinyl chloride, etc. of an atomic power facility treated with nitric acid or the like. When this material is heated and molten by an electric furnace, microwave melting furnace, etc., boron oxide, sodium boride, sodium carbonate, etc. is added as a melting point lowering agent. When it is molten in this state, its melting point is lowered, and it becomes remarkably fluid, and the melting treatment is facilitated. Solidified material thus obtained through the melting step has excellent denseness and further large volume reduction rate of the solidified material. (Yoshihara, H.)

  1. Blended Learning: enabling Higher Education Reform

    Directory of Open Access Journals (Sweden)

    Kathleen Matheos

    2018-01-01

    Full Text Available Blended learning research and practice have been areas of growth for two decades in Canada, with over 95% of Canadian higher education institutions involved in some form of blended learning. Despite strong evidence based research and practice blended learning, for the most part, has remained at sidelined in Canadian universities. The article argues the need for blended learning to situate itself within the timely and crucial Higher Education Reform (HER agenda. By aligning the affordances of blended learning with the components of HER, blended learning can clearly serve as an enabler for HER.

  2. Process of irradiating an ethylene-vinyl acetate copolymer to produce low melt index copolymers, and products of said process

    International Nuclear Information System (INIS)

    Potts, J.E.

    1976-01-01

    Application of ionizing radiation in a dose between 0.5 and 1.5 megareps to copolymers of ethylene and vinyl acetate lowers the melt index and increases the toughness and flexibility of the copolymers without substantially decreasing solubility or thermoplasticity. The increased toughness and flexibility carries over into blends with wax or polyethylene. (author)

  3. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    Science.gov (United States)

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  4. Logistics Reduction: Heat Melt Compactor

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Logistics Reduction (LR) project Heat Melt Compactor (HMC) technology is a waste management technology. Currently, there are...

  5. Melting in trivalent metal chlorides

    International Nuclear Information System (INIS)

    Saboungi, M.L.; Price, D.L.; Scamehorn, C.; Tosi, M.P.

    1990-11-01

    We report a neutron diffraction study of the liquid structure of YCl 3 and combine the structural data with macroscopic melting and transport data to contrast the behaviour of this molten salt with those of SrCl 2 , ZnCl 2 and AlCl 3 as prototypes of different melting mechanisms for ionic materials. A novel melting mechanism for trivalent metal chlorides, leading to a loose disordered network of edge-sharing octahedral units in the liquid phase, is thereby established. The various melting behaviours are related to bonding character with the help of Pettifor's phenomenological chemical scale. (author). 25 refs, 4 figs, 3 tabs

  6. Melting of contaminated metallic waste

    International Nuclear Information System (INIS)

    Lee, Y.-S.; Cheng, S.-Y.; Kung, H.-T.; Lin, L.-F.

    2004-01-01

    Approximately 100 tons of contaminated metallic wastes were produced each year due to maintenance for each TPC's nuclear power reactor and it was roughly estimated that there will be 10,000 tons of metallic scraps resulted from decommissioning of each reactor in the future. One means of handling the contaminated metal is to melt it. Melting process owns not only volume reduction which saves the high cost of final disposal but also resource conservation and recycling benefits. Melting contaminated copper and aluminum scraps in the laboratory scale have been conducted at INER. A total of 546 kg copper condenser tubes with a specific activity of about 2.7 Bq/g was melted in a vacuum induction melting facility. Three types of products, ingot, slag and dust were derived from the melting process, with average activities of 0.10 Bq/g, 2.33 Bq/g and 84.3 Bq/g respectively. After the laboratory melting stage, a pilot plant with a 500 kg induction furnace is being designed to melt the increasingly produced contaminated metallic scraps from nuclear facilities and to investigate the behavior of different radionuclides during melting. (author)

  7. Multicomponent Diffusion in Experimentally Cooled Melt Inclusions

    Science.gov (United States)

    Saper, L.; Stolper, E.

    2017-12-01

    crystal interface becomes increasingly depleted. The drawdown in CaO can be explained by non-ideal mixing that leads to increases in the CaO activity coefficient in the melt. A regular solution model [3] can be used to describe the evolution of the CaO profiles. [1]Newcombe et al (2014) CMP 168 [2] Zhang (2010) RevMineralGeochem 72 [3] Ghiorso & Sack (1995) CMP 119

  8. Preparation and Characterization of Blended Films from Quaternized Hemicelluloses and Carboxymethyl Cellulose

    Science.gov (United States)

    Qi, Xian-Ming; Liu, Shi-Yun; Chu, Fang-Bing; Pang, Shuai; Liang, Yan-Ru; Guan, Ying; Peng, Feng; Sun, Run-Cang

    2015-01-01

    Utilization of hemicelluloses from biomass energy is an important approach to explore renewable resources. A convenient, quick, and inexpensive method for the preparation of blended films from quaternized hemicelluloses (QH) and carboxymethyl cellulose (CMC) was introduced into this study. QH and CMC solution were first mixed to form homogeneous suspension, and then were dried under vacuum to fabricate the blended films. The FT-IR and XRD results indicated that the linkage between QH and CMC was due to the hydrogen bonding and electrostatic interaction. From the results of mechanical properties and water vapor permeability (WVP), the tensile strength of the blended films increased with the QH/CMC content ratio increasing in appropriate range, and the WVP of the blended films decreased. The maximum value of tensile strength of blend film achieved was 27.4 MPa. In addition, the transmittances of the blended films increased with the decreasing of QH/CMC content ratio. When the weight ratio (QH: CMC) was 1:1.5, the blend film showed the best light transmittance (45%). All the results suggested that the blended films could be used in areas of application in the coating and packaging fields from the good tensile strength, transmittance, and low WVP. PMID:28787804

  9. Preparation and Characterization of Blended Films from Quaternized Hemicelluloses and Carboxymethyl Cellulose

    Directory of Open Access Journals (Sweden)

    Xian-Ming Qi

    2015-12-01

    Full Text Available Utilization of hemicelluloses from biomass energy is an important approach to explore renewable resources. A convenient, quick, and inexpensive method for the preparation of blended films from quaternized hemicelluloses (QH and carboxymethyl cellulose (CMC was introduced into this study. QH and CMC solution were first mixed to form homogeneous suspension, and then were dried under vacuum to fabricate the blended films. The FT-IR and XRD results indicated that the linkage between QH and CMC was due to the hydrogen bonding and electrostatic interaction. From the results of mechanical properties and water vapor permeability (WVP, the tensile strength of the blended films increased with the QH/CMC content ratio increasing in appropriate range, and the WVP of the blended films decreased. The maximum value of tensile strength of blend film achieved was 27.4 MPa. In addition, the transmittances of the blended films increased with the decreasing of QH/CMC content ratio. When the weight ratio (QH: CMC was 1:1.5, the blend film showed the best light transmittance (45%. All the results suggested that the blended films could be used in areas of application in the coating and packaging fields from the good tensile strength, transmittance, and low WVP.

  10. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    Science.gov (United States)

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-04

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  11. Melting method for miscellaneous radioactive solid waste and melting furnace

    International Nuclear Information System (INIS)

    Osaki, Toru; Furukawa, Hirofumi; Uda, Nobuyoshi; Katsurai, Kiyomichi

    1998-01-01

    A vessel containing miscellaneous solid wastes is inserted in a crucible having a releasable material on the inner surface, they are induction-heated from the outside of the crucible by way of low temperature heating coils to melt low melting point materials in the miscellaneous wastes within a temperature range at which the vessel does not melt. Then, they are induction-heated by way of high temperature heating coils to melt the vessel and not yet melted materials, those molten materials are cooled, solidified molten material and the releasable material are taken out, and then the crucible is used again. Then, the crucible can be used again, so that it can be applied to a large scaled melting furnace which treats wastes by a unit of drum. In addition, since the cleaning of the used crucible and the application of the releasable material can be conducted without interrupting the operation of the melting furnace, the operation cycle of the melting furnace can be shortened. (N.H.)

  12. Improving the Compatibility of Natural and Synthetic Polymer Blends by Radiation Treatments for Using in Practical Application

    International Nuclear Information System (INIS)

    Abu-El Fadle, F.I.

    2011-01-01

    Different polymer blends based on the natural polymers carboxymethyl cellulose (CMC) and sodium alginate as well as the synthetic polymers poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO) and poly acrylamide (PAM) were prepared by solution casting in the form of films. The common solvent used was water. The different blends prepared in this study were subjected to gamma radiation. The compatibility and structure-property behaviour of these blends was studied by differential scanning calorimetry (DSC), Fourier-Transform Infrared (FTIR) analysis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile mechanical testing before and after irradiation. In addition, the swelling properties of different polymer blends were studied at different conditions of temperature and ph. The controlled release characters of the different blends of different drugs were investigated. In addition, the different polymer blends were used for the removal of heavy metals and dyes waste.

  13. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Senna, Magdy M., E-mail: magdysenna@hotmail.com [Radiation Chemistry Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt); Mostafa, Abo El-Khair B. [Chemistry Department, College for Girls, Ain Shams University, Cairo (Egypt); Mahdy, Sanna R.; El-Naggar, Abdel Wahab M. [Radiation Chemistry Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2016-11-01

    Highlights: • Semi-interpenetrating (IPN) blend hydrogels were synthesized by EB irradiation. • The hydrogels were based on starch/cellulose acetate/carboxymethyl cellulose blends. • The gelation, swelling, thermal and mechanical properties of hydrogels were studied. • The thermal stability was studied by determining kinetic energy by different methods. - Abstract: Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  14. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    International Nuclear Information System (INIS)

    Senna, Magdy M.; Mostafa, Abo El-Khair B.; Mahdy, Sanna R.; El-Naggar, Abdel Wahab M.

    2016-01-01

    Highlights: • Semi-interpenetrating (IPN) blend hydrogels were synthesized by EB irradiation. • The hydrogels were based on starch/cellulose acetate/carboxymethyl cellulose blends. • The gelation, swelling, thermal and mechanical properties of hydrogels were studied. • The thermal stability was studied by determining kinetic energy by different methods. - Abstract: Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  15. Equilibrating high-molecular-weight symmetric and miscible polymer blends with hierarchical back-mapping

    Science.gov (United States)

    Ohkuma, Takahiro; Kremer, Kurt; Daoulas, Kostas

    2018-05-01

    Understanding properties of polymer alloys with computer simulations frequently requires equilibration of samples comprised of microscopically described long molecules. We present the extension of an efficient hierarchical backmapping strategy, initially developed for homopolymer melts, to equilibrate high-molecular-weight binary blends. These mixtures present significant interest for practical applications and fundamental polymer physics. In our approach, the blend is coarse-grained into models representing polymers as chains of soft blobs. Each blob stands for a subchain with N b microscopic monomers. A hierarchy of blob-based models with different resolution is obtained by varying N b. First the model with the largest N b is used to obtain an equilibrated blend. This configuration is sequentially fine-grained, reinserting at each step the degrees of freedom of the next in the hierarchy blob-based model. Once the blob-based description is sufficiently detailed, the microscopic monomers are reinserted. The hard excluded volume is recovered through a push-off procedure and the sample is re-equilibrated with molecular dynamics (MD), requiring relaxation on the order of the entanglement time. For the initial method development we focus on miscible blends described on microscopic level through a generic bead-spring model, which reproduces hard excluded volume, strong covalent bonds, and realistic liquid density. The blended homopolymers are symmetric with respect to molecular architecture and liquid structure. To parameterize the blob-based models and validate equilibration of backmapped samples, we obtain reference data from independent hybrid simulations combining MD and identity exchange Monte Carlo moves, taking advantage of the symmetry of the blends. The potential of the backmapping strategy is demonstrated by equilibrating blend samples with different degree of miscibility, containing 500 chains with 1000 monomers each. Equilibration is verified by comparing

  16. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  17. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  18. Effect of MWNTs and SiC-Coated MWNTs on Properties of PEEK/LCP Blend

    Directory of Open Access Journals (Sweden)

    Ganesh Chandra Nayak

    2009-01-01

    Full Text Available Multiwall carbon nanotubes (MWNTs were modified with polycarbosilane-derived silicon carbide (SiC to improve its dispersion in the polymer matrix. PEEK/LCP/MWNTs nanocomposites were prepared by melt blending. TEM images show the improved dispersion of SiC-coated MWNTs against agglomerated structure of pure MWNTs in the blend. FESEM images shows better fibrillation of LCP in presence of SiC-coated MWNTs. TGA reveals that nanocomposites with SiC-coated MWNTs shows higher thermal stability than MWNTs filled blend system. Based on enhanced dispersion, storage modulus, tensile modulus and tensile strength were increased drastically with the incorporation of SiC-coated MWNTs. Glass transition temperature of the nanocomposites shows significant improvement with the incorporation of MWNTs.

  19. nanocomposites of PA6/ABS blends compatibilized with styrene-maleic anhydride copolymer

    International Nuclear Information System (INIS)

    Oliveira, Amanda D. de; Pessan, Luiz A.

    2009-01-01

    To achieve a balance between stiffness and toughness, ternary nanocomposites based on blends of polyamide 6 (PA6) and acrylonitrile-butadiene-styrene (ABS) were prepared by the melt intercalation using the organoclay Cloisite R 30B (OMMT) and the styrene-maleic anhydride copolymer (SMA) as compatibilizer. Four blending sequences were used to prepare studied systems and their mechanical properties studied through the Young's modulus and notched Izod impact. It was observed that the materials prepared by all blending sequences studied showed an increase in the Young's modulus compared to the neat PA6. However, a decrease in the toughness was observed for the systems with the addition of the organoclay. The DRX results showed an intercalated structure for the some systems that used ABS in their compositions. HDT measurements of the nanocomposites showed an increase in this property compared to the neat PA6. The use of nanoclay lead to a reinforcement of the polymeric matrix. (author)

  20. Thermal oxidative degradation behaviours of flame-retardant thermotropic liquid crystal copolyester/PET blends

    International Nuclear Information System (INIS)

    Du Xiaohua; Zhao Chengshou; Wang Yuzhong; Zhou Qian; Deng Yi; Qu Minghai; Yang Bing

    2006-01-01

    The flame retardancy and the thermal oxidative degradation behaviors of the blend of poly(ethylene terephthalate) (PET) with a kind of phosphorus-containing thermotropic liquid crystal copolyester (TLCP) with high flame retardancy (limited oxygen index, 70%) have been investigated by oxygen index test (LOI), UL-94 rating and thermogravimetric analysis (TGA) in air. The results show that TLCP can dramatically improve the flame retardancy and the melt dripping behavior of PET. Moreover, the apparent activation energies of thermal oxidative degradation of the blends were evaluated using Kissinger and Flynn-Wall-Ozawa methods. It is found that addition of TLCP improve thermal stability and restrain thermal decomposition of PET in air, especially at the primary degradation stage. Py-GC/MS analysis shows that there are remarkable changes in the pyrolysis products when TLCP are blended into PET. The interaction between TLCP and PET has changed their thermal oxidative degradation mechanism

  1. Preparation and Properties of the Chitosan/PVA Blend for Heavy Metals Chelation

    Directory of Open Access Journals (Sweden)

    Zuhair Jabbar Abdul Ameer

    2016-09-01

    Full Text Available Current research based on the use of extracted chitosan mixed with Polyvinyl alcohol to manufacture blend that can been used in water purification from heavy metals such as copper, this due to chitosan properties and its ability to chelation these metals because of the presence of the functional groups in their structure. The blend has been treated with borax to increase the viscosity, and then high density polyethylene granulated coated with polymer solution to increase the surface area for chelation. The ultraviolet test showed the efficiency of blend to chelation of copper ions through lower the copper ions absorbance peak after each stage where the solution of copper ions pass on the polymer blend containing chitosan.

  2. Effects of Chemical Inter esterification on the Physicochemical Properties of Palm Stearin, Palm Kernel Oil and Soybean Oil Blends

    International Nuclear Information System (INIS)

    Siti, M. F.H.; Norizzah, A. R.; Zaliha, O.

    2012-01-01

    Palm stearin (PS), palm kernel oil (PKO) and soybean oil (SBO) blends were formulated according to Design Expert 8.0.4 (2010). All the sixteen oil blends were subjected to chemical inter esterification (CIE) using sodium methoxide as the catalyst. The effects of chemical inter esterification on the slip melting point (SMP), solid fat content (SFC), triacylglycerol (TAG) composition and polymorphism were investigated. Palm based trans-free table margarine containing PS/PKO/SBO [49/20/31, (w/w)], was optimally formulated through analysis of multiple ternary phase diagrams and was found to have quite similar SMP and SFC profiles as compared with commercial table margarine. This study has shown that blending and chemical inter esterification are effective in modifying the physicochemical properties of palm stearin, palm kernel oil, soybean oil and their blends. (author)

  3. Physical and sensory characteristics of pork sausages from enzymatically modified blends of lard and rapeseed oil during storage

    DEFF Research Database (Denmark)

    Cheong, L.Z.; Zhang, H.; Nersting, L.

    2010-01-01

    Physical and sensory characteristic of pork sausages produced from enzymatic interesterified blends of lard and rapeseed oil during storage were evaluated. All three enzymatic interesterified blends (IE90, IE70 and IE50) had ratios of unsaturated to saturated fatty acids within the range of 1.......47-2.84 which is favourable for cardiovascular disease risk reduction. Blends of IE90 and IE70 were found to have suitable solid fat content, melting and crystallization profile suitable for sausages production. Sausages were produced from blends of IE90 and IE70 with different muscle types (musculus...... longissimus dorsi and musculus sternomandibularis) and processing conditions such as cooling rates and final processing temperature. Cooling rate was found to have no significant (P>0.05) effect on hardness of the sausages throughout storage. Both musculus longissimus dorsi and high final processing...

  4. Melting temperature of uranium - plutonium mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Tetsuya; Hirosawa, Takashi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960`s and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960`s and that some of the 1960`s data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO{sub 2} - PuO{sub 2} - PuO{sub 1.61} ideal solution model, and then formulized. (J.P.N.)

  5. Melting temperature of uranium - plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Ishii, Tetsuya; Hirosawa, Takashi

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960's and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960's and that some of the 1960's data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO 2 - PuO 2 - PuO 1.61 ideal solution model, and then formulized. (J.P.N.)

  6. Blended Learning as Transformational Institutional Learning

    Science.gov (United States)

    VanDerLinden, Kim

    2014-01-01

    This chapter reviews institutional approaches to blended learning and the ways in which institutions support faculty in the intentional redesign of courses to produce optimal learning. The chapter positions blended learning as a strategic opportunity to engage in organizational learning.

  7. Morphology development in immiscible polymer blends

    NARCIS (Netherlands)

    Cardinaels, R.M.; Moldenaers, P.; Guo, Qipeng

    This chapter discusses the morphology development of immiscible binary polymer blends. It first describes morphology development in droplet-matrix structures, the dynamics of fibrillar structures and cocontinuous structures. The chapter then considers binary immiscible polymer blends, such systems

  8. Radiation effect on PVC/ENR blends

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan

    1997-01-01

    The effect of irradiation on the physical properties of Polyvinyl Chloride / Epoxidised Natural Rubber Blends (PVC/ENR blends) were investigated. The enhancement in tensile strength, elongation at break, hardness and aging properties of the blends have confirmed the positive effect of irradiation on the blends. It is evident from gel fraction and infra red spectroscopic studies that the blends of PVC and ENR cross-linked upon irradiation. The results also revealed that at any blend composition, the enhancement in properties depend on irradiation dose which controls the degree of radiation induced cross-linking. In an attempt to maximize the constructive effect of irradiation, the influence of various additives such as stabilizers, radiation sensitizers, fillers and processing aids on the blend properties were studied. The changes in blend properties upon irradiation with the presents of above additives were also presented in this paper

  9. NESDIS Blended Rain Rate (RR) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The blended Rain Rate (RR) product is derived from multiple sensors/satellites. The blended products were merged from polar-orbiting and geostationary satellite...

  10. Melting phenomenon and laser annealing in semiconductors

    International Nuclear Information System (INIS)

    Narayan, J.

    1981-03-01

    The work on annealing of displacement damage, dissolution of boron precipitates, and the broadening of dopant profiles in semiconductors after treating with ruby and dye laser pulses is reviewed in order to provide convincing evidence for the melting phenomenon and illustrate the mechanism associated with laser annealing. The nature of the solid-liquid interface and the interface instability during rapid solidification is considered in detail. It is shown that solute concentrations after pulsed laser annealing can far exceed retrograde maxima values. However, there is a critical solute concentration above which a planar solid-liquid interface becomes unstable and breaks into a cellular structure. The solute concentrations and cell sizes associated with this instability are calculated using a perturbation theory, and compared with experimental results

  11. Intrinsically safe moisture blending system

    Science.gov (United States)

    Hallman Jr., Russell L.; Vanatta, Paul D.

    2012-09-11

    A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.

  12. Rhenium corrosion in chloride melts

    International Nuclear Information System (INIS)

    Stepanov, A.D.; Shkol'nikov, S.N.; Vetyukov, M.M.

    1989-01-01

    The results investigating rhenium corrosion in chloride melts containing sodium, potassium and chromium ions by a gravimetry potentials in argon atmosphere in a sealing quarth cell are described. Rhenium corrosion is shown to be rather considerable in melts containing CrCl 2 . The value of corrosion rate depending on temperature is determined

  13. UNCONSTRAINED MELTING AND SOLIDIFICATION INSIDE ...

    African Journals Online (AJOL)

    2015-09-01

    Sep 1, 2015 ... There is a large number of experimental and numerical works on melting and solidification of PCM[6-10], and also its usage as thermal management in building [11-14], electronic devices [15-16] and solar energy. [17-20].Most investigated geometries in melting and freezing process are sphere (spherical.

  14. Wavelet and Blend maps for texture synthesis

    OpenAIRE

    Du Jin-Lian; Wang Song; Meng Xianhai

    2011-01-01

    blending is now a popular technology for large realtime texture synthesis .Nevertheless, creating blend map during rendering is time and computation consuming work. In this paper, we exploited a method to create a kind of blend tile which can be tile together seamlessly. Note that blend map is in fact a kind of image, which is Markov Random Field, contains multiresolution signals, while wavelet is a powerful way to process multiresolution signals, we use wavelet to process the traditional ble...

  15. Blended Identities: Identity Work, Equity and Marginalization in Blended Learning

    Science.gov (United States)

    Heikoop, Will

    2013-01-01

    This article is a theoretical study of the self-presentation strategies employed by higher education students online; it examines student identity work via profile information and avatars in a blended learning environment delivered through social networking sites and virtual worlds. It argues that students are faced with difficult choices when…

  16. Structural, mechanical and electrical properties biopolymer blend nanocomposites derived from poly (vinyl alcohol)/cashew gum/magnetite

    Science.gov (United States)

    Ramesan, M. T.; Jayakrishnan, P.; Manojkumar, T. K.; Mathew, G.

    2018-01-01

    Blending of poly vinyl alcohol (PVA) and natural biopolymers such as cashew gum (CG) with magnetite (Fe3O4) nanoparticles has been a promising way for preparing bio-degradable polymeric blend nanocomposites. PVA/CG/Fe3O4 blend nanocomposites have been prepared by a simple solution casting technique using water as the green solvent. The characterization of blend nanocomposites has been carried out by using Fourier transform infrared, UV, x-ray diffraction (XRD), high resolution transmission electron microscopy, scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, mechanical properties and electrical conductivity. The interaction between nanoparticles and the blend segments was confirmed from the shift in characteristic absorption peaks of nanocomposites compared to PVA/CG blend. XRD analysis has shown the presence of crystalline peaks of nanoparticles in the blend matrix. The uniform distribution of Fe3O4 nanoparticles in the blend was revealed by TEM and SEM. The strong interaction of nanoparticles with the blend has been confirmed by the increase in glass transition temperature resulting from the reduced flexibility of the blend nanocomposite compared to that of the blend system. An increase in thermal stability and tensile strength and reduction in elongation at break of nanocomposites have been noticed with the increasing loading of nanoparticles. The AC electrical conductivity, dielectric constant and dielectric loss of the nanocomposites have been found to be higher than that of the blend. Generally, it can be stated that the magnetite nanoparticles acts as a potential filler in the PVA/CG blend at 7 wt% loading, giving the best balance of properties.

  17. Proton exchange membrane developed from novel blends of polybenzimidazole and poly(vinyl-1,2,4-triazole).

    Science.gov (United States)

    Hazarika, Mousumi; Jana, Tushar

    2012-10-24

    In continuation (J. Phys. Chem. B2008, 112, 5305; J. Colloid Interface Sci. 2010, 351, 374) of our quest for proton exchange membrane (PEM) developed from polybenzimidazole (PBI) blends, novel polymer blend membranes of PBI and poly(1-vinyl-1,2,4-triazole) (PVT) were prepared using a solution blending method. The aim of the work was to investigate the effect of the blend composition on the properties, e.g., thermo-mechanical stability, swelling, and proton conductivity of the blend membranes. The presence of specific interactions between the two polymers in the blends were observed by studying the samples using varieties of spectroscopic techniques. Blends prepared in all possible compositions were studied using a differential scanning calorimetry (DSC) and exhibited a single T(g) value, which lies between the T(g) value of the neat polymers. The presence of a single composition-dependent T(g) value indicated that the blend is a miscible blend. The N-H···N interactions between the two polymers were found to be the driving force for the miscibility. Thermal stability up to 300 °C of the blend membranes, obtained from thermogravimetric analysis, ensured their suitability as PEMs for high-temperature fuel cells. The proton conductivity of the blend membranes have improved significantly, compared to neat PBI, because of the presence of triazole moiety, which acts as a proton facilitator in the conduction process. The blend membranes showed a considerably lower increase in thickness and swelling ratio than that of PBI after doping with phosphoric acid (PA). We found that the porous morphology of the blend membranes caused the loading of a larger amount of PA and, consequently, higher proton conduction with lower activation energy, compared to neat PBI.

  18. The melting curve of tetrahydrofuran hydrate in D2O

    International Nuclear Information System (INIS)

    Hanley, H.J.M.; Meyers, G.J.; White, J.W.; Sloan, E.D.

    1989-01-01

    Melting points for the tetrahydrofuran/D 2 O hydrate in equilibrium with the air-saturated liquid at atmospheric pressure are reported. The melting points were measured by monitoring the absorbance of the solution. Overall, the melting-point phase boundary curve is about 2.5 K greater than the corresponding curve for the H 2 O hydrate, with a congruent melting temperature of 281 ± 0.5 K at a D 2 O mole fraction of 0.936. The phase boundary is predicted to within 5% if the assumption is made that the THF occupancy in the D 2 O and H 2 O hydrates is the same. The authors measure an occupancy of 99.9%. The chemical potential of the empty lattice in D 2 O is estimated to be 5% greater than in H 2 O

  19. Numerical and experimental investigation of the melt casting of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Dawei; Garimella, Suresh V. [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 (United States); Singh, Sanjeev; Naik, Neelam [US Army Armaments Research, Development and Engineering Center, Picatinny Arsenal, NJ 07806 (United States)

    2005-10-01

    Melt casting of energetic materials is investigated, and a numerical model is formulated for the analysis of the coupled fluid flow, heat transfer, and stress fields involved in this phase-change process. The numerical model is based on a conservative multi block control volume method. The SIMPLE algorithm is employed along with an enthalpy method approach to model the solidification process. Results from the model are verified against analytical solutions, experimental results, and published numerical results for simplified cases. In the melt casting of RDX-binder mixtures, the very high viscosity of the melt limits the influence of melt convection. The impacts of different cooling conditions on the velocity, temperature and stress distributions, as well as on the solidification time, are discussed. The present model can be used to improve the quality of cast explosives, by optimizing and controlling the processing conditions. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  20. 40 CFR 80.82 - Butane blending.

    Science.gov (United States)

    2010-07-01

    ... FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.82 Butane blending. A refiner for any refinery that produces gasoline by blending butane with conventional gasoline or reformulated gasoline or RBOB may meet... paragraph (b)(1) of this section, the refiner may: (i) Blend the butane with conventional gasoline, or...

  1. 7 CFR 989.16 - Blend.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Blend. 989.16 Section 989.16 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... CALIFORNIA Order Regulating Handling Definitions § 989.16 Blend. Blend means to mix or commingle raisins. ...

  2. The Influence of Molecular Weight and Tacticity on Thermal, Morphological and Mechanical Properties of Ziegler–Natta Catalyzed Isotactic and Syndiotactic Polypropylene Blends

    Directory of Open Access Journals (Sweden)

    Ismael AMER

    2016-09-01

    Full Text Available The thermal, morphological and mechanical properties of polypropylene blends as influenced by the molecular weight and tacticity were investigated. Polypropylene sample blends (50/50 wt.% were injection moulded into standard disks for morphological and mechanical tests. The thermal properties of the polypropylene blends were measured by differential scanning calorimetry (DSC, while the morphological and mechanical properties of specimens were investigated by means of optical microscope (OM, scanning electron microscopy (SEM, microhardness (MH and dynamic mechanical analysis (DMA. DSC results of the bulk crystallization of the various isotactic polypropylene blends showed one melting peak, which indicates that cocrystallization of the blends occurred. However, the crystallization behavior of the polymer blends was strongly affected by the configuration (tacticity and molecular weight of the polypropylene polymers. In addition, the MH and DMA measurements showed that blends of two different isotactic polypropylenes presented MH and storage modulus values between the values of the respective two MH and storage modulus values of the homopolymer samples, which in turn, depended on the type and degree of the crystallinity of the blends. However, the presence of syndiotactic polypropylene in a blend with isotactic polypropylene leads to a decrease in the MH value of the isotactic polypropylene samples. Normal 0 19 false false false LT X-NONE X-NONE

  3. Recycling of engineering plastics from waste electrical and electronic equipments: influence of virgin polycarbonate and impact modifier on the final performance of blends.

    Science.gov (United States)

    Ramesh, V; Biswal, Manoranjan; Mohanty, Smita; Nayak, Sanjay K

    2014-05-01

    This study is focused on the recovery and recycling of plastics waste, primarily polycarbonate, poly(acrylonitrile-butadiene-styrene) and high impact polystyrene, from end-of-life waste electrical and electronic equipments. Recycling of used polycarbonate, acrylonitrile-butadiene-styrene, polycarbonate/acrylonitrile-butadiene-styrene and acrylonitrile-butadiene-styrene/high impact polystrene material was carried out using material recycling through a melt blending process. An optimized blend composition was formulated to achieve desired properties from different plastics present in the waste electrical and electronic equipments. The toughness of blended plastics was improved with the addition of 10 wt% of virgin polycarbonate and impact modifier (ethylene-acrylic ester-glycidyl methacrylate). The mechanical, thermal, dynamic-mechanical and morphological properties of recycled blend were investigated. Improved properties of blended plastics indicate better miscibility in the presence of a compatibilizer suitable for high-end application.

  4. Formulation of Zero-Trans Crystalized Fats Produced from Palm Stearin and High Oleic Safflower Oil Blends

    Directory of Open Access Journals (Sweden)

    Nydia E. Buitimea-Cantúa

    2017-01-01

    Full Text Available High intake of trans fat is associated with several chronic diseases such as cardiovascular disease and cancer. Fat blends, produced by direct blending process of palm stearin (PS with high oleic safflower oil (HOSO in different concentrations, were investigated. The effects of the PS addition (50, 70, or 90% and the rate of agitation (RA (1000, 2000, or 3000 rpm on physical properties, fatty acid profile (FAP, trans fatty acids (TFA, crystal structure, and consistency were researched. The blend containing 50% of each sort of oil (50% PS/50% HOSO showed that melting point and features were similar to the control shortening. The saturated fatty acids (SFA were higher followed by monounsaturated (MUFA and polyunsaturated fatty acids (PUFA. Significant differences in the content of palmitic and oleic acids among blends were observed. The 50% PS/50% HOSO blend contained higher oleic acid (42.9% whereas the 90% PS/10% HOSO was higher in palmitic acid (56.9%. The blending of PS/HOSO promoted the β crystal polymorphic forms. The direct blending process of equal amounts of PS and HOSO was an adequate strategy to formulate a new zero-trans crystallized vegetable fats with characteristics similar to commercial counterparts with well-balanced fats rich in both omega 3 and omega 6 fatty acids.

  5. Low Density Polyethylene (LDPE blends based on Poly(3-Hydroxi-Butyrate (PHB and Guar Gum (GG biodegradable polymers

    Directory of Open Access Journals (Sweden)

    Marisa Cristina Guimarães Rocha

    2015-02-01

    Full Text Available LDPE blends based on PHB and GG biodegradable polymers were prepared by melt mixing in a twin screw extruder. The mechanical properties of the materials were evaluated. Preliminary information about the biodegradation behavior of the specimens was obtained by visual observation of samples removed from the simulated soil in 90 days. The results indicated that LDPE/PHB blends may be used for designing LDPE based materials with increased susceptibility to degradation, if elongation at break and impact properties are not determinant factors of their performance. LDPE based materials on GG present values of flexural and mechanical strength lower than those of LDPE/PHB blends. LDPE/PHB/GG blends exhibit unsatisfactory properties. Apparently, the effect of addition of GG to LDPE on the biodegradation behavior of LDPE/GG blends was less intense than the effect caused by addition of PHB to the blends. Similar observation has occurred with the partial replacement of GG by PHB in the ternary blends.

  6. [Phase transition in polymer blends and structure of ionomers and copolymers]. [Annual report, April 1, 1989--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The main thrust of the program in the past 3 years are summarized: SAXS instrumentation development; structure and dynamics of macro- and supra-molecules, phase transitions in polymer blends and solutions, structure of ionomers, and fractals and anisotropic systems.

  7. Pressure-induced melting of micellar crystal

    DEFF Research Database (Denmark)

    Mortensen, K.; Schwahn, D.; Janssen, S.

    1993-01-01

    that pressure improves the solvent quality of water, thus resulting in decomposition of the micelles and consequent melting of the micellar crystal. The combined pressure and temperature dependence reveals that in spite of the apparent increase of order on the 100 angstrom length scale upon increasing......Aqueous solutions of triblock copolymers of poly(ethylene oxide) and poly(propylene oxide) aggregate at elevated temperatures into micelles which for polymer concentrations greater-than-or-equal-to 20% make a hard sphere crystallization to a cubic micellar crystal. Structural studies show...... temperature (decreasing pressure) the overall entropy increases through the inverted micellar crystallization characteristic....

  8. Optimization of performance, emission, friction and wear characteristics of palm and Calophyllum inophyllum biodiesel blends

    International Nuclear Information System (INIS)

    Mosarof, M.H.; Kalam, M.A.; Masjuki, H.H.; Alabdulkarem, Abdullah; Ashraful, A.M.; Arslan, A.; Rashedul, H.K.; Monirul, I.M.

    2016-01-01

    Highlights: • All of biodiesel blends were given higher BSFC than diesel fuel, except for CIB10. • Diesel produces higher BP and BTE as compared to PB and CIB blends. • CO and HC emissions of PB blends were reduced more than diesel and CIB blends. • PB blends contained lower metal compositions compared to diesel and CIB blends. • PB20 showed lower worn scar surfaces area compared to diesel and biodiesel blends. - Abstract: A running automobile engine produces more friction and wear between its sliding components than an idle one, and thus requires lubrication to reduce this frictional effect. Biodiesel is an alternative diesel fuel that is produced from renewable resources. Energy studies conducted over the last two decades focused on solutions to problems of rising fossil fuel price, increasing dependency on foreign energy sources, and worsening environmental concerns. Palm oil biodiesel is mostly used in Malaysia. This study conducted engine performance and emission tests with a single-cylinder diesel engine fueled with palm and Calophyllum inophyllum biodiesel blends (PB10, PB20, PB30, CIB10, CIB20, and CIB30) at a full-load engine speed range of 1000–2400 rpm, and then compared the results with those of diesel fuel. Friction and wear tests were conducted using the four-ball tester with different temperatures at 40 and 80 kg load conditions and a constant speed of 1800 rpm. The average brake specific fuel consumption increased from 7.96% to 10.15% while operating on 10%, 20%, and 30% blends of palm and C. inophyllum biodiesel. The respective average brake powers for PB20 and PB30 were 9.31% and 12.93% lower compared with that for diesel fuel. PB20 produced relatively lower CO and HC emissions than the diesel and biodiesel blends. Diesel produced low amounts of NO_X emission, and the CIB blend produced a lower frictional coefficient compared with the diesel and PB blends. PB30 showed high average FTP and low average WSD, both of which enhanced

  9. Netbaserede uddannelser og blended learning

    DEFF Research Database (Denmark)

    Bertelsen, Jesper Vedel; Vognsgaard Hjernø, Henriette; Jensen, Michael Peter

    2016-01-01

    Denne håndbog er tænkt som inspiration til uddannelsesfaglige medarbejdere, som er eller skal i gang med at undervise på en netbaseret uddannelse i UCL. Håndbogen giver et teoretisk overblik i forhold til netbaserede uddannelser, online- og blended learning samt en indførsel i hvilke didaktiske...

  10. New Faces of Blended Learning

    Science.gov (United States)

    Horn, Michael B.; Fisher, Julia Freeland

    2017-01-01

    The Clayton Christiansen Institute maintains a database of more than 400 schools across the United States that have implemented some form of blended learning, which combines online learning with brick-and-mortar classrooms. Data the Institute has collected over the past six months suggests three trends as this model continues to evolve and mature.…

  11. Multiscattering illumination in blended acquisition

    NARCIS (Netherlands)

    Berkhout, A.J.; Blacquiere, G.; Verschuur, D.J.

    2012-01-01

    In traditional seismic surveys, the firing time between shots is such that the shot records do not interfere in time. However, in the concept of blended acquisition, the records do overlap, allowing denser source sampling and wider azimuths in an economic way. A denser shot sampling and wider

  12. Radiation crosslinking of polymer blends

    International Nuclear Information System (INIS)

    Spenadel, L.

    1979-01-01

    Rocked by the one-two punch of rising energy costs and tougher pollution controls, a growing number of companies are looking to radiation crosslinking as a cheaper, cleaner alternative to heat and costly chemical crosslinking agents such as peroxides. With the development of larger, more powerful electron beam machines it is now possible to irradiate parts as thick as 400 mils in a single pass. Two application areas which have been investigated at our laboratory are the electron beam processing of thermoplastic elastomeric automotive parts and EPDM electrical insulation. This paper covers work carried out to develop the necessary technology base for the radiation crosslinking of ethylene propylene/polyolefin blends. Initial results indicate that EP/PE blends of electrical insulation quality cross-link quite readily when irradiated. On the other hand, EP/PP blends developed for automotive fascia require the addition of crosslinking monomers such as trimethylol propane trimethacrylate in order for crosslinking to predominate over chain scission. Crosslinking EP/PP blends improve mar resistance, flexural set and deformation at elevated temperatures. These are all key properties for automotive fascia. (author)

  13. Confined flow of polymer blends

    NARCIS (Netherlands)

    Tufano, C.; Peters, G.W.M.; Meijer, H.E.H.

    2008-01-01

    The influence of confinement on the steady-state morphology of two different emulsions is investigated. The blends, made from polybutene (PB) in polydimethylsiloxane (PDMS) and polybutadiene (PBD) in PDMS, are sheared between two parallel plates, mostly with a standard gap spacing of 40 m, in the

  14. Blended Learning: The Student Viewpoint

    African Journals Online (AJOL)

    Student perceptions were assessed using Mann–Whitney. U‑test and ... Keywords: Blended learning, Online learning, Students' perceptions. Access this article online ..... performance, EC: Educational counseling, MIB: Medical insurance billing, MT: .... distance in education at the harvard business school. Educ. Technol ...

  15. Improvement of biodiesel methanol blends

    Directory of Open Access Journals (Sweden)

    Y. Datta Bharadwaz

    2016-06-01

    Full Text Available The main objective of this work was to improve the performance of biodiesel–methanol blends in a VCR engine by using optimized engine parameters. For optimization of the engine, operational parameters such as compression ratio, fuel blend, and load are taken as factors, whereas performance parameters such as brake thermal efficiency (Bth and brake specific fuel consumption (Bsfc and emission parameters such as carbon monoxide (CO, unburnt hydrocarbons (HC, Nitric oxides (NOx and smoke are taken as responses. Experimentation is carried out as per the design of experiments of the response surface methodology. Optimization of engine operational parameters is carried out using Derringers Desirability approach. From the results obtained it is inferred that the VCR engine has maximum performance and minimum emissions at 18 compression ratio, 5% fuel blend and at 9.03 kg of load. At this optimized operating conditions of the engine the responses such as brake thermal efficiency, brake specific fuel consumption, carbon monoxide, unburnt hydrocarbons, nitric oxide, and smoke are found to be 31.95%, 0.37 kg/kW h, 0.036%, 5 ppm, 531.23 ppm and 15.35% respectively. It is finally observed from the mathematical models and experimental data that biodiesel methanol blends have maximum efficiency and minimum emissions at optimized engine parameters.

  16. Global Optimization of Nonlinear Blend-Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Pedro A. Castillo Castillo

    2017-04-01

    Full Text Available The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also non-convex nonlinear behavior, due to the blending of various materials with different quality properties. In this work, a global optimization algorithm is proposed to solve a previously published continuous-time mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimization, the distribution problem, and several important operational features and constraints. The algorithm employs piecewise McCormick relaxation (PMCR and normalized multiparametric disaggregation technique (NMDT to compute estimates of the global optimum. These techniques partition the domain of one of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the number of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods by solving four examples from the literature. Results show that the proposed global optimization algorithm performs on par with commercial solvers but is not as fast as heuristic approaches.

  17. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meihui [Univ. of California, Berkeley, CA (United States)

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na2S4 and Na2S5 were measured as a function of temperature (range: 300 to 360°C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  18. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Meihui Wang.

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  19. DEPENDENCY OF SULFATE SOLUBILITY ON MELT COMPOSITION AND MELT POLYMERIZATION

    International Nuclear Information System (INIS)

    JANTZEN, CAROL M.

    2004-01-01

    Sulfate and sulfate salts are not very soluble in borosilicate waste glass. When sulfate is present in excess it can form water soluble secondary phases and/or a molten salt layer (gall) on the melt pool surface which is purported to cause steam explosions in slurry fed melters. Therefore, sulfate can impact glass durability while formation of a molten salt layer on the melt pool can impact processing. Sulfate solubility has been shown to be compositionally dependent in various studies, (e.g. , B2O3, Li2O, CaO, MgO, Na2O, and Fe2O3 were shown to increase sulfate solubility while Al2O3 and SiO2 decreased sulfate solubility). This compositional dependency is shown to be related to the calculated melt viscosity at various temperatures and hence the melt polymerization

  20. Plasma arc melting of zirconium

    International Nuclear Information System (INIS)

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-01-01

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming

  1. XRD and DSC study of the formation and the melting of a new zeolite like borosilicate CsBSi5O12 and (Cs,Rb)BSi5O12 solid solutions

    International Nuclear Information System (INIS)

    Bubnova, R.S.; Ugolkov, V.L.; Krzhizhanovskaya, M.G.; Filatov, S.K.; Paufler, P.

    2007-01-01

    Polycrystalline CsBSi 5 O 12 was prepared from a stoichiometric mixture by solid-state reaction above 1000 C. The solid solutions Cs 1-x Rb x BSi 5 O 12 were obtained at 1000 C during a long heat treatment of polycrystalline Cs 1-x Rb x BSi 2 O 6 boropollucites (x Rb = 0, 0.05, 0.2, 0.4). A new borosilicate compound and its solid solutions were studied using X-ray powder diffraction (XRD), annealing, differential scanning calorimetry (DSC), and thermogravimetry (TG). For Cs,Rb-boropollucites the new phase formation is accompanied by significant mass losses detected by DSC and TG. The following mechanism of phase transformations is assumed: (Cs,Rb)BSi 2 O 6 → (Cs,Rb)BSi 5 O 12 + (Cs,Rb)BO 2 ↑. The zeolite phase forms as a result of the boropollucite decomposition over 1000 C. Zeolite decomposes also on further heating and the SiO 2 reflections are observed in the XRD pattern only. Thus above 1000 C both boropollucite and zeolite phases are unstable presumably due to the ability of the alkali cations to leave the structure. Using XRD the unit cell parameters of CsBSi 5 O 12 have been determined in the orthorhombic crystal system: a = 16.242(4) A, b = 13.360(4) A, c = 4.874(1) A. The compound is isostructural with the zeolite compound CsAlSi 5 O 12 . In the crystal structure of Cs 1-x Rb x BSi 5 O 12 solid solutions the changes of cell parameters are insignificant under the substitution of Cs by Rb atoms that indicates a very limited substitution range. (orig.)

  2. Novel blends of acrylonitrile butadiene rubber and polyurethane-silica hybrid networks

    Directory of Open Access Journals (Sweden)

    X. P. Wang

    2012-07-01

    Full Text Available Novel blends of acrylonitrile butadiene rubber (NBR and polyurethane-silica (PU-SiO2 hybrid networks have been prepared by melt blending. The PU-SiO2 hybrid networks were formed via the reaction of NCO groups of NCO-terminated PU prepolymer and OH groups of SiO2 in the absence of an external crosslinking agent (i.e. alcohols and amines during the curing process of NBR. Both in the neat PU-SiO2 system and the NBR/(PU-SiO2 system, the NCO-terminated PU prepolymer could be crosslinked by SiO2 to form PU-SiO2 hybrid networks. The effects of PU-SiO2 introduction into the NBR, on the properties of the resulting blends were studied. It was found that the vulcanization was activated by the incorporation of PU-SiO2. Transmission electronic microscopy (TEM studies indicated that the interpenetration and entanglement structures between NBR and PU-SiO2 increased with increasing PU-SiO2 content and the quasi-interpenetrating polymer networks (quasi-IPN structures were formed when the PU-SiO2 was 50 wt% in the NBR/(PU-SiO2 systems. The microstructures formed in the blends led to good compatibility between NBR and PU-SiO2 and significantly improved the mechanical properties, abrasion resistance and flex-fatigue life of the blends.

  3. Partial and Complete Wetting in Ultralow Interfacial Tension Multiphase Blends with Polylactide.

    Science.gov (United States)

    Zolali, Ali M; Favis, Basil D

    2016-12-15

    The control of phase structuring in multiphase blends of polylactide (PLA) with other polymers is a viable approach to promote its broader implementation. In this article, ternary and quaternary blends of PLA with poly(butylene succinate) (PBS), poly(butylene adipate-co-terephthalate) (PBAT), and poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) are prepared by melt blending. The interfacial tensions between components are measured using three different techniques, and a Fourier transform infrared imaging technique is developed for the purpose of unambiguous phase identification. A tricontinuous complete wetting behavior is observed for the ternary 33PLA/33PBS/33PBAT blend before and after quiescent annealing, which correlates closely with spreading theory analysis. In the quaternary PLA/PBS/PBAT/PHBV blend, a concentration-dependent wetting behavior is found. At 10 vol % PBAT, self-assembled partially wet droplets of PBAT are observed at the interface of PBS and PHBV, and they remain stable after quiescent annealing as predicted by spreading theory. In contrast, at 25 vol % PBAT, a quadruple continuous system is observed after mixing, which only transforms to partially wet PBAT droplets after subsequent annealing. These results clearly indicate the potential of composition control during the mixing of multiphase systems to result in a complete change of spreading behavior.

  4. Effect of phenol formaldehyde resin as vulcanizing agent on flow behavior of HDPE/PB blend

    Directory of Open Access Journals (Sweden)

    Moayad N. Khalaf

    2014-07-01

    Full Text Available Thermoplastic elastomer (TPE based on High density polyethylene (HDPE/polybutadiene (HDPE/PB = 70/30 parts blends containing 1, 3, 5, 7 and 10 wt.% of dimethylol phenolic resin as a vulcanizing agent in the presence of SnCl2 as catalyst was prepared. The dimethylol phenolic resin was prepared in our laboratory. The blends were compounded in mixer-60 attached to a Haake rheochord meter-90. The rheological properties were measured at temperatures 140, 160, 180 and 200 °C. The linearity of the flow curve appeared for 5% of the vulcanizing agent. The shear stress and shear viscosity have increased upon increasing the shear rate over a range of loading levels of vulcanizing agent of 1%, 3%, 5%, 7% and 10%. This may be attributed to the increased vulcanization between polyethylene and the rubber blend. The flow behavior index of the system shows a pseudo plastic nature behavior (since n < 1. The consistency index (K increased with the increase in the phenol formaldehyde resin content and the temperature. Hence, the increase in the value of the consistency index (K of the polymer melts refers to more viscous materials prepared. The activation energy for the TPE blends fluctuated indicating that there is phase separation; where each polymer behaved separately. This study showed that HDPE/PB blends are characterized with good rheological properties, which can be recommended to be processed with the injection molding technique.

  5. Comparison of Ultem 9085 Used in Fused Deposition Modelling (FDM with Polytherimide Blends

    Directory of Open Access Journals (Sweden)

    Gianluca Cicala

    2018-02-01

    Full Text Available Polyetherimide (PEI blends modified by either polycarbonate (PC or polyethylene terephthalate glycol-modified (PETG were prepared. The latter modifier (PETG was an industrial grade widely used for fused deposition modelling (FDM printing. PEI blends were compared to Ultem 9085, which is the standard PEI grade for FDM printing in advanced applications. All the blends were thoroughly characterized in terms of their rheological, morphological, thermomechanical and tensile properties. Ultem 9085 showed improved rheology for processing over standard PEI. PEI/PC blends with 10 wt % of modifier developed here closely matched the viscosity behavior of Ultem 9085. On the other hand, the blends with low PC content (i.e., less than 20 wt % outperformed Ultem 9085 in terms of thermal and tensile properties. When PETG was added, similar tensile properties to Ultem 9085 were found. The immiscibility for PC contents higher than 20 wt % deteriorated the tensile properties, making it less attractive for applications, although melt viscosity decreased further for increasing PC contents.

  6. Poly(trimethylene terephthalate)/Poly(butylenes succinate) blend: Phase behavior and mechanical property control using its transesterification system as the compatibilizer

    International Nuclear Information System (INIS)

    Chen, Jianxiang; Wu, Defeng

    2014-01-01

    Poly(trimethylene terephthalate)/poly(butylenes succinate) (PTT/PBS) blends and their ester-exchanged system were prepared by melt mixing for the phase behavior and the viscoelasticity studies. A typical two-phase structure can be seen on the blends because two polymers are immiscible thermodynamically. The phase inversion behavior of the blends can be well determined by the blending ratio dependence of their dynamic rheological responses, which can also be predicted by the viscous Utracki model based on the viscosity ratio. However, the dynamic viscoelastic responses of the blends cannot be well described by the emulsion model because two polymers are highly asymmetric in their viscoelasticity. Besides, transesterification is an effective approach of reducing interfacial tension and improving final phase morphology of the blends, which can be evaluated qualitatively from viscoelastic response alterations after ester exchange reaction. The mechanical properties of PTT/PBS blends were also studied. The results reveal that the ester-exchanged blends show mechanical strengths even lower than the pristine ones because of bulk degradation accompanied with transesterification, despite their improved phase structure. However, they can be used as the good compatibilizer to improve phase adhesion of the pristine blends, enhancing strengths of the PTT based blends or toughness of the PBS based blends evidently. - Highlights: • Phase inversion of the blends can be determined by their rheological responses. • Improved phase morphology can be evaluated from viscoelasticity alterations. • The ester-exchanged system is suitable to be used as the compatibilizer. • Mechanical properties can be controlled by introducing ester-exchanged system

  7. Functional Biomaterials: Solution Electrospinning and Gelation of Whey Protein and Pullulan

    Science.gov (United States)

    Sullivan, Stephanie Tolstedt

    Utilizing biomaterials that are biodegradable, biocompatible and edible serve well for food products as well as biomedical applications. Biomaterials whey protein and pullulan both have these characteristics. Whey proteins (WP) have been used in food products for many years and more recently in pharmaceutical products. They have the ability to form both gels and stable foams. Pullulan (PULL) has also been used in both food and pharmaceutical products, and is a highly water soluble, non-gelling polysaccharide and has been used primarily as a film former. Herein, we investigate the ability of whey protein and pullulan to form nanofibers and gels. Combining their distinct properties allows the ability to uniquely manipulate nanofiber and gel characteristics and behavior for a variety of applications, from food to even tissue scaffolding. First, we determined the electrospinnability of aqueous whey protein solutions. Both whey protein isolate (WPI) and one of its major components beta--lactoglobulin (BLG), either in native or denatured form, yielded interesting micro and nanostructures when electrosprayed; while nanofiber production required blending with a spinnable polymer, poly(ethylene oxide) (PEO). WP:PEO solutions were also successfully electrospun at acidic pH (2≤pH≤3), which could improve shelf life. Fourier Transform Infrared Reflectance (FTIR) analysis of WP:PEO fiber mat indicated some variation in WP secondary structure with varying WPI concentration (as WPI increased, % alpha-helix increased and beta-turn decreased) and pH (as pH decreased from neutral (7.5) to acidic (2), % beta-sheet decreased and alpha-helix increased). X-ray Photoelectron Spectroscopy (XPS) also confirmed the presence of WP on the surface of the blend fibers, augmenting the FTIR analysis. Interestingly, WP:PEO composite nanofibers maintained its fibrous morphology at temperatures as high as 100 °C, above the 60 °C PEO melting point. Further, we show that the blend mats retained a

  8. Effects of electron beam irradiation on the property behaviour of poly(ether-block-amide) blended with various stabilisers

    International Nuclear Information System (INIS)

    Murray, Kieran A.; Kennedy, James E.; Barron, Valerie; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L.

    2015-01-01

    Radiosterilisation can induce modifications and/or degradation to transpire in poly(ether-block-amide) (PEBA) following irradiation. The current investigation utilises combined synergistic mixtures of stabilisers to minimise these effects, by melt blending them with the PEBA material. Hindered amine stabilisers (HAS), primary antioxidants and secondary antioxidants were the stabilisers incorporate to reduce/eliminate the effects of 50 kGy electron beam irradiation dose on the material. Results were discussed by comparing the stabilising efficiency of mixtures on the PEBA material in contrast to the control sample. Dynamic frequency sweeps demonstrated the formation of crosslinks, where the degree of crosslinking was dependent on the combination of stabilisers mixed in the base material (PEBA). The storage modulus displayed that PEBA blended with Irganox 565 had very slight changes in contrast to all other samples following irradiation. However, since this sample is a phenol containing system, severe discolouration was observed in comparison to other samples due to the oxidation of the hindered phenol. Overall, this study provides compelling evidence that a combined synergistic mixture of Irganox 565 (multifunctional phenolic antioxidant) and Tinuvin 783 (hindered amide light stabiliser) with PEBA, resulted in the best radiation stability. - Highlights: • PEBA was melt blended with various stabilisers. • All virgin and blended PEBA samples were exposed to electron beam irradiation. • The incorporation of stabilisers into the PEBA material resulted in discolouration. • PEBA blended with Irganox 565 and Tinuvin 783 improved the radiation resistance

  9. Biodegradable blends of poly (lactic acid) (PLA) / polyhydroxybutrate (PHB) copolymer and its effects on rheological, thermal and mechanical properties

    Science.gov (United States)

    Sood, Nitin K.

    Poly (Lactic acid) is the most important plastic derived from the renewable resources. PLA based products have extensively been used in the medical industry. However, PLA has a few disadvantages such as inherent brittleness and low toughness despite a high modulus. A focus of this experiment was to study the improvement in toughness of PLA and to study the changes in thermal and rheological properties by blending PLA with a PHB copolymer. Where, PLA and PHB copolymer were melt blended using a twin screw Brabender extruder in the ratios of 100/0, 70/30, 50/50, 30/70, 0/100. Further, the blends were injection molded into tensile bar and impact bars for mechanical testing. Rheological properties were studied using a Galaxy capillary rheometer for melt viscosities and temperature dependence indicated a shear-thinning behavior along with power law model and consistency index. Blends were characterized to study the phase model using a differential scanning calorimetric (DSC), showed two separate phases. Mechanical properties were analyzed using a Tensile and Izod impact test indicating decrease in elastic modulus with increase in toughness and elongation as the PHB copolymer content was increased in the blend.

  10. Electromechanical behavior of polyaniline/poly (vinyl alcohol) blend films under static, dynamic and time-dependent strains

    International Nuclear Information System (INIS)

    Akhilesan, S; Lakshmana Rao, C; Varughese, S

    2014-01-01

    We report on the experimentally observed electrical conductivity enhancement in polyaniline/poly (vinyl alcohol) blend films under uniaxial tensile loading. Polyaniline (PANI) is an intrinsically conducting polymer, which does not form stretchable free-standing films easily and hence its electromechanical characterization is a challenge. Blending of PANI with other insulating polymers is a good choice to overcome the processability problem. We report the electromechanical response of solution blended and HCl doped PANI/PVA blends subjected to uniaxial, static, dynamic and time-dependent tensile loading. The demonstrated viscoelastic and morphological contributions of the component polymers to the electrical conductivity behavior in these blends could lead to interesting applications in strain sensors and flexible electronics. The reversibility of the electromechanical response under dynamic strain is found to increase in blends with higher PANI content. Time-dependent conductivity studies during mechanical stress relaxation reveal that variations in the micro-domain ordering and the relative relaxation rate of the individual polymer phases can give rise to interesting electrical conductivity changes in PANI blends. From morphological and electrical conductivity studies, we show that PANI undergoes primary and secondary agglomeration behavior in these blends that contributes to the changes in conductivity behavior during the deformation. A 3D variable range hopping (VRH) process, which uses a deformable core and shell concept based on blend morphology analysis, is used to explain the experimentally observed electromechanical behavior. (papers)

  11. Technology for down-blending weapons grade uranium into commercial reactor-usable uranium

    International Nuclear Information System (INIS)

    Arbital, J.G.; Snider, J.D.

    1996-01-01

    The US Department of Energy (DOE) is evaluating options for rendering surplus inventories of highly enriched uranium (HEU) incapable of being used in nuclear weapons. Weapons-capable HEU was earlier produced by enriching the uranium isotope 235 U from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by permanently diluting the concentration of the 235 U isotope, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope re-enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended, low-enriched uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel. The DOE has evaluated three candidate processes for down blending surplus HEU. These candidate processes are: (1) uranium hexafluoride blending; (2) molten uranium metal blending; and (3) uranyl nitrate solution blending. This paper describes each of these candidate processes. It also compares the relative advantages and disadvantages of each process with respect to: (1) the various forms and compounds of HEU comprising the surplus inventory, (2) the use of down-blended product as commercial reactor fuel, or (3) its disposal as waste

  12. Polypropylene fumarate/phloroglucinol triglycidyl methacrylate blend for use as partially biodegradable orthopaedic cement.

    Science.gov (United States)

    Jayabalan, M; Thomas, V; Rajesh, P N

    2001-10-01

    Polypropylene fumarate/phloroglucinol triglycidyl methacrylate oligomeric blend-based bone cement was studied. Higher the percentage of phloroglucinol triglycidyl methacrylate, lesser the setting time. An optimum setting time could be arrived with 50:50 blend composition of the two oligomers. Composite cement of 50:50 blend prepared with hydroxyapatite granules of particle size 125 microm binds bovine rib bones. The tensile strength of this adhesive bond was found to be 1.11 kPa. The thermal studies suggest the onset of cross-linking reaction in the cured blend if the blend is heated. The absence of softening endotherm in the cured blend shows the thermosetting-like amorphous nature of blend system, which may restrict the changes in creep properties. The in vitro biodegradation studies reveal possible association of calcium ions with negatively charged units of degrading polymer chain resulting in slow down of degradation. Relatively slow degradation was observed in Ringer's solution. The study reveals the potential use of polypropylene fumarate/phloroglucinol triglycidyl methacrylate as partially degradable polymeric cement for orthopaedic applications.

  13. Experimental assessment of non-edible candlenut biodiesel and its blend characteristics as diesel engine fuel.

    Science.gov (United States)

    Imdadul, H K; Zulkifli, N W M; Masjuki, H H; Kalam, M A; Kamruzzaman, M; Rashed, M M; Rashedul, H K; Alwi, Azham

    2017-01-01

    Exploring new renewable energy sources as a substitute of petroleum reserves is necessary due to fulfilling the oncoming energy needs for industry and transportation systems. In this quest, a lot of research is going on to expose different kinds of new biodiesel sources. The non-edible oil from candlenut possesses the potential as a feedstock for biodiesel production. The present study aims to produce biodiesel from crude candlenut oil by using two-step transesterification process, and 10%, 20%, and 30% of biodiesel were mixed with diesel fuel as test blends for engine testing. Fourier transform infrared (FTIR) and gas chromatography (GC) were performed and analyzed to characterize the biodiesel. Also, the fuel properties of biodiesel and its blends were measured and compared with the specified standards. The thermal stability of the fuel blends was measured by thermogravimetric analysis (TGA) and differential scan calorimetry (DSC) analysis. Engine characteristics were measured in a Yanmar TF120M single cylinder direct injection (DI) diesel engine. Biodiesel produced from candlenut oil contained 15% free fatty acid (FFA), and two-step esterification and transesterification were used. FTIR and GC remarked the biodiesels' existing functional groups and fatty acid methyl ester (FAME) composition. The thermal analysis of the biodiesel blends certified about the blends' stability regarding thermal degradation, melting and crystallization temperature, oxidative temperature, and storage stability. The brake power (BP), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE) of the biodiesel blends decreased slightly with an increasing pattern of nitric oxide (NO) emission. However, the hydrocarbon (HC) and carbon monoxides (CO) of biodiesel blends were found decreased.

  14. Modeling the kinetics of volatilization from glass melts

    NARCIS (Netherlands)

    Beerkens, R.G.C.

    2001-01-01

    A model description for the evaporation kinetics from glass melts in direct contact with static atmospheres or flowing gas phases is presented. The derived models and equations are based on the solution of the second Ficks' diffusion law and quasi-steady-state mass transfer relations, taking into

  15. Data blending in health care : Evaluation of data blending

    OpenAIRE

    Chen, Qian

    2016-01-01

    This report is aimed at those who are interested in data analysis and data blending. Decision making is crucial for an organization to succeed in today’s market. Data analysis is an important support activity in decision making and is applied in many industries, for example healthcare. For many years data analysts have worked on structured data in small volumes, with traditional methods such as spreadsheet. As new data sources emerged, such as social media, data is generated in higher volume,...

  16. Nitrogen Control in VIM Melts

    Science.gov (United States)

    Jablonski, P. D.; Hawk, J. A.

    NETL has developed a design and control philosophy for the addition of nitrogen to austenitic and ferritic steels. The design approach uses CALPHAD as the centerpiece to predict the level to which nitrogen is soluble in both the melt and the solid. Applications of this technique have revealed regions of "exclusion" in which the alloy, while within specification limits of prescribed, cannot be made by conventional melt processing. Furthermore, other investigations have found that substantial retrograde solubility of nitrogen exists, which can become problematic during subsequent melt processing and/or other finishing operations such as welding. Additionally, the CALPHAD method has been used to adjust primary melt conditions. To that end, nitrogen additions have been made using chrome nitride, silicon nitride, high-nitrogen ferrochrome as well as nitrogen gas. The advantages and disadvantages of each approach will be discussed and NETL experience in this area will be summarized with respect to steel structure.

  17. Theoretical melting curve of caesium

    International Nuclear Information System (INIS)

    Simozar, S.; Girifalco, L.A.; Pennsylvania Univ., Philadelphia

    1983-01-01

    A statistical-mechanical model is developed to account for the complex melting curve of caesium. The model assumes the existence of three different species of caesium defined by three different electronic states. On the basis of this model, the free energy of melting and the melting curve are computed up to 60 kbar, using the solid-state data and the initial slope of the fusion curve as input parameters. The calculated phase diagram agrees with experiment to within the experimental error. Other thermodynamic properties including the entropy and volume of melting were also computed, and they agree with experiment. Since the theory requires only one adjustable constant, this is taken as strong evidence that the three-species model is satisfactory for caesium. (author)

  18. Melting curves of gammairradiated DNA

    International Nuclear Information System (INIS)

    Hofer, H.; Altmann, H.; Kehrer, M.

    1978-08-01

    Melting curves of gammairradiated DNA and data derived of them, are reported. The diminished stability is explained by basedestruction. DNA denatures completely at room temperature, if at least every fifth basepair is broken or weakened by irradiation. (author)

  19. Pressure melting and ice skating

    Science.gov (United States)

    Colbeck, S. C.

    1995-10-01

    Pressure melting cannot be responsible for the low friction of ice. The pressure needed to reach the melting temperature is above the compressive failure stress and, if it did occur, high squeeze losses would result in very thin films. Pure liquid water cannot coexist with ice much below -20 °C at any pressure and friction does not increase suddenly in that range. If frictional heating and pressure melting contribute equally, the length of the wetted contact could not exceed 15 μm at a speed of 5 m/s, which seems much too short. If pressure melting is the dominant process, the water films are less than 0.08 μm thick because of the high pressures.

  20. Proton NMR relaxation in hydrous melts

    International Nuclear Information System (INIS)

    Braunstein, J.; Bacarella, A.L.; Benjamin, B.M.; Brown, L.L.; Girard, C.

    1976-01-01

    Pulse and continuous wave NMR measurements are reported for protons in hydrous melts of calcium nitrate at temperatures between -4 and 120 0 C. Although measured in different temperature ranges, spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times appear to be nearly equal to each other and proportional to the self-diffusion coefficients of solute metal cations such as Cd 2+ . At temperatures near 50 0 C, mean Arrhenius coefficients Δ H/sub T 1 / (kcal/mol) are 7.9, 7.3, and 4.8, respectively, for melts containing 2.8, 4.0, and 8.0 moles of water per mole of calcium nitrate, compared to 4.6 kcal/mol for pure water. Temperature dependence of T 1 and T 2 in Ca(NO 3 ) 2 -2.8 H 2 O between -4 and 120 0 C are non-Arrhenius and can be represented by a Fulcher-type equation with a ''zero mobility temperature'' (T 0 ) of 225 0 K, close to the value of T 0 for solute diffusion, electrical conductance and viscosity. Resolution of the relaxation rates into correlation times for intramolecular (rotational) and intermolecular (translational) diffusional motion is discussed in terms of the Bloembergen-Purcell-Pound and more recent models for dipolar relaxation

  1. Preparation and water absorption of cross-linked chitosan/silk fibroin blend films

    International Nuclear Information System (INIS)

    Suesat, Jantip; Rujiravanit, Ratana; Jamieson, Alexander M.; Tokura, Seiichi

    2001-01-01

    Natural polymer blend films composed of chitosan and silk fibroin were prepared by varying the ratio of chitosan to silk fibroin, with and without glutaraldehyde as a crosslinking agent. The effects of the ratio of chitosan to silk fibroin and crosslinking agent on swelling behavior of the blend films were studied. For the swelling behavior, the blend films exhibited a dramatic change in the degree of swelling when immersed in acidic solutions. The degree of swelling of the films increased as the chitosan content increased; the blend film with 80% chitosan content had the maximum degree of swelling. It appeared that crosslinking had occurred in the blend films which helped the films to retain their three dimensional structure. In addition, FTIR spectra of the films showed evidence of hydrogen bonding interaction between chitosan and silk fibroin. For the effect of salt type, the films were immersed in various types of aqueous salt solutions, viz NaCl, LiCl, CaCl 2 , AlCl 3 , and FeCl 3 . The films immersed in AlCl 3 and FeCl 3 aqueous solutions gave the maximum degree of swelling. The effects of AlCl 3 and FeCl 3 concentrations on swelling behavior were also investigated. It was found that the maximum degree of swelling of the films occurred at 1.0 x 10 -2 M of AlCl 3 and FeCl 3 aqueous solutions. (author)

  2. Determination of Component Contents of Blend Oil Based on Characteristics Peak Value Integration.

    Science.gov (United States)

    Xu, Jing; Hou, Pei-guo; Wang, Yu-tian; Pan, Zhao

    2016-01-01

    Edible blend oil market is confused at present. It has some problems such as confusing concepts, randomly named, shoddy and especially the fuzzy standard of compositions and ratios in blend oil. The national standard fails to come on time after eight years. The basic reason is the lack of qualitative and quantitative detection of vegetable oils in blend oil. Edible blend oil is mixed by different vegetable oils according to a certain proportion. Its nutrition is rich. Blend oil is eaten frequently in daily life. Different vegetable oil contains a certain components. The mixed vegetable oil can make full use of their nutrients and make the nutrients more balanced in blend oil. It is conducive to people's health. It is an effectively way to monitor blend oil market by the accurate determination of single vegetable oil content in blend oil. The types of blend oil are known, so we only need for accurate determination of its content. Three dimensional fluorescence spectra are used for the contents in blend oil. A new method of data processing is proposed with calculation of characteristics peak value integration in chosen characteristic area based on Quasi-Monte Carlo method, combined with Neural network method to solve nonlinear equations to obtain single vegetable oil content in blend oil. Peanut oil, soybean oil and sunflower oil are used as research object to reconcile into edible blend oil, with single oil regarded whole, not considered each oil's components. Recovery rates of 10 configurations of edible harmonic oil is measured to verify the validity of the method of characteristics peak value integration. An effective method is provided to detect components content of complex mixture in high sensitivity. Accuracy of recovery rats is increased, compared the common method of solution of linear equations used to detect components content of mixture. It can be used in the testing of kinds and content of edible vegetable oil in blend oil for the food quality detection

  3. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  4. The thermodynamic activity of ZnO in silicate melts

    Science.gov (United States)

    Reyes, R. A.; Gaskell, D. R.

    1983-12-01

    The activity of ZnO in ZnO-SiO2 and CaO-ZnO-SiO2 melts has been measured at 1560 °C using a transpiration technique with CO-CO2 mixtures as the carrier gas. The activities of ZnO in dilute solution in 42 wt pct SiO2-38 wt pct CaO-20 wt pct A12O3 in the range 1400° to 1550 °C and in 62 wt pct SiO2-23.3 wt pct CaO-14.7 wt pct A12O3 at 1550 °C have also been measured. The measured free energies of formation of ZnO-SiO2 melts are significantly more negative than published estimated values and this, together with the behavior observed in the system CaO-Al2O3-SiO2, indicate that ZnO is a relatively basic oxide. The results are discussed in terms of the polymerization model of binary silicate melts and ideal silicate mixing in ternary silicate melts. The behavior of ZnO in dilute solution in CaO-Al2O3-SiO2 melts is discussed in terms of the possibility of the fluxing of ZnO by iron blast furnace slags.

  5. Formulation Efforts for Direct Vitrification of INEEL Blend Calcine Waste Simulate: Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Vienna, John D.; Peeler, David K.; Reamer, I. A.

    2001-03-30

    This report documents the results of glass formulation efforts for Idaho National Engineering and Environmental Laboratory (INEEL) high level waste (HWL) calcine. Two waste compositions were used during testing. Testing started by using the Run 78 calcine composition and switched to simulated Blend calcine composition when it became available. The goal of the glass formulation efforts was to develop a frit composition that will accept higher waste loading that satisfies the glass processing and product acceptance constraints. 1. Melting temperature of 1125 ? 25?C 2. Viscosity between 2 and 10 Pa?s at the melting temperature 3. Liquidus temperature at least 100?C below the melting temperature 4. Normalized release of B, Li and Na each below 1 g/m2 (per ASTM C 1285-97) Glass formulation efforts tested several frit compositions with variable waste loadings of Run 78 calcine waste simulant. Frit 107 was selected as the primary candidate for processing since it met all process and performance criteria up to 45 mass% waste loading. When the simulated Blend calcine waste composition became available Frits 107 and 108 compositions were retested and again Frit 107 remained the primary candidate. However, both frits suffered a decrease in waste loading when switching from the Run 78 calcine to simulated Blend calcine waste composition. This was due to increase concentrations of both F and Al2O3 along with a decrease in CaO and Na2O in the simulate Blend calcine waste all of which have strong impacts on the glass properties that limit waste loading of this type of waste.

  6. Melting the vacuum

    International Nuclear Information System (INIS)

    Rafelski, J.

    1998-01-01

    Results presented at the Quark Matter 97 conference, held in December in Tsukuba, Japan, have provided new insights into the confinement of quarks in matter. The current physics paradigm is that the inertial masses of protons and neutrons, and hence of practically all of the matter around us, originate in the zero-point energy caused by the confinement of quarks inside the small volume of the nucleon. Today, 25 years after Harald Fritzsch, Heinrich Leutwyler and Murray Gell-Mann proposed quantum chromodynamics (QCD) as a means for understanding strongly interacting particles such as nucleons and mesons, our understanding of strong interactions and quark confinement remains incomplete. Quarks and the gluons that bind them together have a ''colour'' charge that may be red, green or blue. But quarks are seen in particles that are white: baryons such as protons and neutrons consist of three quarks with different colour charges, while mesons consist of a quark and an antiquark, and again the colour charge cancels out. To prove that confinement arises from quark-gluon fluctuations in the vacuum that quantum theories dictate exists today, we need to find a way of freeing the colour charge of quarks. Experiments must therefore ''melt'' the vacuum to deconfine quarks and the colour charge. By colliding nuclei at high energies, we hope to produce regions of space filled with free quarks and gluons. This deconfined phase is known as the quark-gluon plasma. At the Tsukuba meeting, Scott Pratt of Michigan State University in the US discussed measurements that show that the hot dense state of matter created in these collisions exists for only 2x10 -23 s. So does the quark gluon plasma exist? No-one doubts that it did at one time, before the vacuum froze into its current state about 20 into the life of the universe, causing the nucleons to form as we know them today. The issue is whether we can recreate this early stage of the universe in laboratory experiments. And if we did

  7. Glacial melting in Himalaya

    Directory of Open Access Journals (Sweden)

    Kavita Tariyal

    2013-07-01

    Full Text Available Mountains are amongst the most flimsy environments on Earth. They are prosperous repositories of biodiversity, water and providers of ecosystem goods and services on which downstream communities, both regional and global, rely. The transport of atmospheric pollutants and climate-altering substances can significantly impact high mountain areas, which are generally considered “clean” regions. The snow glaciers of the Himalayas, considered the “third pole”, one of the largest stores of water on the planet and accelerated melting could have far-reaching effects, such as flooding in the short-term and water shortages in the long-term as the glaciers shrink. The data available on temperature in Himalayas indicate that warming during last 3-4 decades has been more than the global average over the last century. Some of the values indicate that the Himalayas are warming 5-6 times more than the global average. Mountain systems are seen globally as the prime sufferers from climate change. There is a severe gap in the knowledge of the short and long-term implications of the impact of climate change on water and hazards in the Himalayas, and their downstream river basins. Most studies have excluded the Himalayan region because of its extreme and complex topography and the lack of adequate rain gauge data. There is an urgent need to close the knowledge gap by establishing monitoring schemes for snow, ice and water; downscaling climate models; applying hydrological models to predict water availability; and developing basin wide scenarios, which also take water demand and socioeconomic development into account. Climate change induced hazards such as floods, landslides and droughts will impose considerable stresses on the livelihoods of mountain people and downstream populations. Enhancing resilience and promoting adaptation in mountain areas have thus become among the most important priorities of this decade. It is important to strengthen local

  8. Mass transfer performance of blended alkanolamines for CO{sub 2} capture in packed absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Setameteekul, A.; Veawab, A.; Aroonwilas, A.; Tontiwachwuthikul, P. [Regina Univ., SK (Canada)

    2003-07-01

    Acid gases are removed from industrial gas streams using the alkanolamine absorption process. There has been recent interest in extending the process to remove carbon dioxide from industrial waste gases. The process based on conventional alkanolamines is not economically viable because of the associated high energy costs. It was suggested that blended alkanolamines would significantly reduce energy consumption, thereby resulting in a reduction in process costs. The main disadvantage of using blended alkanolamines is a decrease in absorption performance. This study examines the mass transfer behaviour of carbon dioxide into blended alkanolamine solutions. It also compares their performance with the baseline performance of monoethanolamine (MEA). A series of absorption experiments were conducted in a bench-scale packed absorber. The blended alkanolamines included mixtures of MEA and methyldiethanolamine, as well as mixtures of diethanolamine and methyldiethanolamine. The results indicated the general mass transfer coefficient as a function of operating conditions.

  9. Preparation and characterization of polymer blends based on recycled PET and polyester derived by terephthalic acid

    International Nuclear Information System (INIS)

    Ohara, L.; Miranda, C.S.; Fiuza, R.P.; Luporini, S.; Carvalho, R.F.; Jose, N.M.

    2010-01-01

    Environmentally friendly materials, made from industrial waste, are being increasingly used as a solution to the growing amount of waste generated by society, but also as a cheaper alternative to replace conventional materials for use in construction. In this work were investigated the properties of polymer blends based on recycled PET and a polyester derived from terephthalic acid and glycerin, a co-product of biodiesel. The samples were characterized by XRD, TGA, DSC, FTIR and SEM. The polyester synthesized showed a degradation event near 300 deg C. The blends with higher ratio of PET showed thermal behavior similar to pure PET. The X-ray diffraction showed that the polymer blends are semicrystalline materials. The micrographs presents the presence of a smooth surface, indicating the possibility of miscibility between the arrays. Therefore, the blending makes possible the fabrication of low-cost materials with applications in several areas. (author)

  10. Comparative studies of the rheological behaviour of oil epoxy and oil polyesteramide blends with polymethacrylic acid

    Directory of Open Access Journals (Sweden)

    Ufana Riaz

    2017-05-01

    Full Text Available Polymer blends have replaced a variety of pristine polymers in different sectors due to their desired synergetic properties such as durability, heat resistance, reduced wear & tear, flexibility, chemical resistance and longer shelf life that can be achieved by making minor alterations in their compositions. The modification of polymer blends by using sustainable resource based polymers can not only fulfil our ecological but also our economic and social needs. The present work reports the compatibility studies of oil derived epoxy and polyesteramide blends with polymethacrylic acid (PMA. The aim is to highlight the role of rheology in predicting the compatibility of these blends in the solution and solid phases which is a crucial parameter that decides the processibility and viability of these materials for commercialization.

  11. Effect of solvent blending on cycling characteristics of lithium

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Masayuki; Matsuda, Yoshiharu

    1987-07-01

    The suitability of electrolytes using mixed solvents has been examined for ambient temperature, rechargeable lithium batteries. Sulfolane (S) and dimethylsulfoxide (DMSO) have been used as base solvents because of their high permittivity, and ethers such as 1,2-dimethoxyethane (DME) have been blended as a low viscosity co-solvent. This blending has been found to yield electrolytes with a high conductivity, and maximum values are observed in solutions with 40-90 mol% ether. The cycling characteristics of lithium are also improved by blending the ethers. The coulombic efficiencies on a nickel substrate are greater than or equal to 80% in S-DME/LiPF/sub 6/ and DMSO-DME/LiPF/sub 6/ solutions. The lithium electrode characteristics are markedly dependent on the type of co-solvent ether, as well as on the electrolytic salt. The results of the conductance behaviour and the electrode characteristics are discussed in terms of ionic structure in the mixed solvent and the state of the electrode/electrolyte interphase.

  12. X-ray blending device

    International Nuclear Information System (INIS)

    Manolov, S.S.; Donchev, I.D.; Paunchev, A.N.; Atanasov, A.B.; Kerin, T.P.

    1985-01-01

    The X-ray blending device comprises electric motors for vertical and horizontal blending plates, electrically connected with the output of the block for format voltages and mechanically connected with the measuring potentiometers' slides. The potentiometers are respectively connected with the data inputs of the block for format voltages, the control input of which is connected with the control block output in a mode of scanning. The data outputs of the format voltage block are connected through a buffer converter, a memory block and a decoder with the data inputs of the first and second digital-to-analog converters, the outputs of which are connected with the first inputs of the first and the second comparison circuits. The second inputs of the last are linked to the slides of the first and the second potentiometers and their inputs are connected with the data inputs of the first and the second combinational logic circuits. The output of the control block in a mode of scanning is connected with the first control inputs of the first and the second combinational logic circuits and with the control inputs of the memory block and the decoder. The second and the third control units of the first and the second combinational circuits are respectively linked with the outputs for a position determination of the vertical and horizontal blending plates from the control block in a mode of scanning. The outputs of the first and the second combinational logic circuits are respectively connected with the first and the second control bridge circuits, the control outputs of which are electrically connected with the first and the second electric motors for vertical and horizontal blending plates. 1 cl., 3 figs

  13. Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity.

    Science.gov (United States)

    Ostafinska, Aleksandra; Fortelný, Ivan; Hodan, Jiří; Krejčíková, Sabina; Nevoralová, Martina; Kredatusová, Jana; Kruliš, Zdeněk; Kotek, Jiří; Šlouf, Miroslav

    2017-05-01

    Blends of two biodegradable polymers, poly(lactic acid) (PLA) and poly(ϵ-caprolactone) (PCL), with strong synergistic improvement in mechanical performance were prepared by melt-mixing using the optimized composition (80/20) and the optimized preparation procedure (a melt-mixing followed by a compression molding) according to our previous study. Three different PLA polymers were employed, whose viscosity decreased in the following order: PLC ≈ PLA1 > PLA2 > PLA3. The blends with the highest viscosity matrix (PLA1/PCL) exhibited the smallest PCL particles (d∼0.6μm), an elastic-plastic stable fracture (as determined from instrumented impact testing) and the strongest synergistic improvement in toughness (>16× with respect to pure PLA, exceeding even the toughness of pure PCL). According to the available literature, this was the highest toughness improvement in non-compatiblized PLA/PCL blends ever achieved. The decrease in the matrix viscosity resulted in an increase in the average PCL particle size and a dramatic decrease in the overall toughness: the completely stable fracture (for PLA1/PCL) changed to the stable fracture followed by unstable crack propagation (for PLA2/PCL) and finally to the completely brittle fracture (for PLA3/PCL). The stiffness of all blends remained at well acceptable level, slightly above the theoretical predictions based on the equivalent box model. Despite several previous studies, the results confirmed that PLA and PCL could behave as compatible polymers, but the final PLA/PCL toughness is extremely sensitive to the PCL particle size distribution, which is influenced by both processing conditions and PLA viscosity. PLA/PCL blends with high stiffness (due to PLA) and toughness (due to PCL) are very promising materials for medical applications, namely for the bone tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Blending of phased array data

    Science.gov (United States)

    Duijster, Arno; van Groenestijn, Gert-Jan; van Neer, Paul; Blacquière, Gerrit; Volker, Arno

    2018-04-01

    The use of phased arrays is growing in the non-destructive testing industry and the trend is towards large 2D arrays, but due to limitations, it is currently not possible to record the signals from all elements, resulting in aliased data. In the past, we have presented a data interpolation scheme `beyond spatial aliasing' to overcome this aliasing. In this paper, we present a different approach: blending and deblending of data. On the hardware side, groups of receivers are blended (grouped) in only a few transmit/recording channels. This allows for transmission and recording with all elements, in a shorter acquisition time and with less channels. On the data processing side, this blended data is deblended (separated) by transforming it to a different domain and applying an iterative filtering and thresholding. Two different filtering methods are compared: f-k filtering and wavefield extrapolation filtering. The deblending and filtering methods are demonstrated on simulated experimental data. The wavefield extrapolation filtering proves to outperform f-k filtering. The wavefield extrapolation method can deal with groups of up to 24 receivers, in a phased array of 48 × 48 elements.

  15. Teaching Shakespeare through blended learning

    Directory of Open Access Journals (Sweden)

    Lesley Hawkes

    2018-03-01

    Full Text Available This paper describes and discusses experimentation with the use of blended learning in teaching Shakespeare. Previous iterations of the subject in a traditional lecture and tutorial format had seen a decline in student attendance and a fall in student achievement at the higher grade levels. A further complicating issue was the range of expectations from the cohort, which comprised students from Creative Writing, Drama, and Education, a factor which also highlights the cross-disciplinary nature of teaching Shakespeare. A blended learning and lectorial format was employed to facilitate small group discussion of the plays in conjunction with a wider social and historical overview. Student feedback indicated that the changes to the delivery method were received positively, although some questions do remain concerning levels of student engagement and the specific disciplinary needs of student cohorts. The findings of the teaching of this subject will translate usefully to other fields and disciplines, especially as more and more subjects take up blended learning. The findings indicate that it is not enough to take up new technologies in the teaching of a unit. The learning environment must also be rethought and reconceptualised.

  16. Methods for Melting Temperature Calculation

    Science.gov (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  17. Determination of main components in lanthanum titanates blend

    International Nuclear Information System (INIS)

    Sizonenko, T.N.; Timchenko, A.K.

    1981-01-01

    Conditions for complexonometric determination of lanthanum in the presence of titanium using the disguising of the latter are studied. A method is suggested for lanthanum and titanium determination in a blend of lanthanum titanate which is used to grow monocrystals. Sulfosalicylic acid is chosen as a disguising agent. La has been determined by complexonometric titration using EDTA with xylenol orange in urotropin. The total contents of La and Ti have been determined by titration of EDTA excess with standard solution of zinc sulfate. Ti content has been calculated from the difference between the first two determinations. Reproducibility of Ti and La determination in the blend (n=21) is characterized by the following: at 19.73% La and 57.21% Ti there are (19.72+-0.16)% La and (57.10+-0.22)% Ti, Sr equals 0.0071 and 0.0034, respectively

  18. Decontamination solution development studies

    International Nuclear Information System (INIS)

    Allen, R.P.; Fetrow, L.K.; Kjarmo, H.E.; Pool, K.H.

    1993-09-01

    This study was conducted for the Westinghouse Hanford Company (WHC) by Pacific Northwest Laboratory (PNL) as part of the Hanford Grout Technology Program (HGTP). The objective of this study was to identify decontamination solutions capable of removing radioactive contaminants and grout from the Grout Treatment Facility (GTF) process equipment and to determine the impact of these solutions on equipment components and disposal options. The reference grout used in this study was prepared with simulated double-shell slurry feed (DSSF) and a dry blend consisting of 40 wt % limestone flour, 28 wt % blast furnace slag, 28 wt % fly ash, and 4 wt % type I/II Portland cement

  19. Film-thickness dependence of structure formation in ultra-thin polymer blend films

    CERN Document Server

    Gutmann, J S; Stamm, M

    2002-01-01

    We investigated the film-thickness dependence of structure formation in ultra-thin polymer blend films prepared from solution. As a model system we used binary blends of statistical poly(styrene-co-p-bromostyrene) copolymers of different degrees of bromination. Ultra-thin-film samples differing in miscibility and film thickness were prepared via spin coating of common toluene solutions onto silicon (100) substrates. The resulting morphologies were investigated with scanning force microscopy, reflectometry and grazing-incidence scattering techniques using both X-rays and neutrons in order to obtain a picture of the sample structure at and below the sample surface. (orig.)

  20. Tailoring the morphology and properties of poly(lactic acid)/poly(ethylene-co-vinyl acetate)/starch blends via reactive compatibilization

    NARCIS (Netherlands)

    Ma, P.; Hristova - Bogaerds, D.G.; Schmit, P.; Goossens, J.G.P.; Lemstra, P.J.

    2012-01-01

    Poly(lactic acid)/poly(ethylene-co-vinyl acetate)/starch (PLA/EVA/starch) ternary blends were prepared by multi-step melt processing (reactive extrusion) in the presence of maleic anhydride (MA), benzoyl peroxide and glycerol. The effects of MA and glycerol concentration on the morphology and

  1. Game innovation through conceptual blending

    DEFF Research Database (Denmark)

    Möring, Sebastian Martin

    In  this  paper  I  wish  to  apply implications of  the  Conceptual  Blending  Theory  to  computer  games.  I  will  analyze  chosen  examples  and  discuss  them  as  a  result  of  video  game  innovation  made  possible  through  "conceptual  blending."  Conceptual  blending  links  at  least.......,  Hell.  The  purpose  of  my  approach  is  not  so  much  to  validate  the  ideas  of  conceptual  blending  theory  through  another  field  of  examples  (computer  games)  but  to  name  and analyze characteristics of the mentioned games with the  help of a given method.......  integration  network  consisting  of  at  least  two  input  spaces,  a  generic  space  and  a  blended  space  as  well  as  its  governing  principles  consisting  of  composition,  completion,  and  elaboration.  With  the  help  of  these  instruments  I  analyze computer  games like  Tuper  Tario  Tros...

  2. BLENDED LEARNING STRATEGY IN TEACHER TRAINING PROGRAMS

    Directory of Open Access Journals (Sweden)

    Marian F. Byrka

    2017-12-01

    Full Text Available The article examines the implementation of blended learning strategy in teacher training programs as an innovation in online learning. The blended learning idea comes from blending elements which use online technology with more traditional face-to-face teaching in the same course. The article analyses teacher training programs offered by Chernivtsi Regional Institute of Postgraduate Pedagogical Education. Additional data were gathered through a questionnaire administered to teachers who attended training courses. The characteristics of blended learning strategy, its benefits and limitations for teacher training are supported by a review of literature. The article closes with the comparison of curriculum components (content delivery, learner activities, materials, and required competences between traditional and blended learning teacher training programs. Having obvious benefits in teacher training programs, the implementation of blended learning strategy sets some additional requirements to a learner, as well as to course instructors and lectors.

  3. Correspondence Theory and Phonological Blending in French

    Directory of Open Access Journals (Sweden)

    Lee Scott

    2014-07-01

    Full Text Available Though less productive than rival word-formation processes like compounding and affixation, blending is still a rich source of neologisms in French. Despite this productivity, however, blends are often seen by scholars as unpredictable, uninteresting, or both. This analysis picks up where recent studies of blending have left off, using Correspondence Theory and a bundle of segmental constraints to deal with this phenomenon as it pertains to French. More specifically, it shows that blending is the result of a single output standing in correspondence with two or more other outputs, and that we do not need to refer to prosodic information, which is crucial in accounts of blending in languages with lexical stress like English, to account for the process in French. The analysis also differs from previous studies in that it locates blending exclusively within the phonology, leaving its morphological and semantic characteristics to be handled by other processes in the grammar.

  4. Thermal profiles, crystallization behaviors and microstructure of diacylglycerol-enriched palm oil blends with diacylglycerol-enriched palm olein.

    Science.gov (United States)

    Xu, Yayuan; Zhao, Xiaoqing; Wang, Qiang; Peng, Zhen; Dong, Cao

    2016-07-01

    To elucidate the possible interaction mechanisms between DAG-enriched oils, this study investigated how mixtures of DAG-enriched palm-based oils influenced the phase behavior, thermal properties, crystallization behaviors and the microstructure in binary fat blends. DAG-enriched palm oil (PO-DAGE) was blended with DAG-enriched palm olein (POL-DAGE) in various percentages (0%, 10%, 30%, 50%, 70%, 90%, 100%). Based on the observation of iso-solid diagram and phase diagram, the binary mixture of PO-DAGE/POL-DAGE showed a better compatibility in comparison with their corresponding original blends. DSC thermal profiles exhibited that the melting and crystallization properties of PO-DAGE/POL-DAGE were distinctively different from corresponding original blends. Crystallization kinetics revealed that PO-DAGE/POL-DAGE blends displayed a rather high crystallization rate and exhibited no spherulitic crystal growth. From the results of polarized light micrographs, PO-DAGE/POL-DAGE blends showed more dense structure with very small needle-like crystals than PO/POL. X-ray diffraction evaluation revealed when POL-DAGE was added in high contents to PO-DAGE, above 30%, β-polymorph dominated, and the mount of β' forms crystals was decreasing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends.

    Science.gov (United States)

    Xiong, Zhu; Zhang, Lisheng; Ma, Songqi; Yang, Yong; Zhang, Chuanzhi; Tang, Zhaobin; Zhu, Jin

    2013-04-15

    Blends of entirely bio-sourced polymers, namely polylactide (PLA) and starch, have been melt-compounded by lab-scale co-extruder with castor oil (CO) as a plasticizer. The enrichment of castor oil on starch had great effect on the properties of the blends. If the castor oil was mainly dispersed in PLA matrix, the properties of the blends were poor, but when the hexamethylenediisocyanate (HDI) was grafted on starch granules the ready reactions between the hydroxyl on CO and the isocyante on the HDI-grafted starch (HGSTs) brought CO molecules enriched on starch particles. DSC analysis shows that the CO layer on starch has a positive effect on the crystallization of PLA in the ternary blend. The accumulation of CO on starch greatly improves the toughness and impact strength of PLA/starch blends. The grafting content of HDI on the starch granules primarily determined the compatibility and properties of the resulted blends. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Tensile and morphology properties of PLA/LNR blends modified with maleic anhydride grafted-polylactic acid and -natural rubber

    Science.gov (United States)

    Ruf, Mohd Farid Hakim Mohd; Ahmad, Sahrim; Chen, Ruey Shan; Shahdan, Dalila; Zailan, Farrah Diyana

    2018-04-01

    This research was carried out to investigate the addition of grafted copolymers of maleic anhydride grafted-polylactic acid(PLA-g-MA) and maleic anhydride grafted-natural rubber (NR-g-MA) on the tensile and morphology properties of polylactic acid/ liquid natural rubber (PLA/LNR) blends. Prior to blend preparation, the PLA-g-MA and NR-g-MA was first self-synthesized using maleic anhydride (MA) and dicumyl peroxide (DCP) as initiator together with the PLA and NR respectively. The PLA/LNR, PLA/LNR/PLA-g-MA and PLA/LNR/NR-g-MA blends were prepared via melt-blending method. The loading of PLA-g-MA and NR-g-MA was varied by 5, 10 and 15 wt% respectively. The addition of PLA-g-MA led to increment in tensile strength with 5 and 10 wt% while NR-g-MA gives lower than controlled sample (PLA/LNR blend). Scanning electron microscope (SEM) showed the interaction of the components in the blends. The PLA/LNR compatibilized with PLA-g-MA and NR-g-MA shows greater dispersion and adhesion.

  7. Evaporation characteristics of ETBE-blended gasoline

    International Nuclear Information System (INIS)

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-01-01

    Highlights: • We chose 8-component hydrocarbon mixture as a model gasoline, and defined the molar mass of gasoline. • We proposed an evaporation model assuming a 2-component mixture of gasoline and ETBE. • We predicted the change in the vapor pressure of ETBE-blended gasoline by evaporation. • The vapor pressures were measured and compared as a means of verifying the model. • We presented the method for predicting flash points of the ETBE-blended gasoline. - Abstract: To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were

  8. Evaporation characteristics of ETBE-blended gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Katsuhiro, E-mail: okamoto@nrips.go.jp [National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882 (Japan); Hiramatsu, Muneyuki [Yamanashi Prefectural Police H.Q., 312-4 Kubonakajima, Isawa-cho, Usui, Yamanashi 406-0036 (Japan); Hino, Tomonori; Otake, Takuma [Metropolitan Police Department, 2-1-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8929 (Japan); Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi [National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882 (Japan)

    2015-04-28

    Highlights: • We chose 8-component hydrocarbon mixture as a model gasoline, and defined the molar mass of gasoline. • We proposed an evaporation model assuming a 2-component mixture of gasoline and ETBE. • We predicted the change in the vapor pressure of ETBE-blended gasoline by evaporation. • The vapor pressures were measured and compared as a means of verifying the model. • We presented the method for predicting flash points of the ETBE-blended gasoline. - Abstract: To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were

  9. Melting of superheated molecular crystals

    Science.gov (United States)

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-07-01

    Melting dynamics of micrometer scale, polycrystalline samples of isobutane, dimethyl ether, methyl benzene, and 2-propanol were investigated by fast scanning calorimetry. When films are superheated with rates in excess of 105 K s-1, the melting process follows zero-order, Arrhenius-like kinetics until approximately half of the sample has transformed. Such kinetics strongly imply that melting progresses into the bulk via a rapidly moving solid-liquid interface that is likely to originate at the sample's surface. Remarkably, the apparent activation energies for the phase transformation are large; all exceed the enthalpy of vaporization of each compound and some exceed it by an order of magnitude. In fact, we find that the crystalline melting kinetics are comparable to the kinetics of dielectric α-relaxation in deeply supercooled liquids. Based on these observations, we conclude that the rate of non-isothermal melting for superheated, low-molecular-weight crystals is limited by constituent diffusion into an abnormally dense, glass-like, non-crystalline phase.

  10. Improved capacitive melting curve measurements

    International Nuclear Information System (INIS)

    Sebedash, Alexander; Tuoriniemi, Juha; Pentti, Elias; Salmela, Anssi

    2009-01-01

    Sensitivity of the capacitive method for determining the melting pressure of helium can be enhanced by loading the empty side of the capacitor with helium at a pressure nearly equal to that desired to be measured and by using a relatively thin and flexible membrane in between. This way one can achieve a nanobar resolution at the level of 30 bar, which is two orders of magnitude better than that of the best gauges with vacuum reference. This extends the applicability of melting curve thermometry to lower temperatures and would allow detecting tiny anomalies in the melting pressure, which must be associated with any phenomena contributing to the entropy of the liquid or solid phases. We demonstrated this principle in measurements of the crystallization pressure of isotopic helium mixtures at millikelvin temperatures by using partly solid pure 4 He as the reference substance providing the best possible universal reference pressure. The achieved sensitivity was good enough for melting curve thermometry on mixtures down to 100 μK. Similar system can be used on pure isotopes by virtue of a blocked capillary giving a stable reference condition with liquid slightly below the melting pressure in the reference volume. This was tested with pure 4 He at temperatures 0.08-0.3 K. To avoid spurious heating effects, one must carefully choose and arrange any dielectric materials close to the active capacitor. We observed some 100 pW loading at moderate excitation voltages.

  11. Automatic Control of Silicon Melt Level

    Science.gov (United States)

    Duncan, C. S.; Stickel, W. B.

    1982-01-01

    A new circuit, when combined with melt-replenishment system and melt level sensor, offers continuous closed-loop automatic control of melt-level during web growth. Installed on silicon-web furnace, circuit controls melt-level to within 0.1 mm for as long as 8 hours. Circuit affords greater area growth rate and higher web quality, automatic melt-level control also allows semiautomatic growth of web over long periods which can greatly reduce costs.

  12. Physico-chemical properties of blends of palm olein with other vegetable oils

    Directory of Open Access Journals (Sweden)

    Mobin Siddique, Bazlul

    2010-12-01

    Full Text Available Palm oil (olein was blended with other edible oils for the enhancement of its market acceptability in terms of melting point depression and shelf life. The physico-chemical properties like viscosity, density, melting behavior, peroxide value (PV, saponification value (SV and iodine value (IV of four different binary blends with four vegetable oils were evaluated. Palm olein was found to be more stable against rancidity than the other oils. For the stability against oxidation and melting point depression the palm olein-canola (PO/CO blend was found to be better than the others. The Differential Scanning Calorimeter (DSC thermogram of the melting behavior of the blends traces some new polymorphs of the triglyceride. This study will help the oil producing industry to find out the most economically viable oil blends for cooking purposes, with maximum nutrition as well as desirable physico-chemical properties.

    Aceite de palma (oleína fue mezclada con otros aceites comestibles para aumentar su aceptabilidad en el mercado en términos de descenso del punto de fusión y mejora de su almacenamiento. Las propiedades físico-químicas tales como viscosidad, densidad, comportamiento en la fusión, valor de peróxidos (PV, valor de saponificación (SV e índice de yodo (IV de cuatro diferentes mezclas binarias con cuatro aceites vegetales fueron evaluadas. La oleína de palma fue más estable frente a la rancidez que otros aceites. En la estabilidad frente la oxidación y el descenso del punto de fusión, la mezcla de oleína de palma/canola (PO/CO fue mejor que las otras. Los termogramas del calorímetro diferencial de barrido (DSC referidos al comportamiento de fusión de las mezclas indican algunos nuevos polimorfismos de los triglicéridos. Este estudio podría ayudar a las empresas que elaboran aceites a encontrar los aceites económicamente más viables para cocinar, con buenas propiedades nutricionales, así como con unas propiedades f

  13. Mechanical properties of irradiated rubber-blends

    International Nuclear Information System (INIS)

    Nasr, G.M.; Madani, M.

    2005-01-01

    A study has been made on blend ratios of natural rubber (NR) and acrylonitrile butadiene rubber (NBR) that are loaded with general purpose furnace (GPE) carbon black and irradiated at different gamma radiation doses. It was fount that the mechanical properties of such blend are highly affected by γ- irradiation dose and the composition ratios of its constituents. The elongation at break for blends was found to increase slightly with increasing NBR loafing which is mainly due to the stiffness of blending matrix formation between NR and GPF carbon black particles. The hysteresis loss, extension ratio and shape factor have been calculated for the different un-irradiated and irradiated samples

  14. THE COMBUSTION CHARACTERISTICS OF LIGNITE BLENDS

    Institute of Scientific and Technical Information of China (English)

    Cheng Jun; Zhou Junhu; Cao Xinyu; Cen Kefa

    2000-01-01

    The combustion characteristics of lignite blends were studied with a thermogravimetric analyzer (t.g.a.), at constant heating rate.The characteristic temperatures were determined from the burning profiles.It was found that the characteristic times of combustion reaction moved forward, the ignition temperature dropped and the burnout efficiency slightly changed when blending lignites.The characteristic parameters of blends could not be predicted as a linear function of the average values of the individual lignites.when blending with less reactive coal, the ignition and burnout characteristics of lignite turned worse.

  15. Microstructure and properties of high chrome steel roller after laser surface melting

    Energy Technology Data Exchange (ETDEWEB)

    Li Meiyan, E-mail: lmy_102411@163.com [College of Electromechanical Engineering, China University of Petroleum, 271 Bei' er Road, Dongying 257061 (China); Wang Yong; Han Bin; Zhao Weimin; Han Tao [College of Electromechanical Engineering, China University of Petroleum, 271 Bei' er Road, Dongying 257061 (China)

    2009-06-15

    Laser surface melting of high chrome steels was achieved by a 5 kW continuous wave CO{sub 2} laser. The microstructure of the laser surface-melted steels was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffractometry, and the hardness profiles were determined by a Vickers hardness tester. The corrosion behavior in 3.5% NaCl solution was studied by electrochemical corrosion equipment. The large carbides of high chrome steels are completely dissolved and ultrafine dendrites of austenite with submicroscopic M{sub 23}C{sub 6} carbides precipitation are formed in the melted zone. The austenite in the melted zone has a high tempering stability. The corrosion resistance of the laser surface-melted steels is significantly improved due to the dissolution of carbides and the increase of the alloying elements in the solid solution as well as the large amount of austenite.

  16. Microstructure and properties of high chrome steel roller after laser surface melting

    International Nuclear Information System (INIS)

    Li Meiyan; Wang Yong; Han Bin; Zhao Weimin; Han Tao

    2009-01-01

    Laser surface melting of high chrome steels was achieved by a 5 kW continuous wave CO 2 laser. The microstructure of the laser surface-melted steels was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffractometry, and the hardness profiles were determined by a Vickers hardness tester. The corrosion behavior in 3.5% NaCl solution was studied by electrochemical corrosion equipment. The large carbides of high chrome steels are completely dissolved and ultrafine dendrites of austenite with submicroscopic M 23 C 6 carbides precipitation are formed in the melted zone. The austenite in the melted zone has a high tempering stability. The corrosion resistance of the laser surface-melted steels is significantly improved due to the dissolution of carbides and the increase of the alloying elements in the solid solution as well as the large amount of austenite.

  17. Effect of layered silicates and reactive compatibilization on structure and properties of melt-drawn HDPE/PA6 microfibrillar composites

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Kaprálková, Ludmila; Kratochvíl, Jaroslav; Padovec, Z.; Růžička, M.; Hromádková, Jiřina

    2016-01-01

    Roč. 73, č. 6 (2016), s. 1673-1688 ISSN 0170-0839 R&D Projects: GA ČR(CZ) GA13-15255S Institutional support: RVO:61389013 Keywords : nanocomposite * blend * melt drawing Subject RIV: JI - Composite Materials Impact factor: 1.430, year: 2016

  18. Design Principles for the Blend in Blended Learning: A Collective Case Study

    Science.gov (United States)

    Lai, Ming; Lam, Kwok Man; Lim, Cher Ping

    2016-01-01

    This paper reports on a collective case study of three blended courses taught by different instructors in a higher education institution, with the purpose of identifying the different types of blend and how the blend supports student learning. Based on the instructors' and students' interviews, and document analysis of course outlines, two major…

  19. Physicochemical properties of poly(lactic acid-co-glycolic acid film modified via blending with poly(butyl acrylate-co-methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Guoquan Zhu

    2013-01-01

    Full Text Available A series of poly(lactic acid-co-glycolic acid (PLGA/poly(butyl acrylate-co-methyl methacrylate (P(BA-co-MMA blend films with different P(BA-co-MMA mole contents were prepared by casting the polymer blend solution in chloroform. Surface morphologies of the PLGAP(BA-co-MMA blend films were studied by scanning electron microscopy (SEM. Thermal, mechanical, and chemical properties of PLGAP(BA-co-MMA blend films were investigated by differential scanning calorimeter (DSC, thermogravimetric analysis (TGA, tensile tests, and surface contact angle tests. The introduction of P(BA-co-MMA could modify the properties of PLGA films.

  20. Magnetic susceptibility of semiconductor melts

    International Nuclear Information System (INIS)

    Kutvitskij, V.A.; Shurygin, P.M.

    1975-01-01

    The temperature dependences chi of various alloys confirm the existence of cluster formations in molten semiconductors, the stability of these formations in melts being considerably affected by the anion nature. The concentrational dependences of the magnetic susceptibility for all the investigated systems exhibit the diamagnetism maxima corresponding to the compound compositions. Heating the melt causes ''smearing'' the maxima, which is related with the cluster structure dissociation. The existence of the maxima concentrational dependence chi corresponding to BiTe and BiSe is found in the isotherms. The non-linear dependence of chi on the composition shows the absence of a single-valued relation between the phase diagram and the chi-diagram for melts

  1. Fracture mechanics and statistical modeling of ternary blends of polylactide/ethylene-acrylate copolymer /wood-flour composites

    Science.gov (United States)

    Afrifah, Kojo Agyapong

    This study examined the mechanisms of toughening the brittle bio-based poly(lactic acid) (PLA) with a biodegradable rubbery impact modifier to develop biodegradable and cost effective PLA/wood-flour composites with improved impact strength, toughness, high ductility, and flexibility. Semicrystalline and amorphous PLA grades were impact modified by melt blending with an ethylene-acrylate copolymer (EAC) impact modifier. EAC content was varied to study the effectiveness and efficiency of the impact modifier in toughening the semicrystalline and amorphous grades of the PLA. Impact strength was used to assess the effectiveness and efficiency of the EAC in toughening the blends, whereas the toughening mechanisms were determined with the phase morphologies and the miscibilities of the blends. Subsequent tensile property analyses were performed on the most efficiently toughened PLA grade. Composites were made from PLA, wood flour of various particle sizes, and EAC. Using two-level factorial design the interaction between wood flour content, wood flour particle size, and EAC content and its effect on the mechanical properties of the PLA/wood-flour composites was statistically studied. Numerical optimization was also performed to statistically model and optimize material compositions to attain mechanical properties for the PLA/wood-flour composites equivalent to at least those of unfilled PLA. The J-integral method of fracture mechanics was applied to assess the crack initiation (Jin) and complete fracture (J f) energies of the composites to account for imperfections in the composites and generate data useful for engineering designs. Morphologies of the fractured surfaces of the composites were analyzed to elucidate the failure and toughening mechanisms of the composites. The EAC impact modifier effectively improved the impact strength of the PLA/EAC blends, regardless of the PLA type. However, the EAC was more efficient in the semicrystalline grades of PLA compared to the

  2. Topological and morphological analysis of gamma rays irradiated chitosan-poly (vinyl alcohol) blends using atomic force microscopy

    International Nuclear Information System (INIS)

    Bhatt, Rinkesh; Bisen, D.S.; Bajpai, R.; Bajpai, A.K.

    2017-01-01

    In the present communication, binary blends of poly (vinyl alcohol) (PVA) and chitosan (CS) were prepared by solution cast method and the roughness parameters of PVA, native CS and CS-PVA blend films were determined using atomic force microscopy (AFM). Moreover, the changes in the morphology of the samples were also investigated after irradiation of gamma rays at absorbed dose of 1 Mrad and 10 Mrad for the scanning areas of 5×5 µm 2 , 10×10 µm 2 and 20×20 µm 2 . Amplitude, statistical and spatial parameters, including line, 3D and 2D image profiles of the experimental surfaces were examined and compared to un-irradiated samples. For gamma irradiated CS-PVA blends the larger waviness over the surface was found as compared to un-irradiated CS-PVA blends but the values of average roughness for both the films were found almost same. The coefficient of skewness was positive for gamma irradiated CS-PVA blends which revealed the presence of more peaks than valleys on the blend surfaces. - Highlights: • Binary polymer blends of chitosan and PVA were prepared. • Irradiation by gamma rays exhibited a significant change in surface morphology. • Various topographical and morphological parameters were investigated. • The prepared irradiated blends may find biomedical applications.

  3. On the rapid melt quenching

    International Nuclear Information System (INIS)

    Usatyuk, I.I.; Novokhatskij, I.A.; Kaverin, Yu.F.

    1994-01-01

    Specific features of instrumentation of traditionally employed method of melt spinning (rapid quenching), its disadvantages being discussed, were analyzed. The necessity of the method upgrading as applied to the problems of studying fine structure of molten metals and glasses was substantiated. The principle flowsheet of experimental facility for extremely rapid quenching of the melts of metals is described, specificity of its original functional units being considered. The sequence and character of all the principal stages of the method developed were discussed. 18 refs.; 3 figs

  4. Sludge Stabilization Campaign blend plan

    International Nuclear Information System (INIS)

    De Vries, M.L.

    1994-01-01

    This sludge stabilization blend plan documents the material to be processed and the order of processing for the FY95 Sludge Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing sludge. The source of the sludge is residual and glovebox floor sweepings from the production of material at the Plutonium Finishing Plant (PFP). The reactive sludge is currently being stored in various gloveboxes at PFP. There are two types of the plutonium bearing material that will be thermally stabilized in the muffle furnace: Plutonium Reclamation Facility (PRF) sludge and Remote Mechanical C (RMC) Line material

  5. Preparation and tensile properties of linear low density polyethylene/rambutan peels (Nephelium chryseum Blum.) flour blends

    Science.gov (United States)

    Nadhirah, A. Ainatun.; Sam, S. T.; Noriman, N. Z.; Voon, C. H.; Samera, S. S.

    2015-05-01

    The effect of rambutan peels flour (RPF) content on the tensile properties of linear low density polyethylene filled with rambutan peel flour was studied. RPF was melt blended with linear low-density polyethylene (LLDPE). LLDPE/RPF blends were prepared by using internal mixer (brabender) at 160 °C with the flour content ranged from 0 to 15 wt%. The tensile properties were tested by using a universal testing machine (UTM) according to ASTM D638. The highest tensile strength was observed for pure LLDPE while the tensile strength LLDPE/RPF decreased gradually with the addition of rambutan peels flour content from 0% to 15%. Young's modulus of 63 µm to 250 µm rambutan peels blends with LLDPE with the fiber loading of 0 - 15 wt% increased with increasing fiber loading.

  6. Investigation of miscibility of p(3hydroxybutyrate-co-3hydroxyhexanoate) and epoxidized natural rubber blends

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Faridah; Chan, Chin Han; Natarajan, Valliyappan David [Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450 Selangor Darul Ehsan (Malaysia)

    2015-08-28

    Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate [P(3HB-co-3HHx)] produced by C. necator PHB{sup −}4 harboring phaC{sub cs} from crude palm kernel oil with 21 mol% of 3-hydroxyhexanoate and epoxidized natural rubber with 25 mol% of epoxy content (ENR-25) were used to study the miscibility of the blends by attenuated total reflection-Fourier transform infrared (ATR-FTIR) and differential scanning calorimetry (DSC). The polymers used were purified and the blends were prepared by solution casting method. Nuclear magnetic resonance (NMR) spectra confirm the purity and molecular structures of P(3HB-co-3HHx) and ENR-25. FTIR spectra for different compositions of P(3HB-co-3HHx) and ENR-25 blends show absorbance change of the absorbance bands but with no significant shifting of the absorbance bands as the P(3HB-co-3HHx) content decreases, which shows that there is no intermolecular interaction between the parent polymer blends. On top of that, there are two T{sub g}s present for the blends and both remain constant for different compositions which corresponds to the T{sub g}s of the parent polymers. This indicates that the blends are immiscible.

  7. Cell culture medium improvement by rigorous shuffling of components using media blending.

    Science.gov (United States)

    Jordan, Martin; Voisard, Damien; Berthoud, Antoine; Tercier, Laetitia; Kleuser, Beate; Baer, Gianni; Broly, Hervé

    2013-01-01

    A novel high-throughput methodology for the simultaneous optimization of many cell culture media components is presented. The method is based on the media blending approach which has several advantages as it works with ready-to-use media. In particular it allows precise pH and osmolarity adjustments and eliminates the need of concentrated stock solutions, a frequent source of serious solubility issues. In addition, media blending easily generates a large number of new compositions providing a remarkable screening tool. However, media blending designs usually do not provide information on distinct factors or components that are causing the desired improvements. This paper addresses this last point by considering the concentration of individual medium components to fix the experimental design and for the interpretation of the results. The extended blending strategy was used to reshuffle the 20 amino acids in one round of experiments. A small set of 10 media was specifically designed to generate a large number of mixtures. 192 mixtures were then prepared by media blending and tested on a recombinant CHO cell line expressing a monoclonal antibody. A wide range of performances (titers and viable cell density) was achieved from the different mixtures with top titers significantly above our previous results seen with this cell line. In addition, information about major effects of key amino acids on cell densities and titers could be extracted from the experimental results. This demonstrates that the extended blending approach is a powerful experimental tool which allows systematic and simultaneous reshuffling of multiple medium components.

  8. Investigation of miscibility of p(3hydroxybutyrate-co-3hydroxyhexanoate) and epoxidized natural rubber blends

    International Nuclear Information System (INIS)

    Akram, Faridah; Chan, Chin Han; Natarajan, Valliyappan David

    2015-01-01

    Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate [P(3HB-co-3HHx)] produced by C. necator PHB − 4 harboring phaC cs from crude palm kernel oil with 21 mol% of 3-hydroxyhexanoate and epoxidized natural rubber with 25 mol% of epoxy content (ENR-25) were used to study the miscibility of the blends by attenuated total reflection-Fourier transform infrared (ATR-FTIR) and differential scanning calorimetry (DSC). The polymers used were purified and the blends were prepared by solution casting method. Nuclear magnetic resonance (NMR) spectra confirm the purity and molecular structures of P(3HB-co-3HHx) and ENR-25. FTIR spectra for different compositions of P(3HB-co-3HHx) and ENR-25 blends show absorbance change of the absorbance bands but with no significant shifting of the absorbance bands as the P(3HB-co-3HHx) content decreases, which shows that there is no intermolecular interaction between the parent polymer blends. On top of that, there are two T g s present for the blends and both remain constant for different compositions which corresponds to the T g s of the parent polymers. This indicates that the blends are immiscible

  9. Investigation of miscibility of p(3hydroxybutyrate-co-3hydroxyhexanoate) and epoxidized natural rubber blends

    Science.gov (United States)

    Akram, Faridah; Chan, Chin Han; Natarajan, Valliyappan David

    2015-08-01

    Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate [P(3HB-co-3HHx)] produced by C. necator PHB-4 harboring phaCcs from crude palm kernel oil with 21 mol% of 3-hydroxyhexanoate and epoxidized natural rubber with 25 mol% of epoxy content (ENR-25) were used to study the miscibility of the blends by attenuated total reflection-Fourier transform infrared (ATR-FTIR) and differential scanning calorimetry (DSC). The polymers used were purified and the blends were prepared by solution casting method. Nuclear magnetic resonance (NMR) spectra confirm the purity and molecular structures of P(3HB-co-3HHx) and ENR-25. FTIR spectra for different compositions of P(3HB-co-3HHx) and ENR-25 blends show absorbance change of the absorbance bands but with no significant shifting of the absorbance bands as the P(3HB-co-3HHx) content decreases, which shows that there is no intermolecular interaction between the parent polymer blends. On top of that, there are two Tgs present for the blends and both remain constant for different compositions which corresponds to the Tgs of the parent polymers. This indicates that the blends are immiscible.

  10. Effect of UV irradiation on optical, mechanical and microstructural properties of PVA/NaAlg blends

    Science.gov (United States)

    Sheela, T.; Bhajantri, R. F.; Ravindrachary, V.; Rathod, Sunil G.; Pujari, P. K.; Poojary, Boja; Somashekar, R.

    2014-10-01

    Poly(vinyl alcohol) (PVA)/Sodium alginate (NaAlg) blend films with 60:40 wt% were prepared by solution casting method and subjected to UV irradiation for different intervals of time. The optical, mechanical and morphological properties of the blend films were modified after UV irradiation. The FTIR and FT-Raman results show the chemical interaction between PVA and NaAlg. The UV-vis absorption peak at 278 nm shifts slightly towards longer wavelength and the absorption increases with irradiation time, indicate the increase in crosslinking network. The XRD results show an increase in amorphous nature with increase in UV irradiation time. The DSC/TGA results show a single glass transition temperature (Tg), which confirm that the blends are completely miscible and thermally stable up to 250 °C. The Young's modulus, tensile strength and stiffness of the blend films increase with increase in UV irradiation time. The SEM images confirm that the surface of 48 h UV irradiated PVA:NaAlg blend is more photo-resistant than unirradiated blend.

  11. Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method.

    Science.gov (United States)

    Santos, Carla; Silva, Carla J; Büttel, Zsófia; Guimarães, Rodrigo; Pereira, Sara B; Tamagnini, Paula; Zille, Andrea

    2014-01-01

    A series of polyvinyl alcohol (PVA), PVA/chitosan (CS) and PVA/cyanobacterial extracellular polymeric substances (EPS) blended nanofibrous membranes were produced by electrospinning using a microfiltration poly(vinylidene fluoride) (PVDF) basal membrane, for potential applications in water filtration. Nanofibres were obtained from solutions of 20% (w/w) PVA with 1% (w/w) CS or EPS, using a weight ratio of 60/40. Blended nanofibres have shown a smooth morphology, no beads formation and diameters between 50 and 130 nm. Thermo-mechanical analysis demonstrated that there were inter and/or intramolecular hydrogen bonds between the molecules of PVA/CS and PVA/EPS in the blends. The electrospun blended PVA/EPS membrane showed better tensile mechanical properties when compared with PVA and PVA/CS, and resisted more against disintegration in the temperature range between 10 and 50 °C. Finally, the blended membranes have shown an increase in chromium binding capacity of 5%. This is the first successful report of a blended membrane of electrospinned cyanobacterial polysaccharide with PVA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The potential use of mobile technology: enhancing accessibility and communication in a blended learning course

    Directory of Open Access Journals (Sweden)

    Tabisa Mayisela

    2013-01-01

    Full Text Available Mobile technology is increasingly being used to support blended learning beyond computer centres. It has been considered as a potential solution to the problem of a shortage of computers for accessing online learning materials (courseware in a blended learning course. The purpose of the study was to establish how the use of mobile technology could enhance accessibility and communication in a blended learning course. Data were solicitedfrom a purposive convenience sample of 36 students engaged in the blended learning course. The case study utilized a mixed-methods approach. An unstructured interview was conducted with the course lecturer and these data informed the design of the students' semi-structured questionnaire. It was found that students with access to mobile technology had an increased opportunity to access the courseware of the blended learning course. Mobile technology further enhanced student-to-student and student-to-lecturer communication by means of social networks. The study concludes that mobile technology has the potential to increase accessibility and communication in a blended learning course. Recommendations, limitations of the present study, and suggestionsforfuture research were made.

  13. About the cure kinetics in natural rubber/styrene Butadiene rubber blends at 433 K

    International Nuclear Information System (INIS)

    Mansilla, M.A.; Marzocca, A.J.

    2012-01-01

    Vulcanized blends of elastomers are employed in several goods mainly to improve physical properties and reduce costs. One of the most used blends of this kind is that composed by natural rubber (NR) and styrene butadiene rubber (SBR). The cure kinetic of these blends depends mainly on the compound formulation and the cure temperature and time. The preparation method of the blends can influence the mechanical properties of the vulcanized compounds. In this work the cure kinetic at 433 K of NR/SBR blends vulcanized with the system sulfur/TBBS (N-t-butyl-2-benzothiazole sulfenamide) is analyzed in samples prepared by mechanical mixing and solution blending. The two methods produce elastomer domains of NR and SBR, which present different microstructure due to the cure level attained during vulcanization. The cure kinetics is studied by means of rheometer tests and the model proposed by Kamal and Sourour. The analysis of the cure rate is presented and is related to the structure obtained during the vulcanization process.

  14. About the cure kinetics in natural rubber/styrene Butadiene rubber blends at 433 K

    Energy Technology Data Exchange (ETDEWEB)

    Mansilla, M.A., E-mail: mmansilla@df.uba.ar [Laboratorio de Polimeros y Materiales Compuestos, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 1, C1428EGA Buenos Aires (Argentina); Marzocca, A.J. [Laboratorio de Polimeros y Materiales Compuestos, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 1, C1428EGA Buenos Aires (Argentina)

    2012-08-15

    Vulcanized blends of elastomers are employed in several goods mainly to improve physical properties and reduce costs. One of the most used blends of this kind is that composed by natural rubber (NR) and styrene butadiene rubber (SBR). The cure kinetic of these blends depends mainly on the compound formulation and the cure temperature and time. The preparation method of the blends can influence the mechanical properties of the vulcanized compounds. In this work the cure kinetic at 433 K of NR/SBR blends vulcanized with the system sulfur/TBBS (N-t-butyl-2-benzothiazole sulfenamide) is analyzed in samples prepared by mechanical mixing and solution blending. The two methods produce elastomer domains of NR and SBR, which present different microstructure due to the cure level attained during vulcanization. The cure kinetics is studied by means of rheometer tests and the model proposed by Kamal and Sourour. The analysis of the cure rate is presented and is related to the structure obtained during the vulcanization process.

  15. Physicochemical and FTIR Study of Diesel-Hydrogen Peroxide Fuel Blend

    Science.gov (United States)

    Saad Khan, Muhammad; Ahmed, Iqbal; Lal, Bhajan; Idris, Al-Amin; Albeirutty, Muhammad H.; Ayoub, Muhammad; Sufian, Suriati binti

    2018-04-01

    Physicochemical properties of combustion fuels play a key role in determining the qualitative and quantitative characteristics, reliability and health effects associated with emissions. This paper reports the preparation of polysaccharide (PS) based emulsifier for stable blending of petroleum diesel-hydrogen peroxide (H2O2) and investigated the influence of H2O2 as diesel fuel blends on the physicochemical properties and characteristics. The quantity of PS-emulsifier was kept at 5 volume % (vol. %) and the volume ratio of H2O2 were varied 5-15 vol. % to reference diesel (RD), respectively. The blended diesel/H2O2 fuel were prepared under inert oxygen (O2) gas closed heating system; afterthought, physiochemical properties of diesel/H2O2 blend were evaluated at standard ASTM D-975 testing method. The kinetic properties show the interaction of RD and H2O2 blend at presence of PS emulsifier which exhibit the phenomenon to diminish the interfacial tension among the two different phases to form a homogenized stable solution. Results revealed that H2O2 is capable of enhancing the diesel fuel properties and showed that the addition of H2O2 in a diesel fuel blend are lied within the ranges of standard ASTM D-975. Due to further oxygen atom present in H2O2, it can facilitate the combustion process which ultimately effect on exhaust emission.

  16. COMPARISON OF STUDENT SATISFACTION BETWEEN TRADITIONAL AND BLENDED TECHNOLOGY COURSE OFFERINGS IN PHYSICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Nikolaos VERNADAKIS

    2012-01-01

    Full Text Available Blended learning With the concerns and dissatisfaction with e-learning, educators are searching for alternative instructional delivery solutions to relieve the above problems. The blended e-learning system has been presented as a promising alternative learning approach. While blended learning has been recognized as having a number of advantages, insufficient learning satisfaction is still an obstacle to its successful adoption. Therefore, the purpose of this study was to evaluate students’ satisfaction with blended learning course delivery compared to a traditional face-to-face class format in a general multimedia course in physical education. Forty six (n=46 undergraduate students, between the ages of 20-22 years old, were randomly assigned into two teaching method groups: Classroom Lecture Instruction (CLI and Blended Lecture Instruction (BLI. For the data collection at the end of this study, students completed an online satisfaction questionnaire.Independent sample t-test analysis was conducted to measure students’ satisfaction towards the CLI and BLI methods. Results indicated that a blended course delivery is preferred over the traditional lecture format. These finding suggest that students' satisfaction could increase when the instructor provides learning environments not only in a traditional classroom, but in an asynchronous online system as well.

  17. Melting and liquid structure of polyvalent metal halides

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1992-08-01

    A short review is given of recent progress in determining and understanding liquid structure types and melting mechanisms for halides of polyvalent metals. The nature of the preferred local coordination for the polyvalent metal ion in the melt can usually be ascertained from data on liquid mixtures with halogen-donating alkali halides. The stability of these local coordination states and the connectivity that arises between them in the approach to the pure melt determines the character of its short-range and possible medium-range order. A broad classification of structural and melting behaviours can be given on the basis of measured melting parameters and transport coefficients for many compounds, in combination with the available diffraction data on the liquid structure of several compounds. Correlations have been shown to exist with a simple indicator of the nature of the chemical bond and also with appropriate parameters of ionic models, wherever the latter are usefully applicable for semiquantitative calculations of liquid structure. Consequences on the mechanisms for valence electron localization in solutions of metallic elements into strongly structured molten salts are also briefly discussed. (author). 46 refs, 4 figs, 2 tabs

  18. Alternative polymer separation technology by centrifugal force in a melted state

    International Nuclear Information System (INIS)

    Dobrovszky, Károly; Ronkay, Ferenc

    2014-01-01

    Highlights: • Waste separation should take place at high purity. • Developed a novel, alternative separation method, where the separation occurred in a melted state by centrifugal forces. • Possibility of separation two different plastics into neat fractions. • High purity fractions were established at granulates and also at prefabricated blend. • Results were verified by DSC, optical microscopy and Raman spectroscopy. - Abstract: In order to upgrade polymer waste during recycling, separation should take place at high purity. The present research was aimed to develop a novel, alternative separation opportunity, where the polymer fractions were separated by centrifugal force in melted state. The efficiency of the constructed separation equipment was verified by two immiscible plastics (polyethylene terephthalate, PET; low density polyethylene, LDPE), which have a high difference of density, and of which large quantities can also be found in the municipal solid waste. The results show that the developed equipment is suitable not only for separating dry blended mixtures of PET/LDPE into pure components again, but also for separating prefabricated polymer blends. By this process it becomes possible to recover pure polymer substances from multi-component products during the recycling process. The adequacy of results was verified by differential scanning calorimetry (DSC) measurement as well as optical microscopy and Raman spectroscopy

  19. Alternative polymer separation technology by centrifugal force in a melted state

    Energy Technology Data Exchange (ETDEWEB)

    Dobrovszky, Károly; Ronkay, Ferenc, E-mail: ronkay@pt.bme.hu

    2014-11-15

    Highlights: • Waste separation should take place at high purity. • Developed a novel, alternative separation method, where the separation occurred in a melted state by centrifugal forces. • Possibility of separation two different plastics into neat fractions. • High purity fractions were established at granulates and also at prefabricated blend. • Results were verified by DSC, optical microscopy and Raman spectroscopy. - Abstract: In order to upgrade polymer waste during recycling, separation should take place at high purity. The present research was aimed to develop a novel, alternative separation opportunity, where the polymer fractions were separated by centrifugal force in melted state. The efficiency of the constructed separation equipment was verified by two immiscible plastics (polyethylene terephthalate, PET; low density polyethylene, LDPE), which have a high difference of density, and of which large quantities can also be found in the municipal solid waste. The results show that the developed equipment is suitable not only for separating dry blended mixtures of PET/LDPE into pure components again, but also for separating prefabricated polymer blends. By this process it becomes possible to recover pure polymer substances from multi-component products during the recycling process. The adequacy of results was verified by differential scanning calorimetry (DSC) measurement as well as optical microscopy and Raman spectroscopy.

  20. Gelatinized and nongelatinized corn starch/ poly(epsilon-caprolactone) blends: characterization by rheological, mechanical and morphological properties

    OpenAIRE

    Rosa,Derval S.; Guedes,Cristina G. F.; Pedroso,Andréa G.

    2004-01-01

    Poly(epsilon-caprolactone)/corn starch blends containing 25, 50 and 75 wt.% starch were prepared by mechanical processing and characterized by the melt flow index (MFI), tensile test and scanning electron microscopy (SEM). For comparison, starch was used in gelatinized and nongelatinized forms and was also characterized by viscography. The addition of starch to poly(epsilon-caprolactone) reduced the MFI values, the tensile strength and the elongation at break, whereas the modulus increased. T...

  1. PERFORMANCE ANALYSIS OF 1,4 DIOXANE-ETHANOL-DIESEL BLENDS ON DIESEL ENGINES WITH AND WITHOUT THERMAL BARRIER COATING

    OpenAIRE

    Chockalingam Sundar Raj; Sambandam Arul; Subramanian Sendilvelan; Ganapathy Saravanan

    2010-01-01

    1,4 dioxane, a new additive allows the splash blending of ethanol in diesel in a clear solution. The objective of this investigation is to first create a stable ethanol-diesel blended fuel with 10% 1,4 dioxane additive, and then to generate performance, combustion and emissions data for evaluation of different ethanol content on a single cylinder diesel engine with and without thermal barrier coating. Results show improved performance with blends compared to neat fuel for all conditions of th...

  2. Mechanical, Thermal and Morphological Properties of Poly(lactic acid/Epoxidized Palm Olein Blend

    Directory of Open Access Journals (Sweden)

    Hazimah Abu Hassan

    2012-10-01

    Full Text Available Poly(lactic acid (PLA is known to be a useful material in substituting the conventional petroleum-based polymer used in packaging, due to its biodegradability and high mechanical strength. Despite the excellent properties of PLA, low flexibility has limited the application of this material. Thus, epoxidized palm olein (EPO was incorporated into PLA at different loadings (1, 2, 3, 4 and 5 wt% through the melt blending technique and the product was characterized. The addition of EPO resulted in a decrease in glass transition temperature and an increase of elongation-at-break, which indicates an increase in the PLA chain mobility. PLA/EPO blends also exhibited higher thermal stability than neat PLA. Further, the PLA/1 wt% EPO blend showed enhancement in the tensile, flexural and impact properties. This is due to improved interaction in the blend producing good compatible morphologies, which can be revealed by Scanning Electron Microscopy (SEM analysis. Therefore, PLA can be efficiently plasticized by EPO and the feasibility of its use as flexible film for food packaging should be considered.

  3. Significant Enhancement of Mechanical and Thermal Properties of Thermoplastic Polyester Elastomer by Polymer Blending and Nanoinclusion

    Directory of Open Access Journals (Sweden)

    Manwar Hussain

    2016-01-01

    Full Text Available Thermoplastic elastomer composites and nanocomposites were fabricated via melt processing technique by blending thermoplastic elastomer (TPEE with poly(butylene terephthalate (PBT thermoplastic and also by adding small amount of organo modified nanoclay and/or polytetrafluoroethylene (PTFE. We study the effect of polymer blending on the mechanical and thermal properties of TPEE blends with and without nanoparticle additions. Significant improvement was observed by blending only TPEE and virgin PBT polymers. With a small amount (0.5 wt.% of nanoclay or PTFE particles added to the TPEE composite, there was further improvement in both the mechanical and thermal properties. To study mechanical properties, flexural strength (FS, flexural modulus (FM, tensile strength (TS, and tensile elongation (TE were all investigated. Thermogravimetric analysis (TGA and differential scanning calorimetry (DSC were used to analyze the thermal properties, including the heat distortion temperature (HDT, of the composites. Scanning electron microscopy (SEM was used to observe the polymer fracture surface morphology. The dispersion of the clay and PTFE nanoparticles was confirmed by transmission electron microscopy (TEM analysis. This material is proposed for use as a baffle plate in the automotive industry, where both high HDT and high modulus are essential.

  4. Electron beam cross-linking of natural rubber/linear-low density polyethylene blends

    International Nuclear Information System (INIS)

    Ahmad, A.; Mohd, D. H.; Abdullah, I.

    2005-01-01

    Effects of electron beam irradiation on the mechanical properties and morphological structure of natural rubber/linear-low density polyethylene blend was investigated The natural rubber/linear-low density polyethylene blend was prepared by melt blending in a Haake internal mixer at 140 d ig C , rotor speed of 50 rpm, and in 15 min Liquid natural rubber was incorporated into the blend as a compatibilizer Samples in the form of 1 mm sheets were exposed to 50-300 kGy of electron beam irradiation and analyzed for swelling index and gel content, tensile strength, and surface morphology. The result Indicated that gel content and mechanical properties of the samples increased with radiation dosage. The honey-comb structure of the surface morphology in low dosage irradiated samples slowly transformed into a continuous matrix on increasing radiation dose The variation of mechanical and physical properties was due to Increase in cross-linking density in the rubber and plastic phases and rubber-plastic Interaction on irradiation

  5. Linear polarizers based on oriented polymer blends

    NARCIS (Netherlands)

    Jagt, H.J.B.; Dirix, Y.J.L.; Hikmet, R.A.M.; Bastiaansen, C.W.M.

    1998-01-01

    Linear sheet polarizers based on the anisotropic scattering of light by drawn polymer blends are introduced here. The proper selection of materials and processing conditions for the production of large-area, flexible films of phase-segregated polymer blends suitable for polarization applications are

  6. Enhancing Students' Language Skills through Blended Learning

    Science.gov (United States)

    Banditvilai, Choosri

    2016-01-01

    This paper presents a case study of using blended learning to enhance students' language skills and learner autonomy in an Asian university environment. Blended learning represents an educational environment for much of the world where computers and the Internet are readily available. It combines self-study with valuable face-to-face interaction…

  7. Blended Learning in Personalized Assistive Learning Environments

    Science.gov (United States)

    Marinagi, Catherine; Skourlas, Christos

    2013-01-01

    In this paper, the special needs/requirements of disabled students and cost-benefits for applying blended learning in Personalized Educational Learning Environments (PELE) in Higher Education are studied. The authors describe how blended learning can form an attractive and helpful framework for assisting Deaf and Hard-of-Hearing (D-HH) students to…

  8. Improving Curriculum through Blended Learning Pedagogy

    Science.gov (United States)

    Darojat, Ojat

    2016-01-01

    This paper is a study of blended learning pedagogy in open and distance learning (ODL), involving two universities in Southeast Asia, STOU Thailand and UT Indonesia. The purpose of this study is to understand the issues related to the implementation of blended-learning pedagogy. Qualitative case study was employed to optimize my understanding of…

  9. Preparing Teachers for Emerging Blended Learning Environments

    Science.gov (United States)

    Oliver, Kevin M.; Stallings, Dallas T.

    2014-01-01

    Blended learning environments that merge learning strategies, resources, and modes have been implemented in higher education settings for nearly two decades, and research has identified many positive effects. More recently, K-12 traditional and charter schools have begun to experiment with blended learning, but to date, research on the effects of…

  10. Effect of noise in blending and deblending

    NARCIS (Netherlands)

    Berkhout, A.J.; Blacquière, G.

    2013-01-01

    If simultaneous shooting is carried out by incoherent source arrays, being the condition of blended acquisition, the deblending process generates shot records with a very low residual interference (blending noise). We found, theoretically and numerically, that deblended shot records had a better

  11. PAIRWISE BLENDING OF HIGH LEVEL WASTE

    International Nuclear Information System (INIS)

    CERTA, P.J.

    2006-01-01

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending

  12. Multiscattering illumination in blended acquisition design

    NARCIS (Netherlands)

    Berkhout, A.J.; Blacquière, G.; Verschuur, D.J.

    2010-01-01

    In traditional seismic surveys the firing time between shots is such that the records do not interfere in time. However, in the concept of blending the records do overlap, allowing much denser and wider geometries in an economic way. The blending parameters are the locations of the involved sources

  13. Structuring of Interface-Modified Polymer Blends

    DEFF Research Database (Denmark)

    Lyngaae-Jørgensen, Jørgen

    1999-01-01

    The paper treats the case where blends of polystyrene (PS), poly (dimethylsiloxane) (PDMS) and a diblock copolymer of PS and PDMS are used as model materials. This modelsystem is predicted to be "stable" in discrete blends in simple shear flow. Stable in the sence that the block copolymer can not...

  14. Meeting Diverse Learner Needs with Blended Learning

    Science.gov (United States)

    Owen, Hazel

    2010-01-01

    This article describes a 40-week Computer, Research Skills, and Projects (CRSP) blended learning course designed and implemented at Dubai Men's College. The learning employed a design using socio-constructivist principles in the blended approach to cater to the learning preferences of students. (Contains 2 figures and 1 footnote.)

  15. Acoustic detection of melt particles

    International Nuclear Information System (INIS)

    Costley, R.D. Jr.

    1988-01-01

    The Reactor Safety Research Department at Sandia National Laboratories is investigating a type of Loss of Coolant Accident (LOCA). In this particular type of accident, core meltdown occurs while the pressure within the reactor pressure vessel (RPV) is high. If one of the instrument tube penetrations in the lower head fails, melt particles stream through the cavity and into the containment vessel. This experiment, which simulates this type accident, was performed in the Surtsev Direct Heating Test Facility which is approximately a 1:10 linear scaling of a large dry containment volume. A 1:10 linear scale model of the reactor cavity was placed near the bottom of the Surtsey vessel so that the exit of the cavity was at the vertical centerline of the vessel. A pressure vessel used to create the simulated molten core debris was located at the scaled height of the RPV. In order to better understand how the melt leaves the cavity and streams into the containment an array of five acoustic sensors was placed directly in the path of the melt particles about 30 feet from the exit of the sealed cavity. Highly damped, broadband sensors were chosen to minimize ringing so that individual particle hits could be detected. The goal was to count the signals produced by the individual particle hits to get some idea of how the melt particles left the cavity. This document presents some of the results of the experiment. 9 figs

  16. Thermodynamics of freezing and melting

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas

    2016-01-01

    phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  17. Detonation waves in melt-coolant interaction. Part 2. Applied analysis

    International Nuclear Information System (INIS)

    Kolev, N.I.; Hulin, H.

    2001-01-01

    Making use of the detonation theory presented in part 1 for melt-water interaction, detonation solutions for different melt-water pairs at different conditions are compared to each other. Discussion is provided on the existence of detonation solutions for water droplet - melt droplet - gas systems. The conclusion is made that even if such solution can be realized in the nature, which is highly questionable, the resulting detonation pressures will be below 200 bar. This is an important result for judging the risk of the melt-water disperse mixtures in nuclear safety analysis. In addition, the detonation pressures for alumna-continuous water systems have been found to be stronger then those for urania-continuous water systems, in agreement with the experimental observations and seems to give finally the searched for a long time explanation why alumna-water systems detonate much more violent than urania-water systems. (orig.) [de

  18. Effect of Babassu Natural Filler on PBAT/PHB Biodegradable Blends: An Investigation of Thermal, Mechanical, and Morphological Behavior

    Directory of Open Access Journals (Sweden)

    Vinicius C. Beber

    2018-05-01

    Full Text Available Blending of biodegradable polymers in combination with low-price organic fillers has proven to be a suitable approach to produce cost-effective composites in order to address pollution issues and develop products with superior mechanical properties. In the present research work PBAT/PHB/Babassu composites with 25, 50, and 75% of each polymer and 20% of Babassu were produced by melting extrusion. Their thermal, mechanical, and morphological behavior was investigated by differential scanning calorimetry (DSC, tensile testing, and scanning electron microscopy (SEM. Blending PBAT with PHB inhibited the crystallization of both polymers whereas adding Babassu did not significantly change their melting behaviour. Incorporation of Babassu reduced the tensile strength of its respective blends between 4.8 and 32.3%, and elongation at break between 26.0 and 66.3%. PBAT as highly ductile and low crystalline polymer may be seen as a crystallization tool control for PHB as well as a plasticizer to PBAT/PHB blends and PBAT/PHB/Babassu composites. As PBAT content increases: (i elongation at break increases and (ii surface fracture becomes more refined indicating the presence of more energy dissipation mechanisms. As PBAT/PHB/Babassu composites are biodegradable, environmental friendly, and cost effective, products based on these compounds have a great potential since their mechanical properties such as ductility, stiffness, and tensile strength are still suitable for several applications even at lower temperatures (−40 °C.

  19. Effect of platy and tubular nanoclays on behaviour of biodegradable PCL/PLA blend and related microfibrillar composites

    Science.gov (United States)

    Kelnar, Ivan; Kratochvíl, Jaroslav

    2016-05-01

    Blending of ductile poly(ɛ-caprolactone) (PCL) and rigid polylactic acid (PLA) is a promising way to tailor biodegradable materials with broad range of properties. But the mutual incompatibility of both polyesters leads to compromised behaviour only. Alternative to PCL/PLA blends is application of PLA in the form of short fibres, however, difficult dispergation of flexible fibres including their poor adhesion and limited processing is a significant restriction. More effective is in situ formation of polymeric fibre-reinforced materials using microfibrillar composites (MFC) concept based on melt- or cold-drawing of a polymer blend. Important advantage of MFC is efficient dispersion and bonding of in-situ formed reinforcing fibres This work deals with combination of structure-directing and reinforcing effects of montmorillonite (oMMT) and halloysite nanotubes (HNT) in the PCL/PLA 80/20 blend with in-situ formation of PLA fibrils in the PCL matrix. In the resulting microfibrillar composite, reinforcement by rigid PLA fibrils is combined with strengthening of both components by the nanofiller (NF). Moreover, PLA fibrils formation via melt-drawing is only possible after nanofiller addition due to favourable affecting of rheological parameters of the polymer components. The structure-properties relationship and complex effect of NF on microfibrillar composite performance, causing e.g., quite comparable parameters of both microfibrillar composites in spite of lower reinforcing effect of halloysite nanotubes on components, are discussed.

  20. A blending rule for octane numbers of PRFs and TPRFs with ethanol

    KAUST Repository

    AlRamadan, Abdullah S.; Sarathy, Mani; Khurshid, Muneeb; Badra, Jihad

    2016-01-01

    -gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates blends may enable a better understanding of ethanol blending with complex multi-component gasoline fuels. This study presents a blending rule