WorldWideScience

Sample records for solutions including ph

  1. Metal extraction from Cetraria islandica (L. Ach. lichen using low pH solutions

    Directory of Open Access Journals (Sweden)

    ANA A. CUCULOVIC

    2008-04-01

    Full Text Available Extraction of metals (K, Al, Ca, Mg, Fe, Cu, Ba, Zn, Mn and Sr from dry Cetraria islandica (L. Ach. lichen was performed using solutions similar to acid rain (solution A – H2SO4–HNO3–(NH42SO4 and solution B – H2SO4–HNO3–(NH42SO4–NH4NO3. The pH values of these solutions were 2.00, 2.58, 2.87, 3.28, and 3.75. Five consecutive extractions were performed with each solution. In all solutions, the extracted metal content, except Cu and Ca, was the highest in the first extract. The highest percentage of the metals desorbed in the first extraction was obtained using solutions with low pH values, 2.00, 2.58, and 2.87. The lowest percentage in the first extraction was obtained using solutions with pH 3.28 and 3.75, indicating influence of the H+ ion on the extraction. According to the results obtained, the investigated metals form two groups. The first group includes K, Al, Ca, Mg, and Fe. They were extracted in each of the five extractions at each of the pH values. The second group includes Ba, Zn, Mn, Cu, and Sr, which were not all extracted at each pH value. The first group yielded three types of extraction curves when the logarithms of extracted metal amounts were plotted as a function of the number of successive extractions. These effects indicate that three different positions (centres of metal ion accumulation exist in the lichen (due to sorption, complex formation, or other processes present in the tissues.

  2. Computer model of hydroponics nutrient solution pH control using ammonium.

    Science.gov (United States)

    Pitts, M; Stutte, G

    1999-01-01

    A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.

  3. Corrosion studies of thermally sensitised AGR fuel element brace in pH7 and pH9.2 borate solutions

    International Nuclear Information System (INIS)

    Tyfield, S.P.; Smith, C.A.

    1987-04-01

    Brace and cladding of AGR fuel elements sensitised in reactor are susceptible to intergranular and crevice corrosion, which may initiate in the pH7 borate pond storage environment of CEGB/SSEB stations. This report considers the benefit in corrosion control that is provided by raising the pond solution pH to 9.2, whilst maintaining the boron level at 1250 gm -3 . The greater corrosion protection provided by pH9.2 solution compared to the pH7 borate solution is demonstrated by a series of tests with non-active laboratory sensitised brace samples exposed to solutions dosed with chloride or sulphate in order to promote localised corrosion. The corrosion tests undertaken consisted of 5000 hour immersions at 32 0 C and shorter term electrochemically monitored experiments (rest potential, impedance, anodic current) generally conducted at 22 0 C. The pH9.2 solution effectively inhibited the initiation of crevice and intergranular corrosion in the presence of low levels of chloride and sulphate, whereas the pH7 solution did not always do so. However, the pH9.2 solution, dosed with 40 gm -3 chloride, failed to suppress fully crevice corrosion initiated in unborated 40 gm -3 chloride solution at 22 0 C. Fluoride is not deleterious at low levels ∼ 10 gm -3 in the borate solutions. The significant improvement in corrosion control demonstrated for the change from pH7 to pH9.2 borate solution on laboratory sensitised brace samples should ideally be confirmed using complete irradiated AGR fuel elements. (U.K.)

  4. Effect of nitrogen form and pH of nutrient solution on the changes in pH and EC of spinach rhizosphere in hydroponic culture

    OpenAIRE

    M. Parsazadeh; N. Najafi

    2011-01-01

    In this study, the effect of nitrate to ammonium ratio and pH of nutrient solution on the changes in pH and EC of rhizosphere during spinach growth period in perlite culture, under greenhouse conditions, was investigated. A split factorial experiment in a completely randomized design with four replications was conducted with three factors including nutrient solution’s pH in three levels (4.5, 6.5 and 8), nitrate to ammonium ratio of nutrient solution in five levels (100:0, 75:25, 50:50, 25:75...

  5. Characterizing the correlation between dephosphorization and solution pH in a calcined water treatment plant sludge.

    Science.gov (United States)

    Zhou, Zhenming; Liu, Qidi; Li, Shuwen; Li, Fei; Zou, Jing; Liao, Xiaobin; Yuan, Baoling; Sun, Wenjie

    2018-04-26

    This study focused on characterizing the correlation between the dephosphorization process of calcined water treatment plant sludge (C-WTPS) and the solution initial pH in batch experiments. The specific aim was to illustrate the effect of different initial pH on the adsorption and desorption of phosphorous in C-WTPS. In addition, the effects of solution initial pH on the release of ammonia nitrogen and total organic carbon (TOC) from C-WTPS and the change of pH after adsorption were also investigated. The results demonstrated that the initial pH significantly influenced the adsorption of phosphorus on C-WTPS. When initial pH was increased from 3 to 10, the phosphorous absorption capacity reduced by 76.5%. Especially, when the initial pH reached to 11, the phosphorus adsorption capacity became a negative value, indicating that C-WTPS released phosphorus into the solution. The addition of C-WTPS to the solution had little impact on the initial pH of the solution. The absorbed phosphorous on C-WTPS was relatively stable in the pH range of 3 to 10. Nevertheless, when the solution pH was higher than 11, it can be easily released into the solution. Furthermore, by comparison with WTPS, C-WTPS released less ammonia nitrogen and TOC into the solution and adsorbed more phosphorus from the solution in the experimental pH range. Therefore, C-WTPS is more suitable to serve as a cost-effective sorbent for phosphorus removal.

  6. Effect of pH value of applied solution on radioiodine sorption by soils

    International Nuclear Information System (INIS)

    Szabova, T.

    1976-01-01

    Sorption of radioiodine by soils was followed under static conditions at different pH values of the initial solution in five soil types. Sorption of radioiodine by soils is affected by the amount of the organic mass and by the pH of solutions. With the same pH, soils containing a higher amount of the organic mass absorb more radioiodine. The highest sorption percentage of 131 I - for all pH values was found in meadow chernozem soil and the lowest in the rendzina and in carboniferous meadow soils. The highest sorption of 131 I - for degraded chernozem, meadow chernozem soils and brown soil was recorded at pH 5 and for carboniferous meadow soil and rendzina at pH 7. (author)

  7. Effect of pH Upper Control Limit on Nutrient Solution Component and Water Spinach Growth under Hydroponics

    OpenAIRE

    Xuzhang Xue; Yinkun Li; Feng Li; Fang Zhang; Wenzhong Guo

    2015-01-01

    In this study, experiment with four levels of nutrient solution pH control upper limit was conducted to explore the optimal nutrient solution pH management scheme under hydroponics by evaluating the nutrient solution characters i.e., pH, Electric Conductivity (EC), nitrate, soluble phosphorus (soluble-P), water spinach growth and quality. The results showed that the nutrient solution pH was 8.2 and unsuitable for water spinach growth under the treatment with no pH regulation during the experi...

  8. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution.

    Science.gov (United States)

    Cerozi, Brunno da Silva; Fitzsimmons, Kevin

    2016-11-01

    The interaction between the main ions in aquaponics nutrient solutions affects chemical composition and availability of nutrients, and nutrient uptake by plant roots. This study determined the effect of pH on phosphorus (P) speciation and availability in an aquaponics nutrient solution and used Visual MINTEQ to simulate P species and P activity. In both experimental and simulated results, P availability decreased with increase in pH of aquaponics nutrient solutions. According to simulations, P binds to several cations leaving less free phosphate ions available in solution. High pH values resulted in the formation of insoluble calcium phosphate species. The study also demonstrated the importance of organic matter and alkalinity in keeping free phosphate ions in solution at high pH ranges. It is recommended though that pH in aquaponics systems is maintained at a 5.5-7.2 range for optimal availability and uptake by plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Calorimetric and diffractometric evidence for the sequential crystallization of buffer components and the consequential pH swing in frozen solutions.

    Science.gov (United States)

    Sundaramurthi, Prakash; Shalaev, Evgenyi; Suryanarayanan, Raj

    2010-04-15

    Sequential crystallization of succinate buffer components in the frozen solution has been studied by differential scanning calorimetry and X-ray diffractometry (both laboratory and synchrotron sources). The consequential pH shifts were monitored using a low-temperature electrode. When a solution buffered to pH pK(a)(2), the freeze-concentrate pH first decreased and then increased due to the sequential crystallization of the basic (disodium succinate) followed by the acidic (monosodium succinate and succinic acid) buffer components. XRD provided direct evidence of the crystallization events in the frozen buffer solutions, including the formation of disodium succinate hexahydrate [Na(2)(CH(2)COO)(2).6H(2)O]. When the frozen solution was warmed in a differential scanning calorimeter, multiple endotherms attributable to the melting of buffer components and ice were observed. When the frozen solutions were dried under reduced pressure, ice sublimation was followed by dehydration of the crystalline hexahydrate to a poorly crystalline anhydrate. However, crystalline succinic acid and monosodium succinate were retained in the final lyophiles. The pH and the buffer salt concentration of the prelyo solution influenced the crystalline salt content in the final lyophile. The direction and magnitude of the pH shift in the frozen solution depended on both the initial pH and the buffer concentration. In light of the pH-sensitive nature of a significant fraction of pharmaceuticals (especially proteins), extreme care is needed in both the buffer selection and its concentration.

  10. Considerations on prevention of phlebitis and venous pain from intravenous prostaglandin E(1) administration by adjusting solution pH: in vitro manipulations affecting pH.

    Science.gov (United States)

    Kohno, Emiko; Nishikata, Mayumi; Okamura, Noboru; Matsuyama, Kenji

    2008-01-01

    Prostaglandin E(1) (PGE(1); Alprostadil Alfadex) is a potent vasodilator and inhibitor of platelet aggregation used to treat patients with peripheral vascular disease. The main adverse effects of intravenous PGE(1) administration, phlebitis and venous pain, arise from the unphysiologically low pH of infusion solutions. When PGE(1) infusion solutions with a pH value greater then 6 are used, phlebitis and venous pain are considered to be avoidable. Beginning with a PGE(1) infusion solution with pH greater than 6, we add the amount of 7% sodium bicarbonate needed to bring the solution to pH 7.4 if phlebitis or venous pain develops. In the present study we established a convenient nomogram showing the relationship between the titratable acidity of various infusion solutions and the volume of 7% sodium bicarbonate required to attain pH 7.4 for preventing the phlebitis and venous pain associated with PGE(1) infusion.

  11. Determination Of Ph Including Hemoglobin Correction

    Science.gov (United States)

    Maynard, John D.; Hendee, Shonn P.; Rohrscheib, Mark R.; Nunez, David; Alam, M. Kathleen; Franke, James E.; Kemeny, Gabor J.

    2005-09-13

    Methods and apparatuses of determining the pH of a sample. A method can comprise determining an infrared spectrum of the sample, and determining the hemoglobin concentration of the sample. The hemoglobin concentration and the infrared spectrum can then be used to determine the pH of the sample. In some embodiments, the hemoglobin concentration can be used to select an model relating infrared spectra to pH that is applicable at the determined hemoglobin concentration. In other embodiments, a model relating hemoglobin concentration and infrared spectra to pH can be used. An apparatus according to the present invention can comprise an illumination system, adapted to supply radiation to a sample; a collection system, adapted to collect radiation expressed from the sample responsive to the incident radiation; and an analysis system, adapted to relate information about the incident radiation, the expressed radiation, and the hemoglobin concentration of the sample to pH.

  12. From proton nuclear magnetic resonance spectra to pH. Assessment of {sup 1}H NMR pH indicator compound set for deuterium oxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tynkkynen, Tuulia, E-mail: tuulia.tynkkynen@uku.fi [Laboratory of Chemistry, Department of Biosciences, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland); Tiainen, Mika; Soininen, Pasi; Laatikainen, Reino [Laboratory of Chemistry, Department of Biosciences, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland)

    2009-08-19

    In this study, a protocol for pH determination from D{sub 2}O samples using {sup 1}H NMR pH indicator compounds was developed and assessed by exploring the pH-dependency of 13 compounds giving pH-dependent {sup 1}H NMR signals. The indicators cover the pH range from pH* 0 to 7.2. Equations to transform the indicator chemical shifts to pH estimates are given here for acetic acid, formic acid, chloroacetic acid, dichloroacetic acid, creatine, creatinine, glycine, histidine, 1,2,4-triazole, and TSP (2,2,3,3-tetradeutero-3-(trimethylsilyl)-propionic acid). To characterize the method in presence of typical solutes, the effects of common metabolites, albumin and ionic strength were also evaluated. For the ionic strengths, the effects were also modelled. The experiments showed that the use of pH sensitive {sup 1}H NMR chemical shifts allows the pH determination of typical metabolite solutions with accuracy of 0.01-0.05 pH units. Also, when the ionic strength is known with accuracy better than 0.1 mol dm{sup -3} and the solute concentrations are low, pH{sub nmr}{sup *} (the NMR estimate of pH) can be assumed to be within 0.05 pH units from potentiometrically determined pH.

  13. Solution and surface chemistry of the Se(IV)-Fe(0) reactions: Effect of initial solution pH.

    Science.gov (United States)

    Xia, Xuefen; Ling, Lan; Zhang, Wei-Xian

    2017-02-01

    Aspects of solution and solid-phase reactions between selenite (Se(IV)) and nanoscale zero-valent iron (nZVI) were investigated. Experimental results on the effects of initial solution pH, formation and evolution of nZVI corrosion products, and speciation of selenium in nZVI were presented. In general, the rate of Se(IV) removal decreases with increasing initial pH. The observed rate constants of Se(IV) removal decreased from 0.3530 to 0.0364 min -1 as pH increased from 4.0 to 10.0. Composition and morphology of nZVI corrosion products and selenium species were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Results confirmed that Se(IV) was reduced to Se(0) and Se(-II) by nZVI. Lower solution pH favored further reduction of Se(0) to Se(-II). Amorphous FeOOH, magnetite/maghemite (Fe 3 O 4 /γ-Fe 2 O 3 ) and ferrous hydroxide (Fe(OH) 2 ) were identified as the main corrosion products. Under alkaline conditions, the corrosion products were mainly of Fe(OH) 2 along with small amounts of Fe 3 O 4 , while nZVI in acidic solutions was oxidized to mostly Fe 3 O 4 and amorphous FeOOH. Furthermore, these corrosion products acted as intermediates for electron transfer and reactive/sorptive sites for Se(IV) adsorption and reduction, thus played a crucial role in the removal of aqueous Se(IV). Copyright © 2016. Published by Elsevier Ltd.

  14. Temperature and pH driven association in uranyl aqueous solutions

    Directory of Open Access Journals (Sweden)

    M. Druchok

    2012-12-01

    Full Text Available An association behavior of uranyl ions in aqueous solutions is explored. For this purpose a set of all-atom molecular dynamics simulations is performed. During the simulation, the fractions of uranyl ions involved in dimer and trimer formations were monitored. To accompany the fraction statistics one also collected distributions characterizing average times of the dimer and trimer associates. Two factors effecting the uranyl association were considered: temperature and pH. As one can expect, an increase of the temperature decreases an uranyl capability of forming the associates, thus lowering bound fractions/times and vice versa. The effect of pH was modeled by adding H+ or OH- ions to a "neutral" solution. The addition of hydroxide ions OH- favors the formation of the associates, thus increasing bound times and fractions. The extra H+ ions in a solution produce an opposite effect, thus lowering the uranyl association capability. We also made a structural analysis for all the observed associates to reveal the mutual orientation of the uranyl ions.

  15. Automated pH Control of Nutrient Solution in a Hydroponic Plant Growth System

    Science.gov (United States)

    Smith, B.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.

    1998-01-01

    Over, the years, NASA has played an important role in providing to and the development of automated nutrient delivery and monitoring, systems for growing crops hydroponically for long term space missions. One example are the systems used in the Biomass Production Chamber (BPC) at Kennedy Space Center (KSC). The current KSC monitoring system is based on an engineering workstation using standard analog/digital input/output hardware and custom written software. The monitoring system uses completely separate sensors to provide a check of control sensor accuracy and has the ability to graphically display and store data form past experiment so that they are available for data analysis [Fortson, 1992]. In many cases, growing systems have not been fitted with the kind of automated control systems as used at KSC. The Center for Food and Environmental Systems for Human Exploration of Space (CFESH) located on the campus of Tuskegee University, has effectively grown sweetpotatoes and peanuts hydroponically for the past five years. However they have adjusted the pH electrical conductivity and volume of the hydroponic nutrient solution only manually at times when the solution was to be replenished or changed out according to its protocol (e.g. one-week, two-week, or two-day cycle). But the pH of the nutrient solution flowing through the channel is neither known nor controlled between the update, change out, or replenishment period. Thus, the pH of the nutrient solution is not held at an optimum level over the span of the plant's growth cycle. To solve this dilemma, an automated system for the control and data logging of pH data relative to sweetpotato production using the nutrient film technique (NFT) has been developed, This paper discusses a microprocessor-based system, which was designed to monitor, control, and record the pH of a nutrient solution used for growing sweetpotatoes using NFT.

  16. A study of specific sorption of neptunium(V) on smectite in low pH solution

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko; Matsumoto, Junko; Banba, Tsunetaka; Ito, Yoshimoto

    1996-01-01

    The 'specific sorption' of neptunium(V) on smectite, in other words, a strong sorption undesorbable by 1 M KCl, is studied with a combination of batch type sorption and desorption experiments over a pH range of 2 to 5. Six types of homoionic smectite (Li-, Na-, K-, Cs-, Mg-, and Ca-smectite) are used in this study. Distribution coefficients (K d ) of neptunium for smectite vary over a wide pH range; the maximum K d value of ∝300 cm 3 x g -1 at around pH 2 for Li- and Na-smectite and the minimum value of ∝2 cm 3 x g -1 for Cs-smectite. The specific sorption of neptunium depends on pH and on the affinity of the exchangeable cation for smectite; the lower the pH of solution or the affinity, the larger the specific sorption. The neptunium-smectite association varies with the elapse of contact time. Within the first day of the neptunium-smectite contact the neptunium sorbed on na-smectite at low pH is desorbable by 1 M KCl solution, and on the passage of time most of the neuptunium sorbed becomes undesorbable by KCl (the specific sorption). Hydronium ion in solution is sorbed on smectite at low pH and dissociates the exchangeable cation from smectite into solution, and the specific sorption of neuptunium increases with increasing the exchangeable cation that is dissociated from smectite. (orig.)

  17. Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gnanaprakash, G. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Mahadevan, S. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kalyanasundaram, P. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Philip, John [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: philip@igcar.gov.in; Raj, Baldev [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2007-05-15

    We report the effect of initial pH and temperature of iron salt solutions on formation of magnetite (Fe{sub 3}O{sub 4}) nanoparticles during co-precipitation. We synthesized nanoparticles by keeping the initial pH at 0.7, 1.5, 3.0, 4.7, 5.7, 6.7 for two different temperatures of 30 and 60 deg. C. When the initial pH (prior to alkali addition) of the salt solution was below 5, the nanoparticles formed were 100% spinel iron oxide. Average size of the magnetite particles increases with initial pH until ferrihydrite is formed at a pH of 3 and the size remains the same till 4.7 pH. The percentage of goethite formed along with non-stoichiometric magnetite was 35 and 78%, respectively, when the initial pH of the solution was 5.7 and 6.7. As the reaction temperature was increased to 60 deg. C, maintaining a pH of 6.7, the amount of goethite increased from 78 to 100%. These results show that the initial pH and temperature of the ferrous and ferric salt solution before initiation of the precipitation reaction are critical parameters controlling the composition and size of nanoparticles formed. We characterize the samples using X-ray diffraction, transmission electron microscopy and vibrating sample magnetometer. The results of the present work provide the right conditions to synthesis pure magnetite nanoparticles, without goethite impurities, through co-precipitation technique for ferrofluid applications.

  18. Effect of Solution pH on the Adsorption of Paracetamol on Chemically Modified Activated Carbons

    Directory of Open Access Journals (Sweden)

    Valentina Bernal

    2017-06-01

    Full Text Available Paracetamol adsorption in acidic, neutral and basic media on three activated carbons with different chemistry surfaces was studied. A granular activated carbon (GAC was prepared from coconut shell; starting from this sample, an oxidized activated carbon (GACo was obtained by treating the GAC with a boiling solution of 6 M nitric acid, so to generate a greater number of oxygenated surface groups. In addition, a reduced activated carbon (GACr was obtained by heating the GAC at 1173 K, to remove the oxygenated surface groups. Paracetamol adsorption was higher for GACr due to the lower presence of oxygenated surface functional groups. Moreover, adsorption was highest at neutral pH. The magnitude of the interactions between paracetamol molecules and activated carbons was studied by measuring the immersion enthalpies of activated carbons in solution of paracetamol at different concentrations and pH values and by calculating the interaction enthalpy. The highest value was obtained for GACr in a paracetamol solution of 1000 mg L−1 at pH 7, confirming that paracetamol adsorption is favoured on basic activated carbons at pH values near to neutrality. Finally, the Gibbs energy changes confirmed the latter result, allowing explaining the different magnitudes of the interactions between paracetamol and activated carbons, as a function of solution pH.

  19. Ph3CCOOSnPh3.Ph3PO AND Ph3CCOOSnPh3.Ph3AsO: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    ABDOU MBAYE

    2014-08-01

    Full Text Available The mixture of ethanolic solutions of Ph3CCOOSnPh3 and Ph3PO or Ph3AsO gives Ph3CCOOSnPh3.Ph3PO and Ph3CCOOSnPh3.Ph3AsO adducts which have been characterized by infrared spectroscopy. A discrete structure is suggested for both, the environment around the tin centre being trigonal bipyramidal, the triphenylacetate anion behaving as a mondentate ligand.

  20. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer

    Energy Technology Data Exchange (ETDEWEB)

    Hoefer, Christoph [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria); Santner, Jakob, E-mail: jakob.santner@boku.ac.at [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria); Department of Crop Sciences, Division of Agronomy, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Borisov, Sergey M. [Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz (Austria); Wenzel, Walter W.; Puschenreiter, Markus [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria)

    2017-01-15

    Gel-based, two-dimensional (2D) chemical imaging techniques are versatile methods for investigating biogeochemically active environments at high spatial resolution (sub-mm). State-of-the-art solute imaging techniques, such as diffusive gradients in thin films (DGT) and planar optodes (PO), employ passive solute sampling or sensing. Combining these methods will provide powerful tools for studying the biogeochemistry of biological niches in soils and sediments. In this study we aimed at developing a combined single-layer gel for direct pH imaging using PO and sampling of anionic and cationic solutes by DGT, with subsequent analysis of the bound solutes by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We tested three ultra-thin (<100 μm) polyurethane-based gels, incorporating anion and cation binding materials and the fluorescent pH indicator DCIFODA (2′,7′-dichloro-5(6)-N-octadecyl-carboxamidofluorescein). Results showed that PO-based pH sensing using DCIFODA was impossible in the presence of the anion binding materials due to interferences with DCIFODA protonation. One gel, containing only a cation binding material and DCIFODA, was fully characterized and showed similar performance characteristics as comparable DGT-only gels (applicable pH range: pH 5–8, applicable ionic strength range: 1–20 mmol L{sup -1}, cation binding capacity ∼24 μg cm{sup −2}). The dynamic range for PO-based pH mapping was between pH 5.5 and 7.5 with t{sub 90} response time of ∼60 min. In a case study we demonstrated the gel's suitability for multi-analyte solute imaging and mapped pH gradients and concurrent metal solubility patterns in the rhizosphere of Salix smithiana. pH decreases in the rooted soil were co-localized with elevated solute fluxes of Al{sup 3+}, Co{sup 2+}, Cu{sup 2+}, Fe, Mn{sup 2+}, Ni{sup 2+} and Pb{sup 2+}, indicating pH-induced metal solubilisation. - Highlights: • Diffusive gradients in thin films (DGT) and planar

  1. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer

    International Nuclear Information System (INIS)

    Hoefer, Christoph; Santner, Jakob; Borisov, Sergey M.; Wenzel, Walter W.; Puschenreiter, Markus

    2017-01-01

    Gel-based, two-dimensional (2D) chemical imaging techniques are versatile methods for investigating biogeochemically active environments at high spatial resolution (sub-mm). State-of-the-art solute imaging techniques, such as diffusive gradients in thin films (DGT) and planar optodes (PO), employ passive solute sampling or sensing. Combining these methods will provide powerful tools for studying the biogeochemistry of biological niches in soils and sediments. In this study we aimed at developing a combined single-layer gel for direct pH imaging using PO and sampling of anionic and cationic solutes by DGT, with subsequent analysis of the bound solutes by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We tested three ultra-thin (<100 μm) polyurethane-based gels, incorporating anion and cation binding materials and the fluorescent pH indicator DCIFODA (2′,7′-dichloro-5(6)-N-octadecyl-carboxamidofluorescein). Results showed that PO-based pH sensing using DCIFODA was impossible in the presence of the anion binding materials due to interferences with DCIFODA protonation. One gel, containing only a cation binding material and DCIFODA, was fully characterized and showed similar performance characteristics as comparable DGT-only gels (applicable pH range: pH 5–8, applicable ionic strength range: 1–20 mmol L"-"1, cation binding capacity ∼24 μg cm"−"2). The dynamic range for PO-based pH mapping was between pH 5.5 and 7.5 with t_9_0 response time of ∼60 min. In a case study we demonstrated the gel's suitability for multi-analyte solute imaging and mapped pH gradients and concurrent metal solubility patterns in the rhizosphere of Salix smithiana. pH decreases in the rooted soil were co-localized with elevated solute fluxes of Al"3"+, Co"2"+, Cu"2"+, Fe, Mn"2"+, Ni"2"+ and Pb"2"+, indicating pH-induced metal solubilisation. - Highlights: • Diffusive gradients in thin films (DGT) and planar optode (PO) imaging is combined. • A

  2. Peroxidase-mediated polymerization of 1-naphthol: impact of solution pH and ionic strength.

    Science.gov (United States)

    Bhandari, Alok; Xu, Fangxiang; Koch, David E; Hunter, Robert P

    2009-01-01

    Peroxidase-mediated oxidation has been proposed as a treatment method for naphthol-contaminated water. However, the impact of solution chemistry on naphthol polymerization and removal has not been documented. This research investigated the impact of pH and ionic strength on peroxidase-mediated removal of 1-naphthol in completely mixed batch reactors. The impact of hydrogen peroxide to 1-naphthol ratio and activity of horseradish peroxidase was also studied. Size exclusion chromatography was used to estimate the molecular weight distribution of oligomeric products, and liquid chromatography/mass spectrometry was used to estimate product structure. Naphthol transformation decreased with ionic strength, and substrate removal was lowest at neutral pHs. Solution pH influenced the size and the composition of the oligomeric products. An equimolar ratio of H(2)O(2):naphthol was sufficient for optimal naphthol removal. Polymerization products included naphthoquinones and oligomers derived from two, three, and four naphthol molecules. Our results illustrate the importance of water chemistry when considering a peroxidase-based approach for treatment of naphthol-contaminated waters.

  3. Influence of pH of spray solution on optoelectronic properties of cadmium oxide thin films

    International Nuclear Information System (INIS)

    Hodlur, R. M.; Rabinal, M. K.

    2015-01-01

    Highly conducting transparent cadmium oxide thin films were prepared by the conventional spray pyrolysis technique. The pH of the spray solution is varied by adding ammonia/hydrochloric acid. The effect of pH on the morphology, crystallinity and optoelectronic properties of these films is studied. The structural analysis showed all the films in the cubic phase. For the films with pH < 7 (acidic condition), the preferred orientation is along the (111) direction and for those with pH >7 (alkaline condition), the preferred orientation is along the (200) direction. A lowest resistivity of 9.9 × 10 −4 Ω·cm (with carrier concentration = 5.1 × 10 20 cm −3 , mobility = 12.4 cm 2 /(V·s)) is observed for pH ≈ 12. The resistivity is tuned almost by three orders of magnitude by controlling the bath pH with optical transmittance more than 70%. Thus, the electrical conductivity of CdO films could be easily tuned by simply varying the pH of the spray solution without compromising the optical transparency. (paper)

  4. Impact of Initial pH and Pyrolysis Temperature on the Adsorption of Cr(Ⅵ from Aqueous Solutions on Corn Straw-based Materials

    Directory of Open Access Journals (Sweden)

    WANG Shuai

    2016-09-01

    Full Text Available Batch experiments were performed on Cr(Ⅵ adsorption using four straw-based materials including corn straw and three kinds of biochar pyrolysed at 300 ℃, 450 ℃ and 600 ℃, respectively. The results showed that the Cr(Ⅵ adsorption were significantly affected by initial pH and pyrolysis temperature. The data were described by kinetic and isotherm models, and showed that the adsorption of Cr(Ⅵ was increased with the decrease of initial pH. The removal rates of Cr(Ⅵ were decreased with the increase of the pyrolysis temperature at pH=3 or pH=5. The biochar pyrolysed at 300 ℃ had the best capability of removing Cr(Ⅵ from aqueous solution at pH=1, and the maxi-mum adsorption quantity was 141.24 mg·g-1 approximately. It observed that both the lower initial pH and the lower pyrolysis temperature had positive effects on the removal of Cr(Ⅵ from aqueous solution.

  5. Effect of Nitrogen Form and pH of Nutrient Solution on the Shoot Concentration of Phosphorus, Nitrate, and Nitrogen of Spinach in Hydroponic Culture

    OpenAIRE

    N. Najafi; M. Parsazadeh

    2010-01-01

    In order to study the effect of nitrogen form and pH of nutrient solution on the shoot concentration of P, nitrate, organic N + inorganic ammonium, and total N of spinach, a factorial experiment was conducted with two factors including pH of nutrient solution in three levels (4.5, 6.5 and 8.0) and nitrate to ammonium ratio of nutrient solution in five levels (100:0, 75:25, 50:50, 25:75 and 0:100). This factorial experiment was carried out in a completely randomized design with four replicatio...

  6. Comparative study of buffered 50% glycolic acid (pH 3.0) + 0.5% salicylic acid solution vs Jessner's solution in patients with acne vulgaris.

    Science.gov (United States)

    In Jae, Jeong; Dong Ju, Hyun; Dong Hyun, Kim; Yoon, Moon Soo; Lee, Hee Jung

    2017-11-21

    Superficial chemical peels are frequently used in acne vulgaris treatment. Although glycolic acid (GA) has been widely used in clinical practice, its pH ranges from 0.08-2.75 and thus should be neutralized after application to avoid burns. To evaluate treatment efficacy and safety of chemical peeling using buffered 50% GA (pH 3.0) + 0.5% salicylic acid (SA) solution that does not need to be neutralized in the treatment of acne vulgaris compared to the conventional peeling using Jessner's solution. We performed a prospective, randomized, evaluator-blind, split-face clinical trial. Twenty patients were randomized by assigning one side of each patient's face to receive a 50% GA (pH 3.0) + 0.5% SA peel (GA side) and the other side to receive the Jessner's solution (Jessner's solution side). All patients underwent 2 sessions of treatment spaced 2 weeks apart. Lesion count, acne severity, subjective efficacy assessment, and side effects were evaluated. The total lesion count was significantly reduced for the GA and Jessner's solution sides (P  .05). The GA side had fewer side effects than the Jessner's solution side. The results of this study suggest that chemical peeling using the 50% GA (pH 3.0) + 0.5% SA solution can be as effective and convenient as the conventional peeling using Jessner's solution in the treatment of acne vulgaris and may show fewer adverse events than the conventional peeling. © 2017 Wiley Periodicals, Inc.

  7. Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution

    Science.gov (United States)

    Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun

    2013-10-01

    Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.

  8. Effect of pH on corrosion behavior of CuCrZr in solution without and with NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, C.T.; Wong, P.K. [Department of Electromechanical Engineering, University of Macau (China); Man, H.C. [Department of Industrial and Systems Engineering, Hong Kong Polytechnic University (Hong Kong); Cheng, F.T., E-mail: apaftche@polyu.edu.h [Department of Applied Physics, Hong Kong Polytechnic University (Hong Kong)

    2009-10-01

    CuCrZr is a high copper alloy widely used as electrical and thermal conducting material, especially in heat exchangers in nuclear reactors. In this respect, the physical and fatigue properties of CuCrZr have been extensively studied. The electrochemical behavior of CuCrZr, on the other hand, has not been adequately investigated. In the present study, the effect of pH on the corrosion behavior of CuCrZr in aqueous solutions without and with chloride (0.6 M NaCl) was studied. The pH of the solutions is found to exert significant influence on the corrosion behavior of CuCrZr. In acidic solutions without chloride, the corrosion of CuCrZr is ascribed to active dissolution with soluble products. In neutral and alkaline solutions without NaCl, the presence of oxides on the surface of CuCrZr leads to a noble shift in corrosion potential and passivation results in increased corrosion resistance. In chloride solutions at various pH values, the chloride ions influence the formation of the surface layers and the anodic dissolution process during polarization. At high pH, CuCrZr shows significant passivity and high corrosion resistance due to the growth of Cu{sub 2}O/Cu(OH) film which hinders further dissolution whereas at low pH the corrosion resistance is lowered due to active dissolution of Cu.

  9. Effect of pH on corrosion behavior of CuCrZr in solution without and with NaCl

    International Nuclear Information System (INIS)

    Kwok, C.T.; Wong, P.K.; Man, H.C.; Cheng, F.T.

    2009-01-01

    CuCrZr is a high copper alloy widely used as electrical and thermal conducting material, especially in heat exchangers in nuclear reactors. In this respect, the physical and fatigue properties of CuCrZr have been extensively studied. The electrochemical behavior of CuCrZr, on the other hand, has not been adequately investigated. In the present study, the effect of pH on the corrosion behavior of CuCrZr in aqueous solutions without and with chloride (0.6 M NaCl) was studied. The pH of the solutions is found to exert significant influence on the corrosion behavior of CuCrZr. In acidic solutions without chloride, the corrosion of CuCrZr is ascribed to active dissolution with soluble products. In neutral and alkaline solutions without NaCl, the presence of oxides on the surface of CuCrZr leads to a noble shift in corrosion potential and passivation results in increased corrosion resistance. In chloride solutions at various pH values, the chloride ions influence the formation of the surface layers and the anodic dissolution process during polarization. At high pH, CuCrZr shows significant passivity and high corrosion resistance due to the growth of Cu 2 O/Cu(OH) film which hinders further dissolution whereas at low pH the corrosion resistance is lowered due to active dissolution of Cu.

  10. THE PREDICTION OF pH BY GIBBS FREE ENERGY MINIMIZATION IN THE SUMP SOLUTION UNDER LOCA CONDITION OF PWR

    Directory of Open Access Journals (Sweden)

    HYOUNGJU YOON

    2013-02-01

    Full Text Available It is required that the pH of the sump solution should be above 7.0 to retain iodine in a liquid phase and be within the material compatibility constraints under LOCA condition of PWR. The pH of the sump solution can be determined by conventional chemical equilibrium constants or by the minimization of Gibbs free energy. The latter method developed as a computer code called SOLGASMIX-PV is more convenient than the former since various chemical components can be easily treated under LOCA conditions. In this study, SOLGASMIX-PV code was modified to accommodate the acidic and basic materials produced by radiolysis reactions and to calculate the pH of the sump solution. When the computed pH was compared with measured by the ORNL experiment to verify the reliability of the modified code, the error between two values was within 0.3 pH. Finally, two cases of calculation were performed for the SKN 3&4 and UCN 1&2. As results, pH of the sump solution for the SKN 3&4 was between 7.02 and 7.45, and for the UCN 1&2 plant between 8.07 and 9.41. Furthermore, it was found that the radiolysis reactions have insignificant effects on pH because the relative concentrations of HCl, HNO3, and Cs are very low.

  11. Unusual Salt and pH Induced Changes in Polyethylenimine Solutions.

    Directory of Open Access Journals (Sweden)

    Kimberly A Curtis

    Full Text Available Linear PEI is a cationic polymer commonly used for complexing DNA into nanoparticles for cell-transfection and gene-therapy applications. The polymer has closely-spaced amines with weak-base protonation capacity, and a hydrophobic backbone that is kept unaggregated by intra-chain repulsion. As a result, in solution PEI exhibits multiple buffering mechanisms, and polyelectrolyte states that shift between aggregated and free forms. We studied the interplay between the aggregation and protonation behavior of 2.5 kDa linear PEI by pH probing, vapor pressure osmometry, dynamic light scattering, and ninhydrin assay. Our results indicate that: At neutral pH, the PEI chains are associated and the addition of NaCl initially reduces and then increases the extent of association.The aggregate form is uncollapsed and co-exists with the free chains.PEI buffering occurs due to continuous or discontinuous charging between stalled states.Ninhydrin assay tracks the number of unprotonated amines in PEI.The size of PEI-DNA complexes is not significantly affected by the free vs. aggregated state of the PEI polymer. Despite its simple chemical structure, linear PEI displays intricate solution dynamics, which can be harnessed for environment-sensitive biomaterials and for overcoming current challenges with DNA delivery.

  12. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    Science.gov (United States)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  13. Low-temperature solution processing of palladium/palladium oxide films and their pH sensing performance.

    Science.gov (United States)

    Qin, Yiheng; Alam, Arif U; Pan, Si; Howlader, Matiar M R; Ghosh, Raja; Selvaganapathy, P Ravi; Wu, Yiliang; Deen, M Jamal

    2016-01-01

    Highly sensitive, easy-to-fabricate, and low-cost pH sensors with small dimensions are required to monitor human bodily fluids, drinking water quality and chemical/biological processes. In this study, a low-temperature, solution-based process is developed to prepare palladium/palladium oxide (Pd/PdO) thin films for pH sensing. A precursor solution for Pd is spin coated onto pre-cleaned glass substrates and annealed at low temperature to generate Pd and PdO. The percentages of PdO at the surface and in the bulk of the electrodes are correlated to their sensing performance, which was studied by using the X-ray photoelectron spectroscope. Large amounts of PdO introduced by prolonged annealing improve the electrode's sensitivity and long-term stability. Atomic force microscopy study showed that the low-temperature annealing results in a smooth electrode surface, which contributes to a fast response. Nano-voids at the electrode surfaces were observed by scanning electron microscope, indicating a reason for the long-term degradation of the pH sensitivity. Using the optimized annealing parameters of 200°C for 48 h, a linear pH response with sensitivity of 64.71±0.56 mV/pH is obtained for pH between 2 and 12. These electrodes show a response time shorter than 18 s, hysteresis less than 8 mV and stability over 60 days. High reproducibility in the sensing performance is achieved. This low-temperature solution-processed sensing electrode shows the potential for the development of pH sensing systems on flexible substrates over a large area at low cost without using vacuum equipment. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions

    International Nuclear Information System (INIS)

    Wang, Yafei; Cheng, Guangxu; Wu, Wei; Qiao, Qiao; Li, Yun; Li, Xiufeng

    2015-01-01

    Highlights: • Pitting behavior of X80 steel in aerated NaCl solutions is studied systematically. • Unique large pit morphology is observed in neutral/acidic NaCl solutions. • In low pH solutions, pit will propagate in the horizontal direction, leading to the shallow shape of pitting morphology; in high pH solutions, the pit sizes are much smaller. • Film growth, which is dependent on the pH and chloride concentration, has great influence on the cathodic reaction by affecting oxygen diffusion process. - Abstract: The pitting corrosion mechanism of high strength pipeline steel in aerated NaCl solutions with different pH and chloride content was investigated, using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The pitting behavior in alkaline solutions was found to be significantly different from that in neutral and acidic solutions. Electrochemical results and SEM images indicate that the product film formed on the steel surface results in different corrosion behavior in an alkaline solution. SEM images show that pH and chloride concentration in the bulk solution have a great influence on the pitting morphology. Unique large pit morphology due to corrosion in neutral/acidic solutions with 0.05 mol/L NaCl was observed. The relationship between solution pH and the effect of chloride concentration is also discussed

  15. Gammaradiation effect on spectral properties of oxyhemoglobin solutions of different pH in the presence of serotonin

    International Nuclear Information System (INIS)

    Artyukhov, V.G.

    1979-01-01

    Changes in spectral properties of oxyhemoglobin solutions (pH 3 to 12) of mice exposed to gammaradiation (6000R) in the presence of serotonin have been studied. It was established that serotonin (5x10 -5 M) exerts a radioprotective effect in respect of oxyhemoglobin solutions of pH 5 to 9. Serotonin fails to protect protein in the presence of catalase (1x10 -6 M). It is stated that the process of formation of hydrogen peroxide/serotonin complex appreciably contributes to the protective action of the radioprotective agent in respect of gammairradiated oxyhemoglobin solutions

  16. Chemical Composition and Evaluation of Nicotine, Tobacco Alkaloids, pH and Selected Flavors in e-Cigarette Cartridges and Refill Solutions

    Science.gov (United States)

    Lisko, Joseph G.; Tran, Hang; Stanfill, Stephen B.; Blount, Benjamin C.; Watson, Clifford H.

    2015-01-01

    Introduction Electronic cigarette (e-cigarette) use is increasing dramatically in developed countries, but little is known about these rapidly evolving products. This study analyzed and evaluated the chemical composition including nicotine, tobacco alkaloids, pH and flavors in 36 e-liquids brands from four manufacturers. Methods We determined the concentrations of nicotine, alkaloids, and select flavors and measured pH in solutions used in e-cigarettes. E-cigarette products were chosen based upon favorable consumer approval ratings from online review websites. Quantitative analyses were performed using strict quality assurance/quality control (QC) validated methods previously established by our lab for the measurement of nicotine, alkaloids, pH and flavors. Results Three-quarters of the products contained lower measured nicotine levels than the stated label values (6% - 42% by concentration). The pH for e-liquids ranged from 5.1 – 9.1. Minor tobacco alkaloids were found in all samples containing nicotine, and their relative concentrations varied widely among manufacturers. A number of common flavor compounds were analyzed in all e-liquids. Conclusions Free nicotine levels calculated from the measurement of pH correlated with total nicotine content. The direct correlation between the total nicotine concentration and pH suggests that the alkalinity of nicotine drives the pH of e-cigarette solutions. A higher percentage of nicotine exists in the more absorbable free form as total nicotine concentration increases. A number of products contained tobacco alkaloids at concentrations that exceed U.S. Pharmacopeia limits for impurities in nicotine used in pharmaceutical and food products. PMID:25636907

  17. A solid-state pH sensor for nonaqueous media including ionic liquids.

    Science.gov (United States)

    Thompson, Brianna C; Winther-Jensen, Orawan; Winther-Jensen, Bjorn; MacFarlane, Douglas R

    2013-04-02

    We describe a solid state electrode structure based on a biologically derived proton-active redox center, riboflavin (RFN). The redox reaction of RFN is a pH-dependent process that requires no water. The electrode was fabricated using our previously described 'stuffing' method to entrap RFN into vapor phase polymerized poly(3,4-ethylenedioxythiophene). The electrode is shown to be capable of measuring the proton activity in the form of an effective pH over a range of different water contents including nonaqueous systems and ionic liquids (ILs). This demonstrates that the entrapment of the redox center facilitates direct electron communication with the polymer. This work provides a miniaturizable system to determine pH (effective) in nonaqueous systems as well as in ionic liquids. The ability to measure pH (effective) is an important step toward the ability to customize ILs with suitable pH (effective) for catalytic reactions and biotechnology applications such as protein preservation.

  18. Gravity-driven pH adjustment for site-specific protein pKa measurement by solution-state NMR

    Science.gov (United States)

    Li, Wei

    2017-12-01

    To automate pH adjustment in site-specific protein pKa measurement by solution-state NMR, I present a funnel with two caps for the standard 5 mm NMR tube. The novelty of this simple-to-build and inexpensive apparatus is that it allows automatic gravity-driven pH adjustment within the magnet, and consequently results in a fully automated NMR-monitored pH titration without any hardware modification on the NMR spectrometer.

  19. Effects of pH on the stability of cyanidin and cyanidin 3-O-β-glucopyranoside in aqueous solution

    Directory of Open Access Journals (Sweden)

    Rakić Violeta P.

    2015-01-01

    Full Text Available The colour variation, colour intensity and stability at various pH values (2.0, 4.0, 7.0 and 9.0 of cyanidin 3-O-β-glucopyranoside (Cy3Glc and its aglycone cyanidin was investigated during a period of 8 hours storage at 25ºC. Our data showed that pH of aqueous solution had impact on spectroscopic profile of cyanidin and Cy3Glc. Beginning with the most acidic solutions, increasing the pH induce bathochromic shifts of absorbance maximum in the visible range for all examined pH values (with the exception pH 4.0 for cyanidin, while the presence of the 3-glucosidic substitution induce hypsochromic shift. Compared to cyanidin, Cy3Glc has higher colour intensity and higher stability in the whole pH range, except at pH 7.0. The 3-glucosidic substitution influences on the colour intensity of Cy3Glc in the alkaline region. After 8-hour incubation of Cy3Glc and cyanidin at pH 2.0 and 25 ºC, 99% of Cy3Glc and only 27% of cyanidin remained unchanged.

  20. Effect of pH Changes on Antioxidant Capacity and the Content of Betalain Pigments During the Heating of a Solution of Red Beet Betalains

    Directory of Open Access Journals (Sweden)

    Mikołajczyk-Bator Katarzyna

    2017-06-01

    Full Text Available Red beets and their products are mainly consumed after processing. In this study, the effect of pH on changes in antioxidant capacity (AC and the content of betalain pigments were analysed during the heating of a betalain preparation solution. With pH ranging from 4 to 9 during the heat-treatment, the content of red pigments decreased depending on the pH level of the sample. The losses of red pigments in the investigated betalain preparation solution increased along with rising pH levels of the heated solution. The greatest losses were recorded at pH of 9.0. An opposite correlation was observed for yellow pigments. The content of yellow pigments in the heated betalain preparation solution was increasing along with increasing pH. The most pronounced increase in the content of yellow pigments was found at pH of 6.5 and 7.0. At the same time, the heated betalain preparation solution was shown to exhibit a higher antioxidant capacity at pH of 6.0 (14.9 μmol Trolox/mL than at pH of 4.0 (12.6 μmol Trolox/mL. It was observed that the increase in the antioxidant capacity in heated betalain preparation solutions with pH in the 6.0–6.5 range occurred as a result of increased concentrations of neobetanin, assessed by HPLC, within the pH range from 5.0 to 6.5.

  1. Effect of pH Value on the Electrochemical and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in the Dilute Bicarbonate Solutions

    Science.gov (United States)

    Cui, Z. Y.; Liu, Z. Y.; Wang, L. W.; Ma, H. C.; Du, C. W.; Li, X. G.; Wang, X.

    2015-11-01

    In this work, effects of pH value on the electrochemical and stress corrosion cracking (SCC) behavior of X70 pipeline steel in the dilute bicarbonate solutions were investigated using electrochemical measurements, slow strain rate tensile tests and surface analysis techniques. Decrease of the solution pH from 6.8 to 6.0 promotes the anodic dissolution and cathodic reduction simultaneously. Further decrease of the pH value mainly accelerates the cathodic reduction of X70 pipeline steel. As a result, when the solution pH decreases form 6.8 to 5.5, SCC susceptibility decreases because of the enhancement of the anodic dissolution. When the solution pH decreases from 5.5 to 4.0, SCC susceptibility increases gradually because of the acceleration of cathodic reactions.

  2. Metal/Metal Oxide Differential Electrode pH Sensors

    Science.gov (United States)

    West, William; Buehler, Martin; Keymeulen, Didier

    2007-01-01

    Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.

  3. Effects of solution pH and complexing reagents on uranium and thorium desorption under saturated equilibrium conditions

    International Nuclear Information System (INIS)

    Wang, Yug-Yea; Yu, C.

    1992-01-01

    Three contaminated bulk surface soils were used for investigating the effect of solution pH and complexing reagents on uranium and thorium desorption. At a low solution pH, the major chemical species of uranium and thorium, uranyl UO 2 +2 , thorium dihydroxide Th(OH) 2 +2 , and thorium hydroxide Th(OH) +3 , tend to form complexes with acetates in the solution phase, which increases the fractions of uranium and thorium desorbed into this phase. At a high solution pH, important uranium and thorium species such as uranyl tricarbonate complex UO 2 (CO) 33 -4 and thorium tetrahydroxide complex Th(OH) 4 tend to resist complexation with acetates. The presence of complexing reagents in solution can release radionuclides such as uranium and/or thorium from the soil to the solution by forming soluble complexes. Sodium bicarbonate (NaHCO 3 ) and diethylenetriaminepentaacetic acid (DTPA) are strong complex formers that released 38% to 62% of total uranium activity and 78% to 86% of total thorium activity, respectively, from the soil samples investigated. Solutions of 0.1 molar sodium nitrate (NaNO 3 ) and 0.1 molar sodium sulfate (Na 2 SO 4 ) were not effective complex formers with uranium and thorium under the experimental conditions. Fractions of uranium and thorium desorbed by 0.15g/200ml humic acid ranged from 4.62% to 6.17% and 1.59% to 7.09%, respectively. This work demonstrates the importance of a knowledge of solution chemistry in investigating the desorption of radionuclides

  4. Revealing the Dimeric Crystal and Solution Structure of β-Lactoglobulin at pH 4 and Its pH and Salt Dependent Monomer–Dimer Equilibrium

    DEFF Research Database (Denmark)

    Khan, Sanaullah; Ipsen, Richard; Almdal, Kristoffer

    2018-01-01

    The dimeric structure of bovine β-lactoglobulin A (BLGA) at pH 4.0 was solved to 2.0 Å resolution. Fitting the BLGA pH 4.0 structure to SAXS data at low ionic strength (goodness of fit R-factor = 3.6%) verified the dimeric state in solution. Analysis of the monomer–dimer equilibrium at varying pH...... and ionic strength by SAXS and scattering modeling showed that BLGA is dimeric at pH 3.0 and 4.0, shifting toward a monomer at pH 2.2, 2.6, and 7.0 yielding monomer/dimer ratios of 80/20%, 50/50%, and 25/75%, respectively. BLGA remained a dimer at pH 3.0 and 4.0 in 50–150 mM NaCl, whereas the electrostatic...... shielding raised the dimer content at pH 2.2, 2.6, and 7.0, i.e., below and above the pI. Overall, the findings provide new insights into the molecular characteristics of BLGA relevant for dairy product formulations and for various biotechnological and pharmaceutical applications....

  5. pH Sensing Properties of Flexible, Bias-Free Graphene Microelectrodes in Complex Fluids: From Phosphate Buffer Solution to Human Serum.

    Science.gov (United States)

    Ping, Jinglei; Blum, Jacquelyn E; Vishnubhotla, Ramya; Vrudhula, Amey; Naylor, Carl H; Gao, Zhaoli; Saven, Jeffery G; Johnson, Alan T Charlie

    2017-08-01

    Advances in techniques for monitoring pH in complex fluids can have a significant impact on analytical and biomedical applications. This study develops flexible graphene microelectrodes (GEs) for rapid (pH of complex biofluids by measuring real-time Faradaic charge transfer between the GE and a solution at zero electrical bias. For an idealized sample of phosphate buffer solution (PBS), the Faradaic current is varied monotonically and systematically with the pH, with a resolution of ≈0.2 pH unit. The current-pH dependence is well described by a hybrid analytical-computational model, where the electric double layer derives from an intrinsic, pH-independent (positive) charge associated with the graphene-water interface and ionizable (negative) charged groups. For ferritin solution, the relative Faradaic current, defined as the difference between the measured current response and a baseline response due to PBS, shows a strong signal associated with ferritin disassembly and the release of ferric ions at pH ≈2.0. For samples of human serum, the Faradaic current shows a reproducible rapid (pH. By combining the Faradaic current and real-time current variation, the methodology is potentially suitable for use to detect tumor-induced changes in extracellular pH. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effect of Nutrition Solution pH and Electrical Conductivity on Fusarium Wilt on Strawberry Plants in Hydroponic Culture

    Directory of Open Access Journals (Sweden)

    Myeong Hyeon Nam

    2018-03-01

    Full Text Available Fusarium wilt on strawberry plants caused by Fusarium oxysporum f. sp. fragariae (Fof is a major disease in Korea. The prevalence of this disease is increasing, especially in hydroponic cultivation in strawberry field. This study assessed the effect of nutrition solution pH and electrical conductivity (EC on Fusarium wilt in vitro and in field trials. pH levels of 5.0, 5.5, 6.0, 6.5, 7.0, and 7.5 were assayed in vitro and in field trials. EC levels at 0, 0.5, 0.8, 1.0, and 1.5 dS∙m⁻¹ were assayed in field trials. Mycelial growth of Fof increased with increasing pH and was highest at 25°C pH 7 and lowest at 20°C, pH 5.0 in vitro. The incidence of Fusarium wilt was lowest in the pH 6.5 treatment and highest in the pH 5 treatment in field trials. At higher pH levels, the EC decreased in the drain solution and the potassium content of strawberry leaves increased. In the EC assay, the severity of Fusarium wilt and nitrogen content of leaves increased as the EC increased. These results indicate that Fusarium wilt is related to pH and EC in hydroponic culture of strawberry plants.

  7. Chemical Composition and Evaluation of Nicotine, Tobacco Alkaloids, pH, and Selected Flavors in E-Cigarette Cartridges and Refill Solutions.

    Science.gov (United States)

    Lisko, Joseph G; Tran, Hang; Stanfill, Stephen B; Blount, Benjamin C; Watson, Clifford H

    2015-10-01

    Electronic cigarette (e-cigarette) use is increasing dramatically in developed countries, but little is known about these rapidly evolving products. This study analyzed and evaluated the chemical composition including nicotine, tobacco alkaloids, pH, and flavors in 36 e-liquids brands from 4 manufacturers. We determined the concentrations of nicotine, alkaloids, and select flavors and measured pH in solutions used in e-cigarettes. E-cigarette products were chosen based upon favorable consumer approval ratings from online review websites. Quantitative analyses were performed using strict quality assurance/quality control validated methods previously established by our lab for the measurement of nicotine, alkaloids, pH, and flavors. Three-quarters of the products contained lower measured nicotine levels than the stated label values (6%-42% by concentration). The pH for e-liquids ranged from 5.1-9.1. Minor tobacco alkaloids were found in all samples containing nicotine, and their relative concentrations varied widely among manufacturers. A number of common flavor compounds were analyzed in all e-liquids. Free nicotine levels calculated from the measurement of pH correlated with total nicotine content. The direct correlation between the total nicotine concentration and pH suggests that the alkalinity of nicotine drives the pH of e-cigarette solutions. A higher percentage of nicotine exists in the more absorbable free form as total nicotine concentration increases. A number of products contained tobacco alkaloids at concentrations that exceed U.S. pharmacopeia limits for impurities in nicotine used in pharmaceutical and food products. © Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. Estimation of Hydrazine Decomposition on Measuring the High-Temperature pH in Hydrazine/ETA Solutions at 553 K

    International Nuclear Information System (INIS)

    Hwang, Jae Sik; Yeon, Jei Won; Yun, Myung Hee; Song, Kyu Seok; Lee, Sang Ill

    2010-01-01

    Hydrazine is one of the most excellent oxygen scavengers used in the secondary circuit of nuclear power plants. Furthermore, in some pants, the hydrazine is used as a source of hydrogen required to suppress radiolysis of the coolant water in the primary loop. When hydrazine was exposed in the high temperature and high pressure water, it can be decomposed into the various products such as NH 3 , N 2 , H 2 , and NO 3 ions. As the result, the pH of solution containing hydrazine in the condition of the high temperature and high pressure can be changed by those decomposed products. In the present work, we investigated the decomposition behavior of hydrazine in ETA (ethanol amine) solution. In addition, we measured the high temperature pH at 553 K on the various hydrazine/ETA solutions for confirming the applicability of the yttria stabilized zirconia (YSZ)- based pH electrode in secondary circuit of the nuclear power plants

  9. New analytical methodology for analysing S(IV) species at low pH solutions by one stage titration method (bichromatometry) with a clear colour change. Could potentially replace the state-of-art-method iodometry at low pH analysis due higher accuracy.

    Science.gov (United States)

    Santasalo-Aarnio, Annukka; Galfi, Istvan; Virtanen, Jorma; Gasik, Michael M

    2017-01-01

    A new, faster and more reliable analytical methodology for S(IV) species analysis at low pH solutions by bichromatometry is proposed. For decades the state of the art methodology has been iodometry that is still well justified method for neutral solutions, thus at low pH media possess various side reactions increasing inaccuracy. In contrast, the new methodology has no side reactions at low pH media, requires only one titration step and provides a clear color change if S(IV) species are present in the solution. The method is validated using model solutions with known concentrations and applied to analyses of gaseous SO2 from purged solution in low pH media samples. The results indicate that bichromatometry can accurately analyze SO2 from liquid samples having pH even below 0 relevant to metallurgical industrial processes.

  10. Effect of pH on the corrosion behaviour of SUS321 in the ammonia aqueous solution

    International Nuclear Information System (INIS)

    Park, Sang Yoon; Jeong, Y. H.; Baek, J. H.; Choi, B. K.; Lee, M. H.; Choi, B. S.; Yoon, J. H.; Lee, D. J.

    2003-02-01

    The corrosion characteristics of SUS321 for pressure vessel of SMART in pure water, ammonia aqueous solutions of pH 8.5 ∼ 11.5 at 300 .deg. C were evaluated by using static autoclaves. SUS321 specimen in the high temperature ammonia aqueous solution has weight gain or loss by the 4 reactions. And it depends on the refreshing period of the aqueous solution. So additional experiments by recirculating loop system were required to evaluate the corrosion behaviour of SUS321 in the ammonia aqueous solution

  11. Technetium recovery from high alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  12. Influence of pH and oxygen content of buffer solutions on the corrosion behaviour of metallic materials

    International Nuclear Information System (INIS)

    Wiedemann, K.H.

    1977-05-01

    The application of solutions to the decontamination of materials in nuclear installations is based on the condition that their corrosion behaviour is clearly understood. Since electrochemical corrosion is due to cathodic and anodic partial reactions which are influenced in different ways by the pH of the solution and the oxygen content it is suggested that the results of electrochemical experiments with buffer solutions be used as a model for predicting the corrosion behaviour of materials in other solutions. In the tests described here potentio-kinetic current-potential-curves have been traced and galvanic corrosion tests have been made. The results obtained in ascorbic acid, potassium hydrogen phthalate, ammonium citrate and acetate, sodium and potassium tartrate, ammonium hydrogen phosphate, sodium carbonate, hexamethylene tetramin, ethylene diamine enable - on the basis of summarized current-potential-curves - the metals studied to be classified in four groups characterized by clear differences concerning the influence of pH on the corrosion behaviour. (Auth.)

  13. [Aluminum dissolution and changes of pH in soil solution during sorption of copper by aggregates of paddy soil].

    Science.gov (United States)

    Xu, Hai-Bo; Zhao, Dao-Yuan; Qin, Chao; Li, Yu-Jiao; Dong, Chang-Xun

    2014-01-01

    Size fractions of soil aggregates in Lake Tai region were collected by the low-energy ultrasonic dispersion and the freeze-desiccation methods. The dissolution of aluminum and changes of pH in soil solution during sorption of Cu2+ and changes of the dissolution of aluminum at different pH in the solution of Cu2+ by aggregates were studied by the equilibrium sorption method. The results showed that in the process of Cu2+ sorption by aggregates, the aluminum was dissoluted and the pH decreased. The elution amount of aluminum and the decrease of pH changed with the sorption of Cu2+, both increasing with the increase of Cu2+ sorption. Under the same conditions, the dissolution of aluminum and the decrease of pH were in the order of coarse silt fraction > silt fraction > sand fraction > clay fraction, which was negatively correlated with the amount of iron oxide, aluminum and organic matter. It suggested that iron oxide, aluminum and organic matters had inhibitory and buffering effect on the aluminum dissolution and the decrease of pH during the sorption of Cu2+.

  14. Recovery of uranium from sulphate solutions containing molybdenum

    International Nuclear Information System (INIS)

    Weir, D.R.; Genik-Sas-Berezowsky, R.M.

    1983-01-01

    A process for recovering uranium from a sulphate solution containing dissolved uranium and molybdenum includes reacting the solution with ammonia (pH 8 to 10), the pH of the original solution must not exceed 5.5 and after the addition of ammonia the pH must not be in the vicinity of 7 for a significant time. The resultant uranium precipitate is relatively uncontaminated by molybdenum. The precipitate is then separated from the remaining solution while the pH is maintained within the stated range

  15. Electrolyte solutions including a phosphoranimine compound, and energy storage devices including same

    Science.gov (United States)

    Klaehn, John R.; Dufek, Eric J.; Rollins, Harry W.; Harrup, Mason K.; Gering, Kevin L.

    2017-09-12

    An electrolyte solution comprising at least one phosphoranimine compound and a metal salt. The at least one phosphoranimine compound comprises a compound of the chemical structure ##STR00001## where X is an organosilyl group or a tert-butyl group and each of R.sup.1, R.sup.2, and R.sup.3 is independently selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, or an aryloxy group. An energy storage device including the electrolyte solution is also disclosed.

  16. Dansyl-8-aminoquinoline as a sensitive pH fluorescent probe with dual-responsive ranges in aqueous solutions.

    Science.gov (United States)

    Zhang, Min; Zheng, Shuyu; Ma, Liguo; Zhao, Meili; Deng, Lengfang; Yang, Liting; Ma, Li-Jun

    2014-04-24

    A sensitive pH fluorescent probe based on dansyl group, dansyl-8-aminoquinoline (DAQ), has been synthesized. The probe showed dual-responsive ranges to pH changes, one range from 2.00 to 7.95 and another one from 7.95 to 10.87 in aqueous solution, as it showed pKa values of 5.73 and 8.56 under acid and basic conditions, respectively. Furthermore, the pH response mechanism of the probe was explored successfully by using NMR spectra. The results indicated that the responses of DAQ to pH changes should attribute to the protonation of the nitrogen atom in the dimethylamino group and deprotonation of sulfonamide group. Copyright © 2014. Published by Elsevier B.V.

  17. Contribution of solution pH and buffer capacity to suppress intergranular stress corrosion cracking of sensitized type 304 stainless steel at 95 C

    International Nuclear Information System (INIS)

    Zhang, S.; Shibata, T.; Haruna, T.

    1999-01-01

    Controlling pH of high-temperature water to ∼pH 7 at 300 C by adding lithium hydroxide (LiOH) into the coolant system of a pressurized water reactor (PWR) successfully has been mitigating the corrosion of PWR component materials. The effects of solution pH and buffer capacity on intergranular stress corrosion cracking (IGSCC) of sensitized type 304 stainless steel ([SS] UNS S30400) was examined at 95 C by slow strain rate technique (SSRT) with an in-situ cracking observation system. It was found that an increase in solution pH or buffer capacity increased crack initiation time and decreased mean crack initiation frequency, but exerted almost no effect on crack propagation. This inhibition effect on IGSCC initiation was explained as resulting from a retarding effect of solution pH and buffer capacity on the decrease in pH at crack nuclei caused by the hydrolysis of metal ions dissolved when the passive film was ruptured by strain in SSRT

  18. pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors.

    Science.gov (United States)

    Sohn, Il-Yung; Kim, Duck-Jin; Jung, Jin-Heak; Yoon, Ok Ja; Thanh, Tien Nguyen; Quang, Trung Tran; Lee, Nae-Eung

    2013-07-15

    Solution-gated reduced graphene oxide field-effect transistors (R-GO FETs) were investigated for pH sensing and biochemical sensing applications. A channel of a networked R-GO film formed by self-assembly was incorporated as a sensing layer into a solution-gated FET structure for pH sensing and the detection of acetylcholine (Ach), which is a neurotransmitter in the nerve system, through enzymatic reactions. The fabricated R-GO FET was sensitive to protons (H(+)) with a pH sensitivity of 29 mV/pH in terms of the shift of the charge neutrality point (CNP), which is attributed to changes in the surface potential caused by the interaction of protons with OH surface functional groups present on the R-GO surface. The R-GO FET immobilized with acetylcholinesterase (AchE) was used to detect Ach in the concentration range of 0.1-10mM by sensing protons generated during the enzymatic reactions. The results indicate that R-GO FETs provide the capability to detect protons, demonstrating their applicability as a biosensing device for enzymatic reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Spectroscopic determination of pH

    International Nuclear Information System (INIS)

    Faanu, A.; Glover, E.T.; Bailey, E.; Rochelle, C.

    2009-01-01

    A technique of measuring pH at temperature range of 20 - 70 0 C and high pressure conditions of 1 - 200 atmospheres has been developed by relating the ratio of absorbance peaks of indicator solutions (basic and acidic) as a function of pH, using ultraviolet-visible spectrophotometer. The pH values of the buffer solutions measured at 20 0 C and 70 0 C indicated slight temperature dependence, while the pressure had no effect. The pH of the buffer solutions increased with temperature with relative standard deviations in the range 0.4 - 0.5 % at 95 % confidence interval. The possible causes of the temperature dependence were attributed to changes in pH values as the temperature changed. (au)

  20. Influence of the pH value of a colloidal gold solution on the absorption spectra of an LSPR-assisted sensor

    International Nuclear Information System (INIS)

    Zhu, Jin; Li, Wenbin; Zhu, Mao; Zhang, Wei; Niu, Wencheng; Liu, Guohua

    2014-01-01

    The localized surface plasmon resonances (LSPRs) of gold particles assembled on a crystal plate are a powerful tool for biological sensors. Here, we prepare gold colloids in different pH solutions. We monitor the effects of the particle radius and particle coverage on the absorption spectra of AT-cut (r-face dihedral angle of about 3°) crystal plates supporting gold nanoparticles. The surface morphologies were monitored on silicon dioxide substrates using ultraviolet and visible (UV-vis) spectroscopy, and atomic force microscopy (AFM). The results showed that the gold particle coverage decreases with increasing pH value of the gold colloid solution. This phenomenon demonstrates that self-assembled gold surfaces were formed via the electrostatic adsorption of gold particles on the positively charged, ionized amino groups on the crystal plates in the acidic solution. The spectrum of gold nanoparticles with different coverage degree on the crystal plates showed that the LSPR properties are highly dependent on pH

  1. Migration characteristics of cobalt-60 through sandy soil in high pH solution

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko

    1992-01-01

    Migration characteristics of 60 Co through sandy soil in high pH solution has been investigated by both column and batch techniques. The association of 60 Co with the sandy soil and its components were studied by sequential extraction techniques. The concentration profile of 60 Co in the sandy soil column was composed of two exponential curves showing that 60 Co would consist of immobile and mobile fractions. The immobile 60 Co was retained by the sandy soil and was distributed near the top. Though the mobile 60 Co was little sorbed by soil and migrated through the soil column, maximum concentration of 60 Co in the effluents decreased slightly with increasing path length of the soil column. The sequential extraction of 60 Co from the sandy soil and from its components showed that 60 Co was sorbed by both manganese oxide and clay minerals. And manganese oxide is one of the responsible soil components for the observed decrease in the maximum concentration of 60 Co in the effluents. Although the content of manganese oxide in the sandy soil was 0.13%, manganese oxide is the important component to prevent from the migration of 60 Co in the high pH solution. (author)

  2. The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides

    International Nuclear Information System (INIS)

    Freire, L.; Carmezim, M.J.; Ferreira, M.G.S.; Montemor, M.F.

    2011-01-01

    Highlights: → The passivation and passivation breakdown of AISI 304 in alkaline solutions with different pH was studied. → The electrochemical behaviour and the corrosion resistance in chloride environments were evaluated using d.c. potentiodynamic polarization and electrochemical impedance spectroscopy. → The results were modelled using a hierarchically distributed circuit and revealed a more susceptible surface at pH 9. → The passive film characterization was carried out by SEM and EDS analysis, revealing the existence of MnS inclusions and the increase of Cr/Fe ratio in the attacked areas, preferably the vicinity of those inclusions. - Abstract: Nowadays, stainless steel reinforcements appear as an effective solution to increase the durability of reinforced concrete structures exposed to very aggressive environments. AISI 304 is widely used for this purpose. Although the improved durability of reinforcing AISI 304, when compared to carbon steel, there is a high probability of pitting susceptibility in the presence of chlorides. Thus, the present work aims at studying the passivation and passivation breakdown of AISI 304 in alkaline solutions of different pH (pH from 13 to 9), simulating the interstitial concrete electrolyte. These solutions were contaminated with different concentrations of chloride ions (3% and 10%, as NaCl). The electrochemical behaviour was evaluated by d.c. potentiodynamic polarization and by electrochemical impedance spectroscopy (EIS). The morphological features and the changes observed in the surface composition were evaluated by Scanning Electron Microscopy (SEM) together with EDS chemical analysis. The results evidence that pH plays an important role in the evolution of the film resistance and charge transfer processes. Moreover, the effect is highly dependent upon the chloride content and immersion time.

  3. Calculation of the equilibrium pH in a multiple-buffered aqueous solution based on partitioning of proton buffering: a new predictive formula.

    Science.gov (United States)

    Nguyen, Minhtri K; Kao, Liyo; Kurtz, Ira

    2009-06-01

    Upon the addition of protons to an aqueous solution containing multiple buffers, the final H+ concentration ([H+]) at equilibrium is determined by the partitioning of added H+ among the various buffer components. In the analysis of acid-base chemistry, the Henderson-Hasselbalch equation and the Stewart strong ion formulation can only describe (rather than predict) the equilibrium pH following a proton load since these formulas calculate the equilibrium pH only when the reactant concentrations at equilibrium(1) 1The term "equilibrium" refers to the steady state proton and reactant concentrations when the buffering of excess protons by the various buffers is complete. are already known. In this regard, it is simpler to directly measure the equilibrium pH rather than measure the equilibrium reactant concentrations to calculate the equilibrium pH. As these formulas cannot predict the final equilibrium [H+] following a proton load to a multiple-buffered aqueous solution, we developed a new quantitative approach for predicting the equilibrium [H+] that is based on the preequilibrium(2)2 The term "preequilibrium" refers to the initial proton and reactant concentrations immediately upon addition of protons and before the buffering of excess protons by the various buffers. concentrations of all buffers in an aqueous solution. The mathematical model used to derive our equation is based on proton transfer buffer equilibria without requiring the incorporation of electroneutrality considerations. The model consists of a quartic polynomial equation that is derived based solely on the partitioning of H+ among the various buffer components. We tested the accuracy of the model using aqueous solutions with various buffers and measured the equilibrium pH values following the addition of HCl. Our results confirmed the accuracy of our new equation (r2 = 1; measured pH vs. predicted pH), indicating that it quantitatively accounts for the underlying acid-base phenomenology.

  4. Calculation of the equilibrium pH in a multiple-buffered aqueous solution based on partitioning of proton buffering: a new predictive formula

    Science.gov (United States)

    Nguyen, Minhtri K.; Kao, Liyo; Kurtz, Ira

    2009-01-01

    Upon the addition of protons to an aqueous solution containing multiple buffers, the final H+ concentration ([H+]) at equilibrium is determined by the partitioning of added H+ among the various buffer components. In the analysis of acid-base chemistry, the Henderson-Hasselbalch equation and the Stewart strong ion formulation can only describe (rather than predict) the equilibrium pH following a proton load since these formulas calculate the equilibrium pH only when the reactant concentrations at equilibrium1 1The term “equilibrium” refers to the steady state proton and reactant concentrations when the buffering of excess protons by the various buffers is complete. are already known. In this regard, it is simpler to directly measure the equilibrium pH rather than measure the equilibrium reactant concentrations to calculate the equilibrium pH. As these formulas cannot predict the final equilibrium [H+] following a proton load to a multiple-buffered aqueous solution, we developed a new quantitative approach for predicting the equilibrium [H+] that is based on the preequilibrium22The term “preequilibrium” refers to the initial proton and reactant concentrations immediately upon addition of protons and before the buffering of excess protons by the various buffers. concentrations of all buffers in an aqueous solution. The mathematical model used to derive our equation is based on proton transfer buffer equilibria without requiring the incorporation of electroneutrality considerations. The model consists of a quartic polynomial equation that is derived based solely on the partitioning of H+ among the various buffer components. We tested the accuracy of the model using aqueous solutions with various buffers and measured the equilibrium pH values following the addition of HCl. Our results confirmed the accuracy of our new equation (r2 = 1; measured pH vs. predicted pH), indicating that it quantitatively accounts for the underlying acid-base phenomenology. PMID

  5. The passivation of calcite by acid mine water. Column experiments with ferric sulfate and ferric chloride solutions at pH 2

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Josep M. [Institute of Earth Sciences ' Jaume Almera' (CSIC), Lluis Sole i Sabaris s/n, 08028 Barcelona, Catalonia (Spain); Institute of Environmental Assessment and Water Research (CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia (Spain)], E-mail: jsoler@ija.csic.es; Boi, Marco [Institute of Earth Sciences ' Jaume Almera' (CSIC), Lluis Sole i Sabaris s/n, 08028 Barcelona, Catalonia (Spain); Institute of Environmental Assessment and Water Research (CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia (Spain); Mogollon, Jose Luis [Institute of Earth Sciences ' Jaume Almera' (CSIC), Lluis Sole i Sabaris s/n, 08028 Barcelona, Catalonia (Spain); Instituto de Ciencias de la Tierra, Universidad Central de Venezuela, Caracas 1020-A (Venezuela, Bolivarian Republic of); Cama, Jordi; Ayora, Carlos [Institute of Earth Sciences ' Jaume Almera' (CSIC), Lluis Sole i Sabaris s/n, 08028 Barcelona, Catalonia (Spain); Institute of Environmental Assessment and Water Research (CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia (Spain); Nico, Peter S.; Tamura, Nobumichi; Kunz, Martin [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2008-12-15

    Column experiments, simulating the behavior of passive treatment systems for acid mine drainage, have been performed. Acid solutions (HCl or H{sub 2}SO{sub 4}, pH 2), with initial concentrations of Fe(III) ranging from 250 to 1500 mg L{sup -1}, were injected into column reactors packed with calcite grains at a constant flow rate. The composition of the solutions was monitored during the experiments. At the end of the experiments (passivation of the columns), the composition and structure of the solids were measured. The dissolution of calcite in the columns caused an increase in pH and the release of Ca into the solution, leading to the precipitation of gypsum and Fe-oxyhydroxysulfates (Fe(III)-SO{sub 4}-H{sup +} solutions) or Fe-oxyhydroxychlorides (Fe(III)-Cl-H{sup +} solutions). The columns worked as an efficient barrier for some time, increasing the pH of the circulating solutions from 2 to {approx}6-7 and removing its metal content. However, after some time (several weeks, depending on the conditions), the columns became chemically inert. The results showed that passivation time increased with decreasing anion and metal content of the solutions. Gypsum was the phase responsible for the passivation of calcite in the experiments with Fe(III)-SO{sub 4}-H{sup +} solutions. Schwertmannite and goethite appeared as the Fe(III) secondary phases in those experiments. Akaganeite was the phase responsible for the passivation of the system in the experiments with Fe(III)-Cl-H{sup +} solutions.

  6. Kinetic Rate Law Parameter Measurements on a Borosilicate Waste Glass: Effect of Temperature, pH, and Solution Composition on Alkali Ion Exchange

    International Nuclear Information System (INIS)

    Pierce, Eric M.; McGrail, B PETER.; Icenhower, J P.; Rodriguez, Elsa A.; Steele, Jackie L.; Baum, Steven R.

    2004-01-01

    The reaction kinetics of glass is controlled by matrix dissolution and ion exchange (IEX). Dissolution of an alkali-rich simulated borosilicate waste glass was investigated using single-pass flow-through (SPFT) experiments. Experiments were conducted as a function of temperature, pH, and solution composition by varying the SiO 2 (aq) activity in the influent solution. Results showed that under dilute conditions matrix dissolution increased with increasing pH and temperature, and decreased with increasing SiO 2 (aq) activity. IEX rates decreased with increasing pH and temperature, and increased with increasing SiO 2 (aq) activity. Over the solution composition range interrogated in this study the dominant dissolution mechanism changed from matrix dissolution to IEX. These results suggest that ''secondary'' reactions may become dominant under certain environmental conditions and emphasize the need to incorporate these reactions into dissolution rate models

  7. Fate of cadmium at the soil-solution interface: a thermodynamic study as influenced by varying pH at South 24 Parganas, West Bengal, India.

    Science.gov (United States)

    Karak, Tanmoy; Paul, Ranjit Kumar; Das, Sampa; Das, Dilip K; Dutta, Amrit Kumar; Boruah, Romesh K

    2015-11-01

    A study on the sorption kinetics of Cd from soil solution to soils was conducted to assess the persistence of Cd in soil solution as it is related to the leaching, bioavailability, and potential toxicity of Cd. The kinetics of Cd sorption on two non-contaminated alkaline soils from Canning (22° 18' 48.02″ N and 88° 39' 29.0″ E) and Lakshmikantapur (22° 06' 16.61″ N and 88° 19' 08.66″ E) of South 24 Parganas, West Bengal, India, were studied using conventional batch experiment. The variable soil suspension parameters were pH (4.00, 6.00, 8.18, and 9.00), temperatures (308, 318, and 328 K) and Cd concentrations (5-100 mg L(-1)). The average rate coefficient (kavg) and half-life (t1/2) values indicate that the persistence of Cd in soil solution is influenced by both temperature and soil suspension pH. The concentration of Cd in soil solution decreases with increase of temperature; therefore, Cd sorption on the soil-solution interface is an endothermic one. Higher pH decreases the t 1/2 of Cd in soil solution, indicating that higher pH (alkaline) is not a serious concern in Cd toxicity than lower pH (acidic). Based on the energy of activation (Ea) values, Cd sorption in acidic pH (14.76±0.29 to 64.45±4.50 kJ mol(-1)) is a surface control phenomenon and in alkaline pH (9.33±0.09 to 44.60±2.01 kJ mol(-1)) is a diffusion control phenomenon The enthalpy of activation (ΔH∓) values were found to be between 7.28 and 61.73 kJ mol(-1). Additionally, higher positive energy of activation (ΔG∓) values (46.82±2.01 to 94.47±2.36 kJ mol(-1)) suggested that there is an energy barrier for product formation.

  8. Methodologically controlled variations in laboratory and field pH measurements in waterlogged soils

    DEFF Research Database (Denmark)

    Elberling, Bo; Matthiesen, Henning

    2007-01-01

    artefacts is critical. But the study includes agricultural and forest soils for comparison. At a waterlogged site, Laboratory results were compared with three different field methods: calomel pH probes inserted in the soil from pits, pH measurements of soil solution extracted from the soil, and pH profiles...... using a solid-state pH electrode pushed into the soil from the surface. Comparisons between in situ and laboratory methods revealed differences of more than 1 pH unit. The content of dissolved ions in soil solution and field observations of O2 and CO2 concentrations were used in the speciation model...... PHREEQE in order to predict gas exchange processes. Changes in pH in soil solution following equilibrium in the laboratory could be explained mainly by CO2 degassing. Only soil pH measured in situ using either calomel or solid-state probes inserted directly into the soil was not affected by gas exchange...

  9. Method for producing rapid pH changes

    Science.gov (United States)

    Clark, J.H.; Campillo, A.J.; Shapiro, S.L.; Winn, K.R.

    A method of initiating a rapid pH change in a solution comprises irradiating the solution with an intense flux of electromagnetic radiation of a frequency which produces a substantial pK change to a compound in solution. To optimize the resulting pH change, the compound being irradiated in solution should have an excited state lifetime substantially longer than the time required to establish an excited state acid-base equilibrium in the solution. Desired pH changes can be accomplished in nanoseconds or less by means of picosecond pulses of laser radiation.

  10. Electrochemical Corrosion Behavior of Carbon Steel and Hot Dip Galvanized Steel in Simulated Concrete Solution with Different pH Values

    Directory of Open Access Journals (Sweden)

    Wanchen XIE

    2017-08-01

    Full Text Available Hot dip galvanizing technology is now widely used as a method of protection for steel rebars. The corrosion behaviors of Q235 carbon steel and hot galvanized steel in a Ca(OH2 solution with a pH from 10 to 13 was investigated by electrode potential and polarization curves testing. The results indicated that carbon steel and hot galvanized steel were all passivated in a strong alkaline solution. The electrode potential of hot dip galvanized steel was lower than that of carbon steel; thus, hot dip galvanized steel can provide very good anodic protection for carbon steel. However, when the pH value reached 12.5, a polarity reversal occurred under the condition of a certain potential. Hot dip galvanized coating became a cathode, and the corrosion of carbon steel accelerated. The electrochemical behaviors and passivation abilities of hot dip galvanized steel and carbon steel were affected by pH. The higher the pH value was, the more easily they were passivated.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16675

  11. Influence of pH, temperature and thermal treatment on site corrosion of SAE 304 steel in chlorinated solutions

    International Nuclear Information System (INIS)

    Konrad, I.B.

    1982-01-01

    The electrochemical behaviour and fracture morphology of homogenized and sensitized type SAE 304 stainless steel U bent specimens, in 3% NaCl solution, at pH=2.0 and pH=7.0 both at room temperature and 100 0 C was studied. Polarization curves, galvanostatic and potentiostatic experiments were run. It could be observed that high temperature and low pH favour transgranular cracking and longer sensitization times lower fracture time and tend to give rise to intergranular fracture. Light sensitization can produce transgranular cracking even at room temperature, when the homogenized alloy does not present stress-corrosion cracking for the same condition. (Author) [pt

  12. X-ray absorption spectroscopic study of trivalent and tetravalent actinides in solution at varying pH values

    Energy Technology Data Exchange (ETDEWEB)

    Brendebach, B.; Banik, N.L.; Marquardt, C.M.; Rothe, J.; Denecke, M.A.; Geckeis, H. [Forschungszentrum Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung

    2009-07-01

    We perform X-ray absorption spectroscopy (XAS) investigations to monitor the stabilization of redox sensitive trivalent and tetravalent actinide ions in solution at acidic conditions in a pH range from 0 to 3 after treatment with holding reductants, hydroxylamine hydrochloride (NH{sub 2}OHHCl) and Rongalite (sodium hydroxymethanesulfinate, CH{sub 3}NaO{sub 3}S). X-ray absorption near edge structure (XANES) measurements clearly demonstrate the stability of the actinide species for several hours under the given experimental conditions. Hence, structural parameters can be accurately derived by extended X-ray absorption fine structure (EXAFS) investigations. The coordination structure of oxygen atoms belonging to water ligands surrounding the actinide ions does not change with increasing pH value (approximately 11 O atoms at 2.42 A in the case of U(IV) at pH 1, 9 0 atoms at 2.52 A for Np(III) at pH 1.5, and 10 O atoms at 2.49 A for Pu(III) up to pH 3), indicating that hydrolysis reactions are suppressed under the given chemical conditions. (orig.)

  13. Computer simulation of the effect of temperature on pH.

    Science.gov (United States)

    Kipp, J E; Schuck, D F

    1995-11-01

    The effect of temperature on solution pH was simulated by computer (program PHTEMP). We have determined that the change in pH due to shifts in acid-base equilibria [delta pH = pH(60 degrees C) - pH(25 degrees C)] can be substantial for compounds such as aliphatic amines that have high enthalpies for acid dissociation. This is of particular significance during elevated temperature experiments in which changes in the pKa values of formulation components, and hence the solution pH, can accelerate decomposition as compared to those formulations where sensitive functionality is absent. PHTEMP afforded the following results at initial pH = 7 (25 degrees C): (a) 0.1 M triethylamine (delta H zero = 10.4 kcal/mol) delta pH approximately -0.8; (b) 0.1 M acetic acid (delta H zero = -0.1 kcal/mol) delta pH approximately 0; (c) 0.1 M sulfuric acid (delta H zero 1 = -12 kcal/mol; delta H zero 2 = -5.4 kcal/mol) delta pH approximately -0.4. Solutions of general pharmaceutical interest were also studied and included a 12-component amino acid mixture, 0.1 M glycine, and 0.1 M triethylamine in either 0.02 M citric acid or 0.05 M TRIS buffer. In each case the pH change with temperature was dependent on the concentrations of components, the enthalpies for each acid dissociation, and the starting pH. At lower pH ( 9). These results are interpreted as the effect of a relative change in hydronium ion activity, delta H+/H+(initial), due to temperature-induced shifts in equilibria (acid dissociation, water autoprotolysis). This relative change must become larger as H+ decreases (pH increases). The output of PHTEMP was experimentally verified with 0.1 M glycine and with a multiple component amino acid solution. In both cases, agreement with prediction was excellent. The results of this investigation underscore the need to critically review formulation choices for both thermodynamic and traditional kinetic effects on the resulting product stability.

  14. Electrocatalytic hydrogen evolution under densely buffered neutral pH conditions

    KAUST Repository

    Shinagawa, Tatsuya

    2015-08-18

    Under buffered neutral pH conditions, solute concentrations drastically influence the hydrogen evolution reaction (HER). The iR-free HER performance as a function of solute concentration was found to exhibit a volcano-shaped trend in sodium phosphate solution at pH 5, with the maximum occurring at 2 M. A detailed microkinetic model that includes calculated activity coefficients, solution resistance, and mass-transport parameters accurately describes the measured values, clarifying that the overall HER performance is predominantly governed by mass-transport of slow phosphate ions (weak acid). In the HER at the optimum concentration of approximately 2 M sodium phosphate at pH 5, our theoretical model predicts that the concentration overpotential accounts for more than half of the required overpotential. The substantial concentration overpotential would originate from the electrolyte property, suggesting that the proper electrolyte engineering will result in an improved apparent HER performances. The significance of concentration overpotential shown in the study is critical in the advancement of electrocatalysis, biocatalysis, and photocatalysis.

  15. Electrocatalytic hydrogen evolution under densely buffered neutral pH conditions

    KAUST Repository

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2015-01-01

    Under buffered neutral pH conditions, solute concentrations drastically influence the hydrogen evolution reaction (HER). The iR-free HER performance as a function of solute concentration was found to exhibit a volcano-shaped trend in sodium phosphate solution at pH 5, with the maximum occurring at 2 M. A detailed microkinetic model that includes calculated activity coefficients, solution resistance, and mass-transport parameters accurately describes the measured values, clarifying that the overall HER performance is predominantly governed by mass-transport of slow phosphate ions (weak acid). In the HER at the optimum concentration of approximately 2 M sodium phosphate at pH 5, our theoretical model predicts that the concentration overpotential accounts for more than half of the required overpotential. The substantial concentration overpotential would originate from the electrolyte property, suggesting that the proper electrolyte engineering will result in an improved apparent HER performances. The significance of concentration overpotential shown in the study is critical in the advancement of electrocatalysis, biocatalysis, and photocatalysis.

  16. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil.

    Science.gov (United States)

    Li, X; Christie, P

    2001-01-01

    Red clover plants inoculated with Glomus mosseae were grown in a sterile pasture soil containing 50 mg Zn kg(-1) in 'Plexiglas' (acrylic) containers with nylon net partitions (30 microm mesh) designed to separate the soil into a central root zone and two outer zones for hyphal growth with no root penetration. Two porous plastic soil moisture samplers were installed in each pot, one in the root compartment and the other in one of the hyphal compartments. The soil in the outer compartments was amended with one of the four application rates of Zn (as ZnSO4) ranging from 0 to 1000 mg kg(-1). Non-mycorrhizal controls were included, and there were five replicates of each treatment in a randomised block in a glasshouse. Uninoculated plants received supplementary P to avoid yield limitation due to low soil P status. Plants grew in the central compartment for nine weeks. Soil moisture samples were collected 4, 24 and 62 days after sowing to monitor changes in the Zn concentration and pH of the soil solution. At harvest, the mean mycorrhizal infection rate of inoculated plants ranged from 29% to 34% of total root length and was little affected by Zn application. Root and shoot yields were not affected by mycorrhizal infection. Plant Zn concentration and uptake were lower in mycorrhizal plants than non-mycorrhizal controls, and this effect was more pronounced with increasing Zn application rate to the soil. Soil solution Zn concentrations were lower and pH values were higher in mycorrhizal treatments than non-mycorrhizal controls and the mycorrhiza effect was more pronounced at higher Zn application rates. The protective effect of mycorrhiza against plant Zn uptake may have been associated with changes in Zn solubility mediated by changes in the soil solution pH, or by immobilisation of Zn in the extraradical mycelium.

  17. Canonical correlation of waste glass compositions and durability, including pH

    International Nuclear Information System (INIS)

    Oeksoy, D.; Pye, L.D.; Bickford, D.F.; Ramsey, W.G.

    1993-01-01

    Control of waste glass durability is a major concern in the immobilization of radioactive and mixed wastes. Leaching rate in standardized laboratory tests is being used as a demonstration of consistency of the response of waste glasses in the final disposal environment. The leaching of silicate and borosilicate glasses containing alkali or alkaline earth elements is known to be autocatalytic, in that the initial ion exchange of alkali in the glass for hydrogen ions in water results in the formation of OH and increases the pH of the leachate. The increased pH then increases the rate of silicate network attack, accelerating the leaching effect. In well formulated glasses this effect reaches a thermodynamic equilibrium when leachate saturation of a critical species, such as silica, or a dynamic equilibrium is reached when the pH shift caused by incremental leaching has negligible effect on pH. This report analyzes results of a seven leach test on waste glasses

  18. Influence of alkaline (PH 8.3-12.0) and saline solutions on chemical, mineralogical and physical properties of two different bentonites - batch experiments at 25 deg. C

    International Nuclear Information System (INIS)

    Heikola, Tiina; Vuorinen, Ulla; Kumpulainen, Sirpa; Kiviranta, Leena; Korkeakoski, Petri

    2012-01-01

    Document available in extended abstract form only. Construction of a spent fuel repository deep in the bedrock will need supporting structures using cement materials. A part of them can be removed before closure but still it is estimated that about 1000 tonnes will remain in the host rock. Degradation of cementitious materials produces leachates of high pH. If such an alkaline plume reaches the bentonite buffer, it may induce mineralogical and chemical changes in bentonite over long term, and further affect the safety functions of the buffer. Laboratory experiments were done with the objective to gain data of possible alterations in mineralogical, chemical and physical properties of bentonites contacted with high-pH saline solutions. Two untreated, high grade, Na- and Ca-bentonites, were used in batch experiments, which were carried out in an anaerobic glove-box at 25±1 deg. C for 554 days. Each bentonite sample (20 g) was leached with approximately 3.8 L of leaching solution, which equals 190 mL/g of bentonite. The bentonites were leached with three types of simulated cement waters (pH 9.7, 11.3 and 12.0) and one saline groundwater simulate (pH 8.3) as a reference. The leaching solutions were 0.3 M, and contained NaCl and CaCl 2 , and trace amounts of SiO 2 , K, Br, Mg and SO 4 . Dissolved oxygen and carbon dioxide were removed from leaching solutions before mixing of bentonite in PC bottles. The samples were placed on a platform shaker in order to allow better contact between bentonite and the leaching solution. The evolution of pH in the samples was followed by measuring the pH-value of each sample in the solution phase approximately twice a week and the solution was renewed when values of two to three consecutive measurements did not change. On average, the leaching solution was renewed once a month. For each renewal of the leaching solution the phases were separated, the reacted solution withdrawn, and the chemical composition analysed. Before analysis the

  19. pH sensing in aqueous solutions using a MnO2 thin film electrodeposited on a glassy carbon electrode

    International Nuclear Information System (INIS)

    Cherchour, N.; Deslouis, C.; Messaoudi, B.; Pailleret, A.

    2011-01-01

    An electrolysis technique at a constant potential was used to develop a highly reproducible and fast elaboration method of adherent manganese dioxide thin films on a glassy carbon electrode from aqueous solutions containing sulfuric acid and manganese sulfate. The resulting films were found to have a nanostructured character presumably due rather to birnessite (δ-MnO 2 ) than to γ-MnO 2 , as suggested by their Raman and XRD signatures. They lead to modified electrodes that present an obvious although complex pH dependent potentiometric response. This sensor indeed showed a single slope non-Nernstian linear behaviour over the 1.5-12 pH range for increasing pH direction ('trace'), whereas a Nernstian two slopes linear behaviour was observed for decreasing pH direction ('re-trace'). Preliminary EIS experiments carried out at a pH value of 1.8 seem to reveal a sensitivity mechanism based on proton insertion process at least at highly acidic pH values.

  20. The study on the pH behavior of the HFSC leached solution. The development of model considering the pozzolanic reaction

    International Nuclear Information System (INIS)

    Yoshida, Yasushi; Mihara, Morihiro

    2005-09-01

    The development of low alkalinity cement (high fly-ash contained silica-fume cement, HFSC) has been carried out in JNC. Low alkalinity for this cement is achieved by adding pozzolan materials to ordinary portland cement and Ca ion attributed to high alkalinity is consumed by forming CHS gel. This report shows the calculation model to predict the composition for HFSC reacted solution which considers cement mineral dissolution/precipitation as equilibrium reactions and dissolution for pozzolan material as a kinetic reaction. The dissolution kinetic equation for pozzolan material is also derived from leaching experiment. This calculation model is applied to the leaching experiment where powdered HFSC was reacted with distilled water. As a result of comparison between calculation and experimental measurement at the early stage for leaching the tendency for pH, pH decrease from 12.5 to 11.5 drastically, could be interpreted by this calculation model, however, after this drastic pH decreasing pH predicted by calculation model also shows drastic decrease whereas pH for experiment decreased mildly around pH 11.5. It could be thought that this difference between experiment and calculation is caused by inappropriate modelling for CSH gel dissolution/precipitation of C/S value lower than 1.0. For this C/S range thermodynamic data for intermediate and end member for solid solution for CSH gel and in addition the reaction kinetic for CSH gel should be examined in detail. (author)

  1. Gamma radiation and osmotic potential of the nutrient solution differentially affect macronutrient concentrations, pH and EC in chilhuacle pepper fruits

    International Nuclear Information System (INIS)

    Victor Garcia-Gaytan, Libia Iris Trejo-Tellez; Olga Tejeda-Sartorius; Maribel Ramirez-Martinez; Julian Delgadillo-Martinez; Fernando Carlos Gomez-Merino; Soledad Garcia-Morales

    2018-01-01

    Chilhuacle pepper (Capsicum annuum L.) seeds were exposed to gamma radiation (GR) doses (0, 10, 80 and 120 Gy), and plants were grown in hydroponics with different osmotic potentials (OP) (- 0.036, - 0.072, - 0.092, and - 0.108 MPa) in the nutrient solution. We measured the nutrient concentrations, pH and electrical conductivity (EC) in fruits at different time points after transplanting (70, 90 and 130 dat), and found the GR, nutrient solution OP and their interactions differentially affected N, P, K, Ca, and Mg concentrations, as well as pH and EC in chilhuacle peppers. (author)

  2. Semi-mechanistic partial buffer approach to modeling pH, the buffer properties, and the distribution of ionic species in complex solutions.

    Science.gov (United States)

    Dougherty, Daniel P; Da Conceicao Neta, Edith Ramos; McFeeters, Roger F; Lubkin, Sharon R; Breidt, Frederick

    2006-08-09

    In many biological science and food processing applications, it is very important to control or modify pH. However, the complex, unknown composition of biological media and foods often limits the utility of purely theoretical approaches to modeling pH and calculating the distributions of ionizable species. This paper provides general formulas and efficient algorithms for predicting the pH, titration, ionic species concentrations, buffer capacity, and ionic strength of buffer solutions containing both defined and undefined components. A flexible, semi-mechanistic, partial buffering (SMPB) approach is presented that uses local polynomial regression to model the buffering influence of complex or undefined components in a solution, while identified components of known concentration are modeled using expressions based on extensions of the standard acid-base theory. The SMPB method is implemented in a freeware package, (pH)Tools, for use with Matlab. We validated the predictive accuracy of these methods by using strong acid titrations of cucumber slurries to predict the amount of a weak acid required to adjust pH to selected target values.

  3. BSA-coated nanoparticles for improved SERS-based intracellular pH sensing.

    Science.gov (United States)

    Zheng, Xiao-Shan; Hu, Pei; Cui, Yan; Zong, Cheng; Feng, Jia-Min; Wang, Xin; Ren, Bin

    2014-12-16

    Local microenvironment pH sensing is one of the key parameters for the understanding of many biological processes. As a noninvasive and high sensitive technique, surface-enhanced Raman spectroscopy (SERS) has attracted considerable interest in the detection of the local pH of live cells. We herein develop a facile way to prepare Au-(4-MPy)-BSA (AMB) pH nanosensor. The 4-MPy (4-mercaptopyridine) was used as the pH sensing molecule. The modification of the nanoparticles with BSA not only provides a high sensitive response to pH changes ranging from pH 4.0 to 9.0 but also exhibits a high sensitivity and good biocompatibility, stability, and reliability in various solutions (including the solutions of high ionic strength or with complex composition such as the cell culture medium), both in the aggregation state or after long-term storage. The AMB pH nanosensor shows great advantages for reliable intracellular pH analysis and has been successfully used to monitor the pH distribution of live cells and can address the grand challenges in SERS-based pH sensing for practical biological applications.

  4. Influence of pH on Cr(VI) ions removal from aqueous solutions using carboxymethyl cellulose-based hydrogel as adsorbent

    Science.gov (United States)

    Anah, L.; Astrini, N.

    2017-03-01

    The major problem in heavy metal pollution is that these metals are not biodegradable and accordingly accumulate in the bodies of living organisms, causing dangerous diseases and serious cell disorder. According to World Health Organization (WHO), the long term exposure of Cr(VI) levels of over 0.1 ppm causes respiratory problems, liver and kidney damage, and carcinogenicity.Due to its easy operation and of various cheap adsorbents development, adsorption has been proved to be efficient and most economically attractive technique and feasible to the removal of toxic heavy metal from wastewater. The study aimed to report the removal of Cr(VI) ions from aqueous solutions through adsorption process using carboxymethyl cellulose-graft-poly(acrylic acid) (CMC-g-PAA) hydrogel as adsorbent.Effect of pH was studied to remove hexavalent chromium.Graft copolymerization of poly(acrylic acid) onto carboxymethyl cellulose was carried out in the presence of benzoyl peroxide redox initiator and methylenbisacrylamide as crosslinker agent. Batch experiments were carried out to investigate the effects ofinitial pH.The adsorption of Cr(VI) ions as a function of pH was conducted in the initial pH range of 1 to 8. The results indicated that acidic pH strongly favored the adsorption. The optimum pH for adsorption of Cr(VI) ranged from 1 to 3, and the maximum uptake of Cr(VI) from the solution was 6.53 mg/g at pH 1 and 30°C. FTIR spectroscopy, SEM analyses were performed on the adsorbent before and after Cr(VI) binding. All analyses confirmed the complexation of Cr(VI) ions on the adsorbent.

  5. The effect of pH on the corrosion behavior of intermetallic compounds Ni{sub 3}(Si,Ti) and Ni{sub 3}(Si,Ti) + 2Mo in sodium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Priyotomo, Gadang, E-mail: gada001@lipi.go.id; Nuraini, Lutviasari, E-mail: Lutviasari@gmail.com [Research Center for Metallurgy and Material, Indonesian Institute of Sciences, Kawasan PUSPIPTEK Gd.474, Setu, Tangerang Selatan, Banten 15314 (Indonesia); Kaneno, Yasuyuki, E-mail: kaneno@mtr.osakafu-u.ac.id [Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2015-12-29

    The corrosion behavior of the intermetallic compounds, Ni{sub 3}(Si,Ti) (L1{sub 2}: single phase) and Ni{sub 3}(Si,Ti) + 2Mo (L1{sub 2} and (L12 + Ni{sub ss}) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EDAX: Energy Dispersive X-ray) in 0.5 kmol/m{sup 3} NaCl solutions at various pH. The corrosion behavior of nickel alloy C-276 was studied under the same experimental conditions as a reference. It was found that the uniform attack was observed on Ni{sub 3}(Si,Ti) for the immersion test at lower pH, while the pitting attack was observed on this compound for this test at neutral solution. Furthermore, Ni{sub 3}(Si,Ti)+2Mo had the preferential dissolution of L1{sub 2} compared to (L1{sub 2} + Ni{sub ss}) mixture region at lower pH, while pitting attack occurred in (L1{sub 2} + Ni{sub ss}) mixture region at neutral solution. For both intermetallic compounds, the magnitude of pitting and uniform attack decrease with increasing pH of solutions. From the immersion test and polarization curves, the corrosion resistance of Ni{sub 3}(Si,Ti)+2Mo is lower than that of Ni{sub 3}(Si,Ti), while the nickel alloy C-276 is the highest one at various pH of solutions. On the other hand, in the lower pH of solutions, the corrosion resistance of tested materials decreased significantly compared to those in neutral and higher pH of solutions.

  6. Methods of producing adsorption media including a metal oxide

    Science.gov (United States)

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  7. Effect of chitosan on the heat stability of whey protein solution as a function of pH.

    Science.gov (United States)

    Zhao, Zhengtao; Xiao, Qian

    2017-03-01

    Chitosan was reported to interact with proteins through electrostatic interactions. Their interaction was influenced by pH, which was not fully characterized. Further research on the interactions between protein and chitosan at different pH and their influence on the thermal denaturation of proteins is necessary. In this research, the effect of chitosan on the heat stability of whey protein solution at pH 4.0-6.0 was studied. At pH 4.0, a small amount chitosan was able to prevent the heat-induced denaturation and aggregation of whey protein molecules. At higher pH values (5.5 and 6.0), whey proteins complexed with chitosan through electrostatic attraction. The formation of chitosan-whey protein complexes at pH 5.5 improved the heat stability of dispersions and no precipitation could be detected up to 20 days. The dispersion with a medium amount of chitosan (chitosan:whey protein 1:5) produced the most stable particles, which had an average radius of 135 ± 14 nm and a zeta potential value of 36 ± 1 mV. In contrast, at pH 6.0 only the dispersion with a high amount of chitosan (chitosan:whey protein 1:2) showed good shelf stability up to 20 days. It was possible to produce heat-stable whey protein beverages by regulating the interaction between chitosan and whey protein molecules. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. The influence of surface modification, coating agents and pH value of aqueous solutions on physical properties of magnetite nanoparticles investigated by ESR method

    Energy Technology Data Exchange (ETDEWEB)

    Dobosz, Bernadeta, E-mail: benia@amu.edu.pl [Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Krzyminiewski, Ryszard [Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Kurczewska, Joanna; Schroeder, Grzegorz [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland)

    2017-05-01

    The article presents the results of electron spin resonance (ESR) studies for aqueous solutions of functionalized superparamagnetic iron(II,III) oxide nanoparticles. The samples studied differed in type of organic ligands at the magnetite surface, type of coating agent and pH value of aqueous solutions. The ESR spectra of the samples were obtained at room temperature and at 230 K. The field cooling (FC) experiment was performed for selected samples, and the effective anisotropy field (H{sub K2}) and the first order magnetocrystalline anisotropy constant (K{sub 1}) was calculated. The process of the nanoparticles diffusion in different environments (human blood, human serum) forced by an inhomogeneous magnetic field was monitored and their interactions with different solvents have been discussed. It has been shown that ESR method is useful to observe the impact of organic ligands at the magnetite surface, type of coating agent and pH value of aqueous solutions on the properties of iron(II,III) oxide nanoparticles. - Highlights: • The influence of different organic ligands, coatings and pH values of aqueous solutions on the physical properties of the magnetite nanoparticles studied by ESR method. • Nanoparticles diffusion forced by inhomogeneous magnetic field monitored by ESR and explained. • A narrow line separated in ESR spectra by CREM. • The influence of different coatings and pH values of aqueous solutions on ESR spectra of TEMPO attached to the magnetite core.

  9. Passivation Characteristics of Alloy Corrosion-Resistant Steel Cr10Mo1 in Simulating Concrete Pore Solutions: Combination Effects of pH and Chloride.

    Science.gov (United States)

    Ai, Zhiyong; Sun, Wei; Jiang, Jinyang; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-09-01

    The electrochemical behaviour for passivation of new alloy corrosion-resistant steel Cr10Mo1 immersed in alkaline solutions with different pH values (13.3, 12.0, 10.5, and 9.0) and chloride contents (0.2 M and 1.0 M), was investigated by various electrochemical techniques: linear polarization resistance, electrochemical impedance spectroscopy and capacitance measurements. The chemical composition and structure of passive films were determined by XPS. The morphological features and surface composition of the immersed steel were evaluated by SEM together with EDS chemical analysis. The results evidence that pH plays an important role in the passivation of the corrosion-resistant steel and the effect is highly dependent upon the chloride contents. In solutions with low chloride (0.2 M), the corrosion-resistant steel has notably enhanced passivity with pH falling from 13.3 to 9.0, but does conversely when in presence of high chloride (1.0 M). The passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer enriched in Fe oxides and hydroxides, and an inner layer, rich in Cr species. The film composition varies with pH values and chloride contents. As the pH drops, more Cr oxides are enriched in the film while Fe oxides gradually decompose. Increasing chloride promotes Cr oxides and Fe oxides to transform into their hydroxides with little protection, and this is more significant at lower pH (10.5 and 9.0). These changes annotate passivation characteristics of the corrosion-resistant steel in the solutions of different electrolyte.

  10. Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil.

    Science.gov (United States)

    Luo, Y M; Christie, P; Baker, A J

    2000-07-01

    Temporal changes in soil solution properties and metal speciation were studied in non-rhizosphere soil and in the rhizosphere of the hyperaccumulator Thlaspi caerulescens J. & C. Presl (population from Prayon, Belgium) grown in a Zn- and Cd-contaminated soil. This paper focuses on soil solution Zn and pH dynamics during phytoextraction. The concentration of Zn in both non-rhizosphere and rhizosphere soil solutions decreased from 23 mg/l at the beginning to 2 mg/l at the end of the experiment (84 days after transplanting of seedlings), mainly due to chemical sorption. There was no significant difference in overall Zn concentration between the planted and the unplanted soil solutions (P > 0.05). Soil solution pH decreased initially and then increased slightly in both planted and unplanted soil zones. From 60 to 84 days after transplanting, the pH of the rhizosphere soil solution was higher than that of non-rhizosphere soil solution (P<0.05). Zn uptake by the hyperaccumulator plants was 8.8 mg per pot (each containing 1 kg oven-dry soil) on average. The data indicate that the potential of T. caerulescens to remove Zn from contaminated soil may not be related to acidification of the rhizosphere.

  11. Influence of the solution pH in the 6-mercaptopurine self-assembled monolayer (6MP-SAM) on a Au(111) single-crystal electrode.

    Science.gov (United States)

    Madueño, Rafael; García-Raya, Daniel; Viudez, Alfonso J; Sevilla, José M; Pineda, Teresa; Blázquez, Manuel

    2007-10-23

    Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) have been prepared on a Au(111) single-crystal electrode by immersion of the metal surface in a 100 microM 6MP and 0.01 M HClO4 solution. The 6MP-SAM Au(111) single-crystal electrodes were transferred to the cell and allowed to equilibrate with the different aqueous working solutions before the electrochemical experiments. The influence of the solution pH was studied by cyclic voltammetry, double layer capacitance curves, and electrochemical impedance spectroscopy. The electrochemical behavior of the 6MP-SAM in acetic acid at pH 4 presents important differences in comparison to that obtained in 0.1 M KOH solutions. Cyclic voltammograms for the reductive desorption process in acid medium are broad and show some features that can be explained by a phase transition between a chemisorbed and a physisorbed state of the 6MP molecules. The low solubility of these molecules in acid medium could explain this phenomenon and the readsorption of the complete monolayer when the potential is scanned in the positive direction. The variation of the double-layer capacitance values in the potential range of monolayer stability with the pH suggests that the acid-base chemistry of the 6MP molecules is playing a role. This fact has been studied by following the variations of the electron-transfer rate constant of the highly charged redox probes as are Fe(CN)(6)-3/-4 and Ru(NH3)(6)+3/+2 as a function of solution pH. The apparent surface pKa value for the 6MP-SAM (pKa approximately 8) is explained by the total conversion of the different 6MP tautomers that exist in solution to the thiol species in the adsorbed state.

  12. pH sensing in aqueous solutions using a MnO{sub 2} thin film electrodeposited on a glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cherchour, N. [Laboratoire de Technologie des Materiaux et Genie des Procedes (LTMGP), Departement de Genie des Procedes, Universite A. Mira, Route de Targa Ouzemmour, 06000 Bejaia (Algeria); CNRS, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France); UPMC Univ. Paris VI, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France); Deslouis, C. [CNRS, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France); UPMC Univ. Paris VI, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France); Messaoudi, B. [Laboratoire de Technologie des Materiaux et Genie des Procedes (LTMGP), Departement de Genie des Procedes, Universite A. Mira, Route de Targa Ouzemmour, 06000 Bejaia (Algeria); Pailleret, A., E-mail: alain.pailleret@upmc.fr [CNRS, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France); UPMC Univ. Paris VI, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France)

    2011-11-30

    An electrolysis technique at a constant potential was used to develop a highly reproducible and fast elaboration method of adherent manganese dioxide thin films on a glassy carbon electrode from aqueous solutions containing sulfuric acid and manganese sulfate. The resulting films were found to have a nanostructured character presumably due rather to birnessite ({delta}-MnO{sub 2}) than to {gamma}-MnO{sub 2}, as suggested by their Raman and XRD signatures. They lead to modified electrodes that present an obvious although complex pH dependent potentiometric response. This sensor indeed showed a single slope non-Nernstian linear behaviour over the 1.5-12 pH range for increasing pH direction ('trace'), whereas a Nernstian two slopes linear behaviour was observed for decreasing pH direction ('re-trace'). Preliminary EIS experiments carried out at a pH value of 1.8 seem to reveal a sensitivity mechanism based on proton insertion process at least at highly acidic pH values.

  13. Adsorption of phenol by activated carbon: Influence of activation methods and solution pH

    International Nuclear Information System (INIS)

    Beker, Ulker; Ganbold, Batchimeg; Dertli, Halil; Guelbayir, Dilek Duranoglu

    2010-01-01

    Cherry stone based activated carbon derived from a canning industry was evaluated for its ability to remove phenol from an aqueous solution in a batch process. A comparative adsorption on the uptake of phenol by using commercial activated carbon (Chemviron CPG-LF), and two non-functional commercial polymeric adsorbents (MN-200 and XAD-2) containing a styrene-divinylbenzene macroporous hyperreticulated network have been also examined. Equilibrium studies were conducted in 25 mg L -1 initial phenol concentrations, 6.5-9 solution pH and at temperature of 30 deg. C. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Besides, the cherry stone based activated carbons were carried out by using zinc chloride and KOH activation agents at different chemical ratios (activating agent/precursor), to develop carbons with well-developed porosity. The cherry stone activated carbon prepared using KOH as a chemical agent showed a high surface area. According to the results, activated carbons had excellent adsorptive characteristics in comparison with polymeric sorbents and commercial activated carbon for the phenol removal from the aqueous solutions.

  14. SPATIAL AND TEMPORAL PATTERN OF SOIL pH AND Eh AND THEIR IMPACT ON SOLUTE IRON CONTENT IN A WETLAND (TRANSDANUBIA, HUNGARY

    Directory of Open Access Journals (Sweden)

    SZALAI ZOLTÁN

    2008-06-01

    Full Text Available Land mosaics have direct and indirect influence on chemical reaction and redox condition of soils. The present paper deals with the relationship between some environmental factors (such as soil andvegetation patterns, micro-relief, water regime, temperature and incident solar radiation and the pH, Eh of soils and solute iron in a headwater wetland in Transdanubia, Hungary. Measurements have been taken in four different patches and along their boundaries: sedge (Carex vulpina, Carex riparia, three patches and two species, horsetail (Equisetum arvense, common nettle (Urtica dioica. Thespatial pattern of the studied parameters are influenced by the water regime, micro-topography, climatic conditions and by direct and indirect effects of vegetation. The indirect effect can be the shading, which has influence on soil temperature and on the incident solar radiation (PAR. Root respiration and excretion of organic acids appear as direct effects.. There have been measured individual pH and Eh characteristic in the studied patches. Soil Eh, pH and solute iron have shown seasonal dynamics. Higher redox potentials (increasingly oxidative conditions and higher pH values were measured between late autumn and early spring. The increasing physiological activity of plants causes lower pH and Eh and it leads to higher spatial differences. Although temperature is an essential determining factor for Eh and pH, but our results suggest it rather has indirect effectsthrough plants on wetlands.

  15. Effect of the pH in the adsorption and in the immersion enthalpy of monohydroxylated phenols from aqueous solutions on activated carbons.

    Science.gov (United States)

    Blanco-Martínez, D A; Giraldo, L; Moreno-Piraján, J C

    2009-09-30

    An activated carbon Carbochem--PS230 was modified by chemical and thermal treatment in flow of H(2) in order to evaluate the influence of the activated carbon chemical surface in the adsorption of the monohydroxylated phenols. The solid-solution interaction was determined by analyzing the adsorption isotherms at 298 K at pH 7, 9 and 11 during 48 h. The adsorption capacity of activated carbons increases when the pH solution decreases. The amount adsorbed increases in the reduced carbon at the maximum adsorption pH and decreases in the oxidized carbon. In the sample of granulated activated carbon, CAG, the monohydroxylated phenols adsorption capacity diminishes in the following order catechol >hydroquinone >resorcinol, at the three pH values. The experimental data are evaluated with Freundlich's and Langmuir's models. The immersion enthalpies are determined and increase with the retained amount, ranging between 21.5 and 45.7 J g(-1). In addition, the immersion enthalpies show more interaction with the reduced activated carbon that has lower total acidity contents.

  16. pH effect on pit potential and protection potential of stainless steels AISI-304, 310 and 316 in NaCl solution

    International Nuclear Information System (INIS)

    Cabral, U.Q.; Sathler, L.; Mariano Neto, F.

    1973-06-01

    For three austenitic stainless steels, AISI 304, 310 and 316, the pH influence on the rupture, protection and corrosion potentials was studied in a 0,5N NACl solution. The pit potentials determined by the chronogalvonometric method, are pH independent within the acid range. They showed a rough linear variation within the basic range having a maximum corresponding to the pH value of 8.8. The electrochemical hysteresis method, employed for determining the protection potential, presented a total pH independence for the AISI 316. The other steels showed a small dependence within the basic range but with a tendency for the protection potential to become slightly more active with increasing pH, within the acid range. It was also noted for the three steels studied that the corrosion potental became more active with increasing pH, within the basic range [pt

  17. Influence of pH on extracellular matrix preservation during lung decellularization.

    Science.gov (United States)

    Tsuchiya, Tomoshi; Balestrini, Jenna L; Mendez, Julio; Calle, Elizabeth A; Zhao, Liping; Niklason, Laura E

    2014-12-01

    The creation of decellularized organs for use in regenerative medicine requires the preservation of the organ extracellular matrix (ECM) as a means to provide critical cues for differentiation and migration of cells that are seeded onto the organ scaffold. The purpose of this study was to assess the influence of varying pH levels on the preservation of key ECM components during the decellularization of rat lungs. Herein, we show that the pH of the 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)-based decellularization solution influences ECM retention, cell removal, and also the potential for host response upon implantation of acellular lung tissue. The preservation of ECM components, including elastin, fibronectin, and laminin, were better retained in the lower pH conditions that were tested (pH ranges tested: 8, 10, 12); glycosaminoglycans were preserved to a higher extent in the lower pH groups as well. The DNA content following decellularization of the rat lung was inversely correlated with the pH of the decellularization solution. Despite detectible levels of cyotoskeletal proteins and significant residual DNA, tissues decellularized at pH 8 demonstrated the greatest tissue architecture maintenance and the least induction of host response of all acellular conditions. These results highlight the effect of pH on the results obtained by organ decellularization and suggest that altering the pH of the solutions used for decellularization may influence the ability of cells to properly differentiate and home to appropriate locations within the scaffold, based on the preservation of key ECM components and implantation results.

  18. Magnetite synthesis from ferrous iron solution at pH 6.8 in a continuous stirred tank reactor.

    Science.gov (United States)

    Mos, Yvonne M; Zorzano, Karin Bertens; Buisman, Cees J N; Weijma, Jan

    2018-04-01

    Partial oxidation of defined Fe 2+ solutions is a well-known method for magnetite synthesis in batch systems. The partial oxidation method could serve as basis for an iron removal process in drinking water production, yielding magnetite (Fe 3 O 4 ) as a compact and valuable product. As a first step toward such a process, a series of experiments was carried out, in which magnetite was synthesized from an Fe 2+ solution in a 2 L continuous stirred tank reactor (CSTR) at atmospheric pressure and 32 °C. In four experiments, elevating the pH from an initial value of 5.5 or 6.0 to a final value of 6.8, 7.0 or 7.5 caused green rust to form, eventually leading to magnetite. Formation of NH 4 + in the reactor indicated that NO 3 - and subsequently NO 2 - served as the oxidant. However, mass flow analysis revealed an influx of O 2 to the reactor. In a subsequent experiment, magnetite formation was achieved in the absence of added nitrate. In another experiment, seeding with magnetite particles led to additional magnetite precipitation without the need for a pH elevation step. Our results show, for the first time, that continuous magnetite formation from an Fe 2+ solution is possible under mild conditions, without the need for extensive addition of chemicals.

  19. ph Sensitive hydrogel as colon specific drug delivery

    International Nuclear Information System (INIS)

    Alarifi, A.S.

    2011-01-01

    γ-radiation induced graft copolymerization and crosslinking was for the synthesis of ph-sensitive hydrogels composed of poly (vinyl pyrrolidone) acrylic acid. The prepared hydrogels were subjected to swelling test to evaluate the effects of ph and ionic strength of the surrounding solution. Drastic changes in the swelling parameters where observed by changing the surrounding solution ph values. The release of ibuprofen from hydrogels was monitored as a function of time at ph 1 and ph 7 in order to evaluate the prepared copolymer ability for colon- specific drug carrier uses.

  20. Corrosion of zirconium alloys in alternating pH environment

    International Nuclear Information System (INIS)

    Mayer, P.; Manolescu, A.V.

    1985-01-01

    Behaviour of two commercial alloys, Zircaloy-2 and zirconium-2.5 wt% niobium were investigated in an environment of alternating pH. Corrosion advancement and scale morphology of coupons exposed to aqueous solution of LiOH (pH 10.2 and 14) were followed as a function of temperature (300-360 degreesC) and time (up to 165 days). The test sequence consisted of short term exposure to high pH and re-exposure to low pH solutions for extended period of time followed by a short term test in high pH. The results of these tests and detailed post-corrosion analysis indicate a fundamental difference between the corrosion behaviour of these two materials. Both alloys corrode fast in high pH environments, but only zirconium-2.5 wt% niobium continues to form detectable new oxide in low pH solution

  1. A new slurry pH model accounting for effects of ammonia and carbon dioxide volatilization on solution speciation

    DEFF Research Database (Denmark)

    Petersen, V.; Markfoged, R.; Hafner, S. D.

    2014-01-01

    a reduced variable that combines time and location and an analytical approach to solving the resulting system of equations using Mathematica. To evaluate the model, we made measurements of pH at a resolution of 0.1 mm in the top 30 mm of an ammonium bicarbonate solution. These measurements show the creation...

  2. The Semen pH Affects Sperm Motility and Capacitation.

    Science.gov (United States)

    Zhou, Ji; Chen, Li; Li, Jie; Li, Hongjun; Hong, Zhiwei; Xie, Min; Chen, Shengrong; Yao, Bing

    2015-01-01

    As the chemical environment of semen can have a profound effect on sperm quality, we examined the effect of pH on the motility, viability and capacitation of human sperm. The sperm in this study was collected from healthy males to avoid interference from other factors. The spermatozoa cultured in sperm nutrition solution at pH 5.2, 6.2, 7.2 and 8.2 were analyzed for sperm total motility, progressive motility (PR), hypo-osmotic swelling (HOS) rate, and sperm penetration. Our results showed that these parameters were similar in pH 7.2 and 8.2 sperm nutrition solutions, but decreased in pH 5.2 and 6.2 solutions. The HOS rate exhibited positive correlation with the sperm total motility and PR. In addition, the sperm Na(+)/K(+)-ATPase activity at different pHs was measured, and the enzyme activity was significantly lower in pH 5.2 and 6.2 media, comparing with that in pH 8.2 and pH 7.2 solutions. Using flow cytometry (FCM) and laser confocal scanning microscopy (LCSM) analysis, the intracellular Ca2(+ )concentrations of sperm cultured in sperm capacitation solution at pH 5.2, 6.2, 7.2 and 8.2 were determined. Compared with that at pH 7.2, the mean fluorescence intensity of sperm in pH 5.2 and 6.2 media decreased significantly, while that of pH 8.2 group showed no difference. Our results suggested that the declined Na(+)/K(+)-ATPase activity at acidic pHs result in decreased sperm movement and capacitation, which could be one of the mechanisms of male infertility.

  3. Enzymatic characterization of peptidic materials isolated from aqueous solutions of ammonium cyanide (pH 9) and hydrocyanic acid (pH 6) exposed to ionizing radiation.

    Science.gov (United States)

    Niketic, V; Draganić, Z; Nesković, S; Draganić, I

    1982-01-01

    The enzymatic digestion of some radiolytically produced peptidic materials was examined. The substrates were compounds isolated from 0.1 molar solutions of NH4CN (pH 9) and HCN (pH 6), after their exposure to gamma rays from a 60Co source (15-20 Mrad doses). Commercial proteolytic enzymes pronase and aminopeptidase M were used. The examined materials were of composite nature and proteolytic action was systematically observed after their subsequent purification. In some fractions the effect was found to be positive with up to 30% of peptide bonds cleaved with respect to the amino acid content. These findings support our previous conclusions on the free radical induced formation of peptidic backbones without the intervention of amino acids. Some side effects were also noted which might be of interest in observations on enzymatic cleavage of other composite peptidic materials of abiotic origin.

  4. Effects of EDTA on the electronic properties of passive film formed on Fe-20Cr in pH 8.5 buffer solution

    International Nuclear Information System (INIS)

    Cho, Eun Ae; Kwon, Hyuk Sang; Beranrd, Frederic

    2003-01-01

    The electronic properties of the passive film formed on Fe-20Cr ferritic stainless steel in pH 8.5 buffer solution containing 0.05 M EDTA (ethylene diammine tetraacetic acid) were examined by the photocurrent measurements and Mott-Schottky analysis for the film. XPS depth profile for the film demonstrated that Cr content in the outermost layer of the passive film was higher in the solution with EDTA than that in the solution without EDTA, due to selective dissolution of Fe by EDTA. In the solution with EDTA, the passive film showed characteristics of an amorphous or highly disordered n-type semiconductor. The band gap energies of the passive film are estimated to be ∼ 3.0 eV, irrespective of film formation potential from 0 to 700 mV SCE and of presence of EDTA. However, the donor density of the passive film formed in the solution with EDTA is much higher than that formed in the solution without EDTA, due to an increase in oxygen vacancy resulted from the dissolution of Fe-oxide in the outermost layer of the passive film. These results support the proposed model that the passive film formed on Fe-20Cr in pH 8.5 buffer solution mainly consists of Cr-substituted γ-Fe 2 O 3

  5. 76 FR 81986 - Honeywell International, Inc., Automation and Control Solutions Division, Including On-Site...

    Science.gov (United States)

    2011-12-29

    ..., Inc., Automation and Control Solutions Division, Including On-Site Leased Workers From Manpower...., Automation and Control Solutions Division. The Department has determined that these workers were sufficiently...., Automation and Control Solutions Division, including on-site leased workers from Manpower, Spherion...

  6. Removal of radiocobalt from aqueous solutions by kaolinite affected by solid content, pH, ionic strength, contact time and temperature

    International Nuclear Information System (INIS)

    Kan Li; Zhengjie Liu; Lei Chen; Yunhui Dong; Jun Hu; Chinese Academy of Sciences, Hefei

    2013-01-01

    The kaolinite sample was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray powder diffraction, and was applied as adsorbent for the removal of radiocobalt ions from radioactive wastewater. The results demonstrated that the sorption of Co(II) was strongly dependent on pH and ionic strength at low pH values, and independent of pH and ionic strength at high pH values. The sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange at low pH values, whereas inner-sphere surface complexation was the main sorption mechanism at high pH values. The sorption isotherms were well described by Langmuir, Freundlich and Dubinin-Radushkevich models. The thermodynamic parameters (i.e., ΔGdeg, ΔSdeg, ΔHdeg) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on kaolinite was an endothermic and spontaneous process. The results of high sorption capacity of kaolinite suggested that the kaolinite sample was a suitable material for the preconcentration of Co(II) from large volumes of aqueous solutions and as backfill materials in nuclear waste management. (author)

  7. A method for measuring pH at high temperatures is presented

    International Nuclear Information System (INIS)

    Chaudon, Luc.

    1979-01-01

    Two hydrogen electrodes are used and set up in a PTFE cell comprising two chambers connected through a saturated potassium chloride solution bridge. This cell is put in an autoclave containing hydrogen. The potential difference of the following cell is measured: H 2 , Pt, R solution - KCl saturated solution at 25 0 C - X solution, Pt, H 2 - The pH of the reference solution R is known up to 300 0 C and the X solution must have its pH to be determined. The precision of the measures at 300 0 C is estimated about +-0,1 pH unit. The dissociation constant of water is calculated from pH variations of alcaline solutions up to 300 0 C. The method has helped to measure the pH at 300 0 C of some boric acid solutions, with or without lithium hydroxide additions, in the following concentration range: B: 250 to 1500 ppm and Li: 0 to 3 ppm. Some concentrations are in fact those chosen for the primary circuits of pressurized water reactors. The pH of ammoniacal solutions is measured too and helped to determine the variations of the dissociation constant of ammonia with temperature [fr

  8. Comparison of DSMC and CFD Solutions of Fire II Including Radiative Heating

    Science.gov (United States)

    Liechty, Derek S.; Johnston, Christopher O.; Lewis, Mark J.

    2011-01-01

    The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. These flows may also contain significant radiative heating. To prepare for these missions, NASA is developing the capability to simulate rarefied, ionized flows and to then calculate the resulting radiative heating to the vehicle's surface. In this study, the DSMC codes DAC and DS2V are used to obtain charge-neutral ionization solutions. NASA s direct simulation Monte Carlo code DAC is currently being updated to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced Quantum-Kinetic chemistry model, and to include electronic energy levels as an additional internal energy mode. The Fire II flight test is used in this study to assess these new capabilities. The 1634 second data point was chosen for comparisons to be made in order to include comparisons to computational fluid dynamics solutions. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid. It is shown that there can be quite a bit of variability in the vibrational temperature inferred from DSMC solutions and that, from how radiative heating is computed, the electronic temperature is much better suited for radiative calculations. To include the radiative portion of heating, the flow-field solutions are post-processed by the non-equilibrium radiation code HARA. Acceptable agreement between CFD and DSMC flow field solutions is demonstrated and the progress of the updates to DAC, along with an appropriate radiative heating solution, are discussed. In addition, future plans to generate more high fidelity radiative heat transfer solutions are discussed.

  9. Effects of Iodide and Hydrogen Peroxide on Measuring High Temperature pH in Various Lithium Borate Buffer Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jae Sik; Yun, Myung Hee; Yeon, Jei Won; Song, Kyu Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    In a reactor coolant system of nuclear power plants, the need for reliable high temperature pH electrodes has resulted from interests in the corrosion and corrosion product behaviors of the structural materials in a high temperature coolant system. In developing the electrodes for measuring the high temperature pH of aqueous solutions, it is necessary to note two major problems: the chemical stability of an electrode against other chemical impurities, and an electrode's integrity as the temperature and pressure are varied between operational extremes. Over the past decade Macdonald et al. and Danielson et al. have developed many ceramic membrane pH electrodes based on a yttrium stabilized zirconium oxide. However, there are still many experimental difficulties associated with the problems in obtaining electrochemical information across different pressure boundaries and against many kinds of chemical impurities caused by the radiolysis of water and the leakage of a fuel clad. In the present work, we investigated the effects of the environmental factors on a high temperature pH. The selected environmental factors are as follows: system pressure, and chemical species such as iodide and hydrogen peroxide ions.

  10. Measurements of spectral responses for developing fiber-optic pH sensor

    Science.gov (United States)

    Yoo, Wook Jae; Heo, Ji Yeon; Jang, Kyoung Won; Seo, Jeong Ki; Moon, Jin Soo; Park, Jang-Yeon; Park, Byung Gi; Cho, Seunghyun; Lee, Bongsoo

    2011-01-01

    In this study, we have fabricated a fiber-optic pH sensor, which is composed of a light source, a pH-sensing probe, plastic optical fibers and a spectrometer, for determining the degree of infection by Helicobacter pylori in the stomach. As pH indicators, phenol red and m-cresol purple are used, and pH liquid solutions are prepared by mixing phenol red or m-cresol purple solutions and various kinds of pH buffer solutions. The light emitted by a light source is guided by plastic optical fibers to the pH liquid solution, and the optical characteristic of a reflected light is changed according to the color variations of the pH indicator in the pH-sensing probe. Therefore, we have measured the intensities and wavelength shifts of the reflected lights, which change according to the color variations of indicators at different pH values, by using a spectrometer for spectral analysis. Also, the relationships between the pH values of liquid solutions and the optical properties of the modulated lights are obtained on the basis of the changes of the colors of indicators.

  11. Evaluation method of iodine re-evolution from an in-containment water pool after a loss of coolant accident, Part I: pH estimation of a solution with various chemicals

    International Nuclear Information System (INIS)

    Kim, Tae Hyeon; Jeong, Ji Hwan

    2016-01-01

    Highlights: • It is required to evaluate re-evolved iodine from sump water after LOCA. • pH evaluation based on Gibbs free energy minimization. • Program was developed to evaluate chemical equilibrium and pH solutions. • Predictions are in good agreement with experimental data. - Abstract: Radioactive iodine, which is released into the atmosphere of the containment building, is absorbed into the containment spray water and dissolved to be ionized. This iodine-rich water is then transported to the in-containment refueling water storage tank (IRWST) in APR1400 nuclear power plants. When the pH of the water is below 7, the dissolved iodine converts to molecular iodine and re-evolves from the water and returns to the atmosphere. A series of studies have been conducted in order to evaluate the iodine re-evolution from the IRWST. This study consists of two parts: the pH evaluation method and the evaluation of the iodine re-evolution. This paper presents the first part, i.e. the pH evaluation method. The equilibrium concentrations of various chemicals in a solution are determined at the minimum Gibbs’ free energy. This method is useful for complex reactant problems rather than equilibrium constants method because the latter method requires numerous equilibrium constants and there might be missing equilibrium constants associated with the solution. The calculated pH values of solutions are compared with the experimental measurements in order to validate this method and the thermodynamic data of the chemicals incorporated into the program. The estimated values for solutions are in good agreement with the experimental measurements within a difference of less than 3.3%.

  12. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Science.gov (United States)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  13. Similarity of salt influences on the pH of buffers, polyelectrolytes, and proteins.

    Science.gov (United States)

    Voinescu, Alina E; Bauduin, Pierre; Pinna, M Cristina; Touraud, Didier; Ninham, Barry W; Kunz, Werner

    2006-05-04

    Changes in pH induced by the addition of electrolytes to buffers, polyelectrolytes (a polycarboxy polymethylene and a polyethyleneimine), and proteins (casein, whey, and lysozyme) solutions are explored systematically. The two buffer systems are triethanolamine/triethanolammonium chloride and citric acid/sodium citrate. These are chosen because of the similarity of their acid-base equilibria with those of amino acids predominant in most proteins, that is, amino acids that include carboxylate or ammonium groups in their structures. The pH of triethanolamine and of citrate buffers respectively increases and decreases when salt is added. At low electrolyte concentrations (buffer solutions. It is even possible to qualitatively predict these changes in protein solutions simply from the primary protein structure. At least in the systems considered here, the specific ion effects on pH seem to correlate with the bulk activity coefficients of the added electrolytes, at least at moderate salt concentrations.

  14. Influence of pH on the localized corrosion of iron

    International Nuclear Information System (INIS)

    Webley, R.; Henry, R.

    1986-06-01

    The influence of pH on the pitting corrosion of iron in chloride and sulfate solutions was determined using two artificial pit apparatuses to obtain the pH near the surface of the pit bottom. A glass membrane electrode and an antimony electrode were used to measure pH in the two apparatuses. Using solutions of NaCl and Na 2 SO 4 at current densities of 0.5, 5.0, and 10 mA/cm 2 pH's in the range 5 to 6 were obtained with the first apparatus. The antimony probe did not measure pH accurately in solutions of 1 N NaCl and 1 N Na 2 SO 4 and had an error of approximately 2 pH units. A one-dimensional transport model was developed to predict pH variations around the pit mouth and inside the pit. The validity of this model was not verified due to the relative lack of precision with pH measurement techniques

  15. Effect of surface chemistry, solution pH, and ionic strength on the removal of herbicides diuron and amitrole from water by an activated carbon fiber.

    Science.gov (United States)

    Fontecha-Cámara, M A; López-Ramón, M V; Alvarez-Merino, M A; Moreno-Castilla, C

    2007-01-30

    A study was conducted on the effects of carbon surface chemistry, solution pH, and ionic strength on the removal of diuron and amitrole from aqueous solutions by adsorption on an as-received and oxidized activated carbon fiber. Results obtained were explained by the surface characteristics of the adsorbents and the characteristics of the herbicide molecules. Under the experimental conditions used, diuron uptake was much higher than that of amitrole, despite its larger molecular dimensions, due to the lesser water solubility, greater hydrophobicity, and larger dipolar moment of diuron compared with amitrole. Uptake variations associated with differences in carbon surface oxidation, solution pH, and ionic strength were explained by corresponding changes in electrostatic, hydrophobic, and van der Waals interactions.

  16. Ratiometric Imaging of Extracellular pH in Dental Biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Dige, Irene

    2016-01-01

    The pH in bacterial biofilms on teeth is of central importance for dental caries, a disease with a high worldwide prevalence. Nutrients and metabolites are not distributed evenly in dental biofilms. A complex interplay of sorption to and reaction with organic matter in the biofilm reduces...... the diffusion paths of solutes and creates steep gradients of reactive molecules, including organic acids, across the biofilm. Quantitative fluorescent microscopic methods, such as fluorescence life time imaging or pH ratiometry, can be employed to visualize pH in different microenvironments of dental biofilms...... allows monitoring both vertical and horizontal pH gradients in real-time without mechanically disturbing the biofilm. However, care must be taken to differentiate accurately between extra- and intracellular compartments of the biofilm. Here, the ratiometric dye, seminaphthorhodafluor-4F 5-(and-6...

  17. Evolution of pH during in-situ leaching in small concrete cavities

    Energy Technology Data Exchange (ETDEWEB)

    Saguees, A.A. [Univ. of South Florida, Tampa, FL (United States). Dept. of Civil and Environmental Engineering; Moreno, E.I. [Univ. of South Florida, Tampa, FL (United States). Dept. of Civil and Environmental Engineering]|[CINVESTAV Merida-Unit (Mexico); Andrade, C. [CSIC, Madrid (Spain). Inst. Eduardo Torroja de Ciencias de la Construccion

    1997-11-01

    Small amounts (0.4 cc) of neutral water placed in small cylindrical cavities (5 mm diameter) in concrete exposed to 100% relative humidity first developed a pH comparable to that of a saturated Ca(OH){sub 2} solution. The pH then increased over a period of days-weeks toward a higher terminal value. A micro pH electrode arrangement was used. This behavior was observed in samples of 12 different concrete mix designs, including some with pozzolanic additions. The average terminal cavity pH closely approached that of expressed pore water from the same concretes. A simplified mathematical model reproduced the experimentally observed behavior. The model assumed inward diffusional transport of the pH-determining species in the surrounding concrete pore solution. The experimental results were consistent with the model predictions when using diffusion parameters on the order of those previously reported for alkali cations in concrete. The cavity size, cavity water content, and exposure to atmospheric CO{sub 2} should be minimized when attempting to obtain cavity pH values approaching those of the surrounding pore water.

  18. Trimerization Dictates Solution Opalescence of a Monoclonal Antibody.

    Science.gov (United States)

    Yang, Teng-Chieh; Langford, Alex Jacob; Kumar, Sandeep; Ruesch, John Carl; Wang, Wei

    2016-08-01

    Opalescence, sometimes observed in antibody solutions, is thought to be mediated by light scattering of soluble oligomers or insoluble particulates. However, mechanistic features, such as stoichiometry and self-association affinity of oligomeric species related to opalescence, are poorly understood. Here, opalescence behavior of a monoclonal antibody (mAb-1) solution was studied over a wide range of solution conditions including different protein concentrations, pH, and in the presence or absence of salt. Hydrodynamic and thermodynamic properties of mAb-1 solutions were studied by analytical ultracentrifugation and dynamic light scattering. Opalescence in mAb-1 solutions is pH and concentration dependent. The degree of opalescence correlates with reversible monomer-trimer equilibrium detected by analytical ultracentrifugation. Increased trimer formation corresponds to increased opalescence in mAb-1 solutions at higher pH and protein concentrations. Addition of NaCl shifts this equilibrium toward monomer and reduces solution opalescence. This study demonstrates that opalescence in mAb-1 solutions does not arise from the light scattering of monomer or random molecular self-associations but is strongly correlated with a specific self-association stoichiometry and affinity. Importantly, at pH 5.5 (far below isoelectric point of mAb-1), the solution is not opalescent and with nonideal behavior. This study also dissects several parameters to describe the hydrodynamic and thermodynamic nonideality. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. pH in atomic scale simulations of electrochemical interfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Chan, Karen; Ahmed, Rizwan

    2013-01-01

    Electrochemical reaction rates can strongly depend on pH, and there is increasing interest in electrocatalysis in alkaline solution. To date, no method has been devised to address pH in atomic scale simulations. We present a simple method to determine the atomic structure of the metal......|solution interface at a given pH and electrode potential. Using Pt(111)|water as an example, we show the effect of pH on the interfacial structure, and discuss its impact on reaction energies and barriers. This method paves the way for ab initio studies of pH effects on the structure and electrocatalytic activity...

  20. Role of Metal Cations on the corrosion behaviour of 8090-T851 in a pH 2.0 solution

    DEFF Research Database (Denmark)

    Murthy, K.S.N.; Ambat, Rajan; Dwarakadasa, E.S.

    1994-01-01

    The influence of cations such as Cu2+, Al3+ and Li+ on the corrosion behaviour of 8090-T851(Al-Li) alloy in a pH 2.0 HCl solution was investigated by weight loss and polarisation techniques. Weight loss experiments showed that the effect of cation is a strong function of its nature...

  1. Modelling of the effect of solute structure and mobile phase pH and composition on the retention of phenoxy acid herbicides in reversed-phase high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Aschi, Massimiliano; D'Archivio, Angelo Antonio; Mazzeo, Pietro; Pierabella, Mirko; Ruggieri, Fabrizio

    2008-01-01

    A feed-forward artificial neural network (ANN) learned by error back-propagation is used to generate a retention predictive model for phenoxy acid herbicides in isocratic reversed-phase high-performance liquid chromatography. The investigated solutes (18 compounds), apart from the most common herbicides of this class, include some derivatives of benzoic acid and phenylacetic acid structurally related to phenoxy acids, as a whole covering a pK a range between 2.3 and 4.3. A mixed model in terms of both solute descriptors and eluent attributes is built with the aim of predicting retention in water-acetonitrile mobile phases within a large range of composition (acetonitrile from 30% to 70%, v/v) and acidity (pH of water before mixing with acetonitrile ranging between 2 and 5). The set of input variables consists of solute pK a and quantum chemical molecular descriptors of both the neutral and dissociated form, %v/v of acetonitrile in the mobile phase and pH of aqueous phase before mixing with acetonitrile. After elimination of redundant variables, a nine-dimensional model is identified and its prediction ability is evaluated by external validation based on three solutes not involved in model generation and by cross-validation. A multilinear counterpart in terms of the same descriptors is seen to provide a noticeably poorer retention prediction

  2. Modelling of the effect of solute structure and mobile phase pH and composition on the retention of phenoxy acid herbicides in reversed-phase high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Aschi, Massimiliano [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); D' Archivio, Angelo Antonio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)], E-mail: darchivi@univaq.it; Mazzeo, Pietro; Pierabella, Mirko; Ruggieri, Fabrizio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)

    2008-06-02

    A feed-forward artificial neural network (ANN) learned by error back-propagation is used to generate a retention predictive model for phenoxy acid herbicides in isocratic reversed-phase high-performance liquid chromatography. The investigated solutes (18 compounds), apart from the most common herbicides of this class, include some derivatives of benzoic acid and phenylacetic acid structurally related to phenoxy acids, as a whole covering a pK{sub a} range between 2.3 and 4.3. A mixed model in terms of both solute descriptors and eluent attributes is built with the aim of predicting retention in water-acetonitrile mobile phases within a large range of composition (acetonitrile from 30% to 70%, v/v) and acidity (pH of water before mixing with acetonitrile ranging between 2 and 5). The set of input variables consists of solute pK{sub a} and quantum chemical molecular descriptors of both the neutral and dissociated form, %v/v of acetonitrile in the mobile phase and pH of aqueous phase before mixing with acetonitrile. After elimination of redundant variables, a nine-dimensional model is identified and its prediction ability is evaluated by external validation based on three solutes not involved in model generation and by cross-validation. A multilinear counterpart in terms of the same descriptors is seen to provide a noticeably poorer retention prediction.

  3. pCO2 And pH regulation of cerebral blood flow

    Directory of Open Access Journals (Sweden)

    SeongHun eYoon

    2012-09-01

    Full Text Available CO2 Serves as one of the fundamental regulators of cerebral blood flow. It is widely considered that this regulation occurs through pCO2-driven changes in pH of the cerebral spinal fluid, with elevated and lowered pH causing direct relaxation and contraction of the smooth muscle, respectively. However, some findings also suggest that pCO2 acts independently of and/or in conjunction with altered pH. This action may be due to a direct effect of cerebral spinal fluid pCO2 on the smooth muscle as well as on the endothelium, nerves, and astrocytes. Findings may also point to an action of arterial pCO2 on the endothelium to regulate smooth muscle contractility. Thus, the effects of pH and pCO2 may be influenced by the absence/presence of different cell types in the various experimental preparations. Results may also be influenced by experimental parameters including myogenic tone as well as solutions containing significantly altered HCO3- concentrations, i.e., solutions routinely employed to differentiate the effects of pH from pCO2. In sum, it appears that pCO2, independently and in conjunction with pH, may regulate cerebral blood flow.

  4. Shelf-Life of Chlorine Solutions Recommended in Ebola Virus Disease Response.

    Science.gov (United States)

    Iqbal, Qais; Lubeck-Schricker, Maya; Wells, Emma; Wolfe, Marlene K; Lantagne, Daniele

    2016-01-01

    In Ebola Virus Disease (EVD) outbreaks, it is widely recommended to wash living things (handwashing) with 0.05% (500 mg/L) chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% (5,000 mg/L) chlorine solution. Chlorine solutions used in EVD response are primarily made from powdered calcium hypochlorite (HTH), granular sodium dichloroisocyanurate (NaDCC), and liquid sodium hypochlorite (NaOCl), and have a pH range of 5-11. Chlorine solutions degrade following a reaction highly dependent on, and unusually sensitive to, pH, temperature, and concentration. We determined the shelf-life of 0.05% and 0.5% chlorine solutions used in EVD response, including HTH, NaDCC, stabilized NaOCl, generated NaOCl, and neutralized NaOCl solutions. Solutions were stored for 30 days at 25, 30, and 35°C, and tested daily for chlorine concentration and pH. Maximum shelf-life was defined as days until initial concentration fell to pH = 7) had a maximum shelf-life of a few hours, NaDCC solutions (pH = 6) 2 days, generated NaOCl solutions (pH = 9) 6 days, and HTH and stabilized NaOCl solutions (pH 9-11) >30 days. Models were developed for solutions with maximum shelf-lives between 1-30 days. Extrapolating to 40°C, the maximum predicted shelf-life for 0.05% and 0.5% NaDCC solutions were 0.38 and 0.82 hours, respectively; predicted shelf-life for 0.05% and 0.5% generated NaOCl solutions were >30 and 5.4 days, respectively. Each chlorine solution type offers advantages and disadvantages to responders, as: NaDCC is an easy-to-import high-concentration effervescent powder; HTH is similar, but forms a precipitate that may clog pipes; and, NaOCl solutions can be made locally, but are difficult to transport. We recommend responders chose the most appropriate source chlorine compound for their use, and ensure solutions are stored at appropriate temperatures and used or replaced before expiring.

  5. Synthesis of sub-millimeter calcite from aqueous solution

    Science.gov (United States)

    Reimi, M. A.; Morrison, J. M.; Burns, P. C.

    2011-12-01

    A novel aqueous synthesis that leads to the formation of calcite (CaCO3) crystals, up to 500μm in diameter, will be used to facilitate the study of contaminant transport in aqueous environmental systems. Existing processes tend to be complicated and often yield nanometer-sized or amorphous CaCO3. The synthesis method presented here, which involves slow mixing of concentrated solutions of CaCl2 ¬and (NH4)2CO3, produces single crystals of rhombohedral calcite in 2 to 4 days. Variations on the experimental method, including changes in pH and solution concentration, were explored to optimize the synthesis. Scanning Electron Microscope images show the differences in size and purity observed when the crystals are grown at pH values ranging from 2 to 6. The crystals grown from solutions of pH 2 were large (up to 500 micrometers in diameter) with minimal polycrystalline calcium carbonate, while crystals grown from solutions with pH values beyond 4 were smaller (up to 100 micrometers in diameter) with significant polycrystalline calcium carbonate. The synthesis method, materials characterization, and use in future actinide contaminant studies will be discussed.

  6. pH dependent polymeric micelle adsorption

    Energy Technology Data Exchange (ETDEWEB)

    McLean, S C; Gee, M L [The University of Melbourne, VIC (Australia). School of Chemistry

    2003-07-01

    Full text: Poly(2-vinylpyridine)-poly(ethylene oxide) (P2VP-PEO) shows potential as a possible drug delivery system for anti-tumour drugs since it forms pH dependent polymeric micelles. Hence to better understand the adsorption behaviour of this polymer we have studied the interaction forces between layers of P2VP-PEO adsorbed onto silica as a function of solution pH using an Atomic Force Microscope (AFM). When P2VP-PEO is initially adsorbed above the pKa of the P2VP block, P2VP-PEO adsorbs from solution as micelles that exist as either partially collapsed- or a hemi-micelles at the silica surface. Below the pKa of P2VP, the P2VP-PEO adsorbs as unimers, forming a compact layer with little looping and tailing into solution. When initial adsorption of P2VP-PEO is in the form of unimers, any driving force to self-assembly of the now charge neutral polymer is kinetically hindered. Hence, after initial adsorption at pH 3.6, a subsequent increase in pH to 6.6 results in a slow surface restructuring towards self-assembly and equilibrium. When the pH is increased from pH 6.6 to 9.7 there is a continuation of the evolution of the system to its equilibrium position during which the adsorbed P2VP-PEO unimers continue to 'unravel' from the surface, extending away from it, towards eventual complete surface self-assembly.

  7. pH tolerance of Daphnia pulex (leydig, emend. , richard)

    Energy Technology Data Exchange (ETDEWEB)

    Davis, P; Ozburn, G W

    1969-01-01

    The survival time and reproduction of female Daphnia pulex in solutions varying in pH have been observed. Dilute sodium hydroxide or sulfuric acid solutions were added to four different diluent waters: distilled water, aerated tap water, aerated and filtered tap water from an aquarium containing Dace minnows, and Mcintyre River water. D. Pulex (initially up to 72 hours old) survived for the duration of the experiment (32 hours) in river water within a pH range of 6.1 to 10.3; in aquarium water within a pH range of 4.3 to 10.4; only at pH 6.4 and pH 7.6 in distilled water; and in none of the solutions using aerated tap water. The dissolved oxygen content was measured at the beginning and end of every experiment and was found never to fall below 6.2 p.p.M. Those individuals which survived were cultured in the laboratory and parthenogenesis was observed at pH values between 7.0 and 8.7.

  8. Intracellular pH in rat pancreatic ducts

    DEFF Research Database (Denmark)

    Novak, I; Hug, M; Greger, R

    1997-01-01

    In order to study the mechanism of H+ and HCO3- transport in a HCO3- secreting epithelium, pancreatic ducts, we have measured the intracellular pH (pHi) in this tissue using the pH sensitive probe BCECF. We found that exposures of ducts to solutions containing acetate/acetic acid or NH4+/NH3...... buffers (20 mmol/l) led to pHi changes in accordance with entry of lipid-soluble forms of the buffers, followed by back-regulation of pHi by duct cells. In another type of experiment, changes in extracellular pH of solutions containing HEPES or HCO3-/CO2 buffers led to significant changes in pHi that did....... Under some conditions, these exchangers can be invoked to regulate cell pH....

  9. Ternary complex formation at mineral/solution interfaces

    International Nuclear Information System (INIS)

    Leckie, J.O.

    1995-01-01

    Adsorption of trace concentrations of radionuclides and heavy metals from aqueous solution is dependent on pH, absorbent and adsorbate concentration, and speciation of the metal in solution. In particular, complexation of metal ions by organic and inorganic ligands can dramatically alter adsorption behavior compared to ligand-free systems. The presence of complexing ligands can cause the formation of ''metal like'' or ''ligand like'' ternary surface complexes depending on whether adsorption of the ternary complex increases or decreases with increasing pH, respectively. Examples of ternary surface complexes behaving ''metal like'' include uranyl-EDTA surface complexes on goethite, neptunyl-EDTA surface complexes on hematite and neptunyl-humic surface complexes on gibbsite. Examples of ''ligand like'' ternary surface complexes include uranyl-carbonato and neptunyl-carbonato surface complexes on iron oxides. The effects of complex solutions and multimineralic systems are discussed. (authors). 39 refs., 16 figs., 8 tabs

  10. Economical wireless optical ratiometric pH sensor

    International Nuclear Information System (INIS)

    Vuppu, Sandeep; Kostov, Yordan; Rao, Govind

    2009-01-01

    The development and application of a portable, wireless fluorescence-based optical pH sensor is presented. The design incorporates the MSP430 microcontroller as the control unit, an RF transceiver for wireless communication, digital filters and amplifiers and a USB-based communication module for data transmission. The pH sensor is based on ratiometric fluorescence detection from pH sensitive dye incorporated in a peel-and-stick patch. The ability of the instrument to detect the pH of the solution with contact only between the sensor patch and the solution makes it partially non-invasive. The instrument also has the ability to transmit data wirelessly, enabling its use in processes that entail stringent temperature control and sterility. The use of the microcontroller makes it a reliable, low-cost and low-power device. The luminous intensity of the light source can be digitally controlled to maximize the sensitivity of the instrument. It has a resolution of 0.05 pH. The sensor is accurate and reversible over the pH range of 6.5–9

  11. Radiolysis of permanganate and its mixtures with bromate and nitrate ions in solution at pH 10

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.; Kulkarni, S.A.; Mahajan, C.T.

    1981-01-01

    γ-radiolysis of aqueous solutions of pure permanganate and its binary mixture with nitrite and bromate ions at pH 10 is studied as a function of concentration and dose. In pure system G(-MnO 4 - ) increases with the increase in initial concentration from 0.68 to a maximum of 25. The rise is sharp above 10 -2 M concentration which indicates the occurrence of a chain mechanism. In the presence of bromate or nitrite the G value decreases: the G(-MnO 4 - ) in 10 -3 M permanganate solution is 1.07, with 10 -1 M bromate it is 0.2 and with 10 -2 M nitrite it is 0.7. A mechanism based on the cometitive kinetics is envisaged to explain the observed results. (author)

  12. Programmable pH buffers

    Science.gov (United States)

    Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.

    2017-01-24

    A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.

  13. In vitro effectiveness of Castellani solution including various ingredients against different microorganisms

    Directory of Open Access Journals (Sweden)

    Şükran Çopur

    2013-09-01

    Full Text Available Objective: As the external auditory canal is a moisturearea, it facilitates the growth of bacteria and fungi. Infectionsand inflammation due to Staphylococcus aureus,Pseudomonas aeruginosa, Aspergillus spp. and Candidaalbicans can develop in this area. Classical Castellanisolution including boric acid, fenol, fucsin, resorcinol, acetone,and alcohol is used for external ear tract infectionsdue to fungi and bacteria, and also for the superficial dermatophytoses,and eczematous dermatitis of the externalear tract infections.The purpose of this study is to investigate of the in vitroeffectiveness of classical Castellani solution and its differentformulations with different dilutions against the standardyeast and bacteria strains.Methods: C. albicans ATCC 10231, C. krusei ATCC6258, C. dubliniensis CD 36, C. guilliermondii ATCC6260, C. parapsilosis ATCC22019, E. coli ATCC 25922,P. aeruginosa ATCC 27853, MRSA ATCC 43300, Staphylococcusaureus ATCC 25923, and S. epidermidis ATCC12228 strains were included in the study. Broth microdilutionmethod was used for each microorganism and Castellaniformulation. The tests are repeated at least twice.Results: The inhibitory concentration of classical Castellanisolution against bacteria and fungi is 1/64-1/256,1/32-1/64 for fuchsin free solution, 1/32-1/128 for boricacid-free solution and, 1/64-1/128 for resorcinol-free solution.Conclusions: As a conclusion we think that the classicalCastellani solution and its different formulations at variousdilutions may be effective antimicrobial agents for differentpatient populations. J Clin Exp Invest 2013; 4 (3:302-305Key words: Castellani solution, antimicrobial activity, in vitro

  14. 75 FR 77664 - Honeywell International, Inc., Automation and Control Solutions Division, Including On-Site...

    Science.gov (United States)

    2010-12-13

    ..., Inc., Automation and Control Solutions Division, Including On-Site Leased Workers From Manpower... Solutions Division. The Department has determined that these workers were sufficiently under the control of Honeywell International, Inc., Automation and Control Solutions Division to be considered leased workers...

  15. 78 FR 19530 - Eastman Kodak Company (GCG), Electrographic Print Solutions, Including On-Site Leased Workers...

    Science.gov (United States)

    2013-04-01

    ... Kodak Company (GCG), Electrographic Print Solutions, Including On-Site Leased Workers From Adecco and Datrose, Spencerport, New York; Eastman Kodak Company, IPS, Including On-Site Leased Workers From Adecco..., 2011, applicable to workers of Eastman Kodak Company (GCG), Electrographic Print Solutions, including...

  16. Dielectrophoresis Aligned Single-Walled Carbon Nanotubes as pH Sensors.

    Science.gov (United States)

    Li, Pengfei; Martin, Caleb M; Yeung, Kan Kan; Xue, Wei

    2011-01-31

    Here we report the fabrication and characterization of pH sensors using aligned single-walled carbon nanotubes (SWNTs). The SWNTs are dispersed in deionized (DI) water after chemical functionalization and filtration. They are deposited and organized on silicon substrates with the dielectrophoresis process. Electrodes with "teeth"-like patterns-fabricated with photolithography and wet etching-are used to generate concentrated electric fields and strong dielectrophoretic forces for the SWNTs to deposit and align in desired locations. The device fabrication is inexpensive, solution-based, and conducted at room temperature. The devices are used as pH sensors with the electrodes as the testing pads and the dielectrophoretically captured SWNTs as the sensing elements. When exposed to aqueous solutions with various pH values, the SWNTs change their resistance accordingly. The SWNT-based sensors demonstrate a linear relationship between the sensor resistance and the pH values in the range of 5-9. The characterization of multiple sensors proves that their pH sensitivity is highly repeatable. The real-time data acquisition shows that the sensor response time depends on the pH value, ranging from 2.26 s for the pH-5 solution to 23.82 s for the pH-9 solution. The long-term stability tests illustrate that the sensors can maintain their original sensitivity for a long period of time. The simple fabrication process, high sensitivity, and fast response of the SWNT-based sensors facilitate their applications in a wide range of areas.

  17. Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties.

    Science.gov (United States)

    Del Caño, Rafael; Mateus, Lucia; Sánchez-Obrero, Guadalupe; Sevilla, José Manuel; Madueño, Rafael; Blázquez, Manuel; Pineda, Teresa

    2017-11-01

    The identification of the factors that dictate the formation and physicochemical properties of protein-nanomaterial bioconjugates are important to understand their behavior in biological systems. The present work deals with the formation and characterization of bioconjugates made of the protein hemoglobin (Hb) and gold nanoparticles (AuNP) capped with three different molecular layers (citrate anions (c), 6-mercaptopurine (MP) and ω-mercaptoundecanoic acid (MUA)). The main focus is on the behavior of the bioconjugates in aqueous buffered solutions in a wide pH range. The stability of the bioconjugates have been studied by UV-visible spectroscopy by following the changes in the localized surface resonance plasmon band (LSRP), Dynamic light scattering (DLS) and zeta-potential pH titrations. It has been found that they are stable in neutral and alkaline solutions and, at pH lower than the protein isoelectric point, aggregation takes place. Although the surface chemical properties of the AuNPs confer different properties in respect to colloidal stability, once the bioconjugates are formed their properties are dictated by the Hb protein corona. The protein secondary structure, as analyzed by Attenuated total reflectance infrared (ATR-IR) spectroscopy, seems to be maintained under the conditions of colloidal stability but some small changes in protein conformation take place when the bioconjugates aggregate. These findings highlight the importance to keep the protein structure upon interaction with nanomaterials to drive the stability of the bioconjugates. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effect of Strength and Microstructure on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution

    Science.gov (United States)

    Zhu, Min; Du, Cuiwei; Li, Xiaogang; Liu, Zhiyong; Wang, Shengrong; Zhao, Tianliang; Jia, Jinghuan

    2014-04-01

    The stress corrosion cracking (SCC) behaviors and mechanisms of X80 pipeline steels with different strength and microstructure in high pH carbonate/bicarbonate solution were investigated by slow strain rate testing and electrochemical test. The results showed that the cracking mode of low strength X80 steel composed of bulky polygonal ferrite and granular bainite in high pH solution was intergranular (IGSCC), and the SCC mechanism was anodic dissolution (AD). While the mixed cracking mode of high strength X80 steel consisted of fine acicular ferrite and granular bainite was intergranular (IGSCC) in the early stage, and transgranular (TGSCC) in the later stage. The decrease of pH value of crack tip was probably the key reason for the occurrence of TGSCC. The SCC mechanism may be a mixed mode of AD and hydrogen embrittlement (HE), and the HE mechanism may play a significant role in the deep crack propagation at the later stage. The cracking modes and SCC mechanisms of the two X80 steels were associated with its microstructure and strength.

  19. A highly selective chemosensor for colorimetric detection of Hg2+ and fluorescence detection of pH changes in aqueous solution

    International Nuclear Information System (INIS)

    Kavitha, Ramasamy; Stalin, Thambusamy

    2014-01-01

    A naturally existing and unmodified simple chemosensor, 2-hydroxy-1,4-naphthoquinone (2HNQ), was identified and used for both the colorimetric detection of Hg 2+ and the fluorescent (on-off) detection of pH. The distinct color change and quenching of fluorescence emission was visible to the naked eye. More importantly, the chemosensor was used in combination with β-cyclodextrin (β-CD), which enabled the sensor to be solubilized and stabilized in aqueous solutions. The sensor selectively detected Hg 2+ via the stable 1:1 complexation of the CåO and OH groups with Hg 2+ and reflected pH changes in the range from 6 to 12 via a fluorescence on–off response resulting from the deprotonation of the hydroxyl group in 2HNQ. - Highlights: • The 2-Hydroxy-1,4-Naphthoquinone (2HNQ) chemosensor is capable of both colorimetric detection of Hg 2+ and a fluorescence on-off response to pH. • The distinct color change and quenching of fluorescence emission are detectable with the naked eye. • The on– off fluorescence response in the pH range from 6– to 12 is due to the deprotonation of the hydroxyl group in 2HNQ

  20. Self-assembly behavior of pH- and thermosensitive amphiphilic triblock copolymers in solution: experimental studies and self-consistent field theory simulations.

    Science.gov (United States)

    Cai, Chunhua; Zhang, Liangshun; Lin, Jiaping; Wang, Liquan

    2008-10-09

    We investigated, both experimentally and theoretically, the self-assembly behaviors of pH- and thermosensitive poly(L-glutamic acid)- b-poly(propylene oxide)-b-poly(L-glutamic acid) (PLGA-b-PPO-b-PLGA) triblock copolymers in aqueous solution by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), circular dichroism (CD), and self-consistent field theory (SCFT) simulations. Vesicles were observed when the hydrophilic PLGA block length is shorter or the pH value of solution is lower. The vesicles were found to transform to spherical micelles when the PLGA block length increases or its conformation changes from helix to coil with increasing the pH value. In addition, increasing temperature gives rise to a decrease in the size of aggregates, which is related to the dehydration of the PPO segments at higher temperatures. The SCFT simulation results show that the vesicles transform to the spherical micelles with increasing the fraction or statistical length of A block in model ABA triblock copolymer, which corresponds to the increase in the PLGA length or its conformation change from helix to coil in experiments, respectively. The SCFT calculations also provide chain distribution information in the aggregates. On the basis of both experimental and SCFT results, the mechanism of the structure change of the PLGA- b-PPO- b-PLGA aggregates was proposed.

  1. Redox properties of phenosafranine at zeolite-modified electrodes-Effect of surface modification and solution pH

    International Nuclear Information System (INIS)

    Easwaramoorthi, S.; Natarajan, P.

    2008-01-01

    Redox properties of cationic dye phenosafranine (3,7-diamino-5-phenylphenazenium chloride) (PS + ) were studied at zeolite-modified electrodes using Zeolite-Y and NaZSM-5. The peak current and peak potential of phenosafranine-adsorbed zeolite were found to be influenced by the pH of the electrolyte solution. Observation of a second redox couple is suggested to be due to formation of new species at low concentration from the reduced phenosafranine at the zeolite-modified electrodes. Titanium dioxide nanoparticles encapsulated in the cavities of the zeolite or anchored on the external surface of the zeolite do not seem to affect the redox properties of adsorbed PS + . When the cyclic voltammograms are recorded immediately after the electrode is immersed into the solution, the redox potential of PS + is found to be sensitive to the nature of the zeolite surface. The peak potential shifts towards positive region under continuous cycles as the surface hydroxyl groups get protonated in acidic electrolyte solution thereby forcing the movement of dye molecules from the zeolite surface to the zeolite electrode solution interface. The electron transfer rate constants for the adsorbed dye at the electrode are calculated to be 2.5 ± 0.2 s -1 and 3.5 ± 0.2 s -1 for the zeolite-Y electrode and the ZSM-5 electrode, respectively by the Laviron equation

  2. Chemical Speciation and Bond Lengths of Organic Solutes by Core-Level Spectroscopy: pH and Solvent Influence on p-Aminobenzoic Acid.

    Science.gov (United States)

    Stevens, Joanna S; Gainar, Adrian; Suljoti, Edlira; Xiao, Jie; Golnak, Ronny; Aziz, Emad F; Schroeder, Sven L M

    2015-05-04

    Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO-LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs and σ* shape resonances in the NEXAFS spectra. This provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute-solvent interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Acid Rain, pH & Acidity: A Common Misinterpretation.

    Science.gov (United States)

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  4. Synthesis and characterization of pH sensitive carboxySNARF-1 nanoreactors

    International Nuclear Information System (INIS)

    Chen Yenchi; Ostafin, Agnes; Mizukami, Hiroshi

    2010-01-01

    A rapid response dual wavelength emission pH sensor consisting of carboxySNARF-1 nanoreactors has been synthesized and shown to provide accurate pH measurements even in complex biological media, where the unprotected pH responsive dyes have failed. The carboxySNARF-1 nanoreactor is made of a calcium phosphate shell covering phosphatidylcholine liposomes filled with the dye. Its mean diameter is 150 nm with dynamic light scattering, the shell thickness is 5-7 nm with TEM, and it contains about 10 dyes/particle. The nanoreactor's response time to pH change nearly equals that of the dye in solution. Its pH titration curves at two different wavelengths are equivalent to those of the dye in solution and fluorescence intensity ratio dependent pH analysis is possible using the modified Henderson-Hasselbalch equation. However, the pH dependent fluorescence ratios of the dye in solution in the presence of plasma and albumin are distorted, and application of the Henderson-Hasselbalch equation is not possible. We have found that the distortions may be restored using cSNARF-1 nanoreactors and the pK a of the dye in the nanoreactor then equals that in solution. These results suggest that the interference to the dye for the pH analyses with the environmental molecules may be reduced or prohibited by usage of cSNARF-1 nanoreactors.

  5. Synthesis and characterization of pH sensitive carboxySNARF-1 nanoreactors

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yenchi; Ostafin, Agnes [Department of Materials Science, University of Utah, Salt Lake City, UT (United States); Mizukami, Hiroshi, E-mail: a.ostafin@utah.edu [Department of Biological Science, Wayne State University, Detroit, MI (United States)

    2010-05-28

    A rapid response dual wavelength emission pH sensor consisting of carboxySNARF-1 nanoreactors has been synthesized and shown to provide accurate pH measurements even in complex biological media, where the unprotected pH responsive dyes have failed. The carboxySNARF-1 nanoreactor is made of a calcium phosphate shell covering phosphatidylcholine liposomes filled with the dye. Its mean diameter is 150 nm with dynamic light scattering, the shell thickness is 5-7 nm with TEM, and it contains about 10 dyes/particle. The nanoreactor's response time to pH change nearly equals that of the dye in solution. Its pH titration curves at two different wavelengths are equivalent to those of the dye in solution and fluorescence intensity ratio dependent pH analysis is possible using the modified Henderson-Hasselbalch equation. However, the pH dependent fluorescence ratios of the dye in solution in the presence of plasma and albumin are distorted, and application of the Henderson-Hasselbalch equation is not possible. We have found that the distortions may be restored using cSNARF-1 nanoreactors and the pK{sub a} of the dye in the nanoreactor then equals that in solution. These results suggest that the interference to the dye for the pH analyses with the environmental molecules may be reduced or prohibited by usage of cSNARF-1 nanoreactors.

  6. Dielectrophoresis Aligned Single-Walled Carbon Nanotubes as pH Sensors

    Directory of Open Access Journals (Sweden)

    Wei Xue

    2011-01-01

    Full Text Available Here we report the fabrication and characterization of pH sensors using aligned single-walled carbon nanotubes (SWNTs. The SWNTs are dispersed in deionized (DI water after chemical functionalization and filtration. They are deposited and organized on silicon substrates with the dielectrophoresis process. Electrodes with “teeth”-like patterns—fabricated with photolithography and wet etching—are used to generate concentrated electric fields and strong dielectrophoretic forces for the SWNTs to deposit and align in desired locations. The device fabrication is inexpensive, solution-based, and conducted at room temperature. The devices are used as pH sensors with the electrodes as the testing pads and the dielectrophoretically captured SWNTs as the sensing elements. When exposed to aqueous solutions with various pH values, the SWNTs change their resistance accordingly. The SWNT-based sensors demonstrate a linear relationship between the sensor resistance and the pH values in the range of 5–9. The characterization of multiple sensors proves that their pH sensitivity is highly repeatable. The real-time data acquisition shows that the sensor response time depends on the pH value, ranging from 2.26 s for the pH-5 solution to 23.82 s for the pH-9 solution. The long-term stability tests illustrate that the sensors can maintain their original sensitivity for a long period of time. The simple fabrication process, high sensitivity, and fast response of the SWNT-based sensors facilitate their applications in a wide range of areas.

  7. Determining pH of strip-mine spoils

    Science.gov (United States)

    W. A. Berg

    1969-01-01

    Results with the LaMotte-Morgan method for determining soil pH-or the solution modification of this method-usually agreed fairly well with the results from using a pH meter, the recognized standard. Results obtained with the Soiltex and Hellige-Truog methods often deviated somewhat from the pH meter readings; and the Hydrion papers and the Kelway pH tester often gave...

  8. Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH

    NARCIS (Netherlands)

    Johnsson, M; Wagenaar, A; Engberts, JBFN

    2003-01-01

    A sugar-based (reduced glucose) gemini surfactant forms vesicles in dilute aqueous solution near neutral pH. At lower pH, there is a vesicle-to-micelle transition within a narrow pH region (pH 6.0-5.6). The vesicles are transformed into large cylindrical micelles that in turn are transformed into

  9. Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval-Paz, M.G., E-mail: myrnasandoval@udec.cl [Departament of Physics, Faculty of Physical Sciences and Mathematics, University of Concepcion, Box 160-C, Concepción (Chile); Rodríguez, C.A. [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile); Porcile-Saavedra, P.F. [Departament of Physics, Faculty of Physical Sciences and Mathematics, University of Concepcion, Box 160-C, Concepción (Chile); Trejo-Cruz, C. [Department of Physics, Faculty of Science, University of Biobío, Avenue Collao 1202, Box 5C, Concepción 4051381 (Chile)

    2016-07-15

    Copper (I) selenide thin films with orthorhombic and cubic structure were deposited on glass substrates by using the chemical bath deposition technique. The effects of the solution pH on the films growth and subsequently the structural, optical and electrical properties of the films were studied. Films with orthorhombic structure were obtained from baths wherein both metal complex and hydroxide coexist; while films with cubic structure were obtained from baths where the metal hydroxide there is no present. The structural modifications are accompanied by changes in bandgap energy, morphology and electrical resistivity of the films. - Graphical abstract: “Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution” by M. G. Sandoval-Paz, C. A. Rodríguez, P. F. Porcile-Saavedra, C. Trejo-Cruz. Display Omitted - Highlights: • Copper (I) selenide thin films were obtained by chemical bath deposition. • Orthorhombic to cubic phase change was induced by varying the reaction solution pH. • Orthorhombic phase is obtained mainly from a hydroxides cluster mechanism. • Cubic phase is obtained mainly from an ion by ion mechanism. • Structural, optical and electrical properties are presented as a function of pH.

  10. 78 FR 25304 - Siemens Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology), Including On...

    Science.gov (United States)

    2013-04-30

    ..., USA, Inc., Oncology Care Systems (Radiation Oncology), Including On-Site Leased Workers From Source... Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology), including on- site leased... of February 2013, Siemens Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology...

  11. Influence of storage solution on enamel demineralization submitted to pH cycling Influência da solução de armazenagem na desmineralização do esmalte submetido à ciclagem de pH

    Directory of Open Access Journals (Sweden)

    Juliana Silva Moura

    2004-09-01

    Full Text Available Extracted human teeth are frequently used for research or educational purposes. Therefore, it is necessary to store them in disinfectant solutions that do not alter dental structures. Thus, this study evaluated the influence of storage solution on enamel demineralization. For that purpose, sixty samples were divided into the following groups: enamel stored in formaldehyde (F1, stored in thymol (T1, stored in formaldehyde and submitted to pH cycling (F2, stored in thymol and submitted to pH cycling (T2. All samples were evaluated by cross-sectional microhardness analysis and had their percentage of mineral volume versus micrometer (integrated area determined. Differences between groups were found up to 30-µm depth from the enamel surface (p Dentes humanos extraídos são freqüentemente utilizados para propósitos educacionais ou de pesquisa. Desta forma, é necessário o armazenamento dos mesmos em soluções desinfetantes que não alterem a estrutura dental. Para tanto, sessenta espécimes foram divididos nos seguintes grupos: esmalte armazenado em formol (F1, armazenado em timol (T1, armazenado em formol e submetido à ciclagem de pH (F2 e armazenado em timol e submetido à ciclagem de pH (T2, sendo avaliados por meio de análise de microdureza longitudinal e tiveram a porcentagem de volume mineral pro micrômetro determinada. Diferenças entre os grupos foram encontradas até a profundidade de 30µm da superfície do esmalte (p<0,05, onde o grupo mais desmineralizado era T2. Foi concluído que a solução de armazenagem influenciou na reação do substrato dental a um desafio cariogênico, sugerindo que o formaldeído pode aumentar a resistência do esmalte à desmineralização promovida pelo modelo de ciclagem de pH, quando comparado à desmineralização ocorrida no esmalte armazenado em timol.

  12. Traceability of pH to the Mole

    Directory of Open Access Journals (Sweden)

    Maria Filomena Camões

    2015-08-01

    Full Text Available Free acidity of aqueous solutions was initially defined in 1909 by Søren Peter Lauritz Sørensen as pH = −lgcH+ (c/mol·dm−3 or m/mol·kg−1 of the free hydrogen ions in solution, H+ soon (1910 was changed to pH = paH+ = −lgaH+, integrating the new concepts of activity, ai and activity coefficient γi, for the ionic species i under concern, H+ in this case; it is ai = −lg(miγi. Since individual ions do not exist alone in solution, primary pH values cannot be assigned solely by experimental measurements, requiring extra thermodynamic model assumptions for the activity coefficient, γH+, which has put pH in a unique situation of not being fully traceable to the International System of Units (SI. Also the concept of activity is often not felt to be as perceptible as that of concentration which may present difficulties, namely with the interpretation of data. pH measurements on unknown samples rely on calibration of the measuring setup with adequate reference pH buffers. In this work, the assignment of pH values to buffers closely matching the samples, e.g., seawater, is revisited. An approach is presented to assess the quantity pmH+ = −lgmH+ profiting from the fact that, contrary to single ion activity coefficients, mean activity coefficients,   can be assessed based on experimentally assessed quantities alone, γExp ±, thus ensuring traceability to the mole, the SI base unit for amount of substance. Compatibility between γExp ± and mean activity coefficient calculated by means of Pitzer model equations, γPtz ±, validates the model for its intended use.

  13. An All-Solid-State pH Sensor Employing Fluorine-Terminated Polycrystalline Boron-Doped Diamond as a pH-Insensitive Solution-Gate Field-Effect Transistor.

    Science.gov (United States)

    Shintani, Yukihiro; Kobayashi, Mikinori; Kawarada, Hiroshi

    2017-05-05

    A fluorine-terminated polycrystalline boron-doped diamond surface is successfully employed as a pH-insensitive SGFET (solution-gate field-effect transistor) for an all-solid-state pH sensor. The fluorinated polycrystalline boron-doped diamond (BDD) channel possesses a pH-insensitivity of less than 3mV/pH compared with a pH-sensitive oxygenated channel. With differential FET (field-effect transistor) sensing, a sensitivity of 27 mv/pH was obtained in the pH range of 2-10; therefore, it demonstrated excellent performance for an all-solid-state pH sensor with a pH-sensitive oxygen-terminated polycrystalline BDD SGFET and a platinum quasi-reference electrode, respectively.

  14. Analysis of the electric conductivity and pH behaviors in recycled drainage solution of rose cv. Charlotte plants grown in substrate

    Directory of Open Access Journals (Sweden)

    Luis Fernando Yepes V

    2013-12-01

    Full Text Available In open soilless cropping systems contamination from nutrient lixiviation is generated making it necessary to design closed or semi-closed systems, which require the determination of the maximum saline levels in recycling solutions. In this study, the electric conductivity (EC and pH behaviors were analyzed in drainage solution intended for recycling in the crop; in addition, parameters were used to estimate nutrient availability for the plants in a substrate based cropping system. This research project was carried out under greenhouse conditions in the municipality of Mosquera (Colombia. Rose cv. Charlotte grafted on "Natal briar" stocks were used, sown in pots arranged on elevated beds, 15 m in length. This project was carried out using a split-plot design with sub-plots (with the substrate as the main plot and the recycling as the sub-plot, three kinds of substrate and three recycling percentages (0, 50, and 100%, for a total of 27 experimental units. Substrate mixtures based on burned rice husk and coconut fiber were used. Recycling during one harvest cycle of the roses did not show EC and pH values above those that are considered to have a negative impact on production; however, an increasing behavior in the EC and pH values was observed. Likewise, no significant differences between the 50 and 100% recycling were observed, which means 100% recycling can be used, optimizing nutrient use and water conservation

  15. Effect of pH and phosphate on calcium carbonate polymorphs precipitated at near-freezing temperature

    NARCIS (Netherlands)

    Hu, Yu-Bin; Wolthers, Mariëtte; Wolf-Gladrow, Dieter A.; Nehrke, Gernot

    2015-01-01

    The effects of pH and phosphate on the precipitation of calcium carbonate polymorphs from aqueous solution were investigated. Experiments were carried out at near-freezing temperature and two different pH conditions (pH 13.4 and 9.0). At each pH condition, solutions having different concentrations

  16. The Possible "Proton Sponge " Effect of Polyethylenimine (PEI) Does Not Include Change in Lysosomal pH

    DEFF Research Database (Denmark)

    Søndergaard, Rikke Vicki; Mattebjerg, Maria Ahlm; Henriksen, Jonas Rosager

    2013-01-01

    is still elusive. The "proton sponge " hypothesis remains the most generally accepted mechanism, although it is heavily debated. This hypothesis is associated with the large buffering capacity of PEI and other polycations, which has been interpreted to cause an increase in lysosomal pH even though...... no conclusive proof has been provided. In the present study, we have used a nanoparticle pH sensor that was developed for pH measurements in the endosomal/lysosomal pathway. We have carried out quantitative measurements of lysosomal pH as a function of PEI content and correlate the results to the "proton sponge...... " hypothesis. Our measurements show that PEI does not induce change in lysosomal pH as previously suggested and quantification of PEI concentrations in lysosomes makes it uncertain that the "proton sponge " effect is the dominant mechanism of polyplex escape.Molecular Therapy (2012); doi:10.1038/mt.2012.185....

  17. ISFET pH Sensitivity: Counter-Ions Play a Key Role.

    Science.gov (United States)

    Parizi, Kokab B; Xu, Xiaoqing; Pal, Ashish; Hu, Xiaolin; Wong, H S Philip

    2017-02-02

    The Field Effect sensors are broadly used for detecting various target analytes in chemical and biological solutions. We report the conditions under which the pH sensitivity of an Ion Sensitive Field Effect transistor (ISFET) sensor can be significantly enhanced. Our theory and simulations show that by using pH buffer solutions containing counter-ions that are beyond a specific size, the sensor shows significantly higher sensitivity which can exceed the Nernst limit. We validate the theory by measuring the pH response of an extended gate ISFET pH sensor. The consistency and reproducibility of the measurement results have been recorded in hysteresis free and stable operations. Different conditions have been tested to confirm the accuracy and validity of our experiment results such as using different solutions, various oxide dielectrics as the sensing layer and off-the-shelf versus IC fabricated transistors as the basis of the ISFET sensor.

  18. Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor

    Science.gov (United States)

    Jeevarajan, Antony S.; Vani, Sundeep; Taylor, Thomas D.; Anderson, Melody M.

    2002-01-01

    Monitoring and regulating the pH of the solution in a bioprocess is one of the key steps in the success of bioreactor operation. An in-line optical pH sensor, based on the optical absorption properties of phenol red present in the medium, was developed and tested in this work for use in NASA space bioreactors based on a rotating wall-perfused vessel system supporting a baby hamster kidney (BHK-21) cell culture. The sensor was tested over three 30-day and one 124-day cell runs. The pH sensor initially was calibrated and then used during the entire cell culture interval. The pH reported by the sensor was compared to that measured by a fiber optically coupled Shimadzu spectrophotometer and a blood gas analyzer. The maximum standard error of prediction for all the four cell runs for development pH sensor against BGA was +/-0.06 pH unit and for the fiber optically coupled Shimadzu spectrophotometer against the blood gas analyzer was +/-0.05 pH unit. The pH sensor system performed well without need of recalibration for 124 days. Copyright 2002 Wiley Periodicals, Inc.

  19. Radiolysis of nitrite, bromate and permanganate ions and their binary mixtures in aqueous solutions at pH 10

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.; Kulkarni, S.A.; Mahajan, C.T.

    1981-01-01

    #betta#-radiolysis of pure systems viz. nitrite, bromate and permanganate and their binary mixtures (MNO 4- /NO 2- , MnO 4- /BrO 3- ) in aqueous solution at pH 10 is studied as a function of dose and concentration. In pure systems the G(NO 3- ), G(Br - ) and G(-MnO 4- ) increase with increasing concentration. The first two show an identical limiting value of approximately 0.5 while the last increases from 0.68 below 10 4 M and reaches 2.5 at 10 - 2 M concentration. Presence of 10 - 1 M BrO 3- or 10 - 2 M NO 2- reduces the G(-MnO 4- ) from 1.07 for the pure 10 - 3 M permanganate solution to 0.2 and 0.7 respectively. A mechanism based on the competitive kinetics is envisaged to explain the observed results. (author)

  20. pH induced protein-scaffold biosynthesis of tunable shape gold nanoparticles

    International Nuclear Information System (INIS)

    Zhang Xiaorong; He Xiaoxiao; Wang Kemin; Ren Fang; Qin Zhihe

    2011-01-01

    In this paper, a pH-inductive protein-scaffold biosynthesis of shape-tunable crystalline gold nanoparticles at room temperature has been developed. By simple manipulation of the reaction solution's pH, anisotropic gold nanoparticles including spheres, triangles and cubes could be produced by incubating an aqueous solution of sodium tetrachloroaurate with Dolichomitriopsis diversiformis biomasses after immersion in ultrapure Millipore water overnight. A moss protein with molecular weight of about 71 kDa and pI of 4.9 was the primary biomolecule involved in the biosynthesis of gold nanoparticles. The secondary configuration of the proteins by CD spectrum implied that the moss protein could display different secondary configurations including random coil, α-helix and intermediate conformations between random coil and α-helix for the experimental pH solution. The growth process of gold nanoparticles further showed that the moss protein with different configurations provided the template scaffold for the shape-controlled biosynthesis of gold nanoparticles. The constrained shape of the gold nanoparticles, however, disappeared in boiled moss extract. The gold nanoparticles with designed morphology were successfully reconstructed using the moss protein purified from the gold nanoparticles. Structural characterizations by SEM, TEM and SAED showed that the triangular and cubic gold nanoparticles were single crystalline.

  1. Effect of interactions between carbon dioxide enrichment and NH4+/NO3- ratio on pH of culturing nutrient solution,growth and vigor of tomato root system

    Institute of Scientific and Technical Information of China (English)

    Juan LI; Jianmin ZHOU

    2008-01-01

    A growth chamber experiment was conducted to investigate the influence of NH4+/NO3- ratio and elevated CO2 concentration on the pH in nutrient solution,growth and root vigor system of tomato seedling roots,which attempts to understand whether the elevated CO2 concentration can alleviate the harmful effects of higher NH4+-N concentration in nutrient solutions on the tomato root system.Tomato (Lycopersicon esculenturn Mill.var.Hezuo 906) was grown in pots with nutrient solutions varying in NH4+/NO3- ratio (0:1,1:3,1:1,3:1and 1:0) and the growth chambers were supplied with with the growth process and CO2 concentration increased.At both CO2 levels,pH increased when 100% NO3--N was supplied and decreased in other treatments.The pH decrease in the nutrient solution was directly correlated to the NH4+-N proportion.The pH value was more reduced in 100% NH4+-N nutrient solution than increased in the 100% NO3--N nutrient solution.CO2 enrichment increased the dry weight of shoots and roots,root vigor system,total absorbing area and active absorbing area of tomato seedlings.All the measurement indexes above were increased in the elevated CO2 concentration treatment with the NO3- proportion increase in the nutrient solutions.Thus,under the elevated CO2 concentration,the dry weights of shoots and roots,root vigor system,total root absorbing area and active absorbing area were found to be inversely correlated to NH4+/NO3- ratio,leading to about 65.8%,78.0%,18.9%,12.9% and 18.9% increase,respectively,compared with that under the ambient CO2 concentration.Our results indicated that tomato seedling roots may benefit mostly from CO2 enrichment when 100% NO3--N nutrient solutions was supplied,but the CO2 concentration elevation did not alleviate the harmful effects when 100% NHa+-N was supplied.

  2. High sensitivity pH sensing on the BEOL of industrial FDSOI transistors

    Science.gov (United States)

    Rahhal, Lama; Ayele, Getenet Tesega; Monfray, Stéphane; Cloarec, Jean-Pierre; Fornacciari, Benjamin; Pardoux, Eric; Chevalier, Celine; Ecoffey, Serge; Drouin, Dominique; Morin, Pierre; Garnier, Philippe; Boeuf, Frederic; Souifi, Abdelkader

    2017-08-01

    In this work we demonstrate the use of Fully Depleted Silicon On Insulator (FDSOI) transistors as pH sensors with a 23 nm silicon nitride sensing layer built in the Back-End-Of-Line (BEOL). The back end process to deposit the sensing layer and fabricate the electrical structures needed for testing is detailed. A series of tests employing different pH buffer solutions has been performed on transistors of different geometries, controlled via the back gate. The main findings show a shift of the drain current (ID) as a function of the back gate voltage (VB) when different pH buffer solutions are probed in the range of pH 6 to pH 8. This shift is observed at VB voltages swept from 0 V to 3 V, demonstrating the sensor operation at low voltage. A high sensitivity of up to 250 mV/pH unit (more than 4-fold larger than Nernstian response) is observed on FDSOI MOS transistors of 0.06 μm gate length and 0.08 μm gate width. She is currently working as a Postdoctoral researcher at Institut des nanotechnologies de Lyon in collaboration with STMicroelectronics and Université de Sherbrook (Canada) working on ;Integration of ultra-low-power gas and pH sensors with advanced technologies;. Her research interest includes selection, machining, optimisation and electrical characterisation of the sensitive layer for a low power consumption gas sensor based on advanced MOS transistors.

  3. Stability of Adrenaline in Irrigating Solution for Intraocular Surgery.

    Science.gov (United States)

    Shibata, Yuuka; Kimura, Yasuhiro; Taogoshi, Takanori; Matsuo, Hiroaki; Kihira, Kenji

    2016-01-01

    Intraocular irrigating solution containing 1 µg/mL adrenaline is widely used during cataract surgery to maintain pupil dilation. Prepared intraocular irrigating solutions are recommended for use within 6 h. After the irrigating solution is admistered for dilution, the adrenaline may become oxidized, and this may result in a decrease in its biological activity. However, the stability of adrenaline in intraocular irrigating solution is not fully understood. The aim of this study was to evaluate the stability of adrenaline in clinically used irrigating solutions of varying pH. Six hours after mixing, the adrenaline percentages remaining were 90.6%±3.7 (pH 7.2), 91.1%±2.2 (pH 7.5), and 65.2%±2.8 (pH 8.0) of the initial concentration. One hour after mixing, the percentages remaining were 97.6%±2.0 (pH 7.2), 97.4%±2.7 (pH 7.5), and 95.6%±3.3 (pH 8.0). The degradation was especially remarkable and time dependent in the solution at pH 8.0. These results indicate that the concentration of adrenaline is decreased after preparation. Moreover, we investigated the influence of sodium bisulfite on adrenaline stability in irrigating solution. The percentage adrenaline remaining at 6 h after mixing in irrigating solution (pH 8.0) containing sodium bisulfite at 0.5 µg/mL (concentration in irrigating solution) or at 500 µg/mL (concentration in the undiluted adrenaline preparation) were 57.5 and 97.3%, respectively. Therefore, the low concentration of sodium bisulfite in the irrigating solution may be a cause of the adrenaline loss. In conclusion, intraocular irrigation solution with adrenaline should be prepared just prior to its use in surgery.

  4. Solution pH and oligoamine molecular weight dependence of the transition from monolayer to multilayer adsorption at the air-water interface from sodium dodecyl sulfate/oligoamine mixtures.

    Science.gov (United States)

    Halacheva, S S; Penfold, J; Thomas, R K; Webster, J R P

    2013-05-14

    Neutron reflectivity and surface tension have been used to investigate the solution pH and oligoamine molecular weight dependence of the adsorption of sodium dodecyl sulfate (SDS)/oligoamine mixtures at the air-water interface. For diethylenetriamine, triamine, or triethylenetetramine, tetramine mixed with SDS, there is monolayer adsorption at pH 7 and 10, and multilayer adsorption at pH 3. For the slightly higher molecular weight tetraethylenepentamine, pentamine, and pentaethylenehexamine, hexamine, the adsorption is in the form of a monolayer at pH 3 and multilayers at pH 7 and 10. Hence, there is a pH driven transition from monolayer to multilayer adsorption, which shifts from low pH to higher pH as the oligoamine molecular weight increases from tetramine to pentamine. This results from the relative balance between the electrostatic attraction between the SDS and amine nitrogen group which decreases as the charge density decreases with increasing pH, the ion-dipole interaction between the amine nitrogen and SDS sulfate group which is dominant at higher pH, and the hydrophobic interalkyl chain interaction between bound SDS molecules which changes with oligoamine molecular weight.

  5. Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin.

    Science.gov (United States)

    Jungbluth, Holger; Marending, Monika; De-Deus, Gustavo; Sener, Beatrice; Zehnder, Matthias

    2011-05-01

    When sodium hypochlorite solutions react with tissue, their pH drops and tissue sorption decreases. We studied whether stabilizing a NaOCl solution at a high pH would increase its soft-tissue dissolution capacity and effects on the dentin matrix compared with a standard NaOCl solution of the same concentration and similar initial pH. NaOCl solutions were prepared by mixing (1:1) a 10% stock solution with water (standard) or 2 mol/L NaOH (stabilized). Physiological saline and 1 mol/L NaOH served as the controls. Chlorine content and alkaline capacity of NaOCl solutions were determined. Standardized porcine palatal soft-tissue specimens and human root dentin bars were exposed to test and control solutions. Weight loss percentage was assessed in the soft-tissue dissolution assay. Three-point bending tests were performed on the root dentin bars to determine the modulus of elasticity and flexural strength. Values between groups were compared using one-way analysis of variance with the Bonferroni correction for multiple testing (α pH level of 7.5, respectively. The stabilized NaOCl dissolved significantly more soft tissue than the standard solution, and the pH remained high. It also caused a higher loss in elastic modulus and flexure strength (P < .05) than the control solutions, whereas the standard solution did not. NaOH-stabilized NaOCl solutions have a higher alkaline capacity and are thus more proteolytic than standard counterparts. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Stabilization of pH in solid-matrix hydroponic systems

    Science.gov (United States)

    Frick, J.; Mitchell, C. A.

    1993-01-01

    2-[N-morpholino]ethanesulfonic acid (MES) buffer or Amberlite DP-1 (cation-exchange resin beads) were used to stabilize substrate pH of passive-wicking, solid-matrix hydroponic systems in which small canopies of Brassica napus L. (CrGC 5-2, genome : ACaacc) were grown to maturity. Two concentrations of MES (5 or 10 mM) were included in Hoagland 1 nutrient solution. Alternatively, resin beads were incorporated into the 2 vermiculite : 1 perlite (v/v) growth medium at 6% or 12% of total substrate volume. Both strategies stabilized pH without toxic side effects on plants. Average seed yield rates for all four pH stabilization treatments (13.3 to 16.9 g m-2 day-1) were about double that of the control (8.2 g m-2 day-1), for which there was no attempt to buffer substrate pH. Both the highest canopy seed yield rate (16.9 g m-2 day-1) and the highest shoot harvest index (19.5%) occurred with the 6% resin bead treatment, even though the 10 mM MES and 12% bead treatments maintained pH within the narrowest limits. The pH stabilization methods tested did not significantly affect seed oil and protein contents.

  7. A ph sensor based on a flexible substrate

    Science.gov (United States)

    Huang, Wen-Ding

    pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages. Glass electrodes are easily affected by alkaline or HF solution, they require a high input impedance pH meter, they often exhibit a sluggish response. In some specific applications, it is also difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to the difficulty of size miniaturization, planarization and polymerization based on current manufacturing technologies. In this work, we have demonstrated a novel flexible pH sensor based on low-cost sol-gel fabrication process of iridium oxide (IrOx) sensing film (IROF). A pair of flexible miniature IrOx/AgCl electrode generated the action potential from the solution by electrochemical mechanism to obtain the pH level of the reagent. The fabrication process including sol-gel, thermal oxidation, and the electro-plating process of the silver chloride (AgCl) reference electrode were reported in the work. The IrOx film was verified and characterized using electron dispersive analysis (EDAX), scanning electron microscope (SEM), and x-ray diffraction (XRD). The flexible pH sensor's performance and characterization have been investigated with different testing parameters such as sensitivity, response time, stability, reversibility, repeatability, selectivity and temperature dependence. The flexible IrOx pH sensors exhibited promising sensing performance with a near-Nernstian response of sensitivity which is between --51.1mV/pH and --51.7mV/pH in different pH levels ranging from 1.5 to 12 at 25°C. Two applications including gastroesophageal reflux disease (GERD) diagnosis and food freshness wireless monitoring using our micro-flexible IrOx pH sensors were demonstrated. For the GERD diagnosing system, we embedded the micro flexible pH sensor on a 1.2cmx3.8cm of the capsule size of wireless sensor

  8. Effect of pH on Pulp Potential and Sulphide Mineral Flotation

    OpenAIRE

    GÖKTEPE, Ferihan

    2014-01-01

    Control of pH is one of the most widely applied methods for the modulation of mineral flotation. In this study the effect of pH on potential in solution and sulphur minerals flotation is discussed with various electrodes. The electrodes were platinum, gold, chalcopyrite, pyrite and galena. In solution, potentials were linearly dependent on pH with a different slope for each electrode. Chalcopyrite, pyrite, sphalerite and galena minerals flotation tests were performed in a microflot...

  9. Functional and molecular characterization of transmembrane intracellular pH regulators in human dental pulp stem cells.

    Science.gov (United States)

    Chen, Gunng-Shinng; Lee, Shiao-Pieng; Huang, Shu-Fu; Chao, Shih-Chi; Chang, Chung-Yi; Wu, Gwo-Jang; Li, Chung-Hsing; Loh, Shih-Hurng

    2018-06-01

    Homeostasis of intracellular pH (pH i ) plays vital roles in many cell functions, such as proliferation, apoptosis, differentiation and metastasis. Thus far, Na + -H + exchanger (NHE), Na + -HCO 3 - co-transporter (NBC), Cl - /HCO 3 - exchanger (AE) and Cl - /OH - exchanger (CHE) have been identified to co-regulate pH i homeostasis. However, functional and biological pH i -regulators in human dental pulp stem cells (hDPSCs) have yet to be identified. Microspectrofluorimetry technique with pH-sensitive fluorescent dye, BCECF, was used to detect pH i changes. NH 4 Cl and Na + -acetate pre-pulse were used to induce intracellular acidosis and alkalosis, respectively. Isoforms of pH i -regulators were detected by Western blot technique. The resting pH i was no significant difference between that in HEPES-buffered (nominal HCO 3 - -free) solution or CO 2 /HCO 3 -buffered system (7.42 and 7.46, respectively). The pH i recovery following the induced-intracellular acidosis was blocked completely by removing [Na + ] o , while only slowed (-63%) by adding HOE694 (a NHE1 specific inhibitor) in HEPES-buffered solution. The pH i recovery was inhibited entirely by removing [Na + ] o , while adding HOE 694 pulse DIDS (an anion-transporter inhibitor) only slowed (-55%) the acid extrusion. Both in HEPES-buffered and CO 2 /HCO 3 -buffered system solution, the pH i recovery after induced-intracellular alkalosis was entirely blocked by removing [Cl - ] o . Western blot analysis showed the isoforms of pH i regulators, including NHE1/2, NBCe1/n1, AE1/2/3/4 and CHE in the hDPSCs. We demonstrate for the first time that resting pH i is significantly higher than 7.2 and meditates functionally by two Na + -dependent acid extruders (NHE and NBC), two Cl - -dependent acid loaders (CHE and AE) and one Na + -independent acid extruder(s) in hDPSCs. These findings provide novel insight for basic and clinical treatment of dentistry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Dry matter and nitrogen accumulation are not affected by superoptimal concentration of ammonium in flowing solution culture with pH control

    Science.gov (United States)

    Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.

  11. Effect of pH and uranium concentration on interaction of uranium(VI) and uranium(IV) with organic ligands in aqueous solutions

    International Nuclear Information System (INIS)

    Li, W.C.; Victor, D.M.; Chakrabarti, C.L.

    1980-01-01

    The effect of pH and uranium concentration on the interactions of uranium(VI) and uranium(IV) with organic ligands was studied by employing dialysis and ultrafiltration techniques. The interactions of U(VI) and U(IV) with organic ligands in nitrate or chloride aqueous solution have been found to be pH-dependent. The stability constants of uranium-organic complexes decrease in the order: fulvic acid>humic acid>tannic acid for U(VI) and humic acid>tannic acid>fulvic acid for U(IV). Scatchard plots for the uranium-organic acid systems indicate two types of binding sites with a difference in stability constants of about 10 2 . Ultrafiltration of uranium-humic acid complexes indicates that U(VI) and U(IV) ions are concentrated in larger molecular size fractions (>5.1 nm) at pH less than or equal to 3 and in smaller molecular size fractions (in the range 5.1 to 3.1 nm and 2.4 to 1.9 nm) at pH greater than or equal to 5. 7 figures, 4 tables

  12. CMOS COLOUR SENSOR BASED pH MEASUREMENT FOR WATER QUALITY ANALYSIS

    OpenAIRE

    Sanjay Kumar; Arvind Singh

    2016-01-01

    A Real-Time pH measurement system using a novel design Programmable CMOS optical Colour light to frequency converter TCS230 is presented. The system uses Bogen’s universal indicator solution combined with a white light source and the Programmable CMOS colour sensor TCS230 to measure pH as a function of colour change in a sample. Bogen’s universal indicator solution causes a colour change in a sample according to the pH of the sample. The output frequency from the colour-sensitive CM...

  13. Alkaline pH sensor molecules.

    Science.gov (United States)

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  14. Reduction of exchangeable calcium and magnesium in soil with increasing pH

    Directory of Open Access Journals (Sweden)

    Miyazawa Mário

    2001-01-01

    Full Text Available A laboratory study was conducted with soil samples and synthetic solutions to investigate possible mechanisms related with reduction in KCl exchangeable Ca and Mg with increasing pH. Increasing soil pH over 5.3 with CaCO3 added to the soil and with NaOH solution added to soil/KCl suspension increased adsorptions of Ca and Mg. The reduction of Mg was greater than Ca and was related to the concentration of soil exchangeable Al. The decreases of soluble Ca and Mg following addition of Al in synthetic solution were at pH > 7.5. The isomorphic coprecipitation reaction with Al compounds may be the most possible mechanism responsible for the decrease of exchangeable Ca and Mg with increasing pH. Possible chemical reactions are presented.

  15. A simple protocol for the routine calibration of pH meters

    Directory of Open Access Journals (Sweden)

    A. FEDERMAN NETO

    2009-01-01

    Full Text Available

    A simplified laboratory protocol for the calibration of pH meters is described and tested. It is based on the use of two analytical primary buffer solutions, potassium hydrogen phthalate and Borax (sodium tetraborate decahydrate of precisely known concentrations and pH. The solutions may be stored at room temperature for long periods, without decomposition and used directly. The calibration of the meter can be checked with standard solutions of sodium dihydrogen phosphate, sodium carbonate, sodium benzoate, sodium salicylate or potassium oxalate. Methods for the purification of Borax and potassium chloride are also given, and a new method for the neutralization of 0.9% saline is suggested. Keywords: pH meters (calibration; saline (0.9%; pH standards; potassium biphthalate; Borax.

  16. The pH dependent Raman spectroscopic study of caffeine

    Science.gov (United States)

    Kang, Jian; Gu, Huaimin; Zhong, Liang; Hu, Yongjun; Liu, Fang

    2011-02-01

    First of all the surface enhanced Raman spectroscopy (SERS) and normal Raman spectra of caffeine aqueous solution were obtained at different pH values. In order to obtain the detailed vibrational assignments of the Raman spectroscopy, the geometry of caffeine molecule was optimized by density functional theory (DFT) calculation. By comparing the SERS of caffeine with its normal spectra at different pH values; it is concluded that pH value can dramatically affect the SERS of caffeine, but barely affect the normal Raman spectrum of caffeine aqueous solution. It can essentially affect the reorientation of caffeine molecule to the Ag colloid surface, but cannot impact the vibration of functional groups and chemical bonds in caffeine molecule.

  17. Chapter A6. Section 6.4. pH

    Science.gov (United States)

    Wilde, Franceska D.; Busenberg, Eurybiades; Radtke, Dean B.

    2006-01-01

    Measurement of pH is critical to the understanding of the viability and vulnerability of environmental waters and is considered a master variable in determining the aqueous geochemistry of an aqueous system. pH is a measure that represents the hydrogen-ion concentration (activity) of a solution. This section of the National Field Manual (NFM) describes U.S. Geological Survey (USGS) guidance and protocols for measurement of pH in ground and surface waters.

  18. Impact of pH on the structure and function of neural cadherin.

    Science.gov (United States)

    Jungles, Jared M; Dukes, Matthew P; Vunnam, Nagamani; Pedigo, Susan

    2014-12-02

    Neural (N-) cadherin is a transmembrane protein within adherens junctions that mediates cell-cell adhesion. It has 5 modular extracellular domains (EC1-EC5) that bind 3 calcium ions between each of the modules. Calcium binding is required for dimerization. N-Cadherin is involved in diverse processes including tissue morphogenesis, excitatory synapse formation and dynamics, and metastasis of cancer. During neurotransmission and tumorigenesis, fluctuations in extracellular pH occur, causing tissue acidosis with associated physiological consequences. Studies reported here aim to determine the effect of pH on the dimerization properties of a truncated construct of N-cadherin containing EC1-EC2. Since N-cadherin is an anionic protein, we hypothesized that acidification of solution would cause an increase in stability of the apo protein, a decrease in the calcium-binding affinity, and a concomitant decrease in the formation of adhesive dimer. The stability of the apo monomer was increased and the calcium-binding affinity was decreased at reduced pH, consistent with our hypothesis. Surprisingly, analytical SEC studies showed an increase in calcium-induced dimerization as solution pH decreased from 7.4 to 5.0. Salt-dependent dimerization studies indicated that electrostatic repulsion attenuates dimerization affinity. These results point to a possible electrostatic mechanism for moderating dimerization affinity of the Type I cadherin family. Extrapolating these results to cell adhesion in vivo leads to the assertion that decreased pH promotes adhesion by N-cadherin, thereby stabilizing synaptic junctions.

  19. Electrical Conductivity and Chemical Composition of Soil Solution: Comparison of Solution Samplers in Tropical Soils

    Directory of Open Access Journals (Sweden)

    Davi Lopes do Carmo

    2016-01-01

    Full Text Available ABSTRACT Soil solution samplers may have the same working principle, but they differ in relation to chemical and physical characteristics, cost and handling, and these aspects exert influence on the chemical composition of the soil solution obtained. This study was carried out to evaluate, over time, the chemical composition of solutions extracted by Suolo Acqua, with the hydrophilic membrane (HM as a standard, using soils with contrasting characteristics, and to determine the relationship between electrical conductivity (EC and concentration of ions and pH of soil solution samples. This study was carried out under laboratory conditions, using three soils samples with different clay and organic matter (OM contents. Soil solution contents of F−, Cl−, NO−3, Br−, SO42−, Na+, NH4+, K+, Mg2+, Ca2+, were analyzed, as well as inorganic, organic, and total C contents, pH, and EC, in four successive sampling times. Soil solution chemical composition extracted by the Suolo Acqua sampler is similar to that collected by the HM, but the Suolo Acqua extracted more Na+ and soluble organic C than the HM solution. Solution EC, cation and anion concentrations, and soluble C levels are higher in the soil with greater clay and OM contents (Latossolo and Cambissolo in this case. Soil solution composition varied over time, with considerable changes in pH, EC, and nutrient concentrations, especially associated with soil OM. Thus, single and isolated sampling of the soil solution must be avoided, otherwise composition of the soil solution may not be correctly evaluated. Soil solution EC was regulated by pH, as well as the sum of cation and anion concentrations, and the C contents determined in the soil liquid phase.

  20. Binding of sodium dodecyl sulfate with linear and branched polyethyleneimines in aqueous solution at different pH values.

    Science.gov (United States)

    Wang, Hao; Wang, Yilin; Yan, Haike; Zhang, Jin; Thomas, Robert K

    2006-02-14

    Isothermal titration microcalorimetry (ITC), conductivity, and turbidity measurements have been carried out to study the interaction of sodium dodecyl sulfate (SDS) with polyethyleneimines (PEI) including linear PEI and branched PEI at different pH values of 3, 7, and 10. In all cases, the polymers show a remarkable affinity toward SDS. At pH 3, the polymer PEI is a strong polycation, and the binding is dominated by electrostatic 1:1 charge neutralization with the anionic surfactant. At pH 7, the electrostatic attraction between SDS and PEI is weak, and the hydrophobic interaction becomes stronger. At the natural pH of 10, PEI is essentially nonionic and binds SDS in the form of polymer-bound surfactant aggregates. The charge neutralization concentration (C1) of SDS for the PEI-SDS complex can be derived from the curves of variation of the enthalpy, conductivity, and turbidity with SDS concentration. There is good agreement between the results from the three methods and all show a decrease with increasing pH. The total interaction enthalpies (deltaH(total)) of PEI with SDS are obtained from the observed enthalpy curves and the difference enthalpy (deltaH*) between the total enthalpy of branched PEI with SDS, and the total enthalpy of linear PEI with SDS can be derived from the obtained deltaH(total). The difference deltaH* increases dramatically as pH increases, which indicates that the interactions are different for linear PEI and branched PEI at high pH values. A schematic map of the different states of aggregation is presented.

  1. 76 FR 13666 - Pitney Bowes, Inc., Mailing Solutions Management, Global Engineering Group, Including On-Site...

    Science.gov (United States)

    2011-03-14

    ...., Mailing Solutions Management, Global Engineering Group, Including On-Site Leased Workers From Guidant... workers and former workers of Pitney Bowes, Inc., Mailing Solutions Management Division, Engineering... reviewed the certification to clarify the subject worker group's identity. Additional information revealed...

  2. Requirements for Ion and Solute Transport, and pH Regulation During Enamel Maturation

    Science.gov (United States)

    LACRUZ, RODRIGO S.; SMITH, CHARLES E.; MOFFATT, PIERRE; CHANG, EUGENE H.; BROMAGE, TIMOTHY G.; BRINGAS, PABLO; NANCI, ANTONIO; BANIWAL, SANJEEV K.; ZABNER, JOSEPH; WELSH, MICHAEL J.; KURTZ, IRA; PAINE, MICHAEL L.

    2012-01-01

    Transcellular bicarbonate transport is suspected to be an important pathway used by ameloblasts to regulate extracellular pH and support crystal growth during enamel maturation. Proteins that play a role in amelogenesis include members of the ABC transporters (SLC gene family and CFTR). A number of carbonic anhydrases (CAs) have also been identified. The defined functions of these genes are likely interlinked during enamel mineralization. The purpose of this study is to quantify relative mRNA levels of individual SLC, Cftr, and CAs in enamel cells obtained from secretory and maturation stages on rat incisors. We also present novel data on the enamel phenotypes for two animal models, amutant porcine(CFTR-ΔF508) and the NBCe1-null mouse.Our data show that two SLCs(AE2 and NBCe1),Cftr,and Car2, Car3,Car6,and Car12 are all significantly up-regulated at the onset of the maturation stage of amelogenesis when compared to the secretory stage. The remaining SLCs and CA gene transcripts showed negligible expression or no significant change in expression from secretory to maturation stages. The enamel of Cftr-ΔF508 adult pigs was hypomineralized and showed abnormal crystal growth. NBCe1-null mice enamel was structurally defective and had a marked decrease in mineral content relative to wild-type. These data demonstrate the importance of many non-matrix proteins to amelogenesis and that the expression levels of multiple genes regulating extracellular pH are modulated during enamel maturation in response to an increased need for pH buffering during hydroxyapatite crystal growth. PMID:21732355

  3. No-core fiber-based highly sensitive optical fiber pH sensor.

    Science.gov (United States)

    Bhardwaj, Vanita; Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-05-01

    The present work describes the fabrication and characterization of an optical fiber pH sensor using a sol–gel technique. The sensing head configuration is incorporated using a short section of no-core fiber, coated with tetraethyl orthosilicate and spliced at the end of a single mode fiber with a bulge. Different types of indicators (bromophenol blue, cresol red, and chlorophenol red) were used to achieve a wide pH range from 2 to 13. High sensitivities of the fabricated device were found to be 1.02 and ? 0.93 ?? nm / pH for acidic and alkaline solutions, respectively. From the characterization results, it was noted that there is an impact of ionic strength and an effect of the temperature of liquid on the response characteristic, which is an advantage of the existing device over the other pH sensors. The fabricated sensor exhibited good reflection spectrum, indicating a blueshift in resonance wavelength for alkaline solutions and a redshift for acidic solutions.

  4. Addressing a Common Misconception: Ammonium Acetate as Neutral pH "Buffer" for Native Electrospray Mass Spectrometry

    Science.gov (United States)

    Konermann, Lars

    2017-09-01

    Native ESI-MS involves the transfer of intact proteins and biomolecular complexes from solution into the gas phase. One potential pitfall is the occurrence of pH-induced changes that can affect the analyte while it is still surrounded by solvent. Most native ESI-MS studies employ neutral aqueous ammonium acetate solutions. It is a widely perpetuated misconception that ammonium acetate buffers the analyte solution at neutral pH. By definition, a buffer consists of a weak acid and its conjugate weak base. The buffering range covers the weak acid pKa ± 1 pH unit. NH4 + and CH3-COO- are not a conjugate acid/base pair, which means that they do not constitute a buffer at pH 7. Dissolution of ammonium acetate salt in water results in pH 7, but this pH is highly labile. Ammonium acetate does provide buffering around pH 4.75 (the pKa of acetic acid) and around pH 9.25 (the pKa of ammonium). This implies that neutral ammonium acetate solutions electrosprayed in positive ion mode will likely undergo acidification down to pH 4.75 ± 1 in the ESI plume. Ammonium acetate nonetheless remains a useful additive for native ESI-MS. It is a volatile electrolyte that can mimic the solvation properties experienced by proteins under physiological conditions. Also, a drop from pH 7 to around pH 4.75 is less dramatic than the acidification that would take place in pure water. It is hoped that the habit of referring to pH 7 solutions as ammonium acetate "buffer" will disappear from the literature. Ammonium acetate "solution" should be used instead. [Figure not available: see fulltext.

  5. Differential Sensor for PH Monitoring of Environmental Objects

    Directory of Open Access Journals (Sweden)

    Romanenko Sergey

    2016-01-01

    Full Text Available Differential pH sensor is proposed. Reference electrode and measuring electrode are the same type. Reference electrode is immersed in standard buffer solution with known pH value. The differential pH sensor has longer service life as compared with the traditionally used sensors with silver chloride reference electrode. Ultrasonic cleaning system is proposed to clean the primary measuring transducer from pollution that form as result of silting during long-term operation with the sensor.

  6. Colorimetric study of malvidin-3-O-glucoside copigmented by phenolic compounds: The effect of molar ratio, temperature, pH, and ethanol content on color expression of red wine model solutions.

    Science.gov (United States)

    Zhang, Bo; Yang, Xue-Shan; Li, Ning-Ning; Zhu, Xia; Sheng, Wen-Jun; He, Fei; Duan, Chang-Qing; Han, Shun-Yu

    2017-12-01

    In the recent research, the copigmentations of malvidin-3-O-glucoside with eight types of phenolic copigments have been investigated. The influence of the pigment/copigment molar ratio, the reaction temperature, the pH and the ethanol content of solutions has been examined. The results showed that the copigmentation effect was dependent on not only the particular structures of the phenolic compounds but also the factors of the reaction systems. The increase of the copigment concentration can strengthen the copigmentation effect, improve the solution color, and enhance the red-purple features. Different temperatures had different influences on the copigmentation reactions. The destruction of the copigmentation complexes can result in the hypsochromic shift of the reaction solution when the temperature was higher than 20°C. The bathochromic shift of the solution gradually progressed with the increase of the pH value. A significant copigmentation feature was spotted when pH reached 3.0, which demonstrates obvious red-purple characterization. The addition of the ethanol weakened the copigmentation effect. According to measurement through color analysis, it was found that the color differences caused by ethanol in red wine were typically attributed to quantitative changes. Remarkably, all of the above delicate color deviations caused by the structural or environmental factors can be precisely and conveniently depicted via the CIELAB space analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. pH dependent green synthesis of gold nanoparticles by completely C6-carboxylated curdlan under high temperature and various pH conditions.

    Science.gov (United States)

    Qiu, Wen-Yi; Wang, Kai; Wang, Yao-Yao; Ding, Zhi-Chao; Wu, Li-Xia; Cai, Wu-Dan; Yan, Jing-Kun

    2018-01-01

    A C6-carboxylated curdlan (C6-Cc) obtained from 4-acetamido-TEMPO-mediated oxidation of curdlan was used both as a reducing and stabilizing agent for green synthesis of pH-responsive AuNPs, which was carried out by controlling the pH of the C6-Cc solution at a high temperature (100°C). C6-Cc presented a semi-flexible random coil chain in the aqueous medium at pH 5.5 and became more expanded and rigid in alkaline conditions (pH 7.1-12.0), though the primary chemical structure of C6-Cc was virtually unchanged with the pH variation. The AuNPs prepared with C6-Cc at various pHs were characterized by various instrumental measurements. The shapes and sizes of AuNPs were found to be strongly dependent on the pH of the C6-Cc solution. The C6-Cc-decorated AuNPs exhibited a more well-dispersed spherical morphology with smaller particle sizes under alkaline conditions (pH 7.1-12.0). Through this study, a facile, simple, and green method has been demonstrated for preparation of stimuli-sensitive AuNPs using biocompatible polyanionic polysaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Biological and analytical studies of peritoneal dialysis solutions

    Directory of Open Access Journals (Sweden)

    N. Hudz

    2018-04-01

    Full Text Available The purpose of our work was to conduct biological and analytical studies of the peritoneal dialysis (PD solutions containing glucose and sodium lactate and establish correlations between cell viability of the Vero cell line and values of analytical indexes of the tested solutions. The results of this study confirm the cytotoxicity of the PD solutions even compared with the isotonic solution of sodium chloride, which may be due to the low pH of the solutions, presence of glucose degradation products (GDPs and high osmolarity of the solutions, and unphysiological concentrations of glucose and sodium lactate. However, it is not yet known what factors or their combination and to what extent cause the cytotoxicity of PD solutions. In the neutral red (NR test the weak, almost middle (r = -0.496 and 0.498, respectively and unexpected correlations were found between reduced viability of monkey kidney cells and increased pH of the PD solutions and between increased cell viability and increased absorbance at 228 nm of the tested PD solutions. These two correlations can be explained by a strong correlation (r = -0.948 between a decrease in pH and an increase in the solution absorbance at 228 nm. The opposite effect was observed in the MTT test. The weak, but expected correlations (r = 0.32 and -0.202, respectively were found between increased cell viability and increased pH in the PD solutions and between decreased cell viability and increased absorbance at 228 nm of the tested PD solutions. The middle and weak correlations (r = 0.56 and 0.29, respectively were detected between increased cell viability and increased lactate concentration in the NR test and MTT test. The data of these correlations can be partially explained by the fact that a correlation with a coefficient r = -0.34 was found between decreased pH in the solutions and increased lactate concentration. The very weak correlations (0.138 and 0.196, respectively were found between increased cell

  9. Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer's solution: Revealing the impact of local pH distributions during in-vitro dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, D., E-mail: danmareci@yahoo.com [Faculty of Chemical Engineering and Environmental Protection, The “Gheorghe Asachi” Technical University of Iasi, 700050, Iasi (Romania); Bolat, G. [Faculty of Chemical Engineering and Environmental Protection, The “Gheorghe Asachi” Technical University of Iasi, 700050, Iasi (Romania); Izquierdo, J. [Department of Chemistry, University of La Laguna, P.O. Box 456, E-38200 La Laguna (Tenerife) (Spain); Crimu, C.; Munteanu, C. [Faculty of Mechanical Engineering, The “Gheorghe Asachi” Technical University of Iasi, 700050, Iasi (Romania); Antoniac, I. [Faculty of Materials Science and Engineering, Politehnica of Bucharest, 060042 Bucharest (Romania); Souto, R.M., E-mail: rsouto@ull.es [Department of Chemistry, University of La Laguna, P.O. Box 456, E-38200 La Laguna (Tenerife) (Spain); Faculty of Materials Science and Engineering, Politehnica of Bucharest, 060042 Bucharest (Romania)

    2016-03-01

    Biodegradable magnesium–calcium (MgCa) alloy is a very attractive biomaterial. Two MgCa alloys below the solid solubility of Ca were considered, as to solely investigate the effect of Ca content on the behavior of magnesium and the pH changes associated to metal dissolution. X-ray diffraction analysis and optical microscopy showed that both Mg–0.63Ca and Mg–0.89Ca alloys were solely composed of α(Mg) phase. Degradation characteristics and electrochemical characterization of MgCa alloys were investigated during exposure to Ringer's solution at 37 °C by electrochemical impedance spectroscopy and scanning electrochemical microscopy. The impedance behavior showed both capacitive and inductive features that are related to the alloy charge transfer reaction and the relaxation of the absorbed corrosion compounds, and can be described in terms of an equivalent circuit. Scanning electron microscopy (SEM) was employed to view the surface morphology of the MgCa samples after 1 week immersion in Ringer's solution showing extensive precipitation of corrosion products, whereas the substrate shows evidence of a non-uniform corrosion process. Energy dispersive analysis showed that the precipitates contained oxygen, calcium, magnesium and chlorine, and the Mg:Ca ratios were smaller than in the alloys. Scanning electrochemical microscopy (SECM) was used to visualize local pH changes associated to these physicochemical processes with high spatial resolution. The occurrence of pH variations in excess of 3 units between anodic and cathodic half-cell reactions was monitored in situ. - Highlights: • Spontaneous degradation of MgCa alloys in Ringer's solution characterized at 37 °C • Reactivity differences between Mg0.63Ca and Mg0.89Ca are evidenced using multiscale electrochemical characterization. • Electrochemical activation occurs heterogeneously on the alloy surface. • Metal dissolution is accompanied by local pH changes. • Mg0.63Ca degrades faster

  10. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy

    International Nuclear Information System (INIS)

    Zaid, B.; Saidi, D.; Benzaid, A.; Hadji, S.

    2008-01-01

    Effects of pH solution and chloride (Cl - ) ion concentration on the corrosion behaviour of alloy AA6061 immersed in aqueous solutions of NaCl have been investigated using measurements of weight loss, potentiodynamic polarisation, linear polarisation, cyclic polarisation experiment combined with open circuit potential transient technique and optical or scanning electron microscopy. The corrosion behaviour of the AA6061 aluminum alloy was found to be dependant on the pH and chloride concentration [NaCl] of solution. In acidic or slightly neutral solutions, general and pitting corrosion occurred simultaneously. In contrast, exposure to alkaline solutions results in general corrosion. Experience revealed that the alloy AA6061 was susceptible to pitting corrosion in all chloride solution of concentration ranging between 0.003 wt% and 5.5 wt% NaCl and an increase in the chloride concentration slightly shifted both the pitting E pit and corrosion E cor potentials to more active values. In function of the conditions of treatment, the sheets of the alloy AA6061 undergo two types of localised corrosion process, leading to the formation of hemispherical and crystallographic pits. Polarisation resistance measurements in acidic (pH = 2) and alkaline chloride solutions (pH = 12) which are in good agreement with those of weight loss, show that the corrosion kinetic is minimised in slightly neutral solutions (pH = 6)

  11. Influence of oxidation state on the pH dependence of hydrous iridium oxide films

    International Nuclear Information System (INIS)

    Steegstra, Patrick; Ahlberg, Elisabet

    2012-01-01

    Many electrochemical reactions taking place in aqueous solution consume or produce protons. The pH in the diffusion layer can therefore be significantly altered during the reaction and there is a need for in situ pH measurements tracing this near surface pH. In the present paper the rotating ring disc technique was used to measure near surface pH changes during oxygen reduction, utilising hydrous iridium oxide as the pH sensing probe. Before such experiments a good understanding of the pH sensing properties of these films is required and the impact of the oxidation state of the film on the pH sensing properties was investigated as well as the influence of solution redox species. The pH sensitivity (depicted by dE/dpH) was found to depend on the average oxidation state of the film in a manner resembling the cyclic voltammetry response. In all cases the pH response is “supernernstian” with more than one proton per electron. The origin of this behaviour is discussed in the context of acid-base properties of the film and the existence of both hydrous and anhydrous oxide phases. The pH response depends also on the redox properties of the solution but can be optimised for various purposes by conditioning the film at different potentials. This was clearly illustrated by adding hydrogen peroxide, an intermediate in the oxygen reduction reaction, to the solution. It was shown that hydrous iridium oxide can be used as a reliable in situ pH sensor provided that care is taken to optimise the oxidation state of the film.

  12. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH

    International Nuclear Information System (INIS)

    Ai, Zhiyong; Jiang, Jinyang; Sun, Wei; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-01-01

    Highlights: • A new alloy corrosion-resistant steel Cr10Mo1 is developed for reinforcing rebar of concrete in severe environments. • The effects of pH on the passive behaviour of Cr10Mo1 steel compared with plain carbon steel were studied systematically by electrochemical techniques and surface analysis. • The mechanism for self-reinforcing passivity against carbonation of the corrosion-resistant steel is revealed. - Abstract: The passive behaviour of new alloy corrosion-resistant steel Cr10Mo1 and plain carbon steel (as a comparison) in simulating concrete pore solutions of different pH (ranging from 13.5 to 9.0) under open circuit potential conditions, was evaluated by various electrochemical techniques: potentiodynamic polarization, capacitance measurements and electrochemical impedance spectroscopy. The chemical composition and structure of passive films were investigated by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The electrochemical responses of passive films show that Cr10Mo1 steel has an increasing passivity with pH decreasing while carbon steel dose conversely, revealing carbonation does no negative effect on passivation of the corrosion-resistant steel. SIMS reveals that the passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer mainly consisting of Fe oxides and hydroxides, and an inner layer enriched in Cr species, while only a Fe-concentrated layer for carbon steel. According to the XPS analysis results, as the pH decreases, more stable and protective Cr oxides are enriched in the film on Cr10Mo1 steel while Fe oxides gradually decompose. Higher content of Cr oxides in the film layer provides Cr10Mo1 corrosion-resistant steel more excellent passivity at lower pH.

  13. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Zhiyong, E-mail: 230139452@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Jiang, Jinyang, E-mail: jiangjinyang16@163.com [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Sun, Wei, E-mail: sunwei@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Song, Dan, E-mail: songdancharls@hhu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); College of Mechanics and Materials, Hohai University, Nanjing 210098, Jiangsu (China); Ma, Han, E-mail: mahan-iris@shasteel.cn [Research Institute of Jiangsu Shasteel Iron and Steel, Zhangjiagang 215625, Jiangsu (China); Zhang, Jianchun, E-mail: Zhangjc-iris@shasteel.cn [Research Institute of Jiangsu Shasteel Iron and Steel, Zhangjiagang 215625, Jiangsu (China); Wang, Danqian, E-mail: wonderbaba@126.com [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China)

    2016-12-15

    Highlights: • A new alloy corrosion-resistant steel Cr10Mo1 is developed for reinforcing rebar of concrete in severe environments. • The effects of pH on the passive behaviour of Cr10Mo1 steel compared with plain carbon steel were studied systematically by electrochemical techniques and surface analysis. • The mechanism for self-reinforcing passivity against carbonation of the corrosion-resistant steel is revealed. - Abstract: The passive behaviour of new alloy corrosion-resistant steel Cr10Mo1 and plain carbon steel (as a comparison) in simulating concrete pore solutions of different pH (ranging from 13.5 to 9.0) under open circuit potential conditions, was evaluated by various electrochemical techniques: potentiodynamic polarization, capacitance measurements and electrochemical impedance spectroscopy. The chemical composition and structure of passive films were investigated by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The electrochemical responses of passive films show that Cr10Mo1 steel has an increasing passivity with pH decreasing while carbon steel dose conversely, revealing carbonation does no negative effect on passivation of the corrosion-resistant steel. SIMS reveals that the passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer mainly consisting of Fe oxides and hydroxides, and an inner layer enriched in Cr species, while only a Fe-concentrated layer for carbon steel. According to the XPS analysis results, as the pH decreases, more stable and protective Cr oxides are enriched in the film on Cr10Mo1 steel while Fe oxides gradually decompose. Higher content of Cr oxides in the film layer provides Cr10Mo1 corrosion-resistant steel more excellent passivity at lower pH.

  14. Local existence of solutions to the Euler-Poisson system, including densities without compact support

    Science.gov (United States)

    Brauer, Uwe; Karp, Lavi

    2018-01-01

    Local existence and well posedness for a class of solutions for the Euler Poisson system is shown. These solutions have a density ρ which either falls off at infinity or has compact support. The solutions have finite mass, finite energy functional and include the static spherical solutions for γ = 6/5. The result is achieved by using weighted Sobolev spaces of fractional order and a new non-linear estimate which allows to estimate the physical density by the regularised non-linear matter variable. Gamblin also has studied this setting but using very different functional spaces. However we believe that the functional setting we use is more appropriate to describe a physical isolated body and more suitable to study the Newtonian limit.

  15. Formation of Hg(II) Tetrathiolate Complexes with Cysteine at Neutral pH.

    Science.gov (United States)

    Warner, Thomas; Jalilehvand, Farideh

    2016-04-01

    Mercury(II) ions precipitate from aqueous cysteine (H 2 Cys) solutions containing H 2 Cys/Hg(II) mole ratio ≥ 2.0 as Hg( S -HCys) 2 . In absence of additional cysteine, the precipitate dissolves at pH ~12 with the [Hg( S,N -Cys) 2 ] 2- complex dominating. With excess cysteine (H 2 Cys/Hg(II) mole ratio ≥ 4.0), higher complexes form and the precipitate dissolves at lower pH values. Previously, we found that tetrathiolate [Hg( S -Cys) 4 ] 6- complexes form at pH = 11.0; in this work we extend the investigation to pH values of physiological interest. We examined two series of Hg(II)-cysteine solutions in which C Hg(II) varied between 8 - 9 mM and 80 - 100 mM, respectively, with H 2 Cys/Hg(II) mole ratios from 4 to ~20. The solutions were prepared in the pH range 7.1 - 8.8, at the pH at which the initial Hg( S -HCys) 2 precipitate dissolved. The variations in the Hg(II) speciation were followed by 199 Hg NMR, X-ray absorption and Raman spectroscopic techniques. Our results show that in the dilute solutions ( C Hg(II) = 8 - 9 mM), mixtures of di-, tri- (major) and tetrathiolate complexes exist at moderate cysteine excess ( C H2Cys ~ 0.16 M) at pH 7.1. In the more concentrated solutions ( C Hg(II) = 80 - 100 mM) with high cysteine excess ( C H2Cys > 0.9 M), tetrathiolate [Hg( S -cysteinate) 4 ] m -6 ( m = 0 - 4) complexes dominate in the pH range 7.3 - 7.8, with lower charge than for the [Hg( S -Cys) 4 ] 6- complex due to protonation of some ( m ) of the amino groups of the coordinated cysteine ligands. The results of this investigation could provide a key to the mechanism of biosorption and accumulation of Hg(II) ions in biological / environmental systems.

  16. Toxicity evaluation of pH dependent stable Achyranthes aspera herbal gold nanoparticles

    Science.gov (United States)

    Tripathi, Alok; Kumari, Sarika; Kumar, Arvind

    2016-01-01

    Nanoparticles have gained substantial attention for the control of various diseases. However, any adverse effect of herbal gold nanoparticles (HGNPs) on animals including human being has not been investigated in details. The objectives of current study are to assess the cytotoxicity of HGNPs synthesized by using leaf extract of Achyranthes aspera, and long epoch stability. The protocol deals with stability of HGNPs in pH dependent manner. Visually, HGNPs formation is characterized by colour change of extract from dark brown to dark purple after adding gold chloride solution (1 mM). The 100 μg/ml HGNPs concentration has been found nontoxic to the cultured spleenocyte cells. Spectrophotometric analysis of nanoparticles solution gave a peak at 540 nm which corresponds to surface plasmon resonance absorption band. As per scanning electron microscopy and Transmission electron microscopy (TEM), size of HGNPs are in the range of 50-80 nm (average size 70 nm) with spherical morphology. TEM-selected area electron diffraction observation showed hexagonal texture. HGNPs showed substantial stability at higher temperature (85 °C), pH 10 and salt concentration (5 M). The zeta potential value of HGNPs is -35.9 mV at temperature 25 °C, pH 10 showing its good quality with better stability in comparison to pH 6 and pH 7. The findings advocate that the protocol for the synthesis of HGNPs is easy and quick with good quality and long epoch stability at pH 10. Moreover, non-toxic dose could be widely applicable for human health as a potential nano-medicine in the future to cure diseases.

  17. Solution chemistry of lanthanide complexes

    International Nuclear Information System (INIS)

    Brittain, H.G.

    1979-01-01

    Intermolecular energy transfer from Tb 3+ to Eu 3+ , luminescence intensity measurements, potentiometric titrations, differential absorption spectroscopy, and spectroscopic titrations were all used to study the binding of lanthanide ions by serine and threonine. At low pH (3.0 to 6.0) the complexes are mononuclear and ligand is only weakly bound. In the pH interval of 6.0 to 8.5 stronger interaction takes place between the ligand and the metal (with possible coordination of the undissociated hydroxyl group), and self-association of complexes becomes important. Above pH 8.5, base hydrolysis of the complexes leads to highly associated species in solution and shortly above this pH an insoluble precipitate is formed. It was found that energy could be transferred from Tb 3+ to Eu 3+ more efficiently among complexes prepared from racemic ligands than in complexes made from resolved ligand, but this stereoselectivity was only observed at pH values greater than 6.5 and in solutions having a 1:10 ratio of metal-to-ligand. No stereoselectivity was found in solutions having 1:5 ratios, and this observation was explained by the existence of 1:2 metal-ligand complexes existing in solutions having the higher ratio of metal-to-ligand (only 1:1 complexes are then found at lower ratios of metal-to-ligand). (author)

  18. Effects of solution P H on the adsorption of aromatic compounds from aqueous solutions by activated carbon

    International Nuclear Information System (INIS)

    Nouri, S.; Haghseresht, F.; Lu, M.

    2002-01-01

    Absorption of p-Cresol, Benzoic acid and Nitro Benzene by activated carbon from dilute aqueous solutions was carried out under controlled ph conditions at 310 k. In acidic conditions, well below the pK a of all solutes, it was observed that the adsorbate solubility and the electron density of its aromatic ring were the influencing factors on the extent of the adsorption by affecting the extent of London dispersion forces. In higher solution ph conditions, on the other hand, it was found that the electrostatic forces played a significant role on the extent of adsorption. The Effect of ph must be considered from its combined effects on the carbon surface and on the solute molecules. It was found that the uptake of the molecular forms of the aromatic solutes was dependent on the substituents of the aromatic ring. Adsorption of the solutes in higher P H values was found to be dependent on the concentration of anionic form of the solutes. All isotherms were fitted into Freundlich Isotherm Equations

  19. Pyrite oxidation at circumneutral pH

    Science.gov (United States)

    Moses, Carl O.; Herman, Janet S.

    1991-02-01

    Previous studies of pyrite oxidation kinetics have concentrated primarily on the reaction at low pH, where Fe(III) has been assumed to be the dominant oxidant. Studies at circumneutral pH, necessitated by effective pH buffering in some pyrite oxidation systems, have often implicitly assumed that the dominant oxidant must be dissolved oxygen (DO), owing to the diminished solubility of Fe(III). In fact, Fe(III)(aq) is an effective pyrite oxidant at circumneutral pH, but the reaction cannot be sustained in the absence of DO. The purpose of this experimental study was to ascertain the relative roles of Fe(III) and DO in pyrite oxidation at circumneutral pH. The rate of pyrite oxidation was first-order with respect to the ratio of surface area to solution volume. Direct determinations of both Fe(II) (aq)> and Fe(III) (aq) demonstrated a dramatic loss of Fe(II) from the solution phase in excess of the loss for which oxidation alone could account. Based on rate data, we have concluded that Fe(II) is adsorbed onto the pyrite surface. Furthermore, Fe(II) is preferred as an adsorbate to Fe(III), which we attribute to both electrostatic and acid-base selectivity. We also found that the rate of pyrite oxidation by either Fe(III) (aq) or DO is reduced in the presence of aqueous Fe(II), which leads us to conclude that, under most natural conditions, neither Fe(III) (aq) nor DO directly attacks the pyrite surface. The present evidence suggests a mechanism for pyrite oxidation that involves adsorbed Fe( II ) giving up electrons to DO and the resulting Fe(III) rapidly accepting electrons from the pyrite. The adsorbed Fe is, thus, cyclically oxidized and reduced, while it acts as a conduit for electrons traveling from pyrite to DO. Oxygen is transferred from the hydration sphere of the adsorbed Fe to pyrite S. The cycle of adsorbed Fe oxidation and reduction and the successive addition of oxygen to pyrite S continues until a stable sulfoxy species dissociates from the surface. Prior

  20. Adsorption and colloidal behaviour of carrier-free 7Be in aqueous solutions

    International Nuclear Information System (INIS)

    Benes, P.; Jiranek, V.

    1974-01-01

    The state of carrier-free 7 Be in aqueous nitrate solutions was studied by electrophoresis, centrifugation and dialysis. In solutions of pH 2+ cation. At pH > 4 hydrolysis of beryllium proceeds which results in the formation of BeOH + ions and Be(OH) 2 molecules. The larger part of these molecules is adsorbed on the surface of colloidal impurities present in the solution. The pseudocolloids thus formed are positively charged up to pH 11. In alkaline solutions (pH > 11), negatively charged pseudocolloids and anionic hydroxocomplexes of beryllium exist. Adsorption and desorption of carrier-free beryllium was studied on glass, plexiglass and polyethylene as a function of pH, age and ionic strength (NaNO 3 ) of the solution. It has been found that the adsorption begins at pH 3-5, passes through a maximum at pH 8-11 and decreases to a very low value at pH 14. Probable mechanismus of the adsorption were discussed. (orig.) [de

  1. PH Sensitive Polymers for Improving Reservoir Sweep and Conformance Control in Chemical Flooring

    Energy Technology Data Exchange (ETDEWEB)

    Mukul Sharma; Steven Bryant; Chun Huh

    2008-03-31

    There is an increasing opportunity to recover bypassed oil from depleted, mature oilfields in the US. The recovery factor in many reservoirs is low due to inefficient displacement of the oil by injected fluids (typically water). The use of chemical flooding methods to increase recovery efficiencies is severely constrained by the inability of the injected chemicals to contact the bypassed oil. Low sweep efficiencies are the primary cause of low oil recoveries observed in the field in chemical flooding operations even when lab studies indicate high oil recovery efficiency. Any technology that increases the ability of chemical flooding agents to better contact the remaining oil and reduce the amount of water produced in conjunction with the produced oil will have a significant impact on the cost of producing oil domestically in the US. This translates directly into additional economically recoverable reserves, which extends the economic lives of marginal and mature wells. The objective of this research project was to develop a low-cost, pH-triggered polymer for use in IOR processes to improve reservoir sweep efficiency and reservoir conformance in chemical flooding. Rheological measurements made on the polymer solution, clearly show that it has a low viscosity at low pH and exhibits a sudden increase in viscosity (by 2 orders of magnitude or more) at a pH of 3.5 to 4. This implies that the polymer would preferentially flow into zones containing water since the effective permeability to water is highest in these zones. As the pH of the zone increases due to the buffering capacity of the reservoir rock, the polymer solution undergoes a liquid to gel transition causing a sharp increase in the viscosity of the polymer solution in these zones. This allows operationally robust, in-depth conformance treatment of such water bearing zones and better mobility control. The rheological properties of HPAM solutions were measured. These include: steady-shear viscosity and

  2. Adsorption of tannic acid from aqueous solution onto surfactant-modified zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jianwei, E-mail: jwlin@shou.edu.cn [College of Marine Science, Shanghai Ocean University, No. 999 Hucheng Huan Road, Pudong District, Shanghai 201306 (China); Zhan, Yanhui; Zhu, Zhiliang [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Xing, Yunqing [College of Marine Science, Shanghai Ocean University, No. 999 Hucheng Huan Road, Pudong District, Shanghai 201306 (China)

    2011-10-15

    capacity for SMZ-CBC was relatively high at solution pH 4.0-7.0, and decreased with an increase in solution pH from 7.0 to 8.5. The mechanisms controlling TA adsorption onto SMZ-CBC at solution pH 5.5 include electrostatic attraction, hydrogen bonding and organic partitioning.

  3. In vitro synthesis and purification of PhIP-deoxyguanosine and PhIP-DNA oligomer covalent complexes

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.

    1994-12-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine compound formed when meats are cooked at high temperatures. PhIP damages DNA by forming covalent complexes with DNA carcinogen. In an effort to understand how the binding of PhIP to DNA may cause cancer, it is important to characterize the structures of PhIP-damaged DNA molecules. Our HPLC data support fluorescence and {sup 32}P Post-labeling studies which indicate the formation of several species of 2{prime}deoxyguanosine-(dG) or oligodeoxynucleotide-PhIP adducts. The reaction of PhIP with dG resulted in a reddish precipitate that was likely the major adduct, N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP) adduct, with a more polar adduct fraction remaining in the supernatant. Reversed-phase HPLC analysis of the adducts in the supernatant revealed the existence of species of much shorter retention times than the dG-C8-PhIP adduct, confirming that these species are more polar than dG-C8-PhIP. At least four adducts were formed in the reaction of PhIP with DNA oligomer. HPLC analysis of the PhIP-DNA oligomer supernatant after butanol extractions revealed four unresolved peaks which spectra had maximum wavelengths between 340 and 360 nm. Though adduct peaks were not completely resolved, there was {approximately}3 minutes interval between the DNA oligomer peak and the adduct peaks. Furthermore, fluorescence emission data of the DNA oligomer-PhIP adduct solution show heterogeneous binding. The more polar PhIP adducts were fraction-collected and their structures will be solved by nuclear magnetic resonance or x-ray crystallography.

  4. Label-Free Carbon-Dots-Based Ratiometric Fluorescence pH Nanoprobes for Intracellular pH Sensing.

    Science.gov (United States)

    Shangguan, Jingfang; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Liu, Jinquan; Tang, Jinlu; Yang, Xue; Huang, Jin

    2016-08-02

    Measuring pH in living cells is of great importance for better understanding cellular functions as well as providing pivotal assistance for early diagnosis of diseases. In this work, we report the first use of a novel kind of label-free carbon dots for intracellular ratiometric fluorescence pH sensing. By simple one-pot hydrothermal treatment of citric acid and basic fuchsin, the carbon dots showing dual emission bands at 475 and 545 nm under single-wavelength excitation were synthesized. It is demonstrated that the fluorescence intensities of the as-synthesized carbon dots at the two emissions are pH-sensitive simultaneously. The intensity ratio (I475 nm/I545 nm) is linear against pH values from 5.2 to 8.8 in buffer solution, affording the capability as ratiometric probes for intracellular pH sensing. It also displays that the carbon dots show excellent reversibility and photostability in pH measurements. With this nanoprobe, quantitative fluorescence imaging using the ratio of two emissions (I475 nm/I545 nm) for the detection of intracellular pH were successfully applied in HeLa cells. In contrast to most of the reported nanomaterials-based ratiometric pH sensors which rely on the attachment of additional dyes, these carbon-dots-based ratiometric probes are low in toxicity, easy to synthesize, and free from labels.

  5. Plaque pH changes following consumption of two types of plain and bulky bread

    Directory of Open Access Journals (Sweden)

    Shiva Mortazavi

    2011-01-01

    Full Text Available Background: Consistency, backing process and content differences could influence cariogenic potential of foods. The aim was to compare plaque pH changes following consumption of two types of bread with different physical characteristics. Methods : In this clinical trial, interproximal plaque pH of 10 volunteers with high risk of dental caries (saliva Streptococcus mutans > 10 5 , high dental caries experience, and average DMFT =6.10 ± 1.56 was measured. Plain traditionally backed "Sangak bread" and soft bulky "Baguette bread" and %10 sucrose solution were tested in a cross over designed experiment. Baseline plaque pH was recorded and followed by 1, 5, 10, 15, 20, and 30 minutes intervals. Data was analyzed using ANOVA and Tukey test (α = 0.05. Results: Sucrose solution caused the most pronounced pH and ∆pH drop from 7.15 ± 0.33 at baseline to 6.78 ± 0.29. Means plaque pH of 10% sucrose solution and Baguette were not statistically different at 1, 20 and 30 minutes (P > 0.05. Mean plaque pH of Sangak and Baguette showed significant differences at 0, 1, 20 and30 minutes (P < 0.05. Sucrose solution caused a dramatic plaque pH drop during first 10 minutes and then within 30 minutes returned to baseline pH. For two bread samples within first 10 minutes, pH increased and then started to decrease during tenth to fifteenth minutes. Conclusion: During all experiment phases, the mean pH of Baguette with less consistency and carbohydrate content and higher rate of starch gelatination was lower compared to Sangak.

  6. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media: Influence of Solution pH, Ionic Strength, and the Presence of Humic Acid

    Science.gov (United States)

    The influence of solution pH, ionic strength, and varying concentrations of the Suwannee River Humic Acid (SRHA) on the transport of titanium dioxide (TiO2, rutile) nanoparticle aggregates (nTiO2) in saturated porous media was investigated through systematically examining the tra...

  7. Influence of Bath Composition at Acidic pH on Electrodeposition of Nickel-Layered Silicate Nanocomposites for Corrosion Protection

    Directory of Open Access Journals (Sweden)

    Jeerapan Tientong

    2013-01-01

    Full Text Available Nickel-layered silicates were electrochemically deposited from acidic bath solutions. Citrate was used as a ligand to stabilize nickel (II ions in the plating solution. The silicate, montmorillonite, was exfoliated by stirring in aqueous solution over 24 hours. The plating solutions were analyzed for zeta-potential, particle size, viscosity, and conductivity to investigate the effects of the composition at various pHs. The solution particles at pH 2.5 (−22.2 mV and pH 3.0 (−21.9 mV were more stable than at pH 1.6 (−10.1 mV as shown by zeta-potential analysis of the nickel-citrate-montmorillonite plating solution. Ecorr for the films ranged from −0.32 to −0.39 V with varying pH from 1.6 to 3.0. The films were immersed in 3.5% NaCl and the open circuit potential monitored for one month. The coatings deposited at pH 3.0 were stable 13 days longer in the salt solution than the other coatings. X-ray diffraction showed a change in the (111/(200 ratio for the coatings at the various pHs. The scanning electron microscopy and hardness results also support that the electrodeposition of nickel-montmorillonite at pH 3.0 (234 GPa had improved hardness and morphology compared to pH 2.5 (174 GPa and pH 1.6 (147 GPa.

  8. Water-rock interactions and the pH stability of groundwater from Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ebinger, M.H.

    1992-01-01

    Titrations of acidic solutions in waters from the tuff and carbonate aquifers at Yucca Mountain were simulated using the geochemical codes PHREEQE and EQ3/6. The simulations tested pH stability of the waters in the presence of different minerals and in their absence. Two acidic solutions, 10 -4 HCl and 10 -4 M UO 2 (NO 3 ) 2 , were titrated in to the water. Little pH and/or compositional change resulted in the groundwater when the HCl solution was titrated, but significant pH and CO 2 fugacity changes were observed when UO 2 (NO 3 ) 2 was titrated. Water interactions with alkali feldspar, quartz or cristobalite, and Ca-smectite buffered the pH and compositional changes in the carbonate water and decreased the magnitude of pH and compositional changes when small volumes of UO 2 (NO 3 ) 2 added to the tuffaceous waters

  9. Radiolysis of nucleosides in aqueous solutions: base liberation by the base attack mechanism

    International Nuclear Information System (INIS)

    Fujita, S.

    1984-01-01

    On the radiolysis of uridine and some other nucleosides in aqueous solution, a pH-dependent liberation of uracil or the corresponding base was found. e - sub(aq) and HOsup(anion radicals) 2 gave no freed bases, although many oxidizing radicals, including OH, Clsup(anion radicals) 2 , Brsup(anion radicals) 2 , (CNS)sup(anion radicals) 2 and SOsup(anion radicals) 4 , did cause the release of unaltered bases, depending on the pH of the solutions. The base yields were generally high at pH >= 11, with the exception of SOsup(anion radicals) 4 , which gave a rather high yield of uracil (from uridine) even in the pH region of - , present at high pH as the dissociated form of OH, may act partly as an oxidizing radical. A plausible mechanism of 3 1 -radical formation is discussed. (author)

  10. Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer's solution: Revealing the impact of local pH distributions during in-vitro dissolution.

    Science.gov (United States)

    Mareci, D; Bolat, G; Izquierdo, J; Crimu, C; Munteanu, C; Antoniac, I; Souto, R M

    2016-03-01

    Biodegradable magnesium-calcium (MgCa) alloy is a very attractive biomaterial. Two MgCa alloys below the solid solubility of Ca were considered, as to solely investigate the effect of Ca content on the behavior of magnesium and the pH changes associated to metal dissolution. X-ray diffraction analysis and optical microscopy showed that both Mg-0.63Ca and Mg-0.89Ca alloys were solely composed of α(Mg) phase. Degradation characteristics and electrochemical characterization of MgCa alloys were investigated during exposure to Ringer's solution at 37 °C by electrochemical impedance spectroscopy and scanning electrochemical microscopy. The impedance behavior showed both capacitive and inductive features that are related to the alloy charge transfer reaction and the relaxation of the absorbed corrosion compounds, and can be described in terms of an equivalent circuit. Scanning electron microscopy (SEM) was employed to view the surface morphology of the MgCa samples after 1 week immersion in Ringer's solution showing extensive precipitation of corrosion products, whereas the substrate shows evidence of a non-uniform corrosion process. Energy dispersive analysis showed that the precipitates contained oxygen, calcium, magnesium and chlorine, and the Mg:Ca ratios were smaller than in the alloys. Scanning electrochemical microscopy (SECM) was used to visualize local pH changes associated to these physicochemical processes with high spatial resolution. The occurrence of pH variations in excess of 3 units between anodic and cathodic half-cell reactions was monitored in situ. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. SEPARATION OF BARIUM VALUES FROM URANYL NITRATE SOLUTIONS

    Science.gov (United States)

    Tompkins, E.R.

    1959-02-24

    The separation of radioactive barium values from a uranyl nitrate solution of neutron-irradiated uranium is described. The 10 to 20% uranyl nitrate solution is passed through a flrst column of a cation exchange resin under conditions favoring the adsorption of barium and certain other cations. The loaded resin is first washed with dilute sulfuric acid to remove a portion of the other cations, and then wash with a citric acid solution at pH of 5 to 7 to recover the barium along with a lesser amount of the other cations. The PH of the resulting eluate is adjusted to about 2.3 to 3.5 and diluted prior to passing through a smaller second column of exchange resin. The loaded resin is first washed with a citric acid solution at a pH of 3 to elute undesired cations and then with citric acid solution at a pH of 6 to eluts the barium, which is substantially free of undesired cations.

  12. Aqueous solutions/nuclear glasses interactions

    International Nuclear Information System (INIS)

    Delage, F.; Advocat, T.; Vernaz, E.; Crovisier, J.L.

    1991-01-01

    Interactions results of the borosilicate glass used in radioactive wastes confinement and aqueous solutions at various temperature and PH show that for the glass components: - the release rate evolution follows an Arrhenius law, - in acid PH, there is a selective dissolution, - in basic PH, there is a stoechiometric dissolution [fr

  13. PH measurement under pressure and at high temperatures; Mesure du pH sous pression et a temperature elevee

    Energy Technology Data Exchange (ETDEWEB)

    Fournie, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Le Peintre, M; Mahieu, C [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France)

    1961-07-01

    In the first part the development and operation of a glass electrode under pressure at room temperature is described. The pressure equilibrium between the inside and outside of the glass membrane several centimetres thick is obtained instantaneously by means of a siphon. The use of a silicone oil as electrical insulator makes possible the working of the glass electrode with the siphon at high pressures (100 kg/cm{sup 2}). In the second part, we determined the pH of various buffer solutions up to 250 deg. C using a cell of our design having two hydrogen electrodes. The values thus obtained for the buffer solutions make it possible to verify and calibrate the pH electrodes independently of the oxido-reduction potential of the medium. In the third part we give the results obtained up to 200 deg. C with the glass electrodes developed in conjunction with the Societe St Gobain. (author) [French] Dans une premiere partie, nous exposons la mise au point et le fonctionnement d'une electrode en verre sous pression a la temperature ordinaire. L'equilibrage instantane de la pression a l'interieur et a l'exterieur de la membrane en verre de quelques diziemes de millimetres d'epaisseur s'effectue par l'intermediaire d'un siphon. L'emploi d'une huile de silicone comme isolant electrique a permis le fonctionnement de l'electrode en verre a siphon sous haute pression (1000 kg/cm{sup 2}). Dans une deuxieme partie, nous avons determine jusqu'a 250 deg. C les valeurs du pH des diverses solutions tampons avec une cellule de notre conception a deux electrodes d'hydrogene. Les valeurs des solutions tampons ainsi obtenues permettent de verifier et d'etalonner les electrodes a pH independantes du potentiel d'oxydo-reduction du milieu. Dans une troisieme partie, nous relatons les resultats obtenus jusqu'a 200 deg. C avec les electrodes en verre mis au point en collaboration avec la Societe Saint-Gobain. (auteur)

  14. Antimicrobial activity and pH of a endodontic sealer containing MTA

    DEFF Research Database (Denmark)

    Maliza, Amanda GA; de Andrade, Flaviana Bombarda; Arias, Marcela C

    Objective: To investigate the antimicrobial activity, calcium release, and pH of a new mineral trioxide aggregate endodontic sealer when compared to endodontic sealers containing calcium hydroxide and/or epoxy resin. Method: Specimens were fabricated from MTA Fillapex, Sealer 26, Sealapex, and AH...... Plus immediately, 24 or 48 hours prior to the tests. The antimicrobial activity against Enterococcus faecalis and Candida albicans was evaluated by the direct contact and the agar diffusion methods. Calcium release was determined by atomic absorption spectrometry. The pH from solutions containing...... in solution with an alkaline pH. Conclusion: The new mineral trioxide aggregate endodontic sealer presented higher antimicrobial activity when compared to the sealers containing calcium hydroxide and/or epoxy resin. As for pH and calcium release, the sealers containing calcium hydroxide resulted in presented...

  15. Acid-base equilibria in the reaction of tantalum pentafluoride with O,O-diphenyl-H-benzoylamidophosphate (PhO)2P(0)NHC(O)Ph

    International Nuclear Information System (INIS)

    Il'in, E.G.; Kharrmann, Eh.; Shcherbakova, M.N.; Buslaev, Yu.A.

    1987-01-01

    Method of 19 F NMR was used to study TaF 5 interaction with imidodiphosphoric acid ester (PhO) 2 P(O)NHC(O)Ph(LH) in methylene chloride. Dimeric molecular LH(TaF 5 ) 2 complex was the main form in the solution with towfold TaF 5 excess; phosphoryl and carbonyl groups partisipate in complexing at that. Increase of ligand content in the solution up to equimolar one results to preliminary ligand coordination via P=O-group. Introduction of the base excess to the solution results to formation of L - anion which is coordinated to TaF 5 in a monodentate way via phosphoryl group or in a chelate way with fluorine ion substitution and formation of LTaF 4 + cationw

  16. The increase in pH during aging of porous sol-gel silica spheres

    NARCIS (Netherlands)

    Titulaer, M.K.; Kegel, W.K.; Jansen, J.B.H.; Geus, John W.

    1994-01-01

    The increase in pH in the hydrothermal fluid is studied after hydrothermal aging of porous silica gel spheres of 1–3 mm diameter. The porous silica spheres are formed by the sol-gel process from a supersaturated silica solution. The increase of the pH of the hydrothermal solution affects the silica

  17. Resorcinol adsorption from aqueous solution over activated carbon

    International Nuclear Information System (INIS)

    Blanco, Diego A; Giraldo, Liliana; Moreno, Juan C

    2007-01-01

    In this paper, the adsorption behavior of Resorcinol a monohydroxylated phenol, poorly acid to 298 K, over activated carbon is analyzed by studying the solution's pH influence and the surface reduction in the adsorption process. To do this, an activated carbon of lignocellulose origin and a reduced activated carbon was used. The interaction solid solution is characterized by the analyses of adsorption in the isotherms to 298 K and pH values of 7. 00, 9.00 and 11.00 for a period of 48 hours. The capacity adsorption of activated carbons increases when the solution's pH decreases and the retained amount increases in the reduced coal to the pH of maximum adsorption.

  18. The potential of curcumin reagent as a natural pH indicator for the development of an optical pH sensor

    International Nuclear Information System (INIS)

    Rosmawani Mohammad; Musa Ahmad; Jamaluddin Mohd Daud

    2007-01-01

    The potential of curcumin reagent as a natural pH indicator for the development of an optical pH sensor was discussed in this study. Curcumin has been chosen because it has never been reported before for use in the development of an optical pH sensor. Curcumin is a coloring constituent of turmeric that giving yellow pigmentation. Curcumin showed clear color changes, for example yellow in acidic and reddish-brown in basic solutions. The color change is fast for example within 5 seconds. Results from the study showed that a linear pH range for this reagent was observed at pH 8-12 (R 2 =0.9854). Curcumin has a good photo stability with RSD value of 1.42 % for a study period of 6 months. The RSD values of the reproducibility study were found to be 1.43 % and 0.37 % for pH 9 and pH 12, respectively. Characterisation of the immobilised curcumin reagent also showed promising results, hence a good potential for use as a sensing reagent for an optical pH sensor. (author)

  19. Dendritic Zinc Growth in Acid Electrolyte: Effect of the pH

    Science.gov (United States)

    Bengoa, Leandro N.; Pary, Paola; Seré, Pablo R.; Conconi, M. Susana; Egli, Walter A.

    2018-03-01

    In this paper, dendritic growth at the edges of electrogalvanized steel strip has been studied using a specially designed rotating washer electrode which simulates the fluid dynamic conditions and the current density distribution at the steel strip edge found in a production line. The effect of electrolyte pH and current density on dendritic growth in an acidic zinc plating bath (ZnSO4 and H2SO4) was addressed. The temperature was kept constant at 60 °C. Solution pH was adjusted to 1, 2 or 3 using different amounts of H2SO4. In addition, the influence of temperature on the pH of the solution was determined. The current density was set at 40 or 60 A/dm2, similar to that used in the industry. Deposits were characterized using SEM and XRD. The results showed that pH strongly affects dendrites shape, length and texture. Furthermore, the morphology of dendrites at the washer edge and of deposits on the flat portion of the washer changed considerably as solution pH was increased from 1 to 3. It was found that the morphology of dendrites at the washer edge stems from the morphology of the deposit on its flat portion, which in turn determines their shape.

  20. Effect of pH on cadmium biosorption by coconut copra meal

    International Nuclear Information System (INIS)

    Ofomaja, Augustine E.; Ho, Y.-S.

    2007-01-01

    Biosorption of cadmium ion by coconut copra meal, an agricultural waste product was investigated as a function of initial solution pH and initial cadmium concentration. Pseudo-second-order kinetic analyses were performed to determine the rate constant of biosorption, the equilibrium capacity, and initial biosorption rate. Cadmium biosorption by copra meal was found to be dependent on the initial solution pH and initial cadmium concentration. Ion exchange occurred in the initial biosorption period. In addition, mathematical relationships were drawn to relate the change in the solution hydrogen ion concentration with equilibrium biosorption capacity, initial cadmium concentration, and equilibrium biosorption capacity

  1. Study of the pitting and repassiv,tion corrosion potential of zicaloy-4 halides solutions at 250C and several pH

    International Nuclear Information System (INIS)

    Gardiazabal, J.I.; Cordova, R.; Gomez, H.; Layana, G.; Schrebler, R.

    1987-01-01

    The electrochemical behaviour of Zircaloy-4 electrode in chloride, bromide and iodide acid solution was investigated at 25 0 C employing stationary, quasi-stationary and potentiodynamic techniques. The results show that the pitting and repassivation potentials are independent on pH but both are dependent on halice concentration, following linear relation ships in these cases. It is also possible to correlate the pitting potential with the ionic radius of the anions, allowing thus to establish an order in their agressive properties. This order was extrapolated for fluoride ion and further experimental measurements show that the corrosion potential of Zircaloy-4 in acid or neutra solution of this ion (which undergoes active dissolution) is coincident with that predicted from the Ep v/s ionic radius determined for the other halides. (Author) [pt

  2. Dependence of precipitation of trace elements on pH in standard water

    Science.gov (United States)

    Verma, Shivcharan; Mohanty, Biraja P.; Singh, K. P.; Behera, B. R.; Kumar, Ashok

    2018-04-01

    The present work aimed to study the dependence of precipitation of trace elements on the pH of solution. A standard solution was prepared by using ultrapure deionized water (18.2 MΩ/cm) as the solvent and 11 water-soluble salts having different elements as solutes. Five samples of different pH values (2 acidic, 2 basic, and 1 neutral) were prepared from this standard solution. Sodium-diethyldithiocarbamate was used as the chelating agent to precipitate the metal ions present in these samples of different pH values. The targets were prepared by collecting these precipitates on mixed cellulose esters filter of 0.4 μm pore size by vacuum filtration. Elemental analysis of these targets was performed by particle-induced X-ray emission (PIXE) using 2.7 MeV protons from the single Dee variable energy cyclotron at Panjab University, Chandigarh, India. PIXE data were analyzed using GUPIXWIN software. For most of the elements, except Hg with oxidation state +2, such as Co, Ni, Zn, Ba, and Cd, a general trend of enhancement in precipitation was observed with the increase in pH. However, for other elements such as V, As, Mo, Ag, and Bi, which have oxidation state other than +2, no definite pattern was observed. Precipitation of Ba and As using this method was negligible at all five pH values. From these results, it can be concluded that the precipitation and recovery of elements depend strongly on the pH of the water sample.

  3. Regularities of radium coprecipitation with barium sulfate from salt solutions

    International Nuclear Information System (INIS)

    Kudryavskij, Yu.P.; Rakhimova, O.V.

    2007-01-01

    Coprecipitation of radium with barium sulfate from highly concentrated NaCl solutions is studied, including the effects of the initial solution composition, alkaline reagent (CaO, NaOH), supporting electrolyte (NaCl) concentration, and pH. The process is promoted by high NaCl concentration in the initial solution, which is due to structural transformation and change in the sorption activity of the BaSO 4 precipitate in salt solutions. The results obtained were applied to recovery of radium from process solutions during the development and introduction of improved procedure for disinfection and decontamination of waste yielded by chlorination of loparite concentrates [ru

  4. The role of Eh and pH in leaching Saskatchewan uranium ores with chloride and nitrate leaching systems

    International Nuclear Information System (INIS)

    Nirdosh, I.; Muthuswami, S.V.

    1992-01-01

    The effects of solution E h and pH on the extractions of U, 230 Th, 226 Ra, As and Ni from two typical uranium ores from the province of Saskatchewan in Canada are discussed for the leachants ferric chloride, ferric nitrate, nitric acid and hydrochloric acid. It is concluded that E h > 700 mV and pH 230 Th extraction is more sensitive to solution pH than to E h whereas Ni extraction is sensitive mainly to the solution E h . Arsenic extraction is very sensitive to solution E h , and for a given E h , is high at pH 1.3. (orig.) [de

  5. Influence of pH on the adsorption of uranium ions by oxidized activated carbon and chitosan

    International Nuclear Information System (INIS)

    Park, G.I.; Park, H.S.; Woo, S.I.

    1999-01-01

    The adsorption characteristics of uranyl ions on surface-oxidized carbon were compared with those of powdered chitosan over a wide pH range. In particular, an extensive analysis was made on solution pH variation during the adsorption process or after adsorption equilibrium. Uranium adsorption on the two adsorbents was revealed to be strongly dependent on the initial pH of the solution. A quantitative comparison of the adsorption capacities of the two adsorbents was made, based on the isotherm data obtained at initial pH 3, 4, and 5. In order to analyze the adsorption kinetics incorporated with pH effects, batch experiments at various initial pH values were carried out, and solution pH profiles with the adsorption time were also evaluated. The breakthrough behavior in a column packed with oxidized carbon was also characterized with respect to the variation of effluent pH. Based on these experimental results, the practical applicability of oxidized carbon for uranium removal from acidic radioactive liquid waste was suggested

  6. The pH behavior of a 2-aminoethyl dihydrogen phosphate zwitterion studied with NMR-titrations

    Science.gov (United States)

    Myller, A. T.; Karhe, J. J.; Haukka, M.; Pakkanen, T. T.

    2013-02-01

    In this study a bifunctional 2-aminoethyl dihydrogen phosphate (AEPH2) was 1H and 31P NMR characterized in a pH range of 1-12 in order to determine the zwitterion properties in different pH regions in H2O and D2O solutions. NMR was also used to determine the pH range where AEPH2 exists as a zwitterion. The phosphate group has two deprotonation points, around pH 1 and 6, while the amino group deprotonates at pH 11. The zwitterion form of AEPH2 (NH3+sbnd CHsbnd CHsbnd OPOH) exists as the main ion between pH 1 and 6 in water solutions and also in the solid state.

  7. Iridium Oxide pH Sensor Based on Stainless Steel Wire for pH Mapping on Metal Surface

    Science.gov (United States)

    Shahrestani, S.; Ismail, M. C.; Kakooei, S.; Beheshti, M.; Zabihiazadboni, M.; Zavareh, M. A.

    2018-03-01

    A simple technique to fabricate the iridium oxide pH sensor is useful in several applications such as medical, food processing and engineering material where it is able to detect the changes of pH. Generally, the fabrication technique can be classified into three types: electro-deposition iridium oxide film (EIrOF), activated iridium oxide film (AIROF) and sputtering iridium oxide film (SIROF). This study focuses on fabricating electrode, calibration and test. Electro-deposition iridium oxide film is a simple and effective method of fabricating this kind of sensor via cyclic voltammetry process. The iridium oxide thick film was successfully electrodeposited on the surface of stainless steel wire with 500 cycles of sweep potential. A further analysis under FESEM shows detailed image of iridium oxide film which has cauliflower-liked microstructure. EDX analysis shows the highest element present are iridium and oxygen which concluded that the process is successful. The iridium oxide based pH sensor has shown a good performance in comparison to conventional glass pH sensor when it is being calibrated in buffer solutions with 2, 4, 7 and 9 pH values. The iridium oxide pH sensor is specifically designed to measure the pH on the surface of metal plate.

  8. Closed-form solutions for linear regulator-design of mechanical systems including optimal weighting matrix selection

    Science.gov (United States)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.

  9. Adsorção de cromo (VI por carvão ativado granular de soluções diluídas utilizando um sistema batelada sob pH controlado Chromium (VI adsorption by GAC from diluted solutions in batch system and controlled ph

    Directory of Open Access Journals (Sweden)

    Renata Santos Souza

    2009-09-01

    solutions, and batch systems with controlled pH. The functional groups on the CAG surface was carried out by the Boehm method. In addition, effect of pH on the Cr(VI adsorption, adsorption equilibrium, and kinetic were studied under experimental conditions (pH = 6, MA = 6g, for 90min.. On the GAC surface, carboxylic groups were found to be in higher concentrations (MAS=0,43 mmol/gCAG, which increase the Cr(VI adsorption, principally in acidic pH values. The adsorption capacity is dependent on the pH of the solution, due to its influence on the surface properties of the CAG and different ionic forms of the Cr(VI solutions. The adsorption equilibrium data was adjusted satisfactorily by the Langmuir isotherm (R²=0,988, favorable type. From kinetics adsorption of 20 mg/L and 5 mg/L, the results were compatible with the national legislation (Res. nº 357/05. Therefore, the experimental system using (CAG was efficient in removing the Cr(VI from liquid streams containing low concentrations of the metal.

  10. Physicochemistry of the plasma-electrolyte solution interface

    International Nuclear Information System (INIS)

    Chen Qiang; Saito, Kenji; Takemura, Yu-ichiro; Shirai, Hajime

    2008-01-01

    The atmospheric rf plasma discharge was successfully investigated using NaOH or HCl electrolyte solutions as a counter electrode at different pH values. The emission intensities of solution components, self bias, and electron density strongly depend on the pH value of electrolyte. An addition of ethanol to the electrolyte solutions enhanced the dehydration, which markedly promoted the emissions of solution components as well as electrons from the solution. An acidification of the solution was always observed after the plasma exposure and two coexisting mechanisms were proposed to give a reasonable interpretation. The plasma-electrolyte interface was discussed based on a model of hydrogen cycle

  11. 76 FR 2710 - Pitney Bowes, Inc., Mailing Solutions Management Division Including On-Site Leased Workers of...

    Science.gov (United States)

    2011-01-14

    ...., Mailing Solutions Management Division Including On-Site Leased Workers of Guidant Group, and Teleworkers... Bowes, Inc., Mailing Solutions Management Division, Engineering Quality Assurance, Shelton, Connecticut... identity of the subject worker group. The worker group consists of workers of Pitney Bowes, Inc., the...

  12. Influences of salt concentration, loading and pH on strontium adsorption

    International Nuclear Information System (INIS)

    Atun, G.; Kaplan, Z.

    1996-01-01

    The adsorption of Sr on clay with contains zeolites and montmorillonite mixtures was investigated in solutions of NaCl by means of a batch technique. Sr retention was reduced with increasing NaCl concentration from 5*10 -4 to 5*10 -1 M. Distribution coefficients (K d ) linearly increased with pH in the acidic region but they were almost independent of pH in neutral and alkaline solutions. By fitting the data of the Dubinin-Radushkevich (D-R) isotherm, the mean energies of adsorption and adsorption capacities of Sr at different pH values were calculated. The results showed that the mode of adsorption below pH 4.5 is ion exchange, while above that value a multilayer adsorption occurs. Adsorption data were fitted to the Freundlich isotherm and from empirical Freundlich parameters a site distribution function was calculated. (author)

  13. The effect of high pH alkaline solutions on the mineral stability of the Boom Clay - Batch experiments at 60 deg. C

    International Nuclear Information System (INIS)

    Honty, M.; De Craen, M.; Wang, L.; Madejova, J.; Czimerova, A.; Pentrak, M.; Stricek, I.; Van Geet, M.

    2010-01-01

    Boom Clay is currently viewed as a reference host formation for studies on deep geological disposal of radioactive waste in Belgium. The interactions between bulk rock Boom Clay and 0.1 M KOH, 0.1 M NaOH, 0.1 M Ca(OH) 2 , young cement water and evolved cement water solutions, ranging in pH from 12.5 to 13.2, were examined as static batch experiments at 60 deg. C to simulate alkaline plume perturbations, which are expected to occur in the repository due to the presence of concrete. Both liquids and solids were investigated at specific times between 90 and 510 days in order to control the elemental budget and to search for potential mineralogical alterations. Also, the clay fraction was separated from the whole-rock Boom Clay at the end of each run and characterized for its mineralogical composition. Thereby, the importance of the mineral matrix to buffer the alkaline attack and the role of organic matter to protect clay minerals were also addressed. The results indicate that the degree of geochemical perturbation in Boom Clay is dependent on the initial pH of the applied solution together with the nature of the major cation in the reactant fluids. The higher the initial pH of the media, the stronger its interaction with Boom Clay. No major non-clay mineralogical alteration of the Boom Clay was detected, but dissolution of kaolinite, smectite and illite occurred within the studied experimental conditions. The dissolution of clays is accompanied by the decrease in the layer charge, followed by a decrease in the cation-exchange capacity. The highest TOC values coincide with the highest total elemental concentrations in the leachates, and correspondingly, the highest dissolution degree. However, no quantitative link could be established between the degree of organic matter decomposition and clay dissolution.

  14. Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different pH condition

    Energy Technology Data Exchange (ETDEWEB)

    Liao Yuehua [Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Zhou Lixiang [Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)], E-mail: lxzhou@njau.edu.cn; Liang Jianru; Xiong Huixin [Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2009-01-01

    Oxidation of FeSO{sub 4} solution with initial pH in the range of 1.40-3.51 by Acidithiobacillus ferrooxidans LX5 cell at 26 deg. C and subsequent precipitation of resulting Fe(III) were investigated in the present study. Results showed that the oxidation rate of Fe(II) was around 1.2-3.9 mmol l{sup -1} h{sup -1}. X-ray diffraction (XRD) indicated that the formed precipitates were composed of natrojarosite with schwertmannite when the initial pH was 3.51, while only schwertmannite was produced when initial pH was in the range of 1.60-3.44 and no precipitate occurred when initial pH {<=} 1.40. Scanning electron microscope (SEM) analyses showed that precipitates formed in solution with initial pH 3.51 were spherical particles of about 0.4 {mu}m in diameter and had a smooth surface, whereas precipitates in solution with initial pH {<=} 3.44 were spherical particles of approximately 1.0 {mu}m in diameter, having specific sea-urchin morphology. Specific surface area of the precipitates varied from 3.42 to 23.45 m{sup 2} g{sup -1}. X-ray fluorescence analyses revealed that schwertmannite formed in solution with initial pH in the range of 2.00-3.44 had similar elemental composition and could be expressed as Fe{sub 8}O{sub 8}(OH){sub 4.42}(SO{sub 4}){sub 1.79,} whereas Fe{sub 8}O{sub 8}(OH){sub 4.36}(SO{sub 4}){sub 1.82} and Fe{sub 8}O{sub 8}(OH){sub 4.29}(SO{sub 4}){sub 1.86} as its chemical formula when the initial pH was 1.80 and 1.60, respectively.

  15. Development of a novel pH sensor based upon Janus Green B immobilized on triacetyl cellulose membrane: Experimental design and optimization

    Science.gov (United States)

    Chamkouri, Narges; Niazi, Ali; Zare-Shahabadi, Vali

    2016-03-01

    A novel pH optical sensor was prepared by immobilizing an azo dye called Janus Green B on the triacetylcellulose membrane. Condition of the dye solution used in the immobilization step, including concentration of the dye, pH, and duration were considered and optimized using the Box-Behnken design. The proposed sensor showed good behavior and precision (RSD < 5%) in the pH range of 2.0-10.0. Advantages of this optical sensor include on-line applicability, no leakage, long-term stability (more than 6 months), fast response time (less than 1 min), high selectivity and sensitivity as well as good reversibility and reproducibility.

  16. Alteration behavior of bentonite barrier of radioactive waste disposal by alkaline solutions. Part 1. Permeability change of compacted bentonite immersed in alkaline solutions

    International Nuclear Information System (INIS)

    Yokoyama, Shingo; Nakamura, Kunihiko

    2010-01-01

    Permeability tests using the compacted bentonites and alkaline solutions were carried out to estimate of alteration behavior and the change of permeability during the alteration reaction. The permeability tests of the compacted bentonites were carried out at 23degC for one week after they were immersed in alkaline solution at 60degC for four weeks (immersing test). After permeability tests, the compacted bentonites were repeatedly tested as the same procedure (i.e. repetition of permeability test and immersing test) at 11 cycles. The compacted bentonites with initial dry density of 1.6 Mg/m 3 were reacted with the different type of the alkaline solutions (deionized water, NaOH (pH=12 and 14), KOH (pH=12 and 14) and Ca(OH) 2 (pH=12)) in each experiments. In the case of deionized water and alkaline solutions of pH12, the mineral compositions of altered bentonite were similar to original bentonite while the exchangeable cations of altered bentonites were changed. No changes of the mineralogical features of montmorillonite in altered bentonites (i.e. illitization, baideritization and increasing of layer charge) were observed in the case of deionized water, pH12-NaOH and pH12-Ca(OH) 2 . The montmorillonite was changed to the illite/smectite interstratified mineral containing about 40% illite like component during the reaction with pH12-KOH. In the case of alkaline solutions with pH14, the component minerals of bentonite (e.g. montmorillonite, quartz and clinoptilolite) were dissolved, consequently secondly minerals (e.g. analcime and phillipsite) were crystallized during experiments. Furthermore, the mineralogical features of montmorillonite were changed as illitization (pH14-KOH), beidellitization (pH14-NaOH and pH14-KOH) and increasing of layer charge (pH14-NaOH and pH14-KOH). No increasing of permeability were observed during the experiment using pH12-NaOH and pH12-Ca(OH) 2 as well as the case of deionized water. In the case of pH12-KOH, the permeability continually

  17. Shelf-Life of Chlorine Solutions Recommended in Ebola Virus Disease Response.

    Directory of Open Access Journals (Sweden)

    Qais Iqbal

    Full Text Available In Ebola Virus Disease (EVD outbreaks, it is widely recommended to wash living things (handwashing with 0.05% (500 mg/L chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies with 0.5% (5,000 mg/L chlorine solution. Chlorine solutions used in EVD response are primarily made from powdered calcium hypochlorite (HTH, granular sodium dichloroisocyanurate (NaDCC, and liquid sodium hypochlorite (NaOCl, and have a pH range of 5-11. Chlorine solutions degrade following a reaction highly dependent on, and unusually sensitive to, pH, temperature, and concentration. We determined the shelf-life of 0.05% and 0.5% chlorine solutions used in EVD response, including HTH, NaDCC, stabilized NaOCl, generated NaOCl, and neutralized NaOCl solutions. Solutions were stored for 30 days at 25, 30, and 35°C, and tested daily for chlorine concentration and pH. Maximum shelf-life was defined as days until initial concentration fell to 30 days. Models were developed for solutions with maximum shelf-lives between 1-30 days. Extrapolating to 40°C, the maximum predicted shelf-life for 0.05% and 0.5% NaDCC solutions were 0.38 and 0.82 hours, respectively; predicted shelf-life for 0.05% and 0.5% generated NaOCl solutions were >30 and 5.4 days, respectively. Each chlorine solution type offers advantages and disadvantages to responders, as: NaDCC is an easy-to-import high-concentration effervescent powder; HTH is similar, but forms a precipitate that may clog pipes; and, NaOCl solutions can be made locally, but are difficult to transport. We recommend responders chose the most appropriate source chlorine compound for their use, and ensure solutions are stored at appropriate temperatures and used or replaced before expiring.

  18. The effect of pH on the erosion of dentine and enamel by dietary acids in vitro.

    Science.gov (United States)

    West, N X; Hughes, J A; Addy, M

    2001-09-01

    The reported incidence of tooth erosion caused by acidic soft drinks has been increasingly documented. Citric and phosphoric acids are the two main dietary acids present in these soft drinks. Many variables need to be determined in order to assess risk factors for dental erosion caused by beverage consumption including pH, titratable acidity, pKa, buffering capacity, hence the aim of these in vitro investigations. Methodologies included profiling flat enamel and dentine samples (acidic solutions adjusted with alkali over the available pH range; citric, phosphoric and hydrochloric acid were adjusted with sodium hydroxide and citric acid with trisodium citrate. Tissue loss was calculated by profilometry. Results showed that under these conditions citric acid caused far more erosion over the pH range employed than phosphoric acid for both tissue types. Citric acid compared with hydrochloric acid highlighted dissolution and chelation effects. Phosphoric acid caused minimal erosion over pH 3 for enamel and pH 4 for dentine. These factors could be considered in order to reduce the erosivity of acidic soft drinks.

  19. THE FLOCCULATION MAXIMUM (pH) OF FIBRINOGEN AND SOME OTHER BLOOD-CLOTTING REAGENTS. (RELATIVE TURBIDIMETRY WITH THE EVELYN PHOTOELECTRIC COLORIMETER).

    Science.gov (United States)

    Ferguson, J H

    1942-03-20

    By means of a novel adaptation of the Evelyn photoelectric colorimeter to the measurement of relative turbidities, the question of the flocculation maximum (F.M.) in acetate buffer solutions of varying pH and salt content has been studied on (a) an exceptionally stable prothrombin-free fibrinogen and its solutions after incipient thermal denaturation and incomplete tryptic proteolysis, (b) plasma, similarly treated, (c) prothrombin, thrombin, and (brain) thromboplastin solutions. All the fibrinogens show a remarkable uniformity of the precipitation pattern, viz. F.M. =4.7 (+/-0.2) pH in salt-containing buffer solutions and pH = 5.3 (+/-0.2) in salt-poor buffer (N/100 acetate). The latter approximates the isoelectric point (5.4) obtained by cataphoresis (14). There is no evidence that denaturation or digestion can produce any "second maximum." The data support the view that fibrin formation (under the specific influence of thrombin) is intrinsically unrelated to denaturation and digestion phenomena, although all three can proceed simultaneously in crude materials. A criticism is offered, therefore, of Wöhlisch's blood clotting theory. Further applications of the photoelectric colorimeter to coagulation problems are suggested, including kinetic study of fibrin formation and the assay of fibrinogen, with a possible sensitivity of 7.5 mg. protein in 100 cc. solution.

  20. Corrosion Effects on the Fatigue Crack Propagation of Giga-Grade Steel and its Heat Affected Zone in pH Buffer Solutions for Automotive Application

    Science.gov (United States)

    Lee, H. S.

    2018-03-01

    Corrosion fatigue crack propagation test was conducted of giga-grade steel and its heat affected zone in pH buffer solutions, and the results were compared with model predictions. Pure corrosion effect on fatigue crack propagation, particularly, in corrosive environment was evaluated by means of the modified Forman equation. As shown in results, the average corrosion rate determined from the ratio of pure corrosion induced crack length to entire crack length under a cycle load were 0.11 and 0.37 for base metal and heat affected zone, respectively, with load ratio of 0.5, frequency of 0.5 and pH 10.0 environment. These results demonstrate new interpretation methodology for corrosion fatigue crack propagation enabling the pure corrosion effects on the behavior to be determined.

  1. 78 FR 28642 - Eastman Kodak Company, Electrographic Print Solutions, Including On-Site Leased Workers From...

    Science.gov (United States)

    2013-05-15

    ... Kodak Company, Electrographic Print Solutions, Including On-Site Leased Workers From Adecco and Datrose, Spencerport, New York; Eastman Kodak Company, IPS, Including On-Site Leased Workers From Adecco, Dayton, Ohio... Trade Adjustment Assistance (TAA) filed on behalf of Eastman Kodak Company, Electrographic Print...

  2. Electrochemical Impedance Spectroscopic Analysis of RuO2 Based Thick Film pH Sensors

    International Nuclear Information System (INIS)

    Manjakkal, Libu; Djurdjic, Elvira; Cvejin, Katarina; Kulawik, Jan; Zaraska, Krzysztof; Szwagierczak, Dorota

    2015-01-01

    The conductimetric interdigitated thick film pH sensors based on RuO 2 were fabricated and their electrochemical reactions with solutions of different pH values were studied by electrochemical impedance spectroscopy (EIS) technique. The microstructural properties and composition of the sensitive films were examined by scanning electron microscopy, X-ray energy dispersive spectroscopy and Raman spectroscopy. The EIS analysis of the sensor was carried out in the frequency range 10 mHz–2 MHz for pH values of test solutions 2–12. The electrical parameters of the sensor were found to vary with changing pH. The conductance and capacitance of the film were distinctly dependent on pH in the low frequency range. The Nyquist and Bode plots derived from the impedance data for the metal oxide thick film pH sensor provided information about the underlying electrochemical reactions

  3. Development of a microprocessor-controlled coulometric system for stable ph control

    NARCIS (Netherlands)

    Bergveld, Piet; van der Schoot, B.H.

    1983-01-01

    The coulometric pH control system utilizes a programmable coulostat for controlling the pH of a certain volume of unbuffered solution. Based on theoretical considerations, conditions are established which guarantee stable operation with maximum suppression of disturbances from the dissolution of

  4. Decomposition kinetics of aminoborane in aqueous solutions

    International Nuclear Information System (INIS)

    Shvets, I.B.; Erusalimchik, I.G.

    1984-01-01

    Kinetics of aminoborane hydrolysis has been studied using the method of polarization galvanostatical curves on a platinum electrode in buffer solutions at pH 3; 5; 7. The supposition that the reaction of aminoborane hydrolysis is the reaction of the first order by aminoborane is proved. The rate constant of aminoborane decomposition in the solution with pH 5 is equal to: K=2.5x10 -5 s -1 and with pH 3 it equals K=1.12x10 -4 s -1

  5. Modified Organosilica Core-Shell Nanoparticles for Stable pH Sensing in Biological Solutions.

    Science.gov (United States)

    Robinson, Kye J; Huynh, Gabriel T; Kouskousis, Betty P; Fletcher, Nicholas L; Houston, Zachary H; Thurecht, Kristofer J; Corrie, Simon R

    2018-04-19

    Continuous monitoring using nanoparticle-based sensors has been successfully employed in complex biological systems, yet the sensors still suffer from poor long-term stability partially because of the scaffold materials chosen to date. Organosilica core-shell nanoparticles containing a mixture of covalently incorporated pH-sensitive (shell) and pH-insensitive (core) fluorophores is presented as a continuous pH sensor for application in biological media. In contrast to previous studies focusing on similar materials, we sought to investigate the sensor characteristics (dynamic range, sensitivity, response time, stability) as a function of material properties. The ratio of the fluorescence intensities at specific wavelengths was found to be highly sensitive to pH over a physiologically relevant range (4.5-8) with a response time of pH-specific signals when stored at room temperature for more than 80 days. Finally, we demonstrated that the nanosensors successfully monitored the pH of a bacterial culture over 15 h and that pH changes in the skin of mouse cadavers could also be observed via in vivo fluorescence imaging following subcutaneous injection. The understanding gained from linking sensor characteristics and material properties will inform the next generation of optical nanosensors for continuous-monitoring applications.

  6. Tuning interionic interaction by rationally controlling solution pH for highly selective colorimetric sensing of arginine.

    Science.gov (United States)

    Qian, Qin; Hao, Jie; Ma, Wenjie; Yu, Ping; Mao, Lanqun

    2016-04-01

    Direct selective sensing of arginine in central nervous systems remains very essential to understanding of the molecular basis of some physiological events. This study presents the first demonstration on a simple yet effective method for arginine sensing with gold nanoparticles (Au-NPs) as the signal readout. The rationale for the method is based on the pH-dependent feature of the interionic interaction between cysteine and arginine. At pH 6.0, cysteine can only interact with arginine through the ion-pair interaction and such interaction can lead to the changes in both the solution color and UV-vis spectrum of the cysteine-protected Au-NPs upon the addition of arginine. These changes are further developed into an analytical strategy for effective sensing of arginine by rationally controlling the pH values of Au-NP dispersions with the ratio of the absorbance at 650 nm (A 650) to that at 520 nm (A 520) (A 650/A 520) as a parameter for analysis. The method is responsive to arginine without the interference from other species in the cerebral system; under the optimized conditions, the A 650/A 520 values are linear with the concentration of arginine within a concentration range from 0.80 to 64 μM, yet remain unchanged with the addition of other kinds of amino acids or the species in the central nervous system into the Au-NPs dispersion containing cysteine. The method demonstrated here is reliable and robust and could thus be used for detection of the increase of arginine in central nervous systems.

  7. Effects of pH on the crystallographic structure and magnetic properties of electrodeposited cobalt nanowires

    International Nuclear Information System (INIS)

    Zafar, N.; Shamaila, S.; Sharif, R.; Wali, H.; Naseem, S.; Riaz, S.; Khaleeq-ur-Rahman, M.

    2015-01-01

    Anodic aluminum oxide templates with pore diameter of 40 nm and inter pore separation of 100 nm are prepared by two step anodization in 0.3 M oxalic acid solution. These templates are used to fabricate dc-deposited Co nanowires at different pH values of acidic bath. Continuous and densely packed nanowires having length ∼8 µm are observed. The hcp configuration appeared at moderate and high pH whereas both fcc and hcp phases are observed at low pH. However the crystallinity distorted at high pH due to formation of polycrystalline structure of cobalt nanowires. Alignment of easy-axis of nanowires can be tailored by varying pH of solution. - Highlights: • Variation in the structure of dc deposited cobalt nanowires can be obtained by varying pH of acidic bath. • The hcp structure is stable at room temperature with low voltage deposition for electrodeposited Co nanowires. Co with fcc structure, is stable at temperatures above 422 °C or at pH<3 with high potential. • The hcp (100) plane is obtained with pH∼3.5 and (101) is stable at pH∼5.5 due to variation in temperature inside the pores with respect to the pH. • Alignment of easy-axis of nanowires can be tailored by varying pH of solution

  8. Iodine evolution and pH control

    International Nuclear Information System (INIS)

    Beahm, E.C.; Lorenz, R.A.; Weber, C.F.

    1993-01-01

    The pH is the major factor in determining the extent of I 2 in solution. In containment where no pH-control chemicals are present, the acidity or basicity of the water pool will be determined by materials that are introduced into containment as a result of the accident itself. These materials may be fission products (i.e., cesium compounds), thermally produced products (i.e., core-concrete aerosols), or compounds produced by radiation (i.e., nitric acid). In situations where pH levels fall below ∼7, the formation of I 2 will occur in irradiated iodide solutions. A correlation between pH and iodine formation is needed so that the amounts I 2 in water pools can be assessed. This, in turn, determines the amount of I 2 in the atmosphere available for escape by containment leakage. A number of calculational routines based on more than 100 differential equations representing individual reactions can be found in the literature. In this work, it is shown that a simpler approach based on the steady-state decomposition of hydrogen peroxide should correctly describe iodine formation in severe accidents. Comparisons with test data show this approach to be valid. The most important acids in containment will be nitric acid (HNO 3 ), produced by irradiation of water and air, and hydrochloric acid (HCl), produced by irradiation or heating of electrical cable insulation. The most important bases in containment will be cesium hydroxide, cesium borate (or cesium carbonate), and in some plants pH additives, such as sodium hydroxide or sodium phosphate

  9. Removal of heavy metals from synthetic solution by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Mohamed Ilou

    2016-05-01

    Full Text Available The objective of this work concerns the optimization of the operating conditions for the removal of heavy metals from synthetic solution by Electrocoagulation (EC. To reach this purpose, we prepared a synthetic wastewater containing certain heavy metals (Ni, Cu, Zn, Fe and Pb to study the influence of various parameters (conductivity, pH, time of electrolysis, current density and the initial concentration of the metal on the rate of removal of these metals. The results show that this rate of removal can reach 99.9 % in the following optimal conditions: pH included between 6 and 8 and a density of the current of 1~1.5A / dm2. This study shows that it is possible to remove metals in aqueous solution by the technique of electrocoagulation. 

  10. Dependency of the band gap of electrodeposited Copper oxide thin films on the concentration of copper sulfate (CuSO4.5H2O) and pH in bath solution for photovoltaic applications

    KAUST Repository

    Islam, Md. Anisul

    2016-03-10

    In this study, Copper oxide thin films were deposited on copper plate by electrodeposition process in an electrolytic bath containing CuSO4.5H2O, 3M lactic acid and NaOH. Copper oxide films were electrodeposited at different pH and different concentration of CuSO4.5H2O and the optical band gap was determined from their absorption spectrum which was obtained from UV-Vis absorption spectroscopy. It was found that copper oxide films which were deposited at low concentration of CuSO4.5H2O have higher band gap than those deposited at higher bath concentration. The band gap of copper oxide films also significantly changes with pH of the bath solution. It was also observed that with the increase of the pH of bath solution band gap of copper oxide film decreased. © 2015 IEEE.

  11. The role of pH variation on the growth of zinc oxide nanostructures

    International Nuclear Information System (INIS)

    Wahab, Rizwan; Ansari, S.G.; Kim, Young Soon; Song, Minwu; Shin, Hyung-Shik

    2009-01-01

    In this paper we present a systematic study on the morphological variation of ZnO nanostructure by varying the pH of precursor solution via solution method. Zinc acetate dihydrate and sodium hydroxide were used as a precursor, which was refluxed at 90 deg. C for an hour. The pH of the precursor solution (zinc acetate di hydrate) was increased from 6 to 12 by the controlled addition of sodium hydroxide (NaOH). Morphology of ZnO nanorods markedly varies from sheet-like (at pH 6) to rod-like structure of zinc oxide (pH 10-12). Diffraction patterns match well with standard ZnO at all pH values. Crystallinity and nanostructures were confirmed by high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) pattern, which indicates structure grew along [0 0 0 1] direction with an ideal lattice fringes distance 0.52 nm. FTIR spectroscopic measurement showed a standard peak of zinc oxide at 464 cm -1 . Amount of H + and OH - ions are found key to the structure control of studied material, as discussed in the growth mechanism.

  12. Remoção de metais pesados de efluentes aquosos pela zeólita natural escolecita - influência da temperatura e do pH na adsorção em sistemas monoelementares Heavy metals removal from wastewater by the natural zeolite scolecite - temperature and pH influence in single-metal solutions

    Directory of Open Access Journals (Sweden)

    Ricardo Sarti Jimenez

    2004-10-01

    Full Text Available Cation exchange capabilities of a Brazilian natural zeolite, identified as scolecite, were evaluated for application in wastewater control. We investigated the process of sorption of chromium(III, nickel(II, cadmium(II and manganese(II in synthetic aqueous effluents, including adsorption isotherms of single-metal solutions. The natural zeolite showed the ability to take up the tested heavy metals in the order Cr(III > Cd(II > Ni(II > Mn(II, and this could be related to the valence and the hydration radius of the metal cations. The influence of temperature (25, 40 and 60 ºC and initial pH value (from 4 to 6 was also evaluated. It was found that the adsorption increased substantially when the temperature was raised to 60 ºC and that maximum adsorption capacity was observed at pH 6. These results demonstrate that scolecite can be used for removal of heavy metals from aqueous effluents, under optimized conditions.

  13. Motion-Based pH Sensing Based on the Cartridge-Case-like Micromotor.

    Science.gov (United States)

    Su, Yajun; Ge, Ya; Liu, Limei; Zhang, Lina; Liu, Mei; Sun, Yunyu; Zhang, Hui; Dong, Bin

    2016-02-17

    In this paper, we report a novel cartridge-case-like micromotor. The micromotor, which is fabricated by the template synthesis method, consists of a gelatin shell with platinum nanoparticles decorating its inner surface. Intriguingly, the resulting cartridge-case-like structure exhibits a pH-dependent "open and close" feature, which originates from the pH responsiveness of the gelatin material. On the basis of the catalytic activity of the platinum nanoparticle inside the gelatin shell, the resulting cartridge-case-like structure is capable of moving autonomously in the aqueous solution containing the hydrogen peroxide fuel. More interestingly, we find out that the micromotor can be utilized as a motion-based pH sensor over the whole pH range. The moving velocity of the micromotor increases monotonically with the increase of pH of the analyte solution. Three different factors are considered to be responsible for the proportional relation between the motion speed and pH of the analyte solution: the peroxidase-like and oxidase-like catalytic behavior of the platinum nanoparticle at low and high pH, the volumetric decomposition of the hydrogen peroxide under the basic condition and the pH-dependent catalytic activity of the platinum nanoparticle caused by the swelling/deswelling behavior of the gelatin material. The current work highlights the impact of the material properties on the motion behavior of a micromotor, thus paving the way toward its application in the motion-based sensing field.

  14. Synthesis of xenotime(YPO4) by precipitation from aqueous solution

    International Nuclear Information System (INIS)

    Hikichi, Yasuo; Hukuo, Ken-iti; Shiokawa, Jiro.

    1978-01-01

    Xenotime (tetragonal YPO 4 ) was synthesized by the precipitation from a mixed solution of yttrium chloride and orthophosphoric acid or orthophosphate above 50 0 C. At 50 0 C, the initial precipitate from the solutions in the pH range from 0.8 to 2.9 was crystalline weinschenkite (monoclinic YPO 4 .2H 2 O) and amorphous phosphate was formed at pH above 3, while precipitation did not take place at pH 0.5. Weinschenkite was stable at 50 0 C, but amorphous phosphate gradually crystallized by aging and became crystalline xenotime at pH 3.7 after 5 days and at pH 5.0 after 28 days. At 90 0 C, xenotime was detected in the precipitate from the solution of pH 0.5, and was also obtained by aging weinschenkite at pH between 0.8 and 2.9 or amorphous phosphate at pH above 3. The unit cell parameters of the synthesized xenotime were as follows: a=b=6.893A, c=6.026A. (auth.)

  15. pH control and rapid mixing in spinning NMR samples

    Science.gov (United States)

    Yesinowski, James P.; Sunberg, Richard J.; Benedict, James J.

    An apparatus is described which permits the acquisition of NMR spectra from spinning 20-mm sample tubes while: (1) constantly monitoring the pH; (2) adding reagents to maintain constant pH (pH-statting); (3) efficiently mixing the added reagent. The apparatus was built to study the spontaneous precipitation of calcium phosphates from supersaturated solutions using 31P NMR. Other applications include the rapid determination of NMR titration curves, and the minimization of temperature gradients in large sample tubes. The apparatus was used to measure the 31P chemical shift titration of dilute phosphoric acid, which yielded accurate shifts for the three species of protonated orthophosphate ion. The bulk magnetic susceptibility of 85% H 3PO 4 relative to a dilute aqueous sample was also measured, and is shown to contribute significantly to chemical shift measurements.

  16. Plaque pH Changes Following Consumption of Two Types of Plain and Bulky Bread.

    Science.gov (United States)

    Mortazavi, Shiva; Noin, Sogol

    2011-01-01

    Consistency, backing process and content differences could influence cariogenic potential of foods. The aim was to compare plaque pH changes following consumption of two types of bread with different physical characteristics. In this clinical trial, interproximal plaque pH of 10 volunteers with high risk of dental caries (saliva Streptococcus mutans > 10(5), high dental caries experience, and average DMFT =6.10 ± 1.56) was measured. Plain traditionally backed "Sangak bread" and soft bulky "Baguette bread" and %10 sucrose solution were tested in a cross over designed experiment. Baseline plaque pH was recorded and followed by 1, 5, 10, 15, 20, and 30 minutes intervals. Data was analyzed using ANOVA and Tukey test (α = 0.05). Sucrose solution caused the most pronounced pH and ΔpH drop from 7.15 ± 0.33 at baseline to 6.78 ± 0.29. Means plaque pH of 10% sucrose solution and Baguette were not statistically different at 1, 20 and 30 minutes (P > 0.05). Mean plaque pH of Sangak and Baguette showed significant differences at 0, 1, 20 and30 minutes (P bread samples within first 10 minutes, pH increased and then started to decrease during tenth to fifteenth minutes. During all experiment phases, the mean pH of Baguette with less consistency and carbohydrate content and higher rate of starch gelatination was lower compared to Sangak.

  17. Antimony removal from aqueous solutions using Zirconium hydroxide

    International Nuclear Information System (INIS)

    Petrescu, D.; Velciu, L.; Bucur, C.

    2016-01-01

    In this paper it is presented an experimental test for non-radioactive antimony removal from aqueous solutions using zirconium hydroxide powder. Also, it was studied how the temperature and pH influences antimony adsorption onto zirconium hydroxide surface. After the adsorption, solutions were filtered on Cellulose Mixed Ester Membrane with 0.2 μm pore size to remove the zirconium powder and then the aqueous solutions were sent to Inductively Coupled Plasma Optic Emission Spectrometry (ICP-OES) for quantitative analysis of Sb. Zirconium hydroxide powders were examined by optical microscopy. For the solutions that were tested at pH 4.5 and 10.2 the antimony concentration dropped below the detection limit of ICP-OES device, proof of antimony adsorption on zirconium hydroxide. Also, for the other tested solutions which had pH=12 the antimony concentration reduced with 77% and 80%. The temperature had no influence upon adsorption mechanism. (authors)

  18. Design of an optically stable pH sensor based on immobilization of Giemsa on triacetylcellulose membrane.

    Science.gov (United States)

    Khodadoust, Saeid; Kouri, Narges Cham; Talebiyanpoor, Mohammad Sharif; Deris, Jamile; Pebdani, Arezou Amiri

    2015-12-01

    In this work a simple, inexpensive, and sensitive optical sensor based on triacetylcellulose membrane as solid support was developed by using immobilization of Giemsa indicator for pH measurement. In this method, the influence variables on the membrane performance including pH concentration of indicator, response time, ionic strength, and reversibility were investigated. At optimum values of all variables the response of optical pH sensor is linear in the pH range of 3.0-12.0. This optical sensor was produced through simultaneous binding of the Giemsa on the activated triacetylcellulose membrane which responded to the pH changes in a broader linear range within less than 2.0 min and suitable reproducibility (RSDsensor was stable after 6 months of storage in the water/ethanol (50:50, v/v) solution without any measurable divergence in response properties (less than 5% RSD). Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Hg(II) removal from aqueous solutions by bacillus subtilis biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue Song; Li, Fei Yan; He, Wen; Miao, Hua Hua [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang (China)

    2010-01-15

    The biosorption of Hg(II) from aqueous solutions using Bacillus subtilis biomass was investigated in this study. The adsorbent was characterized by FTIR. Various factors including solution pH, initial concentration of Hg(II), contact time, reaction temperature and ionic strength were taken into account and promising results were obtained. An initial solution pH of 5.0 was most favorable for Hg(II) removal. The kinetic data was also analyzed using pseudo first order and pseudo second order equations. The results suggested that Hg(II) bioadsorption was best represented by the pseudo second order equation. Freundlich, Langmuir and Langmuir-Freundlich isotherms for the present systems were analyzed. The most satisfactory interpretation for the equilibrium data at different temperatures was given by the Langmuir-Freundlich isotherm. The effect of ionic strength on bioadsorption was significant. Bacillus subtilis biomass could serve as low cost adsorbent to remove Hg(II) from aqueous solutions, especially at lower concentrations of Hg(II) (<20 mg Hg/L). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Pb and Cd binding to natural freshwater biofilms developed at different pH: the important role of culture pH.

    Science.gov (United States)

    Hua, Xiuyi; Dong, Deming; Ding, Xiaoou; Yang, Fan; Jiang, Xu; Guo, Zhiyong

    2013-01-01

    The effects of solution pH on adsorption of trace metals to different types of natural aquatic solid materials have been studied extensively, but few studies have been carried out to investigate the effect of pH at which the solid materials were formed on the adsorption. The purpose of present study is to examine this effect of culture pH on metal adsorption to natural freshwater biofilms. The adsorption of Pb and Cd to biofilms which were developed at different culture pH values (ranging from 6.5 to 9.0) was measured at the same adsorption pH value (6.5). The culture pH had considerable effects on both composition and metal adsorption ability of the biofilms. Higher culture pH usually promoted the accumulation of organic material and Fe oxides in the biofilms. The culture pH also affected the quantity and species of algae in the biofilms. The adsorption of Pb and Cd to the biofilms generally increased with the increase of culture pH. This increase was minor at lower pH range and significant at higher pH range and was more remarkable for Cd adsorption than for Pb adsorption. The notable contribution of organic material to the adsorption at higher culture pH values was also observed. The profound impacts of culture pH on adsorption behavior of biofilms mainly resulted from the variation of total contents of the biofilm components and were also affected by the alteration of composition and properties of the components.

  1. Influence of soil solution cation composition on boron adsorption by soils

    Science.gov (United States)

    Boron (B) adsorption on five arid-zone soil samples from California was investigated as a function of solution pH (4-10) and cation composition (Na, Ca, or Mg). Boron adsorption increased with increasing solution pH, reached an adsorption maximum near pH 9, and decreased with further increases with...

  2. pH variations during diafiltration due to buffer nonidealities.

    Science.gov (United States)

    Baek, Youngbin; Yang, Deyu; Singh, Nripen; Arunkumar, Abhiram; Ghose, Sanchayita; Li, Zheng Jian; Zydney, Andrew L

    2017-11-01

    Diafiltration is used for final formulation of essentially all biotherapeutics. Several studies have demonstrated that buffer/excipient concentrations in the final diafiltered product can be different than that in the diafiltration buffer due to interactions between buffer species and the protein product. However, recent work in our lab has shown variations in solution pH that are largely independent of the protein concentration during the first few diavolumes. Our hypothesis is that these pH variations are due to nonidealities in the acid-base equilibrium coefficient. A model was developed for the diafiltration process accounting for the ionic strength dependence of the pK a . Experimental results obtained using phosphate and histidine buffers were in excellent agreement with model predictions. A decrease in ionic strength leads to an increase in the pK a for the phosphate buffer, causing a shift in the solution pH, even under conditions where the initial feed and the diafiltration buffer are at the same pH. This effect could be eliminated by matching the ionic strength of the feed and diafiltration buffer. The experimental data and model provide new insights into the factors controlling the pH profile during diafiltration processes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1555-1560, 2017. © 2017 American Institute of Chemical Engineers.

  3. Monosilicate adsorption by ferrihydrite and goethite at pH 3-6

    DEFF Research Database (Denmark)

    Hansen, Hans Christian Bruun; Raben-Lange, B.; Raulund-Rasmussen, Karsten

    1994-01-01

    The constant capacitance model and the Elovich equation were combined in the following mathematical expression enabling calculation of the amount of silicic acid adsorbed by iron oxides as a function of the Si concentration, pH, soil:solution ratio, and reaction time: [GRAPHICS] K(a1) is the prot......The constant capacitance model and the Elovich equation were combined in the following mathematical expression enabling calculation of the amount of silicic acid adsorbed by iron oxides as a function of the Si concentration, pH, soil:solution ratio, and reaction time: [GRAPHICS] K(a1...

  4. Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions

    International Nuclear Information System (INIS)

    Lye, P G; Boerkamp, M; Ernest, A; Lamb, D W

    2005-01-01

    Polymethylmethacrylate (PMMA) optical fibres are low-cost polymer fibres that are generally more physically robust than silica fibres, are more flexible, yet like silica fibres have the potential to be used for practical evanescent field absorption sensors in aqueous solutions. However, evanescent field absorption in aqueous solutions is influenced by more than just the specific absorptivity of the solution in question. The physical configuration of the optical fibre itself, as well as surface charge interactions between the fibre and the chromophore in the solution also significantly affects the sensitivity of the fibre to evanescent field absorption. This paper reports on an investigation of numerous physical phenomena that influence evanescent field absorption for PMMA fibres using an aqueous solution of the dye Amidoblack. Parameters investigated included fibre coiling configuration and bend radius, fibre interaction length, and effect of solution pH. Coiled fibres were found to be more sensitive to evanescent field absorption than straight (uncoiled) lengths, and sensitivity was found to increase with a further reduction in bend radius. At high solution pH, the absorption versus solution concentration proved to be linear whereas at low pH the absorption versus concentration relationship exhibited a clear deviation from linearity. The observed nonlinearity at low pH points to the importance of accounting for electrostatic interactions between chromophore and fibre surface when designing a PMMA sensor for evanescent field absorption measurements in aqueous solutions

  5. Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis

    Science.gov (United States)

    Khan, Meraj A.; Philip, Lijy M.; Cheung, Guillaume; Vadakepeedika, Shawn; Grasemann, Hartmut; Sweezey, Neil; Palaniyar, Nades

    2018-01-01

    Neutrophils migrating from the blood (pH 7.35–7.45) into the surrounding tissues encounter changes in extracellular pH (pHe) conditions. Upon activation of NADPH oxidase 2 (Nox), neutrophils generate large amounts of H+ ions reducing the intracellular pH (pHi). Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET) formation (NETosis) is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS) and neutrophil protease activity, stimulating NETosis. Here, we found that raising pHe (ranging from 6.6 to 7.8; every 0.2 units) increased pHi of both activated and resting neutrophils within 10–20 min (Seminaphtharhodafluor dual fluorescence measurements). Since Nox activity generates H+ ions, pHi is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging) during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs). In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots) and NETosis. Raising pH increased Escherichia coli lipopolysaccharide-, Pseudomonas aeruginosa (Gram-negative)-, and Staphylococcus aureus (Gram-positive)-induced NETosis. Thus, higher pHe promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pHe-mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM) increases NETosis. Each Tris molecule can bind 3H+ ions, whereas each bicarbonate HCO3− ion binds 1H+ ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar

  6. Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis

    Directory of Open Access Journals (Sweden)

    Meraj A. Khan

    2018-02-01

    Full Text Available Neutrophils migrating from the blood (pH 7.35–7.45 into the surrounding tissues encounter changes in extracellular pH (pHe conditions. Upon activation of NADPH oxidase 2 (Nox, neutrophils generate large amounts of H+ ions reducing the intracellular pH (pHi. Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET formation (NETosis is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS and neutrophil protease activity, stimulating NETosis. Here, we found that raising pHe (ranging from 6.6 to 7.8; every 0.2 units increased pHi of both activated and resting neutrophils within 10–20 min (Seminaphtharhodafluor dual fluorescence measurements. Since Nox activity generates H+ ions, pHi is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs. In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots and NETosis. Raising pH increased Escherichia coli lipopolysaccharide-, Pseudomonas aeruginosa (Gram-negative-, and Staphylococcus aureus (Gram-positive-induced NETosis. Thus, higher pHe promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pHe-mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM increases NETosis. Each Tris molecule can bind 3H+ ions, whereas each bicarbonate HCO3− ion binds 1H+ ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar

  7. Fluoresence quenching of riboflavin in aqueous solution by methionin and cystein

    International Nuclear Information System (INIS)

    Droessler, P.; Holzer, W.; Penzkofer, A.; Hegemann, P.

    2003-01-01

    The fluorescence quantum distributions, fluorescence quantum yields, and fluorescence lifetimes of riboflavin in methanol, DMSO, water, and aqueous solutions of the sulphur atom containing amino acids methionin and cystein have been determined. In methanol, DMSO, and water (pH=4-8) only dynamic fluorescence reduction due to intersystem crossing and internal conversion is observed. In aqueous methionin solutions of pH=5.25-9 a pH independent static and dynamic fluorescence quenching occurs probably due to riboflavin anion-methionin cation pair formation. In aqueous cystein solutions (pH range from 4.15 to 9) the fluorescence quenching increases with rising pH due to cystein thiolate formation. The cystein thiol form present at low pH does not react with neutral riboflavin. Cystein thiolate present at high pH seems to react with neutral riboflavin causing riboflavin deprotonation (anion formation) by cystein thiolate reduction to the cystein thiol form

  8. FLEXIBLE PH SENSOR WITH POLYANILINE LAYER BASED ON IMPEDANCE MEASUREMENT

    OpenAIRE

    Chuang, Cheng-Hsin; Wu, Hsun-Pei; Chen, Cheng-Ho; Wu, Peng-Rong

    2012-01-01

    A flexible sensor with conducting polyaniline layer for detecting pH value based on the impedance measurement is fabricated and demonstrated in this study. The pH sensor consists of an interdigital electrode array on a flexible printed circuit and a thin-film polyaniline as the sensing layer. As the conductivity of polyaniline depends on the redox state, the impedance change of the polyaniline after it has reacted with different pH value solutions works as the sensing mechanism. In order to o...

  9. Evaluating Nanoparticle Sensor Design for Intracellular pH Measurements

    DEFF Research Database (Denmark)

    Benjaminsen, Rikke Vicki; Sun, Honghao; Henriksen, Jonas Rosager

    2011-01-01

    Particle-based nanosensors have over the last decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors is challenging...... and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle...... quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pKa to each sensor, seem to be a solution...

  10. An ultrasensitive method of real time pH monitoring with complementary metal oxide semiconductor image sensor.

    Science.gov (United States)

    Devadhasan, Jasmine Pramila; Kim, Sanghyo

    2015-02-09

    CMOS sensors are becoming a powerful tool in the biological and chemical field. In this work, we introduce a new approach on quantifying various pH solutions with a CMOS image sensor. The CMOS image sensor based pH measurement produces high-accuracy analysis, making it a truly portable and user friendly system. pH indicator blended hydrogel matrix was fabricated as a thin film to the accurate color development. A distinct color change of red, green and blue (RGB) develops in the hydrogel film by applying various pH solutions (pH 1-14). The semi-quantitative pH evolution was acquired by visual read out. Further, CMOS image sensor absorbs the RGB color intensity of the film and hue value converted into digital numbers with the aid of an analog-to-digital converter (ADC) to determine the pH ranges of solutions. Chromaticity diagram and Euclidean distance represent the RGB color space and differentiation of pH ranges, respectively. This technique is applicable to sense the various toxic chemicals and chemical vapors by situ sensing. Ultimately, the entire approach can be integrated into smartphone and operable with the user friendly manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Biologically Pre-Treated Habitation Waste Water as a Sustainable Green Urine Pre-Treat Solution

    Science.gov (United States)

    Jackson, W. Andrew; Thompson, Bret; Sevanthi, Ritesh; Morse, Audra; Meyer, Caitlin; Callahan, Michael

    2017-01-01

    The ability to recover water from urine and flush water is a critical process to allow long term sustainable human habitation in space or bases on the moon or mars. Organic N present as urea or similar compounds can hydrolyze producing free ammonia. This reaction results in an increase in the pH converting ammonium to ammonia which is volatile and not removed by distillation. The increase in pH will also cause precipitation reactions to occur. In order to prevent this, urine on ISS is combined with a pretreat solution. While use of a pretreatment solution has been successful, there are numerous draw backs including: storage and use of highly hazardous solutions, limitations on water recovery (less than 85%), and production of brine with pore dewatering characteristics. We evaluated the use of biologically treated habitation wastewaters (ISS and early planetary base) to replace the current pretreat solution. We evaluated both amended and un-amended bioreactor effluent. For the amended effluent, we evaluated "green" pretreat chemicals including citric acid and citric acid amended with benzoic acid. We used a mock urine/air separator modeled after the urine collection assembly on ISS. The urine/air separator was challenged continually for >6 months. Depending on the test point, the separator was challenged daily with donated urine and flushed with amended or un-amended reactor effluent. We monitored the pH of the urine, flush solution and residual pH in the urine/air separator after each urine event. We also evaluated solids production and biological growth. Our results support the use of both un-amended and amended bioreactor effluent to maintain the operability of the urine /air separator. The ability to use bioreactor effluent could decrease consumable cost, reduce hazards associated with current pre-treat chemicals, allow other membrane based desalination processes to be utilized, and improve brine characteristics.

  12. Graphite Screen-Printed Electrodes Applied for the Accurate and Reagentless Sensing of pH.

    Science.gov (United States)

    Galdino, Flávia E; Smith, Jamie P; Kwamou, Sophie I; Kampouris, Dimitrios K; Iniesta, Jesus; Smith, Graham C; Bonacin, Juliano A; Banks, Craig E

    2015-12-01

    A reagentless pH sensor based upon disposable and economical graphite screen-printed electrodes (GSPEs) is demonstrated for the first time. The voltammetric pH sensor utilizes GSPEs which are chemically pretreated to form surface immobilized oxygenated species that, when their redox behavior is monitored, give a Nernstian response over a large pH range (1-13). An excellent experimental correlation is observed between the voltammetric potential and pH over the entire pH range of 1-13 providing a simple approach with which to monitor solution pH. Such a linear response over this dynamic pH range is not usually expected but rather deviation from linearity is encountered at alkaline pH values; absence of this has previously been attributed to a change in the pKa value of surface immobilized groups from that of solution phase species. This non-deviation, which is observed here in the case of our facile produced reagentless pH sensor and also reported in the literature for pH sensitive compounds immobilized upon carbon electrodes/surfaces, where a linear response is observed over the entire pH range, is explained alternatively for the first time. The performance of the GSPE pH sensor is also directly compared with a glass pH probe and applied to the measurement of pH in "real" unbuffered samples where an excellent correlation between the two protocols is observed validating the proposed GSPE pH sensor.

  13. Hydrogen production by sodium borohydride in NaOH aqueous solution

    Science.gov (United States)

    Wang, Q.; Zhang, L. F.; Zhao, Z. G.

    2018-01-01

    The kinetics of hydrolysis reaction of NaBH4 in NaOH aqueous solution is studied. The influence of pH of the NaOH aqueous solution on the rate of hydrogen production and the hydrogen production efficiency are studied for the hydrolysis reaction of NaBH4. The results show that the activation energy of hydrolysis reaction of NaBH4 increased with the increase of the initial pH of NaOH aqueous solution.With the increasing of the initial pH of NaOH aqueous solution, the rate of hydrogen production and hydrogen production efficiency of NaBH4 hydrolysis decrease.

  14. Separation of uranium and rare earth elements from Rirang ore leach solution by two-step precipitation

    International Nuclear Information System (INIS)

    Sradjono; Erni Rifandriyah, A.; Zahardi

    1995-01-01

    Separation of uranium and rare-earth elements from Rirang ore leach solution was carried out through a two-step precipitation. Several condition affecting the separation processes were examined including solution pH, reagent concentration, and reaction prepitation time. Optimum conditions for the first and second precipitation steps include adjustment of precipitation pH to 1.3 and 2.3, respectively by the addition of 7.3% of NH 4 OH solution and allowing 60 minutes precipitation/reaction time. Based on the conditions, about 6% of Th, 3% of U, 0.9% of PO 4 3- , and none of RE were recovered in the first precipitation step meanwhile, about 99% of RE, 55% of U, 76% of PO 4 3- , and of the Th were recovered in the second step. (author). 3 refs. 4 tabs. 4 figs

  15. Technetium electrodeposition from aqueous formate solutions at graphite electrode: electrochemical study

    International Nuclear Information System (INIS)

    Maslennikov, A.; Peretroukhine, V.; Masson, M.; Lecomte, M.

    1999-01-01

    Recovery of technetium from aqueous formate buffer solutions of ionic strength μ = 1.0 was studied in the pH interval from 1.6 to 7.5 at graphite cathode in an electrolytic cell with separated compartments was studied, using cyclic voltammetry (CV) and inverse stripping voltammetry (ISV) techniques. It has been shown that Tc electrodeposition process becomes possible at the potentials of graphite cathode E cath. 1/2 = -0.72±0.02 V/SCE and was pH independent in the interval pH = 3.46-7.32. Mechanism of electrodeposition, including Tc(VII)/Tc(IV) reduction in the solution followed by Tc(IV) hydrolysis at the electrode surface with formation of hydrated Tc oxide cathodic deposit has been proposed. The further precision of the Tc(VII) electrochemical reduction mechanism in formate buffer media and optimization of the electrodeposition process seems to be possible using additional analytical facilities except electrochemical methods. (orig.)

  16. Taxonomy of Means and Ends in Aquaculture Production—Part 2: The Technical Solutions of Controlling Solids, Dissolved Gasses and pH

    Directory of Open Access Journals (Sweden)

    Bjorgvin Vilbergsson

    2016-09-01

    Full Text Available In engineering design, knowing the relationship between the means (technique and the end (desired function or outcome is essential. The means in Aquaculture are technical solutions like airlifts that are used to achive desired functionality (an end like controlling dissolved gasses. In previous work, the authors identified possible functions by viewing aquaculture production systems as transformation processes in which inputs are transformed by treatment techniques (means and produce outputs (ends. The current work creates an overview of technical solutions of treatment functions for both design and research purposes. A comprehensive literature review of all areas of technical solutions is identified and categorized into a visual taxonomy of the treatment functions for controlling solids, controlling dissolved gasses and controlling pH alkalinity and hardness. This article is the second in a sequence of four and partly presents the treatments functions in the taxonomy. The other articles in this series present complementary aspects of this research: Part 1, A transformational view on aquaculture and functions divided into input, treatment and output functions; Part 2, The current taxonomy paper; Part 3, The second part of the taxonomy; and Part 4, Mapping of the means (techniques for multiple treatment functions.

  17. Making On-line Science Course Materials Easily Translatable and Accessible Worldwide: Challenges and Solutions

    Science.gov (United States)

    Adams, Wendy K.; Alhadlaq, Hisham; Malley, Christopher V.; Perkins, Katherine K.; Olson, Jonathan; Alshaya, Fahad; Alabdulkareem, Saleh; Wieman, Carl E.

    2012-02-01

    The PhET Interactive Simulations Project partnered with the Excellence Research Center of Science and Mathematics Education at King Saud University with the joint goal of making simulations useable worldwide. One of the main challenges of this partnership is to make PhET simulations and the website easily translatable into any language. The PhET project team overcame this challenge by creating the Translation Utility. This tool allows a person fluent in both English and another language to easily translate any of the PhET simulations and requires minimal computer expertise. In this paper we discuss the technical issues involved in this software solution, as well as the issues involved in obtaining accurate translations. We share our solutions to many of the unexpected problems we encountered that would apply generally to making on-line scientific course materials available in many different languages, including working with: languages written right-to-left, different character sets, and different conventions for expressing equations, variables, units and scientific notation.

  18. Reactive solute transport in acidic streams

    Science.gov (United States)

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  19. pH and Protein Sensing with Functionalized Semiconducting Oxide Nanobelt FETs

    Science.gov (United States)

    Cheng, Yi; Yun, C. S.; Strouse, G. F.; Xiong, P.; Yang, R. S.; Wang, Z. L.

    2008-03-01

    We report solution pH sensing and selective protein detection with high-performance channel-limited field-effect transistors (FETs) based on single semiconducting oxide (ZnO and SnO2) nanobelts^1. The devices were integrated with PDMS microfluidic channels for analyte delivery and the source/drain contacts were passivated for in-solution sensing. pH sensing experiments were performed on FETs with functionalized and unmodified nanobelts. Functionalization of the nanobelts by APTES was found to greatly improve the pH sensitivity. The change in nanobelt conductance as functions of pH values at different gate voltages and ionic strengths showed high sensitivity and consistency. For the protein detection, we achieved highly selective biotinylation of the nanobelt channel with through APTES linkage. The specific binding of fluorescently-tagged streptavidin to the biotinylated nanobelt was verified by fluorescence microscopy; non-specific binding to the substrate was largely eliminated using PEG-silane passivation. The electrical responses of the biotinylated FETs to the streptavidin binding in PBS buffers of different pH values were systematically measured. The results will be presented and discussed. ^1Y. Cheng et al., Appl. Phys. Lett. 89, 093114 (2006). *Supported by NSF NIRT Grant ECS-0210332.

  20. pH Sensitivity of Novel PANI/PVB/PS3 Composite Films

    Directory of Open Access Journals (Sweden)

    Olga Korostynska

    2007-12-01

    Full Text Available This paper reports on the results from the investigation into the pH sensitivity ofnovel PANI/PVB/PS3 composite films. The conductimetric sensing mode was chosen as itis one of the most promising alternatives to the mainstream pH-sensing methods and it is theleast investigated due to the popularity of other approaches. The films were deposited usingboth screen-printing and a drop-coating method. It was found that the best response to pHwas obtained from the screen-printed thick films, which demonstrated a change inconductance by as much as three orders of magnitude over the pH range pH2-pH11. Thedevices exhibited a stable response over 96 hours of operation. Several films were immersedin buffer solutions of different pH values for 96 hours and these were then investigated usingXPS. The resulting N 1s spectra for the various films confirmed that the change inconductance was due to deprotonation of the PANI polymer backbone. SEM andProfilometry were also undertaken and showed that no considerable changes in themorphology of the films took place and that the films did not swell or contract due toexposure to test solutions.

  1. Microneedle pH Sensor: Direct, Label-Free, Real-Time Detection of Cerebrospinal Fluid and Bladder pH.

    Science.gov (United States)

    Mani, Ganesh Kumar; Miyakoda, Kousei; Saito, Asuka; Yasoda, Yutaka; Kajiwara, Kagemasa; Kimura, Minoru; Tsuchiya, Kazuyoshi

    2017-07-05

    Acid-base homeostasis (body pH) inside the body is precisely controlled by the kidneys and lungs and buffer systems, such that even a minor pH change could severely affect many organs. Blood and urine pH tests are common in day-to-day clinical trials and require little effort for diagnosis. There is always a great demand for in vivo testing to understand more about body metabolism and to provide effective diagnosis and therapy. In this article, we report the simple fabrication of microneedle-based direct, label-free, and real-time pH sensors. The reference and working electrodes were Ag/AgCl thick films and ZnO thin films on tungsten (W) microneedles, respectively. The morphological and structural characteristics of microneedles were carefully investigated through various analytical methods. The developed sensor exhibited a Nernstian response of -46 mV/pH. Different conditions were used to test the sensor to confirm their accuracy and stability, such as various buffer solutions, with respect to time, and we compared the reading with commercial pH electrodes. Besides that, the fabricated microneedle sensor ability is proven by in vivo testing in mouse cerebrospinal fluid (CSF) and bladders. The pH sensor procedure reported here is totally reversible, and results were reproducible after several rounds of testing.

  2. Influence of the Dentinal Wall on the pH of Sodium Hypochlorite during Root Canal Irrigation

    NARCIS (Netherlands)

    Macedo, Ricardo Gomes; Herrero, Noemi Pascual; Wesselink, Paul; Versluis, Michel; van der Sluis, Luc

    Introduction: The purpose of this study was to evaluate the influence of dentin on the pH levels of different concentrations of sodium hypochlorite (NaOCl) solutions over time and to evaluate if preconditioning of dentin with 17% EDTA or agitation of the NaOCl solution influences these pH levels.

  3. Isotopic equilibria between sulphur solute species at high temperature

    International Nuclear Information System (INIS)

    Robinson, B.W.

    1978-01-01

    Sulphur solute species in ore solutions and geothermal discharges include HSO 4 - , SO 4 2- , H 2 S, and HS - , as well as the ion-paired species, NaHS 0 , NaHSO 4 - and Na 2 SO 4 0 . Observed sulphate-sulphide fractionation factors and the rates of attainment of isotopic equilibrium are likely to depend on the nature of the sulphur species actually taking part in these isotopic equilibria. Preliminary experiments in alkaline solution (pH 10.1 at 20 0 C) were carried out in a gold cell. No significant isotope fractionation was observed between the SO 4 2- and HS - in 29 days at 200 0 C, 63days at 300 0 C, or 90 days at 250 0 C. However, similar experiments at 350 0 C in sealed gold capsules at room temperature pH 8.5 showed slow exchange(t( 1 / 2 ) was calculated to be 510 days for the SO 4 2- -HS - exchange reaction using the theoretical fractionation of 20.2 0 / 00 ). The addition of NaCl appeared to have no affect on the exchange. However, pH strongly controls the reaction rate, and exchange probably involves H 2 S and the HSO 4 - ion. Additional preliminary experiments were conducted with a fivefold increase in the sulphur concentration; a decrease in t( 1 / 2 ) to 142 days resulted. Some inter-relationship between sulphur concentration and exchange rate thus exists. The important controlling parameters of isotope exchange (temperature, pH, and ΣS) can be seen to have influenced exchange in natural systems.(auth.)

  4. The influence of pH on the adsorption of lead by Na-clinoptilolite ...

    African Journals Online (AJOL)

    The influence of pH on the adsorption of lead by Na-clinoptilolite: Kinetic and equilibrium studies. ... At high pH of the contact solution, the adsorption process occurs by ion exchange and at low pH; i.e., it is physical. The variation of the Gibbs free energy demonstrates that adsorption occurs spontaneously. The process was ...

  5. Reassessment of pH reference values with improved methodology for the evaluation of ionic strength

    International Nuclear Information System (INIS)

    Lito, M.J. Guiomar H.M.; Camoes, M. Filomena G.F.C.

    2005-01-01

    The conflict between pH as empirical number in routine control and the pH value regarded as conveying some information concerning the effective concentration or activity of hydrogen ions, a H , has caused much confusion. There are, however, reasons to conclude that the overwhelming amount of thermodynamic data is not sufficiently accurate--either due to ignorance of metrological concepts or due to insufficiently specified measurement processes of fundamental chemical quantities pH. The commonly used seven reference buffer solutions to which primary pH values have been conventional assigned, represent a selection out of a more extensive list, recommended by NBS (now NIST) in 1962. From then onwards conventions concerning the Debye-Hueckel model of electrolyte solutions and ionic strength have been revised and the pH(S) values reassessed in conformity but only for these seven reference buffer solutions. The others have, so far remained unchanged, locking harmonisation of the conventionally assigned pH(S) values. In this work, ionic strength is calculated through complete equations derived from the acidity constants. Concentrations of the various species involved in the conventional assignment of pH and their corresponding activity coefficients are therefore, more rigorously known. The process proves particularly useful for poliprotic acids with overlapping acidity constants, where the ratio is less than 10 3 . As a consequence, conventionally assigned pH values of reference buffer solutions are recalculated and corrections are introduced as appropriate

  6. The radiation chemistry of aqueous sodium terephthalate solutions

    International Nuclear Information System (INIS)

    Matthews, R.W.

    1980-04-01

    The radiation chemistry of cobalt-60 gamma-irradiated aqueous sodium terephthalate solutions has been studied. In aerated 4 x 10 -4 M sodium hydroxide solutions, the main products are hydroxyterephthalate (HTA) (G = 0.99 +- 0.01), carbonate (G = 1.31 +- 0.08), and peroxides (G = 2.84 +- 0.04). The HTA and carbonate species are both formed as a result of hydroxyl radical attack and account for approximately 90 per cent of hydroxyl radical reactions. Oxygen needs to be present for efficient conversion of the terephthalate-OH radical adduct to HTA and oxygenation increases G(HTA) above the aerated solution value. G(HTA) is unaffected by changes in terephthalate concentration between 1 x 10 -4 M and 1 x 10 -2 M in sodium hydroxide solutions at pH 10. Decreasing the solution pH does however affect G(HTA). In phosphate buffered solutions pH 6.85, G(HTA) is 0.93 +- 0.01 and lower values are obtained with further decrease in solution pH. The lowering of the G(HTA) value is attributed to recombination reactions between the terephthalate-OH radical products and reducing radical products. Experimental evidence supporting the recombination postulate was obtained from the measurement of a parallel decrease in the peroxide yield and the observation of a dose rate effect on G(HTA). Competition kinetic studies with the added solutes carbonate and bicarbonate gave the rate ratios k (OH + TA 2- ) : k(OH + CO 3 2- ) : k(OH + HCO 3 - ) = 1 : 0.105 : 0.0036

  7. Modelling of niobium sorption on clay minerals in sodium and calcium perchlorate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ervanne, Heini; Hakanen, Martti; Lehto, Jukka [Helsinki Univ. (Finland). Laboratory of Radiochemistry

    2014-11-01

    The sorption behaviour of niobium on kaolinite and illite minerals in sodium and calcium perchlorate solutions was evaluated with use of the mass distribution coefficient, Rd, obtained in batch sorption experiments. Very high distribution coefficient values, about 100 m{sup 3}/kg, were obtained for both minerals in the neutral pH range between 6 and 8. Values were somewhat lower at pH 5. In NaClO{sub 4} solution, the sorption of niobium starts to decrease at pH higher than 8. This is in agreement with the increase, with pH, in the proportion of anionic niobate species, which are presumed to be low or non-sorbing. A similar decrease was not observed in Ca(ClO{sub 4}){sub 2} solution, probably owing to the influence of Ca on niobium solution speciation and surface species. The surface complexation model was applied to model the Rd values. The model fitted well for the NaClO{sub 4} solution but only at pH below 9 for the Ca(ClO{sub 4}){sub 2} solution. The discrepancy between the strong sorption of niobium in calcium-bearing solution at high pH and the calculated speciation is due in part to the non-inclusion of calcium niobate solution species and Ca-Nb compounds in the present NEA and other similar thermodynamic databases.

  8. The role of preservation solution on acid-base regulation during machine perfusion of kidneys.

    Science.gov (United States)

    Baicu, Simona C; Taylor, Michael J; Brockbank, Kelvin G M

    2006-01-01

    To meet the current clinical organ demand, efficient preservation methods and solutions are needed to increase the number of viable kidneys for transplantation. In the present study, the influence of perfusion solution buffering strength on renal pH dynamics and regulation mechanisms during kidney ex vivo preservation was determined. Porcine kidneys were hypothermically machine perfused for 72 h with either Unisol-UHK or Belzer-Machine Perfusion solution, Belzer-MP solution. Renal perfusate samples were periodically collected and biochemically analyzed. The UHK solution, a Hepes-based solution (35 mM), provided a more efficient control of renal pH that, in turn, resulted in minor changes in the perfusate pH relative to baseline, in response to tissue CO2 and HCO3- production. In the perfusate of Belzer-MP kidney group a wider range of pH values were recorded and a pronounced pH reduction was seen in response to significant rises in pCO2 and HCO3- concentrations. The Belzer-MP solution, containing phosphate (25 mM) as its main buffer, and only 10 mM Hepes, had a greater buffering requirement to attenuate larger pH changes.

  9. Two decades of chemical imaging of solutes in sediments and soils

    DEFF Research Database (Denmark)

    Santner, Jakob; Larsen, Morten; Kreuzeder, Andreas

    2015-01-01

    understanding of biogeochemical processes regulating the distribution of key elements and solutes including O2, CO2, pH, redox conditions as well as nutrient and contaminant ion species in structurally complex soils and sediments. Recently these methods have been applied in parallel or integrated as so...

  10. Stress corrosion cracking of X80 pipeline steel exposed to high pH solutions with different concentrations of bicarbonate

    Science.gov (United States)

    Fan, Lin; Du, Cui-wei; Liu, Zhi-yong; Li, Xiao-gang

    2013-07-01

    Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HCO{3/-} at a passive potential of -0.2 V vs. SCE were investigated by slow strain rate tensile (SSRT) test. The SCC mechanism and the effect of HCO{3/-} were discussed with the aid of electrochemical techniques. It is indicated that X80 steel shows enhanced susceptibility to SCC with the concentration of HCO{3/-} increasing from 0.15 to 1.00 mol/L, and the susceptibility can be evaluated in terms of current density at -0.2 V vs. SCE. The SCC behavior is controlled by the dissolution-based mechanism in these circumstances. Increasing the concentration of HCO{3/-} not only increases the risk of rupture of passive films but also promotes the anodic dissolution of crack tips. Besides, little susceptibility to SCC is found in dilute solution containing 0.05 mol/L HCO{3/-} for X80 steel. This can be attributed to the inhibited repassivation of passive films, manifesting as a more intensive dissolution in the non-crack tip areas than at the crack tips.

  11. Acidez potencial pelo método do pH SMP no Estado do Amazonas Potential acidity by pH SMP method in Amazonas State, Brazil

    Directory of Open Access Journals (Sweden)

    Adônis Moreira

    2004-01-01

    Full Text Available O objetivo deste trabalho foi definir um modelo matemático que estime o H+Al a partir do pH SMP medido em água e em solução de CaCl2 0,01 mol L-1 nas condições edafoclimáticas locais. Foram utilizadas 246 amostras de solo provenientes de diversas localidades. Mesmo apresentando menor coeficiente da correlação (r = 0,89*, a equação H+Al = 30,646 - 3,848pH SMP obtida em H2O foi mais eficiente que a obtida em solução CaCl2 (H+Al = 30,155 - 3,834pH SMP, r = 0,91*, a qual subestima os valores da acidez potencial.The objective of this work was to determine a mathematic model that estimates the potential acidity with pH SMP measured in water and in solution of CaCl2 0.01 mol L-1. Two hundred and forty six soil samples from several localities were utilized. Despite presenting a lower correlation coefficient (r = 0.89*, the equation H+Al = 30.646 - 3.848pH SMP, obtained in H2O, was more efficient than in the CaCl2 solution (H+Al = 30.155 -3.834pH SMP, r = 0.91*, since this last one underestimates the values of the potential acidity.

  12. Exercises in experimental physics including complete solutions

    International Nuclear Information System (INIS)

    Fleischmann, R.; Loos, G.

    1978-01-01

    This collection of exercises is not only addressed to students of physics but also to scientists of other branches and to engineers. Possibilities are offered to the student to gain control on his growing knowledge from the beginning of his studies until the examination. The individual exercises are linked thematically and are mostly composed by several single tasks. Complete and detailed numerical solutions are presented. The topics covered are: (1) Mechanics, (2) thermodynamics, (3) oscillations and their propagation, (4) electricity and magnetism, (5) atomic physics, and (6) nuclear physics. (KBE)

  13. Effect of pH on Separation of Solid Content from Paint Contained Wastewater by a Coagulant-flocculant Compound

    Directory of Open Access Journals (Sweden)

    Mojtaba Semnani Rahbar

    2014-05-01

    Full Text Available Chemical wastewater treatment is one of the attracting and common methods for wastewater treatment among the currently employed chemical unit processes. The use of coagulant-flocculant compound is one of the efficient methods for separating of paint and recovery of water. In this research, it was introduced and the effect of pH on removal of solid content from solution was studied experimentally. For this purpose, sludge and suspended solid content of the solution were determined in a jar test by measurement of UV absorption of treated solution and solid separation percentage. The results showed that in pH range 9.5-10.5, maximum efficiency of solid content removal was up to 95%. Consequently, maximum paint removal was obtained in this range of pH. The separation of solid content of the solution was due to formation of aluminum hydroxide. As shown by the results, the reduction of potassium hydroxide as pH adjuster caused decrease of pH and consequently decreases of aluminum hydroxide and solid content removal.  

  14. Ph responsive permeability and Ion- exchange characteristics of (PE/EPDM)-g-PMAA membranes

    International Nuclear Information System (INIS)

    El- Awady, M.M.; El-Awady, N.I.; Eissa, A.M.

    2005-01-01

    Chemical grafting of methacrylic acid (MAA) on low density exchange membranes for recovery of different cations from their solutions was investigated. When the dialysis permeability of two solutes (glucose + urea) through the membrane were tested at different ph values and compared, glucose was found to be less efficient than urea for permeation through the membrane. The permeability response of such solute was noticed only at higher ph value (ph 8). The grafted film (membrane) with graft yield of 185% is experimentally adequate to permeate all molecules with radius of lower than 4.3 x 10 polyethylene blended with EPDM with a ratio (90/10) films was carried out using sodium bisulphite as initiator. Factors affecting grafting and the properties of the grafted films were studied in details and showed improved hydrophilic properties, good thermal stability and nearly unaffected strength properties which make them acceptable for practical uses.In the present work, the possibility of practical uses of such grafted films as ph-responsive membranes in a dialysis process and as ion--7 mm. Grafted membranes in different forms (COOH-form), (Na-methacrylate form) and (K methacrylate- form) were prepared to evaluate the membranes uptake selectivity to different mono, di-and trivalent cations from their solutions. The results obtained showed very good efficiency of the prepared membranes as compared with the values obtained for the commercial cation exchange resin (Dowex)

  15. Laser-induced breakdown spectroscopy: Extending its application to soil pH measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Edilene Cristina, E-mail: edilene@iq.unesp.br [São Paulo State University – UNESP, Analytical Chemistry Department, Rua Prof. Francisco Degni 55, CEP 14800-060, Araraquara, SP (Brazil); Gomes Neto, José A. [São Paulo State University – UNESP, Analytical Chemistry Department, Rua Prof. Francisco Degni 55, CEP 14800-060, Araraquara, SP (Brazil); Milori, Débora M.B.P.; Ferreira, Ednaldo José [Embrapa Agricultural Instrumentation, Rua XV de Novembro 1452, CEP 13560-970, São Carlos, SP (Brazil); Anzano, Jesús Manuel [Laser Laboratory & Environment, Faculty of Sciences, University of Zaragoza, C/. Pedro Cerbuna 12, 50009, Zaragoza (Spain)

    2015-08-01

    Acid–base equilibria are involved in almost all the processes that occur in soil. The bioavailability of nutrients for plants, for instance, depends on the solubilization of mineral nutrients in the soil solution, which is a pH-dependent process. The determination of pH in soil solutions is usually carried out by potentiometry using a glass membrane electrode, after extracting some of the soil components with water or CaCl{sub 2} solution. The present work describes a simple method for determining the pH of soil, using laser-induced breakdown spectroscopy (LIBS). Sixty samples presenting different textural composition and pH (previously determined by potentiometry) were employed. The samples were divided into a calibration set with fifty samples and a validation set with ten samples. LIBS spectra were recorded for each pelleted sample using laser pulse energy of 115 mJ. The intensities of thirty-two emission lines for Al, Ca, H, and O were used to fit a partial least squares (PLS) model. The model was validated by prediction of the pH of the validation set samples, which showed good agreement with the reference values. The prediction mean absolute error was 0.3 pH units and the root mean square error of the prediction was 0.4. These results highlight the potential of LIBS for use in other applications beyond elemental composition determinations. For soil analysis, the proposed method offers the possibility of determining pH, in addition to nutrients and contaminants, using a single LIBS measurement. - Highlights: • Physical, chemical, and biological properties of soil are influenced by pH. • The pH of mineral soils is normally determined in slurries of water and soil sample by potentiometric measurements. • The association of LIBS elemental emissions with multivariate strategies of analysis has become LIBS a powerful technique. • LIBS was unprecedentedly applied for direct pH determination in different kinds of soil sample. • The clean and fast proposed

  16. Ratiometric pH Imaging with a CoII2 MRI Probe via CEST Effects of Opposing pH Dependences (Postprint)

    Science.gov (United States)

    2017-10-13

    acid-catalyzed proton exchange, respectively. Importantly, the pH calibration curve is independent of the probe concentration and is identical in...in aqueous solutions containing 50 mM HEPES and 100 mM NaCl buffered at various pH values were acquired using D2O in an inner capillary to lock the...ppm using a presaturation pulse applied for 6 s at a power level (B1) of 24 μT. D2O was placed in an inner capillary within the NMR sample tube to lock

  17. Formation of fine solid particles from aqueous solutions of sodium chloropalladate by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Fujita, Iwao; Korekawa, Kei-ichi.

    1994-10-01

    Studies have been carried out on the radiation chemical formation of palladium fine particles in argon saturated aqueous solutions of sodium chloropalladate without organic stabilizer. The solutions were irradiated with gamma-rays from a cobalt gamma-ray source and the irradiated solutions were subjected to the dynamic light scattering analysis for the particle diameter measurements, and to the UV-visible optical absorption spectroscopy for the measurements of turbidity (absorption at 700 nm) and remaining chloropalladate ion concentrations in the solution. In the solution of pH = 1.95 by HCl, the turbidity increased after the irradiation and then decreased with time. The concentration of remaining palladate ion in the solution decreased by the irradiation, but it gradually increased with time after the irradiation. These phenomena were qualitatively explained by the reaction scheme in that a precursor to the solid particles still exists in the solution after the irradiation was terminated, and that intermediates including the precursor reacted with chloride ion to re-form chloropalladate ions. The average diameter of the particles after the irradiation was ca. 20 nm and it increased with time to 40 nm at 2.75 kGy, and to 80 nm at 8.25 kGy absorption of radiation. The solution of pH = 0.65 by HCl was found to give lower yields of particles than those observed for the solution of pH = 1.95, and to give the particles of diameters about 150-200 nm. In the solution containing HClO 4 instead of HCl, palladium particles were also formed by the irradiation, whereas no backward reaction after the irradiation was observed due to the low concentration of chloride ion in the solution. The average diameter of the particles after the irradiation was about 300 nm and increased with time after the irradiation to a final values which was found to depend on pH of the solution and dose. (author)

  18. Some effects of pH on iodine volatility in containment

    International Nuclear Information System (INIS)

    Ashmore, C.B.; Gwyther, J.R.; Sims, H.E.

    1994-01-01

    The behaviour of iodine in containment in the event of an accident involving fission product release would be strongly dependent on pH. High pH leads to a lower rate of radiolytic oxidation and in alkaline conditions the thermally stable form is IO 3 - . Much of the work on effects of pH on radiolytic oxidation reported in the literature may be erroneous or misleading because of postirradiation reaction and in this report some new experiments are described which were designed to overcome these problems involving sparged irradiated solutions of CsI spiked with 131 I. The rate of radiolytic oxidation has been measured as a function of pH between pH 4.6 and pH 9 and iodide concentrations between 10 -4 and 10 -6 mol dm -3 . Also discussed in the paper are factors which can affect the pH of the sump water and the effects of high pH in sprays. It is concluded that high pH is beneficial and it is important not only to achieve high pH but to maintain it. (author). 10 refs., 1 tab., 6 figs

  19. Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions

    International Nuclear Information System (INIS)

    Wang Yu; Gao Bin; Morales, Verónica L.; Tian Yuan; Wu Lei; Gao Jie; Bai Wei; Yang Liuyan

    2012-01-01

    Because of its wide applications, nanosized titanium dioxide may become a potential environmental risk to soil and groundwater system. It is therefore important to improve current understanding of the environmental fate and transport of titanium oxides nanoparticles (TONPs). In this work, the effect of solution chemistry (i.e., pH, ionic strength, and natural organic matter (NOM) concentration) on the deposition and transport of TONPs in saturated porous media was examined in detail. Laboratory columns packed with acid-cleaned quartz sand were used in the experiment as porous media. Transport experiments were conducted with various chemistry combinations, including four ionic strengths, three pH levels, and two NOM concentrations. The results showed that TONP mobility increased with increasing solution pH, but decreased with increasing solution ionic strength. It is also found that the presence of NOM in the system enhanced the mobility of TONPs in the saturated porous media. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was used to justify the mobility trends observed in the experimental data. Predictions from the theory agreed excellently with the experimental data.

  20. Fiber Optic pH Sensor with Self-Assembled Polymer Multilayer Nanocoatings

    OpenAIRE

    Shao, Li-Yang; Yin, Ming-Jie; Tam, Hwa-Yaw; Albert, Jacques

    2013-01-01

    A fiber-optic pH sensor based on a tilted fiber Bragg grating (TFBG) with electrostatic self-assembly multilayer sensing film is presented. The pH sensitive polymeric film, poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) was deposited on the circumference of the TFBG with the layer-by-layer (LbL) electrostatic self-assembly technique. The PDDA/PAA film exhibits a reduction in refractive index by swelling in different pH solutions. This effect results in wavelength s...

  1. Passivation behavior of a ferritic stainless steel in concentrated alkaline solutions

    Directory of Open Access Journals (Sweden)

    Arash Fattah-alhosseini

    2015-10-01

    Full Text Available The passivation behavior of AISI 430 ferritic stainless steel was investigated in concentrated alkaline solutions in relation to several test parameters, using electrochemical techniques. Increasing solution pH (varying from 11.5 to 14.0 leads to an increase in the corrosion rate of the alloy. Mott–Schottky analysis revealed that passive films formed on AISI 430 ferritic stainless steel behave as n-type semiconductor and the donor densities increased with pH. Electrochemical impedance spectroscopy (EIS results showed that the reciprocal capacitance of the passive film is directly proportional to its thickness, which decreases with pH increase. The results revealed that for this ferritic stainless steel in concentrated alkaline solutions, decreasing the solution pH offers better conditions for forming passive films with higher protection behavior, due to the growth of a much thicker and less defective film.

  2. Efeito do pH na adsorção e dessorção de cádmio em Latossolos brasileiros Effect of pH on cadmium adsorption and desorption in Brazilian Oxisols

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Pereira Pierangeli

    2005-07-01

    in soils are influenced by the surface of the soil colloid attributes and solution composition. This study evaluated the effect of the pH on Cd adsorption (Cd ads and desorption (Cd des in l7 Brazilian Oxisol samples that differed in their chemical, physical and mineralogical attributes. Samples of each soil, suspended in 5 mmol L-1 Ca(NO32 (pH adjusted to 4.5; 5.5, and 6.5; ratio soil:solution 1:67 were placed to react with 0.20 mmol L-1 Cd(NO32 (final ratio soil:solution 1:100 for 72 h, after which they were centrifuged and the Cd concentration of the solution determined. Thereafter, 25 mL of 5 mmol L-1 Ca(NO32 were added to the remaining residue to desorb the Cd retained in the soil samples. An increase of the pH solution from 4.5 to 5.5, from 4.5 to 6.5 and from 5.5 to 6.5 caused a 1.3; 2.2 and 1.7-fold increase in the Cd adsorption, respectively. The mean percentage of Cd adsorbed (Cd%ads was 27 (pH 4.5, 35 (pH 5.5 and 55% (pH 6.5. The effect of soil attributes on Cd ads was only evidenced at a pH of 5.5 and 6.5, by the correlations between Cd ads and the soil organic matter, specific superficial area (SSA, CEC at pH 7.0 (CEC, kaolinite, hematite, oxalate-and-DCB-Fe and clay contents. However, only CEC and clay content, at pH 5.5 and the SSA, at pH 6.5, were included in the model of Cd ads prediction, obtained through regression analyses. The adsorption in values of higher pH did not propitiate reduction in Cd des, which was around 20% for pH 4.5 and 40% for pH 5.5 and 6.5. The small proportions of Cd adsorbed by these Oxisols, mainly at lower pH values, which are an indication of high mobility and bioavailability, reinforces the need for the adoption of appropriate criteria to use or discard residues containing Cd in agricultural areas or close to aquifers.

  3. Methods of pH determination in Calcareous soils of Oman: The effect of Electrolyte and soil solution ratio

    International Nuclear Information System (INIS)

    Al-Busaidi, A.; Cookson, P.

    2002-01-01

    Determination of pH assists in understanding many reactions that occur in soil. Soil pH values are highly sensitive to the procedure used for determination. In this study, pH was measured in different electrolytes [distilled water (pHw), 0.01MCaCl2 (pHCa), 1MKCl (pHk), and 0.01MBaCl2 (pHba)] with different soil: electrolyte ratios (i.e. 1:1, 1:2.5 and 1:5). The objective was to determine the effect of each electrolyte and dilution ratio on pH of saline and non-saline soils from Oman. It was found that ph values varied significantly between electrolytes and with different dilution ratios. Linear regression equations were generated between electrolytes, dilution ratios and were mostly significant. Soil pH values determined in different electrolytes were significantly interrelated. Water appeared as a highly suitable solvent for soil pH measurements because it is simple and values familiar to soil users. However, alkaline errors and electrode instabilities due to liquid junction and soluble salt effects, affected soil pH measurements, especially in water, and resulted in alkaline errors during pH measurements. Errors were minimized when pH was measured in electrolytes rather than in water. (author)

  4. Photo-induced degradation of some flavins in aqueous solution

    International Nuclear Information System (INIS)

    Holzer, W.; Shirdel, J.; Zirak, P.; Penzkofer, A.; Hegemann, P.; Deutzmann, R.; Hochmuth, E.

    2005-01-01

    The blue-light induced photo-degradation of FMN, FAD, riboflavin, lumiflavin, and lumichrome in aqueous solution at pH 8 is studied by measurement of absorption coefficient spectral changes due to continuous excitation at 428 nm. The quantum yields of photo-degradation determined are φ D (riboflavin, pH 8) ∼ 7.8 x 10 -3 , φ D (FMN, pH 5.6) ∼ 7.3 x 10 -3 , φ D (FMN, pH 8) ∼ 4.6 x 10 -3 , φ D (FAD, pH 8) ∼ 3.7 x 10 -4 , φ D (lumichrome, pH 8) ∼ 1.8 x 10 -4 , and φ D (lumiflavin, pH 8) approx. 1.1 x 10 -5 . In a mass-spectroscopic analysis, the photo-products of FMN dissolved in water (solution pH is 5.6) were identified to be lumichrome and the lumiflavin derivatives dihydroxymethyllumiflavin, formyllumiflavin, and lumiflavin-hydroxy-acetaldehyde. An absorption and emission spectroscopic characterisation of the primary photoproducts of FMN at pH 8 is carried out

  5. Photo-induced degradation of some flavins in aqueous solution

    Science.gov (United States)

    Holzer, W.; Shirdel, J.; Zirak, P.; Penzkofer, A.; Hegemann, P.; Deutzmann, R.; Hochmuth, E.

    2005-01-01

    The blue-light induced photo-degradation of FMN, FAD, riboflavin, lumiflavin, and lumichrome in aqueous solution at pH 8 is studied by measurement of absorption coefficient spectral changes due to continuous excitation at 428 nm. The quantum yields of photo-degradation determined are ϕD(riboflavin, pH 8) ≈ 7.8 × 10 -3, ϕD(FMN, pH 5.6) ≈ 7.3 × 10 -3, ϕD(FMN, pH 8) ≈ 4.6 × 10 -3, ϕD(FAD, pH 8) ≈ 3.7 × 10 -4, ϕD(lumichrome, pH 8) ≈ 1.8 × 10 -4, and ϕD(lumiflavin, pH 8) ⩽ 1.1 × 10 -5. In a mass-spectroscopic analysis, the photo-products of FMN dissolved in water (solution pH is 5.6) were identified to be lumichrome and the lumiflavin derivatives dihydroxymethyllumiflavin, formyllumiflavin, and lumiflavin-hydroxy-acetaldehyde. An absorption and emission spectroscopic characterisation of the primary photoproducts of FMN at pH 8 is carried out.

  6. Photo-induced degradation of some flavins in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, W. [Institut II-Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Shirdel, J. [Institut II-Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Zirak, P. [Institut II-Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Penzkofer, A. [Institut II-Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany)]. E-mail: alfons.penzkofer@physik.uni-regensburg.de; Hegemann, P. [Institut fuer Biochemie I, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Deutzmann, R. [Institut fuer Biochemie I, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Hochmuth, E. [Institut fuer Biochemie I, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany)

    2005-01-10

    The blue-light induced photo-degradation of FMN, FAD, riboflavin, lumiflavin, and lumichrome in aqueous solution at pH 8 is studied by measurement of absorption coefficient spectral changes due to continuous excitation at 428 nm. The quantum yields of photo-degradation determined are {phi}{sub D}(riboflavin, pH 8) {approx} 7.8 x 10{sup -3}, {phi}{sub D}(FMN, pH 5.6) {approx} 7.3 x 10{sup -3}, {phi}{sub D}(FMN, pH 8) {approx} 4.6 x 10{sup -3}, {phi}{sub D}(FAD, pH 8) {approx} 3.7 x 10{sup -4}, {phi}{sub D}(lumichrome, pH 8) {approx} 1.8 x 10{sup -4}, and {phi}{sub D}(lumiflavin, pH 8) approx. 1.1 x 10{sup -5}. In a mass-spectroscopic analysis, the photo-products of FMN dissolved in water (solution pH is 5.6) were identified to be lumichrome and the lumiflavin derivatives dihydroxymethyllumiflavin, formyllumiflavin, and lumiflavin-hydroxy-acetaldehyde. An absorption and emission spectroscopic characterisation of the primary photoproducts of FMN at pH 8 is carried out.

  7. Modeling retention and selectivity as a function of pH and column temperature in liquid chromatography.

    Science.gov (United States)

    Gagliardi, Leonardo G; Castells, Cecilia B; Ràfols, Clara; Rosés, Martí; Bosch, Elisabeth

    2006-08-15

    In reversed-phase liquid chromatography (RPLC), the retention of weak acids and bases is a sigmoidal function of the mobile-phase pH. Therefore, pH is a key chromatographic variable to optimize retention and selectivity. Furthermore, at an eluent pH close to the pKa of the solute, the dependence of ionization of the buffer and solute on temperature can be used to improve chromatographic separations involving ionizable solutes by an adequate handling of column temperature. In this paper, we derive a general equation for the prediction of the retentive behavior of ionizable compounds upon simultaneous changes in mobile-phase pH and column temperature. Four experiments, two limiting pH values and two temperatures, provide the input data that allow predictions in the whole range of these two variables, based on the thermodynamic fundamentals of the involved equilibria. Also, the study demonstrates the significant role that the choice of the buffer compound would have on selectivity factors in RPLC at temperatures higher than 25 degrees C.

  8. Manganese toxicity in pasture legumes. II. Effects of pH and molybdenum levels in the substrate

    Energy Technology Data Exchange (ETDEWEB)

    Truong, N V; Andrew, C S; Wilson, G L

    1971-06-01

    The effects of pH and Mo levels in the growing media on Mn toxicity were investigated for white clover and five tropical pasture legume species. In solution culture, high Mo supply did not influence Mn toxicity. However, in two species, it caused Mo toxicity. High solution pH intensified Mn toxicity in white clover, probably by way of uptake. The effects of Ca and P on Mn toxicity reported in a previous paper, were not greatly influenced by solution pH. In the soil, Mo application greatly increased dry matter yield of white clover grown on soils high in exchangeable Mn. This effect was more easily attributed to an influence on N metabolism of the legume plant than on Mn toxicity. Measured soil pH was found to have little influence on the level of exchangeable Mn in the soil. However the larger pH changes in small soil pockets, resulting from non-uniform incorporation of chemicals in the soil, might have a more important effect on this fraction of soil Mn. 31 references, 7 tables.

  9. Cadmium triggers Elodea canadensis to change the surrounding water pH and thereby Cd uptake.

    Science.gov (United States)

    Javed, M Tariq; Greger, Maria

    2011-01-01

    This study was aimed to investigate the influence of Elodea canadensis shoots on surrounding water pH in the presence of cadmium and the effect of plant-induced pH on cadmium uptake. The pH change in the surrounding nutrient solution and Cd uptake by Elodea shoots were investigated after cultivation of various plant densities (1, 3, 6 plants per 500 ml) in hydroponics at a starting pH of 4.0 and in the presence of different concentrations of cadmium (0, 0.1, 0.5 microM). Cadmium uptake was also investigated at different constant pH (4.0, 4.5, 5.5 and 6.5). To investigate if the pH change arose from photosynthetic activities, plants were grown under light, darkness or in the presence of a photosynthetic inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and 0.5 microM cadmium in the solution. Elodea had an ability to increase the surrounding water pH, when the initial pH was low, which resulted in increased accumulation of Cd. The higher the plant density, the more pronounced was the pH change. The pH increase was not due to the photosynthetic activity since the pH rise was more pronounced under darkness and in the presence of DCMU. The pH increase by Elodea was triggered by cadmium.

  10. Arsenic removal from acidic solutions with biogenic ferric precipitates.

    Science.gov (United States)

    Ahoranta, Sarita H; Kokko, Marika E; Papirio, Stefano; Özkaya, Bestamin; Puhakka, Jaakko A

    2016-04-05

    Treatment of acidic solution containing 5g/L of Fe(II) and 10mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7h, 96-98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pHremoves iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Laboratory evaluation of limestone and lime neutralization of acidic uranium mill tailings solution. Progress report

    International Nuclear Information System (INIS)

    Opitz, B.E.; Dodson, M.E.; Serne, R.J.

    1984-02-01

    Experiments were conducted to evaluate a two-step neutralization scheme for treatment of acidic uranium mill tailings solutions. Tailings solutions from the Lucky Mc Mill and Exxon Highland Mill, both in Wyoming, were neutralized with limestone, CaCO 3 , to an intermediate pH of 4.0 or 5.0, followed by lime, Ca(OH) 2 , neutralization to pH 7.3. The combination limestone/lime treatment methods, CaCO 3 neutralization to pH 4 followed by neutralization with Ca(OH) 2 to pH 7.3 resulted in the highest quality effluent solution with respect to EPA's water quality guidelines. The combination method is the most cost-effective treatment procedure tested in our studies. Neutralization experiments to evaluate the optimum solution pH for contaminant removal were performed on the same two tailings solutions using only lime Ca(OH) 2 as the neutralizing agent. The data indicate solution neutralization above pH 7.3 does not significantly increase removal of pH dependent contaminants from solution. Column leaching experiments were performed on the neutralized sludge material (the precipitated solid material which forms as the acidic tailings solutions are neutralized to pH 4 or above). The sludges were contacted with laboratory prepared synthetic ground water until several effluent pore volumes were collected. Effluent solutions were analyzed for macro ions, trace metals and radionuclides in an effort to evaluate the long term effectiveness of attenuating contaminants in sludges formed during solution neutralization. Neutralized sludge leaching experiments indicate that Ca, Na, Mg, Se, Cl, and SO 4 are the only constituents which show solution concentrations significantly higher than the synthetic ground water in the early pore volumes of long-term leaching studies

  12. Accuracy, Precision, Ease-Of-Use, and Cost of Methods to Test Ebola-Relevant Chlorine Solutions.

    Directory of Open Access Journals (Sweden)

    Emma Wells

    Full Text Available To prevent transmission in Ebola Virus Disease (EVD outbreaks, it is recommended to disinfect living things (hands and people with 0.05% chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies with 0.5% chlorine solution. In the current West African EVD outbreak, these solutions (manufactured from calcium hypochlorite (HTH, sodium dichloroisocyanurate (NaDCC, and sodium hypochlorite (NaOCl have been widely used in both Ebola Treatment Unit and community settings. To ensure solution quality, testing is necessary, however test method appropriateness for these Ebola-relevant concentrations has not previously been evaluated. We identified fourteen commercially-available methods to test Ebola-relevant chlorine solution concentrations, including two titration methods, four DPD dilution methods, and six test strips. We assessed these methods by: 1 determining accuracy and precision by measuring in quintuplicate five different 0.05% and 0.5% chlorine solutions manufactured from NaDCC, HTH, and NaOCl; 2 conducting volunteer testing to assess ease-of-use; and, 3 determining costs. Accuracy was greatest in titration methods (reference-12.4% error compared to reference method, then DPD dilution methods (2.4-19% error, then test strips (5.2-48% error; precision followed this same trend. Two methods had an accuracy of <10% error across all five chlorine solutions with good precision: Hach digital titration for 0.05% and 0.5% solutions (recommended for contexts with trained personnel and financial resources, and Serim test strips for 0.05% solutions (recommended for contexts where rapid, inexpensive, and low-training burden testing is needed. Measurement error from test methods not including pH adjustment varied significantly across the five chlorine solutions, which had pH values 5-11. Volunteers found test strip easiest and titration hardest; costs per 100 tests were $14-37 for test strips and $33-609 for titration

  13. Cinética do escurecimeno não-enzimático com soluções modelo de açúcares e aminoácidos em pH neutro e ácido = Kinetic of non-enzimatic browning with model solutions of sugar and aminoacids in neutral and acid pH

    Directory of Open Access Journals (Sweden)

    Vandré Barbosa Brião

    2011-01-01

    Full Text Available A cor dos alimentos é um importante atributo para a escolha do consumidor. O escurecimento é desejável em alguns alimentos pela cor e pelo aroma produzidos (como nos casos do pão e carne assada, mas, é indesejável em outros (como no tratamento térmico de leite. A reação de Maillard é influenciada pela natureza dos açúcares e aminoácidos envolvidos, bem como pelo pH e temperatura do processo. O objetivo do trabalho foi avaliar o escurecimento de soluções modelo contendo açúcares e aminoácidos pela reação de Maillard em pH neutro e ácido, obtendo as taxas de reação e avaliando a cinética dela. Doistipos de açúcares (glicose e lactose foram misturados com dois tipos de aminoácidos (glicina ou glutamato de sódio em pH 7,0 e pH 5,1. As soluções (2 mol L-1 foram aquecidas em água fervente (97ºC, e a absorbância medida (420 nm em intervalos de tempo. A glicose apresentou maior taxa de reação que a lactose, enquanto que entre os aminoácidos a glicina reagiu com intensidade semelhante ao glutamato. A redução do pH do meio retarda a reação, e o escurecimento demonstrou menor taxa de reação em pH ácido.The color of food is an important attribute for consumer choice. Browning is desirable in some foods due to the color and flavor itproduces (such as in bread and roasted meat, but is undesirable for others (such as heattreated milk. The Maillard reaction is influenced by the nature of the sugars and amino acids involved, as well as the pH and temperature of the process. The aim of this work was to evaluate the browning of model solutions containing sugars and amino acids due to the Maillard reaction in neutral and acid pH, and to calculate the reaction rate and the kinetics of the reaction. Two types of sugars (glucose or lactose were mixed with amino acids(glycine or sodium glutamate in pH 7.0 or pH 5.1. The solutions (2 mol L-1 were heated in boiling water (97ºC, and the absorbance was measured (420 nm at time

  14. Method of continuously regenerating decontaminating electrolytic solution

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Kobayashi, Toshio; Wada, Koichi.

    1985-01-01

    Purpose: To continuously recover radioactive metal ions from the electrolytic solution used for the electrolytic decontamination of radioactive equipment and increased with the radioactive dose, as well as regenerate the electrolytic solution to a high concentration acid. Method: A liquid in an auxiliary tank is recycled to a cathode chamber containing water of an electro depositing regeneration tank to render pH = 2 by way of a pH controller and a pH electrode. The electrolytic solution in an electrolytic decontaminating tank is introduced by way of an injection pump to an auxiliary tank and, interlocking therewith, a regenerating solution is introduced from a regenerating solution extracting pump by way of a extraction pipeway to an electrolytic decontaminating tank. Meanwhile, electric current is supplied to the electrode to deposit radioactive metal ions dissolved in the cathode chamber on the capturing electrode. While on the other hand, anions are transferred by way of a partition wall to an anode chamber to regenerate the electrolytic solution to high concentration acid solution. While on the other hand, water is supplied by way of an electromagnetic valve interlocking with the level meter to maintain the level meter constant. This can decrease the generation of the liquid wastes and also reduce the amount of the radioactive secondary wastes. (Horiuchi, T.)

  15. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress

    International Nuclear Information System (INIS)

    Zeng Fanrong; Chen Song; Miao Ying; Wu Feibo; Zhang Guoping

    2008-01-01

    The effect of chromium (Cr) stress on the changes of rhizosphere pH, organic acid exudation, and Cr accumulation in plants was studied using two rice genotypes differing in grain Cr accumulation. The results showed that rhizosphere pH increased with increasing level of Cr in the culture solution and with an extended time of Cr exposure. Among the six organic acids examined in this experiment, oxalic and malic acid contents were relatively higher, and had a significant positive correlation with the rhizosphere pH, indicating that they play an important role in changing rhizosphere pH. The Cr content in roots was significantly higher than that in stems and leaves. Cr accumulation in plants was significantly and positively correlated with rhizosphere pH, and the exudation of oxalic, malic and citric acids, suggesting that an increase in rhizosphere pH, and exudation of oxalic, malic and citric acid enhances Cr accumulation in rice plants. - Rhizosphere pH and organic acid exudation of rice roots are markedly affected by chromium level in culture solution

  16. Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community

    International Nuclear Information System (INIS)

    Cang Long; Zhou Dongmei; Alshawabkeh, Akram N.; Chen Haifeng

    2007-01-01

    Effects of sodium hypochlorite (NaClO), applied as an oxidant in catholyte, and high pH buffer solution on soil Cr removal and the functional diversity of soil microbial community during enhanced electrokinetic treatments of a chromium (Cr) contaminated red soil are evaluated. Using pH control system to maintain high alkalinity of soil together with the use of NaClO increased the electrical conductivities of soil pore liquid and electroosmotic flux compared with the control (Exp-01). The pH control and NaClO improved the removal of Cr(VI) and total Cr from the soil. The highest removal percentages of soil Cr(VI) and total Cr were 96 and 72%, respectively, in Exp-04 when the pH value of the anolyte was controlled at 10 and NaClO was added in the catholyte. The alkaline soil environment and introduction of NaClO in the soil enhanced the desorption of Cr(VI) from the soil and promoted Cr(III) oxidation to mobile Cr(VI), respectively. However, the elevated pH and introduction of NaClO in the soil, which are necessary for improving the removal efficiency of soil Cr, resulted in a significantly adverse impact on the functional diversity of soil microbial community. It suggests that to assess the negative impact of extreme conditions for enhancing the extraction efficiencies of Cr on the soil properties and function is necessary

  17. pH effect on the enthalpy of dilution and volumetric properties of protocatechuic acid at T = 298.15 K

    International Nuclear Information System (INIS)

    Zheng, Yan; Liu, Min; Wang, Yong; Wang, Chunmei; Sun, Dezhi; Wang, Bingquan

    2014-01-01

    Graphical abstract: The dilution thermal power of PCA in potassium phosphate buffer solutions at different pHs and apparent molar volumes were determined in order to investigate the interactions of PCA with the coexistent spicies. - Highlights: • Enthalpies of dilution and apparent molar volumes of PCA in PBS at different pHs were measured. • Enthalpic interaction coefficients, limiting partial molar volumes and experimental slopes of PCA were determined. • The pH dependence of the weak interactions in the investigated system was obtained. • (Solute + solvent) interactions and structure making/breaking ability of solutes in the given system were discussed. - Abstract: The enthalpies of dilution of protocatechuic acid, a natural anti-cancer substance, in sodium phosphate and potassium phosphate buffer solutions with different pH values were measured by using a mixing-flow microcalorimeter at T = 298.15 K. Densities of the pseudo binary system (phosphate buffer + protocatechuic acid) were also measured with a quartz vibrating-tube densimeter. The enthalpic interaction coefficients (h 2 , h 3 and h 4 ) were computed according to the McMillan–Mayer model. Apparent molar volumes of the system were calculated from the data of densities, which have been used to deduce limiting partial molar volumes (V ϕ 0 ) of protocatechuic acid at different pH values. The aim of the experiments and data process is to investigate the interaction between the molecules of the important drug and that of the drug molecule with coexistent species in aqueous solutions as well as the influences on these interactions of such factors as pH and ion strength. Change trends of the enthalpic pair wise interaction coefficient h 2 and V ϕ 0 of protocatechuic acid with pH increasing in the both phosphate buffer solutions were obtained. The thermodynamic properties, h 2 and V ϕ 0 in potassium phosphate buffer solutions were compared with those in sodium phosphate buffer solutions at

  18. Removal efficiency of methylene blue using activated carbon from waste banana stem: Study on pH influence

    Science.gov (United States)

    Misran, E.; Bani, O.; Situmeang, E. M.; Purba, A. S.

    2018-02-01

    The effort to remove methylene blue in artificial solution had been conducted using adsorption process. The abundant banana stem waste was utilized as activated carbon precursor. This study aimed to analyse the influence of solution pH to removal efficiency of methylene blue using activated carbon from banana stem as adsorbent. Activated carbon from banana stem was obtained by chemical activation using H3PO4 solution. Proximate analysis result showed that the activated carbon has 47.22% of fixed carbon. This value exhibited that banana stem was a potential adsorbent precursor. Methylene blue solutions were prepared at initial concentration of 50 ppm. The influence of solution pH was investigated with the use of 0.2 g adsorbent for 100 mL dye solution. The adsorption was conducted using shaker with at a constant rate of 100 rpm at room temperature for 90 minutes. The results showed that solution pH influenced the adsorption. The activated carbon from banana stem demonstrated satisfying performance since removal efficiencies of methylene blue were higher than 99%.

  19. Stability studies of lincomycin hydrochloride in aqueous solution and intravenous infusion fluids

    Directory of Open Access Journals (Sweden)

    Czarniak P

    2016-03-01

    Full Text Available Petra Czarniak, Michael Boddy, Bruce Sunderland, Jeff D Hughes School of Pharmacy, Curtin University, Perth, WA, Australia Purpose: The purpose of this study was to evaluate the chemical stability of Lincocin® (lincomycin hydrochloride in commonly used intravenous fluids at room temperature (25°C, at accelerated-degradation temperatures and in selected buffer solutions.Materials and methods: The stability of Lincocin® injection (containing lincomycin 600 mg/2 mL as the hydrochloride stored at 25°C±0.1°C in sodium lactate (Hartmann’s, 0.9% sodium chloride, 5% glucose, and 10% glucose solutions was investigated over 31 days. Forced degradation of Lincocin® in hydrochloric acid, sodium hydroxide, and hydrogen peroxide was performed at 60°C. The effect of pH on the degradation rate of lincomycin hydrochloride stored at 80°C was determined.Results: Lincomycin hydrochloride was found to maintain its shelf life at 25°C in sodium lactate (Hartmann’s solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution, with less than 5% lincomycin degradation occurring in all intravenous solutions over a 31-day period. Lincomycin hydrochloride showed less rapid degradation at 60°C in acid than in basic solution, but degraded rapidly in hydrogen peroxide. At all pH values tested, lincomycin followed first-order kinetics. It had the greatest stability near pH 4 when stored at 80°C (calculated shelf life of 4.59 days, and was least stable at pH 2 (calculated shelf life of 0.38 days.Conclusion: Lincocin® injection was chemically found to have a shelf life of at least 31 days at 25°C when added to sodium lactate (Hartmann’s solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution. Solutions prepared at approximately pH 4 are likely to have optimum stability. Keywords: lincomycin, stability, pH, intravenous fluids, IV additives

  20. Biobased, Internally pH-Sensitive Materials: Immobilized Yellow Fluorescent Protein as an Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Matrices.

    Science.gov (United States)

    Consolati, Tanja; Bolivar, Juan M; Petrasek, Zdenek; Berenguer, Jose; Hidalgo, Aurelio; Guisán, Jose M; Nidetzky, Bernd

    2018-02-28

    The pH is fundamental to biological function and its measurement therefore crucial across all biosciences. Unlike homogenous bulk solution, solids often feature internal pH gradients due to partition effects and confined biochemical reactions. Thus, a full spatiotemporal mapping for pH characterization in solid materials with biological systems embedded in them is essential. In here, therefore, a fully biocompatible methodology for real-time optical sensing of pH within porous materials is presented. A genetically encoded ratiometric pH sensor, the enhanced superfolder yellow fluorescent protein (sYFP), is used to functionalize the internal surface of different materials, including natural and synthetic organic polymers as well as silica frameworks. By using controlled, tailor-made immobilization, sYFP is homogenously distributed within these materials and so enables, via self-referenced imaging analysis, pH measurements in high accuracy and with useful spatiotemporal resolution. Evolution of internal pH is monitored in consequence of a proton-releasing enzymatic reaction, the hydrolysis of penicillin by a penicillin acylase, taking place in solution or confined to the solid surface of the porous matrix. Unlike optochemical pH sensors, which often interfere with biological function, labeling with sYFP enables pH sensing without altering the immobilized enzyme's properties in any of the materials used. Fast response of sYFP to pH change permits evaluation of biochemical kinetics within the solid materials. Thus, pH sensing based on immobilized sYFP represents a broadly applicable technique to the study of biology confined to the internally heterogeneous environment of solid matrices.

  1. Molecular gated-AlGaN/GaN high electron mobility transistor for pH detection.

    Science.gov (United States)

    Ding, Xiangzhen; Yang, Shuai; Miao, Bin; Gu, Le; Gu, Zhiqi; Zhang, Jian; Wu, Baojun; Wang, Hong; Wu, Dongmin; Li, Jiadong

    2018-04-18

    A molecular gated-AlGaN/GaN high electron mobility transistor has been developed for pH detection. The sensing surface of the sensor was modified with 3-aminopropyltriethoxysilane to provide amphoteric amine groups, which would play the role of receptors for pH detection. On modification with 3-aminopropyltriethoxysilane, the transistor exhibits good chemical stability in hydrochloric acid solution and is sensitive for pH detection. Thus, our molecular gated-AlGaN/GaN high electron mobility transistor acheived good electrical performances such as chemical stability (remained stable in hydrochloric acid solution), good sensitivity (37.17 μA/pH) and low hysteresis. The results indicate a promising future for high-quality sensors for pH detection.

  2. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-11-09

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  3. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    Science.gov (United States)

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865

  4. Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection

    Science.gov (United States)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.

  5. Effect of pH change on the primary uran-mica mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Shmariovich, E M; Zhil' tsova, I G; Pakul' nis, G V; Shugina, G A [Ministerstvo Geologii SSR, Moscow

    1982-01-01

    Conditions of the formation of ore bodies of hexavalent uranium minerals represented by uranyl vanadates and phosphates which are primary and sedimented from low temperature solutions (carnotite deposits in calcretes and carnotite - autunite deposits in black shale formations) are considered. Thermodynamic curves of the solubility dependence of various uranyl minerals on pH medium in the absence of SO/sub 4//sup 2 -/ and CO/sub 3//sup 2 -/ ions and for sulphate-carbonate solutions have been calculated using dissociation constants of corresponding acids and ..delta..G/sup 0/f(298.15) values. It has been ascertained that uranyl mineral compounds according to the dependence of their solubility on ph medium form a distinct series from molybdates through arsenates, phosphates, vanadates and silicates to minerals of uranophane and kasolite group. It is shown that during the formation of infiltration deposits with uranyl mineralization a decisive role is played by the contrast change of pH value of medium caused by the presence of acid geochemical barrier (uranyl molybdates, arsenates, phosphates and vanadates are precipitating) or neutralizing alkaline barriers (uran-mica and uranyl silicates are precipitating) on the path of movement of oxygen metal-bearing solutions.

  6. Radiolysis of Reactive AZO Dyes in Aqueous Solution

    International Nuclear Information System (INIS)

    Bagyo, Agustin NM; Winarti-Andayani; Hendig-Winarno; Ermin-Katrin; Soebianto, Yanti S

    2004-01-01

    The effects of radiation on aerated reactive dye solutions i.e Cibacron Violet, Cibacron Orange and Cibacron Yellow solutions have been studied. Parameters analysis were the change of pH after radiation, the change of absorption, degradation products and effects of pH on the radiolysis. The uv-vis absorption of solutions were observed before and after irradiation. pH variation was done from pHs 3, 5, 7, 9 and 12. Irradiation was done at doses of 0, 2, 4, 6, 8 and 10 kGy with dose rate of 5 kGy/h and was determined by a Fricke dosimeter. HPLC with UV detector was used to analyze the degradation products. Oxalic acid was the main degradation product and small amount of succinic acid was also detected. (author)

  7. Corrosion of alloy C-22 in organic acid solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Rodriguez, Martin A.; Giordano, Celia M.

    2007-01-01

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C degrees. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric acids. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and Picric acids showed a slightly higher corrosion rate, and Acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids. (author) [es

  8. Sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured rat caput epididymal epithelium.

    Science.gov (United States)

    Zuo, Wu-Lin; Li, Sheng; Huang, Jie-Hong; Yang, Deng-Liang; Zhang, Geng; Chen, Si-Liang; Ruan, Ye-Chun; Ye, Ke-Nan; Cheng, Christopher H K; Zhou, Wen-Liang

    2011-01-01

    The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+)/HCO(3)(-) cotransporter in the pH regulation in rat epididymis. Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F) and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH) solution, the intracellular pH (pHi) recovery from NH(4)Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+)/H(+) exchanger (NHE). Immediately changing of the KH solution from HEPES buffered to HCO(3)(-) buffered would cause another pHi recovery. The pHi recovery in HCO(3)(-) buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), the inhibitor of HCO(3)(-) transporter or by removal of extracellular Na(+). The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH. The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium.

  9. The role of pH in heavy metal detoxification by biosorption from ...

    African Journals Online (AJOL)

    The high level of toxic metal pollution in the environment is a result of increased human activities. The hydrogen ion concentration of solutions has been known to affect reactions in solutions. The role of pH in As(V), Pb(II) and Hg(II) ions detoxification by bio-sorption from aqueous solutions using coconut fiber and sawdust ...

  10. An efficient and sensitive fluorescent pH sensor based on amino functional metal-organic frameworks in aqueous environment.

    Science.gov (United States)

    Xu, Xiao-Yu; Yan, Bing

    2016-04-28

    A pH sensor is fabricated via a reaction between an Al(III) salt and 2-aminoterephthalic acid in DMF which leads to a MOF (Al-MIL-101-NH2) with free amino groups. The Al-MIL-101-NH2 samples show good luminescence and an intact structure in aqueous solutions with pH ranging from 4.0 to 7.7. Given its exceptional stability and pH-dependent fluorescence intensity, Al-MIL-101-NH2 has been applied to fluorescent pH sensing. Significantly, in the whole experimental pH range (4.0-7.7), the fluorescence intensity almost increases with increasing pH (R(2) = 0.99688) which can be rationalized using a linear equation: I = 2.33 pH + 26.04. In addition, error analysis and cycling experiments have demonstrated the accuracy and utilizability of the sensor. In practical applications (PBS and lake water), Al-MIL-101-NH2 also manifests its analytical efficiency in pH sensing. And the samples can be easily isolated from an aqueous solution by incorporating Fe3O4 nanoparticles. Moreover, the possible sensing mechanism based on amino protonation is discussed in detail. This work is on of the few cases for integrated pH sensing systems in aqueous solution based on luminescent MOFs.

  11. Sorption of uranyl ions on silica. Effects of contact time, pH, ionic strength, concentration and phosphate

    International Nuclear Information System (INIS)

    Zhang Hongxia; Tao Zuyi

    2002-01-01

    The sorption of UO 2 2+ and phosphate on silica were simultaneously studied. The effect of contact time between the solid phase and aqueous solution, pH and ionic strength on the UO 2 2+ sorption in the absence and the presence of phosphate was investigated. The effect of contact time between the solid phase and aqueous solution, pH and ionic strength on the phosphate sorption was investigated too. The isotherms of UO 2 2+ and phosphate sorption at different pH values were determined. It was found that as compared with the sorption in the absence of phosphate, the sorption of UO 2 2+ on silica in the presence of phosphate is increased at low pH and decreased at high pH; the abruptly increased with increasing pH in the pH range 3-6; the sorption is gradually decreased with increasing pH in the pH range 2-12; the sorption insensitive and the sorption of phosphate is sensitive to ionic strength. (author)

  12. 76 FR 72978 - Whirlpool Corporation Including On-Site Leased Workers From Career Solutions TEC Staffing...

    Science.gov (United States)

    2011-11-28

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,593] Whirlpool Corporation Including On-Site Leased Workers From Career Solutions TEC Staffing, Andrews International, IBM Corporation... workers are engaged in the production of refrigerators and trash compactors. The notice was published in...

  13. EFFECT OF pH ON ELECTROLESS Ni-P COATING OF CONDUCTIVE AND NON-CONDUCTIVE MATERIALS

    Directory of Open Access Journals (Sweden)

    Subrata Roy

    2011-12-01

    Full Text Available Electroless nickel-phosphorus (Ni-P coating of carbon steel as well as a polypropylene substrate was conducted using sodium hypophosphite as a reducing agent in alkaline media. The influence of pH on coating appearances and the properties of the coatings for both steel and the polypropylene substrate were studied. A nickel-phosphorus coating of good appearance was obtained in the pH range between 5.5 and 12.5 on the carbon steel substrate and between 8.5 and 12 on the polypropylene substrate. The percentage of Ni content in the coating increased with increasing pH of the bath solution. A smooth, uniform microstructure was found in the coating deposited in relatively lower pH solutions compared to higher pH baths. The microhardness of the Ni-P coating decreased with an increasing percentage Ni content in the deposit.

  14. Establishment of a gaseous pH control concept in microbioreactors

    DEFF Research Database (Denmark)

    Zainal Alam, Muhd Nazrul Hisham Bin; Schäpper, Daniel; Gernaey, Krist

    2012-01-01

    Existing methods for pH control in bench-scale bioreactor systems often cannot be directly adapted for microbioreactors. This is because microbioreactors are commonly designed to work with constant volumes, operate bubble-free and have no headspace, which technically rules out any possibility...... of adding acid/base solution for pH control in microbioreactors. This work reports on the establishment of a gaseous pH control concept in microbioreactors where pH control was achieved by dosing of ammonia (NH3, 20 000 ppm) and pure carbon dioxide (CO2) gases to respectively; increase and lower the pH...... of the reactor content. It encompasses the establishment of an optical pH measurement by means of a fluorescent sensor spot, realization of the necessary gas connections, mixing of gases, and gas-exchange via a thin semi-permeable poly(dimethylsiloxane) (PDMS) membrane. It was shown that addition of NH3 and CO2...

  15. The effect of pH and chloride concentration on the stability and antimicrobial activity of chlorine-based sanitizers.

    Science.gov (United States)

    Waters, Brian W; Hung, Yen-Con

    2014-04-01

    Chlorinated water and electrolyzed oxidizing (EO) water solutions were made to compare the free chlorine stability and microbicidal efficacy of chlorine-containing solutions with different properties. Reduction of Escherichia coli O157:H7 was greatest in fresh samples (approximately 9.0 log CFU/mL reduction). Chlorine loss in "aged" samples (samples left in open bottles) was greatest (approximately 40 mg/L free chlorine loss in 24 h) in low pH (approximately 2.5) and high chloride (Cl(-) ) concentrations (greater than 150 mg/L). Reduction of E. coli O157:H7 was also negatively impacted (pH and high Cl(-) . Higher pH values (approximately 6.0) did not appear to have a significant effect on free chlorine loss or numbers of surviving microbial cells when fresh and aged samples were compared. This study found chloride levels in the chlorinated and EO water solutions had a reduced effect on both free chlorine stability and its microbicidal efficacy in the low pH solutions. Greater concentrations of chloride in pH 2.5 samples resulted in decreased free chlorine stability and lower microbicidal efficacy. © 2014 Institute of Food Technologists®

  16. Stability studies of lincomycin hydrochloride in aqueous solution and intravenous infusion fluids.

    Science.gov (United States)

    Czarniak, Petra; Boddy, Michael; Sunderland, Bruce; Hughes, Jeff D

    2016-01-01

    The purpose of this study was to evaluate the chemical stability of Lincocin(®) (lincomycin hydrochloride) in commonly used intravenous fluids at room temperature (25°C), at accelerated-degradation temperatures and in selected buffer solutions. The stability of Lincocin(®) injection (containing lincomycin 600 mg/2 mL as the hydrochloride) stored at 25°C±0.1°C in sodium lactate (Hartmann's), 0.9% sodium chloride, 5% glucose, and 10% glucose solutions was investigated over 31 days. Forced degradation of Lincocin(®) in hydrochloric acid, sodium hydroxide, and hydrogen peroxide was performed at 60°C. The effect of pH on the degradation rate of lincomycin hydrochloride stored at 80°C was determined. Lincomycin hydrochloride w as found to maintain its shelf life at 25°C in sodium lactate (Hartmann's) solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution, with less than 5% lincomycin degradation occurring in all intravenous solutions over a 31-day period. Lincomycin hydrochloride showed less rapid degradation at 60°C in acid than in basic solution, but degraded rapidly in hydrogen peroxide. At all pH values tested, lincomycin followed first-order kinetics. It had the greatest stability near pH 4 when stored at 80°C (calculated shelf life of 4.59 days), and was least stable at pH 2 (calculated shelf life of 0.38 days). Lincocin(®) injection was chemically found to have a shelf life of at least 31 days at 25°C when added to sodium lactate (Hartmann's) solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution. Solutions prepared at approximately pH 4 are likely to have optimum stability.

  17. Removal of radium from aqueous sulphate solutions

    International Nuclear Information System (INIS)

    Weir, D.R.; Masters, J.T.; Neven, M.

    1983-01-01

    Radium is often present in ores and an aqueous solution associated with the ore may consequently contain dissolved radium. It is frequently necessary to remove radium from such solutions to reduce the total radium content to a prescribed low level before the solution can be returned to the environment. The present invention is based on the discovery that the total radium content can be reduced to a satisfactory level within a reasonable time by adding a soluble barium salt to a radium-containing sulphate solution which also contains dissolved magnesium at a pH not greater than about 0 to precipitate radium as barium radium sulphate, raising the pH to at least 11 to precipitate an insoluble magnesium compound which collects the barium radium sulphate precipitate, and separating substantially all of the precipitates from the solution

  18. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    Science.gov (United States)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  19. Engineering polyelectrolyte multilayer structure at the nanometer length scale by tuning polymer solution conformation.

    Science.gov (United States)

    Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt

    2008-03-01

    Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.

  20. Modeling the chemical kinetics of atmospheric plasma for cell treatment in a liquid solution

    International Nuclear Information System (INIS)

    Kim, H. Y.; Kang, S. K.; Lee, H. Wk.; Lee, H. W.; Kim, G. C.; Lee, J. K.

    2012-01-01

    Low temperature atmospheric pressure plasmas have been known to be effective for living cell inactivation in a liquid solution but it is not clear yet which species are key factors for the cell treatment. Using a global model, we elucidate the processes through which pH level in the solution is changed from neutral to acidic after plasma exposure and key components with pH and air variation. First, pH level in a liquid solution is changed by He + and He(2 1 S) radicals. Second, O 3 density decreases as pH level in the solution decreases and air concentration decreases. It can be a method of removing O 3 that causes chest pain and damages lung tissue when the density is very high. H 2 O 2 , HO 2 , and NO radicals are found to be key factors for cell inactivation in the solution with pH and air variation.

  1. Influence of Soil Solution Salinity on Molybdenum Adsorption by Soils

    Science.gov (United States)

    Molybdenum (Mo) adsorption on five arid-zone soils from California was investigated as a function of equilibrium solution Mo concentration (0-30 mg L-1), solution pH (4-8), and electrical conductivity (EC = 0.3 or 8 dS m-1). Molybdenum adsorption decreased with increasing pH. An adsorption maximum...

  2. 76 FR 73683 - Whirlpool Corporation, Including On-Site Leased Workers From Career Solutions TEC Staffing...

    Science.gov (United States)

    2011-11-29

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,593] Whirlpool Corporation, Including On-Site Leased Workers From Career Solutions TEC Staffing, Andrews International, IBM Corporation... refrigerators and trash compactors. The notice was published in the Federal Register on October 25, 2010 (75 FR...

  3. [pH sensors based on rubbery ormosils preparation and their spectrum studies].

    Science.gov (United States)

    Chen, Xi; Dai, Yuan-jing; Li, Wei; Zhuang, Zhi-xia; Wang, Xiao-ru

    2002-02-01

    A new type of methyl substituted ormosils as a matrix for bromophenol blue (BPhB) and bromocresol green (BCG) is described. The new ormosils combine features of classical TEOS sol-gel material such as solvability in organic solvent and those of sol-gel glasses such as transparent and a porous structure, the ormosils also make a good mechanical stability. The influence of the conditions during the polymerisation process on the photochemical properties of BPhB and BCG has been studied. This sol-gel material was wed to immobilize pH-sensitive absorption dyes, bromothymol blue and bromocresol green, to prepare pH sensing films. The several aspects of the sensing films, including the leaching of the dye from gel, response time to different pH buffer solution, absorption spectra and the improvement of the immobilization of the dyes to filmo, were also discussed.

  4. Assessment of the Effect of Fruit (Apple and Plain Yoghurt Consumption on Plaque pH

    Directory of Open Access Journals (Sweden)

    Peyvand Moeiny

    2017-09-01

    Full Text Available Introduction: Nowadays, thanks to improvements in fruit yoghurt tastes, more tendencies are seen in their consumption especially among children. Therefore, their cariogenicity evaluation as healthy snacks is important. The goal of this study was the assessment of the consumption effect of two kinds of Iranian fruit (apple and plain yoghurts on dental plaque PH. Methods: In this experimental study, 10 healthy dentistry students were selected upon inclusion criteria. Plaque pH in the certain areas of the mouth was measured by microelectrode and digital pH meter. PH was measured at the baseline and intervals of 2, 5, 7, 10, 15, 20, 30, 40, 50 and 60 minutes after eating test products: fruit yoghurt (apple and plain Yoghurt. For positive control group, just the baseline PH and at intervals of 2 and 5 min after swishing with 10% sucrose solutions were recorded. The results were analyzed using repeated measures ANOVA. Results: Lowest pH was obtained after fruit yoghurt consumption followed by plain yoghurt and %10 sucrose solution and the plaque PH difference was significant (P=0.05. Furthermore, time duration which remained below the critical pH was longer after consuming fruit yoghurt. Conclusion: Both kinds of yoghurts were considered cariogenic since plaque pH drop below critical points. Average of plaque pH after consuming fruit yoghurt was significantly lower in almost all the time intervals

  5. RuO₂ pH Sensor with Super-Glue-Inspired Reference Electrode.

    Science.gov (United States)

    Lonsdale, Wade; Wajrak, Magdalena; Alameh, Kamal

    2017-09-06

    A pH-sensitive RuO₂ electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO₂ working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO₂ pH-sensitive working electrode and a SiO₂-PVB junction-modified RuO₂ reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices.

  6. A PhD is a PhD is a PhD

    OpenAIRE

    Ostrow, Deborah Anne

    2017-01-01

    A PhD is a PhD is a PhD is a practice-based project that interrogates the process of an artist undertaking PhD research under established criteria. It consists of an exegesis, an original screenplay, and a digital film made for online viewing, with images drawn from a range of documentaries and films found on YouTube. They have been dissected, re-assembled and then re-embedded to YouTube. The source material covers topics such as medicalization of madness, the conspicuous appropriation of uni...

  7. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Erum Malik

    2016-11-01

    Full Text Available Antimicrobial peptides (AMPs are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations

  8. Nanofiltration of Mine Water: Impact of Feed pH and Membrane Charge on Resource Recovery and Water Discharge

    Directory of Open Access Journals (Sweden)

    Mark Mullett

    2014-03-01

    Full Text Available Two nanofiltration membranes, a Dow NF 270 polyamide thin film and a TriSep TS 80 polyamide thin film, were investigated for their retention of ionic species when filtering mine influenced water streams at a range of acidic pH values. The functional iso-electric point of the membranes, characterized by changes in retention over a small pH range, were examined by filtering solutions of sodium sulphate. Both membranes showed changes in retention at pH 3, suggesting a zero net charge on the membranes at this pH. Copper mine drainage and synthetic solutions of mine influenced water were filtered using the same membranes. These solutions were characterized by pH values within 2 and 5, thus crossing the iso-electric point of both membranes. Retention of cations was maximized when the feed solution pH was less than the iso-electric point of the membrane. In these conditions, the membrane has a net positive charge, reducing the transmission rate of cations. From the recoveries of a range of cations, the suitability of nanofiltration was discussed relative to the compliance with mine water discharge criteria and the recovery of valuable commodity metals. The nanofiltration process was demonstrated to offer advantages in metal recovery from mine waste streams, concomitantly enabling discharge criteria for the filtrate disposal to be met.

  9. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations

    Science.gov (United States)

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values ( 4 and 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH 14 and brown at pH 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms ;C;, ;H; and ;Dprot; at pH 14 and Forms ;A;, ;D;, and ;P; at pH 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at 1548 cm- 1 in NRS while in the SERS window this appears at 1580 cm- 1. Similar observation was also made for CZA at pH 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at 447 cm- 1 in the SERS spectrum as well as other bands at 850, 1067 and 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH 14). The DFT calculations for these

  10. A generalised solution for step-drawdown tests including flow ...

    African Journals Online (AJOL)

    drinie

    2001-07-03

    Jul 3, 2001 ... interpreted as the theoretical solution of the groundwater flow equation for the .... and gravity force the water to flow from the rock matrix to the fracture. ..... Computational Mechanics Publications, Southampton. CLOOT AHJ ...

  11. Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications.

    Science.gov (United States)

    Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick

    2015-04-01

    Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells.

    Science.gov (United States)

    Gunnink, Stephen M; Kerk, Samuel A; Kuiper, Benjamin D; Alabi, Ola D; Kuipers, David P; Praamsma, Riemer C; Wrobel, Kathryn E; Louters, Larry L

    2014-04-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Influence of adding borax and modifying pH on effectiveness of food attractants for melon fly (Diptera: Tephritidae).

    Science.gov (United States)

    Duyck, P F; Rousse, P; Ryckewaert, P; Fabre, F; Quilici, S

    2004-06-01

    The melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), is the most damaging pest of cucurbits in Reunion Island. The influence of adding borax and modifying pH on the effectiveness of different food attractants for both sexes of the melon fly is analyzed by a release-recapture method in field cages. Adding borax to protein hydrolysates Nulure and Buminal strongly reduced their attractiveness for B. cucurbitae. Acidification of 5% Buminal solution (from pH 6 to pH 3) doubled its attractiveness for melon fly. Conversely, Torula yeast at pH 10.5 was significantly more attractive than the standard Torula yeast at pH 9 (28% of captured flies compared with 17%). However, a further pH increase of the yeast solution does not improve its attractiveness. The results are discussed in relation to other studies on pH modification of various baits for Tephritidae.

  14. Response surface optimization of pH and ionic strength for emulsion characteristics of egg yolk.

    Science.gov (United States)

    Kurt, S; Zorba, O

    2009-11-01

    Effects of pH (3.5, 4.5, 6.0, 7.5, and 8.5) and ionic strength (0.05, 0.15, 0.30, 0.45, and 0.55 M NaCl) on emulsion capacity, emulsion stability (ES), apparent yield stress of emulsion (AYS), and emulsion density (ED) of egg yolk were studied by using a model system. Ionic strength and pH had significant (P emulsion characteristics of egg yolk. Their interaction effects also have been found significant on ES, AYS, and ED. Predicted solutions of ES, emulsion capacity, and ED were minimum. The critical point of ES was determined to be at pH 6.08 and an ionic strength of 0.49 (M NaCl). Predicted solution for AYS was a maximum, which was determined to be at pH 6.04 and an ionic strength of 0.29 (M NaCl). Optimum values of pH and ionic strenght were 4.61 to 7.43 and 0.10 to 0.47, respectively.

  15. On Calibration of pH Meters

    Directory of Open Access Journals (Sweden)

    Da-Ming Zhu

    2005-04-01

    Full Text Available The calibration of pH meters including the pH glass electrode, ISE electrodes,buffers, and the general background for calibration are reviewed. Understanding of basicconcepts of pH, pOH, and electrode mechanism is emphasized. New concepts of pH, pOH,as well as critical examination of activity, and activity coefficients are given. Theemergence of new solid state pH electrodes and replacement of the salt bridge with aconducting wire have opened up a new horizon for pH measurements. A pH buffer solutionwith a conducting wire may be used as a stable reference electrode. The misleadingunlimited linear Nernstian slope should be discarded. Calibration curves with 3 nonlinearportions for the entire 0—14 pH range due to the isoelectric point change effect areexplained. The potential measurement with stirring or unstirring and effects by double layer(DL and triple layer (TL will be discussed.

  16. pH variation and influence in an autotrophic nitrogen removing biofilm system using an efficient numerical solution strategy.

    Science.gov (United States)

    Vangsgaard, Anna Katrine; Mauricio-Iglesias, Miguel; Valverde-Pérez, Borja; Gernaey, Krist V; Sin, Gürkan

    2013-01-01

    A pH simulator consisting of an efficient numerical solver of a system of nine nonlinear equations was constructed and implemented in the modeling software MATLAB. The pH simulator was integrated in a granular biofilm model and used to simulate the pH profiles within granules performing the nitritation-anammox process for a range of operating points. The simulation results showed that pH profiles were consistently increasing with increasing depth into the granule, since the proton-producing aerobic ammonium-oxidizing bacteria (AOB) were located close to the granule surface. Despite this pH profile, more NH3 was available for AOB than for anaerobic ammonium oxidizers, located in the center of the granules. However, operating at a higher oxygen loading resulted in steeper changes in pH over the depth of the granule and caused the NH3 concentration profile to increase from the granule surface towards the center. The initial value of the background charge and influent bicarbonate concentration were found to greatly influence the simulation result and should be accurately measured. Since the change in pH over the depth of the biofilm was relatively small, the activity potential of the microbial groups affected by the pH did not change more than 5% over the depth of the granules.

  17. Development of a novel pH sensor based upon Janus Green B immobilized on triacetyl cellulose membrane: Experimental design and optimization.

    Science.gov (United States)

    Chamkouri, Narges; Niazi, Ali; Zare-Shahabadi, Vali

    2016-03-05

    A novel pH optical sensor was prepared by immobilizing an azo dye called Janus Green B on the triacetylcellulose membrane. Condition of the dye solution used in the immobilization step, including concentration of the dye, pH, and duration were considered and optimized using the Box-Behnken design. The proposed sensor showed good behavior and precision (RSDpH range of 2.0-10.0. Advantages of this optical sensor include on-line applicability, no leakage, long-term stability (more than 6 months), fast response time (less than 1 min), high selectivity and sensitivity as well as good reversibility and reproducibility. Copyright © 2015. Published by Elsevier B.V.

  18. Pretreatment Solution for Water Recovery Systems

    Science.gov (United States)

    Muirhead, Dean (Inventor)

    2018-01-01

    Chemical pretreatments are used to produce usable water by treating a water source with a chemical pretreatment that contains a hexavalent chromium and an acid to generate a treated water source, wherein the concentration of sulfate compounds in the acid is negligible, and wherein the treated water source remains substantially free of precipitates after the addition of the chemical pretreatment. Other methods include reducing the pH in urine to be distilled for potable water extraction by pretreating the urine before distillation with a pretreatment solution comprising one or more acid sources selected from a group consisting of phosphoric acid, hydrochloric acid, and nitric acid, wherein the urine remains substantially precipitate free after the addition of the pretreatment solution. Another method described comprises a process for reducing precipitation in urine to be processed for water extraction by mixing the urine with a pretreatment solution comprising hexavalent chromium compound and phosphoric acid.

  19. Stability of sodium bicarbonate solutions in polyolefin bags.

    Science.gov (United States)

    Wear, Jennifer; McPherson, Timothy B; Kolling, William M

    2010-06-15

    The stability of sodium bicarbonate solutions in sterile water for injection or 5% dextrose injection stored at 21-24 degrees C or 2-4 degrees C was evaluated. Sodium bicarbonate injection was obtained in 50-mL vials of 8.4% (1 meq/mL). A total of 50, 100, or 150 meq of sodium bicarbonate was added to each 1-L polyolefin bag of either sterile water for injection or 5% dextrose injection. All solutions were prepared in a laminar-airflow hood using aseptic technique. Bags were punctured once to remove headspace air and once for the addition of each 50 meq of sodium bicarbonate. Six replicates of each test solution were prepared. The solutions were stored at 21-24 degrees C and 2-4 degrees C. Control solutions (50 and 150 meq) were similarly prepared in triplicate. Control solutions were sparged with either nitrogen gas or oxygen gas before storage. Sodium bicarbonate stability was assessed by measuring solution pH. Bicarbonate content was measured utilizing titration. Both pH and bicarbonate concentrations were measured immediately upon preparation and on days 3, 5, and 7 for both test and control solutions. All 95% confidence interval values for sample solution pH remained within 7.0-8.5 for seven days at 2-4 degrees C. Sodium bicarbonate solutions of 50, 100, and 150 meq in sterile water for injection or 5% dextrose injection were stable for up to seven days when refrigerated. The 50-meq solution was stable for up to 48 hours when stored at room temperature, and the 100- and 150-meq solutions were stable for up to 30 hours when stored at room temperature.

  20. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a "pH memory" effect?

    Science.gov (United States)

    Vetráková, Ľubica; Vykoukal, Vít; Heger, Dominik

    2017-09-15

    The concept of "pH memory" has been established in the literature for the correlation between the pH of a pre-lyophilization solution and the ionization state of freeze-dried powder (lyophile). In this paper, the concept of "pH memory" is explored for the system of an aqueous solution, a frozen solution, and a lyophile. Sodium and potassium phosphate buffers in the pH range of 5-9 were frozen and lyophilized with sulfonephthalein indicators as acidity probes, and their Hammett acidity functions were compared to the initial pH of the aqueous solution. The results show that the acidities of the lyophiles are somewhat changed compared to the initial pHs, but the acidities in the frozen state differ more substantially. The Hammett acidity functions of the frozen buffers were found to be markedly dissimilar from the initial pH, especially in the sodium phosphate frozen at 233K, where an increase in the initial pH led to a decrease in the Hammett acidity function of the frozen state at a certain pH range. The large acidification observed after freezing the sodium phosphate buffer was not detected in the lyophiles after the sample had been dried; the phenomenon is explained considering the formed crystals analyzed by X-ray powder diffraction. The results suggest that monitoring the final acidity of a lyophile is not sufficient to predict all the acidity changes throughout the whole lyophilization process. The importance of well-controlled freezing and lyophilization conditions follows from the results of the research. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effect of the pH on the radiocesium adsorption in tropical soils

    International Nuclear Information System (INIS)

    Roque, Mario Lucio; Boaretto, Antonio E.; Moniz, Antonio C; Smolders, Erik E. T.

    2002-01-01

    The objective was to demonstrate that the pH dependent charges are specific change sites for radiocesium. Clay minerals occurrence in superficial samples of eight tropical soils was analyzed by X-Ray diffractometry. The variation of superficial charge of these soils were quantify by potentiometric titration in a range from 3 to 8 pH values. The results of radiocesium interception potential showed the presence of specific sites of adsorption of this radionuclide for all the soils. The variation of radiocesium adsorption for all soils was quantified in a pH defined range. The increase on the pH values caused increase on the radiocesium adsorption by the soils and a consequent decrease in the radiocesium activity in the equilibrium solution. The soil with predominance of the 2:1 clay minerals showed higher radiocesium adsorption than the soils with 1:1 clay minerals or iron and aluminum oxides. The increase on the negative charge in consequence of pH increase caused increase on radiocesium adsorption. The correction of soil acidity with lime by increasing the specific sites charge for radiocesium and decreasing the radionuclide activity in soil solution may cause decrease on the transference of radiocesium from soil to plant. (author)

  2. Electrochemical behavior and pH stability of artificial salivas for corrosion tests.

    Science.gov (United States)

    Queiroz, Gláucia Maria Oliveira de; Silva, Leandro Freitas; Ferreira, José Tarcísio Lima; Gomes, José Antônio da Cunha P; Sathler, Lúcio

    2007-01-01

    It is assumed that the compositions of artificial salivas are similar to that of human saliva. However, the use of solutions with different compositions in in vitro corrosion studies can lead dissimilar electrolytes to exhibit dissimilar corrosivity and electrochemical stability. This study evaluated four artificial salivas as regards pH stability with time, redox potentials and the polarization response of an inert platinum electrode. The tested solutions were: SAGF medium, Mondelli artificial saliva, UFRJ artificial saliva (prepared at the School of Pharmacy, Federal University of Rio de Janeiro, RJ, Brazil) and USP-RP artificial saliva (prepared at the School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil). It was observed that pH variations were less than 1 unit during a 50-hour test. The SAGF medium, and the UFRJ and USP-RP solutions exhibited more oxidizing characteristics, whereas the Mondelli solution presented reducing properties. Anodic polarization revealed oxidation of the evaluated electrolytes at potentials below +600 mV SCE. It was observed that the UFRJ and USP-RP solutions presented more intense oxidation and reduction processes as compared to the Mondelli and SAGF solutions.

  3. Structure of PIN-domain protein PH0500 from Pyrococcus horikoshii

    International Nuclear Information System (INIS)

    Jeyakanthan, Jeyaraman; Inagaki, Eiji; Kuroishi, Chizu; Tahirov, Tahir H.

    2005-01-01

    The structure of P. horikoshii OT3 protein PH0500 was determined by the multiple anomalous dispersion method and refined in two crystal forms. The protein is a dimer and has a PIN-domain fold. The Pyrococcus horikoshii OT3 protein PH0500 is highly conserved within the Pyrococcus genus of hyperthermophilic archaea and shows low amino-acid sequence similarity with a family of PIN-domain proteins. The protein has been expressed, purified and crystallized in two crystal forms: PH0500-I and PH0500-II. The structure was determined at 2.0 Å by the multiple anomalous dispersion method using a selenomethionyl derivative of crystal form PH0500-I (PH0500-I-Se). The structure of PH0500-I has been refined at 1.75 Å resolution to an R factor of 20.9% and the structure of PH0500-II has been refined at 2.0 Å resolution to an R factor of 23.4%. In both crystal forms as well as in solution the molecule appears to be a dimer. Searches of the databases for protein-fold similarities confirmed that the PH0500 protein is a PIN-domain protein with possible exonuclease activity and involvement in DNA or RNA editing

  4. Zirconium oxide crystal phase: The role of the pH and time to attain the final pH for precipitation of the hydrous oxide

    International Nuclear Information System (INIS)

    Srinivasan, R.; Harris, M.B.; Simpson, S.F.; De Angelis, R.J.; Davis, B.H.

    1988-01-01

    Precipitated hydrous zirconium oxide can be calcined to produce either a monoclinic or tetragonal product. It has been observed that the time taken to attain the final pH of the solution in contact with the precipitate plays a dominant role in determining the crystal structure of the zirconium oxide after calcination at 500 0 C. The dependence of crystal structure on the rate of precipitation is observed only in the pH range 7--11. Rapid precipitation in this pH range yields predominately monoclinic zirconia, whereas slow (8 h) precipitation produces the tetragonal phase. At pH of approximately 13.0, only the tetragonal phase is formed from both slowly and rapidly precipitated hydrous oxide. The present results, together with earlier results, show that both the pH of the supernatant liquid and the time taken to attain this pH play dominant roles in determining the crystal structure of zirconia that is formed after calcination of the hydrous oxide. The factors that determine the crystal phase are therefore imparted in a mechanism of precipitation that depends upon the pH, and it is inferred that it is the hydroxyl concentration that is the dominant factor

  5. Photodegradation of Paracetamol in Nitrate Solution

    Science.gov (United States)

    Meng, Cui; Qu, Ruijuan; Liang, Jinyan; Yang, Xi

    2010-11-01

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  6. Photodegradation of Paracetamol in Nitrate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Meng; Ruijuan, Qu; Jinyan, Liang; Xi, Yang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China)

    2010-11-24

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  7. Photodegradation of Paracetamol in Nitrate Solution

    International Nuclear Information System (INIS)

    Meng Cui; Qu Ruijuan; Liang Jinyan; Yang Xi

    2010-01-01

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  8. pH variation and influence in an autotrophic nitrogen removing biofilm system using an efficient numerical solution strategy

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Valverde Perez, Borja

    2013-01-01

    A pH simulator consisting of an efficient numerical solver of a system of nine nonlinear equations was constructed and implemented in the modeling software MATLAB. The pH simulator was integrated in a granular biofilm model and used to simulate the pH profiles within granules performing...... the nitritation-anammox process for a range of operating points. The simulation results showed that pH profiles were consistently increasing with increasing depth into the granule, since the proton producing aerobic ammonium oxidizers (AOB) were located close to the granule surface.Despite this pH profile, more...... NH3 was available for AOB than for anaerobic ammonium oxidizers (AnAOB), located in the center of the granules. However, operating at a higher oxygen loading resulted in steeper changes in pH over the depth of the granule and caused the NH3 concentration profile to increase from the granule surface...

  9. Evaluating nanoparticle sensor design for intracellular pH measurements.

    Science.gov (United States)

    Benjaminsen, Rikke V; Sun, Honghao; Henriksen, Jonas R; Christensen, Nynne M; Almdal, Kristoffer; Andresen, Thomas L

    2011-07-26

    Particle-based nanosensors have over the past decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors are challenging, and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time-resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle-based sensor systems that are internalized by endocytosis and elucidated important factors in nanosensor design that should be considered in future development of new sensors. From our experiments it is clear that it is highly important to use sensors that have a broad measurement range, as erroneous quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pK(a) to each sensor, seem to be a solution to some of the earlier problems found when measuring pH in the endosome-lysosome pathway.

  10. Modeling pH variation in reverse osmosis.

    Science.gov (United States)

    Nir, Oded; Bishop, Noga Fridman; Lahav, Ori; Freger, Viatcheslav

    2015-12-15

    The transport of hydronium and hydroxide ions through reverse osmosis membranes constitutes a unique case of ionic species characterized by uncommonly high permeabilities. Combined with electromigration, this leads to complex behavior of permeate pH, e.g., negative rejection, as often observed for monovalent ions in nanofiltration of salt mixtures. In this work we employed a rigorous phenomenological approach combined with chemical equilibrium to describe the trans-membrane transport of hydronium and hydroxide ions along with salt transport and calculate the resulting permeate pH. Starting from the Nernst-Planck equation, a full non-linear transport equation was derived, for which an approximate solution was proposed based on the analytical solution previously developed for trace ions in a dominant salt. Using the developed approximate equation, transport coefficients were deduced from experimental results obtained using a spiral wound reverse osmosis module operated under varying permeate flux (2-11 μm/s), NaCl feed concentrations (0.04-0.18 M) and feed pH values (5.5-9.0). The approximate equation agreed well with the experimental results, corroborating the finding that diffusion and electromigration, rather than a priori neglected convection, were the major contributors to the transport of hydronium and hydroxide. The approach presented here has the potential to improve the predictive capacity of reverse osmosis transport models for acid-base species, thereby improving process design/control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor.

    Science.gov (United States)

    Al-Hardan, Naif H; Abdul Hamid, Muhammad Azmi; Ahmed, Naser M; Jalar, Azman; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim; Chiu, Weesiong; Al-Rawi, Hamzah N

    2016-06-07

    In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions.

  12. Unified pH values of liquid chromatography mobile phases.

    Science.gov (United States)

    Suu, Agnes; Jalukse, Lauri; Liigand, Jaanus; Kruve, Anneli; Himmel, Daniel; Krossing, Ingo; Rosés, Martí; Leito, Ivo

    2015-03-03

    This work introduces a conceptually new approach of measuring pH of mixed-solvent liquid chromatography (LC) mobile phases. Mobile phase pH is very important in LC, but its correct measurement is not straightforward, and all commonly used approaches have deficiencies. The new approach is based on the recently introduced unified pH (pH(abs)) scale, which enables direct comparison of acidities of solutions made in different solvents based on chemical potential of the proton in the solutions. This work represents the first experimental realization of the pH(abs) concept using differential potentiometric measurement for comparison of the chemical potentials of the proton in different solutions (connected by a salt bridge), together with earlier published reference points for obtaining the pH(abs) values (referenced to the gas phase) or pH(abs)(H₂O) values (referenced to the aqueous solution). The liquid junction potentials were estimated in the framework of Izutsu's three-component method. pH(abs) values for a number of common LC and LC-MS mobile phases have been determined. The pH(abs) scale enables for the first time direct comparison of acidities of any LC mobile phases, with different organic additives, different buffer components, etc. A possible experimental protocol of putting this new approach into chromatographic practice has been envisaged and its applicability tested. It has been demonstrated that the ionization behavior of bases (cationic acids) in the mobile phases can be better predicted by using the pH(abs)(H₂O) values and aqueous pKa values than by using the alternative means of expressing mobile phase acidity. Description of the ionization behavior of acids on the basis of pH(abs)(H₂O) values is possible if the change of their pKa values with solvent composition change is taken into account.

  13. PROCESS FOR RECOVERY OF URANIUM VALUES FROM IMPURE SOLUTIONS THEREOF

    Science.gov (United States)

    Kilner, S.B.

    1959-11-01

    A process is presented for the recovery of uraninm values from impure solutions which are obtained, for example, by washing residual uranium salt or uranium metal deposits from stainless steel surfaces using an aqueous or certain acidic aqueous solutions. The solutions include uranyl and oxidized iron, chromium, nickel, and copper ions and may contain manganese, zinc, and silver ions. In accordance with one procedure. the uranyl ions are reduced to the uranous state, and the impurity ions are complexed with cyanide under acidic conditions. The solution is then treated with ammonium hydroxide or alkali metal hydroxide to precipitate uranous hydroxide away from the complexed impurity ions in the solution. Alternatively, an excess of alkali metal cyanide is added to the reduced solution until the solution becomes sufficiently alkaline for the uranons hydroxide to precipitate. An essential feature in operating the process is in maintaining the pH of the solution sufficiently acid during the complexing operation to prevent the precipitation of the impurity metal hydroxides.

  14. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment.

    Science.gov (United States)

    Tang, Jie; Xue, Qiang; Chen, Honghan; Li, Wenting

    2017-05-01

    High concentrations of ammonium sulfate, often used in the in situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid-extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid-extractable fractions. Ninety-six percent of the extractable fraction in soil was desorbed into solution at pH = 3.0, and the content of the reducible fraction was observed to initially increase (when pH >4.0) and then decrease (when pH leaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid-extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid-extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process

  15. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment

    Science.gov (United States)

    Xue, Q.; Tang, J., Sr.; Chen, H.

    2017-12-01

    High concentrations of ammonium sulfate, often used in the in-situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages, and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid extractable fractions. 96% of the extractable fraction in soil were desorbed into solution at pH=3.0, and the content of the reducible fraction was observed to initially increase (when pH>4.0) and then decrease (when pHleaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process.

  16. Process for recovering tungsten from alkaline leaching solution of tungsten ores

    International Nuclear Information System (INIS)

    Onozaki, S.; Nemoto, S.; Hazeyama, T.

    1976-01-01

    This invention relates to a process for recovering tungsten from an alkaline leaching solution of tungsten ores. This invention comprises adjusting the pH of an alkaline leaching solution which is obtained by lixiviating ore containing tungsten with an alkaline solution to 7--8 with acid to oxidize molybdic acid ions in the solution, adding a sulfide donor, then precipitating molybdenum sulfide compounds by adjusting the pH value of the solution to 2--3. Tungstic acid ions are recovered as calcium tungstate by the addition of a calcium ion donor after the molybdenum sulfide compounds are separated

  17. PhD on Track – designing learning for PhD students

    Directory of Open Access Journals (Sweden)

    Gunhild Austrheim

    2013-12-01

    Full Text Available Three years ago we started the project "Information Management for Knowledge Creation". The project was initiated to create online information literacy modules for PhD students. The result of our endeavours, PhD on Track, will be launched in May 2013. The initial stage of the project was mapping out the information behaviour of PhD students, as well as what services they require from the library through a literature review and a focus group study. The findings of these inquiries formed the knowledge base from which we developed our information literacy modules. Our paper will focus on the interaction between content production and user testing when creating PhD on Track. Methods: User testing has been employed throughout the production stage. We have tested navigation and organisation of the web site, content and usability. The project team have conducted expert testing. Analysis: The results from our user testing have played an important part in decisions concerning content production. Our working hypothesis was that the PhD students would want an encyclopaedic website, a place to quickly find answers. However, the user tests revealed that PhD students understood and expected the website to be learning modules. Conclusions: The PhD students in the tests agreed that a site such as this would be useful, especially to new PhD students. They also liked the design, but had some qualms with the level of information. They preferred shorter text, but with more depth. The students would likewise have preferred more practical examples, more illustrations and more discipline specific information. The current content of PhD on Track reflects the feedback from the user testing. We have retained initial ideas such as one section for reviewing and discovering research literature and one section for publishing PhD research work. In addition, we have included more practical examples to indicate efficient workflows or relevant actions in context. Illustrations

  18. Titratable acidity of beverages influences salivary pH recovery.

    Science.gov (United States)

    Tenuta, Livia Maria Andaló; Fernández, Constanza Estefany; Brandão, Ana Carolina Siqueira; Cury, Jaime Aparecido

    2015-01-01

    A low pH and a high titratable acidity of juices and cola-based beverages are relevant factors that contribute to dental erosion, but the relative importance of these properties to maintain salivary pH at demineralizing levels for long periods of time after drinking is unknown. In this crossover study conducted in vivo, orange juice, a cola-based soft drink, and a 10% sucrose solution (negative control) were tested. These drinks differ in terms of their pH (3.5 ± 0.04, 2.5 ± 0.05, and 5.9 ± 0.1, respectively) and titratable acidity (3.17 ± 0.06, 0.57 ± 0.04 and pH 5.5, respectively). Eight volunteers with a normal salivary flow rate and buffering capacity kept 15 mL of each beverage in their mouth for 10 s, expectorated it, and their saliva was collected after 15, 30, 45, 60, 90, and 120 s. The salivary pH, determined using a mini pH electrode, returned to the baseline value at 30 s after expectoration of the cola-based soft drink, but only at 90 s after expectoration of the orange juice. The salivary pH increased to greater than 5.5 at 15 s after expectoration of the cola drink and at 30 s after expectoration of the orange juice. These findings suggest that the titratable acidity of a beverage influences salivary pH values after drinking acidic beverages more than the beverage pH.

  19. Corrosion behaviour of the UO2 pellet in corrosive solutions using electrochemical Technique

    International Nuclear Information System (INIS)

    Taftanzani, A.; Sucipto; Lahagu, F.; Irianto, B.

    1996-01-01

    The UO 2 electrodes has been made from the local product of UO 2 pellets. The corrosion behaviour of the UO 2 pellets is affected by solution, by pH value and by concentration of salt solution. Investigation into corrosion behaviour of UO 2 electrodes have been carried out in saturated salt solutions using electrochemical technique. The saturated solutions have been made from salts NaCl, Na 2 CO 3 , Na 2 SO 4 and Na 3 PO 4 . The pH value have been done over range 1 pH 10 and the salt concentration (C) over range 0,001 mol/l C 1,0 mol/l, Na 2 CO 3 solution produced the lowest corrosion rates of UO 2 pellets. Those rates were relative constant in the range of pH = 4 - 8. The results indicate an influence of the Na 2 CO 3 concentrations on the corrosions on the corrosion rate, and the lowest rates occur in 0,10 mol/l Na 2 CO 3 . The lowest corrosion rate was 0.3388 mil/year in 0.10 mol/l Na 2 CO 3 by pH = 4. (author)

  20. Performance study of ultrafiltration membrane with bovine serum albumin as feed solution

    International Nuclear Information System (INIS)

    Syahril Ahmad

    2009-01-01

    Bovine serum albumin solutions at different temperature, pH, flow rate and operation pressure have been used as feed solution for studying performance of ultrafiltration membrane. Polysulfone membranes used for this experiment were in form of hollow fibers that have Molecular Weight Cut Off (MWCO) 60 kDa. Observation was focused on flux parameter and rejection coefficient towards protein during the process. Result shows that temperature, pH of BSA feed solution, flow rate and operation pressure can affect the flux and rejection coefficient of membrane. High temperature feed solution tend to decrease the flux but increase rejection coefficient. Rejection coefficient of membrane will increase while flux decreasing at pH of feed solution near to protein isoelectric point. High pressure of feed solution will increase flux but decrease rejection of membrane. Rejection of membrane will decrease and flux will increase when the process operated in slow flow rate. (author)

  1. Equilibrium leach tests with cobalt in the system cemented waste form/container material/aqueous solution

    International Nuclear Information System (INIS)

    Vejmelka, P.; Koester, R.; Lee, M. J.; Han, K. W.

    1991-01-01

    The equilibrium concentrations of Co in the system of cemented waste form/aqueous solutions were determined including the effect of the container material and its corrosion products under the respective conditions. The chemical conditions in the near field of the waste form were characterized by measurement of the pH and E h value. As disposal relevant solutions, saturated sodium chloride, Q-brine (main constituent MgCl 2 ) and a granitic type groundwater were used. For comparison, also experiments using deionized water were performed. In all systems investigated the cemented waste form itself has a strong influence on the chemical conditions in the near field. The pH and E h values are affected in all cases by the addition of the cemented waste form. There is no or only a slight difference between the E h values if iron powder or iron hydroxide is added to the cemented waste form/solution systems, but the E h is markedly decreased when iron powder is added to the solution free of cement. The Co concentration is decreased in all solutions by the addition of the cemented waste form, the largest effect is observed in Q-brine and this can be attributed either to the sorption of the Co-ions on the corrosion products of the cement or to the coprecipitation of Co-hydroxide and Mg-hydroxide. In the other solutions the Co concentration is decreased by precipitation of Co-hydroxide due to the high pH value of 12.5, and the concentrations are comparable for the different solutions

  2. Polyelectrolyte multilayer assembly as a function of pH and ionic strength using the polysaccharides chitosan and heparin.

    Science.gov (United States)

    Boddohi, Soheil; Killingsworth, Christopher E; Kipper, Matt J

    2008-07-01

    The goal of this work is to explore the effects of solution ionic strength and pH on polyelectrolyte multilayer (PEM) assembly, using biologically derived polysaccharides as the polyelectrolytes. We used the layer-by-layer (LBL) technique to assemble PEM of the polysaccharides heparin (a strong polyanion) and chitosan (a weak polycation) and characterized the sensitivity of the PEM composition and layer thickness to changes in processing parameters. Fourier-transform surface plasmon resonance (FT-SPR) and spectroscopic ellipsometry provided in situ and ex situ measurements of the PEM thickness, respectively. Vibrational spectroscopy and X-ray photoelectron spectroscopy (XPS) provided details of the chemistry (i.e., composition, electrostatic interactions) of the PEM. We found that when PEM were assembled from 0.2 M buffer, the PEM thickness could be increased from less than 2 nm per bilayer to greater than 4 nm per bilayer by changing the solution pH; higher and lower ionic strength buffer solutions resulted in narrower ranges of accessible thickness. Molar composition of the PEM was not very sensitive to solution pH or ionic strength, but pH did affect the interactions between the sulfonates in heparin and amines in chitosan when PEM were assembled from 0.2 M buffer. Changes in the PEM thickness with pH and ionic strength can be interpreted through descriptions of the charge density and conformation of the polyelectrolyte chains in solution.

  3. Microbially-Enhanced Redox Solution Reoxidation for Sour Natural Gas Sweetening

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Brezinsky

    2008-01-15

    The specific objective of this project are to advance the technology and improve the economics of the commercial iron-based chelate processes such as LO-CAT II and SulFerox process utilizing biologically enhanced reoxidation of the redox solutions used in these processes. The project is based on the use of chelated ferric iron as the catalyst for the production of elemental sulfur, and then oxidizing bacteria, such as Thiobacillus Ferrooxidans (ATCC 23270) as an oxidizer. The regeneration of Fe{sup 3+} - chelate is accomplished by the use of these same microbes under mild conditions at 25-30 C and at atmospheric pressure to minimize the chelate degradation process. The pH of the redox solution was observed to be a key process parameter. Other parameters such as temperature, total iron concentration, gas to liquid ratio and bacterial cell densities also influence the overall process. The second part of this project includes experimental data and a kinetic model of microbial H{sub 2}S removal from sour natural gas using thiobacillus species. In the experimental part, a series of experiments were conducted with a commercial chelated iron catalyst at pH ranges from 8.7 to 9.2 using a total iron concentration range from 925 ppm to 1050 ppm in the solution. Regeneration of the solution was carried out by passing air through the solution. Iron oxidizing bacteria were used at cell densities of 2.3 x 10{sup 7}cells/ml for optimum effective performance. In the modeling part, oxidation of Fe{sup 2+} ions by the iron oxidizing bacteria - Thiobacillus Ferrooxidans was studied for application to a continuous stirred tank reactor (CSTR). The factors that can directly affect the oxidation rate such as dilution rate, temperature, and pH were analyzed. The growth of the microorganism was assumed to follow Monod type of growth kinetics. Dilution rate had influence on the rate of oxidation of ferrous iron. Higher dilution rates caused washout of the biomass. The oxidation rate was

  4. Corrosion behavior of reinforcing steel in concrete for nuclear facilities exposed in high chloride and low pH environment

    International Nuclear Information System (INIS)

    Nishimura, Toshiyasu; Raman, Vedarajan

    2010-01-01

    The Cl ion concentration and pH were monitored by inserting micro-electrodes into artificial pores in the mortar which was exposed in 0.5 mol/l chloride solution (pH 4.0). At the same time, the electrochemical behavior of the reinforcing steel was investigated by EIS. The Cl ion concentration in the mortar was obtained using Ag/AgCl micro-electrodes, showing that this behavior is generally controlled by diffusion. When the diffusion equation was used in this work, the diffusion coefficient (D c ) showed a high value of D c = 9.5 x 10 -5 mm 2 /s. Similarly, the pH in the mortar was obtained using W/WO x micro-electrodes. With a 10 mm cover thickness, pH continued to decrease to pH 8.0, which was considered by penetration of H + ions from the surface. Based on the results of monitoring with the micro-electrodes, solutions simulating those in the pores in mortar were prepared and used in EIS measurements. The charge transfer resistance R ct in the simulated solutions showed good correspondence with the impedance Z (Z 1mHz -Z sol ) in the actual mortar. This is attributed to the fact that the corrosion of reinforcing steel was controlled by the solution conditions (mainly Cl concentration and pH) in the pores in mortar.

  5. Development of oxygen and pH sensors for aqueous systems

    International Nuclear Information System (INIS)

    Stvartak, C.; Alcock, C.B.; Li, B.; Wang, L.; Fergus, J.W.; Bakshi, N.

    1994-04-01

    Corrosion science has long recognized that two of the most important parameters in characterizing the corrosivity of an aqueous environment are oxygen chemical potential and pH. These parameters not only determine the thermodynamic driving forces for various corrosion reactions, but also characterize the rates of these reactions and hence the lifetime of a particular component. The primary goal of this project is to develop an electrochemical oxygen and pH sensor for continuous use in the cycle chemistry control of power plants. In the past year, electrochemical sensors with a metal/metal oxide or metal/metal hydride internal reference electrode and a fluoride-based electrolyte tube have been developed and tested in this laboratory. The corrosion tests showed that the LaF 3 -based solid electrolyte was very stable both chemically and physically in water. Furthermore, its electrical conductivity is 4 to 5 orders of magnitude higher than that of stabilized zirconia below 573 K (300 degree C), which is the main advantage of a fluoride-based electrolyte at low temperatures. With this electrolyte and the selected internal oxygen reference electrode (Ag/Ag 2 O), the electrochemical probe demonstrated Nernstian responses to the oxygen chemical potential and pH of the aqueous solution with good reproducibility. A similar cell with Zr/ZrH 1+x as the internal hydrogen reference electrode showed promising pH sensing characteristics. It is proposed that these two cells be combined to form a double-headed electrochemical probe to determine oxygen chemical potential and pH in the solution simultaneously

  6. Surface hardness of hybrid ionomer cement after immersion in antiseptic solution

    Directory of Open Access Journals (Sweden)

    Anita Yuliati

    2006-06-01

    Full Text Available Hybrid ionomer cement or resin modified glass ionomer cement is a developed form of conventional glass ionomer cement. This hybrid ionomer cement can be eroded if in direct contact with acid solution which will affect surface hardness. The aim of this study is to learn surface hardness of hybrid ionomer cement after immersion in methyl salicylate 0.06% (pH 3.6 and povidon iodine 1% (pH 2.9 solution. Sample of hybrid ionomer cement with 5 mm diameter and 3 mm thickness was immersed in sterile aquadest solution (control, methyl salicylate pH 3.6, povidon iodine pH 2.9 for 1 minute, 7 and 14 minutes. Surface hardness was measured with Micro Vickers Hardness Tester. The obtained data was analyzed statistically with ANOVA followed by LSD test. The result of hybrid ionomer cement after immersion in sterile aquadest, methyl salicylate 0.06% pH 3.6 and povidon iodine 1% pH 2.9 for one minute, showed no significant difference; while immersion for 7 and 14 minutes showed a significant difference. The conclusion states that hybrid ionomer cement after 14 minutes immersion in povidon iodine 1% pH 2.9 has the lowest surface hardness.

  7. Sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured rat caput epididymal epithelium.

    Directory of Open Access Journals (Sweden)

    Wu-Lin Zuo

    Full Text Available The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+/HCO(3(- cotransporter in the pH regulation in rat epididymis.Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH solution, the intracellular pH (pHi recovery from NH(4Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+/H(+ exchanger (NHE. Immediately changing of the KH solution from HEPES buffered to HCO(3(- buffered would cause another pHi recovery. The pHi recovery in HCO(3(- buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS, the inhibitor of HCO(3(- transporter or by removal of extracellular Na(+. The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH.The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium.

  8. Adsorption of cadmium by activated carbon cloth: influence of surface oxidation and solution pH.

    Science.gov (United States)

    Rangel-Mendez, J R; Streat, M

    2002-03-01

    The surface of activated carbon cloth (ACC), based on polyacrylonitrile fibre as a precursor, was oxidised using nitric acid, ozone and electrochemical oxidation to enhance cadmium ion exchange capacity. Modified adsorbents were physically and chemically characterised by pH titration, direct titration, X-ray photoelectron spectroscopy, elemental analysis, surface area and porosimetry, and scanning electron microscopy. BET surface area decreased after oxidation, however, the total ion exchange capacity increased by a factor of approximately 3.5 compared to the commercial as-received ACC. A very significant increase in cadmium uptake, by a factor of 13, was observed for the electrochemically oxidised ACC. Equilibrium sorption isotherms were determined at pH 4, 5 and 6 and these showed that cadmium uptake increased with increasing pH. There was clear evidence of physical damage to ozone-oxidised fibre, however, acid and electrochemically oxidised samples were completely stable.

  9. An approximate JKR solution for a general contact, including rough contacts

    Science.gov (United States)

    Ciavarella, M.

    2018-05-01

    In the present note, we suggest a simple closed form approximate solution to the adhesive contact problem under the so-called JKR regime. The derivation is based on generalizing the original JKR energetic derivation assuming calculation of the strain energy in adhesiveless contact, and unloading at constant contact area. The underlying assumption is that the contact area distributions are the same as under adhesiveless conditions (for an appropriately increased normal load), so that in general the stress intensity factors will not be exactly equal at all contact edges. The solution is simply that the indentation is δ =δ1 -√{ 2 wA‧ /P″ } where w is surface energy, δ1 is the adhesiveless indentation, A‧ is the first derivative of contact area and P‧‧ the second derivative of the load with respect to δ1. The solution only requires macroscopic quantities, and not very elaborate local distributions, and is exact in many configurations like axisymmetric contacts, but also sinusoidal waves contact and correctly predicts some features of an ideal asperity model used as a test case and not as a real description of a rough contact problem. The solution permits therefore an estimate of the full solution for elastic rough solids with Gaussian multiple scales of roughness, which so far was lacking, using known adhesiveless simple results. The result turns out to depend only on rms amplitude and slopes of the surface, and as in the fractal limit, slopes would grow without limit, tends to the adhesiveless result - although in this limit the JKR model is inappropriate. The solution would also go to adhesiveless result for large rms amplitude of roughness hrms, irrespective of the small scale details, and in agreement with common sense, well known experiments and previous models by the author.

  10. Removal of patulin from aqueous solutions by propylthiol functionalized SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Appell, Michael, E-mail: michael.appell@ars.usda.gov [Bacterial Foodborne Pathogens and Mycology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604 (United States); Jackson, Michael A.; Dombrink-Kurtzman, Mary Ann [Renewable Product Technology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604 (United States)

    2011-03-15

    Propylthiol functionalized SBA-15 silica was investigated to detoxify aqueous solutions contaminated with the regulated mycotoxin patulin. Micelle templated silicas with a specific pore size were synthetically modified to possess propylthiol groups, a functional group known to form Michael reaction products with the conjugated double bond system of patulin. BET surface area analysis indicated the propylthiol functionalized SBA-15 possesses channels with the pore size of 5.4 nm and a surface area of 345 m{sup 2} g{sup -1}. Elemental analysis indicates the silicon/sulfur ratio to be 10:1, inferring one propylthiol substituent for every ten silica residues. The propylthiol modified SBA-15 was effective at significantly reducing high levels of patulin from aqueous solutions (pH 7.0) in batch sorption assays at room temperature. The material was less effective at lower pH; however heating low pH solutions and apple juice to 60 deg, C in the presence of propylthiol functionalized SBA-15 significantly reduced the levels of patulin in contaminated samples. Composite molecular models developed by semi-empirical PM3 and empirical force field methods support patulin permeation through the mesoporous channels of propylthiol functionalized SBA-15. Density functional study at the B3LYP/6-31G(d,p) level predicts the proposed patulin adducts formed by reaction with the thiol residues exhibit less electrophilic properties than patulin. It is demonstrated the use of propylthiol functionalized SBA-15 is a viable approach to reduce patulin levels in aqueous solutions, including contaminated apple juice.

  11. Removal of patulin from aqueous solutions by propylthiol functionalized SBA-15

    International Nuclear Information System (INIS)

    Appell, Michael; Jackson, Michael A.; Dombrink-Kurtzman, Mary Ann

    2011-01-01

    Propylthiol functionalized SBA-15 silica was investigated to detoxify aqueous solutions contaminated with the regulated mycotoxin patulin. Micelle templated silicas with a specific pore size were synthetically modified to possess propylthiol groups, a functional group known to form Michael reaction products with the conjugated double bond system of patulin. BET surface area analysis indicated the propylthiol functionalized SBA-15 possesses channels with the pore size of 5.4 nm and a surface area of 345 m 2 g -1 . Elemental analysis indicates the silicon/sulfur ratio to be 10:1, inferring one propylthiol substituent for every ten silica residues. The propylthiol modified SBA-15 was effective at significantly reducing high levels of patulin from aqueous solutions (pH 7.0) in batch sorption assays at room temperature. The material was less effective at lower pH; however heating low pH solutions and apple juice to 60 deg, C in the presence of propylthiol functionalized SBA-15 significantly reduced the levels of patulin in contaminated samples. Composite molecular models developed by semi-empirical PM3 and empirical force field methods support patulin permeation through the mesoporous channels of propylthiol functionalized SBA-15. Density functional study at the B3LYP/6-31G(d,p) level predicts the proposed patulin adducts formed by reaction with the thiol residues exhibit less electrophilic properties than patulin. It is demonstrated the use of propylthiol functionalized SBA-15 is a viable approach to reduce patulin levels in aqueous solutions, including contaminated apple juice.

  12. 3,3′-Bicarbazole-Based Host Molecules for Solution-Processed Phosphorescent OLEDs

    Directory of Open Access Journals (Sweden)

    Jungwoon Kim

    2018-04-01

    Full Text Available Solution-processed organic light-emitting diodes (OLEDs are attractive due to their low-cost, large area displays, and lighting features. Small molecules as well as polymers can be used as host materials within the solution-processed emitting layer. Herein, we report two 3,3′-bicarbazole-based host small molecules, which possess a structural isomer relationship. 9,9′-Di-4-n-butylphenyl-9H,9′H-3,3′-bicarbazole (BCz-nBuPh and 9,9′-di-4-t-butylphenyl-9H,9′H-3,3′-bicarbazole (BCz-tBuPh exhibited similar optical properties within solutions but different photoluminescence within films. A solution-processed green phosphorescent OLED with the BCz-tBuPh host exhibited a high maximum current efficiency and power efficiency of 43.1 cd/A and 40.0 lm/W, respectively, compared to the device with the BCz-nBuPh host.

  13. Acid-base equilibrium in aqueous solutions of 1,3-dimethylbarbituric acid as studied by 13C NMR spectroscopy

    Science.gov (United States)

    Gryff-Keller, A.; Kraska-Dziadecka, A.

    2011-12-01

    13C NMR spectra of 1,3-dimethylbarbituric acid in aqueous solutions of various acidities and for various solute concentrations have been recorded and interpreted. The spectra recorded at pH = 2 and below contain the signals of the neutral solute molecule exclusively, while the ones recorded at pH = 7 and above only the signals of the appropriate anion, which has been confirmed by theoretical GIAO-DFT calculations. The signals in the spectra recorded for solutions of pH pH variation have been observed for the parent barbituric acid.

  14. Determining pH at elevated pressure and temperature using in situ ¹³C NMR.

    Science.gov (United States)

    Surface, J Andrew; Wang, Fei; Zhu, Yanzhe; Hayes, Sophia E; Giammar, Daniel E; Conradi, Mark S

    2015-02-03

    We have developed an approach for determining pH at elevated pressures and temperatures by using (13)C NMR measurements of inorganic carbon species together with a geochemical equilibrium model. The approach can determine in situ pH with precision better than 0.1 pH units at pressures, temperatures, and ionic strengths typical of geologic carbon sequestration systems. A custom-built high pressure NMR probe was used to collect (13)C NMR spectra of (13)C-labeled CO2 reactions with NaOH solutions and Mg(OH)2 suspensions at pressures up to 107 bar and temperatures of 80 °C. The quantitative nature of NMR spectroscopy allows the concentration ratio [CO2]/[HCO3(-)] to be experimentally determined. This ratio is then used with equilibrium constants calculated for the specific pressure and temperature conditions and appropriate activity coefficients for the solutes to calculate the in situ pH. The experimentally determined [CO2]/[HCO3(-)] ratios agree well with the predicted values for experiments performed with three different concentrations of NaOH and equilibration with multiple pressures of CO2. The approach was then applied to experiments with Mg(OH)2 slurries in which the change in pH could track the dissolution of CO2 into solution, rapid initial Mg(OH)2 dissolution, and onset of magnesium carbonate precipitation.

  15. A miniature integrated multimodal sensor for measuring pH, EC and temperature for precision agriculture.

    Science.gov (United States)

    Futagawa, Masato; Iwasaki, Taichi; Murata, Hiroaki; Ishida, Makoto; Sawada, Kazuaki

    2012-01-01

    Making several simultaneous measurements with different kinds of sensors at the same location in a solution is difficult because of crosstalk between the sensors. In addition, because the conditions at different locations in plant beds differ, in situ measurements in agriculture need to be done in small localized areas. We have fabricated a multimodal sensor on a small Si chip in which a pH sensor was integrated with electrical conductivity (EC) and temperature sensors. An ISFET with a Si(3)N(4) membrane was used for the pH sensor. For the EC sensor, the electrical conductivity between platinum electrodes was measured, and the temperature sensor was a p-n junction diode. These are some of the most important measurements required for controlling the conditions in plant beds. The multimodal sensor can be inserted into a plant bed for in situ monitoring. To confirm the absence of crosstalk between the sensors, we made simultaneous measurements of pH, EC, and temperature of a pH buffer solution in a plant bed. When the solution was diluted with hot or cold water, the real time measurements showed changes to the EC and temperature, but no change in pH. We also demonstrated that our sensor was capable of simultaneous in situ measurements in rock wool without being affected by crosstalk.

  16. RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode

    OpenAIRE

    Lonsdale, Wade; Wajrak, Magdalena; Alameh, Kamal

    2017-01-01

    A pH-sensitive RuO2 electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO2 working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO2 pH-sensitive working electrode and a SiO2-PVB junction-modified RuO2 reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to...

  17. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    International Nuclear Information System (INIS)

    Le, T.T. Yen; Hendriks, A. Jan

    2014-01-01

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  18. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    Energy Technology Data Exchange (ETDEWEB)

    Le, T.T. Yen, E-mail: YenLe@science.ru.nl; Hendriks, A. Jan

    2014-08-15

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  19. Rapid synthesis of CdSe nanocrystals in aqueous solution at room ...

    Indian Academy of Sciences (India)

    Administrator

    Water-soluble thioglycolic acid-capped CdSe nanocrystals (NCs) were prepared in aqueous solu- tion at room temperature. We investigated the ... NCs dispersed in buffer solution (pH = 4⋅0). FTIR spectra were recorded on a ... the theory of acid-base equilibrium, the initial pH value of original solution determines the ...

  20. A new fluorescent pH probe for extremely acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Jiang, Zheng [School of Life Science, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Xiao, Yu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Bi, Fu-Zhen [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Miao, Jun-Ying, E-mail: miaojy@sdu.edu.cn [School of Life Science, Shandong University, Jinan 250100 (China); Zhao, Bao-Xiang, E-mail: bxzhao@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-04-01

    A new coumarin-based fluorescent probe can detect highly acidic conditions in both solution and bacteria with high selectivity and sensitivity. Highlights: • A new fluorescence probe for very low pH was synthesized and characterized. • The probe can monitor pH in solution and bacteria. • The two-step protonation of N atoms of the probe leads to fluorescence quenching. Abstract: A novel turn-off fluorescent probe based on coumarin and imidazole moiety for extremely acidic conditions was designed and developed. The probe with pKa = 2.1 is able to respond to very low pH value (below 3.5) with high sensitivity relying on fluorescence quenching at 460 nm in fluorescence spectra or the ratios of absorbance maximum at 380 nm to that at 450 nm in UV–vis spectra. It can quantitatively detect pH value based on equilibrium equation, pH = pKa -log[(Ix - Ib)/(Ia - Ix)]. It had very short response time that was less than 1 min, good reversibility and nearly no interference from common metal ions. Moreover, using ¹H NMR analysis and theoretical calculation of molecular orbital, we verified that a two-step protonation process of two N atoms of the probe leaded to photoinduced electron transfer (PET), which was actually the mechanism of the fluorescence quenching phenomenon under strongly acidic conditions. Furthermore, the probe was also applied to imaging strong acidity in bacteria, E.coli and had good effect. This work illustrates that the new probe could be a practical and ideal pH indicator for strongly acidic conditions with good biological significance.

  1. Exchangeable hydrogen explains the pH of spodosol Oa horizons

    Science.gov (United States)

    Ross, D.S.; David, M.B.; Lawrence, G.B.; Bartlett, R.J.

    1996-01-01

    The chemistry of extremely acid Oa horizons does not conform to traditional pH, Al, and base saturation relationships. Results from two separate studies of northeastern U.S. forested soils were used to investigate relationships between pH in water or dilute salt solutions and other soil characteristics. In Oa horizons with pH below 4, soil pH in dilute CaCl2 solution was correlated with exchangeable H+ measured either by titration (r = -0.88, P = 0.0001, n = 142) or by electrode (r = -0.89, P = 0.0001, n = 45). Exchangeable H+ expressed as a percentage of the cation-exchange capacity (CEC) was linear with pH and showed similar slopes for data from both studies. For all samples, pHw = 4.21 - 1.80 x H+/CEC (R2 = 0.69, n = 194). The reciprocal of the H+/CEC ratio is base saturation with Al added to the bases. Because of the low pH, exchangeable Al does not appear to behave as an acid. Exchangeable H+ remains an operationally defined quantity because of the difficulty in separating exchange and hydrolysis reactions. In a variety of neutral-salt extractants, concentration of H+ were correlated with 0.1 M BaCl2-exchangeable H+ (r > 0.91, P = 0.0001, n = 26) regardless of the strength of the extract. Nine successive extractions with 0.33 mM CaCl2 removed more H+ than was removed by single batch extractions with either 1 M KCl or 0.1 M BaCl2 (average H+ of 70, 43, and 49 mmol kg-1, respectively for 26 samples). The data showed little difference in the chemical behavior of Oa horizons from a variety of geographical sites and vegetation types.

  2. Biocorrosion properties of antibacterial Ti-10Cu sintered alloy in several simulated biological solutions.

    Science.gov (United States)

    Liu, Cong; Zhang, Erlin

    2015-03-01

    Ti-10Cu sintered alloy has shown strong antibacterial properties against S. aureus and E. coli and good cell biocompatibility, which displays potential application in dental application. The corrosion behaviors of the alloy in five different simulated biological solutions have been investigated by electrochemical technology, surface observation, roughness measurement and immersion test. Five different simulated solutions were chosen to simulate oral condition, oral condition with F(-) ion, human body fluids with different pH values and blood system. It has been shown that Ti-10Cu alloy exhibits high corrosion rate in Saliva pH 3.5 solution and Saliva pH 6.8 + 0.2F solution but low corrosion rate in Hank's, Tyrode's and Saliva pH 6.8 solutions. The corrosion rate of Ti-10Cu alloy was in a order of Hank's, Tyrode's, Saliva pH 6.8, Saliva-pH 3.5 and Saliva pH 6.8 + 0.2F from slow to fast. All results indicated acid and F(-) containing conditions prompt the corrosion reaction of Ti-Cu alloy. It was suggested that the Cu ion release in the biological environments, especially in the acid and F(-) containing condition would lead to high antibacterial properties without any cell toxicity, displaying wide potential application of this alloy.

  3. Skin physiology in men and women: in vivo evaluation of 300 people including TEWL, SC hydration, sebum content and skin surface pH.

    Science.gov (United States)

    Luebberding, S; Krueger, N; Kerscher, M

    2013-10-01

    Evidence is given that differences in skin physiological properties exist between men and women. However, despite an assessable number of available publications, the results are still inconsistent. Therefore, the aim of this clinical study is the first systematic assessment of gender-related differences in skin physiology in men and women, with a special focus on changes over lifetime. A total of 300 healthy male and female subjects (20-74 years) were selected following strict criteria including age, sun behaviour or smoking habits. TEWL, hydration level, sebum production and pH value were measured with worldwide-acknowledged biophysical measuring methods at forehead, cheek, neck, volar forearm and dorsum of hand. Until the age of 50 men's TEWL is significantly lower than the water loss of women of the same age, regardless of the location. With ageing gender-related differences in TEWL assimilate. Young men show higher SC hydration in comparison with women. But, whereas SC hydration is stable or even increasing in women over lifetime, the skin hydration in men is progressively decreasing, beginning at the age of 40. Sebum production in male skin is always higher and stays stable with increasing age, whereas sebum production in women progressively decreases over lifetime. Across all localizations and age groups, the pH value in men is below 5, the pH value of female subjects is, aside from limited expectations, higher than 5. Skin physiological distinctions between the sexes exist and are particularly remarkable with regard to sebum production and pH value. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  4. The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH

    International Nuclear Information System (INIS)

    Singh, J.K.; Singh, D.D.N.

    2012-01-01

    Highlights: ► LAS rebars corrode 2–3 times slower than PCS in concrete pore solution and mortars. ► Raman and XRD studies show that goethite and maghemite phases of rusts formed on LAS. ► On PCS unstable phases of lepidocrocite and akaganite are formed. ► EIS confirms more stable rust on LAS than on PCS. ► A model is proposed to explain formation of passive film on surface of steels. - Abstract: Correlation of corrosion characteristics and nature of rusts on low alloy (LA) and plain carbon (PC) steels exposed in simulated concrete pore solution of different pH is studied. Rusts formed under wet/dry conditions are examined by Raman spectroscopy and X-ray diffraction. LA rust is more adherent compared to PC as confirmed by measurement of weight in gain and electrochemical studies. EIS results show improvement in protective properties of steels with passage of time. Both steels are found prone to pitting attack in chloride contaminated pore solution. Rebars embedded in concrete exhibit same trend as recorded in solution exposure tests.

  5. Hydrogen generation from aluminium corrosion in reactor containment spray solutions

    International Nuclear Information System (INIS)

    Frid, W.; Karlberg, G.; Sundvall, S.B.

    1982-01-01

    The aluminium corrosion experiments in reactor containment spray solutions, under the conditions expected to prevail during LOCA in BWR and PWR, were performed in order to investigate relationships between temperature, pH and hydrogen production rates. In order to simulate the conditions in a BWR containment realistic ratios between aluminium surface and water volume and between aluminium surface and oxygen volume were used. Three different aluminium alloys were exposed to spray solutions: AA 1050, AA 5052 and AA 6082. The corrosion rates were measured for BWR solutions (deaerated and aerated) with pH 5 and 9 at 50, 100 and 150 0 C. The pressure was constantly 0.8 MPa. The hydrogen production rate was measured by means of gas chromatography. In deionized BWR water the corrosion rates did not exceed about 0.05 mm/year in all cases, i.e. were practically independent of temperature and pH. Hydrogen concentrations were less than 0.1 vol.% in cooled dry gas. Corrosion rates and hydrogen production in PWR alkaline solution measured at pH 9.7 and 150 0 C were very high. AA 5052 alloy was the best material

  6. RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode

    Directory of Open Access Journals (Sweden)

    Wade Lonsdale

    2017-09-01

    Full Text Available A pH-sensitive RuO2 electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO2 working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO2 pH-sensitive working electrode and a SiO2-PVB junction-modified RuO2 reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices.

  7. RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode

    Science.gov (United States)

    Wajrak, Magdalena; Alameh, Kamal

    2017-01-01

    A pH-sensitive RuO2 electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO2 working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO2 pH-sensitive working electrode and a SiO2-PVB junction-modified RuO2 reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices. PMID:28878182

  8. Electrochemical and SEM studies of tetra-ammine platinum (II) (Pt(NH3)4)(OH)2 solution

    International Nuclear Information System (INIS)

    Wan Jeffrey Basirun

    2002-01-01

    Electrochemical studies include cyclic voltammetry with microelectrodes were done on a solution of tetra-ammine platinum (II) (Pt(NH 3 ) 4 )(OH) 2 at pH 13 and showed that the electrochemical reduction of this compound was no different from the tetra-ammine platinum (II) (Pt(NH 3 ) 4 )(HPO 4 ) at pH 10.4. The solution was instable to high temperatures and results have shown that electroplating can be done at a limited temperature range for longer periods of time or at higher temperatures for short periods of time. Scanning electron microscopy was done on some of the constant current electrodeposited samples at high temperatures and result obtained was satisfactory. (Authors)

  9. Arsenic removal from acidic solutions with biogenic ferric precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Ahoranta, Sarita H., E-mail: sarita.ahoranta@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Kokko, Marika E., E-mail: marika.kokko@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Papirio, Stefano, E-mail: stefano.papirio@unicas.it [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Özkaya, Bestamin, E-mail: bozkaya@yildiz.edu.tr [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Department of Environmental Engineering, Yildiz Technical University, Davutpasa Campus 34220, Esenler, Istanbul (Turkey); Puhakka, Jaakko A., E-mail: jaakko.puhakka@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland)

    2016-04-05

    Highlights: • Continuous and rapid arsenic removal with biogenic jarosite was achieved at pH 3.0. • Arsenic removal was inefficient below pH 2.4 due to reduced Fe–As co-precipitation. • As(V) had better sorption characteristics than As(III). • Biogenic jarosite adsorbed arsenic more effectively than synthetic jarosite. - Abstract: Treatment of acidic solution containing 5 g/L of Fe(II) and 10 mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7 h, 96–98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28 mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pH < 2.4. As(III) was partially oxidized to As(V) in the system. In shake flask experiments, As(V) sorbed onto jarosite better than As(III). Moreover, the sorption capacity of biogenic jarosite was significantly higher than that of synthetic jarosite. The developed bioprocess simultaneously and efficiently removes iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment.

  10. High Sensitivity pH Sensor Based on Porous Silicon (PSi Extended Gate Field-Effect Transistor

    Directory of Open Access Journals (Sweden)

    Naif H. Al-Hardan

    2016-06-01

    Full Text Available In this study, porous silicon (PSi was prepared and tested as an extended gate field-effect transistor (EGFET for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions.

  11. Low pH Cements

    International Nuclear Information System (INIS)

    Savage, David; Benbow, Steven

    2007-05-01

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit ≤ 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio ≤ 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  12. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit {<=} 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio {<=} 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  13. A study of tiron in aqueous solutions for redox flow battery application

    International Nuclear Information System (INIS)

    Xu Yan; Wen Yuehua; Cheng Jie; Cao Gaoping; Yang Yusheng

    2010-01-01

    In this study, the electrochemical behavior of tiron in aqueous solutions and the influence of pH were investigated. A change of pH mainly produces the following results. In acidic solutions of pH below 4, the electrode reaction of tiron exhibits a simple process at a relatively high potential with a favorable quasi-reversibility. The tiron redox reaction exhibits fast electrode kinetics and a diffusion-controlled process. In solutions of pH above 4, the electrode reaction of tiron tends to be complicated. Thus, acidic aqueous solutions of pH below 4 are favorable for the tiron as active species of a redox flow battery (RFB). Constant-current electrolysis shows that a part of capacity is irreversible and the structure of tiron is changed for the first electrolysis, which may result from an ECE process for the tiron electro-oxidation. Thus, the tiron needs an activation process for the application of a RFB. Average coulombic and energy efficiencies of the tiron/Pb battery are 93 and 82%, respectively, showing that self-discharge is small during the short-term cycling. The preliminary exploration shows that the tiron is electrochemically promising for redox flow battery application.

  14. Chemical behaviour of plutonium in aqueous chloride solutions

    International Nuclear Information System (INIS)

    Bueppelmann, K.; Kim, J.I.

    1988-06-01

    The chemical behaviour of Plutonium has been investigated in concentrated NaCl solutions in the neutral pH range. The α-radiation induced radiolysis reactions oxidize the Cl - -ion to Cl 2 , HClO, ClO - and other species, which produce a strongly oxidizing medium. Under these conditions the Pu ions of lower oxidation states are readily oxidized to Pu(VI), which then undergo depending on the pH of the solution, various chemical reactions to produce PuO 2 Cl n , PuO 2 (ClO) m or PuO 2 (OH) x species. In addition to primary radiolysis reactions taking place in NaCl solutions, the reactions leading to the PuO 2 (Cl) n and PuO 2 (ClO) m species have been characterized and quantified systematically by spectroscopic and thermodynamic evaluation. The redox and complexation reactions of Pu ions under varying NaCl concentration, specific α-activity and pH are discussed. (orig.) [de

  15. Anionic triphenylmethane dye solutions for low-dose food irradiation dosimetry

    International Nuclear Information System (INIS)

    El-Assy, N.B.; Chen Yundong; Walker, M.L.; Al-Sheikly, M.; McLaughlin, W.L.

    1995-01-01

    The radiolytic bleaching of aryl sulfonic-substituted para-dimethyl-amino triphenylmethane dye solutions can be used for dosimetry in the absorbed dose range 10 to 400 Gy. The sulfonic anions provide solubility of these acid dyes in water. Two of these dyes are supplied as stable greenish-blue biological stains when dissolved in weakly-acidic aqueous solution. Light Green SF Yellowish and Fast Green FCF. They have, respectively, linear molar absorption coefficients of 7.14 x 10 3 (at pH 5.4) and 10.0 x 10 3 (at pH 4.2) m 2 mol -1 , when measured at the peaks of the primary absorption bands, 630 nm and 622 nm, respectively. The bleaching due to irradiation with gamma rays shows a linear function with a positive slope between the negative logarithm of the absorbance and the absorbed dose. The effect of pH on the response is studied, as well as the effects of light and temperature on pre- and post-irradiation stability. A mechanism, based mainly on radiolytic oxidation of the protonated phenolic or sulfonated phenyl group by . OH, with the abstraction of H-atom to water, is postulated for neutral to slightly acidic aerated aqueous solutions. The influence of alcohol on diminishing the negative yield is demonstrated. Alkaline aqueous solutions of these dyes (pH 10.2) have a shorter-wavelength absorption maximum than acidic aqueous solutions. The effect of irradiation is to cause acidification (to pH 7) due to displacement of OH groups and degradation of the dye molecule to lower molecular weight organic acids. (author)

  16. The stability of water- and fat-soluble vitamin in dentifrices according to pH level and storage type.

    Science.gov (United States)

    Park, Jung-Eun; Kim, Ki-Eun; Choi, Yong-Jun; Park, Yong-Duk; Kwon, Ha-Jeong

    2016-02-01

    The purpose of this study is to evaluate the vitamin stabilities in dentifrices by analyzing various vitamins according to the level and storage temperature. The stabilities of water- and fat-soluble vitamins were investigated in buffer solution at different pH values (4, 7, 8, 10 and 11) for 14 days and in dentifrices at different pH (7 and 10) for 5 months at two temperature conditions (room and refrigeration temperature) by analyzing the remaining amounts using HPLC methods. In the buffer solution, the stability of vitamins B1 , B6 and C was increased as the pH values increased. Vitamins E and K showed poor stability at pH 4, and vitamin B3 showed poor stability at pH 11. In dentifrices, the storage temperature highly influenced vitamin stability, especially vitamins C and E, but the stabilities of vitamins B1 and C according to pH values did not correspond to the buffer solution tests. Vitamin B group was relatively stable in dentifrices, but vitamin C completely disappeared after 5 months. Vitamin K showed the least initial preservation rates. Vitamins were not detected in commercial dentifrices for adults and detected amounts were less than the advertised contents in dentifrices for children. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Effect of gamma-irradiation on basic dye maxilon blue in aqueous solution

    International Nuclear Information System (INIS)

    Andayani, Winarti; Bagyo, Agustin S.M.; Winarno, Ermin K.; Winarno, Hendig

    1998-01-01

    The effects of radiation of basic dye maxilon blue have been studied. Irradiation was done at various pH (3, 5, 7, 9, and 12) with doses of 0 - 4 kGy/h. at pH 5 irradiation of dye solution with variation of concentration i.e. 10; 25; 50.8; 78.2 and 106 ppm were done. Bubbling of air were done during irradiation of dye solution. Parameters examined were the change of the spectrum by spectrophotometer, the decrease of pH by pH meter and degradation products such as organic acids by HPLC. The results showed that the percentage of degradation at acid pH is higher than that basic and neutral pH. G value (degradation) of the dye at pH 5 was 0.876 with a dose rate of 5 kGy/h. Percentage of decoloration of dye solution at initial concentration 10 and 25 ppm were higher than 90% at dose of 0.5 kGy, dye solution at initial concentration between 50 to 106 ppm were higher than 90% at 2 kGy. The equation of degradation rate of the dye was V=-d(dye)/dt = 1.4 x 10 -2 [dye] 1,1107 ppm/min. Degradation of the dye has first order pseudo with the rate constant of 1.4 x 10 -2 min -1 . Degradation products that could be detected was oxalic acid. (authors)

  18. O pH da calda de aplicação e a absorção de ácido giberélico por frutas de laranja cv. ‘Valência’ The solution pH on gibberellic acid uptake by cv. ‘Valência’ orange fruits

    Directory of Open Access Journals (Sweden)

    João Guilherme Casagrande Jr.

    1999-10-01

    different solution pH. The treatments consisted of 5 concentrations of gibberellic acid (0; 5; 10; 15; and 20 ppm and 3 pHs (3; 4.5; and 6. The aplication was made in May, when fruits were at green-yellow stage, and samples were collected every 30 days until November. The variables studied were coloration and thickness of the peel, total soluble solids (TSS, pH of juice, percent of juice, total acid (TA, ratio TSS/TA and technological index. The results obtained did not allow to conclude that gibberellic acid had any influence on the characteristics of the juice. The thickness of the peel was not affected by gibberellic acid. However, gibberellic acid caused a retaintion of the green color of the peel with increasing concentration, causing the fruits to remain greener. This was observed for all solution pHs. At pH 3, the fruits were greener than under the other pHs, and at the normal pH (4.5 The green coloration in the fruits persisted for a louger time than at pH=6, suggesting that acid pHs increase the uptake of gibberelic acid by the plants. It was also observed that gibberellic acid delayed the regreening of the fruits, what happens when the temperature becomes higher.

  19. Dual-Emitting Fluorescent Metal-Organic Framework Nanocomposites as a Broad-Range pH Sensor for Fluorescence Imaging.

    Science.gov (United States)

    Chen, Haiyong; Wang, Jing; Shan, Duoliang; Chen, Jing; Zhang, Shouting; Lu, Xiaoquan

    2018-05-15

    pH plays an important role in understanding physiological/pathologic processes, and abnormal pH is a symbol of many common diseases such as cancer, stroke, and Alzheimer's disease. In this work, an effective dual-emission fluorescent metal-organic framework nanocomposite probe (denoted as RB-PCN) has been constructed for sensitive and broad-range detection of pH. RB-PCN was prepared by encapsulating the DBI-PEG-NH 2 -functionalized Fe 3 O 4 into Zr-MOFs and then further reacting it with rhodamine B isothiocyanates (RBITC). In RB-PCN, RBITC is capable of sensing changes in pH in acidic solutions. Zr-MOFs not only enrich the target analyte but also exhibit a fluorescence response to pH changes in alkaline solutions. Based on the above structural and compositional features, RB-PCN could detect a wide range of pH changes. Importantly, such a nanoprobe could "see" the intracellular pH changes by fluorescence confocal imaging as well as "measure" the wider range of pH in actual samples by fluorescence spectroscopy. To the best of our knowledge, this is the first time a MOF-based dual-emitting fluorescent nanoprobe has been used for a wide range of pH detection.

  20. Influence of solution pH on the electron transport of the self-assembled nanoarrays of single-walled carbon nanotube-cobalt tetra-aminophthalocyanine on gold electrodes: Electrocatalytic detection of epinephrine

    Energy Technology Data Exchange (ETDEWEB)

    Ozoemena, Kenneth I. [Chemistry Department, University of Pretoria, Pretoria 0002 (South Africa)], E-mail: kenneth.ozoemena@up.ac.za; Nkosi, Dudu; Pillay, Jeseelan [Chemistry Department, University of Pretoria, Pretoria 0002 (South Africa)

    2008-02-15

    This paper provides first evidence of the impact of solution pH on the heterogeneous electron transfer rate constants of self-assembled films of single-walled carbon nanotubes (SWCNT) and SWCNT integrated to cobalt(II)tetra-aminophthalocyanine (SWCNT-CoTAPc) by sequential self-assembly. Using cyclic voltammetry and electrochemical impedance spectroscopy, we proved that both SAMs exhibit notable differences in their response to different buffered solution pH, with and without the presence of redox probe, [Fe(CN){sub 6}]{sup 4-}/[Fe(CN){sub 6}]{sup 3-}. Surface pK{sub a} value for the Au-Cys-SWCNT-CoTAPc was estimated as ca. 7.8, compared to that of the Au-Cys-SWCNT of about 5.5. Interestingly, both redox-active SAMs gave similar analytical response for epinephrine, giving well-resolved square wave voltammograms, with linear concentration range up to 130 {mu}M, sensitivity of ca. 9.4 x 10{sup -3} AM{sup -1}, and limit of detection ca. 6 {mu}M. This analytical result implies that there is no detectable advantage of one of the SAMs over the other in the electrocatalytic detection of this neurotransmitter.

  1. The Synthesis, Characterization and Reactivity of a Series of Ruthenium N-triphos Ph Complexes.

    Science.gov (United States)

    Phanopoulos, Andreas; Long, Nicholas; Miller, Philip

    2015-04-10

    Herein we report the synthesis of a tridentate phosphine ligand N(CH2PPh2)3 (N-triphos(Ph)) (1) via a phosphorus based Mannich reaction of the hydroxylmethylene phosphine precursor with ammonia in methanol under a nitrogen atmosphere. The N-triphos(Ph) ligand precipitates from the solution after approximately 1 hr of reflux and can be isolated analytically pure via simple cannula filtration procedure under nitrogen. Reaction of the N-triphos(Ph) ligand with [Ru3(CO)12] under reflux affords a deep red solution that show evolution of CO gas on ligand complexation. Orange crystals of the complex [Ru(CO)2{N(CH2PPh2)3}-κ(3)P] (2) were isolated on cooling to RT. The (31)P{(1)H} NMR spectrum showed a characteristic single peak at lower frequency compared to the free ligand. Reaction of a toluene solution of complex 2 with oxygen resulted in the instantaneous precipitation of the carbonate complex [Ru(CO3)(CO){N(CH2PPh2)3}-κ(3)P] (3) as an air stable orange solid. Subsequent hydrogenation of 3 under 15 bar of hydrogen in a high-pressure reactor gave the dihydride complex [RuH2(CO){N(CH2PPh2)3}-κ(3)P] (4), which was fully characterized by X-ray crystallography and NMR spectroscopy. Complexes 3 and 4 are potentially useful catalyst precursors for a range of hydrogenation reactions, including biomass-derived products such as levulinic acid (LA). Complex 4 was found to cleanly react with LA in the presence of the proton source additive NH4PF6 to give [Ru(CO){N(CH2PPh2)3}-κ(3)P{CH3CO(CH2)2CO2H}-κ(2)O](PF6) (6).

  2. Continuous measurement of electrical characteristics in plants. 3. Shokubutsu seitai no denki tokusei sokuteiho. 3. ; Suikoeki pH chosei heno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Sekiyama, T; Haniyu, H; Saiki, H

    1989-09-01

    Controlling pH of nutrient solution and keeping the other conditions unchanged, measurements of variation in electric potential difference between leaf and hypocotyl of a bush bean plant was performed for about seven days. Silver electrodes 0.3mm in diameter were glued on the surface of the plant using conductive paste prepared by dissolving gelatine in Ringel {prime} s solution. The results obtained are summarized as follws: first, when pH of the solution is suddenly increased or decreased, the potential of leave becomes high or low with respect to that of hypocotyl respectively; second, the variation in potential difference between them is affected by the rate at which pH of the solution is adjusted, although the total variation of pH is controlled to be the same, and in particular by mild adjustment (0.02 - 0.05pH/min) it is reduced to 1/2 - 1/4 of that produced by sudden change; third, abrupt change in pH of the solution cause to the plant the temporary suppression of its water absorption having a duration of 7 - 15 minutes. A short account is given of a non-contact type measurement of bioelectric potential performanced by making use of a Faraday {prime} s cage. 11 refs., 12 figs.

  3. Aggregation and metal-complexation behaviour of THPP porphyrin in ethanol/water solutions as function of pH

    Science.gov (United States)

    Zannotti, Marco; Giovannetti, Rita; Minofar, Babak; Řeha, David; Plačková, Lydie; D'Amato, Chiara A.; Rommozzi, Elena; Dudko, Hanna V.; Kari, Nuerguli; Minicucci, Marco

    2018-03-01

    The effect of pH change on 5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-porphine (THPP) with its aggregation as function of water-ethanol mixture was studied with UV-vis, fluorescence, Raman and computational analysis. In neutral pH, THPP was present as free-base and, increasing the water amount, aggregation occurred with the formation of H- and J-aggregates. The aggregation constant and the concentration of dimers were calculated, other information about the dimer aggregation were evaluated by computational study. In acidic pH, by the insertions of two hydrogens in the porphyrin rings, the porphyrin changed its geometry with a ring deformation confirmed by red-shifted spectrum and quenching in fluorescence; at this low pH, increasing the water amount, the acidic form (THPPH2)2 + resulted more stable due to a polar environment with stronger interaction by hydrogen bonding. In basic pH, reached by NH4OH, THPP porphyrin was able to react with alkali metals in order to form sitting-atop complex (M2THPP) confirmed by the typical absorption spectrum of metallo-porphyrin, Raman spectroscopy and by computational analysis.

  4. Hydrophobic interactions between polymethacrylic acid and sodium laureth sulfate in aqueous solutions

    Science.gov (United States)

    Yaremko, Z. M.; Fedushinskaya, L. B.; Burka, O. A.; Soltys, M. N.

    2014-09-01

    The role of hydrophobic interaction in the development of associative processes is demonstrated, based on the concentration dependences of the viscosity and pH of binary solutions of polymethacrylic acid as an anionic polyelectrolyte and sodium laureth sulfate as an anionic surfactant. It is found that the inflection point on the dependence of the difference between the pH values of binary solutions of polymethacrylic acid and sodium laureth sulfate on the polyelectrolyte concentration is a criterion for determining the predominant contribution from hydrophobic interaction, as is the inflection point on the dependence of pH of individual solutions of polymethacrylic acid on the polyelectrolyte concentration.

  5. Treatment for hydrazine-containing waste water solution

    Science.gov (United States)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  6. EVALUATION OF VEGETABLE EXTRACTS FROM THE SEMI-ARID AS NATURAL pH INDICATOR

    Directory of Open Access Journals (Sweden)

    Sebastiana Estefana Torres Brilhante

    2015-02-01

    Full Text Available Given the various difficulties to expose the contents of the subject of chemistry is a constant search for alternative materials to facilitate learning. This may partly be due to chemical science to be a significant practical character. However, due to professional educational institutions and material limitations ends up being passed on to the student of predominantly theoretical way, requiring a high degree of abstraction and consequently in their disinterest the same. In this context , we investigated the use of ethanol extracts of various plants, such as: Jitirana (Ipomoea glabra , Íxora (Ixora coccínea, Centro (Centrosema brasilianum and Candlebush (Senna alata flowers, Beet (Beta vulgaris L. fruit and Urucum (Bixa orellana seeds as an acids and bases natural indicator, from laboratory tests capable of identifying properties demonstrate the pH. Initially we evaluated the variation in the coloration of extracts using for this buffer solutions at pH 3, 7 and 12. Among the cited vegetable flowers Jitirana, ixora and Centro presented activities relevant indicator as staining variants between pH 2:13. The extracts of plants were further added in glass tubes containing buffer solutions with a pH ranging from 2 to 13. The change in color of the extracts showed good activity has the same pH indicator.

  7. 75 FR 77665 - Whirlpool Corporation, Including On-Site Leased Workers From Career Solutions TEC Staffing and...

    Science.gov (United States)

    2010-12-13

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,593] Whirlpool Corporation, Including On-Site Leased Workers From Career Solutions TEC Staffing and Andrews International, Fort Smith... subject firm. The workers are engaged in the production of refrigerators and trash compactors. The company...

  8. Titratable acidity of beverages influences salivary pH recovery

    Directory of Open Access Journals (Sweden)

    Livia Maria Andaló TENUTA

    2015-01-01

    Full Text Available A low pH and a high titratable acidity of juices and cola-based beverages are relevant factors that contribute to dental erosion, but the relative importance of these properties to maintain salivary pH at demineralizing levels for long periods of time after drinking is unknown. In this crossover study conducted in vivo, orange juice, a cola-based soft drink, and a 10% sucrose solution (negative control were tested. These drinks differ in terms of their pH (3.5 ± 0.04, 2.5 ± 0.05, and 5.9 ± 0.1, respectively and titratable acidity (3.17 ± 0.06, 0.57 ± 0.04 and < 0.005 mmols OH- to reach pH 5.5, respectively. Eight volunteers with a normal salivary flow rate and buffering capacity kept 15 mL of each beverage in their mouth for 10 s, expectorated it, and their saliva was collected after 15, 30, 45, 60, 90, and 120 s. The salivary pH, determined using a mini pH electrode, returned to the baseline value at 30 s after expectoration of the cola-based soft drink, but only at 90 s after expectoration of the orange juice. The salivary pH increased to greater than 5.5 at 15 s after expectoration of the cola drink and at 30 s after expectoration of the orange juice. These findings suggest that the titratable acidity of a beverage influences salivary pH values after drinking acidic beverages more than the beverage pH.

  9. Plant Habitat (PH)

    Science.gov (United States)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  10. Long term corrosion behavior of the WAK-HLW glass in salt solutions

    International Nuclear Information System (INIS)

    Luckscheiter, B.; Nesovic, M.

    1998-01-01

    The corrosion behavior of the HLW glass GP WAK1 containing simulated HLW oxides from the WAK reprocessing plant in Karlsruhe is investigated in long-term corrosion experiments at high S/V ratios in two reference brines at 110 and 190 C. In case of the MgCl 2 -rich solution the leachate becomes increasingly acid with reaction time up to a final pH of about 3.5 at 190 C. In the NaCl-rich solution the pH rises to about 8.5 after one year of reaction. The release of soluble elements in MgCl 2 solution, under Si-saturated conditions, is proportional to the surface area of the sample and the release increases at 190 C according to a t 1/2 rate law. This time dependence may be an indication of diffusion controlled matrix dissolution. However, at 110 C the release of the mobile elements cannot be described by a t 1/2 rate law as the time exponents are much lower than 0.5. This difference in corrosion behavior may be explained by the higher pH of about 5 at 110 C. In case of NaCl solution under alkaline conditions, the release of soluble elements is not proportional to the surface area of the sample and it increases with time exponents much lower than 0.5. After one year of reaction at 190 C a sharp increase of the release values of some elements was observed. This increase might be explained by the high pH of the solution attained after one year. The corrosion mechanism in NaCl solution, as well as in MgCl 2 solution at 110 C, has not yet been explained. By corrosion experiments in water at constant pH values between 2 and 10, it could be shown that the time exponents of the release of Li and B decrease with increasing pH of the solution. This result can explain qualitatively the differences found in the corrosion behavior of the glass under the various conditions

  11. An analysis of dietary fiber and fecal fiber components including pH in rural Africans with colorectal cancer

    Directory of Open Access Journals (Sweden)

    Mohammed Faruk

    2018-01-01

    Full Text Available Background/Aims: Colorectal cancer (CRC is now a major public health problem with heavy morbidity and mortality in rural Africans despite the lingering dietary fiber-rich foodstuffs consumption. Studies have shown that increased intake of dietary fiber which contribute to low fecal pH and also influences the activity of intestinal microbiota, is associated with a lowered risk for CRC. However, whether or not the apparent high dietary fiber consumption by Africans do not longer protects against CRC risk is unknown. This study evaluated dietary fiber intake, fecal fiber components and pH levels in CRC patients. Methods: Thirty-five subjects (CRC=21, control=14, mean age 45 years were recruited for the study. A truncated food frequency questionnaire and modified Goering and Van Soest procedures were used. Results: We found that all subjects consumed variety of dietary fiber-rich foodstuffs. There is slight preponderance in consumption of dietary fiber by the control group than the CRC patients. We also found a significant difference in the mean fecal neutral detergent fiber, acid detergent fiber, hemicellulose, cellulose and lignin contents from the CRC patients compared to the controls (P<0.05. The CRC patients had significantly more fecal pH level than the matched apparently healthy controls (P=0.017. Conclusions: The identified differences in the fecal fiber components and stool pH levels between the 2 groups may relate to CRC incidence and mortality in rural Africans. There is crucial need for more hypothesis-driven research with adequate funding on the cumulative preventive role of dietary fiber-rich foodstuffs against colorectal cancer in rural Africans “today.”

  12. Use of 8.4% Sodium Bicarbonate in Buffering Commonly Administered Vancomycin Hydrochloride Solutions for Use with Midline or Peripheral Line Catheters.

    Science.gov (United States)

    Puertos, Enrique; Spencer, Melissa

    2015-01-01

    The primary objective of this study was to evaluate the use of 8.4% sodium bicarbonate in the buffering of commonly administered vancomycin hydrochloride solutions for use with midline or peripheral line catheters. Nine admixtures of vancomycin hydrochloride were aseptically prepared for this study. Vancomycin hydrochloride solutions were prepared in triplicates in the following strengths, 1 gram, 2 grams, and 3 grams, which were added to 250-mL bags of sodium chloride 0.9% injection (with overfill). To each prepared solution of vancomycin hydrochloride, 0.5 mL of 8.4% sodium bicarbonate was added. The pH was measured to obtain a baseline level. At day 9, the pH of each sample was measured and compared to those at baseline. The osmolality of each sample was also measured. There was no statistical difference in the pH at baseline and at day 9 (α = 0.05, P = 0.347). A solution of vancomycin hydrochloride that is compounded in 250 mL of sodium chloride 0.9% injection (including overfill) and buffered with 0.5 mL of 8.4% sodium bicarbonate maintained a pH in the range of 5 to 9 and an osmolality in the range of 150 mOsm/kg to 500 mOsm/kg.

  13. Study on pH Effect in Process of an Entero-gastric Fiber-optic Sensor Design

    OpenAIRE

    Guo-ping, Chen; Rong-min, Xia; Jun, Gong; Wen-de, Shou

    2002-01-01

    The pH effect on design of a fiber optic sensor newly developed for monitoring entero-gastric reflux is investigated. The research has been carried out by utilizing the sensor to measure characteristic absorption of bilirubin standard solution (used as a calibrator) at different pH values from about 1 to 8. The results show explicitly that the estimation error according to the calibration curves with pH

  14. Use of metallurgical dust for removal chromium ions from aqueous solutions

    Science.gov (United States)

    Pająk, Magdalena; Dzieniszewska, Agnieszka; Kyzioł-Komosińska, Joanna; Chrobok, Michał

    2018-01-01

    The aim of the study was to determine the potential for the application of dust from steel plant as an effective sorbent for removing Cr(III) and Cr(VI) in the form of simple and complex ions - Acid Blue 193 dye from aqueous solutions. Three isotherms models were used to interpret the experimental results namely: Langmuir, Freundlich, and Dubinin-Radushkevich. Estimated equations parameters allowed to determine the binding mechanism. Based on laboratory studies it was found that the dust was characterized by high sorption capacities for Cr ions and dye from the aqueous solution. The sorption capacity of the dust for Cr(III) and Cr(VI) ions depended on the degree of oxidation, pH of solution and kind of anion and changed in series: Cr(III)-Cl pH=5.0> Cr(III)-SO4 pH=5.0> Cr(III)-Cl pH=3.0> Cr(III)-SO4 pH=3.0> Cr(VI) pH=5.0> Cr(VI) pH=3.0. Dust was also characterized by a high maximum sorption capacity of dye at a range of 38.2 - 91.7 mg/g, depending on the dose of dust. Based on the study it was found that dust from a steel plant, containing iron oxides, can be used as low-cost and effective sorbent to remove pollutions containing chromium ions, especially from acidic wastewater.

  15. Redox reactions for group 5 elements, including element 105, in aqueous solutions

    International Nuclear Information System (INIS)

    Ionova, G.V.; Pershina, V.; Johnson, E.; Fricke, B.; Schaedel, M.

    1992-08-01

    Standard redox potentials Edeg(M z+x /M z+ ) in acidic solutions for group 5 elements including element 105 (Ha) and the actinide, Pa, have been estimated on the basis of the ionization potentials calculated via the multiconfiguration Dirac-Fock method. Stability of the pentavalent state was shown to increase along the group from V to Ha, while that of the tetra- and trivalent states decreases in this direction. Our estimates have shown no extra stability of the trivalent state of hahnium. Element 105 should form mixed-valence complexes by analogy with Nb due to the similar values of their potentials Edeg(M 3+ /M 2+ ). The stability of the maximum oxidation state of the elements decreases in the direction 103 > 104 > 105. (orig.)

  16. Disposable Miniaturized Screen‐Printed pH and Reference Electrodes for Potentiometric Systems

    DEFF Research Database (Denmark)

    Musa, Arnaud Emmanuel; del Campo, Francisco Javier; Abramova, Natalia

    2011-01-01

    This work describes the development of a miniaturized potentiometric system comprising a miniaturized quasi‐reference electrode (QRE) coupled to a solid‐state ion‐selective electrode (ISE) for the monitoring of pH. We describe the optimization of materials and fabrication processes including screen‐printing...... electrode) that can be used continuously for a period of not less than 7 days in aqueous solutions. Curing the Ag/AgCl pastes during 20 minutes at 120 °C after printing allowed the QREs to display excellent potential stability, as demonstrated by an open‐circuit‐potential standard deviation of ±1.2 mV over...

  17. Tetrachloroethylene Removal Rate from Aqueous Solutions by Pumice Doped with Copper: An Evaluation of the Effect of pH

    Directory of Open Access Journals (Sweden)

    Ali Almasi

    2016-12-01

    Full Text Available Tetrachloroethylene (TCE is a chlorinated aliphatic hydrocarbon, used in many industries. Effective and efficient treatment of industrial wastewater, containing TCE, is one of the environmental requirements. The purpose of this study was to determine the role of alkaline environments in TCE removal rate from aqueous solutions, using copper-doped pumice. This experimental study was performed, using granulated pumice stones with a mesh 4 (8.4 mm in alkaline conditions; the samples were coated with copper. Copper-doped pumice was prepared as a bed at doses of 1, 2, and 3 g/L; the study was performed at pH ranges of 3, 7, and 11. Based on the results, copper-doped pumice showed good efficacy in TCE removal; in addition, its performance increased in alkaline conditions. Therefore, use of this stone for the treatment of wastewater, containing TCE, is effective due to its availability and low cost. Besides, it can be considered a good option, given its high efficiency in the absorption process.

  18. A Miniature Integrated Multimodal Sensor for Measuring pH, EC and Temperature for Precision Agriculture

    Directory of Open Access Journals (Sweden)

    Hiroaki Murata

    2012-06-01

    Full Text Available Making several simultaneous measurements with different kinds of sensors at the same location in a solution is difficult because of crosstalk between the sensors. In addition, because the conditions at different locations in plant beds differ, in situ measurements in agriculture need to be done in small localized areas. We have fabricated a multimodal sensor on a small Si chip in which a pH sensor was integrated with electrical conductivity (EC and temperature sensors. An ISFET with a Si3N4 membrane was used for the pH sensor. For the EC sensor, the electrical conductivity between platinum electrodes was measured, and the temperature sensor was a p-n junction diode. These are some of the most important measurements required for controlling the conditions in plant beds. The multimodal sensor can be inserted into a plant bed for in situ monitoring. To confirm the absence of crosstalk between the sensors, we made simultaneous measurements of pH, EC, and temperature of a pH buffer solution in a plant bed. When the solution was diluted with hot or cold water, the real time measurements showed changes to the EC and temperature, but no change in pH. We also demonstrated that our sensor was capable of simultaneous in situ measurements in rock wool without being affected by crosstalk.

  19. Removal of Radium-226 from Radium-Contaminated Soil using Distilled Water and Humic Acid: Effect of pH

    International Nuclear Information System (INIS)

    Phillips, E.; Muhammad Samudi Yasir; Muhamat Omar

    2011-01-01

    Effect of washing solutions' pH removal of radium-226 from radium-contaminated soil using distilled water and humic acid extracted from Malaysian peat soil was studied by batch washing method. The study encompassed the extraction of humic acid and the washing of radium-contaminated soil using distilled water and humic acid solutions of 100 ppm, both with varying pHs in the range of 3 to 11. The radioactivity concentration of radium-226 was determined by gamma spectrometer.The removal of radium-226 was greater when humic acid solutions were used compared to distilled water at the pH range studied and both washing solutions showed greater removal of radium-226 when basic solutions were used. Nevertheless, comparable removal efficiencies were observed when neutral and highly basic humic acid solutions were used. (author)

  20. Capturing intracellular pH dynamics by coupling its molecular mechanisms within a fully tractable mathematical model.

    Directory of Open Access Journals (Sweden)

    Yann Bouret

    Full Text Available We describe the construction of a fully tractable mathematical model for intracellular pH. This work is based on coupling the kinetic equations depicting the molecular mechanisms for pumps, transporters and chemical reactions, which determine this parameter in eukaryotic cells. Thus, our system also calculates the membrane potential and the cytosolic ionic composition. Such a model required the development of a novel algebraic method that couples differential equations for slow relaxation processes to steady-state equations for fast chemical reactions. Compared to classical heuristic approaches based on fitted curves and ad hoc constants, this yields significant improvements. This model is mathematically self-consistent and allows for the first time to establish analytical solutions for steady-state pH and a reduced differential equation for pH regulation. Because of its modular structure, it can integrate any additional mechanism that will directly or indirectly affect pH. In addition, it provides mathematical clarifications for widely observed biological phenomena such as overshooting in regulatory loops. Finally, instead of including a limited set of experimental results to fit our model, we show examples of numerical calculations that are extremely consistent with the wide body of intracellular pH experimental measurements gathered by different groups in many different cellular systems.

  1. New dual emission fluorescent sensor for pH and Pb(II) based on bis(napfthalimide) derivative

    International Nuclear Information System (INIS)

    Pina-Luis, Georgina; Martínez-Quiroz, Marisela; Ochoa-Terán, Adrián; Santacruz-Ortega, Hisila; Mendez-Valenzuela, Eduardo

    2013-01-01

    This paper describes a novel dual emission bis-1,8-naphthalimide sensor for selective determination of pH and Pb 2+ ions. The influence of the variability in the backbone that links the two fluorophores (naphthalimides) as a function of pH and metal ions was studied by UV–visible and fluorescence spectroscopy. Compounds 1(a–d) with different length alkyl linkers (CH 2 ) n (n=1, 2, 4 and 6) showed no excimer formation in aqueous solution. Fluorescence emission of these derivatives varied in a narrow range of pH (5–8) and was only slightly influenced by the addition of metal ions in CH 3 CN solutions. However, derivative 1e with amino-containing spacer (CH 2 –NH–CH 2 ) showed excimer emission in aqueous solution, a wide response to pH (2.5–9.5) and fluorescence enhancement with selective behavior towards metal ions. The pH sensor based in derivative 1e has a sufficient selectivity for practical pH monitoring in the presence of Li + , Na + , K + , Cs + , Ca 2+ , Mg 2+ , Ba 2+ , Cu 2+ , Pb 2+ , Ni 2+ , Zn 2+ and Cd 2+ . The coordination chemistry of these complexes was studied by UV–Vis, fluorescence and 1 H NMR. This chemosensor displayed high selectivity fluorescence enhancement toward Pb 2+ ions in the presence of the metals ions mentioned in CH 3 CN solutions. Competitive assays show that a 1-fold of metal cations in each case, compared with Pb 2+ ions, results in less than ±5% fluorescence intensity changes. Linear calibration up to 1×10 −5 M for Pb(II) ions (R=0.9968) was obtained and detection limit resulted of 5.0×10 −8 M. - Highlights: ► A novel dual emission bis-1,8-naphthalimide sensor for pH and Pb 2+ ions is synthetized. ► The excimer formation depends on the spacer that links the two naphthalimide groups. ► Bis(naphthalimide) with amino-containing spacer showed a wide selective response to pH. ► This chemosensor displayed a selective fluorescence enhancement effect towards Pb 2+ ions. ► Mechanism for the fluorescence OFF

  2. Desorption of metals from Cetraria islandica (L. Ach. Lichen using solutions simulating acid rain

    Directory of Open Access Journals (Sweden)

    Čučulović Ana A.

    2014-01-01

    Full Text Available Desorption of metals K, Al, Ca, Mg, Fe, Ba, Zn, Mn, Cu and Sr from Cetraria islandica (L. with solutions whose composition was similar to that of acid rain, was investigated. Desorption of metals from the lichen was performed by five successive desorption processes. Solution mixtures containing H2SO4, HNO3 and H2SO4-HNO3 were used for desorption. Each solution had three different pH values: 4.61, 5.15 and 5.75, so that the desorptions were performed with nine different solutions successively five times, always using the same solution volume. The investigated metals can be divided into two groups. One group was comprised of K, Ca and Mg, which were desorbed in each of the five desorption processes at all pH values used. The second group included Al, Fe, Zn, Ba, Mn and Sr; these were not desorbed in each individual desorption and not at all pH values, whereas Cu was not desorbed at all under any circumstances. Using the logarithmic dependence of the metal content as a function of the desorption number, it was found that potassium builds two types of links and is connected with weaker links in lichen. Potassium is completely desorbed, 80% in the first desorption, and then gradually in the following desorptions. Other metals are linked with one weaker link (desorption 1-38% and with one very strong link (desorption below the metal detection limit. [Projekat Ministarstva nauke Republike Srbije, br. III43009 i br. ON 172019

  3. Observation of Radiolytic Field Alteration of the Uranyl Cation in Bicarbonate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Lanee A.; McNamara, Bruce K.; Sinkov, Sergey I.; Cho, Herman M.; Friese, Judah I.

    2006-12-01

    In previous work we demonstrated that radiolysis of uranyl tris carbonate in near neutral pH to alkaline carbonate solutions, could be followed by 13C NMR. Radiolysis of the complex produced novel uranyl peroxo carbonate solution state species, whose structures depended on the pH and radiolytic dose rate. In this work, we investigate speciation of the uranyl carbonate trimer which is predominant in bicarbonate solution near pH 5.9. We observe radiolytically derived speciation to different mixed peroxy carbonate species than seen in the higher pH solutions. Auto radiolysis of uranium (VI) carbonate solutions between pH 5.9 and 7.2 is shown to alter the uranium speciation over relatively short periods of time and was followed by 13C NMR and visible spectrophotometry, using dissolved 233(UO2)3(CO3)6 6- both as the radiolysis source (D= 14.9 Gy/hr) and as a trap for the newly formed hydrogen peroxide. Direct addition of hydrogen peroxide to solutions of the uranyl-carbonate trimer is shown to reproduce the 13 C NMR signatures of the complexe(s) formed by radiolysis, but additionally a variety of new complexes are revealed. Ratios of H2O2/trimer < 1.5 produced a uranyl peroxo carbonate adduct, that is shown to be common to the radiolytically produced species. Ratios of H2O2/ trimer >1 resulted in formation of stable higher order peroxo carbonate complexes. The 13C NMR signatures and visible spectra of these complexes are described here. Rigorous characterization of the species is an ongoing effort.

  4. Anionic triphenylmethane dye solutions for low-dose food irradiation dosimetry

    International Nuclear Information System (INIS)

    El-Assy, N.B.; Chen Yungdong; Walker, M.L.; Al-Sheikhly, M.; McLaughlin, W.L.

    1995-01-01

    The radiolytic bleaching of aryl sulfonic-substituted para-diethyl-amino triphenylmethane dye solutions can be used for dosimetry in the absorbed dose range 10 to 400 Gy. The sulfonic anions provide solubility of these acid dyes in water. Two of these dyes are supplied as stable greenish-blue biological stains when dissolved in weakly-acidic aqueous solution, Light Green SF Yellowish and Fast Green FCF. They have, respectively, linear molar absorption coefficients of 7.14 x 10 3 (at pH 5.4) and 10.0 x 10 3 (at pH 4.2) m 2 mol -1 , when measured at the peaks of the primary absorption bands, 630 nm and 622 nm, respectively. The bleaching due to irradiation with gamma rays shows a linear function with a positive slope between the negative logarithm of the absorbance and the absorbed dose. The effect of pH on the response is studied, as well as the effects of light and temperature on pre- and post-irradiation stability. A mechanism, based mainly on radiolytic oxidation of the protonated phenolic or sulfonated phenyl group by radicalOH, with the abstraction of H-atom to water, is postulated for neutral to slightly acidic aerated aqueous solutions. The influence of alcohol on diminishing the negative yield is demonstrated. Alkaline aqueous solutions of these dyes (pH 10.2) have a shorter-wavelength absorption maximum than acidic aqueous solutions. The effect of irradiation is to cause acidification (to pH 7) due to displacement of OH groups and degradation of the dye molecule to lower molecular weight organic acids. (author)

  5. Real-time x-ray response of biocompatible solution gate AlGaN/GaN high electron mobility transistor devices

    International Nuclear Information System (INIS)

    Hofstetter, Markus; Funk, Maren; Paretzke, Herwig G.; Thalhammer, Stefan; Howgate, John; Sharp, Ian D.; Stutzmann, Martin

    2010-01-01

    We present the real-time x-ray irradiation response of charge and pH sensitive solution gate AlGaN/GaN high electron mobility transistors. The devices show stable and reproducible behavior under and following x-ray radiation, including a linear integrated response with dose into the μGy range. Titration measurements of devices in solution reveal that the linear pH response and sensitivity are not only retained under x-ray irradiation, but an irradiation response could also be measured. Since the devices are biocompatible, and can be simultaneously operated in aggressive fluids and under hard radiation, they are well-suited for both medical radiation dosimetry and biosensing applications.

  6. Influence of pH on optoelectronic properties of zinc sulphide thin films prepared using hydrothermal and spin coating method

    Science.gov (United States)

    Choudapur, V. H.; Bennal, A. S.; Raju, A. B.

    2018-04-01

    The ZnS nanomaterial is synthesized by hydrothermal method under optimized conditions using Zinc acetate and sodium sulphide as precursors. The Zinc Sulphide thin films are obtained by simple spin coating method with high optical transmittance. The prepared thin films are adhesive and uniform. The x-ray diffraction analysis showed that the films are polycrystalline in cubic phase with the preferred orientation along (111) direction. Current-voltage curves were recorded at room temperature using Keithley 617 programmable electrometer and conductivity is calculated for the film coated on ITO by two probe method. The pH of the solution is varied by using ammonia and hydrochloric acid. The comparative studies of effect of pH on the morphology, crystallanity and optoelectronic properties of the films are studied. It is observed that the pH of the solution has large influence on optoelectronic properties. The thin film prepared with neutral pH has higher crystallanity, bandgap and conductivity as compared to the samples prepared in acidic or basic solutions.

  7. Modeling the acid-base chemistry of organic solutes in Adirondack, New York, lakes

    Science.gov (United States)

    Driscoll, Charles T.; Lehtinen, Michael D.; Sullivan, Timothy J.

    1994-02-01

    Data from the large and diverse Adirondack Lake Survey were used to calibrate four simple organic acid analog models in an effort to quantify the influence of naturally occurring organic acids on lake water pH and acid-neutralizing capacity (ANC). The organic acid analog models were calibrated to observations of pH, dissolved organic carbon (DOC), and organic anion (An-) concentrations from a reduced data set representing 1128 individual lake samples, expressed as 41 observations of mean pH, in intervals of 0.1 pH units from pH 3.9 to 7.0. Of the four organic analog approaches examined, including the Oliver et al. (1983) model, as well as monoprotic, diprotic, and triprotic representations, the triprotic analog model yielded the best fit (r2 = 0.92) to the observed data. Moreover, the triprotic model was qualitatively consistent with observed patterns of change in organic solute charge density as a function of pH. A low calibrated value for the first H+ dissociation constant (pKal = 2.62) and the observation that organic anion concentrations were significant even at very low pH (acidic functional groups. Inclusion of organic acidity in model calculations resulted in good agreement between measured and predicted values of lake water pH and ANC. Assessments to project the response of surface waters to future changes in atmospheric deposition, through the use of acidification models, will need to include representations of organic acids in model structure to make accurate predictions of pH and ANC.

  8. Cytosine modifications after gamma irradiation in aerated aqueous solution of Escherichia coli DNA

    International Nuclear Information System (INIS)

    Polverelli, M.

    1983-04-01

    After gamma irradiation of cytosine in aerated aqueous solution and utilization of various spectrometric methods (mass spectrometry, proton nuclear magnetic resonance and infrared spectrometry) about ten new radiolysis products were identified. The formation of N-glycolylbiuret in H 2 18 O aqueous solution of irradiated cytosine at pH 4,5 indicated that the preferred 18 OH hydroxyl radical attack was at C-5. The formation of trans 1-carbamoyl-4,5 dihydroxyimidazolidin-2 oxo which is the major product after cytosine pyrimidine ring rearrangement took place preferentially at neutral pH, while N-glycolylbiuret predominated at pH 4,5. The deamination pathway was predominant when cytosine was irradiated at acidic pH values (pH 2 ) or in copper complexes. The development of a new acid hydrolysis method using fluorhydric acid stabilized in pyridine made easier the evaluation of cytosine modifications after gamma irradiation in aerated aqueous solution of E. Coli DNA- 14 C-2 cytosine. This hydrolytic agent removed the modified bases from the polynucleotidic chain. A difference was found between the proportion of radiolytic products removed by acid hydrolysis and by irradiation of the free base in solution [fr

  9. The Effect of PH and Molecular Weight of Chitosan on Silver Nanoparticles Synthesized by γ-Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Phu, Dang Van; Duy, Nguyen Ngoc; Quoc, Le Anh; Hien, Nguyen Quoc [Research and Development Center for Radiation Technology, Vietnam Atomic Energy Institute, 202a, 11 Street, Linh Xuan Ward, Thu Duc District, Ho Chi Minh City (Viet Nam)

    2011-07-01

    Radiation-induced synthesis of colloidal silver nanoparticles (Ag-NPs) using chitosan (CTS) as a stabilizer and free radical scavenger is feasible and satisfiable for green method. The conversion dose (Ag{sup +} into Ag{sup 0}) was determined by UV-Vis spectroscopy and Ag-NPs size was characterized by transmission electron microscopy (TEM). The effect of pH and molecular weight (Mw) of CTS on diameter and size distribution of Ag-NPs was investigated. The obtained results showed that CTS with higher M{sub w} has better stability for colloidal Ag-NPs. The average diameter of Ag-NPs was of 5-16 nm with narrow size distribution. The colloidal Ag-NPs prepared from Ag{sup +}/CTS solution with pH adjustment (pH~6) have smaller size (7 nm) compared to that (15 nm) from Ag{sup +}/CTS solution without pH (~3) adjustment. (author)

  10. Iodine volatilization from irradiated CsI solutions

    International Nuclear Information System (INIS)

    Evans, G.J.; Panyan, E.J.

    1996-01-01

    A bench-scale, separate-effect, flow apparatus has been constructed to examine volatile iodine production rates in relation to a selection of the possible variables and conditions found in a containment structure with a breached reactor core. The constructed apparatus is designed to provide the widest possible range of data including gas and aqueous phase speciation for an established set of interfacial mass transfer parameters with known pH and dissolved oxygen levels. As the interfacial transfer of iodine is an important component in the understanding of iodine chemistry, commissioning of the constructed apparatus focused on establishing a well characterized set of mass transfer parameters for a variety of mixing conditions and solution volumes. Aqueous phase parameters, obtained using a method involving the sparging of the dissolved oxygen in the aqueous phase, were found to vary by one order of magnitude, from 1x10 -2 to 1x10 -3 dm/sec. Gas phase parameters also changeable by one order of magnitude, from 1x10 -1 to 1x10 -2 dm/sec, were studied more thoroughly as they were found to have a greater impact in the system. Two independent methods of analysis were used, one involving tri-iodide solutions, the other using relative humidity values. A selection of the acquired volatility rates in relation to the effect of pH are presented. The apparatus has been found to consistently provide rates up to one order of magnitude lower than modelled predictions. Specifically, for buffered solutions, rates of 2x10 -12 mol/min and 1x10 -10 mol/min for pH 9 and 5 respectively, have been found. Rates of 1x10 -11 mol/min and 6x10 -10 mol/min are predicted. Current efforts have addressed potential reasons for this apparent discrepancy, the major factor being the possible release of components from the stainless steel during irradiation. Efforts undertaken to ensure the validity of the results are emphasized. During commissioning efforts, several problems have been identified and

  11. Validation of a triangular quantum well model for GaN-based HEMTs used in pH and dipole moment sensing

    International Nuclear Information System (INIS)

    Rabbaa, S; Stiens, J

    2012-01-01

    Gallium nitride (GaN) is a relatively new semiconductor material that has the potential of replacing gallium arsenide (GaAs) in some of the more recent technological applications, for example chemical sensor applications. In this paper, we introduce a triangular quantum well model for an undoped AlGaN/GaN high electron mobility transistor (HEMT) structure used as a chemical and biological sensor for pH and dipole moment measurements of polar liquids. We have performed theoretical calculations related to the HEMT characteristics and we have compared them with experimental measurements carried out in many previous papers. These calculations include the current-voltage (I-V) characteristics of the device, the surface potential, the change in the drain current with the dipole moment and the drain current as a function of pH. The results exhibit good agreement with experimental measurements for different polar liquids and electrolyte solutions. It is also found that the drain current of the device exhibits a large linear variation with the dipole moment, and that the surface potential and the drain current depend strongly on the pH. Therefore, it can distinguish molecules with slightly different dipole moments and solutions with small variations in pH. The ability of the device to sense biomolecules (such as proteins) with very large dipole moments is investigated.

  12. A histological comparison of 50% and 70% glycolic acid peels using solutions with various pHs

    NARCIS (Netherlands)

    Becker, F. F.; Langford, F. P.; Rubin, M. G.; Speelman, P.

    1996-01-01

    BACKGROUND: Seventy percent glycolic acid solutions are being commonly used as superficial chemical peeling agents. The pH of these solutions ranges from 0.08 to 2.75. The histologic effects of these various pH solutions on human skin have not been studied. OBJECTIVE: The histologic effects of

  13. Diffusion of flexible, charged, nanoscopic molecules in solution: Size and pH dependence for PAMAM dendrimer

    Science.gov (United States)

    Maiti, Prabal K.; Bagchi, Biman

    2009-12-01

    In order to understand self-diffusion (D) of a charged, flexible, and porous nanoscopic molecule in water, we carry out very long, fully atomistic molecular dynamics simulation of PAMAM dendrimer up to eight generations in explicit salt water under varying pH. We find that while the radius of gyration (Rg) varies as N1/3, the self-diffusion constant (D ) scales, surprisingly, as N-α, with α =0.39 at high pH and 0.5 at neutral pH, indicating a dramatic breakdown of Stokes-Einstein relation for diffusion of charged nanoscopic molecules. The variation in D as a function of radius of gyration demonstrates the importance of treating water and ions explicitly in the diffusion process of a flexible nanoscopic molecule. In agreement with recent experiments, the self-diffusion constant increases with pH, revealing the importance of dielectric friction in the diffusion process. The shape of a dendrimer is found to fluctuate on a nanosecond time scale. We argue that this flexibility (and also the porosity) of the dendrimer may play an important role in determining the mean square displacement of the dendrimer and the breakdown of the Stokes-Einstein relation between diffusion constant and the radius.

  14. Effect of Fe, Ni, and Cr on the corrosion behaviour of hyper-eutectic Al-Si automotive alloy under different pH conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Salim Kaiser

    2018-05-01

    Full Text Available Effect of Fe, Ni and Cr on the corrosion behaviour of hyper-eutectic Al-Si automotive alloy was studied. The test of corrosion behaviour at different environmental pH 1, 3, 5, 7, 9, 11 and 13 was performed using conventional gravimetric measurements and complemented by resistivity, optical micrograph, scanning electron microscopy (SEM and X-ray analyser (EDX investigations. The highest corrosion rate was observed at pH 13 followed by pH 1, while in the pH range of 3.0 to 11, there is a high protection of surface due to formation of stable surface oxide film. The highest corrosion rate at pH 13 is due to presence of sodium hydroxide in the solution in which the surface oxide film is soluble. At pH 1, however, high corrosion rate can be attributed to dissolution of Al due to the surface attack by aggressive chloride ions. Presence of Fe, Ni and Cr in hyper-eutectic Al-Si automotive alloy has significant effect on the corrosion rate at both environmental pH values. Resistivity of alloy surfaces initially decreases at pH 1 and pH 13 due to formation of thin films. The SEM images of corroded samples immersed in pH 1 solution clearly show pores due to uniform degradation of the alloy. In pH 13 solution, however, the corrosion layer looks more packed and impermeable.

  15. The development of a cholesterol biosensor using a liquid crystal/aqueous interface in a SDS-included β-cyclodextrin aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Munir, Sundas; Park, Soo-Young, E-mail: psy@knu.ac.kr

    2015-09-17

    Sodium dodecyl sulphate (SDS) including β-cyclodextrin (β-CD) (β-CD{sub SDS}) was used to detect cholesterol at the 4-cyano-4′-pentylbiphenyl (5CB)/aqueous interface in transmission electron microscopy (TEM) grid cells. The β-CD acts as a host for SDS (guest). The guest SDS enclosed within the β-CD cavity was replaced with cholesterol by injecting cholesterol solution into the TEM cell at concentrations greater than 3 μM. The replacement of SDS with cholesterol was confirmed by pH measurement and high performance liquid chromatography (HPLC). The SDS excluded from the β-CD altered the planar orientation of the 5CB confined within the TEM grid cell to a homeotropic orientation. This planar-to-homeotropic transition was observed using a polarized optical microscope under crossed polarizers. This convenient TEM grid cell provides a new method for the selective detection of cholesterol without immobilization of the detecting receptors (enzyme, antibody, or aptamer) or the use of sophisticated instruments. - Highlights: • β-CD-SDS inclusion was used for the detection of cholesterol at 5CB/aqueous interface. • The SDS enclosed within the β-CD cavity was replaced by cholesterol. • The released SDS from the β-CD caused homeotropic orientation of 5CB. • The cholesterol was detected from planar-to-homeotropic transition of 5CB. • This convenient TEM grid cell provides a new method for the selective detection of cholesterol.

  16. The development of a cholesterol biosensor using a liquid crystal/aqueous interface in a SDS-included β-cyclodextrin aqueous solution

    International Nuclear Information System (INIS)

    Munir, Sundas; Park, Soo-Young

    2015-01-01

    Sodium dodecyl sulphate (SDS) including β-cyclodextrin (β-CD) (β-CD_S_D_S) was used to detect cholesterol at the 4-cyano-4′-pentylbiphenyl (5CB)/aqueous interface in transmission electron microscopy (TEM) grid cells. The β-CD acts as a host for SDS (guest). The guest SDS enclosed within the β-CD cavity was replaced with cholesterol by injecting cholesterol solution into the TEM cell at concentrations greater than 3 μM. The replacement of SDS with cholesterol was confirmed by pH measurement and high performance liquid chromatography (HPLC). The SDS excluded from the β-CD altered the planar orientation of the 5CB confined within the TEM grid cell to a homeotropic orientation. This planar-to-homeotropic transition was observed using a polarized optical microscope under crossed polarizers. This convenient TEM grid cell provides a new method for the selective detection of cholesterol without immobilization of the detecting receptors (enzyme, antibody, or aptamer) or the use of sophisticated instruments. - Highlights: • β-CD-SDS inclusion was used for the detection of cholesterol at 5CB/aqueous interface. • The SDS enclosed within the β-CD cavity was replaced by cholesterol. • The released SDS from the β-CD caused homeotropic orientation of 5CB. • The cholesterol was detected from planar-to-homeotropic transition of 5CB. • This convenient TEM grid cell provides a new method for the selective detection of cholesterol.

  17. Thermal stability of tagatose in solution.

    Science.gov (United States)

    Luecke, Katherine J; Bell, Leonard N

    2010-05-01

    Tagatose, a monosaccharide similar to fructose, has been shown to behave as a prebiotic. To deliver this prebiotic benefit, tagatose must not degrade during the processing of foods and beverages. The objective of this study was to evaluate the thermal stability of tagatose in solutions. Tagatose solutions were prepared in 0.02 and 0.1 M phosphate and citrate buffers at pHs 3 and 7, which were then held at 60, 70, and 80 degrees C. Pseudo-1st-order rate constants for tagatose degradation were determined. In citrate and phosphate buffers at pH 3, minimal tagatose was lost and slight browning was observed. At pH 7, tagatose degradation rates were enhanced. Degradation was faster in phosphate buffer than citrate buffer. Higher buffer concentrations also increased the degradation rate constants. Enhanced browning accompanied tagatose degradation in all buffer solutions at pH 7. Using the activation energies for tagatose degradation, less than 0.5% and 0.02% tagatose would be lost under basic vat and HTST pasteurization conditions, respectively. Although tagatose does breakdown at elevated temperatures, the amount of tagatose lost during typical thermal processing conditions would be virtually negligible. Practical Application: Tagatose degradation occurs minimally during pasteurization, which may allow for its incorporation into beverages as a prebiotic.

  18. Distributed plastic optical fibre measurement of pH using a photon counting OTDR

    International Nuclear Information System (INIS)

    Saunders, C; Scully, P J

    2005-01-01

    Distributed measurement of pH was demonstrated at a sensitised region 4m from the distal end of a 20m length of plastic optical fibre. The cladding was removed from the fibre over 150mm and the bare core was exposed to an aqueous solution of methyl red at three values of pH, between 2.89 and 9.70. The optical fibre was interrogated at 648nm using a Luciol photon counting optical time domain reflectometer, and demonstrated that the sensing region was attenuated as a function of pH. The attenuation varied from 16.3 dB at pH 2.89 to 8.6 dB at pH 9.70; this range equated to -1.13 ± 0.04 dB/pH. It is thus possible to determine both the position to ± 12mm and pH to an estimated ± 0.5pH at the sensing region

  19. Photoproduction of hydroxyl radicals in aqueous solution with algae under high-pressure mercury lamp.

    Science.gov (United States)

    Liu, Xianli; Wu, Feng; Deng, Nansheng

    2004-01-01

    Photoproduction of hydroxyl radicals (*OH) could be induced in aqueous solution with algae (Nitzschia hantzschiana, etc.) and (or not) Fe3+ under high-pressure mercury lamp with an exposure time of 4 h. *OH was determined by HPLC using benzene as a probe. The photoproduction of *OH increased with increasing algae concentration. Fe3+ could enhance the photoproduction of *OH in aqueous solution with algae. The results showed that the photoproduction of *OH in algal solution with Fe3+ was greater than that in algal solution without Fe3+. The light intensity and pH affected the photoproduction of *OH in aqueous solution with algae with/without Fe3+. The photoproduction of *OH in aqueous solution with algae and Fe3+ under 250 W was greater than that under 125 W HPML. The photoproduction of *OH in algal solution (pH ranged from 4.0 to 7.0) with (or not) Fe3+ at pH 4 was the greatest.

  20. The coordination chemistry of the neutral tris-2-pyridyl silicon ligand [PhSi(6-Me-2-py)3].

    Science.gov (United States)

    Plajer, Alex J; Colebatch, Annie L; Enders, Markus; García-Romero, Álvaro; Bond, Andrew D; García-Rodríguez, Raúl; Wright, Dominic S

    2018-05-22

    Difficulties in the preparation of neutral ligands of the type [RSi(2-py)3] (where 2-py is an unfunctionalised 2-pyridyl ring unit) have thwarted efforts to expand the coordination chemistry of ligands of this type. However, simply switching the pyridyl substituents to 6-methyl-pyridyl groups (6-Me-2-py) in the current paper has allowed smooth, high-yielding access to the [PhSi(6-Me-2-py)3] ligand (1), and the first exploration of its coordination chemistry with transition metals. The synthesis, single-crystal X-ray structures and solution dynamics of the new complexes [{PhSi(6-Me-2-py)3}CuCH3CN][PF6], [{PhSi(6-Me-2-py)3}CuCH3CN][CuCl2], [{PhSi(6-Me-2-py)3}FeCl2], [{PhSi(6-Me-2-py)3}Mo(CO)3] and [{PhSi(6-Me-2-py)3}CoCl2] are reported. The paramagnetic Fe2+ and Co2+ complexes show strongly shifted NMR resonances for the coordinated pyridyl units due to large Fermi-contact shifts. However, magnetic anisotropy also leads to considerable pseudo-contact shifts so that both contributions have to be included in the paramagnetic NMR analysis.

  1. Influence of pH, Salt and Temperature on Pressure Inactivation of Hepatitis A virus

    Science.gov (United States)

    The effects of pH (3-7), NaCl (0-6%), and temperature on pressure inactivation of hepatitis A virus (HAV) were determined. The HAV samples were treated at 400 MPa for 1 min at 5, 20, and 50C. Decreasing solution pH enhanced pressure inactivation of HAV. This enhanced inactivation effect was most e...

  2. Determination of free acid in high level liquid wastes by means of fixed pH value

    International Nuclear Information System (INIS)

    Li Jifu; Duan Shirong; Wu Xi; Yu Xueren

    1991-01-01

    For the determination of free acid in high level liquid wastes, 8% potassium oxalate solution with pH 6.50 as a complex agent of hydrolizable ion is added to 1 AW and the solution is titrated with standard sodium hydroxide to reach the original pH value. The quantity of free acid is calculated by standard sodium hydroxide consumed. This method is simple, rapid and accurate. The relative error of analysis is less than ±4%. The average percentage of recovery is 99.6-101.0%

  3. Precipitation of plutonium from acidic solutions using magnesium oxide

    International Nuclear Information System (INIS)

    Jones, S.A.

    1994-01-01

    Plutonium (IV) is only marginally soluble in alkaline solution. Precipitation of plutonium using sodium or potassium hydroxide to neutralize acidic solutions produces a gelatinous solid that is difficult to filter and an endpoint that is difficult to control. If the pH of the solution is too high, additional species precipitate producing an increased volume of solids separated. The use of magnesium oxide as a reagent has advantages. It is added as a solid (volume of liquid waste produced is minimized), the pH is self-limiting (pH does not exceed about 8.5), and the solids precipitated are more granular (larger particle size) than those produced using KOH or NaOH. Following precipitation, the raffinate is expected to meet criteria for disposal to tank farms. The solid will be heated in a furnace to dry it and convert any hydroxide salts to the oxide form. The material will be cooled in a desiccator. The material is expected to meet vault storage criteria

  4. Evaluation of the stability of linezolid in aqueous solution and commonly used intravenous fluids

    Directory of Open Access Journals (Sweden)

    Taylor R

    2017-07-01

    Full Text Available Rachel Taylor, Bruce Sunderland, Giuseppe Luna, Petra Czarniak School of Pharmacy, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia Purpose: The aim was to evaluate the stability of linezolid in commonly used intravenous fluids and in aqueous solution to determine the kinetics of degradation and shelf-life values at alkaline pH values. Methods: Forced degradation studies were performed on linezolid in solution to develop a validated high-performance liquid chromatography analysis. Sodium chloride 0.9%, sodium lactate, and glucose 5% and glucose 10% solution containing 2.0 mg/mL linezolid were stored at 25.0°C (±0.1°C for 34 days. The effect of temperature on the stability of linezolid in 0.1 M sodium hydroxide solution was investigated to determine the activation energy. The degradation rates of linezolid at selected pH values at 70.0°C and the influence of ionic strength were also examined. Activation energy data were applied to determine the shelf-life values at selected pH values, and a pH rate profile was constructed over the pH range of 8.7–11.4. The stability of intravenous linezolid (Zyvox® solution was evaluated by storing at 70.0°C for 72 hours. Results: Linezolid was found to maintain >95.0% of its initial concentration after storage at 25.0°C for 34 days in sodium lactate, 0.9% in sodium chloride, and 5% and 10% in glucose solutions. Linezolid was degraded at alkaline pH values by first-order kinetics. Activation energy data showed that temperature, but not ionic strength, influenced the degradation rate significantly. An activation energy of 58.22 kJ/mol was determined for linezolid in 0.1 M sodium hydroxide solution. Linezolid was least stable at high pH values and at elevated temperatures. It was determined that linezolid has adequate stability for the preparation of intravenous fluids for clinical administration. Conclusion: Linezolid was found to have a shelf life of 34 days at 25°C when added to

  5. Effect of pH on saturated hydraulic conductivity and soil dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, D.L.; Roades, J.D.; Lavado, R.; Grieve, C.M.

    The adverse effects of exchangeable sodium on soil hydraulic conductivity (K) are well known, but at present only sodicity and total electrolyte concentration are used in evaluating irrigation water suitability. In arid areas, high sodicity is often associatd with high dissolved carbonate and thus high pH, but in humid areas high sodicity may be associated with low pH. To evaluate the effect of pH (as an independent variable) on K, solutions with the same SAR and electrolyte level were prepared at pH 6, 7, 8, and 9. Saturated K values were determined at constant flux in columns packed at a bulk density of 1.5 Mg m/sup -3/. At pH 9, saturated K values were lower than at pH 6 for a montmorillonitic and kaolinitic soil. For a vermiculitic soil with lower organic carbon and higher silt content, pH changes did not cause large K differences. Decreases in K were not reversible on application of waters with higher electrolyte levels. The results from the K experiments were generally consistent with optical transmission measurements of dispersion. Although anion adsorption was at or below detection limits and cation exchange capacity (CEC) was only slightly dependent on pH, differences in pH effects on K among soils are likely due to differences in quantities of variable-charge minerals and organic matter.

  6. Collection and storage of red blood cells with anticoagulant and additive solution with a physiologic pH

    NARCIS (Netherlands)

    Burger, Patrick; Korsten, Herbert; Verhoeven, Arthur J.; de Korte, Dirk; van Bruggen, Robin

    2012-01-01

    BACKGROUND: A donation of whole blood is most commonly collected in acidic citrate-phosphate-dextrose (CPD) variants with pH 5.2 to 6.2 as anticoagulants. Previously, we have shown that the initial pH after red blood cell (RBC) preparation can have an effect on RBCs during storage. First, we

  7. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Lee, Kyoung-Ho; Kim, Dong-Jin; Lee, Beom-Jin

    2010-05-01

    Although the solid dispersion method has been known to increase the dissolution rate of poorly water-soluble drugs by dispersing them in hydrophilic carriers, one obstacle of the solid dispersion method is its limited solubilization capacity, especially for pH-dependent soluble drugs. pH-modified solid dispersion, in which pH modifiers are incorporated, may be a useful method for increasing the dissolution rate of weakly acidic or basic drugs. Sufficient research, including the most recent reports, was undertaken in this review. How could the inclusion of the pH the pH modifiers in the solid dispersion system change drug structural behaviors, molecular interactions, microenvironmental pH, and/or release rate of pH modifiers, relating with the enhanced dissolution of weakly acidic or weakly basic drugs with poor water solubility? These questions have been investigated to determine the dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs. It is believed that step-by-step mechanistic approaches could provide the ultimate solution for solubilizing several poorly water-soluble drugs with pH-dependent solubility from a solid dispersion system, as well as provide ideas for developing future dosage systems.

  8. Molecular Twister: A Game for Exploring Solution Chemistry

    Directory of Open Access Journals (Sweden)

    Sawyer R. Masonjones

    2014-02-01

    Full Text Available pH is an essential biological concept with critical importance at various scales, from the molecular level, dealing with blood buffers, homeostasis, and proton gradients, all the way up to the ecosystem level, with soil chemistry and acid rain. However, pH is also a concept that spawns student misconceptions and misunderstanding in terms of what is happening in a solution on the atomic level. The Molecular Twister game, created for a Florida Department of Education funded professional development workshop for Florida high school teachers hosted at the University of Tampa  (Science Math Masters, seeks to model pH in such a way that students can visually and kinesthetically learn the concept in a few minutes. In addition, the basic design of the game pieces allow for teaching extensions to include more complex acid-base reactions. Challenge questions are provided to allow teachers to bring relevancy to the game, using examples of acid-base chemistry pulled from cases in human health and the environment.

  9. Benzimidazole acrylonitriles as multifunctional push-pull chromophores: Spectral characterisation, protonation equilibria and nanoaggregation in aqueous solutions

    Science.gov (United States)

    Horak, Ema; Vianello, Robert; Hranjec, Marijana; Krištafor, Svjetlana; Zamola, Grace Karminski; Steinberg, Ivana Murković

    2017-05-01

    Heterocyclic donor-π-acceptor molecular systems based on an N,N-dimethylamino phenylacrylonitrile benzimidazole skeleton have been characterised and are proposed for potential use in sensing applications. The benzimidazole moiety introduces a broad spectrum of useful multifunctional properties to the system including electron accepting ability, pH sensitivity and compatibility with biomolecules. The photophysical characterisation of the prototropic forms of these chromophores has been carried out in both solution and on immobilisation in polymer films. The experimental results are further supported by computational determination of pKa values. It is noticed that compound 3 forms nanoaggregates in aqueous solutions with aggregation-induced emission (AIE) at 600 nm. All the systems demonstrate spectral pH sensitivity in acidic media which shifts towards near-neutral values upon immobilisation in polymer films or upon aggregation in an aqueous environment (compound 3). The structure-property relationships of these functional chromophores, involving their spectral characteristics, acid-base equilibria, pKa values and aggregation effects have been determined. Potential applications of the molecules as pH and biomolecular sensors are proposed based on their pH sensitivity and AIE properties.

  10. Use of metallurgical dust for removal chromium ions from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Pająk Magdalena

    2018-01-01

    Full Text Available The aim of the study was to determine the potential for the application of dust from steel plant as an effective sorbent for removing Cr(III and Cr(VI in the form of simple and complex ions – Acid Blue 193 dye from aqueous solutions. Three isotherms models were used to interpret the experimental results namely: Langmuir, Freundlich, and Dubinin–Radushkevich. Estimated equations parameters allowed to determine the binding mechanism. Based on laboratory studies it was found that the dust was characterized by high sorption capacities for Cr ions and dye from the aqueous solution. The sorption capacity of the dust for Cr(III and Cr(VI ions depended on the degree of oxidation, pH of solution and kind of anion and changed in series: Cr(III-Cl pH=5.0> Cr(III-SO4 pH=5.0> Cr(III-Cl pH=3.0> Cr(III-SO4 pH=3.0> Cr(VI pH=5.0> Cr(VI pH=3.0. Dust was also characterized by a high maximum sorption capacity of dye at a range of 38.2 – 91.7 mg/g, depending on the dose of dust. Based on the study it was found that dust from a steel plant, containing iron oxides, can be used as low-cost and effective sorbent to remove pollutions containing chromium ions, especially from acidic wastewater.

  11. pH Sensing and Regulation in Cancer

    Directory of Open Access Journals (Sweden)

    Mehdi eDamaghi

    2013-12-01

    Full Text Available Cells maintain intracellular pH (pHi within a narrow range (7.1-7.2 by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the intracellular pH, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs and proton-sensing G-protein coupled receptors (GPCRs. In this review, we will discuss some of the major players in proton sensing at the plasma membrane and their downstream consequences in cancer cells and how these pH-mediated changes affect processes such as migration and metastasis. The complex mechanisms by which they transduce acid pH signals to the cytoplasm and nucleus are not well understood. However, there is evidence that expression of proton-sensing GPCRs such as GPR4, TDAG8, and OGR1 can regulate aspects of tumorigenesis and invasion, including colfilin and talin regulated actin (de-polymerization. Major mechanisms for maintenance of pHi homeostasis include monocarboxylate, bicarbonate and proton transporters. Notably, there is little evidence suggesting a link between their activities and those of the extracellular H+-sensors, suggesting a mechanistic disconnect between intra- and extra-cellular pH. Understanding the mechanisms of pH sensing and regulation may lead to novel and informed therapeutic strategies that can target acidosis, a common physical hallmark of solid tumors.

  12. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH.

    Science.gov (United States)

    Keramatnia, Fatemeh; Shayanfar, Ali; Jouyban, Abolghasem

    2015-08-01

    Pharmaceutical cocrystal formation is a direct way to dramatically influence physicochemical properties of drug substances, especially their solubility and dissolution rate. Because of their instability in the solution, thermodynamic solubility of cocrystals could not be determined in the common way like other compounds; therefore, the thermodynamic solubility is calculated through concentration of their components in the eutectic point. The objective of this study is to investigate the effect of an ionizable coformer in cocrystal with a nonionizable drug at different pH. Carbamazepine (CBZ), a nonionizable drug with cinnamic acid (CIN), which is an acidic coformer, was selected to prepare CBZ-CIN cocrystal and its thermodynamic solubility was studied in pH range 2-7. Instead of HPLC that is a costly and time-consuming method, a chemometric-based approach, net analyte signal standard addition method, was selected for simultaneous determination of CBZ and CIN in solution. The result showed that, as pH increases, CIN ionization leads to change in CBZ-CIN cocrystal solubility and stability in solution. In addition, the results of this study indicated that there is no significant difference between intrinsic solubility of CBZ and cocrystal despite the higher ideal solubility of cocrystal. This verifies that ideal solubility is not good parameter to predict cocrystal solubility. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Determination of very small contents of boron by pH difference measurement

    International Nuclear Information System (INIS)

    Boehm, H.; Kirmse, E.M.; Schilbach, U.

    1983-01-01

    For the determination of boron as a trace element for food of plants in a very complicated salt matrix an analytical proceeding was developed, which allows to determine the content of boron without separation. The principle of analysis is based on the esterification of boric acid with a multivalent alcohol, which leeds to a monovalent strong complex acid. The change of the pH value of the analysing solution is measured. From the initial pH number, the end pH number, the volume of the analysing solution and the ionic product of water corresponding with the operating temperature the quantity of boric acid of boron that is equivalent the produced quantity of H + -ions is calculated by means of a linear program. The standard deviation of analytical proceeding amounts to 13.9 ng B. For the determination of the contents of boron of an unknown sample, five to ten separate measurements are carried out. For solutions, which are about 1x10 -6 M of boric acid, there are necessary 10 ml of sample for each separate measurement. The confidence interval of analytical results is found to be between +- 0.5 and +- 15.5% (P=0.99). For the determination of the content of boron in plant materials about 50-100 mg of dry weight are necessary. (Author)

  14. Opalescence of an IgG2 monoclonal antibody solution as it relates to liquid-liquid phase separation.

    Science.gov (United States)

    Mason, Bruce D; Zhang, Le; Remmele, Richard L; Zhang, Jifeng

    2011-11-01

    Opalescence for a monoclonal antibody solution was systematically studied with respect to temperature, protein concentration, ionic strength (using KCl), and pH conditions. Multiple techniques, including measurement of light scattering at 90° and transmission, Tyndall test, and microscopy, were deployed to examine the opalescence behavior. Near the vicinity of the critical point on the liquid-liquid coexistence curve in the temperature-protein concentration phase diagram, the enhanced concentration fluctuations significantly contributed to the critical opalescence evidently by formation of small liquid droplets. Furthermore, our data confirm that away from the critical point, the opalescence behavior is related to the antibody self-association (agglomeration) caused by the attractive antibody-antibody interactions. As expected, at a pH near the pI of the antibody, the solution became less opalescent as the ionic strength increased. However, at a pH below the pI, the opalescence of the solution became stronger, reached a maximum, and then began to drop as the ionic strength further increased. The change in the opalescence correlated well with the trends of protein-protein interactions revealed by the critical temperature from the liquid-liquid phase separation. Copyright © 2011 Wiley-Liss, Inc.

  15. A SERS-based pH sensor utilizing 3-amino-5-mercapto-1,2,4-triazole functionalized Ag nanoparticles.

    Science.gov (United States)

    Piotrowski, Piotr; Wrzosek, Beata; Królikowska, Agata; Bukowska, Jolanta

    2014-03-07

    We report the first use of 3-amino-5-mercapto-1,2,4-triazole (AMT) to construct a surface-enhanced Raman scattering (SERS) based pH nano- and microsensor, utilizing silver nanoparticles. We optimize the procedure of homogenous attachment of colloidal silver to micrometer-sized silica beads via an aminosilane linker. Such micro-carriers are potential optically trappable SERS microprobes. It is demonstrated that the SERS spectrum of AMT is strongly dependent on the pH of the surroundings, as the transformation between two different adsorption modes, upright (A form) and lying flat (B form) orientation, is provoked by pH variation. The possibility of tuning the nanosensor working range by changing the concentration of AMT in the surrounding solution is demonstrated. A strong correlation between the pH response of the nanosensor and the AMT concentration in solution is found to be controlled by the interactions between the surface and solution molecules. In the absence of the AMT monomer, the performance of both the nano- and microsensor is shifted substantially to the strongly acidic pH range, from 1.5 to 2.5 and from 1.0 to 2.0, respectively, which is quite unique even for SERS-based sensors.

  16. Microscopic monitoring of extracellular pH in dental biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Garcia, Javier; Greve, Matilde

    pH in dental biofilm is a key virulence factor for the development of caries lesions. The complex three-dimensional architecture of dental biofilms leads to steep gradients of nutrients and metabolites, including organic acids, across the biofilm. For decades, measuring pH in dental biofilm has...... been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit to monitor horizontal pH gradients in real-time. Quantitative fluorescent microscopic techniques, such as fluorescence lifetime imaging or pH...... ratiometry, can be employed to map the pH landscape in dental biofilm with more detail. However, when pH sensitive fluorescent probes are used to visualize pH in biofilms, it is crucial to differentiate between extracellular and intracellular pH. Intracellular microbial pH and pH in the extracellular matrix...

  17. Buffer standards for the physiological pH of the zwitterionic compound of 3-(N-morpholino)propanesulfonic acid (MOPS) from T = (278.15 to 328.15) K

    International Nuclear Information System (INIS)

    Roy, Lakshmi N.; Roy, Rabindra N.; Allen, Kathleen A.; Mehrhoff, Casey J.; Henson, Isaac B.; Stegner, Jessica M.

    2012-01-01

    Highlights: ► This work reports pH values of MOPS buffer. ► Liquid junction potential correction is applied. ► These values will be used by clinical and biomedical scientists. ► The pH values lie within 6.8 to 7.5. - Abstract: This paper reports the pH values of five NaCl-free buffer solutions and 11 buffer compositions containing NaCl at I = 0.16 mol · kg −1 . Conventional pa H values are reported for 16 buffer solutions with and without NaCl salt. The operational pH values have been calculated for five buffer solutions and are recommended as pH standards at T = (298.15 and 310.15) K after correcting the liquid junction potentials. For buffer solutions with the composition m 1 = 0.04 mol · kg −1 , m 2 = 0.08 mol · kg −1 , m 3 = 0.08 mol · kg −1 at I = 0.16 mol · kg −1 , the pH at 310.15 K is 7.269, which is close to 7.407, the pH of blood serum. It is recommended as a pH standard for biological specimens.

  18. Stress corrosion cracking properties of 15-5PH steel

    Science.gov (United States)

    Rosa, Ferdinand

    1993-01-01

    Unexpected occurrence of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15-5PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a highly acidified sodium chloride (NaCl) aqueous solution. The selected alloy for the study was a 15-5PH steel in the H900 condition. The slow strain rate technique was selected to test the metals specimens.

  19. NIR spectroscopic properties of aqueous acids solutions.

    Science.gov (United States)

    Omar, Ahmad Fairuz; Atan, Hanafi; Matjafri, Mohd Zubir

    2012-06-15

    Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R² above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918-925 nm and 990-996 nm, while at 975 nm for water.

  20. PhD Crisis Discourse: A Critical Approach to the Framing of the Problem and Some Australian "Solutions"

    Science.gov (United States)

    Cuthbert, Denise; Molla, Tebeje

    2015-01-01

    A feature of HE reform discourse is the tendency to construct the rationale for reform in terms of averting calamity and risk. We refer to this risk talk as "crisis discourse." This study examines the formulation of PhD crisis discourse internationally and in Australia. We find that a key feature of PhD crisis discourse is that…

  1. Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor

    International Nuclear Information System (INIS)

    Li, Hung-Hsien; Yang, Chi-En; Kei, Chi-Chung; Su, Chung-Yi; Dai, Wei-Syuan; Tseng, Jung-Kuei; Yang, Po-Yu; Chou, Jung-Chuan; Cheng, Huang-Chung

    2013-01-01

    An extended-gate field-effect transistor (EGFET) of coaxial-structured ZnO/silicon nanowires as pH sensor was demonstrated in this paper. The oriented 1-μm-long silicon nanowires with the diameter of about 50 nm were vertically synthesized by the electroless metal deposition method at room temperature and were sequentially capped with the ZnO films using atomic layer deposition at 50 °C. The transfer characteristics (I DS –V REF ) of such ZnO/silicon nanowire EGFET sensor exhibited the sensitivity and linearity of 46.25 mV/pH and 0.9902, respectively for the different pH solutions (pH 1–pH 13). In contrast to the ZnO thin-film ones, the ZnO/silicon nanowire EGFET sensor achieved much better sensitivity and superior linearity. It was attributed to a high surface-to-volume ratio of the nanowire structures, reflecting a larger effective sensing area. The output voltage and time characteristics were also measured to indicate good reliability and durability for the ZnO/silicon nanowires sensor. Furthermore, the hysteresis was 9.74 mV after the solution was changed as pH 7 → pH 3 → pH 7 → pH 11 → pH 7. - Highlights: ► Coaxial-structured ZnO/silicon nanowire EGFET was demonstrated as pH sensor. ► EMD and ALD methods were proposed to fabricate ZnO/silicon nanowires. ► ZnO/silicon nanowire EGFET sensor achieved better sensitivity and linearity. ► ZnO/silicon nanowire EGFET sensor had good reliability and durability

  2. Further study of the reactions of fishes to toxic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J R.E.

    1948-01-01

    This paper records some further observations on the reactions of fish to toxic solutions. The method of experimentation resembles that described in a previous paper by the writer (Jones, 1947b). In every case the solution is presented as an alternative to the Aberystwyth tap water, which is well aerated, very soft, of pH 6.8. In experiments with sodium sulphide a supply system is arranged in which dilute sodium sulphide solution, brought to pH 6.8 by the addition of sulphuric acid, is automatically made up as it runs into the observation vessel. Gasterosteus aculeatus l. reacts negatively to a 0.001N solution almost immediately; at greater dilution the reaction time lengthens, at 0.00008N is about 47 min. Over the concentration range tested the reaction time is always shorter than the survival time. Gasterosteus is positive to 0.04N lead nitrate. As a positive reaction is also displayed to equivalent concentrations of calcium nitrate, sodium nitrate and sodium chloride it is possible that the osmotic pressure of the solution is its attractive feature. At 0.01N the positive response to lead nitrate disappears and at 0.004N is replaced by a very definite negative reaction which is maintained down to 0.00002N. The minnow (Phoxinus phoxinus l.) is also negative to dilute lead nitrate and will detect and avoid a 0.000004N solution. Gasterosteus will avoid water more acid than pH 5.6 or more alkaline than pH 11.4. Over the range 5.8-11.2 the fish are indifferent or very vaguely positive. Gasterosteus is negative to 0.04 and 0.01N ammonia solution, positive to 0.001 and 0.0001N. The general result with ammonia is thus the converse of that observed with lead nitrate.

  3. The role of electrolyte pH on phase evolution and magnetic properties of CoFeW codeposited films

    International Nuclear Information System (INIS)

    Ghaferi, Z.; Sharafi, S.; Bahrololoom, M.E.

    2016-01-01

    Highlights: • Deposition tends to anomalous-induced fashion at higher pH values. • The structure of the coatings depend on electrolyte pH effectively. • Grain size of two-phase structure films is lower than single-phase solid solutions. • Coercivity of the coatings changed by tungsten content and surface defects. • The highest pH value produced coating with superior magnetic behaviour. - Abstract: In this research, nanocrystalline Co–Fe–W alloy coatings were electrodeposited from a citrate-borate bath. The influence of electrolyte pH on the morphology, microstructure and magnetic properties of these films was also studied. By increasing pH value, the amount of iron content increased from 30 to 55 wt.% which indicates anomalous fashion at higher pH electrolytes. X-ray diffraction patterns showed that the structure of these films depend on electrolyte pH effectively. However, two-phase structure coatings showed smaller average grain size compared with one- phase solid solutions. Vibrating sample magnetometer measurements indicated that the coercivity of the coatings was in the range of 21–76 Oe. However, the highest pH value produced coating with superior magnetic behaviour. Microhardness of the coatings reached its maximum value at about 260HV which is referred to the highest tungsten content.

  4. Adsorptive Removal of Nitrate from Aqueous Solution Using Nitrogen Doped Activated Carbon.

    Science.gov (United States)

    Machida, Motoi; Goto, Tatsuru; Amano, Yoshimasa; Iida, Tatsuya

    2016-01-01

    Activated carbon (AC) has been widely applied for adsorptive removal of organic contaminants from aqueous phase, but not for ionic pollutants. In this study, nitrogen doped AC was prepared to increase the adsorption capacity of nitrate from water. AC was oxidized with (NH 4 ) 2 S 2 O 8 solution to maximize oxygen content for the first step, and then NH 3 gas treatment was carried out at 950°C to aim at forming quaternary nitrogen (N-Q) species on AC surface (Ox-9.5AG). Influence of solution pH was examined so as to elucidate the relationship between surface charge and adsorption amounts of nitrate. The results showed that Ox-9.5AG exhibited about twice higher adsorption capacity than non-treatment AC at any initial nitrate concentration and any equilibrium solution pH (pH e ) investigated. The more decrease in pH e value, the more adsorption amount of negatively charged nitrate ion, because the surface charge of AC and Ox-9.5AG could become more positive in acidic solution. The oxidation and consecutive ammonia treatments lead to increase in nitrogen content from 0.35 to 6.4% and decrease in the pH of the point of zero charge (pH pzc ) from 7.1 to 4.0 implying that positively charged N-Q of a Lewis acid was created on the surface of Ox-9.5AG. Based on a Langmuir data analysis, maximum adsorption capacity attained 0.5-0.6 mmol/g of nitrate and adsorption affinity was 3.5-4.0 L/mmol at pH e 2.5 for Ox-9.5AG.

  5. Effects of pH and phosphate on metal distribution with emphasis on As speciation and mobilization in soils from a lead smelting site

    International Nuclear Information System (INIS)

    Impellitteri, Christopher A.

    2005-01-01

    Arsenic in soils from the Asarco lead smelter in East Helena, Montana was characterized by X-ray absorption spectroscopy (XAS). Arsenic oxidation state and geochemical speciation were analyzed as a function of depth (two sampling sites) and surface distribution. These results were compared with intensive desorption/dissolution experiments performed in a pH stat reactor for samples from the site with the highest degree of As heterogeneity. The objectives of the study were to investigate the solid-phase geochemical As speciation, assess the speciation of As in solutions equilibrated with the solids under controlled pH (pH=4 or 6) and Eh (using hydrogen or air) environments, observe the effects of phosphate on the release of As into solution, and examine the effects of phosphate on metal mobility in the systems. Arsenic was predominantly found in the As(V) valence state, though there was evidence that As(III) and As(0) were present also. The dominant geochemical phase was scorodite (FeAsO 4 .2H 2 O). The pH was controlled in the pH stat experiments by the addition of equinormal solutions of monoprotic (HNO 3 ), diprotic (H 2 SO 4 ), or triprotic (H 3 PO 4 ) acids. For many of the divalent metal cations, solution concentrations greatly decreased in the presence of phosphate. Solutions were also analyzed for anions. Evidence exists for sulfate release into solution. More As was released into solution at lower pH. A slight increase in solution arsenate occurs with the addition of phosphate, but the risk posed from the increased desorption/dissolution of As must be weighed against the decrease in solution concentrations of many metals especially Pb. If tailings from this site underwent acidification (e.g., acid mine drainage), in situ sequestration of metals by phosphate could be combined with placement of subsurface permeable reactive barriers for capture of As to reduce the risk associated with arsenic and trace metal mobilization. Results from this study could be used

  6. Decoloration and mineralization of aqueous solution of cationic (basic) dye Astrazon Black FDL by using gamma rays

    International Nuclear Information System (INIS)

    Kantoglu, Oemer

    2017-01-01

    Degree of decolorization due to the irradiation of aqueous solutions of commercial cationic (basic) Astrazon Black FDL textile dye was studied in this study. Factor effecting radiolysis of the dye such as dye concentration, absorbed dose, toxicity, COD, BOD_5 and pH of solutions were studied at air, O_2 saturated and H_2O_2 environments. Unirradiated Astrazon Black FDL was non-biodegradable, whereas it was biodegradable after irradiation. The biodegradability (BOD_5/COD) increased at 2 kGy for Astrazon Black FDL in all solutions. The biorefractory organic compounds were converted into more easily biodegradable compounds having lower molecular weights. In optimum dose and pH determination experiments, 5 kGy pH 12 at air, 7 kGy pH 3 at O_2 saturated, 9 kGy pH 3 at 2.6 mM H_2O_2 for Astrazon Black FDL were found as the optimum irradiation conditions. Toxicity level of unirradiated solutions was high, whereas toxicity level of irradiated solutions was lower.

  7. Decoloration and mineralization of aqueous solution of cationic (basic) dye Astrazon Black FDL by using gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Kantoglu, Oemer [Turkish Atomic Energy Authority, Ankara (Turkey). Saraykoey Nuclear Research and Training Center

    2017-06-01

    Degree of decolorization due to the irradiation of aqueous solutions of commercial cationic (basic) Astrazon Black FDL textile dye was studied in this study. Factor effecting radiolysis of the dye such as dye concentration, absorbed dose, toxicity, COD, BOD{sub 5} and pH of solutions were studied at air, O{sub 2} saturated and H{sub 2}O{sub 2} environments. Unirradiated Astrazon Black FDL was non-biodegradable, whereas it was biodegradable after irradiation. The biodegradability (BOD{sub 5}/COD) increased at 2 kGy for Astrazon Black FDL in all solutions. The biorefractory organic compounds were converted into more easily biodegradable compounds having lower molecular weights. In optimum dose and pH determination experiments, 5 kGy pH 12 at air, 7 kGy pH 3 at O{sub 2} saturated, 9 kGy pH 3 at 2.6 mM H{sub 2}O{sub 2} for Astrazon Black FDL were found as the optimum irradiation conditions. Toxicity level of unirradiated solutions was high, whereas toxicity level of irradiated solutions was lower.

  8. Development of a pH sensing membrane electrode based on a new calix[4]arene derivative.

    Science.gov (United States)

    Kormalı Ertürün, H Elif; Demirel Özel, Ayça; Sayın, Serkan; Yılmaz, Mustafa; Kılıç, Esma

    2015-01-01

    A new pH sensing poly(vinyl chloride) (PVC) membrane electrode was developed by using recently synthesized 5,17-bis(4-benzylpiperidine-1-yl)methyl-25,26,27,28-tetrahydroxy calix[4]arene as an ionophore. The effects of membrane composition, inner filling solution and conditioning solution on the potential response of the proposed pH sensing membrane electrode were investigated. An optimum membrane composition of 3% ionophore, 67% o-nitrophenyl octyl ether (o-NPOE) as plasticizer, 30% PVC was found. The electrode exhibited a near-Nernstian slope of 58.7±1.1 mV pH(-1) in the pH range 1.9-12.7 at 20±1 °C. It showed good selectivity for H(+) ions in the presence of some cations and anions and a longer lifetime of at least 12 months when compared with the other PVC membrane pH electrodes reported in the literature. Having a wide working pH range, it was not only applied as a potentiometric indicator electrode in various acid-base titrations, but also successfully employed in different real samples. It has good reproducibility and repeatability with a response time of 6-7s. Compared to traditional glass pH electrode, it exhibited excellent potentiometric response after being used in fluoride-containing media. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. In situ pH within particle beds of bioactive glasses.

    Science.gov (United States)

    Zhang, Di; Hupa, Mikko; Hupa, Leena

    2008-09-01

    The in vitro behavior of three bioactive glasses with seven particle size distributions was studied by measuring the in situ pH inside the particle beds for 48h in simulated body fluid (SBF). After immersion, the surface of the particles was characterized with a field emission scanning electron microscope equipped with an energy-dispersive X-ray analyzer. In addition, the results were compared with the reactions of the same glasses formed as plates. A similar trend in pH as a function of immersion time was observed for all systems. However, the pH inside the particle beds was markedly higher than that in the bulk SBF of the plates. The pH decreased as power functions with increasing particle size, i.e. with decreasing surface area. The in vitro reactivity expressed as layer formation strongly depended on the particle size and glass composition. The average thickness of the total reaction layer decreased with the increase in sample surface area. Well-developed silica and calcium phosphate layers typically observed on glass plates could be detected only on some particles freely exposed to the solution. No distinct reaction layers were observed on the finest particles, possibly because the layers spread out on the large surface area. Differences in the properties of the bulk SBF and the solution inside the particle bed were negligible for particles larger than 800microm. The results enhance our understanding of the in vitro reactions of bioactive glasses in various product forms and sizes.

  10. Hydrogen production by electrolysis of a phosphate solution on a stainless steel cathode

    International Nuclear Information System (INIS)

    De Silva Munoz, L.; Bergel, A.; Basseguy, R.; Feron, D.

    2010-01-01

    The catalytic properties of phosphate species, already shown on the reduction reaction in anaerobic corrosion of steels, are exploited here for hydrogen production. Phosphate species work as a homogeneous catalyst that enhances the cathodic current at mild pH values. A voltammetric study of the hydrogen evolution reaction is performed using phosphate solutions at different concentrations on 316L stainless steel and platinum rotating disk electrodes. Then, hydrogen is produced in an electrolytic cell using a phosphate solution as the catholyte. Results show that 316L stainless steel electrodes have a stable behaviour as cathodes in the electrolysis of phosphate solutions. Phosphate (1 M, pH 4. 0/5. 0) as the catholyte can equal the performance of a KOH 25%w solution with the advantage of working at mild pH values. The use of phosphate and other weak acids as catalysts of the hydrogen evolution reaction could be a promising technology in the development of electrolysis units that work at mild pH values with low-cost electrodes and construction materials. (authors)

  11. Soil solution dynamics of Cu and Zn in a Cu- and Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction.

    Science.gov (United States)

    Luo, Y M; Yan, W D; Christie, P

    2001-01-01

    A pot experiment was conducted to study soil solution dynamics of Cu and Zn in a Cu/Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction. A slightly acid sandy loam was amended with Cu and Zn (as nitrates) either singly or in combination (100 mg Cu and 150 mg Zn kg(-1) soil) and was then gamma-irradiated (10 kGy). Unamended and unirradiated controls were included, and spring barley (Hordeum vulgare L. cv. Forrester) was grown for 50 days. Soil solution samples obtained using soil moisture samplers immediately before transplantation and every ten days thereafter were used directly for determination of Cu, Zn, pH and absorbance at 360 nm (A360). Cu and Zn concentrations in the solution of metal-polluted soil changed with time and were affected by gamma-irradiation and metal interaction. gamma-Irradiation raised soil solution Cu substantially but generally decreased soil solution Zn. These trends were consistent with increased dissolved organic matter (A360) and solution pH after gamma-irradiation. Combined addition of Cu and Zn usually gave higher soil solution concentrations of Cu or Zn compared with single addition of Cu or Zn in gamma-irradiated and non-irradiated soils, indicating an interaction between Cu and Zn. Cu would have been organically complexed and consequently maintained a relatively high concentration in the soil solution under higher pH conditions. Zn tends to occur mainly as free ion forms in the soil solution and is therefore sensitive to changes in pH. The extent to which gamma-irradiation and metal interaction affected solubility and bioavailability of Cu and Zn was a function of time during plant growth. Studies on soil solution metal dynamics provide very useful information for understanding metal mobility and bioavailability.

  12. Qualitative methods in PhD theses from general practice in Scandinavia

    DEFF Research Database (Denmark)

    Malterud, Kirsti; Hamberg, Katarina; Reventlow, Susanne

    2017-01-01

    . Qualitative studies are often included in Ph.D. theses from general practice in Scandinavia. Still, the Ph.D. programs across nations and institutions offer only limited training in qualitative methods. In this opinion article, we draw upon our observations and experiences, unpacking and reflecting upon...... values and challenges at stake when qualitative studies are included in Ph.D. theses. Hypotheses to explain these observations are presented, followed by suggestions for standards of evaluation and improvement of Ph.D. programs. The authors conclude that multimethod Ph.D. theses should be encouraged...

  13. Influence of variation in mobile phase pH and solute pK(a) with the change of organic modifier fraction on QSRRs of hydrophobicity and RP-HPLC retention of weakly acidic compounds.

    Science.gov (United States)

    Han, Shu-ying; Liang, Chao; Zou, Kuan; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin

    2012-11-15

    The variation in mobile phase pH and ionizable solute dissociation constant (pK(a)) with the change of organic modifier fraction in hydroorganic mobile phase has seemingly been a troublesome problem in studies and applications of reversed phase high performance liquid chromatography (RP-HPLC). Most of the early studies regarding the RP-HPLC of acid-base compounds have to measure the actual pH of the mixed mobile phase rigorously, sometimes bringing difficulties in the practices of liquid chromatographic separation. In this paper, the effect of this variation on the apparent n-octanol/water partition coefficient (K(ow)″) and the related quantitative structure-retention relationship (QSRR) of logK(ow)″ vs. logk(w), the logarithm of retention factor of analytes in neat aqueous mobile phases, was investigated for weakly acidic compounds. This QSRR is commonly used as a classical method for K(ow) measurement by RP-HPLC. The theoretical and experimental derivation revealed that the variation in mobile phase pH and solute pK(a) will not affect the QSRRs of acidic compounds. This conclusion is proved to be suitable for various types of ion-suppressors, i.e., strong acid (perchloric acid), weak acid (acetic acid) and buffer salt (potassium dihydrogen phosphate/phosphoric acid, PBS). The QSRRs of logK(ow)″ vs. logk(w) were modeled by 11 substituted benzoic acids using different types of ion-suppressors in a binary methanol-water mobile phase to confirm our deduction. Although different types of ion-suppressor all can be used as mobile phase pH modifiers, the QSRR model obtained by using perchloric acid as the ion-suppressor was found to have the best result, and the slightly inferior QSRRs were obtained by using acetic acid or PBS as the ion-suppressor. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Mechanisms of intragastric pH sensing.

    Science.gov (United States)

    Goo, Tyralee; Akiba, Yasutada; Kaunitz, Jonathan D

    2010-12-01

    Luminal amino acids and lack of luminal acidity as a result of acid neutralization by intragastric foodstuffs are powerful signals for acid secretion. Although the hormonal and neural pathways underlying this regulatory mechanism are well understood, the nature of the gastric luminal pH sensor has been enigmatic. In clinical studies, high pH, tryptic peptides, and luminal divalent metals (Ca(2+) and Mg(2+)) increase gastrin release and acid production. The calcium-sensing receptor (CaSR), first described in the parathyroid gland but expressed on gastric G cells, is a logical candidate for the gastric acid sensor. Because CaSR ligands include amino acids and divalent metals, and because extracellular pH affects ligand binding in the pH range of the gastric content, its pH, metal, and nutrient-sensing functions are consistent with physiologic observations. The CaSR is thus an attractive candidate for the gastric luminal sensor that is part of the neuroendocrine negative regulatory loop for acid secretion.

  15. Ex situ characterization of metallurgical inclusions in X100 pipeline steel before and after immersion in a neutral pH bicarbonate solution

    International Nuclear Information System (INIS)

    Li, Yingbo; Liu, Jie; Deng, Yida; Han, Xiaopeng; Hu, Wenbin; Zhong, Cheng

    2016-01-01

    The initiation of corrosion pits in pipeline steels plays an important role in the development of stress corrosion cracking. In order to reveal the effect of inclusions on corrosion initiation sites and also to clarify contradictory results from previous literature, we proposed an ex situ characterization method that is allowed to characterize exactly the same inclusion or location of the surface of steel before and after corrosion tests. The time-dependent corrosion behaviour of the inclusions and the surrounding X100 steel matrix at the same area before and after early stage immersion in a near-neutral pH bicarbonate solution was investigated by ex situ scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis and localized electrochemical impedance spectroscopy (LEIS). The sizes of most inclusions in X100 steel are below 3 μm. The results challenge the long-held opinion of previous work that corrosion pit initiations are related with the inclusions. It has been found that most of the inclusions remain stable (intact) during the whole testing time although severe corrosion occurs on the matrix of the steel. The chemical composition of the inclusion greatly affects the chemical stability of the inclusion. SiO_2 inclusions and complex inclusions with a high SiO_2 content remain intact although obvious general corrosion occurs on the steel matrix under the investigated immersion period. Inclusions with little Si, such as Al–Mg–Ca–O enriched inclusions, totally disappear after certain immersion time. During the immersion, the corrosion product tends to deposit at the interstice between the inclusion and steel matrix. - Highlights: • Ex situ characterization of metallurgical inclusions in X100 pipeline steel. • The pipeline steel was immersed in neutral pH bicarbonate solution. • Majority of inclusions remain stable during the whole testing time. • The chemical stability of metallurgical inclusions depends on the SiO_2 content.

  16. Ex situ characterization of metallurgical inclusions in X100 pipeline steel before and after immersion in a neutral pH bicarbonate solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingbo; Liu, Jie [Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Deng, Yida [Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Han, Xiaopeng [Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Hu, Wenbin [Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Zhong, Cheng, E-mail: cheng.zhong@tju.edu.cn [Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-07-15

    The initiation of corrosion pits in pipeline steels plays an important role in the development of stress corrosion cracking. In order to reveal the effect of inclusions on corrosion initiation sites and also to clarify contradictory results from previous literature, we proposed an ex situ characterization method that is allowed to characterize exactly the same inclusion or location of the surface of steel before and after corrosion tests. The time-dependent corrosion behaviour of the inclusions and the surrounding X100 steel matrix at the same area before and after early stage immersion in a near-neutral pH bicarbonate solution was investigated by ex situ scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis and localized electrochemical impedance spectroscopy (LEIS). The sizes of most inclusions in X100 steel are below 3 μm. The results challenge the long-held opinion of previous work that corrosion pit initiations are related with the inclusions. It has been found that most of the inclusions remain stable (intact) during the whole testing time although severe corrosion occurs on the matrix of the steel. The chemical composition of the inclusion greatly affects the chemical stability of the inclusion. SiO{sub 2} inclusions and complex inclusions with a high SiO{sub 2} content remain intact although obvious general corrosion occurs on the steel matrix under the investigated immersion period. Inclusions with little Si, such as Al–Mg–Ca–O enriched inclusions, totally disappear after certain immersion time. During the immersion, the corrosion product tends to deposit at the interstice between the inclusion and steel matrix. - Highlights: • Ex situ characterization of metallurgical inclusions in X100 pipeline steel. • The pipeline steel was immersed in neutral pH bicarbonate solution. • Majority of inclusions remain stable during the whole testing time. • The chemical stability of metallurgical inclusions depends on the SiO{sub 2

  17. Removal of radium from aqueous solutions using adsorbent produced from coconut coir pith

    International Nuclear Information System (INIS)

    Zalina Laili; Muhamat Omar; Mohd Zaidi Ibrahim; Esther Phillip; Mohd Abdul Wahab Yusof; Hassan, A.

    2008-08-01

    A study was conducted to evaluate the potential use of the coconut coir pith as an adsorbent for the removal of radium from aqueous solutions. Experiments to establish adsorptions as a function of pH and contact time were carried out. The results showed that radium adsorption are dependent upon pH and contact time of coconut coir pith with aqueous solutions. 70-80% of radium were adsorbed in the neutral to alkaline pH range. The amount of radium adsorbed also increased with contact time, reaching an optimum after 250 min. Thus, it can be concluded that the coconut coir pith has the potential to be used as an adsorbent in radium removal from aqueous solutions. (Author)

  18. A Flexible Optical pH Sensor Based on Polysulfone Membranes Coated with pH-Responsive Polyaniline Nanofibers

    Directory of Open Access Journals (Sweden)

    Nedal Abu-Thabit

    2016-06-01

    Full Text Available A new optical pH sensor based on polysulfone (PSU and polyaniline (PANI was developed. A transparent and flexible PSU membrane was employed as a support. The electrically conductive and pH-responsive PANI was deposited onto the membrane surface by in situ chemical oxidative polymerization (COP. The absorption spectra of the PANI-coated PSU membranes exhibited sensitivity to pH changes in the range of 4–12, which allowed for designing a dual wavelength pH optical sensor. The performance of the membranes was assessed by measuring their response starting from high pH and going down to low pH, and vice versa. It was found that it is necessary to precondition the sensor layers before each measurement due to the slight hysteresis observed during forward and backward pH titrations. PSU membranes with polyaniline coating thicknesses in the range of ≈100–200 nm exhibited fast response times of <4 s, which are attributed to the porous, rough and nanofibrillar morphology of the polyaniline coating. The fabricated pH sensor was characterized by a sigmoidal response (R2 = 0.997 which allows for pH determination over a wide dynamic range. All membranes were stable for a period of more than six months when stored in 1 M HCl solution. The reproducibility of the fabricated optical pH sensors was found to be <0.02 absorption units after one month storage in 1 M HCl solution. The performance of the optical pH sensor was tested and the obtained pH values were compared with the results obtained using a pH meter device.

  19. Effect of pH on turbidity, size, viscosity and the shape of sodium caseinate aggregates with light scattering and rheometry.

    Science.gov (United States)

    Ghorbani Gorji, Sara; Ghorbani Gorji, Elham; Mohammadifar, Mohammad Amin

    2015-03-01

    The characterization of sodium caseinate solutions as a function of pH was determined using titration with HCL through turbidimetry in different concentrations (0.03 wt.%, 0.045 wt.%, 0.06 wt.%, 0.09 wt.%, 0.2 wt.%, and 0.3 wt.%). Additionally, the coupling of slow in situ acidification of the solution and rheometry was utilized to gain deeper insights into pH-induced structural transitions during the self assembly process and particle size distribution analysis have been used to determine the behavior of sodium caseinate solutions in different pHs. The formation of aggregates during the acidification process was clearly visualized using microscopy. Surprisingly the viscosity of sodium caseinate solution at pH 4.64 was maximum and decreased by lowering pH. Particle size analysis confirmed the onset of big aggregates on decreasing pH but further acidification led to formation of smaller aggregates. A small concentration effect on pI was seen where at sodium caseinate levels of 0.03 wt.% the pI occurred at 4.29, where at sodium caseinate levels of 0.30 wt.% pI value was 4.64.

  20. Uranium biosorption by a filamentous fungus Mucor miehei pH effect on mechanisms and performances of uptake

    International Nuclear Information System (INIS)

    Guibal, E.; Roulph, C.; Le Cloirec, P.

    1992-01-01

    This study focuses on uranium sorption mechanisms by Mucor miehei, a fungal biomass, used in agro-industries (enzyme synthesis). The pH plays an important part in these phenomena, mainly by its influence on metal or cell wall chemistry. Hydroxylation of uranyl, dependent on the pH and total metal concentration, influences kinetics, via the nature of the limiting phases: diffusion of metal through layers bordering or consituting the biomass, or intramembranar precipitation of uranyl initially adsorbed, and sorption mechanisms. With a moderate pH, sorption of uranylhydroxides modifies extracellular sorbent structures, consequently inducing a multilayer sorption opposed to monolayer adsorption obtained with acid pH. Uptake capacity is characterized by high values obtained even with low metal concentration in solution. Biosorbent could be a technical answer to pollution treatment and valorization of low charge waste streams and leaching solutions obtained in recovery of infra-marginal ores. (author)