WorldWideScience

Sample records for solutions aluminum salts

  1. Chemical interactions and thermodynamic studies in aluminum alloy/molten salt systems

    Science.gov (United States)

    Narayanan, Ramesh

    The recycling of aluminum and aluminum alloys such as Used Beverage Container (UBC) is done under a cover of molten salt flux based on (NaCl-KCl+fluorides). The reactions of aluminum alloys with molten salt fluxes have been investigated. Thermodynamic calculations are performed in the alloy/salt flux systems which allow quantitative predictions of the equilibrium compositions. There is preferential reaction of Mg in Al-Mg alloy with molten salt fluxes, especially those containing fluorides like NaF. An exchange reaction between Al-Mg alloy and molten salt flux has been demonstrated. Mg from the Al-Mg alloy transfers into the salt flux while Na from the salt flux transfers into the metal. Thermodynamic calculations indicated that the amount of Na in metal increases as the Mg content in alloy and/or NaF content in the reacting flux increases. This is an important point because small amounts of Na have a detrimental effect on the mechanical properties of the Al-Mg alloy. The reactions of Al alloys with molten salt fluxes result in the formation of bluish purple colored "streamers". It was established that the streamer is liquid alkali metal (Na and K in the case of NaCl-KCl-NaF systems) dissipating into the melt. The melts in which such streamers were observed are identified. The metal losses occurring due to reactions have been quantified, both by thermodynamic calculations and experimentally. A computer program has been developed to calculate ternary phase diagrams in molten salt systems from the constituting binary phase diagrams, based on a regular solution model. The extent of deviation of the binary systems from regular solution has been quantified. The systems investigated in which good agreement was found between the calculated and experimental phase diagrams included NaF-KF-LiF, NaCl-NaF-NaI and KNOsb3-TINOsb3-LiNOsb3. Furthermore, an insight has been provided on the interrelationship between the regular solution parameters and the topology of the phase

  2. Chemical milling solution produces smooth surface finish on aluminum

    Science.gov (United States)

    Lorenzen, H. C.

    1966-01-01

    Elementary sulfur mixed into a solution of caustic soda and salts produces an etchant which will chemically mill end-grain surfaces on aluminum plate. This composition results in the least amount of thickness variation and pitting.

  3. Secondary Aluminum Processing Waste: Salt Cake Characterization and Reactivity

    Science.gov (United States)

    Thirty-nine salt cake samples were collected from 10 SAP facilities across the U.S. The facilities were identified by the Aluminum Association to cover a wide range of processes. Results suggest that while the percent metal leached from the salt cake was relatively low, the leac...

  4. SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS

    International Nuclear Information System (INIS)

    Poirier, M.; Thomas Peters, T.; Fernando Fondeur, F.; Samuel Fink, S.

    2008-01-01

    During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached ∼10 psi while processing ∼1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective cleaning and

  5. Fabrication of aluminum nitride crucibles for molten salt and plutonium compatibility studies

    International Nuclear Information System (INIS)

    Phillips, J.A.

    1991-01-01

    The overall objective of this research was to fabricate a calcium oxide sinter-aided aluminum nitride crucible and determine the compatibility of this crucible with molten chloride salts and plutonium metal in the DOR process. Calcium oxide sinter-aided aluminum nitride was preferred over yttrium oxide sinter-aided aluminum nitride because of (1) the presence of calcium chloride, calcium oxide, and calcium metal in the molten salts utilized in the DOR process, and (2) the higher volatility of the secondary phases formed compared with phases resulting from the addition of yttrium oxide during the aluminum nitride sintering process. The calcium oxide system may yield a higher purity crystal structure with fewer secondary phases present than in the yttrium oxide system. The secondary phases that are present in the grain boundaries may be unreactive with the calcium chloride salt due to the presence of calcium in the secondary phases

  6. Effect of addition of water-soluble salts on the hydrogen generation of aluminum in reaction with hot water

    International Nuclear Information System (INIS)

    Razavi-Tousi, S.S.; Szpunar, J.A.

    2016-01-01

    Aluminum powder was ball milled for different durations of time with different weight percentages of water-soluble salts (NaCl and KCl). The hydrogen generation of each mixture in reaction with hot water was measured. A scanning electron microscope (SEM) as well as energy-dispersive spectroscopy (EDS) were used to investigate the morphology, surfaces and cross sections of the produced particles. The results show that the presence of salts in the microstructure of the aluminum considerably increases the hydrogen generation rate. At shorter milling times, the salt covers the aluminum particles and becomes embedded in layers within the aluminum matrix. At higher milling durations, salt and aluminum phases form composite particles. A higher percentage of the second phase significantly decreases the milling time needed for activation of the aluminum particles. Based on the EDS results from cross sections of the milled particles, a mechanism for improvement of the hydrogen generation rate in the presence of salts is suggested. - Highlights: • Milling and water soluble salts have a synergic effect on hydrogen generation. • Salt and aluminum form composite particles by milling. • Salt is dissolved in water leaving aluminum with much fresh surfaces for the reaction. • The chemical effect of salt on the reaction is negligible compared to its structural effect.

  7. Sealing of Anodised Aluminium Alloys with Rare Earth Metal Salt Solutions

    OpenAIRE

    Mansfield, C.; Chen, F.; Breslin, Carmel B.; Dull, D.

    1998-01-01

    Boric‐sulfuric acid anodized (BSAA) aluminum alloys have been sealed in hot solutions of cerium or yttrium salts. For comparison, sealing has also been performed in the presently used dilute chromate solution, boiling water, and a cold nickel fluoride solution. The corrosion resistance of the sealed BSAA Al alloys Al 2024, Al 6061, and Al 7075 has been evaluated by recording impedance spectra during exposure in 0.5 N NaCl for 7 days. Shorter or longer exposure times have also been used depend...

  8. Preliminary study of the electrolysis of aluminum sulfide in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1983-02-01

    A preliminary laboratory-scale study of the electrolysis of aluminum sulfide in molten salts investigated the (1) solubility of Al/sub 2/S/sub 3/ in molten salts, (2) electrochemical behavior of Al/sub 2/S/sub 3/, and (3) electrolysis of Al/sub 2/S/sub 3/ with the determination of current efficiency as a function of current density. The solubility measurements show that MgCl/sub 2/-NaCl-KCl eutectic electrolyte at 1023 K can dissolve up to 3.3 mol % sulfide. The molar ratio of sulfur to aluminum in the eutectic is about one, which suggests that some sulfur remains undissolved, probably in the form of MgS. The experimental data and thermodynamic calculations suggest that Al/sub 2/S/sub 3/ dissolves in the eutectic to form AlS/sup +/ species in solution. Addition of AlCl/sub 3/ to the eutectic enhances the solubility of Al/sub 2/S/sub 3/; the solubility increases with increasing AlCl/sub 3/ concentration. The electrode reaction mechanism for the electrolysis of Al/sub 2/S/sub 3/ was elucidated by using linear sweep voltammetry. The cathodic reduction of aluminum-ion-containing species to aluminum proceeds by a reversible, diffusion-controlled, three-electron reaction. The anodic reaction involves the two-electron discharge of sulfide-ion-containing species, followed by the fast dimerization of sulfur atoms to S/sub 2/. Electrolysis experiments show that Al/sub 2/S/sub 3/ dissolved in molten MgCl/sub 2/-NaCl-KCl eutectic or in eutectic containing AlCl/sub 3/ can be electrolyzed to produce aluminum and sulfur. In the eutectic at 1023 K, the electrolysis can be conducted up to about 300 mA/cm/sup 2/ for the saturation solubility of Al/sub 2/S/sub 3/. Although these preliminary results are promising, additional studies are needed to elucidate many critical operating parameters before the technical potential of the electrolysis can be accurately assessed. 20 figures, 18 tables.

  9. Detection and removal of molten salts from molten aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    K. Butcher; D. Smith; C. L. Lin; L. Aubrey

    1999-08-02

    Molten salts are one source of inclusions and defects in aluminum ingots and cast shapes. A selective adsorption media was used to remove these inclusions and a device for detection of molten salts was tested. This set of experiments is described and the results are presented and analyzed.

  10. Evaluation of aluminum migration into foodstuffs from aluminium cookware

    Directory of Open Access Journals (Sweden)

    M Radi

    2014-05-01

    Full Text Available Nowadays, the existence of aluminum in human diet as a food contaminant has attracted the concerns of many researchers. It seems that the cooking pans are common sources of aluminum exposure through foodstuffs in Iran. The aim of this study was to evaluate the migration of aluminum from cooking containers into foodstuffs. For this purpose, solutions with different concentrations of citric acid, sodium chloride, fat, protein and sugar were prepared and migration of aluminum into these solutions was measured using atomic absorption spectrometry. Results showed that salt and citric acid concentrations could enhance aluminum migration; whereas, acid concentration was more effective than salt due to its corrosive effect. The intensity of heat processing and the duration of heat treatment had direct relation with aluminum migration. The aluminum content of cooked foods in aluminum cooking pans was also significantly more than control samples.

  11. Potentiometric titration curves of aluminium salt solutions and its species conversion in the hydrolysis-polymerization course

    Directory of Open Access Journals (Sweden)

    Chenyi Wang

    2008-12-01

    Full Text Available A new concept of critical point is expounded by analysing the potentiometric titration curves of aluminium salt solutions under the moderate slow rate of base injection. The critical point is defined as the characteristic spot of the Al3+ salt solutions potentiometric titration curve, which is related to the experiment conditions. In addition, the changes of critical points reflect the influence of experiment conditions on the course of the hydrolysis-polymerization and the conversion of hydroxyl polynuclear aluminum species. According to the OH/Al mole ratio, the Al species can be divided into four regions quantitatively by three characteristic points on the titration curves: Part I, Al3+/Ala region, consist chiefly of Al3+ and mononuclear Al; Part II, the small/middle polynuclear Al region, including Al2-Al12; Part III, the large-size polynuclear aluminum region, consistent with predominantly Al13-Al54 and a little sol/gel Al(OH3; Part IV, the dissolving region of sol/gel Alc, only Al(OH 3 (aq or am and Al(OH4- species, which set up a base to study on the hydrolysis-polymerization of Al3+. At the same time, significant effects of total aluminum concentration, temperature, halide ion, silicate radical, and organic acid radical on the titration curves and its critical points were observed. Given the three critical points which demarcating the aluminum forms, we carry out a through investigation into the fundamental regulations of these factors’ influence, and offer a fresh train of thought to study the hydrolysis-polymerization of Al3+ in soil solutions.

  12. The aluminum chemistry and corrosion in alkaline solutions

    International Nuclear Information System (INIS)

    Zhang Jinsuo; Klasky, Marc; Letellier, Bruce C.

    2009-01-01

    Aluminum-alkaline solution systems are very common in engineering applications including nuclear engineering. Consequently, a thorough knowledge of the chemistry of aluminum and susceptibility to corrosion in alkaline solutions is reviewed. The aluminum corrosion mechanism and corrosion rate are examined based on current experimental data. A review of the phase transitions with aging time and change of environment is also performed. Particular attention is given to effect of organic and inorganic ions. As an example, the effect of boron is examined in detail because of the application in nuclear reactor power systems. Methods on how to reduce the corrosion rate of aluminum in alkaline solutions are also highlighted

  13. Use of triammonium salt of aurin tricarboxylic acid as risk mitigant for aluminum hydride

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2017-08-08

    A process and a resulting product by process of an aluminum hydride which is modified with by physically combining in a ball milling process an aluminum hydride with a triammonium salt of aurin tricarboxylic acid. The resulting product is an aluminum hydride which is resistant to air, ambient moisture, and liquid water while maintaining useful hydrogen storage and release kinetics.

  14. Salt-soda sinter process for recovering aluminum from fly ash

    Science.gov (United States)

    McDowell, W.J.; Seeley, F.G.

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na/sub 2/CO/sub 3/ to a temperature in the range 700/sup 0/ to 900/sup 0/C for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acidsoluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  15. Aluminum as anode for energy storage and conversion: a review

    Science.gov (United States)

    Li, Qingfeng; Bjerrum, Niels J.

    Aluminum has long attracted attention as a potential battery anode because of its high theoretical voltage and specific energy. The protective oxide layer on the aluminum surface is however detrimental to the battery performance, contributing to failure to achieve the reversible potential and causing the delayed activation of the anode. By developing aluminum alloys as anodes and solution additives to electrolytes, a variety of aluminum batteries have been extensively investigated for various applications. From molten salt and other non-aqueous electrolytes, aluminum can be electrodeposited and therefore be suitable for developing rechargable batteries. Considerable efforts have been made to develop secondary aluminum batteries of high power density. In the present paper, these research activities are reviewed, including aqueous electrolyte primary batteries, aluminum-air batteries and molten salt secondary batteries.

  16. Hydration patterns and salting effects in sodium chloride solution.

    Science.gov (United States)

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  17. Hydrolysis-precipitation studies of aluminum (III) solutions. I. Titration of acidified aluminum nitrate solutions

    NARCIS (Netherlands)

    Vermeulen, A.C.; Geus, John W.; Stol, R.J.; Bruyn, P.L. de

    Acidified aluminum nitrate solutions were titrated with alkali (NaOH or KOH) over a temperature range of 24°C to 90°C. A homogeneous distribution of added base was achieved by: (i) in situ decomposition of urea (90°C); and (ii) a novel method involving injection through a capillary submerged in the

  18. SEPARATION OF METAL SALTS BY ADSORPTION

    Science.gov (United States)

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  19. The solubilities of significant organic compounds in HLW tank supernate solutions -- FY 1995 progress report

    International Nuclear Information System (INIS)

    Barney, G.S.

    1996-01-01

    At the Hanford Site organic compounds were measured in tank supernate simulant solutions during FY 1995. This solubility information will be used to determine if these organic salts could exist in solid phases (saltcake or sludges) in the waste where they might react violently with the nitrate or nitrite salts present in the tanks. Solubilities of sodium glycolate, succinate, and caproate salts; iron and aluminum and butylphosphate salts; and aluminum oxalate were measured in simulated waste supernate solutions at 25 degree C, 30 degree C, 40 degree C, and 50 degree C. The organic compounds were selected because they are expected to exist in relatively high concentrations in the tanks. The solubilities of sodium glycolate, succinate, caproate, and butylphosphate in HLW tank supernate solutions were high over the temperature and sodium hydroxide concentration ranges expected in the tanks. High solubilities will prevent solid sodium salts of these organic acids from precipitating from tank supernate solutions. The total organic carbon concentrations (YOC) of actual tank supernates are generally much lower than the TOC ranges for simulated supernate solutions saturated (at the solubility limit) with the organic salts. This is so even if all the dissolved carbon in a given tank and supernate is due to only one of these eight soluble compounds (an unlikely situation). Metal ion complexes of and butylphosphate and oxalate in supernate solutions were not stable in the presence of the hydroxide concentrations expected in most tanks. Iron and aluminum dibutylphosphate compounds reacted with hydroxide to form soluble sodium dibutylphosphate and precipitated iron and aluminum hydroxides. Aluminum oxalate complexes were also not stable in the basic simulated supernate solutions. Solubilities of all the organic salts decrease with increasing sodium hydroxide concentration because of the common ion effect of Na+. Increasing temperatures raised the solubilities of the organic

  20. Ion exchange removal of technetium from salt solutions

    International Nuclear Information System (INIS)

    Walker, D.D.

    1983-01-01

    Ion exchange methods for removing technetium from waste salt solutions have been investigated by the Savannah River Laboratory (SRL). These experiments have shown: Commercially available anion exchange resins show high selectivity and capacity for technetium. In column runs, 150 column volumes of salt solution were passed through an ion exchange column before 50% 99 Tc breakthrough was reached. The technetium can be eluted from the resin with nitric acid. Reducing resins (containing borohydride) work well in simple hydroxide solutions, but not in simulated salt solutions. A mercarbide resin showed a very high selectivity for Tc, but did not work well in column operation

  1. Salt-specific effects in lysozyme solutions

    Directory of Open Access Journals (Sweden)

    T. Janc

    2016-03-01

    Full Text Available The effects of additions of low-molecular-mass salts on the properties of aqueous lysozyme solutions are examined by using the cloud-point temperature, T_{cloud}, measurements. Mixtures of protein, buffer, and simple salt in water are studied at pH=6.8 (phosphate buffer and pH=4.6 (acetate buffer. We show that an addition of buffer in the amount above I_{buffer} = 0.6 mol dm^{-3} does not affect the T_{cloud} values. However, by replacing a certain amount of the buffer electrolyte by another salt, keeping the total ionic strength constant, we can significantly change the cloud-point temperature. All the salts de-stabilize the solution and the magnitude of the effect depends on the nature of the salt. Experimental results are analyzed within the framework of the one-component model, which treats the protein-protein interaction as highly directional and of short-range. We use this approach to predict the second virial coefficients, and liquid-liquid phase diagrams under conditions, where T_{cloud} is determined experimentally.

  2. Anodizing And Sealing Aluminum In Nonchromated Solutions

    Science.gov (United States)

    Emmons, John R.; Kallenborn, Kelli J.

    1995-01-01

    Improved process for anodizing and sealing aluminum involves use of 5 volume percent sulfuric acid in water as anodizing solution, and 1.5 to 2.0 volume percent nickel acetate in water as sealing solution. Replaces process in which sulfuric acid used at concentrations of 10 to 20 percent. Improved process yields thinner coats offering resistance to corrosion, fatigue life, and alloy-to-alloy consistency equal to or superior to those of anodized coats produced with chromated solutions.

  3. Americium separations from high salt solutions

    International Nuclear Information System (INIS)

    Barr, Mary E.; Jarvinen, Gordon D.; Schulte, Louis D.; Stark, Peter C.; Chamberlin, Rebecca M.; Abney, Kent D.; Ricketts, Thomas E.; Valdez, Yvette E.; Bartsch, Richard A.

    2000-01-01

    Americium (III) exhibits an unexpectedly high affinity for anion-exchange material from the high-salt evaporator bottoms solutions--an effect which has not been duplicated using simple salt solutions. Similar behavior is observed for its lanthanide homologue, Nd(III), in complex evaporator bottoms surrogate solutions. There appears to be no single controlling factor--acid concentration, total nitrate concentration or solution ionic strength--which accounts for the approximately 2-fold increase in retention of the trivalent ions from complex solutions relative to simple solutions. Calculation of species activities (i.e., water, proton and nitrate) in such concentrated mixed salt solutions is difficult and of questionable accuracy, but it is likely that the answer to forcing formation of anionic nitrate complexes of americium lies in the relative activities of water and nitrate. From a practical viewpoint, the modest americium removal needs (ca. 50--75%) from nitric acid evaporator bottoms allow sufficient latitude for the use of non-optimized conditions such as running existing columns filled with older, well-used Reillex HPQ. Newer materials, such as HPQ-100 and the experimental bifunctional resins, which exhibit higher distribution coefficients, would allow for either increased Am removal or the use of smaller columns. It is also of interest that one of the experimental neutral-donor solid-support extractants, DHDECMP, exhibits a similarly high level of americium (total alpha) removal from EV bottoms and is much less sensitive to total acid content than commercially-available material

  4. Salt splitting with ceramic membranes

    International Nuclear Information System (INIS)

    Kurath, D.

    1996-01-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures

  5. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  6. Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

    Directory of Open Access Journals (Sweden)

    Jan-Michael Y. Carrillo

    2014-07-01

    Full Text Available Abstract: We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution. This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions.

  7. Electrochemistry of vanadium(II and the electrodeposition of aluminum-vanadium alloys in the aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt

    Directory of Open Access Journals (Sweden)

    Tsuda T.

    2003-01-01

    Full Text Available The electrochemical behavior of vanadium(II was examined in the 66.7-33.3 mole percent aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt containing dissolved VCl2 at 353 K. Voltammetry experiments revealed that V(II could be electrochemically oxidized to V(III and V(IV. However at slow scan rates the V(II/V(III electrode reaction is complicated by the rapid precipitation of V(III as VCl3. The reduction of V(II occurs at potentials considerably negative of the Al(III/Al electrode reaction, and Al-V alloys cannot be electrodeposited from this melt. However electrodeposition experiments conducted in VCl2-saturated melt containing the additive, 1-ethyl-3-methylimidazolium tetrafluoroborate, resulted in Al-V alloys. The vanadium content of these alloys increased with increasing cathodic current density or more negative applied potentials. X-ray analysis of Al-V alloys that were electrodeposited on a rotating copper wire substrate indicated that these alloys did not form or contain an intermetallic compound, but were non-equilibrium or metastable solid solutions. The chloride-pitting corrosion properties of these alloys were examined in aqueous NaCl by using potentiodynamic polarization techniques. Alloys containing ~10 a/o vanadium exhibited a pitting potential that was 0.3 V positive of that for pure aluminum.

  8. Potentiometric titration curves of aluminium salt solutions and its ...

    African Journals Online (AJOL)

    Potentiometric titration curves of aluminium salt solutions and its species conversion ... of aluminium salt solutions under the moderate slow rate of base injection. ... silicate radical, and organic acid radical on the titration curves and its critical ...

  9. SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT

    Energy Technology Data Exchange (ETDEWEB)

    Griswold, G. B.

    1981-02-01

    Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

  10. [Determination of Chloride Salt Solution by NIR Spectroscopy].

    Science.gov (United States)

    Zhang, Bin; Chen, Jian-hong; Jiao, Ming-xing

    2015-07-01

    Determination of chloride salt solution by near infrared spectrum plays a very important role in Biomedicine. The near infrared spectrum analysis of Sodium chloride, potassium chloride, calcium chloride aqueous solution shows that the concentration change of chloride salt can affect hydrogen bond, resulting in the variation of near infrared spectrum of water. The temperature influence on NIR spectrum has been decreased by choosing reasonable wavelength range and the wavelength where the temperature effects are zero (isosbestic point). Chlorine salt prediction model was established based on partial least squares method and used for predicting the concentration of the chlorine ion. The impact on near infrared spectrum of the cation ionic radius, the number of ionic charge, the complex effect of ionic in water has also discussed in this article and the reason of every factor are analysed. Experimental results show that the temperature and concentration will affect the near-infrared spectrum of the solution, It is found that the effect of temperature plays the dominant role at low concentrations of chlorine salt; rather, the ionic dominates at high concentration. Chloride complexes are formed in aqueous solution, It has an effect on hydrogen bond of water combining with the cations in chlorine salt solution, Comparing different chloride solutions at the same concentration, the destruction effects of chloride complexes and catnions on the hydrogen bond of water increases in the sequences: CaCl2 >NaCl>KC. The modeling result shows that the determination coefficients (R2) = 99.97%, the root mean square error of cross validation (RM- SECV) = 4.51, and the residual prediction deviation (RPD) = 62.7, it meets the daily requirements of biochemical detection accuracy.

  11. Solute-vacancy binding in aluminum

    International Nuclear Information System (INIS)

    Wolverton, C.

    2007-01-01

    Previous efforts to understand solute-vacancy binding in aluminum alloys have been hampered by a scarcity of reliable, quantitative experimental measurements. Here, we report a large database of solute-vacancy binding energies determined from first-principles density functional calculations. The calculated binding energies agree well with accurate measurements where available, and provide an accurate predictor of solute-vacancy binding in other systems. We find: (i) some common solutes in commercial Al alloys (e.g., Cu and Mg) possess either very weak (Cu), or even repulsive (Mg), binding energies. Hence, we assert that some previously reported large binding energies for these solutes are erroneous. (ii) Large binding energies are found for Sn, Cd and In, confirming the proposed mechanism for the reduced natural aging in Al-Cu alloys containing microalloying additions of these solutes. (iii) In addition, we predict that similar reduction in natural aging should occur with additions of Si, Ge and Au. (iv) Even larger binding energies are found for other solutes (e.g., Pb, Bi, Sr, Ba), but these solutes possess essentially no solubility in Al. (v) We have explored the physical effects controlling solute-vacancy binding in Al. We find that there is a strong correlation between binding energy and solute size, with larger solute atoms possessing a stronger binding with vacancies. (vi) Most transition-metal 3d solutes do not bind strongly with vacancies, and some are even energetically strongly repelled from vacancies, particularly for the early 3d solutes, Ti and V

  12. [Dissolved aluminum and organic carbon in soil solution under six tree stands in Lushan forest ecosystems].

    Science.gov (United States)

    Wang, Lianfeng; Pan, Genxing; Shi, Shengli; Zhang, Lehua; Huang, Mingxing

    2003-10-01

    Different depths of soils under 6 tree stands in Lushan Botany Garden were sampled and water-digested at room temperature. The dissolved aluminum and organic carbon were then determined by colorimetry, using 8-hydroxylquilin and TOC Analyzer, respectively. The results indicated that even derived from a naturally identical soil type, the test soils exhibited a diverse solution chemistry, regarding with the Al speciation. The soil solutions under Japanese cedar, giant arborvitae and tea had lower pH values and higher contents of soluble aluminum than those under Giant dogwood, azalea and bamboo. Under giant arborvitae, the lowest pH and the highest content of total soluble aluminum and monomeric aluminum were found in soil solution. There was a significant correlation between soluble aluminum and DOC, which tended to depress the accumulation of toxic monomeric aluminum. The 6 tree stands could be grouped into 2 categories of solution chemistry, according to aluminum mobilization.

  13. Influence of complexing on physicochemical properties of polymer-salt solutions

    International Nuclear Information System (INIS)

    Ostroushko, A.A.; Yushkova, S.M.; Koridze, N.V.; Skobkoreva, N.V.; Zhuravleva, L.I.; Palitskaya, T.A.; Antropova, S.V.; Ostroushko, I.P.; AN SSSR, Moscow

    1993-01-01

    Using the methods of spectrophotometry, viscosimetry, conductometry the influence of salt-polymer complexing processes on physicochemical prperties of aqueous solutions of yttrium, barium, copper nitrates and formates with polyvinyl alcohol was studied. Change of dynamic viscosity, specific electric conductivity of solutions in the process of complexing was shown. Thermal effects of salt-polymer interaction were measured. It is shown that decrease of transition temperature of polymer to plastic state in films, temperature and effective activation energy of salt decomposition is also connected with complexing. Effective values of surface tension on the boundary with air are measured. Coefficients of cation diffusion in polymer-salt solutions are estimated

  14. Preliminary study on lithium-salt aqueous solution blanket

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Naruse, Yuji; Yamaoka, Mitsuaki; Ohara, Atsushi; Ono, Kiyoshi; Kobayashi, Shigetada.

    1992-06-01

    Aqueous solution blanket using lithium salts such as LiNO 3 and LiOH have been studied in the US-TIBER program and ITER conceptual design activity. In the JAERI/LANL collaboration program for the joint operation of TSTA (Tritium Systems Test Assembly), preliminary design work of blanket tritium system for lithium ceramic blanket, aqueous solution blanket and liquid metal blanket, have been performed to investigate technical feasibility of tritium demonstration tests using the TSTA. Detail study of the aqueous solution blanket concept have not been performed in the Japanese fusion program, so that this study was carried out to investigate features of its concept and to evaluated its technical problems. The following are the major items studied in the present work: (i) Neutronics of tritium breeding ratio and shielding performance Lithium concentration, Li-60 enrichment, beryllium or lead, composition of structural material/beryllium/solution, heavy water, different lithium-salts (ii) Physicochemical properties of salts Solubility, corrosion characteristics and compatibility with structural materials, radiolysis (iii) Estimation of radiolysis in ITER aqueous solution blanket. (author)

  15. Electrometallurgical treatment of aluminum-matrix fuels

    International Nuclear Information System (INIS)

    Willit, J.L.; Gay, E.C.; Miller, W.E.; McPheeters, C.C.; Laidler, J.J.

    1996-01-01

    The electrometallurgical treatment process described in this paper builds on our experience in treating spent fuel from the Experimental Breeder Reactor (EBR-II). The work is also to some degree, a spin-off from applying electrometallurgical treatment to spent fuel from the Hanford single pass reactors (SPRs) and fuel and flush salt from the Molten Salt Reactor Experiment (MSRE) in treating EBR-II fuel, we recover the actinides from a uranium-zirconium fuel by electrorefining the uranium out of the chopped fuel. With SPR fuel, uranium is electrorefined out of the aluminum cladding. Both of these processes are conducted in a LiCl-KCl molten-salt electrolyte. In the case of the MSRE, which used a fluoride salt-based fuel, uranium in this salt is recovered through a series of electrochemical reductions. Recovering high-purity uranium from an aluminum-matrix fuel is more challenging than treating SPR or EBR-II fuel because the aluminum- matrix fuel is typically -90% (volume basis) aluminum

  16. Problems of evaluating isotope analysis of concentrated salt solutions in potash mines

    International Nuclear Information System (INIS)

    Schmiedl, H.D.

    1980-01-01

    Three problems of quantitative evaluation of analytic D and 18 O isotope data of concentrated salt solutions are discussed: (1) Consideration of the influence of admixtures of hydrated salts in determining meteoric or marine water fractions in a concentrated salt solution, (2) analytic accuracy and detection limits in determining meteoric water in salt solutions, and (3) processes of isotopic exchange with reservoir rock and sample matrix

  17. Corrosion behavior of spent MTR fuel elements in a drowned salt mine repository

    International Nuclear Information System (INIS)

    Brodda, B.G.; Fachinger, J.

    1995-01-01

    Spent MTR fuel from German Material Test Reactors will not be reprocessed, but stored in a final salt repository in the deep geologic underground. Fuel elements will be placed in POLLUX containers, which are assumed to resist the corrosive attack of an accidentally formed concentrated salt brine for about 500 years. After a container failure the brine would contact the fuel element, corrode the aluminum plating and possibly leach radionuclides from the fuel. A source term for the calculation of radionuclide mobilization results from the investigation of the behavior of MTR fuel in this scenario, which has to be considered for the long-term safety analysis of a deep mined rock salt repository. Experiments with the different plating materials show that the considered aluminum alloys will not resist the corrosive attack of a brine solution, especially in the presence of iron, under the conditions in a drowned salt mine repository. Although differences in the corrosion rates of about two orders of magnitude were observed when applying different parameter sets, the deterioration must be considered to be almost instantaneous in geological terms. Radionuclides are mobilized from irradiated MTR fuel, when the meat of the fuel element becomes accessible to the brine solution. It seems, however, that the radionuclides are effectively trapped by the aluminum hydroxide formed, as the activity concentrations in the brine solution soon reach a constant level with the progressing corrosion of the cladding aluminum. In the presence of iron a more significant initial release was observed, but also in this case an equilibrium activity seems to be reached as a consequence of radionuclide trapping

  18. An electrochemical investigation of the corrosion behavior of aluminum alloys in chloride containing solutions

    International Nuclear Information System (INIS)

    Campos Filho, Jorge Eustaquio de

    2005-01-01

    Aluminum alloys have been used as cladding materials for nuclear fuel in research reactors due to its corrosion resistance. Aluminum owes its good corrosion resistance to a protective barrier oxide film formed and strongly bonded to its surface. In pool type TRIGA IPR-R1 reactor, located at Centro de Desenvolvimento da Tecnologia Nuclear in Belo Horizonte, previous immersion coupon tests revealed that aluminum alloys suffer from pitting corrosion, in spite of high quality of water control. Corrosion attack is initiated by breaking the protective oxide film on aluminum alloy surface. Chloride ions can break this oxide film and stimulate metal dissolution. In this study the aluminum alloys 1050, 5052 and 6061 were used to evaluate their corrosion behavior in chloride containing solutions. The electrochemical techniques used were potentiodynamic anodic polarization and cyclic polarization. Results showed that aluminum alloys 5052 and 6061 present similar corrosion resistance in low chloride solutions (0,1 ppm NaCl) and in reactor water but both alloys are less resistant in high chloride solution (1 ppm NaCl). Aluminum alloy 1050 presented similar behavior in the three electrolytes used, regarding to pitting corrosion, indicating that the concentration of the chloride ions was not the only variable to influence its corrosion susceptibility. (author)

  19. Tolerance of physic nut plants to aluminum activity in nutrient solution

    OpenAIRE

    Lana, Maria do Carmo; Steiner, Fábio [UNESP; Zoz, Tiago [UNESP; Fey, Rubens; Frandoloso, Jucenei Fernando

    2013-01-01

    Plants have different levels of tolerance to phytotoxic effects of aluminum and the exploitation of this characteristic is of significant importance to the use of acid soils. This research aimed to evaluate the effect of aluminum activity in nutrient solution on growth of physic nut young plant. After seven days of adaptation, plants were submitted to Al concentrations of 0; 200; 400; 600; 800 and 1,000 μmol L-1, corresponding to Al3+ activity solution, of: 14.5, 21.4; 46.6; 75.6; 108.3 e 144...

  20. Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions

    Science.gov (United States)

    Turkoz, Emre; Perazzo, Antonio; Arnold, Craig B.; Stone, Howard A.

    2018-05-01

    The addition of small amounts of xanthan gum to water yields viscoelastic solutions. In this letter, we show that the viscoelasticity of aqueous xanthan gum solutions can be tuned by different types of salts. In particular, we find that the decrease in viscoelasticity not only depends, as is known, on the salt concentration, but also is affected by the counterion ionic radius and the valence of the salt.

  1. Solution, thermal and optical properties of bis(pyridinium salt)s as ionic liquids

    International Nuclear Information System (INIS)

    Jo, Tae Soo; Koh, Jung Jae; Han, Haesook; Bhowmik, Pradip K.

    2013-01-01

    Bis(pyridinium salt)s containing different alkyl chain lengths and various organic counterions were prepared by the ring-transmutation reaction of bis(pyrylium tosylate) with aliphatic amines in dimethyl sulfoxide at 130–135 °C for 18 h and their tosylate counterions were exchanged to other anions such as triflimide, methyl orange, and dioctyl sulfosuccinate by the metathesis reaction in a common organic solvent. Their chemical structures were established by using 1 H, 19 F, and 13 C NMR spectra. The thermal properties of bis(pyridinium salt)s were studied by DSC and TGA measurements. Some of the dicationic salts provided low melting points below 100 °C and some of them displayed amorphous properties. Polarized optical microscopy studies revealed the crystal structures prior to melting temperatures in some cases. Their optical properties were examined by using UV–Vis and photoluminescent spectrometers; and they emitted blue light both in the solution and solid states regardless of their microstructures, counterions, and the polarity of organic solvents. However, most of these salts exhibited hypsochromic shifts in their emission peaks in the solid state when compared with those of their solution spectra. Due to unique properties of methyl orange anion as a pH indicator, two of the salts showed different color change in varying concentrations of triflic acid in common organic solvents, demonstrating their potential use as an acid sensor in methanol, acetonitrile and acetone. Highlights: ► Luminescent dicationic salts were synthesized by ring-transmutation and metathesis reactions. ► Thermal and optical properties of dicationic salts are affected by the size of anion structures. ► Due to the methyl orange counterions, some dicationic salts showed pH- sensing property

  2. CO2 Capture from Flue Gas using Amino Acid Salt Solutions

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai; Stenby, Erling Halfdan; Thomsen, Kaj

    2009-01-01

    difficult. Amino acid salt solutions have emerged as an alternative to the alkanolamine solutions. A number of advantages make amino acid salt solutions attractive solvents for CO2 capture from flue gas. In the present study CO2 absorption in aqueous solutions of 0.5 M potassium glycinate and 0.5 M...

  3. Study of tritium removal from fusion reactor blankets of molten salt and lithium--aluminum

    International Nuclear Information System (INIS)

    Talbot, J.B.

    1976-03-01

    The sorption of tritium by molten lithium--bismuth (Li--Bi, approx. 15 at. % lithium) and solid equiatomic lithium--aluminum (Li--Al) was investigated experimentally to evaluate the potential applications of both materials in a controlled thermonuclear reactor. The Li--Bi alloy was proposed to countercurrently extract tritium from a molten salt (Li 2 BeF 4 ) blanket. However, because of the low solubility ( 0 C, the extraction process is not attractive

  4. "Water-in-salt" electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries.

    Science.gov (United States)

    Kühnel, R-S; Reber, D; Remhof, A; Figi, R; Bleiner, D; Battaglia, C

    2016-08-16

    The extended electrochemical stability window offered by highly concentrated electrolytes allows the operation of aqueous batteries at voltages significantly above the thermodynamic stability limit of water, at which the stability of the current collector potentially limits the cell voltage. Here we report the observation of suppressed anodic dissolution of aluminum in "water-in-salt" electrolytes enabling roll-to-roll electrode fabrication for high-voltage aqueous lithium-ion batteries on cost-effective light-weight aluminum current collectors using established lithium-ion battery technology.

  5. Ionic solubility and solutal advection governed augmented evaporation kinetics of salt solution pendant droplets

    Science.gov (United States)

    Jaiswal, Vivek; Harikrishnan, A. R.; Khurana, Gargi; Dhar, Purbarun

    2018-01-01

    The presence of dispersed inclusions is known to modify the interfacial characteristics in liquids by adsorption-desorption of the ions at interfaces. The present article reports the influencing role of dissolved ions in a polar fluid on its evaporation dynamics. The evaporation dynamics of pendant droplets of aqueous solutions of variant simple salts and concentrations have been experimentally studied. The presence of salts is observed to enhance the evaporation rate (obeying the classical D2 law), and the enhancement has been found to hold a direct proportionality to the concentration of the dissolved salt. Furthermore, it is observed that the degree of enhancement in the evaporation rate is also directly proportional to the solubility of the salt in question. The phenomenon is explained based on the chemical kinetics and thermodynamics of hydration of the ionic species in the polar fluid. The classical evaporation rate constant formulation is found to be inadequate in modeling the enhanced species transport. Additional probing via particle image velocimetry reveals augmented internal circulation within the evaporating salt based drops compared to pure water. Mapping the dynamic surface tension reveals that a salt concentration gradient is generated between the bulk and periphery of the droplet and it could be responsible for the internal advection cells visualized. A thermo-solutal Marangoni and Rayleigh convection based mathematical formulation has been put forward, and it is shown that the enhanced solute-thermal convection could play a major role in enhanced evaporation. The internal circulation mapped from experiments is found to be in good quantitative agreement with the model predictions. Scaling analysis further reveals that the stability of the solutal Marangoni convection surpasses the thermal counterpart with higher salt concentration and solubility. The present article sheds insight into the possible domineering role of conjugate thermohydraulic and

  6. Ion-exchange properties of cesium and strontium into zeolites from sodium salt solutions

    International Nuclear Information System (INIS)

    Kanno, Takuji; Hashimoto, Hiroyuki; Ohtani, Tozo.

    1978-01-01

    The ion-exchange properties of cesium and strontium into zeolite from sodium salt solution has been studied in zeolite A, zeolite X, zeolite Y, mordenite and clinoptilolite. The distribution of cesium into mordenite from about 1 -- 2 M sodium chloride and sodium hydroxide solutions is considerably larger than that into zeolite A. The distribution coefficient for 2 M solution of sodium salts was about 300. Therefore, the separation of cesium from sodium salt solution is possible by using mordenite. The distribution of strontium into zeolites form 1 -- 2 M solutions of sodium chloride and sodium nitrate were in the order of zeolite A>zeolite X>zeolite Y asymptoticaly equals mordenite. The distribution coefficient of 230 was obtained for 1 M solutions of sodium salts. The anion in solutions had no effect on the distribution of cesium and strontium into zeolite from sodium salt solution. (author)

  7. Thermophysical property characterization of aqueous amino acid salt solution containing serine

    International Nuclear Information System (INIS)

    Navarro, Shanille S.; Leron, Rhoda B.; Soriano, Allan N.; Li, Meng-Hui

    2014-01-01

    Highlights: • Thermophysical properties of aqueous potassium and sodium salt solutions of serine were studied. • Density, viscosity, refractive index and electrolytic conductivity of the solution were measured. • The concentrations of amino acid salt ranges from x 1 = 0.009 to 0.07. • The temperature range studied was (298.15 to 343.15) K. • The measured data were represented satisfactorily by using the applied correlations. - Abstract: Thermophysical property characterization of aqueous potassium and sodium salt solutions containing serine was conducted in this study; specifically the system’s density, refractive index, electrical conductivity, and viscosity. Measurements were obtained over a temperature range of (298.15 to 343.15) K and at normal atmospheric pressure. Composition range from x 1 = 0.009 to 0.07 for aqueous potassium and sodium salt solutions containing serine was used. The sensitivity of the system’s thermophysical properties on temperature and composition variation were discussed and correlated based on the equations proposed for room temperature ionic liquids. The density, viscosity, and refractive index measurements of the aqueous systems were found to decrease as the temperature increases at fixed concentration and the values increase as the salt concentration increases (water composition decreases) at fixed temperature. Whereas, a different trend was observed for the electrical conductivity data; at fixed concentration, the conductivity values increase as the temperature increases and at fixed temperature, its value generally increases as the salt concentration increases but only to a certain level (specific concentration) wherein the conductivity of the solution starts to decrease when the concentration of the salt is further increased. Calculation results show that the applied models were satisfactory in representing the measured properties in the aqueous amino acid salt solution containing serine

  8. Solidification of salt solutions on a horizontal surface

    International Nuclear Information System (INIS)

    Braga, S.L.; Viskanta, R.

    1990-01-01

    The freezing of water-salt solutions on a horizontal wall is investigated experimentally and theoretically. The growth of the solid-liquid region is observed for NaCl - H sub(2)O and N H sub(4)Cl - H sub(2)O systems under different temperature and concentration conditions. A unidirectional mathematical model is used to predict the solidification process. The transport of heat is by diffusion, and convection is absent. The mass diffusion is neglected and the growth of crystal is governed by the transport of heat. In all experiments, the solution salt concentration is smaller than the eutectic composition, and the wall temperature is higher than the eutectic temperature. The predicted temperature and salt concentration profiles, as well as the interface position, are compared with experimental data. (author)

  9. Process for the recovery of alkali metal salts from aqueous solutions thereof

    International Nuclear Information System (INIS)

    Vitner, J.

    1984-01-01

    In an integrated process for the recovery of alkakli metal phenates and carboxylates from aqueous solutions thereof, the aqueous solution is spray dried and the drying gas stream is contacted with an aqueous alkali metal salt solution which dissolves the particles of the alkali metal salt that were entrained in the drying gas stream. The salt-free inert gas stream is then dried, heated, and returned to the spray dryer

  10. New electrolytes for aluminum production: Ionic liquids

    Science.gov (United States)

    Zhang, Mingming; Kamavarum, Venkat; Reddy, Ramana G.

    2003-11-01

    In this article, the reduction, refining/recycling, and electroplating of aluminum from room-temperature molten salts are reviewed. In addition, the characteristics of several non-conventional organic solvents, electrolytes, and molten salts are evaluated, and the applicability of these melts for production of aluminum is discussed with special attention to ionic liquids. Also reviewed are electrochemical processes and conditions for electrodeposition of aluminum using ionic liquids at near room temperatures.

  11. Formulation and method for preparing gels comprising hydrous aluminum oxide

    Science.gov (United States)

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  12. Comparison of four methods for determining aluminum in highly radioactive solutions

    International Nuclear Information System (INIS)

    Hanson, T.J.

    1976-06-01

    Four methods for the accurate determination of aluminum in highly alkaline nuclear waste solutions were developed and the results were compared to determine the strengths and weaknesses of each. The solutions of interest contain aluminum in concentrations of 0.5 to 3.5 M and the hydroxide (OH - ) concentrations were greater than 1.0 M. The normal atomic absorption determination was highly inaccurate for these samples so citrate was used as a complexant to improve the results. A fluoride titration was carried out in an ethanol-water matrix using a fluoride ion-selective electrode. A thermometric titration proved successful in determining both the OH - and aluminum concentrations of the samples. Finally, a titrimetric method using a pH electrode to determine OH - d aluminum was checked and compared with the other methods. Samples were analyzed using all four methods and the agreement of the results was very good. For all four methods the accuracy was around 100 percent and the precision varied from approximately +-2 percent for the fluoride electrode determination to approximately +-10 percent for the atomic absorption determination. On the basis of the work performed, conclusions were drawn about the strengths and weaknesses of each method and whether or not the method was suitable for routine use in analytical laboratories

  13. Study of tritium removal from fusion reactor blankets of molten salt and lithium--aluminum

    International Nuclear Information System (INIS)

    Talbot, J.B.

    1976-03-01

    The sorption of tritium by molten lithium--bismuth (Li--Bi, approximately 15 at. percent lithium) and solid equiatomic lithium--aluminum (Li--Al) was investigated experimentally to evaluate the potential applications of both materials in a controlled thermonuclear reactor. The Li--Bi alloy was proposed to countercurrently extract tritium from a molten salt (Li 2 BeF 4 ) blanket. However, because of the low solubility (less than 10 ppb) at temperatures ranging from 500 to 700 0 C, the extraction process is not attractive

  14. Salt weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures

    Science.gov (United States)

    Aly, Nevin; Gomez-Heras, Miguel; Hamed, Ayman; Alvarez de Buergo, Monica

    2013-04-01

    weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures Nevin Aly Mohamed (1), Miguel Gomez - Heras(2), Ayman Hamed Ahmed (1), and Monica Alvarez de Buergo(2). (1) Faculty of Pet. & Min. Engineering- Suez Canal University, Suez, Egypt, (2) Instituto de Geociencias (CSIC-UCM) Madrid. Spain. Limestone is one of the most frequent building stones in Egypt and is used since the time of ancient Egyptians and salt weathering is one of the main threats to its conservation. Most of the limestone used in historical monuments in Cairo is a biomicrite extracted from the Mid-Eocene Mokattam Group. During this work, cylindrical samples (2.4 cm diameter and approx. 4.8 cm length) were subjected, in a purpose-made simulation chamber, to simulated laboratory weathering tests with fixed salt concentration (10% weight NaCl solution), at different temperatures, which were kept constant throughout each test (10, 20, 30, 40 oC). During each test, salt solutions flowed continuously imbibing samples by capilarity. Humidity within the simulation chamber was reduced using silica gel to keep it low and constant to increase evaporation rate. Temperature, humidity inside the simulation chamber and samples weight were digitally monitored during each test. Results show the advantages of the proposed experimental methodology using a continuous flow of salt solutions and shed light on the effect of temperature on the dynamics of salt crystallization on and within samples. Research funded by mission sector of high education ministry, Egypt and Geomateriales S2009/MAT-1629.

  15. A Study of Analytical Solution for the Special Dissolution Rate Model of Rock Salt

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2017-01-01

    Full Text Available By calculating the concentration distributions of rock salt solutions at the boundary layer, an ordinary differential equation for describing a special dissolution rate model of rock salt under the assumption of an instantaneous diffusion process was established to investigate the dissolution mechanism of rock salt under transient but stable conditions. The ordinary differential equation was then solved mathematically to give an analytical solution and related expressions for the dissolved radius and solution concentration. Thereafter, the analytical solution was fitted with transient dissolution test data of rock salt to provide the dissolution parameters at different flow rates, and the physical meaning of the analytical formula was also discussed. Finally, the influential factors of the analytical formula were investigated. There was approximately a linear relationship between the dissolution parameters and the flow rate. The effects of the dissolution area and initial volume of the solution on the dissolution rate equation of rock salt were computationally investigated. The results showed that the present analytical solution gives a good description of the dissolution mechanism of rock salt under some special conditions, which may provide a primary theoretical basis and an analytical way to investigate the dissolution characteristics of rock salt.

  16. Photoionization of Sodium Salt Solutions in a Liquid Jet

    International Nuclear Information System (INIS)

    Grieves, G. A.; Petrik, Nikolay G.; Herring-Captain, J.; Olanrewaju, B.; Aleksandrov, A.; Tonkyn, Russell G.; Barlow, Stephan E.; Kimmel, Gregory A.; Orlando, Thomas M.

    2008-01-01

    A liquid microjet was employed to examine the gas/liquid interface of aqueous sodium halide (Na+X-, X=Cl, Br, I) salt solutions. Laser excitation at 193 nm produced and removed cations of the form H+(H2O)n and Na+(H2O)m from liquid jet surfaces containing either NaCl, NaBr or NaI. The protonated water cluster yield varied inversely with increasing salt concentration, while the solvated sodium ion cluster yield varied by anion type. The distribution of H+(H2O)n at low salt concentration is identical to that observed from low-energy electron irradiated amorphous ice and the production of these clusters can be accounted for using a localized ionization/Coulomb expulsion model. Production of Na+(H2O)m is not accounted for by this model but requires ionization of solvation shell waters and a contact ion/Coulomb expulsion mechanism. The reduced yields of Na+(H2O)m from high concentration (10-2 and 10-1 M) NaBr and NaI solutions indicate a propensity for Br- and I- at the solution surfaces and interfaces. This is supported by the observation of multiphoton induced production and desorption of Br+ and I+ from the 10-2 and 10-1 M solution surfaces

  17. Photoionization of Sodium Salt Solutions in a Liquid Jet

    Energy Technology Data Exchange (ETDEWEB)

    Grieves, G. A.; Petrik, Nikolay G.; Herring-Captain, J.; Olanrewaju, B.; Aleksandrov, A.; Tonkyn, Russell G.; Barlow, Stephan E.; Kimmel, Gregory A.; Orlando, Thomas M.

    2008-06-05

    A liquid microjet was employed to examine the gas/liquid interface of aqueous sodium halide (Na+X-, X=Cl, Br, I) salt solutions. Laser excitation at 193 nm produced and removed cations of the form H+(H2O)n and Na+(H2O)m from liquid jet surfaces containing either NaCl, NaBr or NaI. The protonated water cluster yield varied inversely with increasing salt concentration, while the solvated sodium ion cluster yield varied by anion type. The distribution of H+(H2O)n at low salt concentration is identical to that observed from low-energy electron irradiated amorphous ice and the production of these clusters can be accounted for using a localized ionization/Coulomb expulsion model. Production of Na+(H2O)m is not accounted for by this model but requires ionization of solvation shell waters and a contact ion/Coulomb expulsion mechanism. The reduced yields of Na+(H2O)m from high concentration (10-2 and 10-1 M) NaBr and NaI solutions indicate a propensity for Br- and I- at the solution surfaces and interfaces. This is supported by the observation of multiphoton induced production and desorption of Br+ and I+ from the 10-2 and 10-1 M solution surfaces.

  18. Salt Spray Test to Determine Galvanic Corrosion Levels of Electroless Nickel Connectors Mounted on an Aluminum Bracket

    Science.gov (United States)

    Rolin, T. D.; Hodge, R. E.; Torres, P. D.; Jones, D. D.; Laird, K. R.

    2014-01-01

    During preliminary vehicle design reviews, requests were made to change flight termination systems from an electroless nickel (EN) connector coating to a zinc-nickel (ZN) plating. The reason for these changes was due to a new NASA-STD-6012 corrosion requirement where connectors must meet the performance requirement of 168 hr of exposure to salt spray. The specification for class F connectors, MIL-DTL-38999, certifies the EN coating will meet a 48-hr salt spray test, whereas the ZN is certified to meet a 168-hr salt spray test. The ZN finish is a concern because Marshall Space Flight Center has no flight experience with ZN-finished connectors, and MSFC-STD-3012 indicates that zinc and zinc alloys should not be used. The purpose of this test was to run a 168-hr salt spray test to verify the electrical and mechanical integrity of the EN connectors and officially document the results. The salt spray test was conducted per ASTM B117 on several MIL-DTL-38999 flight-like connectors mounted to an aluminum 6061-T6 bracket that was alodined. The configuration, mounting techniques, electrical checks, and materials used were typical of flight and ground support equipment.

  19. Optical absorption of dilute solutions of metals in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Senatore, G.; Parrinello, M.; Tosi, M.P. (Trieste Univ. (Italy). Ist. di Fisica Teorica; Gruppo Nazionale di Struttura dell material del CNR, Trieste (Italy); International Centre for Theoretical Physics, Trieste (Italy))

    1978-12-23

    The theory of liquid structure for fluids of charged hard spheres is applied to an evaluation of the F-centre model for valence electrons in metal-molten salt solutions at high dilution. Minimization of the free energy yields the groundstate radius of the elctron bubble and hence the optical excitation energy in a Franck-Condon transition, the shift and broadening of the transition due to fluctuations in the bubble radius, the volume of mixing, and the activity of the salt in the solution.

  20. Americium Separations from High-Salt Solutions Using Anion Exchange

    International Nuclear Information System (INIS)

    Barr, Mary E.; Jarvinen, Gordon D.; Stark, Peter C.; Chamberlin, Rebecca M.; Bartsch, Richard A.; Zhang, Z.Y.; Zhao, W.

    2001-01-01

    The aging of the US nuclear stockpile presents a number of challenges, including the increasing radioactivity of plutonium residues due to the ingrowth of 241 Am from the β-decay of 241 Pu. We investigated parameters that affect the sorption of Am onto anion-exchange resins from concentrated effluents derived from nitric acid processing of plutonium residues. These postevaporator wastes are nearly saturated solutions of acidic nitrate salts, and americium removal is complicated by physical factors, such as solution viscosity and particulates, as well as by the presence of large quantities of competing metals and acid. Single- and double-contact batch distribution coefficients for americium and neodymium from simple and complex surrogate solutions are presented. Varied parameters include the nitrate salt concentration and composition and the nitric acid concentration. We find that under these extremely concentrated conditions, Am(III) removal efficiencies can surpass 50% per contact. Distribution coefficients for both neodymium and americium are insensitive to solution acidity and appear to be driven primarily by low water activities of the solutions

  1. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  2. Corrosion processes of alloyed steels in salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Institut fuer Nukleare Entsorgung

    2018-02-15

    A summary is given of the corrosion experiments with alloyed Cr-Ni steels in salt solutions performed at Research Centre Karlsruhe (today KIT), Institute for Nuclear Waste Disposal (INE) in the period between 1980 and 2004. Alloyed steels show significantly lower general corrosion in comparison to carbon steels. However, especially in salt brines the protective Cr oxide layers on the surfaces of these steels are disturbed and localized corrosion takes place. Data on general corrosion rates, and findings of pitting, crevice and stress corrosion cracking are presented.

  3. Analysis on porous aluminum anodic oxide film formed in Re-OA-H{sub 3}PO{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Wang, H.W. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)]. E-mail: hwwang@sjtu.edu.cn

    2006-06-10

    An anodic porous film on aluminum was prepared in a mixed electrolyte of phosphoric acid and organic acid and cerium salt. The growth, morphology and chemical composition of the film were investigated. The results indicate that the growth of porous layers in this solution undergo three stages during anodizing, as in other conventional solution, while the whole growth rate is nonlinear. This electrolyte is sensitive to anodizing temperature, which affects current density in great degree. SEM indicates the surface morphology of film is strongly dependent on temperature and current density and its cross-section has two distinct oxide layers. Al, O and P are found in the film with different distribution in the two layers with EPMA. However, Ce has been detected on the outer surface with EDAX. XPS analysis on the electron binding energy of the component elements show the chemical composition of oxide film surface are Al{sub 2}O{sub 3}, Ce(OH) and some phosphates. The formation mechanics of Ce compound is also deduced.

  4. Correlation of high-temperature stability of alpha-chymotrypsin with 'salting-in' properties of solution.

    Science.gov (United States)

    Levitsky VYu; Panova, A A; Mozhaev, V V

    1994-01-15

    A correlation between the stability of alpha-chymotrypsin against irreversible thermal inactivation at high temperatures (long-term stability) and the coefficient of Setchenov equation as a measure of salting-in/out efficiency of solutes in the Hofmeister series has been found. An increase in the concentration of salting-in solutes (KSCN, urea, guanidinium chloride, formamide) leads to a many-fold decrease of the inactivation rate of the enzyme. In contrast, addition of salting-out solutes has a small effect on the long-term stability of alpha-chymotrypsin at high temperatures. The effects of solutes are additive with respect to their salting-in/out capacities; the stabilizing action of the solutes is determined by the calculated Setchenov coefficient of solution. The correlation is explained by a solute-driven shift of the conformational equilibrium between the 'low-temperature' native and the 'high-temperature' denatured forms of the enzyme within the range of the kinetic scheme put forward in the preceding paper in this journal: irreversible inactivation of the high-temperature form proceeds much more slowly compared with the low-temperature form.

  5. Tungsten ion implantation of aluminum for improved resistance to pitting corrosion -- electrochemical testing results

    International Nuclear Information System (INIS)

    Smith, P.P.; Buchanan, R.A.; Williams, J.M.

    1995-01-01

    The greatly accelerated localized corrosion of aluminum in salt solutions has been observed and combated for many years. The susceptibility to pitting attack has been linked to the presence of chloride ions in the solution. Alloying additions to aluminum for improved corrosion resistance are restricted due to its limited solubility for passivating species such as chromium and molybdenum. However, many recent attempts to produce non-equilibrium alloys with these and other species, both through sputtering techniques and by rapid solidification, have met with very promising pitting resistance enhancements. The most dramatic increase in passivity is demonstrated by a thin co-sputtered film of Al and 9 atomic percent W, in which the pitting potential is increased by 2600 m V relative to pure Al. Recent efforts to extrapolate the promising W-Al thin film results to a bulk aluminum alloy using tungsten ion implantation are discussed here

  6. Investigation of aluminum gate CMP in a novel alkaline solution

    International Nuclear Information System (INIS)

    Feng Cuiyue; Liu Yuling; Sun Ming; Zhang Wenqian; Zhang Jin; Wang Shuai

    2016-01-01

    Beyond 45 nm, due to the superior CMP performance requirements with the metal gate of aluminum in the advanced CMOS process, a novel alkaline slurry for an aluminum gate CMP with poly-amine alkali slurry is investigated. The aluminum gate CMP under alkaline conditions has two steps: stock polishing and fine polishing. A controllable removal rate, the uniformity of aluminum gate and low corrosion are the key challenges for the alkaline polishing slurry of the aluminum gate CMP. This work utilizes the complexation-soluble function of FA/O II and the preference adsorption mechanism of FA/O I nonionic surfactant to improve the uniformity of the surface chemistry function with the electrochemical corrosion research, such as OCP-TIME curves, Tafel curves and AC impedance. The result is that the stock polishing slurry (with SiO 2 abrasive) contains 1 wt.% H 2 O 2 ,0.5 wt.% FA/O II and 1.0 wt.% FA/O I nonionic surfactant. For a fine polishing process, 1.5 wt.% H 2 O 2 , 0.4 wt.% FA/O II and 2.0 wt.% FA/O I nonionic surfactant are added. The polishing experiments show that the removal rates are 3000 ± 50 Å/min and 1600 ± 60 Å/min, respectively. The surface roughnesses are 2.05 ± 0.128 nm and 1.59 ± 0.081 nm, respectively. A combination of the functions of FA/O II and FA/O I nonionic surfactant obtains a controllable removal rate and a better surface roughness in alkaline solution. (paper)

  7. Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration

    Science.gov (United States)

    Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R.

    2009-01-01

    Background Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. Conclusions/Significance The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that

  8. Preliminary evaluation of solution-mining intrusion into a salt-dome repository

    International Nuclear Information System (INIS)

    1981-06-01

    This report is the product of the work of an ONWI task force to evaluate inadvertant human intrusion into a salt dome repository by solution mining. It summarizes the work in the following areas: a general review of the levels of defense that could reduce both the likelihood and potential consequences of human intrusion into a salt dome repository; evaluation of a hypothetical intrusion scenario and its consequences; recommendation for further studies. The conclusions of this task force report can be summarized as follows: (1) it is not possible at present to establish with certainty that solution mining is credible as a human-intrusion event. The likelihood of such an intrusion will depend on the effectiveness of the preventive measures; (2) an example analysis based on the realistic approach is presented in this report; it concluded that the radiological consequences are strongly dependent upon the mode of radionuclide release from the waste form, time after emplacement, package design, impurities in the host salt, the amount of a repository intercepted, the solution mining cavity form, the length of time over which solution mining occurs, the proportion of contaminated salt source for human consumption compared to other sources, and the method of salt purification for culinary purposes; (3) worst case scenarios done by other studies suggest considerable potential for exposures to man while preliminary evaluations of more realistic cases suggest significantly reduced potential consequences. Mathematical model applications to process systems, guided by more advanced assumptions about human intrusion into geomedia, will shed more light on the potential for concerns and the degree to which mitigative measures will be required

  9. Solubility and speciation of actinides in salt solutions and migration experiments of intermediate level waste in salt formations

    International Nuclear Information System (INIS)

    1986-01-01

    A comprehensive study into the solubility of the actinides americium and plutonium in concentrated salt solutions, the release of radionuclides from various forms of conditioned ILW and the migration behaviour of these nuclides through geological material specific to the Gorleben site in Lower Saxony is described. A detailed investigation into the characterization of four highly concentrated salt solutions in terms of their pH, Eh, inorganic carbon contents and their densities is given and a series of experiments investigating the solubility of standard americium(III) and plutonium(IV) hydroxides in these solutions is described. Transuranic mobility studies for solutions derived from the standard hydroxides through salt and sand have shown the presence of at least two types of species present of widely differing mobility; one migrating with approximately the same velocity as the solvent front and the other strongly retarded. Actinide mobility data are presented and discussed for leachates derived from the simulated ILW in cement and data are also presented for the migration of the fission products in leachates derived from real waste solidified in cement and bitumen. Relatively high plutonium mobilities were observed in the case of the former and in the case of the real waste leachates, cesium was found to be the least retarded. The sorption of ruthenium was found to be largely associated with the insoluble residues of the natural rock salt rather than the halite itself. (orig./RB)

  10. Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions

    International Nuclear Information System (INIS)

    Aronu, Ugochukwu E.; Hartono, Ardi; Svendsen, Hallvard F.

    2012-01-01

    Highlights: ► Density of amino acid salt and amine amino acid salt. ► Viscosity of amino acid salt and amine amino acid salt. ► Henry’s law constant/N 2 O solubility of amino acid salt and amine amino acid salt. ► Schumpe model. Correlations for density, viscosity, and N 2 O solubility. - Abstract: Physicochemical properties of aqueous amino acid salt (AAS), potassium salt of sarcosine (KSAR) and aqueous amine amino acid salt (AAAS), 3-(methylamino)propylamine/sarcosine (SARMAPA) have been studied. Densities of KSAR were measured for sarcosine mole fraction 0.02 to 0.25 for temperature range 298.15 K to 353.15 K, the viscosities were measured for 0.02 to 0.10 mole fraction sarcosine (293.15 K to 343.15 K) while the N 2 O solubilities were measured from 0.02 to 0.10 mole fraction sarcosine solutions (298.15 K to 363.15 K). Densities of SARMAPA were measured for sarcosine mole fraction 0.02 to 0.23 for temperature range (298.15 K to 353.15 K), viscosities were measured for 0.02 to 0.16 mole fraction sarcosine (293.15 K to 343.15 K) while the N 2 O solubilities were measured from 0.02 to 0.16 mole fraction sarcosine solutions (298.15 K to 343.15 K). Experimental results were correlated well with empirical correlations and N 2 O solubility results for KSAR were predicted adequately by a Schumpe model. The solubilities of N 2 O in AAS and AAAS are significantly lower than values for amines. The solubilities vary as: amine > AAAS > AAS.

  11. Experiments on the effect of sphagnum on the pH of salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K T; Thompson, T G

    1936-01-01

    Addition of sphagnum to salt solutions produced marked increases in the concentrations of the hydrogen ions, as measured both electrometrically and colorimetrically. The greater the concentration of the salt solution, the greater the increase in hydrogen ion concentration upon the addition of sphagnum. With a given salt concentration, the hydrogen ion concentration increased with increase in quantity of sphagnum added. The divalent cations produced greater increases in the hydrogen concentration than the monovalent cations for equal weights of sphagnum. Divalent anions, while showing an increase in hydrogen ions, upon the addition of sphagnum were far less effective in increasing the hydrogen ion concentrations. Sphagnum may be a useful reagent for regulating the acidity of salt solutions for many types of scientific work. It seems probable that the adsorption of metallic and hydroxyl ions explains, at least in part, the acidity of the water of sphagnum bogs.

  12. Isolation of transplutonium elements on ion exchangers from solutions of high salt concentration

    International Nuclear Information System (INIS)

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1985-01-01

    The behaviour of transplutonium elements (TPE) on cation and anion exchangers in aqueous alcoholic solutions of chlorides and nitrates of some alkali and alkaline earth metals depending on different factors: salt concentration, content of alcohol and of acid in the solution as well as the nature of a cation was studied. The data obtained were used to determine the optimal conditions of concentration of TPE on ion exchangers from solutions containing great quantities of salts. The advantages of the use of aqueous alcoholic solutions of nitric acid in the isolation of TPE are shown. (author)

  13. Meat batter production in an extended vane pump-grinder injecting curing salt solutions to reduce energy requirements: variation of curing salt amount injected with the solution.

    Science.gov (United States)

    Irmscher, Stefan B; Terjung, Eva-Maria; Gibis, Monika; Herrmann, Kurt; Kohlus, Reinhard; Weiss, Jochen

    2017-01-01

    The integration of a nozzle in an extended vane pump-grinder system may enable the continuous injection of curing salt solutions during meat batter production. The purpose of this work was to examine the influence of the curing salt amount injected with the solution (0-100%) on protein solubilisation, water-binding, structure, colour and texture of emulsion-type sausages. The amount of myofibrillar protein solubilised during homogenisation varied slightly from 33 to 36 g kg -1 . Reddening was not noticeably impacted by the later addition of nitrite. L * ranged from 66.9 ± 0.3 to 67.8 ± 0.3, a * from 10.9 ± 0.1 to 11.2 ± 0.1 and b * from 7.7 ± 0.1 to 8.0 ± 0.1. Although softer sausages were produced when only water was injected, firmness increased with increasing curing salt amount injected and was similar to the control when the full amount of salt was used. The substitution of two-thirds of ice with a liquid brine may enable energy savings due to reduced power consumptions of the extended vane pump-grinder system by up to 23%. The injection of curing salt solutions is feasible without affecting structure and colour negatively. This constitutes a first step towards of an 'ice-free' meat batter production allowing for substantial energy savings due to lower comminution work. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. A study on the structure of thorium salt solutions

    International Nuclear Information System (INIS)

    Magini, M.; Cabrini, A.; Di Bartolomeo, A.

    1975-01-01

    The structure of highly hydrolyzed thorium salt solutions has been investigated by large and small angle X-ray scattering techniques. The diffraction data obtained with large angle measurements show the presence in solution of microcrystalline particles with the thorium oxide structure. Particles larger than those were discovered by small angle measurements. A possible shape of these colloidal particles has been discussed

  15. Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO2

    International Nuclear Information System (INIS)

    Ho, Tuan Anh; Ilgen, Anastasia

    2017-01-01

    Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2 . With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2 decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.

  16. Tolerância de genótipos de trigo comum, trigo duro e triticale à toxicidade de alumínio em soluções nutritivas Tolerance of bread wheat, durum wheat and triticale genotypes to aluminum toxicity in nutrient solution

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    2006-01-01

    Full Text Available Foi estudado o comportamento diferencial de 12 genótipos de trigo comum (Triticum aestivum L., um genótipo de trigo duro (Triticum durum L., e um de triticale (Triticosecale sp em soluções nutritivas de tratamento contendo duas concentrações salinas (1/5 e 1/10 da completa e seis concentrações de alumínio ( 0, 2, 4, 6, 8 e 10 mg L-1, à temperatura de 25 ± 1ºC e pH 4,0. Foram utilizadas dez plântulas por parcela e quatro repetições. A tolerância foi medida pela capacidade de as raízes primárias continuarem a crescer em solução sem alumínio, após permanecer 48 horas em solução nutritiva completa, contendo uma concentração conhecida de alumínio combinada com cada uma das concentrações salinas. Os genótipos de trigo comum IAC-289, IAC-350 e IAC-370 e a cultivar controle Anahuac, e os genótipos de trigo duro IAC-1003 e de triticale IAC-5 foram os mais sensíveis a níveis crescentes de Al3+nas soluções nutritivas de tratamento e, portanto, somente seriam indicados para cultivo em solos corrigidos. Os genótipos de trigo comum IAC-24 e IAC-378 e a cultivar controle BH-1146 destacaram-se pela tolerância à toxicidade de Al3+, com potencial para uso em solos ácidos e como fontes genéticas de tolerância nos futuros cruzamentos. Os sintomas de toxicidade de alumínio foram maiores com a elevação da concentração de alumínio e da diminuição das concentrações de sais da solução nutritiva para todos os genótipos estudados.Twelve bread wheat (Triticum aestivum L., one durum wheat (Triticum durum L. and one triticale (Triticosecale sp genotypes were studied in nutrient solutions with a high salt concentration in experiment 1 and a weak salt concentration in experiment 2, for aluminum tolerance at six levels: 0, 2, 4, 6, 8 and 10 mg L-1, under temperature 25 ± 1ºC and pH 4,0. Four replications were used per experiment. Aluminum tolerance was evaluated by measuring root growth in an aluminum-free complete

  17. [Aluminum dissolution and changes of pH in soil solution during sorption of copper by aggregates of paddy soil].

    Science.gov (United States)

    Xu, Hai-Bo; Zhao, Dao-Yuan; Qin, Chao; Li, Yu-Jiao; Dong, Chang-Xun

    2014-01-01

    Size fractions of soil aggregates in Lake Tai region were collected by the low-energy ultrasonic dispersion and the freeze-desiccation methods. The dissolution of aluminum and changes of pH in soil solution during sorption of Cu2+ and changes of the dissolution of aluminum at different pH in the solution of Cu2+ by aggregates were studied by the equilibrium sorption method. The results showed that in the process of Cu2+ sorption by aggregates, the aluminum was dissoluted and the pH decreased. The elution amount of aluminum and the decrease of pH changed with the sorption of Cu2+, both increasing with the increase of Cu2+ sorption. Under the same conditions, the dissolution of aluminum and the decrease of pH were in the order of coarse silt fraction > silt fraction > sand fraction > clay fraction, which was negatively correlated with the amount of iron oxide, aluminum and organic matter. It suggested that iron oxide, aluminum and organic matters had inhibitory and buffering effect on the aluminum dissolution and the decrease of pH during the sorption of Cu2+.

  18. Removal of Diazinon from aqueous solution by electrocoagulation process using aluminum electrodes

    International Nuclear Information System (INIS)

    Amooey, Ali Akbar; Ghasemi, Shahram; Mirsoleimani-azizi, Seyed Mohammad; Gholaminezhad, Zohreh; Chaichi, Mohammad Javad

    2014-01-01

    Electrocoagulation (EC) is an electrochemical method to treat polluted wastewaters and aqueous solutions. In this paper, the removal of Diazinon was studied by EC on aluminum electrode. The effect of several parameters such as initial concentration of Diazinon, current density, solution conductivity, effect of pH, and electrolysis time were investigated on EC performance. The obtained results showed that the removal efficiency of EC depends on the current density, initial concentration of Diazinon and electrolysis time. The optimum pH is 3 and also the solution conductivity has no significant effect on removal efficiency

  19. Removal of Diazinon from aqueous solution by electrocoagulation process using aluminum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Amooey, Ali Akbar; Ghasemi, Shahram; Mirsoleimani-azizi, Seyed Mohammad; Gholaminezhad, Zohreh; Chaichi, Mohammad Javad [University of Mazandaran, Babolsar (Iran, Islamic Republic of)

    2014-06-15

    Electrocoagulation (EC) is an electrochemical method to treat polluted wastewaters and aqueous solutions. In this paper, the removal of Diazinon was studied by EC on aluminum electrode. The effect of several parameters such as initial concentration of Diazinon, current density, solution conductivity, effect of pH, and electrolysis time were investigated on EC performance. The obtained results showed that the removal efficiency of EC depends on the current density, initial concentration of Diazinon and electrolysis time. The optimum pH is 3 and also the solution conductivity has no significant effect on removal efficiency.

  20. Nonmetal-metal transition in metal–molten-salt solutions

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to study the nonmetal-metal transition in two different metal–molten-salt solutions, Kx(KCl)1-x and Nax(NaBr)1-x. As the excess metal concentration is increased the electronic density becomes

  1. The preparation and corrosion resistance of Ce and Nd modified anodic films on aluminum

    International Nuclear Information System (INIS)

    Li Qizheng; Tang Yuming; Zuo Yu

    2010-01-01

    Rare earth element Ce and Nd modified anodic films were prepared on aluminum surface by a relatively simple method: the aluminum samples were first immersed in Ni(NO 3 ) 2 solutions containing Ce or Nd salts at 90 deg. C, then were dried and anodized. The contents of Ce or Nd in the anodic films were from 0.5% to 0.9%, and about 4-5% Ni was also introduced in the films. The modified anodic films were more compact with much smaller pores and increased hardness. In neutral, acidic and basic NaCl solutions, the rare earth modified films showed obviously improved corrosion resistance. The Ce modified films showed better corrosion resistance than Nd modified films. The cracking resistance of the films under heating was also improved.

  2. Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution

    Science.gov (United States)

    Dhahri, S.; Fazio, E.; Barreca, F.; Neri, F.; Ezzaouia, H.

    2016-08-01

    Anodizing of aluminum is used for producing porous insulating films suitable for different applications in electronics and microelectronics. Porous-type aluminum films are most simply realized by galvanostatic anodizing in aqueous acidic solutions. The improvement in application of anodizing technique is associated with a substantial reduction of the anodizing voltage at appropriate current densities as well as to the possibility to carry out the synthesis process at room temperature in order to obtain a self-planarizing dielectric material incorporated in array of super-narrow metal lines. In this work, the anodizing of aluminum to obtain porous oxide was carried out, at room temperature, on three different substrates (glass, stainless steel and aluminum), using an oxalic acid-based electrolyte with the addition of a relatively low amount of 0.4 % of HF. Different surface morphologies, from nearly spherical to larger porous nanostructures with smooth edges, were observed by means of scanning electron microscopy. These evidences are explained by considering the formation, transport and adsorption of the fluorine species which react with the Al3+ ions. The behavior is also influenced by the nature of the original substrate.

  3. Analysis of alloys and salt solutions by 'beta'-ray back-scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bahadur, A; Maji, K D; Kumar, R [National Metallurgical Lab., Jamshedpur (India)

    1975-07-01

    This investigation reports the results of a study undertaken to assess the suitability of using the GM counter for measuring the intensity of ..beta..-backscattered radiation to determine the chemical composition of binary solid alloys, and aqueous salt solutions containing a metallic radical. The results indicate that the technique is not suitable for the determination of the composition of binary alloys since the error is in the range of 1.2 to 2.3 wt-% metal. The technique can be conveniently adapted for aqueous salt solutions where the maximum error is approximately 0.2 wt-% metal for metallic elements with atomic number greater than 20.

  4. Blending Of Radioactive Salt Solutions In Million Gallon Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2012-12-10

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

  5. Solubility of pllutonium in alkaline salt solutions

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Edwards, T.B.

    1993-01-01

    Plutonium solubility data from several studies have been evaluated. For each data set, a predictive model has been developed where appropriate. In addition, a statistical model and corresponding prediction intervals for plutonium solubility as a quadratic function of the hydroxide concentration have been developed. Because of the wide range of solution compositions, the solubility of plutonium can vary by as much as three orders of magnitude for any given hydroxide concentration and still remain within the prediction interval. Any nuclear safety assessments that depend on the maximum amount of plutonium dissolved in alkaline salt solutions should use concentrations at least as great as the upper prediction limits developed in this study. To increase the confidence in the prediction model, it is recommended that additional solubility tests be conducted at low hydroxide concentrations and with all of the other solution components involved. To validate the model for application to actual waste solutions, it is recommended that the plutonium solubilities in actual waste solutions be determined and compared to the values predicted by the quadratic model

  6. Seacoast stress corrosion cracking of aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  7. Aluminium silicate fertilization in the quality of wheat seeds under salt stress

    Directory of Open Access Journals (Sweden)

    César Iván Suárez Castellanos

    2015-06-01

    Full Text Available Wheat is used as raw material in the production of several foods and it is the first cereal as in the world production of grains. However, the agricultural production is limited for the salinity effect in about 50% of irrigated areas in the world. An alternative to reduce the salt stresses caused in the plants is the silicon use. The objective of this study was to evaluate the fertilizing effect with aluminum silicate using kaolin as a source, on seed quality of wheat produced under salt stress. The experiment was accomplished in greenhouse using wheat seeds of Quartzo cultivar sowed in pots of 10 L containing soil and maintained until harvest. The kaolin (77.9% SiO2 was applied in doses of 0 (control; 1,000; 2,000 and 3,000 kg ha-1. Salt stress was simulated through irrigation with NaCl solutions in the concentrations of 0 (control, 8 and 16 mM. Agronomic characteristics and the physiologic seed quality were evaluated. The results showed that the salt irrigation caused decrease in the number of ears per plant, number of ears with seeds, in the weight of the ears without threshing and in the weight of the produced seeds. The aluminum silicate use increased the weight of a thousand seeds independent of the presence of salt stress. Silicon application contributed to increase the percentage of germination of the produced seeds when the plants were not exposed to the salt stress.

  8. Regularities of radium coprecipitation with barium sulfate from salt solutions

    International Nuclear Information System (INIS)

    Kudryavskij, Yu.P.; Rakhimova, O.V.

    2007-01-01

    Coprecipitation of radium with barium sulfate from highly concentrated NaCl solutions is studied, including the effects of the initial solution composition, alkaline reagent (CaO, NaOH), supporting electrolyte (NaCl) concentration, and pH. The process is promoted by high NaCl concentration in the initial solution, which is due to structural transformation and change in the sorption activity of the BaSO 4 precipitate in salt solutions. The results obtained were applied to recovery of radium from process solutions during the development and introduction of improved procedure for disinfection and decontamination of waste yielded by chlorination of loparite concentrates [ru

  9. Behavior of gellan in aqueous-salt solutions and oilfield saline water

    Directory of Open Access Journals (Sweden)

    Zhanar Nurakhmetova

    2015-09-01

    Full Text Available The influence of storage time and temperature on the behavior of low acyl gellan (LAG was studied by viscometry and 1H NMR spectroscopy without salt addition. The viscometric results revealed that the effectiveness of salts to enhance gelation of gellan changes in the following order: BaСl2>CaCl2»MgCl2>KCl>NaCl. The sol-gel and liquid-solid phase transitions of gellan solutions were observed upon addition of oilfield water containing 73 g L-1 of alkaline and alkaline earth metal ions. The effectiveness of salts to induce the separation of liquid and solid phases changes in the sequence: NaCl>KCl>MgCl2»CaCl2»BaСl2. The hydrodynamic behavior of 0.5 wt.% gellan solution injected into the sand pack model with high (20 Darcy and lower (2 Darcy permeability is useful to model the oil reservoirs in the process of enhanced oil recovery.

  10. Synthetic salt cake standards for analytical laboratory quality control

    International Nuclear Information System (INIS)

    Schilling, A.E.; Miller, A.G.

    1980-01-01

    The validation of analytical results in the characterization of Hanford Nuclear Defense Waste requires the preparation of synthetic waste for standard reference materials. Two independent synthetic salt cake standards have been prepared to monitor laboratory quality control for the chemical characterization of high-level salt cake and sludge waste in support of Rockwell Hanford Operations' High-Level Waste Management Program. Each synthetic salt cake standard contains 15 characterized chemical species and was subjected to an extensive verification/characterization program in two phases. Phase I consisted of an initial verification of each analyte in salt cake form in order to determine the current analytical capability for chemical analysis. Phase II consisted of a final characterization of those chemical species in solution form where conflicting verification data were observed. The 95 percent confidence interval on the mean for the following analytes within each standard is provided: sodium, nitrate, nitrite, phosphate, carbonate, sulfate, hydroxide, chromate, chloride, fluoride, aluminum, plutonium-239/240, strontium-90, cesium-137, and water

  11. Cefuroxime axetil: A commercially available drug as corrosion inhibitor for aluminum in hydrochloric acid solution

    OpenAIRE

    Ameh, Paul O.; Sani, Umar M.

    2016-01-01

    Cefuroxime axetil (CA) a prodrug was tested as corrosion inhibitor for aluminum in hydrochloric acid solution using thermometric, gasometric weight loss and scanning electron microscope (SEM) techniques. Results obtained showed that this compound has a good inhibiting properties for aluminum corrosion in acidic medium, with inhibition efficiencies values reaching 89.87 % at 0.5 g / L . It was also found out that the results from weight loss method are highly consistent with those obtained by ...

  12. CO2 Capture from Flue gas using Amino acid salt solutions

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai

    to storage. Typical solvents for the process are based on aqueous solutions of alkanolamines, such as mono-ethanolamine (MEA), but their use implies economic disadvantages and environmental complications. Amino acid salt solutions have emerged as an alternative to the alkanolamines, partlybecause...... for measuring of CO2 solubility based on the semi-flow method. A validation study of CO2 solubility in aqueous solutions of MEA is presented. Chapter 5 focuses on the determination of the chemical compositions of the precipitations, which arise in the five amino acid salt solutions upon CO2 absorption...

  13. Amino acid salt solutions as solvents in CO2 capture from flue gas

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai; Thomsen, Kaj; Stenby, Erling Halfdan

    New solvents based on the salts of amino acids have emerged as an alternative to the alkanolamine solutions, for the chemical absorption of CO2 from flue gas. But only few studies on amino acids as CO2 capturing agents have been performed so far. One of the interesting features of amino acid salt...... solutions is their ability to form solid precipitates upon the absorption of CO2. The occurrence of crystallization offers the possibility of increasing the CO2 loading capacity of the solvent. However, precipitation can also have negative effect on the CO2 capture process. The chemical nature of the solid...... of glycine, taurine, and lysine, while in the case of proline, and glutamic acid, the precipitate was found to be bicarbonate. These results give an important contribution to further understanding the potential of amino acid salt solutions in CO2 capture from flue gas....

  14. The salting-out of molibdoferrats(II from aqueous solutions by the organic solvents

    Directory of Open Access Journals (Sweden)

    Mykola V. Nikolenko

    2016-12-01

    Full Text Available The aim of this work was to develop a method for producing of molybdoferrate(II precipitates by salting-out them from aqueous solutions by means of organic solvents. Dependence of the composition of molybdoferrate(II precipitates on the pH of the reaction solutions was studied. Experiments on salting-out of molybdoferrate(II with various organic solvents were carried out. As a result it was found that the best reagent for the molybdoferrate(II salting-out is acetone. By its use, lowest quantity of the ammonium sulfate impurities was obtained. It is also of importance that by using of acetone the process of regeneration by distillation of the reaction solutions is characterized by the lowest energy consumption. A functional relationship between the solubility of molybdoferrates(II and dielectric constant of the medium was established. By increasing the dielectric constant of the solvent solubility of molybdoferrates(II rapidly increases. The linearized dependence ln(lnS–ln(1/e was proposed to predict the solubility of molybdoferrates(II in various aqueous-organic solutions.

  15. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    International Nuclear Information System (INIS)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-01-01

    Graphical abstract: - Highlights: • Flaky aluminum pigments were modified with cerium nitrate salt. • pH value of 3.0 was chosen as the optimized pH for the cerium solution. • Corrosion resistance of the pigment significantly increased after modification. • Alkaline pre-treatment prior to modification affected the cerium layer performance. - Abstract: The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce 2 O 3 and CeO 2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  16. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Niroumandrad, S. [Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Rostami, M. [Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir [Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of)

    2015-12-01

    Graphical abstract: - Highlights: • Flaky aluminum pigments were modified with cerium nitrate salt. • pH value of 3.0 was chosen as the optimized pH for the cerium solution. • Corrosion resistance of the pigment significantly increased after modification. • Alkaline pre-treatment prior to modification affected the cerium layer performance. - Abstract: The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce{sub 2}O{sub 3} and CeO{sub 2} was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  17. Evaporation of a sessile water drop and a drop of aqueous salt solution.

    Science.gov (United States)

    Misyura, S Y

    2017-11-07

    The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.

  18. Cast iron deterioration with time in various aqueous salt solutions

    Indian Academy of Sciences (India)

    Unknown

    various aqueous salt solutions have been carried out using total immersion test ... circuit potential, Icorr, Tafel slopes, corrosion rate, have been calculated by standard methods. ..... Rao B V S 1980 in Maintenance for reliability (Bombay: Media.

  19. 21 CFR 864.2875 - Balanced salt solutions or formulations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Balanced salt solutions or formulations. 864.2875 Section 864.2875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2875...

  20. Plutonium and americium recovery from spent molten-salt-extraction salts with aluminum-magnesium alloys

    International Nuclear Information System (INIS)

    Cusick, M.J.; Sherwood, W.G.; Fitzpatrick, R.F.

    1984-01-01

    Development work was performed to determine the feasibility of removing plutonium and americium from spent molten-salt-extraction (MSE) salts using Al-Mg alloys. If the product buttons from this process are compatible with subsequent aqueous processing, the complex chloride-to-nitrate aqueous conversion step which is presently required for these salts may be eliminated. The optimum alloy composition used to treat spent 8 wt % MSE salts in the past yielded poor phase-disengagement characteristics when applied to 30 mol % salts. After a limited investigation of other alloy compositions in the Al-Mg-Pu-Am system, it was determined that the Al-Pu-Am system could yield a compatible alloy. In this system, experiments were performed to investigate the effects of plutonium loading in the alloy, excess magnesium, age of the spent salt on actinide recovery, phase disengagement, and button homogeneity. Experimental results indicate that 95 percent plutonium recoveries can be attained for fresh salts. Further development is required for backlog salts generated prior to 1981. A homogeneous product alloy, as required for aqueous processing, could not be produced

  1. Ageing behaviour of unary hydroxides in trivalent metal salt solutions

    Indian Academy of Sciences (India)

    LDH)-like phases on ageing in solutions of Al or Cr salts. This reaction is similar to acid leaching and proceeds by a dissolution–reprecipitation mechanism offering a simple method of LDH synthesis, with implications for the accepted theories of ...

  2. Anion bridges drive salting out of a simple amphiphile from aqueous solution

    International Nuclear Information System (INIS)

    Bowron, D.T.; Finney, J.L.

    2002-01-01

    Neutron diffraction with isotope substitution has been used to determine the structural changes that occur on the addition of a simple salting-out agent to a dilute aqueous alcohol solution. The striking results obtained demonstrate a relatively simple process occurs in which interamphiphile anionic salt bridges are formed between the polar groups of the alcohol molecules. These ion bridges drive an increase in the exposure of the alcohol molecule nonpolar surface to the solvent water and hence point the way to their eventual salting out by the hydrophobic effect

  3. Corrosion of carbon steel in saturated high-level waste salt solutions

    International Nuclear Information System (INIS)

    Wiersma, B.J.; Parish, W.R.

    1997-01-01

    High level waste stored as crystallized salts is to be removed from carbon steel tanks by water dissolution. Dissolution of the saltcake must be performed in a manner which will not impact the integrity of the tank. Corrosion testing was performed to determine the amount of corrosion inhibitor that must be added to the dissolution water in order to ensure that the salt solution formed would not induce corrosion degradation of the tank materials. The corrosion testing performed included controlled potential slow strain rate, coupon immersion, and potentiodynamic polarization tests. These tests were utilized to investigate the susceptibility of the cooling coil material to stress corrosion cracking in the anticipated environments. No evidence of SCC was observed in any of the tests. Based on these results, the recommended corrosion requirements were that the temperature of the salt solution be less than 50 degrees C and that the minimum hydroxide concentration be 0.4 molar. It was also recommended that the hydroxide concentration not stay below 0.4 molar for longer than 45 days

  4. The nonmetal-metal transition in solutions of metals in molten salts

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1997-04-01

    Solutions of metals in molten salts present a rich phenomenology: localization of electrons in disordered ionic media, activated electron transport increasing with metal concentration towards a nonmetal-metal (NM-M) transition, and liquid-liquid phase separation. A brief review of progress in the study of these systems is given in this article, with main focus on the NM-M transition. After recalling the known NM-M behaviour of the component elements in the case of expanded fluid alkali metals and mercury and of solid halogens under pressure, the article focuses on liquid metal - molten salt solutions and traces the different NM-M behaviours of the alkalis in their halides and of metals added to polyvalent metal halides. (author). 51 refs, 2 figs

  5. Method For Creating Corrosion Resistant Surface On An Aluminum Copper Alloy

    Science.gov (United States)

    Mansfeld, Florian B.; Wang, You; Lin, Simon H.

    1997-06-03

    A method for treating the surface of aluminum alloys hang a relatively high copper content is provided which includes the steps of removing substantially all of the copper from the surface, contacting the surface with a first solution containing cerium, electrically charging the surface while contacting the surface in an aqueous molybdate solution, and contacting the surface with a second solution containing cerium. The copper is substantially removed from the surface in the first step either by (i) contacting the surface with an acidic chromate solution or by (ii) contacting the surface with an acidic nitrate solution while subjecting the surface to an electric potential. The corrosion-resistant surface resulting from the invention is excellent, consistent and uniform throughout the surface. Surfaces treated by the invention may often be certified for use in salt-water services.

  6. Molten salt scrubbing of zirconium or hafnium tetrachloride

    International Nuclear Information System (INIS)

    Lee, E.D.; McLaughlin, D.F.

    1990-01-01

    This patent describes a continuous process for removing impurities of iron or aluminum chloride or both from vaporous zirconium or hafnium chloride or both. It comprises: introducing impure zirconium or hafnium chloride vapor or both into a middle portion of an absorbing column containing a molten salt phase, the molten salt phase absorbing the impurities of iron or aluminum chloride or both to produce chloride vapor stripped of zirconium or hafnium chloride; introducing sodium or potassium chloride or both into a top portion of the column; controlling the top portion of the column to between 300--375 degrees C.; heating a bottom portion of the column to 450--550 degrees C. To vaporize zirconium chloride or hafnium chloride or hafnium and zirconium chloride from the molten salt; withdrawing molten salt substantially free of zirconium and hafnium chloride from the bottom portion of the column; and withdrawing zirconium chloride or hafnium chloride or hafnium and zirconium chloride vapor substantially free of impurities of iron and aluminum chloride from the top of the column

  7. Protection by Thermal and Chemical Activation with Cerium Salts of the Alloy AA2017 in Aqueous Solutions of NaCl

    Science.gov (United States)

    Bethencourt, Manuel; Botana, Francisco Javier; Cano, María José; González-Rovira, Leandro; Marcos, Mariano; Sánchez-Amaya, José María

    2012-01-01

    A wide variety of anticorrosive treatments for aluminum alloys that can be employed as "green" alternatives to those based on Cr(VI) are currently under development. This article reports a study of the morphological and anticorrosive characteristics of surface layers formed on the Al-Cu alloy AA2017 by immersion treatment in baths of cerium salt, accelerated by increased temperature and the employment of hydrogen peroxide. Scanning electron microscopy (SEM)/X-ray energy dispersive spectroscopy (XEDS) studies of the samples treated have demonstrated the existence of a heterogeneous layer formed by a film of aluminum oxide/hydroxide on the matrix, and a series of dispersed islands of cerium over the cathodic intermetallics. The protective efficacy has been evaluated using electrochemical techniques, linear polarizations (LP) and electrochemical impedance spectroscopy (EIS), and salt spray tests. The results obtained indicate that the layer provided good resistance to corrosion in media with chlorides, and the method gives a considerable reduction of the time required for the immersion treatments.

  8. EFFECTS OF INORGANIC SALT SOLUTION ON SOME PROPERTIES OF COMPACTED CLAY LINERS

    Directory of Open Access Journals (Sweden)

    KHALID R. MAHMOOD AL-JANABI

    2017-12-01

    Full Text Available Processed and natural clays are widely used to create impermeable liners in solid waste disposal landfills. The engineering properties of clay liners can be significantly affected by the leachate from the waste mass. In this study, the effect of inorganic salt solutions will be investigated. These solutions used at different concentrations. Two type of inorganic salt MnSO4 and FeCl3 are used at different concentration 2%,5%, 10%. Clay used in this study was the CL- clay (kaolinite. The results show that the consistency limits and unconfined compressive strength increased as the concentration of salts increased. While the permeability tends to decrease as salt concentration increased. Also, the compression index decreases as the concentration increased from 2% to 5%. The swelling index tends to increase slightly as the concentration of MnSO4 increased, while its decrease as the concentration of FeCl3. In this paper, it is aimed to investigate the performance of compacted clay liner exposed to the certain chemicals generated by the leachate and their effects on the geotechnical properties of compacted clay liner such consistency limits, permeability coefficient, compressibility characteristics and unconfined compressive strength.

  9. Homemade sugar-salt solution for oral rehydration: knowledge of ...

    African Journals Online (AJOL)

    Up to 95% of these cases can be treated successfully with oral rehydration therapy. The aim of the study was to evaluate caregivers' knowledge of, attitudes to and use of homemade sugar and salt solution (SSS) in order to address the shortfalls. Differences between the knowledge, attitudes and practices in urban, rural and ...

  10. Flotation of copper-bearing shale in solutions of inorganic salts and organic reagents

    Directory of Open Access Journals (Sweden)

    Ratajczak Tomasz

    2017-01-01

    Full Text Available Flotation data on copper-bearing shale in aqueous solutions of inorganic electrolytes (NaCl, Na2SO4, KPF6, NH4Cl and organic reagents (ethylamine, propylamine as frothers were presented and discussed. The relationships between shale flotation, surface tension of aqueous solution and foam height during bubbling with air in the flotation system were presented. It has been found that flotation of shale in the presence of inorganic salts the yield was directly proportional to the surface tension of the aqueous solution of salt and inversely proportional to the height of the foam. On the other hand, for organic reagents solutions (short chain amines, a reverse effect has been observed in relation to the inorganic compounds studied, that is the yield of copper-bearing shale flotation and the foam height were inversely proportional to the surface tension of the amine solution.

  11. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Santa Coloma, P., E-mail: patricia.santacoloma@tecnalia.com [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J. [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Lapeña, N. [Boeing Research & Technology Europe, S.L.U., Avenida Sur del Aeropuerto de Barajas 38, Building 4 – 3rd Floor, E-28042 Madrid (Spain)

    2015-08-01

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  12. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    International Nuclear Information System (INIS)

    Santa Coloma, P.; Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J.; Lapeña, N.

    2015-01-01

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  13. Heated Aluminum Tanks Resist Corrosion

    Science.gov (United States)

    Johnson, L. E.

    1983-01-01

    Simple expedient of heating foam-insulated aluminum alloy tanks prevents corrosion by salt-laden moisture. Relatively-small temperature difference between such tank and surrounding air will ensure life of tank is extended by many years.

  14. Conductometric investigation of salt-free solutions of polyriboguanylic acid

    International Nuclear Information System (INIS)

    Kozlov, A.G.; Davydova, O.V.; Kargov, S.I.

    1993-01-01

    Salt-free solutions of various ionic forms of polyriboguanylic acid (poly(G)) were studied by the methods of conductometry and spectroscopy of annular dichroism. The Manning approach was employed to calculate transport characteristics and structural parameters of poly(G) on the basis of spectra permit putting poly(G) salts in two groups: the first one comprising NH 4 + -, Rb + -, K + -, Na + -, the second one - Cs + -, and Li + -poly(G). The assumption is made that Li + and Cs + ions, bound with concrete groups of polyanion in a specific way, can promote formation of a stable structure different from the one observed in the presence of the first group counterions. 25 refs., 3 figs

  15. Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002

    International Nuclear Information System (INIS)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2013-01-01

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

  16. Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R. [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)

    2013-07-01

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

  17. Lithium-aluminum-magnesium electrode composition

    Science.gov (United States)

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  18. Electrometallurgical treatment of aluminum-based fuels

    International Nuclear Information System (INIS)

    Willit, J. L.

    1998-01-01

    We have successfully demonstrated aluminum electrorefining from a U-Al-Si alloy that simulates spent aluminum-based reactor fuel. The aluminum product contains less than 200 ppm uranium. All the results obtained have been in agreement with predictions based on equilibrium thermodynamics. We have also demonstrated the need for adequate stirring to achieve a low-uranium product. Most of the other process steps have been demonstrated in other programs. These include uranium electrorefining, transuranic fission product scrubbing, fission product oxidation, and product consolidation by melting. Future work will focus on the extraction of active metal and rare earth fission products by a molten flux salt and scale-up of the aluminum electrorefining

  19. Adaptive resolution simulation of an atomistic DNA molecule in MARTINI salt solution

    NARCIS (Netherlands)

    Zavadlav, J.; Podgornik, R.; Melo, M.n.; Marrink, S.j.; Praprotnik, M.

    2016-01-01

    We present a dual-resolution model of a deoxyribonucleic acid (DNA) molecule in a bathing solution, where we concurrently couple atomistic bundled water and ions with the coarse-grained MAR- TINI model of the solvent. We use our fine-grained salt solution model as a solvent in the inner shell

  20. Phase Transformations of α-Alumina Made from Waste Aluminum via a Precipitation Technique

    Directory of Open Access Journals (Sweden)

    Khamirul Amin Matori

    2012-12-01

    Full Text Available We report on a recycling project in which α-Al2O3 was produced from aluminum cans because no such work has been reported in literature. Heated aluminum cans were mixed with 8.0 M of H2SO4 solution to form an Al2(SO43 solution. The Al2(SO43 salt was contained in a white semi-liquid solution with excess H2SO4; some unreacted aluminum pieces were also present. The solution was filtered and mixed with ethanol in a ratio of 2:3, to form a white solid of Al2(SO43·18H2O. The Al2(SO43·18H2O was calcined in an electrical furnace for 3 h at temperatures of 400–1400 °C. The heating and cooling rates were 10 °C /min. XRD was used to investigate the phase changes at different temperatures and XRF was used to determine the elemental composition in the alumina produced. A series of different alumina compositions, made by repeated dehydration and desulfonation of the Al2(SO43·18H2O, is reported. All transitional alumina phases produced at low temperatures were converted to α-Al2O3 at high temperatures. The X-ray diffraction results indicated that the α-Al2O3 phase was realized when the calcination temperature was at 1200 °C or higher.

  1. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    Science.gov (United States)

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-05-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts () bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  2. Standard Methods of Analysis of Sulfochromate Etch Solution Used in Surface Preparation of Aluminum

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2012-01-01

    1.1 These methods offer a means for controlling the effectiveness of the etchant which is normally used for preparing the surface of aluminum alloys for subsequent adhesive bonding. As the etchant reacts with the aluminum, hexavalent chromium is converted to trivalent chromium; a measure of the two and the difference can be used to determine the amount of dichromate used. 1.2 The sulfochromate solution can be replenished by restoring the sodium dichromate and the sulfuric acid to the original formulation levels. The lower limit of usefulness will vary depending upon solution storage, adhesives used, critical nature of bond capability, variety of metals processed, etc. and should be determined. Replenishment will be limited to the number of times the chemical ingredients can be restored and maintained to the required levels and should be determined by the user. Sludge collecting in the bottom of a tank should be minimized by periodic removal of sludge. For some applications, the hexavalent chromium should not ...

  3. Adaptive resolution simulation of salt solutions

    International Nuclear Information System (INIS)

    Bevc, Staš; Praprotnik, Matej; Junghans, Christoph; Kremer, Kurt

    2013-01-01

    We present an adaptive resolution simulation of aqueous salt (NaCl) solutions at ambient conditions using the adaptive resolution scheme. Our multiscale approach concurrently couples the atomistic and coarse-grained models of the aqueous NaCl, where water molecules and ions change their resolution while moving from one resolution domain to the other. We employ standard extended simple point charge (SPC/E) and simple point charge (SPC) water models in combination with AMBER and GROMOS force fields for ion interactions in the atomistic domain. Electrostatics in our model are described by the generalized reaction field method. The effective interactions for water–water and water–ion interactions in the coarse-grained model are derived using structure-based coarse-graining approach while the Coulomb interactions between ions are appropriately screened. To ensure an even distribution of water molecules and ions across the simulation box we employ thermodynamic forces. We demonstrate that the equilibrium structural, e.g. radial distribution functions and density distributions of all the species, and dynamical properties are correctly reproduced by our adaptive resolution method. Our multiscale approach, which is general and can be used for any classical non-polarizable force-field and/or types of ions, will significantly speed up biomolecular simulation involving aqueous salt. (paper)

  4. Preparation of Highly Pure Vanadyl Sulfate from Sulfate Solutions Containing Impurities of Iron and Aluminum by Solvent Extraction Using EHEHPA

    Directory of Open Access Journals (Sweden)

    Dan Li

    2017-03-01

    Full Text Available The preparation of highly pure vanadyl sulfate from sulfate solutions containing impurities of iron and aluminumwas investigated by solvent extraction with 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (EHEHPA and tri-n-butyl phosphate (TBP as the phase modifier. The extraction and stripping conditions of vanadium (IV and its separation from iron and aluminum were optimized. Under the optimal extraction conditions, the extraction of vanadium (IV and iron were 68% and 53%, respectively, while only 2% aluminum was extracted in a single contact, suggesting good separation of vanadium (IV from aluminum. Sulfuric acid solution was used for the stripping. Nearly 100% vanadium (IV and 95% aluminum were stripped, while only 10% iron was stripped under the optimal stripping conditions in a single contact, suggesting good separation of vanadium (IV from iron. After five stages of extraction and stripping, highly pure vanadyl sulfate containing 76.5 g/L V (IV with the impurities of 12 mg/L Fe and 10 mg/L Al was obtained, which is suitable for the electrolyte of a vanadium redox flow battery. Organic solution was well regenerated after stripping by oxalic acid solution to remove the remaining iron. The mechanism of vanadium (IV extraction using EHEHPA was also discussed based on the Fourier transform infrared spectroscopy (FT-IR analysis.

  5. Mössbauer spectroscopic studies of frozen aqueous solutions of Fe3+ salts

    DEFF Research Database (Denmark)

    Mørup, Steen; Knudsen, J. E.; Nielsen, M. K.

    1976-01-01

    Frozen aqueous solutions (FAS) of Fe3+ salts have been investigated by use of Mössbauer spectroscopy in order to study the conditions for formation of glasses. A general discussion of spin–spin relaxation in glasses is given, and we discuss how changes in the spin–spin relaxation time can...... be attributed to changes in the average separation between the iron ions. In the FeCl3–H2O system, it was found that homogeneous glasses are easily formed when the salt concentration is larger than 3.5 moles FeCl3 per 100 moles H2O. In more dilute samples, ice crystallizes during cooling, while the salt...

  6. Thermodynamic Analysis for the Refining Ability of Salt Flux for Aluminum Recycling

    Directory of Open Access Journals (Sweden)

    Takehito Hiraki

    2014-07-01

    Full Text Available The removability of impurities during the aluminum remelting process by oxidation was previously investigated by our research group. In the present work, alternative impurity removal with chlorination has been evaluated by thermodynamic analysis. For 43 different elements, equilibrium distribution ratios among metal, chloride flux and oxide slag phases in the aluminum remelting process were calculated by assuming the binary systems of aluminum and an impurity element. It was found that the removability of impurities isn’t significantly affected by process parameters such as chloride partial pressure, temperature and flux composition. It was shown that Ho, Dy, Li, La, Mg, Gd, Ce, Yb, Ca and Sr can be potentially eliminated into flux by chlorination from the remelted aluminum. Chlorination and oxidation are not effective to remove other impurities from the melting aluminum, due to the limited parameters which can be controlled during the remelting process. It follows that a proper management of aluminum scrap such as sorting based on the composition of the products is important for sustainable aluminum recycling.

  7. Extraction of lithium from neutral salt solutions with fluorinated. beta. -diketones

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, F.G.; Baldwin, W.H.

    1976-01-01

    Lithium was selectively extracted from near-neutral aqueous solutions of alkali metal salts. The mechanism by which this was achieved involves the formation of the trioctylphosphine oxide adduct of a lithium chelate of a fluorinated ..beta..-diketone, which is then readily extractable into an organic diluent. High separation factors were obtained from sodium, potassium, rubidium, and cesium. The selectivity of the fluorinated ..beta..-diketones for lithium over the alkaline earths was found to be poor. A suggested general flowsheet for the recovery of lithium from a salt brine concentrate is included.

  8. Extraction of lithium from neutral salt solutions with fluorinated β-diketones

    International Nuclear Information System (INIS)

    Seeley, F.G.; Baldwin, W.H.

    1976-01-01

    Lithium was selectively extracted from near-neutral aqueous solutions of alkali metal salts. The mechanism by which this was achieved involves the formation of the trioctylphosphine oxide adduct of a lithium chelate of a fluorinated β-diketone, which is then readily extractable into an organic diluent. High separation factors were obtained from sodium, potassium, rubidium, and cesium. The selectivity of the fluorinated β-diketones for lithium over the alkaline earths was found to be poor. A suggested general flowsheet for the recovery of lithium from a salt brine concentrate is included. (author)

  9. Influence of complexing on physicochemical properties of polymer-salt solutions. Vliyanie kompleksoobrazovaniya na fiziko-khimicheskie svojstva polimerno-solevykh rastvorov

    Energy Technology Data Exchange (ETDEWEB)

    Ostroushko, A A; Yushkova, S M; Koridze, N V; Skobkoreva, N V; Zhuravleva, L I; Palitskaya, T A; Antropova, S V; Ostroushko, I P [Ural' skij Gosudarstvennyj Univ., Sverdlovsk (Russian Federation) AN SSSR, Moscow (Russian Federation). Inst. Obshchej i Neorganicheskoj Khimii

    1993-06-01

    Using the methods of spectrophotometry, viscosimetry, conductometry the influence of salt-polymer complexing processes on physicochemical prperties of aqueous solutions of yttrium, barium, copper nitrates and formates with polyvinyl alcohol was studied. Change of dynamic viscosity, specific electric conductivity of solutions in the process of complexing was shown. Thermal effects of salt-polymer interaction were measured. It is shown that decrease of transition temperature of polymer to plastic state in films, temperature and effective activation energy of salt decomposition is also connected with complexing. Effective values of surface tension on the boundary with air are measured. Coefficients of cation diffusion in polymer-salt solutions are estimated.

  10. Spectroscopic Characterization of HAN-Based Liquid Gun Propellants and Nitrate Salt Solutions

    Science.gov (United States)

    1989-01-15

    spectra were recorded of bubbles of a concentrated aqueous nitrate solution, mineral oil, and an aqueous surfactant solution. Polymethacrylic acid ...FTIR spectra of droplets of a concentrated aqueous nitrate salt based solution (LGP1845), of solid particles cf polymethacrylic acid packing IO, 3... polymethacrylic acid low density packing foam cut to a 3x4 mnn rectangle was levitated with a low acoustic power. The sample was easily I positioned in the

  11. Investigation of complexing in solutions of salt mixture In(NO3)3-NaVO3

    International Nuclear Information System (INIS)

    Nakhodnova, A.N.; Listratenko, I.V.

    1987-01-01

    Spectrophotometry, conductometry and pH-metry are used to investigate properties and composition of the solid phases of isomolar series of In(NO 3 ) 3 -NaVO 3 salt mixture solutions and series of solutions having constant concentration of one of the components and varied of the other. Results of investigation are presented. It is stated that in the investigated solution series in weakly acid media HPA with the ratios [In 3+ ]:[V 5+ ] being equal to 11:1, 6:1, and 1:9, are formed. Composition of the complexes is mainly defined by the ratio of the components in In(NO 3 ) 3 and NaVO 3 salt mixture solutions and the medium acidity. Compounds of Na 2 OxIn 2 O 3 x2.5V 2 O 5 x8.5H 2 O and Cs 2 OxIn 2 O 3 x6V 2 O 5 x6.5H 2 O empirical formulae are separated. Results of IR spectroscopy, derivatography and X-ray phase analysis of the corresponding salts are presented

  12. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  13. Small Column Ion Exchange Analysis for Removal of Cesium from SRS Low Curie Salt Solutions Using Crystalline Silicotitanate (CST) Resin

    International Nuclear Information System (INIS)

    ALEMAN, SEBASTIAN

    2004-01-01

    Savannah River Technology Center (SRTC) researchers modeled ion exchange removal of cesium from dissolved salt waste solutions. The results assist in evaluating proposed configurations for an ion exchange process to remove residual cesium from low curie waste streams. A process for polishing (i.e., removing small amounts) of cesium may prove useful should supernate draining fail to meet the Low Curie Salt (LCS) target limit of 0.1 Ci of Cs-137 per gallon of salt solution. Cesium loading isotherms and column breakthrough curves for Low Curie dissolved salt solutions were computed to provide performance predictions for various column designs

  14. Thickening agent for flood water in secondary recovery of oil and for other aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Roth, H H

    1966-04-14

    Alkenyl-aromatic polymer sulfonates are good thickeners for some aqueous solutions, but addition of salts to such solutions reduces the desirable viscosity. High-molecular, water-soluble alkenyl-aromatic polymers which carry sulfonic acid or sulfonate groups substituted at the aromatic nuclei yield thickened solutions (e.g., for waterflooding) which are not influenced by the presence of water-soluble salts. Such polymers are derivatives of polyvinyltoluene, alone or in combination with about 5% acrylonitrile. It was also found that such thickening agents are less adsorbed on the rock matrix in a waterflood formation. (1 claim)

  15. ELECTRODIALYSIS IN THE CONVERSION STEP OF THE CONCENTRATED SALT SOLUTIONS IN THE PROCESS OF BATTERY SCRAP

    Directory of Open Access Journals (Sweden)

    S. I. Niftaliev

    2014-01-01

    Full Text Available Summary. The concentrated sodium sulfate solution is formed during the processing of waste battery scrap. A promising way to further treatment of the concentrated salt solution could be the conversion of these salts into acid and bases by electrodialysis, that can be reused in the same technical process cycle. For carrying out the process of conversion of salts into the corresponding acid and base several cells schemes with different combinations of cation, anion and bipolar membranes are used. At this article a comparative analysis of these cells is carried out. In the cells there were used the membranes МC-40, МА-41 and МB-2I. Acid and base solutions with higher concentration may be obtained during the process of electrodialysis in the circulation mode, when a predetermined amount of salt in the closed loop is run through a set of membranes to obtain the desired concentration of the product. The disadvantages of this method are the high cost of buffer tanks and the need to work with small volumes of treated solutions. In industrial applications it is advisable to use continuous electrodialysis with bipolar membranes, since this configuration allows to increase the number of repeating sections, which is necessary to reduce the energy costs. The increase of the removal rate of salts can be achieved by increasing the process steps, and to produce a more concentrated products after the conversion step can be applied electrodialysis-concentrator or evaporator.

  16. Solid solutions of platinum(II) and palladium(II) oxalato-complex salt as precursors of nanoalloys

    Science.gov (United States)

    Zadesenets, A. V.; Asanova, T. I.; Vikulova, E. S.; Filatov, E. Yu.; Plyusnin, P. E.; Baidina, I. A.; Asanov, I. P.; Korenev, S. V.

    2013-03-01

    A solid solution of platinum (II) and palladium (II) oxalato-complex salt, (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O, has been synthesized and studied as a precursor for preparing bimetallic PtPd nanoparticles through its thermal decomposition. The smallest homogenous bimetallic PtPd nanoparticles were found to form in hydrogen and helium atmospheres. The annealing temperature and time have low effect on the bimetallic particles size. Comparative analysis of structural and thermal properties of the solid solution and individual Pt, Pd oxalato-complex salts was performed to investigate a mechanism of thermal decomposition of (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O. Based on in situ X-ray photoemission spectroscopy investigation it was proposed a mechanism of formation of bimetallic PtPd nanoparticles from the solid-solution oxalato-complex salt during thermal decomposition.

  17. Effects of aluminum and manganese on the growth of ectomycorrhizal fungi.

    Science.gov (United States)

    Thompson, G W; Medve, R J

    1984-09-01

    Cenococcum graniforme, Suillus luteus, Thelephora terrestris, and three isolates of Pisolithus tinctorius were cultured on modified Melin-Norkrans medium at pH 3.4 and adjusted to 0 to 500 ppm (0 to 500 mug/ml) of aluminum or manganese sulfate. Except for T. terrestris, which was intolerant of aluminum at 150 and 250 to 500 ppm, and P. tinctorius isolate 250, which was intolerant of aluminum at 450 ppm, all fungi showed some growth at all concentrations of aluminum. S. luteus was the most tolerant to aluminum. Manganese was less fungitoxic than aluminum, with all fungi showing at least 65% growth at 500 ppm as compared with the control. C. graniforme was not inhibited at any concentration of manganese, and S. luteus was only affected at 500 ppm. P. tinctorius isolate 230 showed no significant variation in growth when subjected to various concentrations of three forms of manganese salts. Significant differences in growth were detected in response to three aluminum salts, but no detectable pattern was apparent. Genotypic responses to aluminum and manganese were evident for P. tinctorius. Isolates 210 and 230 were more tolerant to manganese than was isolate 250. Aluminum tolerance was in the order of isolate 230 > 210 > 250. Results of in vitro studies concerning tolerance responses of ectomycorrhizal fungi to aluminum and manganese were not consistent with field observations of the successional sequence of these fungi on acid coal spoils.

  18. Effects of aluminum and manganese on the growth of ectomycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.W.; Medve, R.J.

    1984-09-01

    Cenococcum graniforme, Suillus luteus, Thelephora terrestris, and three isolates of Pisolithus tinctorius were cultured on modified Melin-Norkrans medium at pH 3.4 and adjusted to 0 to 500 ppm (0 to 500 ..mu..g/ml) of aluminum or manganese sulfate. Except for T. terrestris, which was intolerant of aluminum at 150 and 250 to 500 ppm, and P. tinctorius isolate 250, which was intolerant of aluminum at 450 ppm, all fungi showed some growth at all concentrations of aluminum. S. luteus was the most tolerant to aluminum. Manganese was less fungitoxic than aluminum, with all fungi showing at least 65% growth at 500 ppm as compared with the control. C graniforme was not inhibited at any concentration of manganese, and S. luteus was only affected at 500 ppm. P. tinctorius isolate 230 showed no significant variation in growth when subjected to various concentrations of three forms of manganese salts. Significant differences in growth were detected in response to three aluminum salts, but no detectable pattern was apparent. Genotypic responses to aluminum and manganese were evident for P. tinctorius. Isolates 210 and 230 were more tolerant to manganese than was isolate 250. Aluminum tolerance was in the order of isolate 230 > 210 > 250. Results of in vitro studies concerning tolerance responses of ectomycorrhizal fungi to aluminum and manganese were not consistent with field observations of the successional sequence of these fungi on acid coal spoils. 43 references, 3 tables.

  19. Studying the Super-cooled Solid Solution Breakdown of V-1341 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Yu. A. Puchkov

    2017-01-01

    Full Text Available Deformable alloys of the Al-Mg-Si system are widely used in aviation industry, rocket engineering, shipbuilding, as well as on railway and highway transport. These alloys are characterized by high stamping ability, weld-ability, and machinability with a comparatively high strength and corrosion resistance in a heat-strengthened state. A promising alloy of the Al-Mg-Si system with increased structural strength and manufacturability is on par with foreign analogues in properties is the V-1341 alloy [1, 2].The properties of heat-treatable aluminum alloys strongly depend on the cooling rate of the product during quenching [3-12], which determines the structure and level of residual stresses. Decrease in structural strength, tendency to pitting and inter-crystalline corrosion with slow cooling from the quenching temperature is caused by formation of coarse unequiaxed precipitate, precipitates-free zones, and also by decreasing proportion of inclusions of the strengthening phase [3-12].Thus, the relevant task is to study the effect of isothermal quenching modes on the structure of deformable V-1341 aluminum alloy thermally hardened.The paper studies the impact of isothermal time in quenching on the composition and morphology of breakdown products of the V-1341 alloy solid solution. It is shown that at isothermal time under the solid solution breakdown, at first on the dispersoid surface and then in the solid solution are formed and grow large needle-like crystals of the β'-phase which are structural concentrators of stresses. An increasing isothermal time leads to decreasing solid solution super-saturation by doping elements and vacancies. This leads to a decrease in the fraction of the coherent finely dispersed hardening β '' phase, and also to an increase in the width of the precipitates-free zone.

  20. Ion clustering in aqueous salt solutions near the liquid/vapor interface

    Directory of Open Access Journals (Sweden)

    J.D. Smith

    2016-03-01

    Full Text Available Molecular dynamics simulations of aqueous NaCl, KCl, NaI, and KI solutions are used to study the effects of salts on the properties of the liquid/vapor interface. The simulations use the models which include both charge transfer and polarization effects. Pairing and the formation of larger ion clusters occurs both in the bulk and surface region, with a decreased tendency to form larger clusters near the interface. An analysis of the roughness of the surface reveals that the chloride salts, which have less tendency to be near the surface, have a roughness that is less than pure water, while the iodide salts, which have a greater surface affinity, have a larger roughness. This suggests that ions away from the surface and ions near the surface affect the interface in opposite ways.

  1. Electrochemical treatment of Orange II dye solution-Use of aluminum sacrificial electrodes and floc characterization

    International Nuclear Information System (INIS)

    Mollah, M. Yousuf A.; Gomes, Jewel A.G.; Das, Kamol K.; Cocke, David L.

    2010-01-01

    Electrocoagulation (EC) of Orange II dye in a flow through cell with aluminum as sacrificial electrodes was carried out under varying conditions of dye concentration, current density, flow rate, conductivity, and the initial pH of the solution in order to optimize the operating parameters for maximum benefits. Maximum removal efficiency of 94.5% was obtained at the following conditions: dye concentration = 10 ppm, current density = 160 A/m 2 , initial pH 6.5, conductance = 7.1 mS/cm, flow rate = 350 mL/min, and concentration of added NaCl = 4.0 g/L of dye solution. The EC-floc was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy, and powder X-ray diffraction techniques. The removal mechanism has been proposed that is in compliance with the Pourbaix diagram, solubility curve of aluminum oxides/hydroxides, and physico-chemical properties of the EC-floc.

  2. Electrochemical treatment of Orange II dye solution-Use of aluminum sacrificial electrodes and floc characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mollah, M. Yousuf A. [Department of Chemistry, University of Dhaka, Dhaka-1000 (Bangladesh); Gomes, Jewel A.G., E-mail: jewel.gomes@lamar.edu [Dan F. Smith Department of Chemical Engineering, Lamar University, P.O. Box 10053, Beaumont, TX 77710 (United States); Das, Kamol K.; Cocke, David L. [Gill Chair of Chemical Engineering, Lamar University, P.O. Box 10053, Beaumont, TX 77710 (United States)

    2010-02-15

    Electrocoagulation (EC) of Orange II dye in a flow through cell with aluminum as sacrificial electrodes was carried out under varying conditions of dye concentration, current density, flow rate, conductivity, and the initial pH of the solution in order to optimize the operating parameters for maximum benefits. Maximum removal efficiency of 94.5% was obtained at the following conditions: dye concentration = 10 ppm, current density = 160 A/m{sup 2}, initial pH 6.5, conductance = 7.1 mS/cm, flow rate = 350 mL/min, and concentration of added NaCl = 4.0 g/L of dye solution. The EC-floc was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy, and powder X-ray diffraction techniques. The removal mechanism has been proposed that is in compliance with the Pourbaix diagram, solubility curve of aluminum oxides/hydroxides, and physico-chemical properties of the EC-floc.

  3. The effectiveness of sodium hydroxide (NaOH) and sodium carbonate (Na2CO3) on the impurities removal of saturated salt solution

    Science.gov (United States)

    Pujiastuti, C.; Ngatilah, Y.; Sumada, K.; Muljani, S.

    2018-01-01

    Increasing the quality of salt can be done through various methods such as washing (hydro-extraction), re-crystallization, ion exchange methods and others. In the process of salt quality improvement by re-crystallization method where salt product diluted with water to form saturated solution and re-crystallized through heating process. The quality of the salt produced is influenced by the quality of the dissolved salt and the crystallization mechanism applied. In this research is proposed a concept that before the saturated salt solution is recrystallized added a chemical for removal of the impurities such as magnesium ion (Mg), calcium (Ca), potassium (K) and sulfate (SO4) is contained in a saturated salt solution. The chemical reagents that used are sodium hydroxide (NaOH) 2 N and sodium carbonate (Na2CO3) 2 N. This research aims to study effectiveness of sodium hydroxide and sodium carbonate on the impurities removal of magnesium (Mg), calcium (Ca), potassium (K) and sulfate (SO4). The results showed that the addition of sodium hydroxide solution can be decreased the impurity ions of magnesium (Mg) 95.2%, calcium ion (Ca) 45%, while the addition of sodium carbonate solution can decreased magnesium ion (Mg) 66.67% and calcium ion (Ca) 77.5%, but both types of materials are not degradable sulfate ions (SO4). The sodium hydroxide solution more effective to decrease magnesium ion than sodium carbonate solution, and the sodium carbonate solution more effective to decrease calcium ion than sodium hydroxide solution.

  4. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    Science.gov (United States)

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-03

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.

  5. [Analysis of tartrazine aluminum lake and sunset yellow aluminum lake in foods by capillary zone electrophoresis].

    Science.gov (United States)

    Zhang, Yiding; Chang, Cuilan; Guo, Qilei; Cao, Hong; Bai, Yu; Liu, Huwei

    2014-04-01

    A novel analytical method for tartrazine aluminum lake and sunset yellow aluminum lake using capillary zone electrophoresis (CZE) was studied. The pigments contained in the color lakes were successfully separated from the aluminum matrix in the pre-treatment process, which included the following steps: dissolve the color lakes in 0.1 mol/L H2SO4, adjust the pH of the solution to 5.0, then mix it with the solution of EDTA x 2Na and heat it in a water bath, then use polyamide powder as the stationary phase of solid phase extraction to separate the pigments from the solution, and finally elute the pigments with 0.1 mol/L NaOH. The CZE conditions systematically optimized for tartrazine aluminum lake were: 48.50 cm of a fused silica capillary with 40.00 cm effective length and 50 microm i. d., the temperature controlled at 20.0 degrees C, 29.0 kV applied, HPO4(2-)-PO4(3-) (0.015 mol/L, pH 11.45) solution as running buffer, detection at 263 nm. The conditions for sunset yellow aluminum lake were: the same capillary and temperature, 25.0 kV applied, HPO4(2-)-PO4(3-) (0.025 mol/L, pH 11.45) solution as running buffer, detection at 240 nm. The limits of detection were 0.26 mg/L and 0.27 mg/L, and the linear ranges were 0.53-1.3 x 10(2) mg/L and 0.54-1.4 x 10(2) mg/L for tartrazine aluminum lake and sunset yellow aluminum lake, respectively. The RSDs were 4.3% and 5.7% (run to run, n = 6), 5.6% and 6.0% (day to day, n = 6) for tartrazine aluminum lake and sunset yellow aluminum lake, respectively. Further developments for this method could make it a routinely used method analyzing color lakes in foods.

  6. Characterization of Laboratory Prepared Concrete Pastes Exposed to High Alkaline and High Sodium Salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-30

    The objective of this study was to identify potential chemical degradation mechanisms for the Saltstone Disposal Unit (SDU) concretes, which over the performance life of the structures may be exposed to highly alkaline sodium salt solutions containing sulfate, hydroxide, and other potentially corrosive chemicals in salt solution and saltstone flush water, drain water, leachate and / or pore solution. The samples analyzed in this study were cement pastes prepared in the SIMCO Technologies, Inc. concrete laboratory. They were based on the paste fractions of the concretes used to construct the Saltstone Disposal Units (SDUs). SDU 1 and 4 concrete pastes were represented by the PV1 test specimens. The paste in the SDU 2, 3, 5, and 6 concrete was represented by the PV2 test specimens. SIMCO Technologies, Inc. selected the chemicals and proportions in the aggressive solutions to approximate proportions in the saltstone pore solution [2, 3, 5, and 6]. These test specimens were cured for 56 days in curing chamber before being immersed in aggressive solutions. After exposure, the samples were frozen to prevent additional chemical transport and reaction. Selected archived (retrieved from the freezer) samples were sent to the Savannah River National Laboratory (SRNL) for additional characterization using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. Characterization results are summarized in this report. In addition, a correlation between the oxide composition of the pastes and their chemical durability in the alkaline salt solutions is provided.

  7. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    Science.gov (United States)

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  8. Phosphorus removal from aqueous solution in parent and aluminum-modified eggshells: thermodynamics and kinetics, adsorption mechanism, and diffusion process.

    Science.gov (United States)

    Guo, Ziyan; Li, Jiuhai; Guo, Zhaobing; Guo, Qingjun; Zhu, Bin

    2017-06-01

    Parent and aluminum-modified eggshells were prepared and characterized with X-ray diffraction, specific surface area measurements, infrared spectroscopy, zeta potential, and scanning electron microscope, respectively. Besides, phosphorus adsorptions in these two eggshells at different temperatures and solution pH were carried out to study adsorption thermodynamics and kinetics as well as the mechanisms of phosphorus adsorption and diffusion. The results indicated that high temperature was favorable for phosphorus adsorption in parent and aluminum-modified eggshells. Alkaline solution prompted phosphorus adsorption in parent eggshell, while the maximum adsorption amount was achievable at pH 4 in aluminum-modified eggshell. Adsorption isotherms of phosphorus in these eggshells could be well described by Langmuir and Freundlich models. Phosphorus adsorption amounts in aluminum-modified eggshell were markedly higher compared to those in parent eggshell. Adsorption heat indicated that phosphorus adsorption in parent eggshell was a typically physical adsorption process, while chemical adsorption mechanism of ion exchange between phosphorus and hydroxyl groups on the surface of eggshells was dominated in aluminum-modified eggshell. The time-resolved uptake curves showed phosphorus adsorption in aluminum-modified eggshell was significantly faster than that in parent eggshell. Moreover, there existed two clear steps in time-resolved uptake curves of phosphorus in parent eggshell. Based on pseudo-second order kinetic model and intraparticle diffusion model, we inferred more than one process affected phosphorus adsorption. The first process was the diffusion of phosphorus through water to external surface and the opening of pore channel in the eggshells, and the second process was mainly related to intraparticle diffusion.

  9. Length scale dependence of the dynamic properties of hyaluronic acid solutions in the presence of salt.

    Science.gov (United States)

    Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik

    2010-12-02

    In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D(NSE) measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D(DLS). This behavior contrasts with neutral polymer solutions. With increasing salt content, D(DLS) approaches D(NSE), which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hückel length.

  10. Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration

    Directory of Open Access Journals (Sweden)

    Jefferson Luiz de Aguiar Paes

    2014-10-01

    Full Text Available Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.

  11. Corrosion Resistance Properties of Aluminum Coating Applied by Arc Thermal Metal Spray in SAE J2334 Solution with Exposure Periods

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-03-01

    Full Text Available Arc thermal metal spray coating provides excellent corrosion, erosion and wear resistance to steel substrates. This paper incorporates some results of aluminum coating applied by this method on plain carbon steel. Thereafter, coated panels were exposed to an environment known to form stable corrosion products with aluminum. The coated panels were immersed in Society of Automotive Engineers (SAE J2334 for different periods of time. This solution consists of an aqueous solution of NaCl, CaCl2 and NaHCO3. Various electrochemical techniques, i.e., corrosion potential-time, electrochemical impedance spectroscopy (EIS and the potentiodynamic were used to determine the performance of stimulants in improving the properties of the coating. EIS studies revealed the kinetics and mechanism of corrosion and potentiodynamic attributed the formation of a passive film, which stifles the penetration of aggressive ions towards the substrate. The corrosion products that formed on the coating surface, identified using Raman spectroscopy, were Dawsonite (NaAlCO3(OH2 and Al(OH3. These compounds of aluminum are very sparingly soluble in aqueous solution and protect the substrate from pitting and uniform corrosion. The morphology and composition of corrosion products determined by scanning electron microscopy and energy dispersive X-ray analyses indicated that the environment plays a decisive role in improving the corrosion resistance of aluminum coating.

  12. Effect of salt solutions on the radiosensitivity of mammalian cells as a function of the state of adhesion and the water structure

    Energy Technology Data Exchange (ETDEWEB)

    Moggach, P G; Lepock, J R; Kruuv, J [Waterloo Univ., Ontario (Canada). Dept. of Physics

    1979-11-01

    The radiation isodose survival curve of attached Chinese hamster (V79) cells, subjected to a wide concentration range of salt or sucrose solutions, was characterized by two maxima separated by a minimum. Cells were radioprotected at the maxima (high and low hypertonic salt concentrations) while they were radiosensitized at the minimum (intermediate hypertonic salt concentrations). Both cations and anions could alter the cellular radiosensitivity above and beyond the (osmotic) effect observed for cells treated with sucrose solutions. However, the basic curve shape, except in the case of sulphate salts, remained the same. When these experiments were repeated with single cells in suspension, the isodose survival curve was quite different in that high salt concentrations did not protect cells in suspension unlike the case with attached cells. The curve shape was also altered in that the second maximum was absent with many salt solutions. When multicellular spheroids were used for these experiments, the data resembled those for single cell suspensions rather than for attached cells. The radiation survival data for cells in suspension in salt solutions correlated with water proton spin lattice relaxation time (T/sub 1/) and, in hypo- and iso-tonic solutions, with cell volume.

  13. Superhydrophobic honeycomb-like cobalt stearate thin films on aluminum with excellent anti-corrosion properties

    Science.gov (United States)

    Xiong, Jiawei; Sarkar, D. K.; Chen, X.-Grant

    2017-06-01

    Superhydrophobic cobalt stearate thin films with excellent anti-corrosion properties were successfully fabricated on aluminum substrates via electrodeposition process. The water-repellent properties were attributed to the honeycomb-like micro-nano structure as well as low surface energy of cobalt stearate. The correlation between the surface morphology, composition as well as wetting properties and the molar ratio of inorganic cobalt salt (Co(NO3)2) and organic stearic acid (SA) abbreviated as Co/SA, in the electrolyte were studied carefully. The optimum superhydrophobic surface obtained on the electrodeposited cathodic aluminum substrate, in the mixed ethanolic solution with Co/SA molar ratio of 0.2, was found to have a maximum contact angle of 161°. The polarization resistance of superhydrophobic aluminum substrates was calculated as high as 1591 kΩ cm2, which is determined to be two orders of magnitude larger than that of the as-received aluminum substrate as 27 kΩ cm2. Electrochemical impedance spectroscopy (EIS) was also employed to evaluate the corrosion resistance properties of these samples. Furthermore, electrical equivalent circuits (EEC) have been suggested in order to better understand the corrosion phenomena on these surfaces based on the corresponding EIS data.

  14. Sodium concentration in home made salt – sugar – solution (sss ...

    African Journals Online (AJOL)

    In a cohort of 210 young mothers, selected through cluster sampling technique from Ogida health district of Egor Local Government Area of Edo State, the electrolyte concentration of prepared salt-sugar-solutions (SSS) were evaluated. This was predicated on the need to determine the effects of introduction of various ...

  15. Using Aspen simulation package to determine solubility of mixed salts in TRU waste evaporator bottoms

    Energy Technology Data Exchange (ETDEWEB)

    Hatchell, J.L.

    1998-03-01

    Nitric acid from plutonium process waste is a candidate for waste minimization by recycling. Process simulation software packages, such as Aspen, are valuable tools to estimate how effective recovery processes can be, however, constants in equations of state for many ionic components are not in their data libraries. One option is to combine single salt solubility`s in the Aspen model for mixed salt system. Single salt solubilities were regressed in Aspen within 0.82 weight percent of literature values. These were combined into a single Aspen model and used in the mixed salt studies. A simulated nitric acid waste containing mixed aluminum, calcium, iron, magnesium and sodium nitrate was tested to determine points of solubility between 25 and 100 C. Only four of the modeled experimental conditions, at 50 C and 75 C, produced a saturated solution. While experimental results indicate that sodium nitrate is the first salt to crystallize out, the Aspen computer model shows that the most insoluble salt, magnesium nitrate, the first salt to crystallize. Possible double salt formation is actually taking place under experimental conditions, which is not captured by the Aspen model.

  16. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dane; Eapen, Jacob

    2013-10-01

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt

  17. Lithium-aluminum-iron electrode composition

    Science.gov (United States)

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  18. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    International Nuclear Information System (INIS)

    Jain, V.; Shah, H.; Wilmarth, W. R.

    2016-01-01

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  19. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  20. Contribution to the study of uranyl salts in butyl phosphate solutions

    International Nuclear Information System (INIS)

    Coulon, A.

    1965-06-01

    A spectroscopic study in the normal infrared region and involving the following associations: tri-alkyl phosphates (tri-butyl, tri-ethyl, tri-methyl), uranyl salts (nitrate, chloride, acetate) has confirmed the existence of an interaction between the phosphoryl group and the uranium atom, as shown by a movement of absorption band for the valency P = 0 from ∼ 1270 cm -1 to ∼ 1180 cm -1 . A study of the preparation, analysis and spectroscopy of the solids obtained by the precipitation of uranyl salts by acid butyl phosphates has been carried out. By infrared spectrophotometry it has been shown that the tri-butyl and di-butyl phosphates are associated in non-polar diluents even before the uranium is introduced. The extraction of uranyl salts from acid aqueous solutions by a diluted mixture of tri-butyl and di-butyl phosphates proceeds by different mechanisms according to the nature of the ion (nitrate or chloride). (author) [fr

  1. Dynamic flow method to study the CO2 loading capacity of amino acid salt solutions

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai; Stenby, Erling Halfdan; Thomsen, Kaj

    Due to a number of advantages amino acid salt solutions have emerged as alternatives to the alkanolamine solvents for the chemical absorption of CO2 from flue gas. The use of amino acids in CO2 capture is a bio-mimetic process, as it is similar to CO2 binding by proteins in the blood......, such as hemoglobin. Amino acid salt solutions have the same amine functionality as alkanolamines, and are thus expected to behave similar towards CO2 in flue gas. Despite rising interest, few studies have been performed so far on amino acids as CO2 absorbents....

  2. Whispering Gallery Mode Based Optical Fiber Sensor for Measuring Concentration of Salt Solution

    Directory of Open Access Journals (Sweden)

    Chia-Chin Chiang

    2013-01-01

    Full Text Available An optical fiber solution-concentration sensor based on whispering gallery mode (WGM is proposed in this paper. The WGM solution-concentration sensors were used to measure salt solutions, in which the concentrations ranged from 1% to 25% and the wavelength drifted from the left to the right. The experimental results showed an average sensitivity of approximately 0.372 nm/% and an R2 linearity of 0.8835. The proposed WGM sensors are of low cost, feasible for mass production, and durable for solution-concentration sensing.

  3. Water purification using organic salts

    Science.gov (United States)

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  4. Composite Properties of Polyimide Resins Made From "Salt-Like" Solution Precursors

    Science.gov (United States)

    Cano, Roberto J.; Weiser, Erik S.; SaintClair, Terry L.; Echigo, Yoshiaki; Kaneshiro, Hisayasu

    1997-01-01

    Recent work in high temperature materials at NASA Langley Research Center (LaRC (trademark)) have led to the development of new polyimide resin systems with very attractive properties. The majority of the work done with these resin systems has concentrated on determining engineering mechanical properties of composites prepared from a poly(amide acid) precursor. Three NASA Langley-developed polyimide matrix resins, LaRC (trademark) -IA, LaRC (trademark) -IAX, and LaRC (trademark) -8515, were produced via a salt-like process developed by Unitika Ltd. The 'salt-like' solutions (sixty-five percent solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC Multipurpose Tape Machine. Process parameters were determined and composite panels fabricated. Mechanical properties are presented for these three intermediate modulus carbon fiber/polyimide matrix composites and compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (thirty-five percent solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of polyimide composites.

  5. Assessment of drug salt release from solutions, suspensions and in situ suspensions using a rotating dialysis cell

    DEFF Research Database (Denmark)

    Parshad, Henrik; Frydenvang, Karla; Liljefors, Tommy

    2003-01-01

    buffer is used as release media. Generally, the initial release of the drug salt from in situ suspensions occurred faster as compared to conventional suspensions, probably due to incomplete precipitation of the drug salt, and hence formation of supersaturated solutions where the rate of release......A rotating dialysis cell consisting of a small (10 ml) and a large compartment (1000 ml) was used to study the release of drug salt (bupivacaine 9-anthracene carboxylate) from (i). solutions, (ii). suspensions and (iii). in situ formed suspensions. Initial release experiments from suspensions...... indicated that the release of drug salt in deionized water was predominantly limited by the diffusion across the membrane whereas it is essentially dissolution rate controlled in 0.05 M phosphate buffer (pH 7.40). Thus, the in vitro model appears to have a potential in formulation screening when phosphate...

  6. Investigation of water and saline solution drops evaporation on a solid substrate

    Directory of Open Access Journals (Sweden)

    Orlova Evgenija G.

    2014-01-01

    Full Text Available Experimental investigation water and saline solution drops evaporation on a solid substrate made of anodized aluminum is presented in the paper. Parameters characterizing drop profile have been obtained (contact angle, contact diameter, height. The specific evaporation rate has been calculated from obtained values. It was found that water and saline solution drops with concentration up to 9.1% evaporate in the pinning mode. However, with increasing the salt concentration in the solution up to 16.7% spreading mode was observed. Two stages of drop evaporation depending on change of the evaporation rate have been separated.

  7. An Investigation on the Thermophysical Properties of a Binary Molten Salt System Containing Both Aluminum Oxide and Titanium Oxide Nanoparticle Suspensions

    Science.gov (United States)

    Giridhar, Kunal

    Molten salts are showing great potential to replace current heat transfer and thermal energy storage fluids in concentrated solar plants because of their capability to maximize thermal energy storage, greater stability, cost effectiveness and significant thermal properties. However one of the major drawbacks of using molten salt as heat transfer fluid is that they are in solid state at room temperature and they have a high freezing point. Hence, significant resources would be required to maintain it in liquid form. If molten salt freezes while in operation, it would eventually damage piping network due to its volume shrinkage along with rendering the entire plant inoperable. It is long known that addition of nanoparticle suspensions has led to significant changes in thermal properties of fluids. In this investigation, aluminum oxide and titanium oxide nanoparticles of varying concentrations are added to molten salt/solar salt system consisting of 60% sodium nitrate and 40% potassium nitrate. Using differential scanning calorimeter, an attempt will be made to investigate changes in heat capacity of system, depression in freezing point and changes in latent heat of fusion. Scanning electron microscope will be used to take images of samples to study changes in micro-structure of mixture, ensure uniform distribution of nanoparticle in system and verify authenticity of materials used for experimentation. Due to enormous magnitude of CSP plant, actual implementation of molten salt system is on a large scale. With this investigation, even microscopic enhancement in heat capacity and slight lowering of freezing point will lead to greater benefits in terms of efficiency and cost of operation of plant. These results will further the argument for viability of molten salt as a heat transfer fluid and thermal storage system in CSP. One of the objective of this experimentation is to also collect experimental data which can be used for establishing relation between concentration

  8. Inefficacy of osmotic backwash induced by sodium chloride salt solution in controlling SWRO membrane fouling

    Science.gov (United States)

    Farooque, A. Mohammed; Al-Jeshi, Subhi; Saeed, Mohamed O.; Alreweli, Ali

    2014-12-01

    A study was conducted to evaluate the efficacy of osmotic backwash induced by high salt (NaCl) concentration solution on feed side of seawater reverse osmosis (SWRO) membranes, online and offline, in controlling membrane fouling and therefore minimizing/eliminating the need for chemical cleaning. SWRO membranes were deliberately fouled by feeding seawater from an open intake located on the Arabian Gulf Coast without dosing chemicals. The fouled membranes were subjected to offline cleaning with the salt solution of up to 25 % concentration. Despite the partial removal of foulants from the membrane surface, SWRO membrane performance could not be restored, indicating the ineffectiveness of osmotic backwash in aiding offline salt cleaning. Similarly, online osmotic backwash was found to be not only ineffective in removing foulants from membrane surfaces but actually increased the fouling rate, as indicated by faster fouling rates compared to other cases. Although the driving force required for the osmotic backwash existed, the generated back flow proved to be insufficient to detach foulants from membrane surfaces. During the study period, the average SWRO membrane flux was maintained between 19 and 23 LMH, whereas the average generated back flow flux by high salt concentration solution was only 11 LMH, which was not adequate to remove foulants from membrane surfaces. Moreover, it seems that the membrane configuration as well as inherent microstructure of SWRO membrane places certain constraints on the osmotic backwash process and renders osmotic backwash ineffective in tackling SWRO membrane fouling. Hence, chemical cleaning is essential to restore SWRO membrane performance whenever fouling occurs, and the use of highly concentrated salt solution does not have any significant benefit. Membrane autopsy revealed only an insignificant accumulation of biofouling layer despite the absence of disinfection. However, it was shown that culturable biofilm bacteria species

  9. Preparation of porous monolayer film by immersing the stearic acid Langmuir-Blodgett monolayer on mica in salt solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. [Institute of Near-Field Optics and Nano Technology, School of Physics and Optoelectronic Technology, Dalian University of Technology, Street No. 2 Linggong Road, Dalian 116024 (China); Li, Y.L.; Zhao, H.L.; Liang, H. [Institute of Photo-Biophysics, School of Physics and Electronic, Henan University, Jinming, Kaifeng 475004, Henan (China); Liu, B., E-mail: boliu@henu.edu.cn [Institute of Photo-Biophysics, School of Physics and Electronic, Henan University, Jinming, Kaifeng 475004, Henan (China); Pan, S., E-mail: span@dlut.edu.cn [Institute of Near-Field Optics and Nano Technology, School of Physics and Optoelectronic Technology, Dalian University of Technology, Street No. 2 Linggong Road, Dalian 116024 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Porous film has been prepared by immersing the stearic acid Langmuir-Blodgett monolayer on mica in salt solution. Black-Right-Pointing-Pointer The mechanism relies on the electrostatic screening effect of the cations in salt solution. Black-Right-Pointing-Pointer The factors influencing the size and area of the pores were investigated. - Abstract: Porous materials have drawn attention from scientists in many fields such as life sciences, catalysis and photonics since they can be used to induce some materials growth as expected. Especially, porous Langmuir-Blodgett (LB) film is an ideal material with controlled thickness and flat surface. In this paper, stearic acid (SA), which has been extensively explored in LB film technique, is chosen as the template material with known parameters to prepare the LB film, and then the porous SA monolayer film is obtained by means of etching in salt solution. The main etching mechanism is suggested that the cations in the solution block the electrostatic interaction between the polar carboxyl group of SA and the electronegative mica surface. The influencing factors (such as concentration of salt solution, valence of cation and surface pressure) of the porous SA film are systematically studied in this work. The novel method proposed in this paper makes it convenient to prepare porous monolayer film for designed material growth or cell culture.

  10. The potential/pH diagram of silver in aqueous ammonium salt solution

    NARCIS (Netherlands)

    Sluyters, J.H.; Wijnen, M.D.; Hul, H.J. van den

    1961-01-01

    The potential/pH diagram of silver in aqueous ammonium salt solution at 25°C has been calculated and verified experimentally. Calculations were carried out on the basis of the standard potential of the silver/silver-ion couple, the dissociation constants of the silver mono- and di-ammonia

  11. Coagulation mechanism of salt solution-extracted active component in Moringa oleifera seeds

    OpenAIRE

    Okuda, Tetsuji; Baes, Aloysius U.; Nishijima, Wataru; Okada, Mitsumasa

    2001-01-01

    This study focuses on the coagulation mechanism by the purified coagulant solution (MOC-SC-PC) with the coagulation active component extracted from M. oleifera seeds using salt solution. The addition of MOC-SC-PC into tap water formed insoluble matters. The formation was responsible for kaolin coagulation. On the other hand, insoluble matters were not formed when the MOC-SC-PC was added into distilled water. The formation was affected by Ca2+ or other bivalent cations which may connect each m...

  12. Solution-derived sodalite made with Si- and Ge-ethoxide precursors for immobilizing electrorefiner salt

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J., E-mail: brian.riley@pnnl.gov; Lepry, William C.; Crum, Jarrod V.

    2016-01-15

    Chlorosodalite has the general form of Na{sub 8}(AlSiO{sub 4}){sub 6}Cl{sub 2} and this paper describes experiments conducted to synthesize sodalite with a solution-based approach to immobilize a simulated spent electrorefiner salt solution containing a mixture of alkali, alkaline earth, and lanthanide chlorides. The reactants used were the salt solution, NaAlO{sub 2}, and either Si(OC{sub 2}H{sub 5}){sub 4} or Ge(OC{sub 2}H{sub 5}){sub 4}. Additionally, seven different glass sintering aids (at loadings of 5 mass%) were evaluated as sintering aids for consolidating the as-made powders using a cold-press-and-sinter technique. This process of using alkoxide additives for the Group IV component can be used to produce large quantities of sodalite at near-room temperature as compared to a method where colloidal silica was used as the silica source. However, the small particle sizes inhibited densification during heat treatments.

  13. Molecular dynamics study of charged dendrimers in salt-free solution : effect of counterions

    NARCIS (Netherlands)

    Gurtovenko, A.A.; Lyulin, S.V.; Karttunen, M.E.J.; Vattulainen, I.

    2006-01-01

    Polyamidoamine dendrimers, being protonated under physiological conditions, represent a promising class of nonviral, nanosized vectors for drug and gene delivery. We performed extensive molecular dynamics simulations of a generic model dendrimer in a salt-free solution with dendrimer’s terminal

  14. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    Science.gov (United States)

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  15. Scientific Background for Processing of Aluminum Waste

    Science.gov (United States)

    Kononchuk, Olga; Alekseev, Alexey; Zubkova, Olga; Udovitsky, Vladimir

    2017-11-01

    Changing the source of raw materials for producing aluminum and the emergence of a huge number of secondary alumina waste (foundry slag, sludge, spent catalysts, mineral parts of coal and others that are formed in various industrial enterprises) require the creation of scientific and theoretical foundations for their processing. In this paper, the aluminum alloys (GOST 4784-97) are used as an aluminum raw material component, containing the aluminum component produced as chips in the machine-building enterprises. The aluminum waste is a whole range of metallic aluminum alloys including elements: magnesium, copper, silica, zinc and iron. Analysis of the aluminum waste A1- Zn-Cu-Si-Fe shows that depending on the content of the metal the dissolution process of an aluminum alloy should be treated as the result of the chemical interaction of the metal with an alkaline solution. It is necessary to consider the behavior of the main components of alloys in an alkaline solution as applied to the system Na2O - Al2O3 - SiO2 - CO2 - H2O.

  16. New Process for Grain Refinement of Aluminum. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Joseph A. Megy

    2000-09-22

    A new method of grain refining aluminum involving in-situ formation of boride nuclei in molten aluminum just prior to casting has been developed in the subject DOE program over the last thirty months by a team consisting of JDC, Inc., Alcoa Technical Center, GRAS, Inc., Touchstone Labs, and GKS Engineering Services. The Manufacturing process to make boron trichloride for grain refining is much simpler than preparing conventional grain refiners, with attendant environmental, capital, and energy savings. The manufacture of boride grain refining nuclei using the fy-Gem process avoids clusters, salt and oxide inclusions that cause quality problems in aluminum today.

  17. Anodic behavior of stainless-steel substrate in organic electrolyte solutions containing different lithium salts

    International Nuclear Information System (INIS)

    Furukawa, Kazuki; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki

    2014-01-01

    Highlights: • We investigated anodic behavior of stainless-steel in organic electrolytes for advanced capacitor. • Anion of the electrolyte affected the anodic stability of the alloy. • Anodic passivation occurs in LiPF 6 solution but pitting or active dissolution proceeds in other electrolyte solutions. • Fluoride source in the solution contributes to forming a stable surface layer on the stainless steel. - Abstract: The anodic behavior of austenitic stainless-steel, SUS304, as a current collector of positive electrode in lithium-ion battery/capacitor has been investigated in organic electrolyte solutions based on a mixed alkyl carbonate solvent with different lithium salts. Stable passivation characteristics were observed for the stainless-steel in the LiPF 6 solution, but pitting corrosion or active dissolution proceeded in the solutions containing other anions, BF 4 - , (CF 3 SO 2 ) 2 N - (TFSA - ) and ClO 4 - . The mass ratios of the dissolved metal species in the solutions of LiTFSA and LiClO 4 were equivalent to that of the alloy composition, which suggests that no preferential dissolution occurs during the anodic polarization in these electrolyte solutions. An HF component formed by decomposition of PF 6 - with the contaminate water will act as an F - source for the formation of a surface fluoride layer, that will contribute to the anodic stability of SUS304 in the LiPF 6 solution. The anodic corrosion in the LiTFSA solution was suppressed in part by mixing the PF 6 salt or adding HF in the electrolyte

  18. Doping Polymer Semiconductors by Organic Salts: Toward High-Performance Solution-Processed Organic Field-Effect Transistors.

    Science.gov (United States)

    Hu, Yuanyuan; Rengert, Zachary D; McDowell, Caitlin; Ford, Michael J; Wang, Ming; Karki, Akchheta; Lill, Alexander T; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2018-04-24

    Solution-processed organic field-effect transistors (OFETs) were fabricated with the addition of an organic salt, trityl tetrakis(pentafluorophenyl)borate (TrTPFB), into thin films of donor-acceptor copolymer semiconductors. The performance of OFETs is significantly enhanced after the organic salt is incorporated. TrTPFB is confirmed to p-dope the organic semiconductors used in this study, and the doping efficiency as well as doping physics was investigated. In addition, systematic electrical and structural characterizations reveal how the doping enhances the performance of OFETs. Furthermore, it is shown that this organic salt doping method is feasible for both p- and n-doping by using different organic salts and, thus, can be utilized to achieve high-performance OFETs and organic complementary circuits.

  19. Extraction of lanthanide(III) nitrates from water-salt solutions with n.-octanol

    International Nuclear Information System (INIS)

    Keskinov, V.A.; Kudrova, A.V.; Valueva, O.V.; Pyartman, A.K.

    2004-01-01

    Extraction of lanthanide(III) nitrates (Ln=La-Nd, Sm-Gd) from aqueous-salt solutions at 298.15 K was studied using solution of n.-octanol, its concentration 6.31 mol/l. It was ascertained that at Ln(NO 3 ) 3 concentration in aqueous phase below 0.6 mol/l, there is actually no extraction. At higher concentrations of nitrates in aqueous phase the content of lanthanides(III) in organic phase increases in the series La-Gd. Isotherms of extraction were ascertained, its phase equilibria being described mathematically. It is shown that extraction of lanthanide(III) nitrates with n.-octanol should be realized from concentrated aqueous solutions [ru

  20. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    Science.gov (United States)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  1. A new, bright and hard aluminum surface produced by anodization

    Science.gov (United States)

    Hou, Fengyan; Hu, Bo; Tay, See Leng; Wang, Yuxin; Xiong, Chao; Gao, Wei

    2017-07-01

    Anodized aluminum (Al) and Al alloys have a wide range of applications. However, certain anodized finishings have relatively low hardness, dull appearance and/or poor corrosion resistance, which limited their applications. In this research, Al was first electropolished in a phosphoric acid-based solution, then anodized in a sulfuric acid-based solution under controlled processing parameters. The anodized specimen was then sealed by two-step sealing method. A systematic study including microstructure, surface morphology, hardness and corrosion resistance of these anodized films has been conducted. Results show that the hardness of this new anodized film was increased by a factor of 10 compared with the pure Al metal. Salt spray corrosion testing also demonstrated the greatly improved corrosion resistance. Unlike the traditional hard anodized Al which presents a dull-colored surface, this newly developed anodized Al alloy possesses a very bright and shiny surface with good hardness and corrosion resistance.

  2. On the attenuation of X-rays and gamma-rays for aqueous solutions of salts

    CERN Document Server

    Teli, M T

    1998-01-01

    Disparities in the linear attenuation coefficients of X-rays and gamma rays for aqueous solutions of soluble salts arising from the nonequality of volume of the solution with the sum of volumes of its components are analysed and the mixture rule is reformulated. The disparities are illustrated for NaCl solution for concentrations c=0 to 1 gm/cm sup 3 which indicates that the mixture rule of Teli et al. works well within generally acceptable limits.

  3. Effect of Concentration on the Electrochemistry and Speciation of the Magnesium Aluminum Chloride Complex Electrolyte Solution.

    Science.gov (United States)

    See, Kimberly A; Liu, Yao-Min; Ha, Yeyoung; Barile, Christopher J; Gewirth, Andrew A

    2017-10-18

    Magnesium batteries offer an opportunity to use naturally abundant Mg and achieve large volumetric capacities reaching over four times that of conventional Li-based intercalation anodes. High volumetric capacity is enabled by the use of a Mg metal anode in which charge is stored via electrodeposition and stripping processes, however, electrolytes that support efficient Mg electrodeposition and stripping are few and are often prepared from highly reactive compounds. One interesting electrolyte solution that supports Mg deposition and stripping without the use of highly reactive reagents is the magnesium aluminum chloride complex (MACC) electrolyte. The MACC exhibits high Coulombic efficiencies and low deposition overpotentials following an electrolytic conditioning protocol that stabilizes species necessary for such behavior. Here, we discuss the effect of the MgCl 2 and AlCl 3 concentrations on the deposition overpotential, current density, and the conditioning process. Higher concentrations of MACC exhibit enhanced Mg electrodeposition current density and much faster conditioning. An increase in the salt concentrations causes a shift in the complex equilibria involving both cations. The conditioning process is strongly dependent on the concentration suggesting that the electrolyte is activated through a change in speciation of electrolyte complexes and is not simply due to the annihilation of electrolyte impurities. Additionally, the presence of the [Mg 2 (μ-Cl) 3 ·6THF] + in the electrolyte solution is again confirmed through careful analysis of experimental Raman spectra coupled with simulation and direct observation of the complex in sonic spray ionization mass spectrometry. Importantly, we suggest that the ∼210 cm -1 mode commonly observed in the Raman spectra of many Mg electrolytes is indicative of the C 3v symmetric [Mg 2 (μ-Cl) 3 ·6THF] + . The 210 cm -1 mode is present in many electrolytes containing MgCl 2 , so its assignment is of broad interest

  4. Applicability of Solid Solution Heat Treatments to Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Miguel Rodríguez-Pérez

    2012-12-01

    Full Text Available Present research work evaluates the influence of both density and size on the treatability of Aluminum-based (6000 series foam-parts subjected to a typical solid solution heat treatment (water quenching. The results are compared with those obtained for the bulk alloy, evaluating the fulfilment of cooling requirements. Density of the foams was modeled by tomography analysis and the thermal properties calculated, based on validated density-scaled models. With this basis, cooling velocity maps during water quenching were predicted by finite element modeling (FEM in which boundary conditions were obtained by solving the inverse heat conduction problem. Simulations under such conditions have been validated experimentally. Obtained results address incomplete matrix hardening for foam-parts bigger than 70 mm in diameter with a density below 650 kg/m3. An excellent agreement has been found in between the predicted cooling maps and final measured microhardness profiles.

  5. Diclofenac Salts, VIII. Effect of the Counterions on the Permeation through Porcine Membrane from Aqueous Saturated Solutions

    Science.gov (United States)

    Fini, Adamo; Bassini, Glenda; Monastero, Annamaria; Cavallari, Cristina

    2012-01-01

    The following bases: monoethylamine (EtA), diethylamine (DEtA), triethylamine (TEtA), monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), pyrrolidine (Py), piperidine (Pp), morpholine (M), piperazine (Pz) and their N-2-hydroxyethyl (HE) analogs were employed to prepare 14 diclofenac salts. The salts were re-crystallized from water in order to obtain forms that are stable in the presence of water. Vertical Franz-type cells with a diffusional surface area of 9.62 cm2 were used to study the permeation of these diclofenac salts from their saturated solutions through an internal pig ear membrane. The receptor compartments of the cells contained 100 mL of phosphate buffer (pH 7.4); a saturated solution (5 mL) of each salt was placed in the donor compartment, thermostated at 37 °C. Aliquots were withdrawn at predetermined time intervals over 8 h and then immediately analyzed by HPLC. Fluxes were determined by plotting the permeated amount, normalized for the membrane surface area versus time. Permeation coefficients were obtained dividing the flux values J by the concentration of the releasing phase—that is, water solubility of each salt. Experimental results show that fluxes could be measured when diclofenac salts with aliphatic amines are released from a saturated aqueous solution. Different chemical species (acid, anion, ion pairs) contribute to permeation of the anti-inflammatory agent even though ion-pairs could be hypothesized to operate to a greater extent. Permeation coefficients were found higher when the counterion contains a ring; while hydroxy groups alone do not appear to play an important role, the ring could sustain permeation, disrupting the organized domains of the membrane. PMID:24300300

  6. Effect of temperature on solvation behaviour of diclofenac sodium salt in aqueous glycine and L-proline solutions

    International Nuclear Information System (INIS)

    Ryshetti, Suresh; Gardas, Ramesh L; Tangeda, Savitha Jyostna

    2015-01-01

    Highlights: • Solvation behaviour of diclofenac drug studied in aqueous solutions. • Density and speed of sound of drug in aq. glycine and L-proline are measured. • Hydrophobic nature of diclofenac sodium salt is studied. • Effect of temperature on solvation of diclofenac sodium salt is analysed. - Abstract: Apparent molar volume (V 2,ϕ ) and apparent molar isentropic compressibility (K s,2,ϕ ) of diclofenac sodium salt (DSS) drug within the concentration range of (0.001 to 0.008) mol · kg −1 in (0.01, 0.03 and 0.05) mol · kg −1 aqueous glycine and L-proline solutions are computed from the experimental density (ρ) and speed of sound (u) values at T = (293.15 to 313.15) K and atmospheric pressure. Derived parameters such as partial molar properties, transfer partial molar properties, hydration numbers and Hepler’s constant are computed from the data of V 2,ϕ and K s,2,ϕ . These parameters have been used to understand the effect of temperature on interactions between DSS drug and aqueous glycine/L-proline solution. Furthermore, the structure making and breaking ability of DSS drug in probed solutions are analysed at experimental conditions

  7. Radiation-induced reduction of ditetrazolium salt in aqueous solutions

    International Nuclear Information System (INIS)

    Sadeghi, Ali; Chaychian, Mahnaz; Al-Sheikhly, Mohamad; McLaughlin, W.L.

    2002-01-01

    Color formation in aqueous solutions of the ditetrazolium salt blue tetrazolium (BT 2+ ) in the absence or presence of oxygen is a complex radiation chemical reaction. The final stable product is the poorly soluble diformazan violet to blue pigment having a broad spectral absorption band (λ max =552 nm). The reaction of BT 2+ with the hydrated electron proceeds by rapid reduction of BT 2+ followed by protonation at the nitrogen closest to the unsubstituted phenyl group, via the two intermediate tetrazolinyl radicals shared by the ditetrazole ring nitrogens. The effect of solution pH, N 2 O saturation, and the presence of the reducing agent dextrose are examined. The system serves as a radiochromic sensor and a dosimeter of ionizing radiations. Solutions of 5 mmol l -1 BT 2+ at pH 7.3 serve as dosimeters over an absorbed-dose range of approximately 0.2-6 kGy (dearated, with a range of 1-8 mmol l -1 dextrose) and of about 1-15 kGy (aerated, with 0.1 mol l -1 sodium formate and 5 mmol l -1 dextrose)

  8. On salting in effect of the second group metal rhodanides on aqueous-amine solutions

    International Nuclear Information System (INIS)

    Krupatkin, I.L.; Ostrovskaya, E.M.; Vorob'eva, L.D.; Kamyshnikova, G.V.

    1978-01-01

    The ''salting in'' effect of rhodanides of Group 2 metals (magnesium, calcium, strontium, barium) on aqueous-amine solutions (water-aniline, and water-o-toluidine systems) is studied. The solubility in these systems has been determined by the isothermal method at 25 deg C. Compositions of the co-existing liquid phases have been determined by refractometry. The phase diagrams of water-aniline-rhodanide of magnesium, calcium and strontium systems have the same qualitative view. These rhodanides ''salt in'' the water-aniline system so strongly that the systems are completely homogenized. According to the decreasing homogenization effect on the water-aniline and water-o-toluidine systems the salts may be arranged into the following series Mg(NCS) 2 >Ca(NCS) 2 >Sr(NCS) 2 >Ba(NCS) 2 . The ''salting in'. effect is weaker in the water-o-toluidine system rather than in the water-aniline one

  9. Crystallization of inorganic salts from aqueous solutions in a microwave field

    International Nuclear Information System (INIS)

    Kochetkov, S. E.; Kuznetsov, V. A.; Lyashenko, A. V.; Bakshutov, V. S.

    2006-01-01

    The crystallization of some inorganic salts (KH 2 PO 4 , NaCl, Sr(NO 3 ) 2 , KNO 2 , Ca(OH) 2 ) by the thermal-gradient (with decreasing temperature) and solvent-evaporation methods using microwave heating of solutions is investigated. It is established that the growth rates of single crystals in a microwave field are an order of magnitude higher than obtained in other known techniques at comparable crystallization temperatures and supersaturations. For example, the growth rate of prismatic faces {100} of KH 2 PO 4 crystals is as high as 11 mm/day at supersaturations of ∼1.2%. The results obtained are discussed in the context of the effect of microwave radiation on the adsorption surface layers of crystals. Fine-grained phases of the salts under study are obtained by evaporation of the solvent

  10. Effect of plant-derived smoke solutions on physiological and biochemical attributes of maize (Zea mays L.) under salt stress

    International Nuclear Information System (INIS)

    Waheed, M.A.; Shakir, S.K.; Rehman, S.U.; Khan, M.D.

    2016-01-01

    Among abiotic stresses, salinity is an important factor reducing crop yield. Plant-derived smoke solutions have been used as growth promoters since last two decades. The present study was conducted to investigate the effect of Cymbopogon jwaracusa smoke extracts (1:100 and 1:400) on physiological and biochemical aspects of maize (Zea mays L.) under salt stress (100, 150, 200 and 250 mM). Results showed that seed germination percentage was improved up to 93% with smoke as compared to control (70%), while seedling vigor in term of root and shoot fresh weights and dry weights were also significantly increased in seeds primed with smoke extracts. Similarly, in case of alleviating solutions, there occurred a significant alleviation in the adverse effects of salt solutions when mixed smoke in all studied end points. Application of smoke solution has also increased the level of K+ and Ca+2 while reduced the level of Na+ content in maize. In addition, the levels of photosynthetic pigments, total nitrogen and protein contents were also alleviated with the application of smoke as compared to salt. There occurred an increase in the activities of Anti-oxidant in response of salt stress but overcome with the smoke application. It can be concluded that plant-derived smoke solution has the potential to alleviate the phytotoxic effects of saline condition and can increased the productivity in plants. (author)

  11. Painting rusted steel: The role of aluminum phosphosilicate

    International Nuclear Information System (INIS)

    Roselli, S.N.; Amo, B. del; Carbonari, R.O.; Di Sarli, A.R.; Romagnoli, R.

    2013-01-01

    Highlights: •Aluminum phosphosilicate is an acid pigment which could act as mild phosphating agent. •Aluminum phosphosilicate can phosphatize iron oxides on rusted surfaces. •Aluminum phosphosilicate is compatible with acid binders. •Aluminum phosphosilicate could replace chromate in complete painting schemes. •Aluminum phosphosilicate primers improve paints adhesion on rusted surfaces. -- Abstract: Surface preparation is a key factor for the adequate performance of a paint system. The aim of this investigation is to employ a wash-primer to accomplish the chemical conversion of rusted surface when current cleaning operations are difficult to carry out. The active component of the wash-primer was aluminum phosphosilicate whose electrochemical behavior and the composition of the generated protective layer, both, were studied by electrochemical techniques and scanning electron microscopy (SEM), respectively. Primed rusted steel panels were coated with an alkyd system to perform accelerated tests in the salt spray chamber and electrochemical impedance measurements (EIS). These tests were conducted in parallel with a chromate wash primer and the same alkyd system. Results showed that the wash-primer containing aluminum phosphosilicate could be used satisfactorily to paint rusted steel exhibiting a similar performance to the chromate primer

  12. Effects of nanoparticle heating on the structure of a concentrated aqueous salt solution.

    Science.gov (United States)

    Sindt, Julien O; Alexander, Andrew J; Camp, Philip J

    2017-12-07

    The effects of a rapidly heated nanoparticle on the structure of a concentrated aqueous salt solution are studied using molecular dynamics simulations. A diamond-like nanoparticle of radius 20 Å is immersed in a sodium-chloride solution at 20% above the experimental saturation concentration and equilibrated at T = 293 K and P = 1 atm. The nanoparticle is then rapidly heated to several thousand degrees Kelvin, and the system is held under isobaric-isoenthalpic conditions. It is observed that after 2-3 ns, the salt ions are depleted far more than water molecules from a proximal zone 15-25 Å from the nanoparticle surface. This leads to a transient reduction in molality in the proximal zone and an increase in ion clustering in the distal zone. At longer times, ions begin to diffuse back into the proximal zone. It is speculated that the formation of proximal and distal zones, and the increase in ion clustering, plays a role in the mechanism of nonphotochemical laser-induced nucleation.

  13. Effects of nanoparticle heating on the structure of a concentrated aqueous salt solution

    Science.gov (United States)

    Sindt, Julien O.; Alexander, Andrew J.; Camp, Philip J.

    2017-12-01

    The effects of a rapidly heated nanoparticle on the structure of a concentrated aqueous salt solution are studied using molecular dynamics simulations. A diamond-like nanoparticle of radius 20 Å is immersed in a sodium-chloride solution at 20% above the experimental saturation concentration and equilibrated at T = 293 K and P = 1 atm. The nanoparticle is then rapidly heated to several thousand degrees Kelvin, and the system is held under isobaric-isoenthalpic conditions. It is observed that after 2-3 ns, the salt ions are depleted far more than water molecules from a proximal zone 15-25 Å from the nanoparticle surface. This leads to a transient reduction in molality in the proximal zone and an increase in ion clustering in the distal zone. At longer times, ions begin to diffuse back into the proximal zone. It is speculated that the formation of proximal and distal zones, and the increase in ion clustering, plays a role in the mechanism of nonphotochemical laser-induced nucleation.

  14. Aluminum low temperature smelting cell metal collection

    Science.gov (United States)

    Beck, Theodore R.; Brown, Craig W.

    2002-07-16

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  15. Corrosion behavior of aluminum doped diamond-like carbon thin films in NaCl aqueous solution.

    Science.gov (United States)

    Khun, N W; Liu, E

    2010-07-01

    Aluminum doped diamond-like carbon (DLC:Al) thin films were deposited on n-Si(100) substrates by co-sputtering a graphite target under a fixed DC power (650 W) and an aluminum target under varying DC power (10-90 W) at room temperature. The structure, adhesion strength and surface morphology of the DLC:Al films were characterized by X-ray photoelectron spectroscopy (XPS), micro-scratch testing and atomic force microscopy (AFM), respectively. The corrosion performance of the DLC:Al films was investigated by means of potentiodynamic polarization testing in a 0.6 M NaCl aqueous solution. The results showed that the polarization resistance of the DLC:Al films increased from about 18 to 30.7 k(omega) though the corrosion potentials of the films shifted to more negative values with increased Al content in the films.

  16. Effect of ortho-substituted aniline on the corrosion protection of aluminum in 2 mol/L H2SO4 solution

    KAUST Repository

    El-Deeb, Mohamed M.; Alshammari, Hamed M.; Abdel-Azeim, Safwat

    2017-01-01

    Corrosion protection of aluminum in 2 mol/L HSO solution is examined in the presence of ortho-substituted aniline derivatives using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. Density function theory (DFT

  17. Temperature effects on geotechnical and hydraulic properties of bentonite hydrated with inorganic salt solutions

    DEFF Research Database (Denmark)

    Rashid, H. M. A.; Kawamoto, K.; Saito, T.

    2015-01-01

    © 2015, International Journal of GEOMATE. This study investigated the combined effect of temperature and single-species salt solutions on geotechnical properties (swell index and liquid limit) and hydraulic conductivity of bentonite applying different cation types, concentrations, and temperatures...

  18. Flotation of copper-bearing shale in solutions of inorganic salts and organic reagents

    OpenAIRE

    Ratajczak Tomasz

    2017-01-01

    Flotation data on copper-bearing shale in aqueous solutions of inorganic electrolytes (NaCl, Na2SO4, KPF6, NH4Cl) and organic reagents (ethylamine, propylamine) as frothers were presented and discussed. The relationships between shale flotation, surface tension of aqueous solution and foam height during bubbling with air in the flotation system were presented. It has been found that flotation of shale in the presence of inorganic salts the yield was directly proportional to the surface tensio...

  19. Acemetacin cocrystals and salts: structure solution from powder X-ray data and form selection of the piperazine salt

    Directory of Open Access Journals (Sweden)

    Palash Sanphui

    2014-03-01

    Full Text Available Acemetacin (ACM is a non-steroidal anti-inflammatory drug (NSAID, which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM, isonicotinamide (INA, and picolinamide (PAM], caprolactam (CPR, p-aminobenzoic acid (PABA, and piperazine (PPZ. The structures of an ACM–INA cocrystal and a binary adduct ACM–PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM–PAM and ACM–CPR, and the piperazine salt ACM–PPZ were solved from high-resolution powder X-ray diffraction data. The ACM–INA cocrystal is sustained by the acid...pyridine heterosynthon and N—H...O catemer hydrogen bonds involving the amide group. The acid...amide heterosynthon is present in the ACM–PAM cocrystal, while ACM–CPR contains carboxamide dimers of caprolactam along with acid–carbonyl (ACM hydrogen bonds. The cocrystals ACM–INA, ACM–PAM and ACM–CPR are three-dimensional isostructural. The carboxyl...carboxyl synthon in ACM–PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM–PPZ salt and ACM–nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM–PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable

  20. Acemetacin cocrystals and salts: structure solution from powder X-ray data and form selection of the piperazine salt.

    Science.gov (United States)

    Sanphui, Palash; Bolla, Geetha; Nangia, Ashwini; Chernyshev, Vladimir

    2014-03-01

    Acemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM), isonicotinamide (INA), and picolinamide (PAM)], caprolactam (CPR), p-aminobenzoic acid (PABA), and piperazine (PPZ). The structures of an ACM-INA cocrystal and a binary adduct ACM-PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM-PAM and ACM-CPR, and the piperazine salt ACM-PPZ were solved from high-resolution powder X-ray diffraction data. The ACM-INA cocrystal is sustained by the acid⋯pyridine heterosynthon and N-H⋯O catemer hydrogen bonds involving the amide group. The acid⋯amide heterosynthon is present in the ACM-PAM cocrystal, while ACM-CPR contains carboxamide dimers of caprolactam along with acid-carbonyl (ACM) hydrogen bonds. The cocrystals ACM-INA, ACM-PAM and ACM-CPR are three-dimensional isostructural. The carboxyl⋯carboxyl synthon in ACM-PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM-PPZ salt and ACM-nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM-PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable piperazine salt of acemetacin exhibits superior

  1. Dissolution mechanism of aluminum hydroxides in acid media

    Science.gov (United States)

    Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.

    2008-08-01

    The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.

  2. Influence of pH, temperature, and concentration on stabilization of aqueous hornet silk solution and fabrication of salt-free materials.

    Science.gov (United States)

    Kameda, Tsunenori

    2015-01-01

    We found that an aqueous solution of silk from cocoons produced by hornet larvae (hornet silk) can be obtained when the solution is adjusted to basic conditions of pH > 9.2. It is known that native hornet cocoons can be dissolved in concentrated aqueous solution of salts, such as lithium bromide (LiBr) and calcium chloride (CaCl2). Upon the removal of these salts from solution by dialysis, solidification, gelation, or sedimentation of hornet silk is known to occur. In the present study, under basic conditions, however, no such solidification occurred, even after salt removal. In this study, ammonia was used for alkalization of solution because it is volatilized during the casting process and pure hornet silk materials can be obtained after drying. The effects of the concentrations of hornet silk and ammonia, as well as dialysis temperature, on preventing gelation during dialysis were investigated. Dialysis conditions that limit the degradation of hornet silk by hydrolysis in alkali solution were identified. Moreover, casting conditions to prepare flexible and transparent hornet silk film from aqueous ammonia solution were optimized. Molecular structural analysis of hornet silk in aqueous ammonia solution and cast film indicated the formation of α-helix conformations. © 2014 Wiley Periodicals, Inc.

  3. Influence of water and salt solutions on UVB irradiation of normal skin and psoriasis

    International Nuclear Information System (INIS)

    Boer, J.; Schothorst, A.A.; Boom, B.; Suurmond, D.; Hermans, J.

    1982-01-01

    The influence of tap-water (TW) and salt solutions on the minimal erythema dose (MED) was investigated for normal human skin and uninvolved skin of psoriasis patients. MED (UVB) determinations on the forearm revealed that: (1) the MED definitely decreases whenever the arm is immersed in TW or NaCl solutions with a low concentration (4%) prior to UVB exposure, whereas almost saturated NaCl solution (26%), as well as locum Dead Sea water (LDSW), do not produce a change in the MED, and (2) the decrease in MED obtained by wetting the skin with TW was no longer present when the skin was allowed to dry for 20 min. A decrease in water uptake by skin (in vivo) and by callus (in vitro) was found as the salt concentration of the external solution increased. It is proposed that water taken up by the skin plays an important role in the sensitivity of the skin to UVB exposure. Bathing in TW or 4% NaCl prior to UVB exposure offered a slight to moderate improvement in psoriasis over UVB irradiation alone. Finally, it was shown that there is no obvious difference in clearance of the psoriatic skin between a bath in TW, 4% NaCl, or LDSW prior to UVB exposure. (orig.)

  4. Investigation of complexing in solutions of salt mixture In(NO/sub 3/)/sub 3/-NaVO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Nakhodnova, A N; Listratenko, I V

    1987-05-01

    Spectrophotometry, conductometry and pH-metry are used to investigate properties and composition of the solid phases of isomolar series of In(NO/sub 3/)/sub 3/-NaVO/sub 3/ salt mixture solutions and series of solutions having constant concentration of one of the components and varied of the other. Results of investigation are presented. It is stated that in the investigated solution series in weakly acid media HPA with the ratios (In/sup 3+/):(V/sup 5+/) being equal to 11:1, 6:1, and 1:9, are formed. Composition of the complexes is mainly defined by the ratio of the components in In(NO/sub 3/)/sub 3/ and NaVO/sub 3/ salt mixture solutions and the medium acidity. Compounds of Na/sub 2/OxIn/sub 2/O/sub 3/x2.5V/sub 2/O/sub 5/x8.5H/sub 2/O and Cs/sub 2/OxIn/sub 2/O/sub 3/x6V/sub 2/O/sub 5/x6.5H/sub 2/O empirical formulae are separated. Results of IR spectroscopy, derivatography and X-ray phase analysis of the corresponding salts are presented.

  5. Alteration of non-metallic barriers and evolution of solution chemistry in salt formations in Germany

    International Nuclear Information System (INIS)

    Herbert, H.J.; Becker, D.; Hagemann, S.; Meyer, Th.; Noseck, U.; Rubel, A.; Mauke, R.; Wollrath, J.

    2005-01-01

    Different Engineered Barrier Systems (EBS) materials considered in Germany for the sealing of repositories in salt formations are presented. Their long term behaviour in terms of interactions with salt solutions is discussed and evaluated. The discussed EBS materials are crushed salt, self sealing salt backfill, bentonite and salt concrete. Whereas the knowledge concerning the geochemical, geomechanical, hydrological and thermal behavior of crushed salt and salt concrete is well advanced further research is needed for other EBS materials. The self healing salt backfill has also been investigated in depth recently. In order to fully qualify this material large scale in situ experiments are still needed. The present knowledge on compacted bentonites in a salt environment is not yet sufficient for reliable predictions of the long-term performance in salt formations. The sealing concept of the low- and intermediate-level Radioactive Waste Repository Morsleben (ERAM) in a former rock salt and potash mine is presented. This concept is based on cementitious materials, i.e. salt concrete. The geochemical stability of different salt concretes in contact with brines expected in ERAM is addressed. It is shown how the results from leaching experiments and geochemical modelling are used in the safety analyses and how the chemical boundary conditions prevailing in the EBS influence the development of the permeability of the sealing system and thus control the radionuclide release. As a result of modelling the behaviour of the seals in the safety assessment it is shown, that the seals are corroded within a time span of about 20 000 years. The influence of the uncertainty in the model parameters on the safety of the repository was assessed by a variation of the initial permeability of the seal. The maximum dose rate resulting from the radionuclide release from ERAM is nearly independent of the variation of the initial permeability within four orders of magnitude. (authors)

  6. The effect of divalent salt in chondroitin sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Aranghel, D., E-mail: daranghe@nipne.ro [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Extreme Light Intrastructure Nuclear Physics (ELI-NP), Reactorului 30,RO-077125, POB-MG6, Magurele-Bucharest (Romania); Badita, C. R. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); University of Bucharest, Faculty of Physics, Atomiştilor 405, CP MG - 11, RO – 077125, Bucharest-Magurele (Romania); Radulescu, A. [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science, 85747 Garching (Germany); Moldovan, L.; Craciunescu, O. [National Institute R& D for Biological Sciences, Splaiul Independenţei 296, sector 6, cod 060031, C.P. 17-16, Bucharest (Romania); Balasoiu, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation)

    2016-03-25

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca{sup 2+} cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca{sup 2+} by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl{sub 2}) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  7. The effect of divalent salt in chondroitin sulfate solutions

    Science.gov (United States)

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.

    2016-03-01

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca2+ cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca2+ by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl2) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  8. The effect of divalent salt in chondroitin sulfate solutions

    International Nuclear Information System (INIS)

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.

    2016-01-01

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca"2"+ cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca"2"+ by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl_2) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  9. Development of a freeze-stable formulation for vaccines containing aluminum salt adjuvants.

    Science.gov (United States)

    Braun, LaToya Jones; Tyagi, Anil; Perkins, Shalimar; Carpenter, John; Sylvester, David; Guy, Mark; Kristensen, Debra; Chen, Dexiang

    2009-01-01

    Vaccines containing aluminum salt adjuvants are prone to inactivation following exposure to freeze-thaw stress. Many are also prone to inactivation by heat. Thus, for maximum potency, these vaccines must be maintained at temperatures between 2 degrees C and 8 degrees C which requires the use of the cold chain. Nevertheless, the cold chain is not infallible. Vaccines are subject to freezing during both transport and storage, and frozen vaccines are discarded (under the best circumstances) or inadvertently administered despite potentially reduced potency. Here we describe an approach to minimize our reliance on the proper implementation of the cold chain to protect vaccines from freeze-thaw inactivation. By including PEG 300, propylene glycol, or glycerol in a hepatitis B vaccine, particle agglomeration, changes in the fluorescence emission spectrum--indicative of antigen tertiary structural changes--and losses of in vitro and in vivo indicators of potency were prevented following multiple exposures to -20 degrees C. The effect of propylene glycol was examined in more detail and revealed that even at concentrations too low to prevent freezing at -10 degrees C, -20 degrees C, and -80 degrees C, damage to the vaccine could be prevented. A pilot study using two commercially available diphtheria, tetanus toxoid, and acellular pertussis (DTaP) vaccines suggested that the same stabilizers might protect these vaccines from freeze-thaw agglomeration as well. It remains to be determined if preventing agglomeration of DTaP vaccines preserves their antigenic activity following freeze-thaw events.

  10. Simple simultaneous determination of soluble and insoluble trace metal components in sea salts by a combined coprecipitation/X-ray fluorescence method

    International Nuclear Information System (INIS)

    Iwatsuki, Masaaki; Ali, Muhammad; Kyotani, Tomohiro; Fukasawa, Tsutomu

    1996-01-01

    An X-ray fluorescence method using the coprecipitation-preconcentration technique has been developed for simple determination of both acid-soluble and insoluble trace metal components, such as manganese, iron, nickel, copper and zinc in sea salts. A salt sample is dissolved in a nitric acid solution, and the residue is filtered off onto a membrane filter. After the pH is adjusted to 7-8, the filtrate is boiled, followed by addition of aluminum carrier, oxine and thionalide solutions. The solution is re-adjusted to pH 9, and kept at 80-85degC for 60 min. The precipitates are filtered off onto another membrane filter. X-Ray fluorescence intensities from two filters loaded with the residue and precipitates are measured and the concentrations of the elements are determined simultaneously using the calibration curves. Detection limits were 0.01 μg g -1 for manganese and copper, 0.04 μg g -1 for nickel and zinc, and 0.05 μg g -1 for iron, regardless of the soluble and the insoluble components. The present method was successfully applied to the analysis of sea salt samples. (author)

  11. Role of Spirulina in mitigating hemato-toxicity in Swiss albino mice exposed to aluminum and aluminum fluoride.

    Science.gov (United States)

    Sharma, Shweta; Sharma, K P; Sharma, Subhasini

    2016-12-01

    Aluminum is ingested through foods, water, air, and even drugs. Its intake is potentiated further through foods and tea prepared in aluminum utensils and Al salt added in the drinking water for removal of suspended impurities and also fluoride in the affected areas. The ameliorating role of a blue green alga Spirulina is well documented to various pollutants in the animal models. We, therefore, examined its protective role (230 mg/kg body weight) on the hematology of male Swiss albino mice treated with aluminum (sub-acute = 78.4 mg/kg body weight for 7 days, sub-chronic = 7.8 mg/kg body weight for 90 days) and aluminum fluoride (sub-acute = 103 mg/kg body weight, sub-chronic = 21 mg/kg body weight), along with their recovery after 90 days of sub-chronic exposure. This study revealed significant reduction in the values of RBC (5-18 %), Hb (15-17 %), PCV (8-14 %), and platelets (26-36 %), and increase in WBC (54-124 %) in the treated mice, particularly after sub-acute exposure. Aluminum fluoride was comparatively more toxic than aluminum. Further, Spirulina supplement not only alleviated toxicity of test chemicals in Swiss albino mice but also led to their better recovery after withdrawal.

  12. Synthetic sea water - An improved stress corrosion test medium for aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1973-01-01

    A major problem in evaluating the stress corrosion cracking resistance of aluminum alloys by alternate immersion in 3.5 percent salt (NaCl) water is excessive pitting corrosion. Several methods were examined to eliminate this problem and to find an improved accelerated test medium. These included the addition of chromate inhibitors, surface treatment of specimens, and immersion in synthetic sea water. The results indicate that alternate immersion in synthetic sea water is a very promising stress corrosion test medium. Neither chromate inhibitors nor surface treatment (anodize and alodine) of the aluminum specimens improved the performance of alternate immersion in 3.5 percent salt water sufficiently to be classified as an effective stress corrosion test method.

  13. Corrosion Protection of Aluminum

    Science.gov (United States)

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  14. Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gnanaprakash, G. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Mahadevan, S. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kalyanasundaram, P. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Philip, John [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: philip@igcar.gov.in; Raj, Baldev [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2007-05-15

    We report the effect of initial pH and temperature of iron salt solutions on formation of magnetite (Fe{sub 3}O{sub 4}) nanoparticles during co-precipitation. We synthesized nanoparticles by keeping the initial pH at 0.7, 1.5, 3.0, 4.7, 5.7, 6.7 for two different temperatures of 30 and 60 deg. C. When the initial pH (prior to alkali addition) of the salt solution was below 5, the nanoparticles formed were 100% spinel iron oxide. Average size of the magnetite particles increases with initial pH until ferrihydrite is formed at a pH of 3 and the size remains the same till 4.7 pH. The percentage of goethite formed along with non-stoichiometric magnetite was 35 and 78%, respectively, when the initial pH of the solution was 5.7 and 6.7. As the reaction temperature was increased to 60 deg. C, maintaining a pH of 6.7, the amount of goethite increased from 78 to 100%. These results show that the initial pH and temperature of the ferrous and ferric salt solution before initiation of the precipitation reaction are critical parameters controlling the composition and size of nanoparticles formed. We characterize the samples using X-ray diffraction, transmission electron microscopy and vibrating sample magnetometer. The results of the present work provide the right conditions to synthesis pure magnetite nanoparticles, without goethite impurities, through co-precipitation technique for ferrofluid applications.

  15. Effect of ortho-substituted aniline on the corrosion protection of aluminum in 2 mol/L H2SO4 solution

    KAUST Repository

    El-Deeb, Mohamed M.

    2017-02-13

    Corrosion protection of aluminum in 2 mol/L HSO solution is examined in the presence of ortho-substituted aniline derivatives using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. Density function theory (DFT) calculations are performed to investigate the aluminum-electrolyte interface relationship in the absence and presence of both ortho-substituted aniline derivatives and sulphate anions, as well as their roles in the protection efficiency at the atomic level. Our results show that ortho-aniline derivatives are good inhibitors and that their efficiencies improved as the concentration increased. SEM-EDX analysis is used to confirm the adsorption thermodynamics of the studied compounds on the aluminum surface. The best inhibitory effect is exhibits in the presence of the methyl group in ortho-position followed by ortho-carboxilic compared to aniline. The adsorption of these compounds on the aluminum surface is well described by Langmuir adsorption isotherm as well as the experimental and the theoretical adosrption energies are in a good agreement. DFT calculations also show that the interaction between the inhibitors and the aluminum surface is mainly electrostatic and depends on the type of the ortho-substituted group in addition to the sulphate anions.

  16. Centrifugal separation for miscible solutions: Fundamentals and applications to separation of molten salt nuclear material

    International Nuclear Information System (INIS)

    Li Ning; Camassa, Roberto; Ecke, Robert E.; Venneri, Francesco

    1995-01-01

    We report on the physical separation of dilute solutions using centrifugal techniques. We use numerical simulations of the diffusion and sedimentation dynamics of centrifugation to model the approach to an equilibrium concentration profile. We verify experimentally the equilibrium profiles for aqueous solutions of different salts under rotation at 25000 rpm corresponding to centrifugal accelerations of about 57,000 g and 75,000 g in two different commercial centrifuges. These measurements provide ratios of sedimentation and diffusion coefficients. We show experimental results for the dynamics of separation that confirm the predictions of the theoretical model. We also measure the mass diffusion coefficient for several solutions. Although the relaxation to equilibrium is long, we have determined a method for efficiently extracting enriched components from a ternary mixture based on fast dynamics at early times. These dynamics are modeled in numerical simulations with realistic fluid parameters. Based on these studies we show that a multistage centrifugal separation process could provide efficient physical separation of actinides and fission products from a molten-salt solution in proposed transmutation/energy-production systems. We consider technical issues in the design of such a separation system

  17. Centrifugal separation for miscible solutions: Fundamentals and applications to separation of molten salt nuclear material

    International Nuclear Information System (INIS)

    Ning Li; Camassa, R.; Ecke, R.E.

    1995-01-01

    The authors report on the physical separation of dilute solutions using centrifugal techniques. They use numerical simulations of the diffusion and sedimentation dynamics of centrifugation to model the approach to an equilibrium concentration profile. They verify experimentally the equilibrium profiles for aqueous solutions of different salts under rotation at 25000 rpm corresponding to centrifugal accelerations of about 57,000 g and 75,000 g in two different commercial centrifuges. These measurements provide ratios of sedimentation and diffusion coefficients. The authors show experimental results for the dynamics of separation that confirm the predictions of the theoretical model. They also measure the mass diffusion coefficient for several solutions. Although the relaxation to equilibrium is long, they have determined a method for efficiently extracting enriched components from a ternary mixture based on fast dynamics at early times. These dynamics are modeled in numerical simulations with realistic fluid parameters. Based on these studies the authors show that a multistage centrifugal separation process could provide efficient physical separation of actinides and fission products from a molten-salt solution in proposed transmutation/energy-production systems. The authors consider technical issues in the design of such a separation system

  18. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts

    Science.gov (United States)

    Yadav, Sushma; Chandra, Amalendu

    2017-12-01

    We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 lead to the presence of substantial dynamical heterogeneity in these solutions of strongly interacting ions. The current study helps us to understand the molecular details of hydration structure, ion pairing, and dynamics of water in the solvation shells and also of ion diffusion in aqueous solutions of divalent metal nitrate salts.

  19. Centrifugal separation for miscible solutions: Fundamentals and applications to separation of molten salt nuclear material

    Energy Technology Data Exchange (ETDEWEB)

    Ning Li; Camassa, R.; Ecke, R.E. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    The authors report on the physical separation of dilute solutions using centrifugal techniques. They use numerical simulations of the diffusion and sedimentation dynamics of centrifugation to model the approach to an equilibrium concentration profile. They verify experimentally the equilibrium profiles for aqueous solutions of different salts under rotation at 25000 rpm corresponding to centrifugal accelerations of about 57,000 g and 75,000 g in two different commercial centrifuges. These measurements provide ratios of sedimentation and diffusion coefficients. The authors show experimental results for the dynamics of separation that confirm the predictions of the theoretical model. They also measure the mass diffusion coefficient for several solutions. Although the relaxation to equilibrium is long, they have determined a method for efficiently extracting enriched components from a ternary mixture based on fast dynamics at early times. These dynamics are modeled in numerical simulations with realistic fluid parameters. Based on these studies the authors show that a multistage centrifugal separation process could provide efficient physical separation of actinides and fission products from a molten-salt solution in proposed transmutation/energy-production systems. The authors consider technical issues in the design of such a separation system.

  20. Friedel's salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution

    DEFF Research Database (Denmark)

    Shi, Zhenguo; Geiker, Mette Rica; Lothenbach, Barbara

    2017-01-01

    Thermogravimetric analysis (TGA), powder X-ray diffraction (XRD) and thermodynamic modelling have been used to obtain Friedel's salt profiles for saturated mortar cylinders exposed to a 2.8 M NaCl solution. Comparison of the measured Friedel's salt profiles with the total chloride profiles...

  1. Composition and Performance of Nanostructured Zirconium Titanium Conversion Coating on Aluminum-Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Sheng-xue Yu

    2013-01-01

    Full Text Available Nanostructured conversion coating of Al-Mg alloy was obtained via the surface treatment with zirconium titanium salt solution at 25°C for 10 min. The zirconium titanium salt solution is composed of tannic acid 1.00 g·L−1, K2ZrF6 0.75 g·L−1, NaF 1.25 g·L−1, MgSO4 1.0 g/L, and tetra-n-butyl titanate (TBT 0.08 g·L−1. X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared spectrum (FT-IR were used to characterize the composition and structure of the obtained conversion coating. The morphology of the conversion coating was obtained by atomic force microscopy (AFM and scanning electron microscopy (SEM. Results exhibit that the zirconium titanium salt conversion coating of Al-Mg alloy contains Ti, Zr, Al, F, O, Mg, C, Na, and so on. The conversion coating with nm level thickness is smooth, uniform, and compact. Corrosion resistance of conversion coating was evaluated in the 3.5 wt.% NaCl electrolyte through polarization curves and electrochemical impedance spectrum (EIS. Self-corrosion current density on the nanostructured conversion coating of Al-Mg alloy is 9.7×10-8A·cm-2, which is only 2% of that on the untreated aluminum-magnesium alloy. This result indicates that the corrosion resistance of the conversion coating is improved markedly after chemical conversion treatment.

  2. Salt-Doped Polymer Light-Emitting Devices

    Science.gov (United States)

    Gautier, Bathilde

    Polymer Light-Emitting Electrochemical Cells (PLECs) are solid state devices based on the in situ electrochemical doping of the luminescent polymer and the formation of a p-n junction where light is emitted upon the application of a bias current or voltage. PLECs answer the drawbacks of polymer light-emitting diodes as they do not require an ultra-thin active layer nor are they reliant on low work function cathode materials that are air unstable. However, because of the dynamic nature of the doping, they suffer from slow response times and poor stability over time. Frozen-junction PLECs offer a solution to these drawbacks, yet they are impractical due to their sub-ambient operation temperature requirement. Our work presented henceforth aims to achieve room temperature frozen-junction PLECS. In order to do that we removed the ion solvating/transporting polymer from the active layer, resulting in a luminescent polymer combined solely with a salt sandwiched between an ITO electrode and an aluminum electrode. The resulting device was not expected to operate like a PLEC due to the absence of an ion-solvating and ion-transporting medium. However, we discovered that the polymer/salt devices could be activated by applying a large voltage bias, resulting in much higher current and luminance. More important, the activated state is quasi static. Devices based on the well-known orange-emitting polymer MEH-PPV displayed a luminance storage half-life of 150 hours when activated by forward bias (ITO biased positively with respect to the aluminum) and 200 hours when activated by reverse bias. More remarkable yet, devices based on a green co-polymer displayed no notable decay in current density or luminance even after being stored for 1200 hours at room temperature! PL imaging under UV excitation demonstrates the presence of doping. These devices are described herein along with an explanation of their operating mechanisms.

  3. The influence of polarizability and charge transfer on specific ion effects in the dynamics of aqueous salt solutions

    Science.gov (United States)

    Nguyen, Mary; Rick, Steven W.

    2018-06-01

    The diffusion rates for water molecules in salt solutions depend on the identity of the ions, as well as their concentration. Among the alkali metal ions, cesium and potassium increase and sodium strongly decreases the diffusion constant of water. The origin of the difference can be understood by examining the simulation results using different potential models. In this work, aqueous solutions of salts are simulated with a variety of models. Commonly used non-polarizable models, which otherwise reproduce many experimental properties, do not capture the trend in the diffusion constant, while models which include polarization and/or charge transfer interactions do. For the non-polarizable models, the diffusion constant decreases too strongly with salt concentration. The changes in the water diffusion constant with increasing salt concentration match the diffusion constant of the ion. The ion diffusion constant is dependent on the residence time for water in the ion solvation shell. The non-polarizable models over-estimate the residence time, relative to the translational diffusion constant and so tend to under-estimate the ion and water diffusion constants.

  4. Corrosion studies on type AISI 316L stainless steel and other materials in lithium-salt solutions

    International Nuclear Information System (INIS)

    Zheng, J.H.; Bogaerts, W.F.; Agema, K.; Phlippo, K.; Bruggeman, A.; Lorenzetto, P.; Embrechts, M.J.

    1991-01-01

    A possible concept for the blanket for next generation fusion devices is the lithium salt blanket, where lithium salt is dissolved in an aqueous coolant in order to provide for tritium. Type AISI 316L stainless steel has been considered as a structural material for such a blanket for NET (Next European Torus), and a systematic study of the corrosion behaviour of 316L stainless steel has been carried out in a number of lithium salt solutions. The experiments include cyclic potentiodynamic polarization measurement, crevice corrosion fatigue and stress corrosion cracking (SCC) tests. This paper presents a part of novel corrosion results concerning the compatibility of 316L steel and a series of other materials relevant to a fusion blanket environment. No major uniform corrosion problem has been observed, but localized corrosion, particularly corrosion fatigue and SCC, of 316L stainless steel have been found so far in a lithium hydroxide solution under some specific potential conditions. The critical electrochemical potential zones for SCC have been identified in the present study. (orig.)

  5. Characterization of swollen structure of high-density polyelectrolyte brushes in salt solution by neutron reflectivity

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Motoyasu; Takahara, Atsushi [Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Terayama, Yuki [Graduate School of Engineering, Kyushu University (Japan); Hino, Masahiro [Reactor Research Institute, Kyoto University (Japan); Ishihara, Kazuhiko, E-mail: takahara@cstf.kyushu-u.ac.j [Graduate School of Engineering, University of Tokyo (Japan)

    2009-08-01

    Zwitterionic and cationic polyelectrolyte brushes on quartz substrate were prepared by surface-initiated atom transfer radical polymerization of 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) and 2-(methacryloyloxy)ethyltrimethylammonium chloride (METAC), respectively. The effects of ionic strength on brush structure and surface properties of densely grafted polyelectrolyte brushes were analysed by neutron reflectivity (NR) measurements. NR at poly(METAC)/D{sub 2}O and poly(MPC)/D{sub 2}O interface revealed that the grafted polymer chains were fairly extended from the substrate surface, while the thickness reduction of poly(METAC) brush was observed in 5.6 M NaCl/D{sub 2}O solution due to the screening of the repulsive interaction between polycations by hydrated salt ions. Interestingly, no structural change was observed in poly(MPC) brush even in a salt solution probably due to the unique interaction properties of phosphorylcholine units.

  6. Influence of Solution-Annealing Parameters on the Continuous Cooling Precipitation of Aluminum Alloy 6082

    Directory of Open Access Journals (Sweden)

    Hannes Fröck

    2018-04-01

    Full Text Available We use a systematic approach to investigate the influence of the specific solution condition on quench-induced precipitation of coarse secondary phase particles during subsequent cooling for a wide range of cooling rates. Commercially produced plate material of aluminum alloy EN AW-6082 was investigated and the applied solution treatment conditions were chosen based on heating differential scanning calorimetry experiments of the initial T651 condition. The kinetics of the quench-induced precipitation were investigated by in situ cooling differential scanning calorimetry for a wide range of cooling rates. The nature of those quench-induced precipitates was analyzed by electron microscopy. The experimental data was evaluated with respect to the detrimental effect of incomplete dissolution on the age-hardening potential. We show that if the chosen solution temperature and soaking duration are too low or short, the solution treatment results in an incomplete dissolution of secondary phase particles. This involves precipitation during subsequent cooling to start concurrently with the onset of cooling, which increases the quench sensitivity. However, if the solution conditions allow the formation of a complete solid solution, precipitation will start after a certain degree of undercooling, thus keeping the upper critical cooling rate at the usual alloy-specific level.

  7. Aluminum and Phthalates in Calcium Gluconate: Contribution From Glass and Plastic Packaging.

    Science.gov (United States)

    Yokel, Robert A; Unrine, Jason M

    2017-01-01

    Aluminum contamination of parenteral nutrition solutions has been documented for 3 decades. It can result in elevated blood, bone, and whole body aluminum levels associated with neurotoxicity, reduced bone mass and mineral content, and perhaps hepatotoxicity. The primary aluminum source among parenteral nutrition components is glass-packaged calcium gluconate, in which aluminum concentration in the past 3 decades has averaged approximately 4000 μg/L, compared with nutrition solutions; 2 packaged in glass (from France and the United States) and 1 in plastic (from Germany); in a recently released plastic-packaged solution (from the United States); and in the 2 glass containers. Phthalate concentration was determined in selected samples of each product and leachate of the plastic containers. The initial aluminum concentration was approximately 5000 μg/L in the 2 glass-packaged products and approximately 20 μg/L in the plastic-packaged product, and increased approximately 30%, 50%, and 100% in 2 years, respectively. The aluminum concentration in a recently released Calcium Gluconate Injection USP was approximately 320 μg/L. Phthalates were not detected in any calcium gluconate solutions or leachates. Plastic packaging greatly reduces the contribution of aluminum to parenteral nutrition solutions from calcium gluconate compared with the glass-packaged product.

  8. Molecular Structure of Salt Solutions: A New View of the Interface with Implications for Heterogeneous Atmospheric Chemistry

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Pavel; Tobias, D. J.

    2001-01-01

    Roč. 105, č. 43 (2001), s. 10468-10472 ISSN 1089-5647 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : air-solution interface * salt solutions * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.379, year: 2001

  9. Modification of thermal sensitivity of Chinese hamster cells by exposure to solutions of monovalent and divalent cationic salts

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Azzam, E.I.; Vadasz, J.

    1984-06-01

    Chinese hamster V79 cells were heated in culture medium or in 0.155-mol.dm -3 solutions of LiCl, NaCl, KCl, MgCl 2 , CaCl 2 and BaCl 2 . The presence of any one of these ionic solutions during heating increased the thermal sensitivity of the cells. The order of increased thermal sensitivity was KCl > LiCl > NaCl for the monovalent salts and BaCl 2 > MgCl 2 > CaCl 2 for the divalent cation salts. The addition of glucose to LiCl or NaCl solutions did not reduce the thermal sensitization caused by these solutions. When cells were sensitized by LiCl or NaCl treatment, a change in pH from 7.2 to 6.6 did not further increase thermal sensitivity. These data show that nutrient and ionic factors and their interplay are involved in cellular thermal sensitivity

  10. Aluminum Target Dissolution in Support of the Pu-238 Program

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Benker, Dennis [ORNL; DePaoli, David W [ORNL; Felker, Leslie Kevin [ORNL; Mattus, Catherine H [ORNL

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  11. Aluminum electroplating on steel from a fused bromide electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Prabhat K. Tripathy; Laura A. Wurth; Eric J. Dufek; Toni Y. Gutknecht; Natalie J. Gese; Paula Hahn; Steven M. Frank; Guy L. Frederickson; J. Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBr–KBr–CsBr–AlBr3) was used to electro-coat aluminum on steel substrates. The electrolytewas prepared by the addition of AlBr3 into the eutectic LiBr–KBr–CsBr melt. A smooth, thick, adherent and shiny aluminum coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminum coverage. Both salt immersion and open circuit potential measurement suggested that the coatings did display a good corrosionresistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminum coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminumcoating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  12. Neptunium sorption and co-precipitation of strontium in simulated DWPF salt solution

    International Nuclear Information System (INIS)

    McIntyre, P.F.; Orebaugh, E.G.; King, C.M.

    1988-01-01

    Batch experiments performed using crushed slag saltstone (∼40 mesh) removed >80% of 237 Np from simulated Defense Waste Processing Facility (DWPF) salt solution. The concentration of 237 Np (110 pCi/ml) used was 1000x greater than levels in actual DWPF solutions. Neptunium-239 was used as a tracer and was formed by neutron activation of uranyl nitrate. Results showed that small amounts of crushed saltstone (as little as 0.05 grams), removed >80% of neptunium from 15 ml of simulated DWPF solution after several hours equilibration. The neptunium is sorbed on insoluble carbonates formed in and on the saltstone matrix. Further testing showed that addition of 0.01 and 0.10 ml of 1 molar Ca +2 (ie. Ca (NO 3 ) 2 , CaCl 2 ) into 15 ml of simulated DWPF solution yielded a white carbonate precipitate which also removed >80% of the neptunium after 1 hour equilibration. Further experiments were performed to determine the effectiveness of this procedure to co-precipitate strontium

  13. A novel method of non-violent dissolution of sodium metal in a concentrated aqueous solution of Epsom salt

    International Nuclear Information System (INIS)

    Lakshmanan, A.R.; Prasad, M.V.R.; Ponraju, D.; Krishnan, H.

    2004-01-01

    A new technique of non-violent and fast dissolution of sodium metal in a concentrated aqueous solution of Epsom salt (MgSO 4 .7H 2 O) at room temperature (RT) has been developed. The dissolution process is mildly exothermic but could be carried out even in a glass beaker in air under swift stirring condition. The reaction products consist of mixed salts of MgSO 4 and Na 2 SO 4 as well as Mg(OH) 2 which are only mildly alkaline and hence are non-corrosive and non-hazardous unlike NaOH. A 50 mL solution having Epsom salt concentration of 2 M was found to give the optimal composition for disposal of 1 g of sodium. Supersaturated (>2.7 M), as well as dilute (<1.1 M) solutions, however, cause violent reactions and hence should be avoided. Repeated sodium dissolution in Epsom solution produced a solid waste of 4.7 g per g of sodium dissolved which is comparable with the waste (4 g) produced in 8 M NaOH solution. A 1.4 M Epsom solution sprayed with a high-pressure jet cleaner at RT in air easily removed the sodium blocked inside a metal pipe made of mild steel. The above jet also dissolved peacefully residual sodium collected on the metal tray after a sodium fire experiment. No sodium fire or explosion was observed during this campaign. The Epsom solution spray effectively neutralized the minor quantity of sodium aerosol produced during this campaign. This novel technique would hence be quite useful for draining sodium from fast breeder reactor components and bulk processing of sodium as well as for sodium fire fighting

  14. Effect of Silica Sol on Boric-sulfuric Acid Anodic Oxidation of LY12CZ Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    LIU Hui-cong

    2016-07-01

    Full Text Available Aluminum alloy anodizing coatings were prepared for LY12CZ in the boric-sulfuric acid solution (45g/L sulfuric acid,8g/L boric acid with the addition of 10%,20%,30% (volume fractionsilica sol,with the gradient voltage of 15V. The current and voltage transients of the anodizing process were collected by data collection instrument. The surface morphologies,microstructure and chemical composition of the anodic coatings were characterized by scanning electron microscopy (SEM. The corrosion resistance was examined by neutral salt spray,electrochemical impedance spectroscopy (EIS test and titrating test. The results show that the different concentration of silica sol addition can influence the forming and dissolution of anodizing coatings,improve the compactness smoothness and corrosion resistance during the anodizing process in the boric-sulfuric acid solution.

  15. High Dielectric Performance of Solution-Processed Aluminum Oxide-Boron Nitride Composite Films

    Science.gov (United States)

    Yu, Byoung-Soo; Ha, Tae-Jun

    2018-04-01

    The material compositions of oxide films have been extensively investigated in an effort to improve the electrical characteristics of dielectrics which have been utilized in various electronic devices such as field-effect transistors, and storage capacitors. Significantly, solution-based compositions have attracted considerable attention as a highly effective and practical technique to replace vacuum-based process in large-area. Here, we demonstrate solution-processed composite films consisting of aluminum oxide (Al2O3) and boron nitride (BN), which exhibit remarkable dielectric properties through the optimization process. The leakage current of the optimized Al2O3-BN thin films was decreased by a factor of 100 at 3V, compared to pristine Al2O3 thin film without a loss of the dielectric constant or degradation of the morphological roughness. The characterization by X-ray photoelectron spectroscopy measurements revealed that the incorporation of BN with an optimized concentration into the Al2O3 dielectric film reduced the density of oxygen vacancies which act as defect states, thereby improving the dielectric characteristics.

  16. TANK 12 SLUDGE CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION

    International Nuclear Information System (INIS)

    Reboul, S.; Hay, Michael; Zeigler, Kristine; Stone, Michael

    2009-01-01

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of ∼7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low (∼20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40% of the

  17. Development of a mathematical model of a packed column for benzene removal from salt solutions

    International Nuclear Information System (INIS)

    Georgeton, G.K.

    1989-01-01

    A mathematical model of a packed column was developed to describe the removal of benzene from radioactive salt solutions at the Savannah River Site. The model was developed from existing, generalized mass transfer correlations for randomly dumped packing, and the correlations were adapted for structured packing. Thermophysical data specific to the solutions of interest were incorporated into the model. Verification of the code was completed using operating data from stripping columns at other locations

  18. Applied Electrochemistry of Aluminum

    DEFF Research Database (Denmark)

    Li, Qingfeng; Qiu, Zhuxian

    Electrochemistry of aluminum is of special importance from both theoretical and technological point of view. It covers a wide range of electrolyte systems from molten fluoride melts at around 1000oC to room temperature molten salts, from aqueous to various organic media and from liquid to solid...... electrolytes. The book is an updated review of the technological advances in the fields of electrolytic production and refining of metals, electroplating, anodizing and other electrochemical surface treatments, primary and secondary batteries, electrolytic capacitors; corrosion and protection and others....

  19. Inhibition of aluminum corrosion using Opuntia extract

    International Nuclear Information System (INIS)

    El-Etre, A.Y.

    2003-01-01

    The inhibitive action of the mucilage extracted from the modified stems of prickly pears, toward acid corrosion of aluminum, is tested using weight loss, thermometry, hydrogen evolution and polarization techniques. It was found that the extract acts as a good corrosion inhibitor for aluminum corrosion in 2.0 M HCl solution. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm. It was found that the adsorption of the extract on aluminum surface is a spontaneous process. The inhibition efficiency (IE) increases as the extract concentration is increased. The effect of temperature on the IE was studied. It was found that the presence of extract increases the activation energy of the corrosion reaction. Moreover, the thermodynamic parameters of the adsorption process were calculated. It was found also that the Opuntia extract provides a good protection to aluminum against pitting corrosion in chloride ion containing solutions

  20. Molecular insights into shellac film coats from different aqueous shellac salt solutions and effect on disintegration of enteric-coated soft gelatin capsules.

    Science.gov (United States)

    Al-Gousous, J; Penning, M; Langguth, P

    2015-04-30

    The purpose of this investigation was to study the effect of using different salts of shellac on the disintegration properties of shellac-based enteric coatings. In the last two decades, shellac has been increasingly used as an aqueous solution for enteric coating purposes, with the ammonium salt being the form typically used. Little investigation has been performed on using other salts, and therefore, this was the focus of our work. Enteric coatings, based on different shellac salts (ammonium, sodium, potassium and composite ammonium-sodium), were applied onto soft gelatin capsules. Disintegration testing of the coated soft gelatin capsules showed that alkali metal salts promote faster disintegration than ammonium salts. In order to determine the causes behind these differences, the solubility, thermal and spectroscopic properties of films cast from the different salts were investigated. The results show that films cast from ammonium-based salts of shellac are, unlike those cast from alkali metal-based salts, water-insoluble. Spectroscopic evidence suggests that this might be due to partial salt dissociation resulting in loss of ammonium as ammonia and reduced degree of shellac ionization during drying. In addition, oxidation of shellac aldehyde groups of the ammonium-based shellac salts could also play a role. And possible higher extent of shellac hydrolysis during the preparation of alkali metal salts might also be a factor. Therefore, the nature of the shellac salt used in the preparation of shellac-based aqueous coating solutions is a significant formulation factor affecting product performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Aluminum anode for aluminum-air battery - Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution

    Science.gov (United States)

    Park, In-Jun; Choi, Seok-Ryul; Kim, Jung-Gu

    2017-07-01

    Effects of Zn and In additions on the aluminum anode for Al-air battery in alkaline solution are examined by the self-corrosion rate, cell voltage, current-voltage characteristics, anodic polarization, discharge performance and AC impedance measurements. The passivation behavior of Zn-added anode during anodic polarization decreases the discharge performance of Al-air battery. The addition of In to Al-Zn anode reduces the formation of Zn passivation film by repeated adsorption and desorption behavior of In ion onto anode surface. The attenuated Zn passive layer by In ion attack leads to the improvement of discharge performance of Al-air battery.

  2. Pitting corrosion of friction stir welded aluminum alloy thick plate in alkaline chloride solution

    International Nuclear Information System (INIS)

    Xu Weifeng; Liu Jinhe; Zhu Hongqiang

    2010-01-01

    The pitting corrosion of different positions (Top, Middle and Bottom) of weld nugget zone (WNZ) along thickness plate in friction stir welded 2219-O aluminum alloy in alkaline chloride solution was investigated by using open circuit potential, cyclic polarization, scanning electron microscopy and atomic force microscope. The results indicate that the material presents significant passivation, the top has highest corrosion potential, pitting potential and re-passivation potential compared with the bottom and base material. With the increase of traverse speed from 60 to 100 mm/min or rotary speed from 500 to 600 rpm, the corrosion resistance decreases.

  3. Determining the Enthalpy of Vaporization of Salt Solutions Using the Cooling Effect of a Bubble Column Evaporator

    Science.gov (United States)

    Fan, Chao; Pashley, Richard M.

    2016-01-01

    The enthalpy of vaporization (?H[subscript vap]) of salt solutions is not easily measured, as a certain quantity of pure water has to be evaporated from a solution, at constant composition, and at a fixed temperature and pressure; then the corresponding heat input has to be measured. However, a simple bubble column evaporator (BCE) was used as a…

  4. Changes in mechanical properties and morphology of elastomer coatings after immersion in salt solutions

    Science.gov (United States)

    Terán Arce, Fernando; Avci, Recep; Beech, Iwona; Cooksey, Keith; Wigglesworth-Cooksey, Barbara

    2004-03-01

    RTV11 (^TM GE Silicones) and Intersleek (^TM International Paints) are two elastomers of considerable significance to the navy and maritime industry for their application as fouling release coatings. Both materials are composed of polymeric matrices with embedded filler particles, which provide increased strength and durability to the elastomer. Using Atomic force microscopy (AFM), surface and bulk analysis techniques, we have found surface regions with microelastic properties, which correlate with the locations of filler particles inside the coatings. These particles are able to undergo elastic displacements of hundreds of nm inside the polymeric matrix during compression by the AFM tip. While elastic properties of Intersleek remain largely unchanged after immersion in salt solutions, roughening, embrittlement and stiffening occurs in RTV11 coatings depending on the amount of curing agent and humidity used during preparation and curing, respectively. Interestingly, such transformations are absent after immersion in pure water. In particle free regions, elastic moduli of RTV11 take values of 2 - 3 MPa before immersion in salt solutions. After immersion, those values increase 5 - 10 times.

  5. Adding salt to a surfactant solution: Linear rheological response of the resulting morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Gaudino, Danila; Pasquino, Rossana, E-mail: r.pasquino@unina.it; Grizzuti, Nino [DICMaPI, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy)

    2015-11-15

    The micellar system composed of Cetylpyridinium Chloride-Sodium Salicylate (CPyCl-NaSal) in brine aqueous solutions has been studied by systematically changing the salt concentration, in order to investigate the rheology of the arising morphologies. In particular, the zero-shear viscosity and the linear viscoelastic response have been measured as a function of the NaSal concentration (with [CPyCl] = 100 mM). The Newtonian viscosity shows a nonmonotonic dependence upon concentration, passing through a maximum at NaSal/CPyCl ≈ 0.6, and eventually dropping at higher salt concentrations. The progressive addition of salt determines first a transition from a Newtonian to a purely Maxwell-like behavior as the length of the micelles significantly increases. Beyond the peak viscosity, the viscoelastic data show two distinct features. On the one hand, the main relaxation time of the system strongly decreases, while the plateau modulus remains essentially constant. Calculations based on the rheological data show that, as the binding salt concentration increases, there is a decrease in micelles breaking rate and a decrease in their average length. On the other hand, in the same concentration region, a low-frequency elastic plateau is measured. Such a plateau is considered as the signature of a tenuous, but persistent branched network, whose existence is confirmed by cryo-transmission electron microscopy images.

  6. Sorption and permeation of solutions of chloride salts, water and methanol in a Nafion membrane

    International Nuclear Information System (INIS)

    Villaluenga, J.P.G.; Barragan, V.M.; Seoane, B.; Ruiz-Bauza, C.

    2006-01-01

    The sorption of water-methanol mixtures containing a dissolved chloride salt in a Nafion 117 membrane, and their transport through the membrane under the driving force of a pressure gradient, have been studied. Both type of experiments was performed by using five different salts: lithium chloride, sodium chloride, cesium chloride, magnesium chloride and calcium chloride. It was observed that both the permeation flow through the membrane and the membrane swelling increase significantly with the methanol content of the solutions. These facts are attributed to the increase in wet membrane porosity, which brings about the increase of the mobility of solvents in the membrane, besides the increase of the mobility of the polymer pendant chains. In contrast, the influence of the type of electrolyte on the membrane porosity and permeability is not very important, with the exception of the CsCl solutions, which is probably due to the small hydration ability of the Cs + ion

  7. The Synthesis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution

    International Nuclear Information System (INIS)

    Sri Budi Harmani; Dewi Sondari; Agus Haryono

    2008-01-01

    Described in this research are the synthesis of silver nanoparticle produced by chemical reduction of silver salt (silver nitrate AgNO 3 ) solution. As a reducer, sodium citrate (C 6 H 5 O 7 Na 3 ) was used. Preparation of silver colloid is done by using chemical reduction method. In typical experiment 150 ml of 1.10 -3 M AgNO 3 solution was heated with temperature variation such as 90, 100, 110 degree of Celsius. To this solution 15 ml of 1 % trisodium citrate was added into solution drop by drop during heating. During the process, solution was mixed vigorously. Solution was heated until colour's change is evident (pale yellow solution is formed). Then it was removed from the heating element and stirred until cooled to room temperature. Experimental result showed that diameter of silver nanoparticles in colloid solution is about 28.3 nm (Ag colloid, 90 o C); 19.9 nm (Ag colloid, 100 o C)and 26.4 nm (Ag colloid, 110 o C). Characterization of the silver nanoparticle colloid conducted by using UV-Vis Spectroscopy, Particles Size Analyzer (PSA) and Scanning Electron Microscope (SEM) indicate the produced structures of silver nanoparticles. (author)

  8. Scientific Background for Processing of Aluminum Waste

    Directory of Open Access Journals (Sweden)

    Kononchuk Olga

    2017-01-01

    of the aluminum waste A1- Zn-Cu-Si-Fe shows that depending on the content of the metal the dissolution process of an aluminum alloy should be treated as the result of the chemical interaction of the metal with an alkaline solution. It is necessary to consider the behavior of the main components of alloys in an alkaline solution as applied to the system Na2O - Al2O3 - SiO2 - CO2 - H2O.

  9. Characterization of the deviation to the ideality of concentrated actinide and lanthanide salt solutions: contribution of the Bimsa theory

    International Nuclear Information System (INIS)

    Ruas, A.

    2006-03-01

    The aim of this work is to describe the mean stoichiometric activity coefficients, osmotic coefficients or water activities of aqueous actinide nitrate salt solutions up to high concentration. These sets of data are required for a better control of the equilibria occurring in liquid-liquid extraction processes. Experimental acquisition of these thermodynamic properties, in the case of some actinide nitrates, is possible and was conducted before.But, many actinide salt solutions cannot be experimentally handled up to high concentration because of unstable oxidation state or very high radioactivity. As a consequence, a suitable predictive theory is necessary for the description of these nitrate salt solutions (such as Am (NO 3 ) 3 , Cm (NO 3 ) 3 ). The BIMSA ('Binding Mean Spherical Approximation') was chosen for this purpose. This theory, unlike other methods, uses a set of microscopic parameters that have some physical meaning, for the description of macroscopic thermodynamic properties (osmotic coefficients, activity coefficients).The following manuscript is divided by 4 chapters, corresponding to 4 articles accepted in the scientific journal 'Journal of Physical Chemistry'. Chapter 1 first reviews the basic thermodynamic concepts before describing the issues involved in acquiring actinides binary data. An approach based on the thermodynamic concept of simple solutions, the notion of fictive binary data, is described. Within this approach, the activity coefficient of an aqueous phase constituent depends on two parameters: the water activity of the system and total concentration of dissolved constituents. As a first application, new fictive binary data of uranyl nitrate are proposed from measurements on the ternary system UO 2 (NO 3 ) 2 /HNO 3 /H 2 O.Chapter 2 gives the main principles of the BIMSA theory. It shows also preliminary promising results obtained when modeling lanthanide(III) salt properties. Then, in chapter 3, two predictive capabilities of the theory

  10. A MODERN INTERPRETATION OF THE BARNEY DIAGRAM FOR ALUMINUM SOLUBILITY IN TANK WASTE

    International Nuclear Information System (INIS)

    Reynolds, J.G.; Reynolds, D.A.

    2009-01-01

    Experimental and modeling studies of aluminum solubility in Hanford tank waste have been developed and refined for many years in efforts to resolve new issues or develop waste treatment flowsheets. The earliest of these studies was conducted by G. Scott Barney, who performed solubility studies in highly concentrated electrolyte solutions to support evaporator campaign flowsheets in the 1970's. The 'Barney Diagram', a term still widely used at Hanford today, suggested gibbsite (γ-Al(OH) 3 ) was much more soluble in tank waste than in simple sodium hydroxide solutions. These results, which were highly surprising at the time, continue to be applied to new situations where aluminum solubility in tank waste is of interest. Here, we review the history and provide a modern explanation for the large gibbsite solubility observed by Barney, an explanation based on basic research that has been performed and published in the last 30 years. This explanation has both thermodynamic and kinetic aspects. Thermodynamically, saturated salt solutions stabilize soluble aluminate species that are minor components in simple sodium hydroxide solutions. These species are the aluminate dimer and the sodium-aluminate ion-pair. Ion-pairs must be present in the Barney simulants because calculations showed that there was insufficient space between the highly concentrated ions for a water molecule. Thus, most of the ions in the simulants have to be ion-paired. Kinetics likely played a role as well. The simulants were incubated for four to seven days, and more recent data indicate that this was unlikely sufficient time to achieve equilibrium from supersaturation. These results allow us to evaluate applications of the Barney results to current and future tank waste issues or flowsheets.

  11. Catalyzed reduction of nitrate in aqueous solutions

    International Nuclear Information System (INIS)

    Haas, P.A.

    1994-08-01

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH 3 , hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250 degree C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs 3 or NH 4 NO 3 is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO 3 to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions

  12. Viscosity of aluminum under shock-loading conditions

    International Nuclear Information System (INIS)

    Ma Xiao-Juan; Liu Fu-Sheng; Zhang Ming-Jian; Sun Yan-Yun

    2011-01-01

    A reliable data treatment method is critical for viscosity measurements using the disturbance amplitude damping method of shock waves. In this paper the finite difference method is used to obtain the numerical solutions for the disturbance amplitude damping behaviour of the sinusoidal shock front in a flyer-impact experiment. The disturbance amplitude damping curves are used to depict the numerical solutions of viscous flow. By fitting the experimental data to the numerical solutions of different viscosities, we find that the effective shear viscosity coefficients of shocked aluminum at pressures of 42, 78 and 101 GPa are (1500±100) Pa·s, (2800±100) Pa·s and (3500±100) Pa·s respectively. It is clear that the shear viscosity of aluminum increases with an increase in shock pressure, so aluminum does not melt below a shock pressure of 101 GPa. This conclusion is consistent with the sound velocity measurement. (interdisciplinary physics and related areas of science and technology)

  13. Extreme ductile deformation of fine-grained salt by coupled solution-precipitation creep and microcracking: Microstructural evidence from perennial Zechstein sequence (Neuhof salt mine, Germany)

    Czech Academy of Sciences Publication Activity Database

    Závada, Prokop; Desbois, G.; Schwedt, A.; Lexa, O.; Urai, J. L.

    2012-01-01

    Roč. 37, April (2012), s. 89-104 ISSN 0191-8141 R&D Projects: GA ČR GA14-15632S Institutional support: RVO:67985530 Keywords : rock salt * solution-precipitation creep * microcracking * Griffith crack * fluid inclusion trails Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.285, year: 2012

  14. Aluminum corrosion product release kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matt, E-mail: Matthew.Edwards@cnl.ca; Semmler, Jaleh; Guzonas, Dave; Chen, Hui Qun; Toor, Arshad; Hoendermis, Seanna

    2015-07-15

    Highlights: • Release of Al corrosion product was measured in simulated post-LOCA sump solutions. • Increased boron was found to enhance Al release kinetics at similar pH. • Models of Al release as functions of time, temperature, and pH were developed. - Abstract: The kinetics of aluminum corrosion product release was examined in solutions representative of post-LOCA sump water for both pressurized water and pressurized heavy-water reactors. Coupons of AA 6061 T6 were exposed to solutions in the pH 7–11 range at 40, 60, 90 and 130 °C. Solution samples were analyzed by inductively coupled plasma atomic emission spectroscopy, and coupon samples were analyzed by secondary ion mass spectrometry. The results show a distinct “boron effect” on the release kinetics, expected to be caused by an increase in the solubility of the aluminum corrosion products. New models were developed to describe both sets of data as functions of temperature, time, and pH (where applicable)

  15. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Jalili, M. [Nanomaterials and Nanocoatings Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Surface Coatings and Corrosion Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Rostami, M. [Nanomaterials and Nanocoatings Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir [Surface Coatings and Corrosion Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Highlights: • Aluminum nanoparticle was modified with amino trimethylene phosphonic acid. • 2 wt% of zinc dust in zinc-rich paint was substituted by aluminum nanoparticles. • Surface modified aluminum nanoparticle improved the cathodic period of protection. • Aluminum nanoparticles enhanced the corrosion protection of the zinc-rich coating. - Abstract: Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties.

  16. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    International Nuclear Information System (INIS)

    Jalili, M.; Rostami, M.; Ramezanzadeh, B.

    2015-01-01

    Highlights: • Aluminum nanoparticle was modified with amino trimethylene phosphonic acid. • 2 wt% of zinc dust in zinc-rich paint was substituted by aluminum nanoparticles. • Surface modified aluminum nanoparticle improved the cathodic period of protection. • Aluminum nanoparticles enhanced the corrosion protection of the zinc-rich coating. - Abstract: Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties

  17. Investigation of the mechanism of microplasma impact on iron and aluminum load using solutions of organic substances

    International Nuclear Information System (INIS)

    Lobanova, G L; Yurmazova, T A; Shiyan, L N; Voyno, D A

    2015-01-01

    The paper reports on the study of mechanism of electroeffects on iron and aluminum and pellets with using solutions of organic substances. Methylene blue solution, furacilin and eosin were used. It is observed the reactions of the pulse at the time and after switching off the voltage source. It is shown that there are two developing process in the conditions studied. The first process depends on material of electrodes and pulse parameters. The second process occurs spontaneously and it is determined by the redox reaction and sorption processes. The products of electrode erosion and active particles react in the redox reactions. Active particles are formed in solution by the action of pulsed electric discharge in water. The highest efficiency of the process was demonstrated on an iron pellets. (paper)

  18. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  19. Modeling of Flow, Transport and Controlled Sedimentation Phenomena during Mixing of Salt Solutions in Complex Porous Formations

    Science.gov (United States)

    Skouras, Eugene D.; Jaho, Sofia; Pavlakou, Efstathia I.; Sygouni, Varvara; Petsi, Anastasia; Paraskeva, Christakis A.

    2015-04-01

    The deposition of salts in porous media is a major engineering phenomenon encountered in a plethora of industrial and environmental applications where in some cases is desirable and in other not (oil production, geothermal systems, soil stabilization etc). Systematic approach of these problems requires knowledge of the key mechanisms of precipitating salts within the porous structures, in order to develop new methods to control the process. In this work, the development and the solution of spatiotemporally variable mass balances during salt solution mixing along specific pores were performed. Both analytical models and finite differences CFD models were applied for the study of flow and transport with simultaneous homogeneous and heterogeneous nucleation (by crystal growth on the surface of the pores) in simple geometries, while unstructured finite elements and meshless methods were developed and implemented for spatial discretization, reconstruction, and solution of transport equations and homogeneous / heterogeneous reactions in more complex geometries. At initial stages of this work, critical problem parameters were identified, such as the characteristics of the porosity, the number of dissolved components, etc. The parameters were then used for solving problems which correspond to available experimental data. For each combination of ions and materials, specific data and process characteristics were included: (a) crystal kinetics (nucleation, growth rates or reaction surface rates of crystals, critical suspension concentrations), (b) physico-chemical properties (bulk density, dimensions of generated crystals, ion diffusion coefficients in the solution), (c) operating parameters (macroscopic velocity, flow, or pressure gradient of the solution, ion concentration) (d) microfluidic data (geometry, flow area), (e) porosity data in Darcy description (initial porosity, specific surface area, tortuosity). During the modeling of flow and transport in three

  20. Green Chemicals from d-glucose : Systematic Studies on Catalytic Effects of Inorganic Salts on the Chemo-Selectivity and Yield in Aqueous Solutions

    NARCIS (Netherlands)

    Rasrendra, C. B.; Makertihartha, I. G. B. N.; Adisasmito, S.; Heeres, H. J.

    The use of inorganic salts as catalysts for the reactions of d-glucose in aqueous solutions in a batch reactor is reported. The type of salt and effect of reaction time were examined in detail at a fixed salt (5 mM) and d-glucose concentration (0.1 M) and at a temperature of 140 A degrees C. Al(III)

  1. Rule of formation of aluminum electroplating layer on Q235 steel.

    Science.gov (United States)

    Ding, Zhimin; Feng, Qiuyuan; Shen, Changbin; Gao, Hong

    2011-06-01

    Aluminum electroplating layer on Q235 steel in AlCl3-NaCl-KCl molten salt was obtained, and the rule of its nucleation and growth were investigated. The results showed that aluminum electroplating layer formed through nucleating and growing of aluminum particles, and thickened by delaminating growth pattern. At low current density, the morphology of aluminum particles took on flake-like, while at high current density they changed to spherical. The thickness of plating layer increases with increasing current density and electroplating time. The relationship between the plating thickness (δ) and electroplating time (t) or current density (i) can be expressed as δ = 0.28f(137), and δ = 1.1i(1-39). Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  2. Passivation behavior of Type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF6 salt

    International Nuclear Information System (INIS)

    Myung, Seung-Taek; Sasaki, Yusuke; Saito, Takamitsu; Sun, Yang-Kook; Yashiro, Hitoshi

    2009-01-01

    Passivation behavior of type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF 6 salt was studied using electrochemical polarization, X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectroscopy (ToF-SIMS). Cathodic polarization to 0 V vs. Li/Li + resulted in most but not complete reduction of the air-formed film from oxides to metal on the stainless steel, as confirmed by XPS. For complete elimination of the air-formed film, the surface of the stainless steel was scratched under anodic polarization conditions. At 3 V vs. Li/Li + where an anodic current peak appeared, only an indistinct layer was recognized on the newly scratched surface, according to ToF-SIMS analysis. Above 4 V vs. Li/Li + , substantial passive films were formed, which were composed of oxides and fluorides of iron and chromium. The origin of oxide was due to water contained in the non-aqueous alkyl carbonate solution, and that of fluorides were the result of the decomposition of electrolytic salt, LiPF 6 , especially at higher potential. The resultant passive films were stable in the non-aqueous alkyl carbonate solution containing LiPF 6 salt.

  3. Effect of Hofmeister series salts on Absorptivity of aqueous solutions on Sodium polyacrylate

    Science.gov (United States)

    Korrapati, Swathi; Pullela, Phani Kumar; Vijayalakshmi, U.

    2017-11-01

    Sodium polyacrylate (SPA) is a popular super absorbent commonly used in children diapers, sanitary pads, adult diapers etc. The use of SPA is in force from past 30 years and the newer applications like as food preservant are evolving. SPA is recently discovered by our group for improvement of sensitivity of colorimetric agents. Though the discovery of improvement in sensitivity is phenomenal, the mechanism still remains a puzzle. A typical assay reagent contains colorimetric/fluorescent reagents, buffers, salts, stabilizers etc. These chemicals are known to influence the water absorptivity of SPA. If we were to perform chemical/biochemical assays on SPA absorbed reagents effect of salts and other excipients on colorimetric/fluorescence compounds absorbed on SPA is very important. The hofmeister series are standard for studying effect of salts on permeability, stability, aggregation, fluorescence quenching etc. We recently studied affect of urea, sodium chloride, ammonium sulfate, guanidine thiocayanate on fluorescence characteristics of fluorescence compounds and noted that except urea all other reagents have resulted in fluorescence quenching and urea had an opposite effect and increased the fluorescence intensity. This result was attributed to the different water structure around fluorescent in urea solution versus other chaotropic agents.

  4. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Hosseini, Rahim; Jamehbozorg, Bahman

    2008-01-01

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied

  5. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)], E-mail: rahsadeghi@yahoo.com; Hosseini, Rahim; Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2008-09-15

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied.

  6. On the hydrophilicity of polyzwitterion poly (N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropane sulfonate) in water, deuterated water, and aqueous salt solutions.

    Science.gov (United States)

    Hildebrand, Viet; Laschewsky, André; Zehm, Daniel

    2014-01-01

    A series of zwitterionic model polymers with defined molar masses up to 150,000 Da and defined end groups are prepared from sulfobetaine monomer N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropanesulfonate (SPP). Polymers are synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) using a functional chain transfer agent labeled with a fluorescent probe. Their upper critical solution temperature-type coil-to-globule phase transition in water, deuterated water, and various salt solutions is studied by turbidimetry. Cloud points increase with polyzwitterion concentration and molar mass, being considerably higher in D2O than in H2O. Moreover, cloud points are strongly affected by the amount and nature of added salts. Typically, they increase with increasing salt concentration up to a maximum value, whereas further addition of salt lowers the cloud points again, mostly down to below freezing point. The different salting-in and salting-out effects of the studied anions can be correlated with the Hofmeister series. In physiological sodium chloride solution and in phosphate buffered saline (PBS), the cloud point is suppressed even for high molar mass samples. Accordingly, SPP-polymers behave strongly hydrophilic under most conditions encountered in biomedical applications. However, the direct transfer of results from model studies in D2O, using, e.g. (1)H NMR or neutron scattering techniques, to 'normal' systems in H2O is not obvious.

  7. Formation and stabilization of anionic metal complexes in concentrated aqueous quaternary ammonium salt solutions

    International Nuclear Information System (INIS)

    Aronson, F.L.; Hwang, L.L.Y.; Ronca, N.; Solomon, N.A.; Steigman, J.

    1985-01-01

    Anionic complexes of transition metals were stabilized in aqueous solutions containing high concentrations of various short-chain quaternary ammonium salts. Compounds with longer paraffin chains were effective in much less concentrated solution. Complex ions were detected spectrophotometrically. FeCl 4 - , which is usually formed in concentrated HCl, was the predominant Fe(III) complex in 30 m choline chloride containing only 0.12 M HCl. A yellow transitory Tc(VII) chloro-addition intermediate, formed in the reduction of TcO 4 - by concentrated HCl, was stabilized when the solution also contained 25 m choline chloride. Its spectrum, as well as the isolation of an already known Tc(VII) bipyridyl complex, is reported. Concentrated organic electrolytes also stabilized Tc(V) oxide halides against disproportionation and Tc(IV) hexahalides against hydrolysis. Halochromates of Cr(VI) were formed and stabilized in dilute acid containing quaternary ammonium salts. Their UV spectra showed the well-resolved vibronic fine structure associated with the symmetric chromium-to-oxygen charge-transfer band. It is known that these progressions are resolved in aprotic solvents, but not in aqueous acidic solution alone, and that the loss of fine structure in aqueous media is due to hydrogen bonding. The stabilization of anionic metal complexes and the resolution of vibronic structure in halochromates are probably consequences of water-structure-enforced ion paring. The present work suggests that the water molecules in immediate contact with the complex anions are more strongly hydrogen bonded to each other than to the complex. 21 references, 4 figures

  8. Are nanoscale ion aggregates present in aqueous solutions of guanidinium salts?

    Science.gov (United States)

    Hunger, Johannes; Niedermayer, Stefan; Buchner, Richard; Hefter, Glenn

    2010-11-04

    A detailed investigation using broadband dielectric relaxation spectroscopy (DRS) has been made of the aqueous solutions of guanidinium chloride and carbonate, GdmCl(aq) and Gdm₂CO₃(aq), at 25 °C. The spectra indicate that Gdm(+) ions, C(NH₂)₃(+), do not bind strongly to water nor are they hydrophobically hydrated; rather they appear to have a most unusual ability to dissolve in water without altering its dynamics. Although DRS is particularly sensitive to the presence of ion pairs, only weak ion pairing was detected in Gdm₂CO₃(aq) solutions and none at all in GdmCl(aq). Surprisingly, no evidence was found for the existence of the higher order homo- and heteroionic nanoscale aggregates that have been identified in recent years by Mason and co-workers using molecular dynamics simulations and neutron diffraction. Possible reasons for this discrepancy are discussed. The present DR spectra and other solution properties of GdmCl(aq) and Gdm₂CO₃(aq), such as apparent molar volumes and electrical conductivities, are shown to have strong similarities to those of the corresponding Na+ salts. However, such solutions also differ remarkably from their Na(+) analogues (and all other simple electrolytes in aqueous solution) in that their average water relaxation times correlate strongly with their bulk viscosities. The biological implications of the present results are briefly discussed.

  9. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    International Nuclear Information System (INIS)

    Seri, Osami

    2008-01-01

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl 3 . The FeAl 3 particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl 3 particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl 3 free surface was an electrochemical treatment such as cathodic current density of -2 kAm -2 in a 20-30 mass% HNO 3 solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl 3 free particles are examined in a 0.1 kmol/m 3 NaCl solution. It is found that aluminum with free FeAl 3 particles shows higher corrosion resistance than aluminum with FeAl 3 particles

  10. Removal of Fluoride Ion from Aqueous Solution by Nanocomposite Hydrogel Based on Starch/Sodium Acrylate/Nano Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Aboulfazl Barati

    2014-01-01

    Full Text Available Determination of fluoride in drinking water has received increasing interest, due to its beneficial and detrimental effects on health. Contamination of drinking water by fluoride can cause potential hazards to human health. In recent years, considerable attention has been given to different methods for the removal of fluoride from drinking and waste waters. The aim of this research was to investigate the effect of nano composite hydrogel based on starch/sodium acrylate/aluminum oxide in reduction of fluoride concentration in drinking water and industrial waste water. In a batch system, the dynamic and equilibrium adsorption of fluoride ions were studied with respect to changes in determining parameters such as pH, contact time, initial fluoride concentration, starch/acrylic acid weight ratio and weight percent of nano aluminum oxide. The obtained equilibrium adsorption data were fitted with Langmuir and Freundlich models, as well as the kinetic data with pseudo-first order and pseudo- second order models. The results showed that optimum pH was found to be in the range of 5 to 7. Removal efficiency of fluoride was increased with decreases in initial concentration of fluoride. Sixty percent of initial value of fluoride solution was removed by nano composite hydrogel (4 wt% of nano aluminum oxide at 240 min (initial fluoride concentration = 5 ppm, pH 6.8 and temperature = 25ºC. Under the same condition, the equilibrium adsorption of fluoride ions was 85% and 68% for initial solution concentration of 5 and 10 ppm, respectively. Adsorption isotherm data showed that the fluoride sorption followed the Langmuir model. Kinetics of sorption of fluoride onto nano composite hydrogel was described by pseudo-first order model.

  11. Review: Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies.

    Science.gov (United States)

    Vane, Leland M

    2017-03-08

    When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used.

  12. Selenium Adsorption To Aluminum-Based Water Treatment Residuals

    Science.gov (United States)

    Aluminum-based water treatment residuals (WTR) can adsorb water-and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solut...

  13. Aluminum-carbon composite electrode

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  14. Detection of salt bridges to lysines in solution in barnase

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Williamson, Michael P.; Hounslow, Andrea M.

    2013-01-01

    We show that salt bridges involving lysines can be detected by deuterium isotope effects on NMR chemical shifts of the sidechain amine. Lys27 in the ribonuclease barnase is salt bridged, and mutation of Arg69 to Lys retains a partially buried salt bridge. The salt bridges are functionally important....

  15. The degree of doubly charged cation binding in solutions of (co)polymers of 2-acrylamido-2-methylpropanesulfonic acid salts

    International Nuclear Information System (INIS)

    Kurenkov, V.F.; Kolesnikova, I.Yu.; Antonovich, O.A.

    2002-01-01

    The degree of binding the ions of the alkaline-earth metals (M = Mg, Ca, Sr, Ba) by the polysulfate anions in the aqueous solutions of the polymers of the 2-acrylamido-2-methylpropanesulfonic acid (N-AMS) salts and their binary copolymers with the acrylamide (AA) and N-vinylpyrrolidone (VP) is quantitatively evaluated through the Terayama and Wall viscosimetric method. It is established, that the degree of binding decreases in the Sr>Ca>Mg sequence for the N-AMS polymer salts and in the reverse sequence (Mg>Ca>Sr(Ba)) for the binary copolymers of the N-AMS salts with AA and VP [ru

  16. Effect of temperature and salting-out agents on the sorption of nitrophenols from aqueous solutions

    Directory of Open Access Journals (Sweden)

    E. V. Churilina

    2013-01-01

    Full Text Available Sorption of nitrophenols from aqueous media by сrosslinked N-vinylpyrrolidone-based polymer in static conditions are studied depending on the pH of the solution and the nature of the nitrophenols. It has been established that a temperature and the introduction of salting-out agents influence on the sorption of nitrophenols.

  17. Potential and problems of an aqueous lithium salt solution blanket for NET

    International Nuclear Information System (INIS)

    Kuechle, M.; Bojarsky, E.; Dorner, S.; Fischer, U.; Reimann, J.; Reiser, H.

    1987-07-01

    The report describes design studies on a water cooled in-vessel shield blanket for NET and its modification into an aqueous lithium salt blanket. The shield blankets are exchangable against breeding blankets and fulfill their shielding and heat removal functions. Emphasis is on simplicity and reliability. The water cooled shield is a large steel container in the shape of the blanket segment which is filled by water and containes a grid structure of poloidally arranged steel plates. The water flows several times in poloidal direction through the channels formed by the steel plates and is thereby heated up from 40degC to 70degC. When the water is replaced by an aqueous lithium salt solution the shield can be converted into a tritium breeding blanket without any design modification or invessel component replacement. When compared with other concepts this blanket has the advantage that the solution can replace water cooling also in the divertor and in segments dedicated to plasma heating and diagnostics, what increases the coverage considerably. Extensive three-dimensional neutronics calculations were done which, together with literature studies on candidate materials, corrosion, and tritium recovery led to a first assessment of the concept. There is an indication that no major corrosion problems are to be expected in the low temperature region envisaged. Tritium recovery capital costs were estimated to be in the 20 MECU to 50 MECU range and tritium breeding ratio is comparable to the best breeding blanket. (orig./GG) [de

  18. Lithium1.3Aluminum0.3Titanium1.7Phosphate as a solid state Li-ion conductor: Issues with microcracking and stability in aqueous solutions

    Science.gov (United States)

    Jackman, Spencer D.

    Lithium aluminum titanium phosphate (LATP) with formula Li1.3Al0.3Ti1.7(PO4)3 was analyzed and tested to better understand its applicability as a solid state ion conducting ceramic material for electrochemical applications. Sintered samples were obtained from Ceramatec, Inc. in Salt Lake City and characterized in terms of density, phase-purity, fracture toughness, Young's modulus, thermal expansion behavior, mechanical strength, a.c. and d.c. ionic conductivity, and susceptibility to static and electrochemical corrosion in aqueous Li salt solutions. It was shown that LATP is prone to microcrack generation because of high thermal expansion anisotropy. A.c. impedance spectra of high-purity LATP of varying grain sizes showed that microcracking had a negative impact on the ionic conduction of Li along grain boundaries, with fine-grained (1.7±0.7 µm) LATP having twice the ionic conductivity of the same purity of coarse-grained (4.8±1.9 µm) LATP at 50°C. LATP with detectible secondary phases had lower ionic conductivity for similar grain sizes, as would be expected. The Young's modulus of fine-grained LATP was measured to be 115 GPa, and the highest biaxial strength was 191±11 MPa when tested in mineral oil, 144±13 MPa as measured in air, and 26±7 MPa after exposure to deionized water, suggesting that LATP undergoes stress-corrosion cracking. After exposure to LiOH, the strength was 76±19 MPa. This decrease in strength was observed despite there being no measureable change in a.c. impedance spectra, X-ray diffraction, or sample mass, suggesting phosphate glasses at grain boundaries. The chemical and electrochemical stability of high-purity LATP in aqueous electrochemical cells was evaluated using LiOH, LiCl, LiNO3, and LiCOOCH3 salts as the Li source. LATP was found to be most stable between pH 8-9, with the longest cell operating continuously at 25 mA cm-2 for 625 hours at 40°C in LiCOOCH3. At pH values outside of the 7-10 range, eventual membrane degradation

  19. Chemical Reduction Synthesis of Iron Aluminum Powders

    Science.gov (United States)

    Zurita-Méndez, N. N.; la Torre, G. Carbajal-De; Ballesteros-Almanza, L.; Villagómez-Galindo, M.; Sánchez-Castillo, A.; Espinosa-Medina, M. A.

    In this study, a chemical reduction synthesis method of iron aluminum (FeAl) nano-dimensional intermetallic powders is described. The process has two stages: a salt reduction and solvent evaporation by a heat treatment at 1100°C. The precursors of the synthesis are ferric chloride, aluminum foil chips, a mix of Toluene/THF in a 75/25 volume relationship, and concentrated hydrochloric acid as initiator of the reaction. The reaction time was 20 days, the product obtained was dried at 60 °C for 2 h and calcined at 400, 800, and 1100 °C for 4 h each. To characterize and confirm the obtained synthesis products, X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) techniques were used. The results of morphology and chemical characterization of nano-dimensional powders obtained showed a formation of agglomerated particles of a size range of approximately 150 nm to 1.0 μm. Composition of powders was identified as corundum (Al2O3), iron aluminide (FeAl3), and iron-aluminum oxides (Fe0. 53Al0. 47)2O3 phases. The oxide phases formation were associated with the reaction of atmospheric concentration-free oxygen during synthesis and sintering steps, reducing the concentration of the iron aluminum phase.

  20. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Osami [Muroran it., Hokkaido (Japan)

    2008-06-15

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl{sub 3}. The FeAl{sub 3} particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl{sub 3} particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl{sub 3} free surface was an electrochemical treatment such as cathodic current density of -2 kAm{sup -2} in a 20-30 mass% HNO{sub 3} solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl{sub 3} free particles are examined in a 0.1 kmol/m{sup 3} NaCl solution. It is found that aluminum with free FeAl{sub 3} particles shows higher corrosion resistance than aluminum with FeAl{sub 3} particles.

  1. Crystallization of DNA fragments from water-salt solutions, containing 2-methylpentane-2,3-diol.

    Science.gov (United States)

    Osica, V D; Sukharevsky, B Y; Vasilchenko, V N; Verkin, B I; Polyvtsev, O F

    1976-09-01

    Fragments of calf thymus DNA have been crystallized by precipitation from water-salt solutions, containing 2-methylpentane-2,3-diol (MPD). DNA crystals usually take the form either of spherulites up to 100 mu in diameter or of needles with the length up to 50 mu. No irreversible denaturation of DNA occurs during the crystallization process. X-ray diffraction from dense slurries of DNA crystals yields crystalline powder patterns.

  2. Electrical transport through single-wall carbon nanotube-anodic aluminum oxide-aluminum heterostructures

    International Nuclear Information System (INIS)

    Kukkola, Jarmo; Rautio, Aatto; Sala, Giovanni; Pino, Flavio; Toth, Geza; Leino, Anne-Riikka; Maeklin, Jani; Jantunen, Heli; Uusimaeki, Antti; Kordas, Krisztian; Gracia, Eduardo; Terrones, Mauricio; Shchukarev, Andrey; Mikkola, Jyri-Pekka

    2010-01-01

    Aluminum foils were anodized in sulfuric acid solution to form thick porous anodic aluminum oxide (AAO) films of thickness ∼6 μm. Electrodes of carboxyl-functionalized single-wall carbon nanotube (SWCNT) thin films were inkjet printed on the anodic oxide layer and the electrical characteristics of the as-obtained SWCNT-AAO-Al structures were studied. Nonlinear current-voltage transport and strong temperature dependence of conduction through the structure was measured. The microstructure and chemical composition of the anodic oxide layer was analyzed using transmission and scanning electron microscopy as well as x-ray photoelectron spectroscopy. Schottky emission at the SWCNT-AAO and AAO-Al interfaces allowed by impurity states in the anodic aluminum oxide film together with ionic surface conduction on the pore walls of AAO gives a reasonable explanation for the measured electrical conduction. Calcined AAO is proposed as a dielectric material for SWCNT-field effect transistors.

  3. Evaluation of liquid metal embrittlement of stainless steel 304 by cadmium and cadmium-aluminum solutions

    International Nuclear Information System (INIS)

    Iyer, N.C.; Peacock, H.B.; Thomas, J.K.; Begley, J.A.

    1994-01-01

    The susceptibility of stainless steel 304 (SS304) to liquid metal embrittlement (LME) by cadmium (Cd) and cadmium-aluminum (Cd-Al) solutions was examined as part of a failure evaluation for SS304-clad cadmium reactor safety rods which had been exposed to elevated temperatures. The safety rod test data and destructive examination of the specimens indicated that LME was not the failure mode. The available literature data also suggest that austenitic stainless steels are not particularly susceptible to LME by Cd or Cd-Al solutions. However, the literature data is not conclusive and an experimental study was therefore conducted to examine the susceptibility of SS304 to LME by Cd and Cd-Al solutions. Temperatures from 325 to 600 C and strain rates from 1x10 -6 to 5x10 -5 s -1 were of interest in this evaluation. Tensile tests carried out in molten Cd-Al and Cd solutions over these temperatures and strain rates with both smooth bar and notched specimens showed no evidence of LME. U-bend tests conducted in liquid Cd at 500 and 600 C also showed no evidence of LME. It is concluded that SS304 is not subject to LME by Cd or Cd-Al solutions over the range of temperatures and strain rates of interest. ((orig.))

  4. History and future of human cadaver preservation for surgical training: from formalin to saturated salt solution method.

    Science.gov (United States)

    Hayashi, Shogo; Naito, Munekazu; Kawata, Shinichi; Qu, Ning; Hatayama, Naoyuki; Hirai, Shuichi; Itoh, Masahiro

    2016-01-01

    Traditionally, surgical training meant on-the-job training with live patients in an operating room. However, due to advancing surgical techniques, such as minimally invasive surgery, and increasing safety demands during procedures, human cadavers have been used for surgical training. When considering the use of human cadavers for surgical training, one of the most important factors is their preservation. In this review, we summarize four preservation methods: fresh-frozen cadaver, formalin, Thiel's, and saturated salt solution methods. Fresh-frozen cadaver is currently the model that is closest to reality, but it also presents myriad problems, including the requirement of freezers for storage, limited work time because of rapid putrefaction, and risk of infection. Formalin is still used ubiquitously due to its low cost and wide availability, but it is not ideal because formaldehyde has an adverse health effect and formalin-embalmed cadavers do not exhibit many of the qualities of living organs. Thiel's method results in soft and flexible cadavers with almost natural colors, and Thiel-embalmed cadavers have been appraised widely in various medical disciplines. However, Thiel's method is relatively expensive and technically complicated. In addition, Thiel-embalmed cadavers have a limited dissection time. The saturated salt solution method is simple, carries a low risk of infection, and is relatively low cost. Although more research is needed, this method seems to be sufficiently useful for surgical training and has noteworthy features that expand the capability of clinical training. The saturated salt solution method will contribute to a wider use of cadavers for surgical training.

  5. Mesoporous aluminum phosphite

    International Nuclear Information System (INIS)

    El Haskouri, Jamal; Perez-Cabero, Monica; Guillem, Carmen; Latorre, Julio; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro

    2009-01-01

    High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S + I - surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acidic properties of the final materials. While phosphate groups in ALPO act as network building blocks (bridging Al atoms), the phosphite entities become basically attached to the pore surface, what gives practically empty channels. The mesoporous nature of the final materials is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N 2 adsorption-desorption isotherms. The materials present regular unimodal pore systems whose order decreases as the phosphite content increases. NMR spectroscopic results confirm the incorporation of oxo-phosphorus entities to the framework of these materials and also provide us useful information concerning the mechanism through which they are formed. - Abstract: TEM image of the mesoporous aluminum phosphite showing the hexagonal disordered pore array that is generated by using surfactant micelles as template. Also a scheme emphasizing the presence of an alumina-rich core and an ALPO-like pore surface is presented.

  6. Laboratory simulation of salt dissolution during waste removal

    International Nuclear Information System (INIS)

    Wiersma, B.J.; Parish, W.R.

    1997-01-01

    Laboratory experiments were performed to support the field demonstration of improved techniques for salt dissolution in waste tanks at the Savannah River Site. The tests were designed to investigate three density driven techniques for salt dissolution: (1) Drain-Add-Sit-Remove, (2) Modified Density Gradient, and (3) Continuous Salt Mining. Salt dissolution was observed to be a very rapid process as salt solutions with densities between 1.38-1.4 were frequently removed. Slower addition and removal rates and locating the outlet line at deeper levels below the top of the saltcake provided the best contact between the dissolution water and the saltcake. It was observed that dissolution with 1 M sodium hydroxide solution resulted in salt solutions that were within the current inhibitor requirements for the prevention of stress corrosion cracking. This result was independent of the density driven technique. However, if inhibited water (0.01 M sodium hydroxide and 0.011 M sodium nitrite) was utilized, the salt solutions were frequently outside the inhibitor requirements. Corrosion testing at conditions similar to the environments expected during waste removal was recommended

  7. Friction Joint Between Basalt-Reinforced Composite and Aluminum

    DEFF Research Database (Denmark)

    Costache, Andrei; Glejbøl, Kristian; Sivebæk, Ion Marius

    2015-01-01

    The purpose of this study was to anchor basalt-reinforced polymers in an aluminum grip using dry friction. Dry friction clamping is considered the optimal solution for post-mounting of load-bearing terminations on composite structures. A new test method is presented for characterizing the frictio......The purpose of this study was to anchor basalt-reinforced polymers in an aluminum grip using dry friction. Dry friction clamping is considered the optimal solution for post-mounting of load-bearing terminations on composite structures. A new test method is presented for characterizing...

  8. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries

    International Nuclear Information System (INIS)

    Rashvand avei, M.; Jafarian, M.; Moghanni Bavil Olyaei, H.; Gobal, F.; Hosseini, S.M.; Mahjani, M.G.

    2013-01-01

    The corrosion behavior of different grades of commercial aluminum such as AA1040, AA5083, AA6060 and AA7075 in ZnO-containing 4 M NaOH has been determined by using open circuit potential-time measurements (OCP), galvanostatic and potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) reveal that ZnO produces the inhibition effect by the formation of a zinc-containing deposit layer on the surface of aluminum electrodes. Although the influence of zincating on the performance of aluminum alloys and considering the amount of alloying elements such as zinc, magnesium and manganese in AA7075 and AA5083 alloys is much more than AA6060 one, the AA6060 aluminum exhibits negligible corrosion rate. Alloying aluminum with other elements and modifying the composition of the electrolyte is a necessary condition for reducing the self-corrosion of the aluminum anodes, whereas the proportion of the amount of additive elements is sufficient and important condition. As AA6060 with a low amount of Zn and Mg, but the high value of the ratio of (Mg/Zn) content (>400) can serve as a good galvanic anode in the alkaline media. - Highlights: • Decreasing the corrosion rate of tested alloys in 4 M NaOH solution specially AA6060. • Lowering the extent of anodic polarization at a current density of 50 mA cm −2 . • High inhibitor efficiency about 97% for AA6060

  9. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries

    Energy Technology Data Exchange (ETDEWEB)

    Rashvand avei, M. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Jafarian, M., E-mail: mjafarian@kntu.ac.ir [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Moghanni Bavil Olyaei, H. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Gobal, F. [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-8516, Tehran (Iran, Islamic Republic of); Hosseini, S.M. [Jahad Organization – Science and Technology Center, Tehran (Iran, Islamic Republic of); Mahjani, M.G. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of)

    2013-12-16

    The corrosion behavior of different grades of commercial aluminum such as AA1040, AA5083, AA6060 and AA7075 in ZnO-containing 4 M NaOH has been determined by using open circuit potential-time measurements (OCP), galvanostatic and potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) reveal that ZnO produces the inhibition effect by the formation of a zinc-containing deposit layer on the surface of aluminum electrodes. Although the influence of zincating on the performance of aluminum alloys and considering the amount of alloying elements such as zinc, magnesium and manganese in AA7075 and AA5083 alloys is much more than AA6060 one, the AA6060 aluminum exhibits negligible corrosion rate. Alloying aluminum with other elements and modifying the composition of the electrolyte is a necessary condition for reducing the self-corrosion of the aluminum anodes, whereas the proportion of the amount of additive elements is sufficient and important condition. As AA6060 with a low amount of Zn and Mg, but the high value of the ratio of (Mg/Zn) content (>400) can serve as a good galvanic anode in the alkaline media. - Highlights: • Decreasing the corrosion rate of tested alloys in 4 M NaOH solution specially AA6060. • Lowering the extent of anodic polarization at a current density of 50 mA cm{sup −2}. • High inhibitor efficiency about 97% for AA6060.

  10. Selection of a mineral binder with potentialities for the stabilization/solidification of aluminum metal

    Energy Technology Data Exchange (ETDEWEB)

    Cau Dit Coumes, C., E-mail: celine.cau-dit-coumes@cea.fr [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Lambertin, D.; Lahalle, H.; Antonucci, P. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Cannes, C.; Delpech, S. [Institut de Physique Nucléaire, CNRS, Univ. Paris-Sud 11, 91406 Orsay Cedex (France)

    2014-10-15

    Highlights: • Binders capable of reducing the pore solution pH compared with Portland cements are reviewed. • The binders are then tested against aluminum corrosion. • Corrosion of aluminum metal is minimal with magnesium phosphate cement. • The H{sub 2} release can be reduced still further by adding LiNO{sub 3} to the mixing solution. • Electrochemical characterizations show that aluminum tends to a passive state. - Abstract: In a strongly alkaline medium, such as that encountered in conventional cementitious materials based on Portland cement, aluminum metal is corroded, with continued production of hydrogen. In order to develop a mineral matrix having enhanced compatibility with aluminum, a literature review was first undertaken to identify binders capable of reducing the pore solution pH compared with Portland cement. An experimental study was then carried out to measure the hydrogen production resulting from corrosion of aluminum metal rods encapsulated in the different selected cement pastes. The best results were achieved with magnesium phosphate cement, which released very little hydrogen over the duration of the study. This production could be reduced still further by adding a corrosion inhibitor (lithium nitrate) to the mixing solution. Open circuit potential measurement and Electrochemical Impedance Spectroscopy of aluminum electrode encapsulated in two pastes based on Portland cement and magnesium phosphate cement showed different redox behaviors. In the Portland cement paste, the electrochemical data confirmed the corrosion of aluminum whereas this latter tended to a passive state in the magnesium phosphate binder.

  11. Evaluation of poly (aspartic acid sodium salt) as a draw solute for forward osmosis.

    Science.gov (United States)

    Gwak, Gimun; Jung, Bokyung; Han, Sungsoo; Hong, Seungkwan

    2015-09-01

    Poly (aspartic acid sodium salt) (PAspNa) was evaluated for its potential as a novel draw solute in forward osmosis (FO). The inherent advantages of PAspNa, such as good water solubility, high osmotic pressure, and nontoxicity, were first examined through a series of physicochemical analyses and atomic-scale molecular dynamics simulations. Then, lab-scale FO tests were performed to evaluate its suitability in practical processes. Compared to other conventional inorganic solutes, PAspNa showed comparable water flux but significantly lower reverse solute flux, demonstrating its suitability as a draw solute. Moreover, fouling experiments using synthetic wastewater as a feed solution demonstrated that PAspNa reversely flowed to the feed side reduced inorganic scaling on the membrane active layer. The recyclability of PAspNa was studied using both nanofiltration (NF) and membrane distillation (MD) processes, and the results exhibited its ease of recovery. This research reported the feasibility and applicability of FO-NF or FO-MD processes using PAspNa for wastewater reclamation and brackish water desalination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Golabiazar, Roonak; Shekaari, Hemayat

    2010-01-01

    The aim of this work is to obtain further evidence about the salting-out effect produced by the addition of tri-sodium citrate to aqueous solutions of water miscible ionic liquid 1-butyl-3-methylimidazolium bromide ([C 4 mim][Br]) by evaluating the effect of tri-sodium citrate on the thermodynamic properties of aqueous solutions of this ionic liquid. Experimental measurements of density and sound velocity at different temperatures ranging from (288.15 to 308.15) K, the refractive index at 308.15 K and the liquid-liquid phase diagram at different temperatures ranging from (288.15 to 338.15) K for aqueous solutions containing 1-butyl-3-methylimidazolium bromide ([C 4 mim][Br]) and tri-sodium citrate (Na 3 Cit) are taken. The apparent molar volume of transfer of [C 4 mim][Br] from water to aqueous solutions of Na 3 Cit have positive values and it increases by increasing salt molality. Although at high IL molality, the apparent molar isentropic compressibility shows similar behaviour with that of the apparent molar volume. However at low concentrations of IL, the apparent molar isentropic compressibility of transfer of [C 4 mim][Br] from water to aqueous solutions of Na 3 Cit have negative values. The effects of temperature and the addition of Na 3 Cit and [C 4 mim][Br] on the liquid-liquid phase diagram of the investigated system have been studied. It was found that an increase in temperature caused the expansion of the one-phase region. The presence of Na 3 Cit triggers a salting-out effect, leading to significant upward shifts of the liquid-liquid de-mixing temperatures of the system. The effect of temperature on the phase-forming ability in the system investigated has been studied based on a salting-out coefficient obtained from fitting the binodal values to a Setschenow-type equation for each temperature. Based on cloud point values, the energetics of the clouding process have been estimated and it was found that both of entropy and enthalpy are the driving forces

  13. Less-Toxic Coatings for Inhibiting Corrosion of Aluminum

    Science.gov (United States)

    Minevski, Zoran; Clarke, Eric; Eylem, Cahit; Maxey, Jason; Nelson, Carl

    2003-01-01

    Two recently invented families of conversion- coating processes have been found to be effective in reducing or preventing corrosion of aluminum alloys. These processes offer less-toxic alternatives to prior conversion-coating processes that are highly effective but have fallen out of favor because they generate chromate wastes, which are toxic and carcinogenic. Specimens subjected to these processes were found to perform well in standard salt-fog corrosion tests.

  14. Pseudomacrocyclic effect in extraction processes of metal salts by polyethers from nitric acid solutions

    International Nuclear Information System (INIS)

    Yakshin, V.V.; Vilkova, O.M.; Kotlyar, S.A.; Kamalov, G.L.

    1997-01-01

    Comparison of macrocyclic (ME) and pseudmacrocyclic effects (PME), originating by conduct of the metal salt extraction processes (Cs, Sr, In, Zr, Cd, etc) from nitric acid solutions through linear and cyclic polyethers, containing 5 or 6 atoms of ether oxygen and having close molecular masses (290-360), is carried out. It is shown that ordinary ethers practically do not extract the studied metals from nitric acid solutions. By transfer from linear polyethers to their macrocyclic analogs the ME impact is expressed clearly enough: the separation coefficient value grows by tens and hundred times. At the some time the PME role in the extraction processes of metal nitrates through crown-ethers with alkyl and groups is expressed less clearly

  15. Determination of the osmotic second virial coefficient and the demerization of beta-lactoglobulin in aqueous solutions with added salt at the isoelectric point

    NARCIS (Netherlands)

    Schaink, H.M.; Smit, J.A.M.

    2000-01-01

    Aqueous solutions of β-lactoglobulin (at the isoelectric point pH=5.18) have been studied by membrane osmometry. The osmotic second virial coefficient as well as the monomer–dimer equilibrium of β-lactoglobulin have been found to depend significantly on the salt concentration. At low salt

  16. Simulation of NaCl and KCl mass transfer during salting of Prato cheese in brine with agitation: a numerical solution

    Directory of Open Access Journals (Sweden)

    E. Bona

    2007-09-01

    Full Text Available The association of dietary NaCl with arterial hypertension has led to a reduction in the levels of this salt in cheeses. For salting, KCl has been used as a partial substitute for NaCl, which cannot be completely substituted without affecting product acceptability. In this study a sensorially adequate saline solution (NaCl/KCl was simultaneously diffused during salting of Prato cheese in brine with agitation. The simultaneous multicomponent diffusion during the process was modeled with Fick’s second generalized law. The system of partial differential equations formed was solved by the finite element method (FEM. In the experimental data concentration the deviation for NaCl was of 7.3% and for KCl of 5.4%, both of which were considered acceptable. The simulation of salt diffusion will allow control and modulation of salt content in Prato cheese, permitting the prediction of final content from initial conditions.

  17. The Advanced Aluminum Nitride Synthesis Methods and Its Applications: Patent Review.

    Science.gov (United States)

    Shishkin, Roman A; Elagin, Andrey A; Mayorova, Ekaterina S; Beketov, Askold R

    2016-01-01

    High purity nanosized aluminum nitride synthesis is a current issue for both industry and science. However, there is no up-to-date review considering the major issues and the technical solutions for different methods. This review aims to investigate the advanced methods of aluminum nitride synthesis and its development tendencies. Also the aluminum nitride application patents and prospects for development of the branch have been considered. The patent search on "aluminum nitride synthesis" has been carried out. The research activity has been analyzed. Special attention has been paid to the patenting geography and the leading researchers in aluminum nitride synthesis. Aluminum nitride synthesis methods have been divided into 6 main groups, the most studied approaches are carbothermal reduction (88 patents) and direct nitridation (107 patents). The current issues for each group have been analyzed; the main trends are purification of the final product and nanopowder synthesis. The leading researchers in aluminum nitride synthesis have represented 5 countries, namely: Japan, China, Russia, South Korea and USA. The main aluminum nitride application spheres are electronics (59,1 percent of applications) and new materials manufacturing (30,9 percent). The review deals with the state of the art data in nanosized aluminum nitride synthesis, the major issues and the technical solutions for different synthesis methods. It gives a full understanding of the development tendencies and of the current leaders in the sphere.

  18. Evaluation of several corrosion protective coating systems on aluminum

    Science.gov (United States)

    Higgins, R. H.

    1981-01-01

    A study of several protective coating systems for use on aluminum in seawater/seacoast environments was conducted to review the developments made on protective coatings since early in the Space Shuttle program and to perform comparative studies on these coatings to determine their effectiveness for providing corrosion protection during exposure to seawater/seacoast environments. Panels of 2219-T87 aluminum were coated with 21 different systems and exposed to a 5 percent salt spray for 4000 hr. Application properties, adhesion measurements, heat resistance and corrosion protection were evaluated. For comparative studies, the presently specified Bostik epoxy system used on the SRB structures was included. Results of these tests indicate four systems with outstanding performance and four additional systems with protection almost as good. These systems are based on a chromated pretreatment, a chromate epoxy primer, and a polyurethane topcoat. Consideration for one of these systems should be included for those applications where superior corrosion protection for aluminum surfaces is required.

  19. Modeling Thermal Changes at Municipal Solid Waste Landfills: A Case Study of the Co-Disposal of Secondary Aluminum Processing Waste

    Science.gov (United States)

    The reaction of secondary aluminum processing waste (referred herein to as salt cake) with water has been documented to produce heat and gases such as hydrogen, methane, and ammonia (US EPA 2015). The objective of this project was to assess the impact of salt cake disposal on MS...

  20. Can mothers safely prepare labon-gur salt-sugar solution after demonstration in a diarrhoeal hospital?

    DEFF Research Database (Denmark)

    Islam, M A; Kofoed, Poul-Erik; Begum, S

    1992-01-01

    Home-based salt-sugar solution (SSS) prepared with labon (locally produced sea salt) and gur (unrefined brown sugar) has been recommended as a cheap, locally available and a simple tool to prevent and treat diarrhoeal dehydration. Preparation of labon-gur SSS is demonstrated to the patients...... and the attendants at ICDDR, Bangladesh. To evaluate performances, 150 mothers were asked to measure labon and gur by finger pinch and first method and 100 mothers measured half a seer of water to prepare labon-gur SSS, shortly after the demonstration sessions. 4.0% of the samples exceeded the upper safety limit...... this knowledge. Our study suggests that demonstration of home-based SSS in a diarrhoeal hospital may positively affect health education and that health personnel should actively participate in increasing health awareness....

  1. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  2. The use of aluminum oxychlorides to coagulate water having high content of organic impurities and low alkalinity

    Science.gov (United States)

    Evsyutin, A. V.; Boglovskii, A. V.

    2007-07-01

    Results from laboratory investigations and industrial tests of the coagulation of source water at the Pskov district power station are presented. It is shown that the source water may not be alkalified if it is treated with aluminum oxychlorides. As a result, the clarified water becomes less corrosive and a lower salt load is placed on water treatment plants as compared with the case when aluminum sulfate is used for coagulation.

  3. THERMODYNAMIC PROPERTIES OF NONAQUEOUS SINGLE SALT SOLUTIONS USING THE Q-ELECTROLATTICE EQUATION OF STATE

    Directory of Open Access Journals (Sweden)

    A. Zuber

    2015-09-01

    Full Text Available AbstractThe correlation of thermodynamic properties of nonaqueous electrolyte solutions is relevant to design and operation of many chemical processes, as in fertilizer production and the pharmaceutical industry. In this work, the Q-electrolattice equation of state (EOS is used to model vapor pressure, mean ionic activity coefficient, osmotic coefficient, and liquid density of sixteen methanol and ten ethanol solutions containing single strong 1:1 and 2:1 salts. The Q-electrolattice comprises the lattice-based Mattedi-Tavares-Castier (MTC EOS, the Born term and the explicit MSA term. The model requires two adjustable parameters per ion, namely the ionic diameter and the solvent-ion interaction energy. Predictions of osmotic coefficient at 298.15 K and liquid density at different temperatures are also presented.

  4. Characterization of ultrafine aluminum nanoparticles

    International Nuclear Information System (INIS)

    Sandstrom, Mary M.; Jorgensen, Betty S.; Mang, Joseph T.; Smith, Bettina L.; Son, Steven F.

    2004-01-01

    Aluminum nanopowders with particle sizes ranging from ∼25 nm to 80 nm were characterized by a variety of methods. We present and compare the results from common powder characterization techniques including transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), BET gas adsorption surface area analysis, thermogravimetric analysis (TGA), photon correlation spectroscopy (PCS), and low angle laser light scattering (LALLS). Aluminum nanoparticles consist of an aluminum core with an aluminum oxide coating. HRTEM measurements of both the particle diameter and oxide layer thickness tend to be larger than those obtained from BET and TGA. LALLS measurements show a large degree of particle agglomeration in solution; therefore, primary particle sizes could not be determined. Furthermore, results from small-angle scattering techniques (SAS), including small-angle neutron (SANS) and x-ray (SAXS) scattering are presented and show excellent agreement with the BET, TGA, and HRTEM. The suite of analytical techniques presented in this paper can be used as a powerful tool in the characterization of many types of nanosized powders.

  5. A Study on the Anodic Dissolution of Aluminum(II)

    International Nuclear Information System (INIS)

    Nam, C. W.; Park, C. S.; Park, C. S.

    1978-01-01

    In many cases oxide films formed on metals in atmosphere or aqueous solution are chemically inactive, especially it is the case with aluminum. In this study, anodic dissolution of aluminum was done using various electrolyte and cathode, mechanism of which was examined. As a consequence, oxide film on aluminum surface was dissolved together with the dissolution reaction of metal by the anodic current. It was shown that the dissolution reaction due to the contact between electrolyte and metal happened in the same time

  6. Conductometric investigation of salt-free solutions of polyriboguanylic acid. Issledovanie bessolevykh rastvorov poliriboguanilovoj kisloty metodom konduktometrii

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A G; Davydova, O V; Kargov, S I [Moskovskij Gosudarstvennyj Univ., Moscow (Russian Federation). Khimicheskij Fakul' tet

    1993-08-01

    Salt-free solutions of various ionic forms of polyriboguanylic acid (poly(G)) were studied by the methods of conductometry and spectroscopy of annular dichroism. The Manning approach was employed to calculate transport characteristics and structural parameters of poly(G) on the basis of spectra permit putting poly(G) salts in two groups: the first one comprising NH[sub 4][sup +]-, Rb[sup +]-, K[sup +]-, Na[sup +]-, the second one - Cs[sup +]-, and Li[sup +]-poly(G). The assumption is made that Li[sup +] and Cs[sup +] ions, bound with concrete groups of polyanion in a specific way, can promote formation of a stable structure different from the one observed in the presence of the first group counterions. 25 refs., 3 figs.

  7. Calculation of amorphous silica solubilities at 25° to 300°C and apparent cation hydration numbers in aqueous salt solutions using the concept of effective density of water

    Science.gov (United States)

    Fournier, Robert O.; Williams, Marshall L.

    1983-01-01

    The solubility of amorphous silica in aqueous salt solutions at 25° to 300°C can be calculated using information on its solubility in pure water and a model in which the activity of water in the salt solution is defined to equal the effective density. pe, of “free” water in that solution. At temperatures of 100°C and above, pe closely equals the product of the density of the solution times the weight fraction of water in the solution. At 25°C, a correction parameter must be applied to pe that incorporates a term called the apparent cation hydration number, h. Because of the many assumptions and other uncertainties involved in determining values of h, by the model used here, the reported numbers are not necessarily real hydration numbers even though they do agree with some published values determined by activity and diffusion methods. Whether or not h is a real hydration number, it would appear to be useful in its inclusion within a more extensive activity coefficient term that describes the departure of silica solubilities in concentrated salt solutions from expected behavior according to the model presented here. Values of h can be calculated from measured amorphous silica solubilities in salt solutions at 25°C provided there is no complexing of dissolved silica with the dissolved salt, or if the degree of complexing is known. The previously postulated aqueous silica-sulfate complexing in aqueous Na2SO4 solutions is supported by results of the present effective density of water model

  8. The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rsadeghi@uok.ac.i [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Golabiazar, Roonak [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Shekaari, Hemayat [Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2010-04-15

    The aim of this work is to obtain further evidence about the salting-out effect produced by the addition of tri-sodium citrate to aqueous solutions of water miscible ionic liquid 1-butyl-3-methylimidazolium bromide ([C{sub 4}mim][Br]) by evaluating the effect of tri-sodium citrate on the thermodynamic properties of aqueous solutions of this ionic liquid. Experimental measurements of density and sound velocity at different temperatures ranging from (288.15 to 308.15) K, the refractive index at 308.15 K and the liquid-liquid phase diagram at different temperatures ranging from (288.15 to 338.15) K for aqueous solutions containing 1-butyl-3-methylimidazolium bromide ([C{sub 4}mim][Br]) and tri-sodium citrate (Na{sub 3}Cit) are taken. The apparent molar volume of transfer of [C{sub 4}mim][Br] from water to aqueous solutions of Na{sub 3}Cit have positive values and it increases by increasing salt molality. Although at high IL molality, the apparent molar isentropic compressibility shows similar behaviour with that of the apparent molar volume. However at low concentrations of IL, the apparent molar isentropic compressibility of transfer of [C{sub 4}mim][Br] from water to aqueous solutions of Na{sub 3}Cit have negative values. The effects of temperature and the addition of Na{sub 3}Cit and [C{sub 4}mim][Br] on the liquid-liquid phase diagram of the investigated system have been studied. It was found that an increase in temperature caused the expansion of the one-phase region. The presence of Na{sub 3}Cit triggers a salting-out effect, leading to significant upward shifts of the liquid-liquid de-mixing temperatures of the system. The effect of temperature on the phase-forming ability in the system investigated has been studied based on a salting-out coefficient obtained from fitting the binodal values to a Setschenow-type equation for each temperature. Based on cloud point values, the energetics of the clouding process have been estimated and it was found that both of

  9. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes. Final Report

    International Nuclear Information System (INIS)

    Dabbs, Daniel M.; Aksay, Ilhan A.

    2009-01-01

    Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations. The principal focus of our research was to maintain the fluidity of aluminum- or silicon-containing suspensions and solutions during transport, whether by preventing particle formation, stabilizing colloidal particles in suspension, or by combining partial dissolution with particle stabilization. We have found that all of these can be effected in aluminum-containing solutions using the simple organic, citric acid. Silicon-containing solutions were found to be less tractable, but we have strong indications that chemistries similar to the citric acid/aluminum suspensions can be effective in maintaining silicon suspensions at high alkalinities. In the first phase of our study, we focused on the use of simple organics to raise the solubility of aluminum oxyhydroxides in high alkaline aqueous solvents. In a limited survey of common organic acids, we determined that citric acid had the highest potential to achieve our goal. However, our subsequent investigation revealed that the citric acid appeared to play two roles in the solutions: first, raising the concentration of aluminum in highly alkaline solutions by breaking up or inhibiting 'seed' polycations and thereby delaying the nucleation and growth of particles; and second, stabilizing nanometer-sized particles in suspension when nucleation did occur. The second phase of our work involved the solvation of silicon, again in solutions of high alkalinity. Here, the use of polyols was determined to be effective in

  10. Aluminum uptake from natural waters by a radiation-grafted membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, Jose E.; Geraldo, Aurea B.C., E-mail: ageraldo@ipen.br, E-mail: ryamaguishi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Styrene grafted, chemically modified polymeric membranes were used to carry off aluminum of drinking water from wells located at Billings dam region. The membranes comprised polymeric substrates of PVC (polyvinylchloride) and PP (polypropylene), which were mutually grafted with gamma radiation. The chemical modification included three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation; this modification enables aluminum selectivity on the membrane. This chemical process inserts a salicylated derivative bonded onto the aromatic ring of styrene; such molecular arrangement is responsible for complexation of aluminum ions. The aluminum sorption capacity of these membranes was evaluated firstly from an aluminum control solution, where parameters like the ideal pH value for aluminum sorption and the interfering species were studied and correlated to know the best conditions for aluminum uptake. Later, the membranes were used for aluminum remediation of natural waters (real-life samples). The applicability results and limits are then discussed. (author)

  11. Aluminum uptake from natural waters by a radiation-grafted membrane

    International Nuclear Information System (INIS)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, Jose E.; Geraldo, Aurea B.C.

    2013-01-01

    Styrene grafted, chemically modified polymeric membranes were used to carry off aluminum of drinking water from wells located at Billings dam region. The membranes comprised polymeric substrates of PVC (polyvinylchloride) and PP (polypropylene), which were mutually grafted with gamma radiation. The chemical modification included three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation; this modification enables aluminum selectivity on the membrane. This chemical process inserts a salicylated derivative bonded onto the aromatic ring of styrene; such molecular arrangement is responsible for complexation of aluminum ions. The aluminum sorption capacity of these membranes was evaluated firstly from an aluminum control solution, where parameters like the ideal pH value for aluminum sorption and the interfering species were studied and correlated to know the best conditions for aluminum uptake. Later, the membranes were used for aluminum remediation of natural waters (real-life samples). The applicability results and limits are then discussed. (author)

  12. Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum—A comparative study with the AAO produced on high purity aluminum

    International Nuclear Information System (INIS)

    Michalska-Domańska, Marta; Norek, Małgorzata; Stępniowski, Wojciech J.; Budner, Bogusław

    2013-01-01

    Highlights: • Nanoporous alumina was fabricated by anodization in sulfuric acid solution with glycol. • The AAO manufacturing on low- and high-purity Al was compared. • The pores size was ranging between 30 and 50 nm. • No difference in the quality of the AAO fabricated on both Al types was observed. • The current vs. anodization time curves were recorded. -- Abstract: In this work the quality, arrangement, composition, and regularity of nanoporous AAO formed on the low-purity (AA1050) and high-purity aluminum during two-step anodization in a mixture of sulfuric acid solution (0.3 M), water and glycol (3:2, v/v), at various voltages (15, 20, 25, 30, 35 V) and at temperature of −1 °C, are investigated. The electrochemical conditions have allowed to obtain pores with the size ranging from 30 to 50 nm, which are much larger than those usually obtained by anodization in a pure sulfuric acid solution (<20 nm). The mechanism of the AAO growth is discussed. It was found that with the increase of applied anodizing voltage a number of incorporated sulfate ions in the aluminum oxide matrix increases, which was connected with the appearance of an unusual area in the current vs. time curves. On the surface of anodizing low- and high-purity aluminum, the formation of hillocks was observed, which was associated with the sulfate ions incorporation. The sulfate ions are replacing the oxygen atom/atoms in the AAO amorphous crystal structure and, consequently, the AAO template swells, the oxide cracks and uplifts causing the formation of hillocks. The same mechanism occurs for both low- and high-purity aluminum. Nanoporous AAO characterized by a very high regularity, not registered previously for low purity aluminum, was obtained. Furthermore, no significant difference in the regularity ratio between the AAO obtained on low- and high-purity aluminum, was observed. The electrochemical conditions applied in this study can be, thus, used for the fabrication of high quality

  13. On the appearance of vorticity and gradient shear bands in wormlike micellar solutions of different CPCl/salt systems

    Energy Technology Data Exchange (ETDEWEB)

    Mütze, Annekathrin, E-mail: muetzea@ethz.ch; Heunemann, Peggy; Fischer, Peter [ETH Zürich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zürich (Switzerland)

    2014-11-01

    Wormlike micellar salt/surfactant solutions (X-salicylate, cetylpyridinium chloride) are studied with respect to the applied shear stress, concentration, temperature, and composition of the counterions (X = lithium, sodium, potassium, magnesium, and calcium) of the salicylate salt solute to determine vorticity and gradient shear bands. A combination of rheological measurements, laser technique, video analysis, and rheo-small-angle neutron scattering allow for a detailed exploration of number and types of shear bands. Typical flow curves of the solutions show Newtonian, shear-thinning, and shear-thickening flow behavior. In the shear-thickening regime, the solutions show vorticity and gradient shear bands simultaneously, in which vorticity shear bands dominate the visual effect, while gradient shear bands always coexist and predominate the rheological response. It is shown that gradient shear bands change their phases (turbid, clear) with the same frequency as the shear rate oscillates, whereas vorticity shear bands change their phases with half the frequency of the shear rate. Furthermore, we show that with increasing molecular mass of the counterions the number of gradient shear bands increases, while the number of vorticity shear bands remains constant. The variation of temperature, shear stress, concentration, and counterions results in a predictable change in the rheological behavior and therefore allows adjustment of the number of vorticity shear bands in the shear band regime.

  14. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  15. Use of alkali metal salts to prepare high purity single-walled carbon nanotube solutions and thin films

    Science.gov (United States)

    Ashour, Rakan F.

    Single-walled carbon nanotubes (SWCNTs) display interesting electronic and optical properties desired for many advanced thin film applications, such as transparent conductive electrodes or thin-film transistors. Large-scale production of SWCNTs generally results in polydispersed mixtures of nanotube structures. Since SWCNT electronic character (conducting or semiconducting nature) depends on the nanotube structure, application performance is being held back by this inability to discretely control SWCNT synthesis. Although a number of post-production techniques are able to separate SWCNTs based on electronic character, diameter, or chirality, most still suffer from the disadvantage of high costs of materials, equipment, or labor intensity to be relevant for large-scale production. On the other hand, chromatographic separation has emerged as a method that is compatible with large scale separation of metallic and semiconducting SWCNTs. In this work, SWCNTs, in an aqueous surfactant suspension of sodium dodecyl sulfate (SDS), are separated by their electronic character using a gel chromatography process. Metallic SWCNTs (m-SWCNTs) are collected as initial fractions since they show minimum interaction with the gel medium, whereas, semiconducting SWCNTs (sc- SWCNTs) remain adsorbed to the gel. The process of sc-SWCNT retention in the gel is found to be driven by the packing density of SDS around the SWCNTs. Through a series of separation experiments, it is shown that sc-SWCNTs can be eluted from the gel simply by disturbing the configuration of the SDS/SWCNT micellar structure. This is achieved by either introducing a solution containing a co-surfactant, such as sodium cholate (SC), or solutions of alkali metal ionic salts. Analysis of SWCNT suspensions by optical absorption provides insights into the effect of changing the metal ion (M+ = Li+, Na+, and K+) in the eluting solution. Salts with smaller metal ions (e.g. Li+) require higher concentrations to achieve

  16. Structure and thermodynamics of molten salts

    International Nuclear Information System (INIS)

    Papatheodorou, G.N.

    1983-01-01

    This chapter investigates single-component molten salts and multicomponent salt mixtures. Molten salts provide an important testing ground for theories of liquids, solutions, and plasmas. Topics considered include molten salts as liquids (the pair potential, the radial distribution function, methods of characterization), single salts (structure, thermodynamic correlations), and salt mixtures (the thermodynamics of mixing; spectroscopy and structure). Neutron and X-ray scattering techniques are used to determine the structure of molten metal halide salts. The corresponding-states theory is used to obtain thermodynamic correlations on single salts. Structural information on salt mixtures is obtained by using vibrational (Raman) and electronic absorption spectroscopy. Charge-symmetrical systems and charge-unsymmetrical systems are used to examine the thermodynamics of salt mixtures

  17. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Qian Xin, E-mail: qx3023@nimte.ac.cn [National Engineering Laboratory of Carbon Fiber Preparation Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang Xuefei; Ouyang Qin; Chen Yousi; Yan Qing [National Engineering Laboratory of Carbon Fiber Preparation Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Longitudinal grooves on the fiber surface became more well-defined and much deeper after surface treatment. Black-Right-Pointing-Pointer The concentration of oxygen and nitrogen on the fiber surface increased after surface treatment. Black-Right-Pointing-Pointer The intensity of oxidative reaction varied with the change of ammonium-salt solutions. Black-Right-Pointing-Pointer The higher the concentration of OH{sup -} ions in the electrolytes, the violent the oxidative reaction happened. - Abstract: The surfaces of polyacrylonitrile-based carbon fibers were treated by an electrochemical anodic method. Three different kinds of ammonium-salt solutions namely NH{sub 4}HCO{sub 3}, (NH{sub 4}){sub 2}CO{sub 3} and (NH{sub 4}){sub 3}PO{sub 4} were respectively chosen as the electrolytes. The effect of these electrolytes on the surface structure was studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The results showed that longitudinal grooves on the fiber surface became more well-defined and much deeper after surface treatment, and the root mean square roughness (RMS) of carbon fiber surface increased from 4.6 nm for untreated fibers to 13.5 nm for treated fibers in (NH{sub 4}){sub 3}PO{sub 4} electrolytes. The concentration of oxygen and nitrogen atomic on the fiber surface increased after surface treatment. The tensile strength of oxidized fibers had an obvious decrease, whereas the interlaminar shear strength (ILSS) value of corresponding carbon fiber reinforced polymers (CFRPs) increased in a large extent. The intensity of oxidative reaction varied with the change of ammonium-salt solutions and electrochemical oxidation in (NH{sub 4}){sub 3}PO{sub 4} electrolyte was of the most violence. The corresponding mechanism was also discussed and the result showed that the higher the concentration of OH{sup -} ions in the electrolytes, the violent the oxidative

  18. Additional disinfection with a modified salt solution in a root canal model.

    Science.gov (United States)

    van der Waal, Suzette V; Oonk, Charlotte A M; Nieman, Selma H; Wesselink, Paul R; de Soet, Johannes J; Crielaard, Wim

    2015-10-01

    The aim of this study is to investigate the disinfecting properties of a modified salt solution (MSS) and calcium hydroxide (Ca(OH)2) in a non-direct-contact ex-vivo model. Seventy-four single-canal roots infected with Enterococcus faecalis were treated with 1% sodium hypochlorite (NaOCl) irrigation or with NaOCl irrigation with subsequent dressing with MSS or Ca(OH)2. After removal of the dressings, the roots were filled with bacterial growth medium and incubated for seven days to enable the surviving bacteria to repopulate the root canal lumen. Growth was determined by sampling the root canals with paper points before treatment (S1), after treatment (S2) and incubation after treatment (S3). The colony forming units were counted at S1 and S2. At S3, growth was determined as no/yes regrowth. The Kruskal-Wallis, McNemar and χ(2) test were used for statistical analyses. At S2, in the NaOCl group, growth was found in 5 of 19 root canals. After the removal of MSS or Ca(OH)2 bacteria were retrieved from one root canal in both groups. At S3, repopulation of the root canals had occurred in 14 of 19 roots after sole NaOCl irrigation, 6 of 20 roots after MSS-dressing and in 14 of 20 roots after Ca(OH)2-dressing. MSS was more effective in preventing regrowth than Ca(OH)2 (P=0.009). The modified salt solution prevented regrowth in roots which indicates that it can eliminate persistent bacteria. Dressing the root canals with Ca(OH)2 did not provide additional disinfection after NaOCl irrigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Study of colored anodized aluminum with calcon in sulfuric acidic solution using cyclic voltammetry and impedance measurement methods

    Energy Technology Data Exchange (ETDEWEB)

    Norouzi, P.; Ganjali, M.R.; Golmohamaddi, M.; Mousavi, S. [Department of Chemistry, Faculty of Science, University of Tehran, Tehran (Iran); Vatankhah, G. [Iranian Organization for Science and Technology (IROST), Isfahan Center, A5 Ghezelbash Avenue, Tohid Street, Isfahan 8173954541 (Iran)

    2003-04-01

    The effect of coloring condition of Al with Calcon (sodium 2,2'-dihydroxy-azonaphthalene-4-sulfonate), on the corrosion resistance of Al in 0.1 M sulfuric acid solution was studied, using cyclic voltammetry and measurement of impedance noise methods. The changes in the corrosion resistance of colored aluminum electrodes were evaluated by measuring the magnitude of impedance and cyclic voltammetric responses of anodized and colored electrodes. An irreversible corrosion response was observed at the cyclic voltammogram of the colored aluminum electrode. The current and threshold potential of corrosion responses strongly depends on the applied conditions during anodizing, coloring and sealing stages. In addition, significant changes in impedance at the ac voltammogram and noise level at some ac frequencies were observed, when the electrodes were colored under various conditions. In this regard, the surface of the electrode was studied by Scanning Electron Microscopy (SEM). Comparison of SEM images of the colored and uncolored aluminum specimens showed that the colored surface contained a significant numbers of pits. The results indicated that coloring aluminum with Calcon could reduce corrosion resistance of aluminum and increase roughness of the oxide film. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Mit Hilfe zyklischer Voltammetrie und Messungen mit Impedanzrauschmethoden wurde der Einfluss der Faerbungsbedingungen von Aluminium mit Calcon (Natrium 2,2'-Dihydroxyazonaphthalen-4-Sulfonat) auf den Korrosionswiderstand von Aluminium in 0,1 M Schwefelsaeure untersucht. Die Veraenderungen des Korrosionswiderstandes von gefaerbten Aluminiumelektroden wurden durch Messungen der Hoehe der Impedanzreaktion bzw. der Reaktion bei der zyklischen Voltammetrie von anodisierten und gefaerbten Elektroden beurteilt. Eine irreversible Korrosionsreaktion wurde beim zyklischen Voltammogramm der gefaerbten Aluminiumelektrode beobachtet. Der Strom und das

  20. Salt decontamination demonstration test results

    International Nuclear Information System (INIS)

    Snell, E.B.; Heng, C.J.

    1983-06-01

    The Salt Decontamination Demonstration confirmed that the precipitation process could be used for large-scale decontamination of radioactive waste sale solution. Although a number of refinements are necessary to safely process the long-term requirement of 5 million gallons of waste salt solution per year, there were no observations to suggest that any fundamentals of the process require re-evaluation. Major accomplishments were: (1) 518,000 gallons of decontaminated filtrate were produced from 427,000 gallons of waste salt solution from tank 24H. The demonstration goal was to produce a minimum of 200,000 gallons of decontaminated salt solution; (2) cesium activity in the filtrate was reduced by a factor of 43,000 below the cesium activity in the tank 24 solution. This decontamination factor (DF) exceeded the demonstration goal of a DF greater than 10,000; (3) average strontium-90 activity in the filtrate was reduced by a factor of 26 to less than 10 3 d/m/ml versus a goal of less than 10 4 d/m/ml; and (4) the concentrated precipitate was washed to a final sodium ion concentration of 0.15 M, well below the 0.225 M upper limit for DWPF feed. These accomplishments were achieved on schedule and without incident. Total radiation exposure to personnel was less than 350 mrem and resulted primarily from sampling precipitate slurry inside tank 48. 3 references, 6 figures, 2 tables

  1. Cumulates, Dykes and Pressure Solution in the Ice-Salt Mantle of Europa: Geological Consequences of Pressure Dependent Liquid Compositions and Volume Changes During Ice-Salt Melting Reactions.

    Science.gov (United States)

    Day, S.; Asphaug, E.; Bruesch, L.

    2002-12-01

    Water-salt analogue experiments used to investigate cumulate processes in silicate magmas, along with observations of sea ice and ice shelf behaviour, indicate that crystal-melt separation in water-salt systems is a rapid and efficient process even on scales of millimetres and minutes. Squeezing-out of residual melts by matrix compaction is also predicted to be rapid on geological timescales. We predict that the ice-salt mantle of Europa is likely to be strongly stratified, with a layered structure predictable from density and phase relationships between ice polymorphs, aqueous saline solutions and crystalline salts such as hydrated magnesium sulphates (determined experimentally by, inter alia, Hogenboom et al). A surface layer of water ice flotation cumulate will be separated from denser salt cumulates by a cotectic horizon. This cotectic horizon will be both the site of subsequent lowest-temperature melting and a level of neutral buoyancy for the saline melts produced. Initial melting will be in a narrow depth range owing to increasing melting temperature with decreasing pressure: the phase relations argue against direct melt-though to the surface unless vesiculation occurs. Overpressuring of dense melts due to volume expansion on cotectic melting is predicted to lead to lateral dyke emplacement and extension above the dyke tips. Once the liquid leaves the cotectic, melting of water ice will involve negative volume change. Impact-generated melts will drain downwards through the fractured zones beneath crater floors. A feature in the complex crater Mannan'an, with elliptical ring fractures around a conical depression with a central pit, bears a close resemblance to Icelandic glacier collapse cauldrons produced by subglacial eruptions. Other structures resembling Icelandic cauldrons occur along Europan banded structures, while resurgence of ice rubble within collapse structures may produce certain types of chaos region. More general contraction of the ice mantle

  2. [Determination of Arsenic in Food Package Aluminum by Ultrasound Assisted Solid Phase Extraction/ICP-AES].

    Science.gov (United States)

    Qin, Wen-xia; Gong, Qi; Li, Min; Deng, Li-xin; Mo, Li-shu; Li, Yan-lin

    2015-04-01

    Determination of arsenic in pure aluminum by inductively coupled plasma atomic emission spectrometry was interfered by aluminum matrix. The experiment showed that when the mass concentration of Al was greater than or equal to 5 000 times the As in the test solution, the measurement error was greater than 5%. In order to eliminate the interference, strong acid cation exchange fiber (SACEF) was used as solid phase extraction agent to adsorb Al(3+). The extraction conditions included amount of SACEF, extraction time, temperature and pH were investigated. The optimal extraction conditions were that 0.9000 g SACEF was used to extract the aluminum from the sample solution of pH 2.0 at 55 °C for 5 min with the ultrasonic assist, and in this case, the arsenic in the form of arsenic acid was not extracted and left in the solution for the determination. The results showed that after treating 10. 00 mL test solution containing 1.00 µg arsenic and 20.0 mg aluminum, arsenic did not lose. The mass concentration of residual aluminum in the raffinate was about 2,000 times the As, which had not interfered the determination of arsenic. The detection limit (3 s) was 0.027 µg · mL(-1) and quantification limit (10 s) was 0.0091 µg · mL(-1). The proposed method was successfully applied to the separation and determination of arsenic in the synthetic samples, the aluminum cans and the barbecue aluminum foil. Recovery was in the range of 98.3%-105% and RSD (n = 3) was in the range of 0.1%-4.3%. The results showed that the content of arsenic in the aluminum cans and the aluminum barbecue foil was below the limited value of national standard (GB/T 3190-2008).

  3. The preparation of magnetite from iron(III) and iron(II) salt solutions

    International Nuclear Information System (INIS)

    Segal, D.L.

    1980-10-01

    Methods are described for the preparation of magnetite from iron(III) and iron(II) salt solutions at temperatures between 295 to 373 K. The effect of the reagent concentration, a chelating agent and different alkali-metal cations on the formation of magnetite has been investigated. The magnetite samples have been examined by X-ray diffraction, transmission electron microscopy, adsorption of nitrogen, emission spectroscopy, X-ray photoelectron spectroscopy and by determination of the point of zero charge. A review of previous work on the preparation of magnetite in an aqueous environment is also included. This work is relevant to the corrosion processes which can occur in the water coolant circuits of nuclear reactors. (author)

  4. Analysis of corrosion data for carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    International Nuclear Information System (INIS)

    Diercks, D.R.; Hull, A.B.; Kassner, T.F.

    1988-03-01

    Carbon steel is currently the leading candidate material for fabrication of a container for isolation of high level nuclear waste in a salt repository. Since brine entrapped in the bedded salt can migrate to the container by several transport processes, corrosion is an important consideration in the long-term performance of the waste package. A detailed literature search was performed to compile relevant corrosion data for carbon steels in anoxic acid chloride solutions, and simulated salt repository brines at temperatures between ∼ 20 and 400 0 C. The hydrolysis of Mg 2+ ions in simulated repository brines containing high magnesium concentrations causes acidification at temperatures above 25 0 C, which, in turn, influences the protective nature of the magnetite corrosion product layer on carbon steel. The corrosion data for the steels were analyzed, and an analytical model for general corrosion was developed to calculate the amount of penetration (i.e., wall thinning) as a function of time, temperature, and the pressure of corrosion product hydrogen than can build up during exposure in a closed system (e.g., a sealed capsule). Both the temperature and pressure dependence of the corrosion rate of steels in anoxic acid chloride solutions indicate that the rate-controlling partial reaction is the cathodic reduction of water to form hydrogen. Variations in the composition and microstructure of the steels or the concentration of the ionic species in the chloride solutions (provided that they do not change the pH significantly) do not appear to strongly influence the corrosion rate

  5. Physico-Chemical Study of the Separation of Calcium Isotopes by Chemical Exchange Between Amalgam and Salt Solutions

    International Nuclear Information System (INIS)

    Duie, P.; Dirian, G.

    1962-01-01

    In a preliminary study of the isotopic exchange between Ca amalgam and aqueous or organic solutions of Ca salts, the main parameters governing the feasibility of a separation process based on these systems such as separation factor, exchange kinetics, rate of decomposition of the amalgam were investigated. The separation factor between 40 Ca and 46 Ca was found to be of the order of 1.02. The rate of the exchange reaction is rather low for aqueous solutions, extremely low for organic solutions. The amalgam seems not to be attacked by dimethyl-formamide solutions; but it is rapidly decomposed by aqueous solutions of Ca halides. This decomposition is slow in the case of aqueous solutions of calcium formate and still slower for Ca(OH) 2 ; however, except in particular conditions, the observed rate is often much higher, owing to interfering reactions between amalgam and water vapor contained in H 2 bubbles. (authors) [fr

  6. Japanese traditional miso soup attenuates salt-induced hypertension and its organ damage in Dahl salt-sensitive rats.

    Science.gov (United States)

    Yoshinaga, Mariko; Toda, Natsuko; Tamura, Yuki; Terakado, Shouko; Ueno, Mai; Otsuka, Kie; Numabe, Atsushi; Kawabata, Yukari; Uehara, Yoshio

    2012-09-01

    We investigated the effects of long-term miso soup drinking on salt-induced hypertension in Dahl salt-sensitive (Dahl S) rats. Dahl S rats were divided into four groups that consumed 1) water, 2) a 0.9% NaCl solution, 3) a 1.3% sodium NaCl solution, or 4) miso soup containing 1.3% NaCl. They were followed for 8 wk. Systolic blood pressure and hypertensive organ damage were determined. Systolic blood pressure increased in an age- and dose-dependent manner in Dahl S rats drinking salt solutions. The systolic blood pressure increase was significantly less in the Dahl S rats that drank miso soup, although the ultimate cumulative salt loading was greater than that in the Dahl S rats given the 1.3% NaCl solution. This blood pressure decrease was associated with a morphologic attenuation of glomerular sclerosis in the kidney and collagen infiltration in the heart. Urinary protein excretions were less in the miso group than in the rats given the 1.3% NaCl solution. The fractional excretion of sodium was increased and that of potassium was decreased in Dahl S rats given the 1.3% NaCl solution, and these effects were reversed in rats given miso soup toward the values of the control. We found that long-term miso soup drinking attenuates the blood pressure increase in salt-induced hypertension with organ damage. This may be caused by a possible retardation of sodium absorption in the gastrointestinal tract or by the direct effects of nutrients in the miso soup from soybeans. The decrease was associated with decreases in cardiovascular and renal damage. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Soft X-ray absorption spectra of aqueous salt solutions with highly charged cations in liquid microjets

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.

    2010-03-11

    X-ray absorption spectra of 1M aqueous solutions of indium (III) chloride, yttrium (III) bromide, lanthanum (III) chloride, tin (IV) chloride and chromium (III) chloride have been measured at the oxygen K-edge. Relatively minor changes are observed in the spectra compared to that of pure water. SnCl{sub 4} and CrCl{sub 3} exhibit a new onset feature which is attributed to formation of hydroxide or other complex molecules in the solution. At higher energy, only relatively minor, but salt-specific changes in the spectra occur. The small magnitude of the observed spectral changes is ascribed to offsetting perturbations by the cations and anions.

  8. Measurement and evaluation of the water and the salt solutions occurring in the exploitation of rock salt, potash or copper shale deposits in the Bernburg Hauptsattel or the Sangerhaeuser Revier in order to assess the long-term safety of repositories

    International Nuclear Information System (INIS)

    Schwandt, A.

    1993-01-01

    For a thorough assessment of conditions governing the occurrence of salt solutions or water in a repository in the Zechstein, i.e. in the salt formation and at its boundaries, data measured in other mines developed in this formation can yield valuable information. The studies reported were based on geological, hydrogeological, geochemical and geomechanical data collected for more than 50 inflow areas or salt solution bearing areas, covering approx. 15,000 chemical or physical analyses from which the data were derived describing the characteristics or development of inflow streams with time. In addition, the mapped inflow streams were evaluated with a view to the geological and hydrogeological and the geomechanical conditions of origin, as well as engineering impacts. (DG) [de

  9. Molten salt hazardous waste disposal process utilizing gas/liquid contact for salt recovery

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.

    1984-01-01

    The products of a molten salt combustion of hazardous wastes are converted into a cooled gas, which can be filtered to remove hazardous particulate material, and a dry flowable mixture of salts, which can be recycled for use in the molten salt combustion, by means of gas/liquid contact between the gaseous products of combustion of the hazardous waste and a solution produced by quenching the spent melt from such molten salt combustion. The process results in maximizing the proportion of useful materials recovered from the molten salt combustion and minimizing the volume of material which must be discarded. In a preferred embodiment a spray dryer treatment is used to achieve the desired gas/liquid contact

  10. Test procedures for salt rock

    International Nuclear Information System (INIS)

    Dusseault, M.B.

    1985-01-01

    Potash mining, salt mining, design of solution caverns in salt rocks, disposal of waste in salt repositories, and the use of granular halite backfill in underground salt rock mines are all mining activities which are practised or contemplated for the near future. Whatever the purpose, the need for high quality design parameters is evident. The authors have been testing salt rocks in the laboratory in a number of configurations for some time. Great care has been given to the quality of sample preparation and test methodology. This paper describes the methods, presents the elements of equipment design, and shows some typical results

  11. Coagulation mechanism of salt solution-extracted active component in Moringa oleifera seeds.

    Science.gov (United States)

    Okuda, T; Baes, A U; Nishijima, W; Okada, M

    2001-03-01

    This study focuses on the coagulation mechanism by the purified coagulant solution (MOC-SC-PC) with the coagulation active component extracted from M. oleifera seeds using salt solution. The addition of MOC-SC-PC tap water formed insoluble matters. This formation was responsible for kaolin coagulation. On the other hand, insoluble matters were not formed when the MOC-SC-PC was added into distilled water. The formation was affected by Ca2+ or other bivalent cations which may connect each molecule of the active coagulation component in MOC-SC-PC and form a net-like structure. The coagulation mechanism of MOC-SC-PC seemed to be an enmeshment of Kaolin by the insoluble matters with the net-like structure. In case of Ca2+ ion (bivalent cations), at least 0.2 mM was necessary for coagulation at 0.3 mgC l-1 dose of MOC-SC-PC. Other coagulation mechanisms like compression of double layer, interparticle bridging or charge neutralization were not responsible for the coagulation by MOC-SC-PC.

  12. Separating NaCl and AlCl3·6H2O Crystals from Acidic Solution Assisted by the Non-Equilibrium Phase Diagram of AlCl3-NaCl-H2O(-HCl Salt-Water System at 353.15 K

    Directory of Open Access Journals (Sweden)

    Huaigang Cheng

    2017-08-01

    Full Text Available Extracting AlCl3·6H2O from acid leaching solution through crystallization is one of the key processes to extracting aluminum from fly ash, coal gangue and other industrial solid wastes. However, the obtained products usually have low purity and a key problem is the lack of accurate data for phase equilibrium. This paper presented the non-equilibrium phase diagrams of AlCl3-NaCl-H2O (HCl salt-water systems under continuous heating and evaporation conditions, which were the main components of the acid leaching solution obtained through a sodium-assisted activation hydrochloric acid leaching process. The ternary system was of a simple eutonic type under different acidities. There were three crystalline regions; the crystalline regions of AlCl3·6H2O, NaCl and the mixture AlCl3·6H2O/NaCl, respectively. The phase diagram was used to optimize the crystallization process of AlCl3·6H2O and NaCl. A process was designed to evaporate and remove NaCl at the first stage of the evaporation process, and then continue to evaporate and crystallize AlCl3·6H2O after solid-liquid separation. The purities of the final salt products were 99.12% for NaCl and up to 97.35% for AlCl3·6H2O, respectively.

  13. Isolation and characterization of coagulant extracted from Moringa oleifera seed by salt solution.

    Science.gov (United States)

    Okuda, T; Baes, A U; Nishijima, W; Okada, M

    2001-02-01

    It is known that M. oleifera contains a natural coagulant in the seeds. In our previous research, the method using salt water to extract the active coagulation component from M. oleifera seeds was developed and compared with the conventional method using water. In this research, the active coagulation component was purified from a NaCl solution crude extract of Moringa oleifera seeds. The active component was isolated and purified from the crude extract through a sequence of steps that included salting-out by dialysis, removal of lipids and carbohydrates by homogenization with acetone, and anion exchange. Specific coagulation activity of the active material increased up to 34 times more than the crude extract after the ion exchange. The active component was not the same as that of water extract. The molecular weight was about 3000 Da. The Lowry method and the phenol-sulfuric acid method indicated that the active component was neither protein nor polysaccharide. The optimum pH of the purified active component for coagulation of turbidity was pH 8 and above. Different from the conventional water extracts, the active component can be used for waters with low turbidity without increase in the dissolved organic carbon concentration.

  14. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    International Nuclear Information System (INIS)

    Kobayashi, Kazuya; Liang, Yunfeng; Matsuoka, Toshifumi; Sakka, Tetsuo

    2014-01-01

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules

  15. Ionic structure of solutions of alkali metals and molten salts

    International Nuclear Information System (INIS)

    Chabrier, G.; Senatore, G.; Tosi, M.P.

    1982-02-01

    Neutron diffraction patterns from K-KCl and Rb-RbBr liquid solutions at various compositions are examined in an ionic-mixture model which neglects screening and aggregation due to the metallic electrons. The main feature of the observed diffraction patterns for wave number k above roughly 1A -1 are accounted for by the model. The approach to the metal-rich end of the phase diagram is analyzed in detail from different viewpoints in the K-KCl system. Short-range correlations of the potassium ions are described in this region by a metallic radius deduced from properties of the pure liquid metal, but a simple expanded-metal model must be supplemented by the assumption that considerable disorder is introduced in its structure by the halogen ions. Features of short-range ordering in the salt-rich region that are implied by a shoulder on the high-k side of the main peak in the diffraction pattern are also commented upon. (author)

  16. Transition at the deliquesce point in single salts

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge

    2014-01-01

    Background: Deliquesce points for single salts are in general considered to occur at a specific relative humidity and are also shown as such in phase diagrams. For this reason, salts are used for calibration purpose. According to Gibbs phase rule, the crystalline solid and the saturated solution...... the increasing numbers of thin film water till 20 mbar at 25˚C whereas the deliquescence point is at 24 mbar. These results suggest a stepwise change in the state of the salt. During preparation to salt calibration tests (in a Dynamic Vapour Sorption equipment (DVS)) the author noticed that some single salts...... have a very sudden and accurate change in salt state whereas another salt changed inaccurate as was noticed with NaCl (seen in more than 10 salt preparations). In the present work, the inaccurate transition between the solid NaCl to NaCl in solution was investigated with a cooling stage (CS) in an ESEM...

  17. Mechanism of nucleation and growth of hydrogen porosity in solidifying A356 aluminum alloy: an analytical solution

    International Nuclear Information System (INIS)

    Li, K.-D.; Chang, Edward

    2004-01-01

    This study derives an analytical solution for the mechanism of nucleation and growth of hydrogen pore in the solidifying A356 aluminum alloy. A model of initial transient hydrogen redistribution in the growing dendritic grain is used to modify the lever rule for the mechanism of nucleation of pore. The model predicts the fraction of solid at nucleation, the temperature range of nucleation, the radius of hydrogen diffusion cell, and the supersaturation of hydrogen needed for nucleation. The role of solidus velocity in nucleation is explained. The parameters calculated from the model of nucleation are used for analyzing the mechanism of kinetic diffusion-controlled growth of pore, in which the mathematical transformations of variables are introduced. With the transformations, it is argued that the diffusion problem involving the liquid and solid phases during solidification could be treated as a classic problem of precipitation in the single-phase medium treated by Ham or Avrami. The analytical solution for the nucleation of pore is compared with the mechanism of macrosegregation. The predicted volume percent of porosity and radius of pore based on the mechanism of growth of pore is discussed with respect to the thermodynamic solution, the published experimental data, the numerical solutions, and the role of interdendritic fluid flow governed by Darcy's law

  18. A high-voltage and non-corrosive ionic liquid electrolyte used in rechargeable aluminum battery.

    Science.gov (United States)

    Wang, Huali; Gu, Sichen; Bai, Ying; Chen, Shi; Wu, Feng; Wu, Chuan

    2016-10-03

    As a promising post-lithium battery, rechargeable aluminum battery has the potential to achieve a three-electron reaction with fully use of metal aluminum. Alternative electrolytes are strongly needed for further development of rechargeable aluminum batteries, since typical AlCl3-contained imidazole-based ionic liquids are moisture sensitive, corrosive, and with low oxidation voltage. In this letter, a kind of non-corrosive and water-stable ionic liquid obtained by mixing 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM]OTF) with the corresponding aluminum salt (Al(OTF)3) is studied. This ionic liquid electrolyte has a high oxidation voltage (3.25V vs Al3+/Al) and high ionic conductivity, and a good electrochemical performance is also achieved. A new strategy, which first use corrosive AlCl3-based electrolyte to construct a suitable passageway on the Al anode for Al3+, and then use non-corrosive Al(OTF)3-based electrolyte to get stable Al/electrolyte interface, is put forward.

  19. Glyoxal and methylglyoxal Setschenow salting constants in sulfate, nitrate, and chloride solutions

    DEFF Research Database (Denmark)

    Waxman, Eleanor M.; Elm, Jonas; Kurtén, Theo

    2015-01-01

    Knowledge about Setschenow salting constants, KS, the exponential dependence of Henry's Law coefficients on salt concentration, is of particular importance to predict secondary organic aerosol (SOA) formation from soluble species in atmospheric waters with high salt concentrations, such as aerosols....... We have measured KS of glyoxal and methylglyoxal for the atmospherically relevant salts (NH4)2SO4, NH4NO3, NaNO3, and NaCl and find that glyoxal consistently "salts-in" (KS of -0.16, -0.06, -0.065, -0.1 molality(-1), respectively) while methylglyoxal "salts-out" (KS of +0.16, +0.075, +0.02, +0.......06 molality(-1)). We show that KS values for different salts are additive and present an equation for use in atmospheric models. Additionally, we have performed a series of quantum chemical calculations to determine the interactions between glyoxal/methylglyoxal monohydrate with Cl(-), NO3(-), SO4(2-), Na...

  20. Salt Rejection of Non-Ionic Polymeric Membranes

    DEFF Research Database (Denmark)

    Bo, P.; Stannett, V.

    1976-01-01

    A modified solution-diffusion model for the description of salt and water transport through homogeneous membranes is introduced. It is compared with the current solution-diffusion model and the combined flow-diffusion model for the description of transport under reverse osmosis conditions....... The advantage of the modified description over the current solution-diffusion model is the inclusion of a salt-water coupling transport coefficient which allows the description to be extended to membranes of high water permeability (high water content). The advantage of the modified solution-diffusion model...

  1. Chemical equilibrium of hydrogen and aqueous solutions of 1 : 1 bicarbonate and formate salts with a common cation

    NARCIS (Netherlands)

    Engel, D.C.; Versteeg, G.F.; Swaaij, W.P.M. van

    1997-01-01

    The chemical equilibrium of hydrogen and aqueous solutions of 1:1 bicarbonate and formate salts with a common cation has been investigated in an intensively stirred batch reactor: MHCO3(aq) + H2(aq) ↔ MOOCH(aq) + H2O(l) This was accomplished for the sodium (M = Na), potassium (M = K) and ammonium (M

  2. Patterned forests of vertically-aligned multiwalled carbon nanotubes using metal salt catalyst solutions.

    Science.gov (United States)

    Garrett, David J; Flavel, Benjamin S; Baronian, Keith H R; Downard, Alison J

    2013-01-01

    A simple method for producing patterned forests of multiwalled carbon nanotubes (MWCNTs) is described. An aqueous metal salt solution is spin-coated onto a substrate patterned with photoresist by standard methods. The photoresist is removed by acetone washing leaving the acetone-insoluble catalyst pattern on the substrate. Dense forests of vertically aligned (VA) MWCNTs are grown on the patterned catalyst layers by chemical vapour deposition. The procedures have been demonstrated by growing MWCNT forests on two substrates: silicon and conducting graphitic carbon films. The forests adhere strongly to the substrates and when grown directly on carbon film, offer a simple method of preparing MWCNT electrodes.

  3. Tetraphenylborate Solubility in High Ionic Strength Salt Solutions

    International Nuclear Information System (INIS)

    Serkiz, S.M.; Ginn, J.D.; Jurgensen, A.R.

    1998-04-01

    Solubility of sodium and potassium salts of the tetraphenylborate ion (TPB) in simulated Savannah River Site High Level Waste was investigated. Data generated from this study allow more accurate predictions of TPB solubility at the In-Tank Precipitation (ITP) facility. Because previous research showed large deviations in the observed solubility of TPB salts when compared with model predictions, additional data were generated to better understand the solubility of TPB in more complex systems of high ionic strength and those containing both potassium and sodium. These data allow evaluation of the ability of current models to accurately predict equilibrium TPB concentrations over the range of experimental conditions investigated in this study

  4. THE LIME PURIFICATION OF SUGAR –CONTAINING SOLUTION USING HIGH VISCOSITY COLLOIDAL SOLUTIONS

    Directory of Open Access Journals (Sweden)

    K. V.

    2015-12-01

    Full Text Available Aim of the work was to determine the efficiency of combined application of lime and high-viscous suspensions, containing the aluminium nanoparticles as a precursor in treatment of sugar-containing solutions. At the first stage the aluminium nanopowder, encapsulated into a salt matrix, was produced by the combined precipitation from a gas phase of metal and halogenide of alkali metal (NaCl. For the long-term stabilization of aluminum nanoparticles the method, developed by the authors, for dispersing these powders in the composition of polyethylene glycols was used, providing the colloidal solution of high viscosity (gel. At the second stage, as an object of investigation a juice of sugar beet, produced in the laboratory conditions by water extracting from the beet chips, was applied. In the produced juice the main characteristics of its quality were determined: the content of solids, sucrose, its purity was calculated (ratio of sucrose to solids content, in%. The content of protein and pectin components was also determined (as the main components of the colloidal fraction of the diffusion juice. Conventionally, as a basic reagent for the process of a lime pretreatment a lime milk of 1.18 g/cm3 density, prepared by liming the burned lime using hot water, was used. During the experiments the effectiveness of reagents, containing aluminum in nanoform, on the degree of removal of the colloidal dispersion substances in the process of juice purification in sugar beet production and improvement of its quality, is shown. However, the obtained results show that, depending on the method of producing, the additional reagents with aluminium nanoparticles have different effect on change of diffusion juice purity in the process of its treatment by the lime milk.

  5. The Effect of Salt Splash on Nylon 6,6

    OpenAIRE

    Steward, Scott D

    1999-01-01

    Abstract: One of the most common environmental exposures that nylon undergoes, when used for automotive applications, is that of salt splash, which commonly occurs during winter driving. This study looks at the effect of various salts (NaCl, KCl, CaCl2) on the thermal and mechanical properties of nylon when exposed to one and four molar aqueous salt solutions. It was found that the diffusion of salt solutions into nylon 6,6 occurred in a pseudo-Fickian manner. Also, it was found that the p...

  6. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar

    2007-01-01

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively

  7. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  8. Nuclear criticality safety evaluation of the passage of decontaminated salt solution from the ITP filters into tank 50H for interim storage

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Davis, J.R.

    1994-01-01

    This report assesses the nuclear criticality safety associated with the decontaminated salt solution after passing through the In-Tank Precipitation (ITP) filters, through the stripper columns and into Tank 50H for interim storage until transfer to the Saltstone facility. The criticality safety basis for the ITP process is documented. Criticality safety in the ITP filtrate has been analyzed under normal and process upset conditions. This report evaluates the potential for criticality due to the precipitation or crystallization of fissionable material from solution and an ITP process filter failure in which insoluble material carryover from salt dissolution is present. It is concluded that no single inadvertent error will cause criticality and that the process will remain subcritical under normal and credible abnormal conditions

  9. Neurotoxicity and bony diseases caused by the continuous contamination with aluminum of solutions of renal dialysis

    International Nuclear Information System (INIS)

    Barquero Quiros, M.; Vargas Rojas, R.; Blanco Saenz, R.

    2001-01-01

    This article reviews the principal evidences about aluminum neurotoxicity in vitro, and some evidences in brain tissues of Alzheimer patients; and also show some studies realized with human that suffer renal deficiencies, dealing whit the principal osteodystrophy. The problem of analyzing low aluminum concentration in human fluids is overcome with very sensitive analytical methods as electrothermal atomic absorption spectrometry (ETAS) and voltammetric methods as Anodic Striping Voltammetry with complexing agents that easing adsorption over solid electrodes or mercury hanging drops. Is a vital question to know with accuracy the aluminum concentration in water used in hemodialysis or in fluids used in ambulatory peritoneal dialysis, as a first stage to prevent contamination by aluminum. So the prevention of contamination during sapling storage and analysis of biological fluids should be the first need and the sources of water used in renal dialysis keep be as clean as possible of aluminum contamination. (Author) [es

  10. Expression of the 68-kilodalton neurofilament gene in aluminum intoxication

    International Nuclear Information System (INIS)

    Muma, N.A.; Troncoso, J.C.; Hoffman, P.N.; Price, D.L.

    1986-01-01

    Intrathecal administration of aluminum salts induces accumulation of neurofilaments (NFs) in cell bodies and proximal axons of rabbit spinal motor neurons. Mechanisms leading to this pathological change are not well understood. Although impairments of NF transport have been demonstrated in this model, the hypothesis that NF accumulations are the result of an increase in NF synthesis needs to be explored. In rabbits, a large percentage of neurons develop accumulations of NFs following injections of aluminum lactate directly into the cisterna magna or into a reservoir placed in the lateral ventricle. To study levels of mRNA encoding cytoskeletal proteins, spinal cord RNA was extracted, separated on a denaturing agarose gel, transferred to nitrocellulose paper, and hybridized to [ 32 P]-labeled cDNA clones encoding the mouse 68-kilodalton (kd) NF subunit and tubulin. Examining a constant amount of RNA, the radioactivity of labeled mRNA bands for the 68-kd NF subunit and for tubulin was decreased in spinal cords of aluminum-treated rabbits. These preliminary results will be followed up by in situ hybridization to determine levels of mRNA for tubulin and 68-kd NF subunit in affected and in normal spinal neurons. In conclusion, administration of aluminum decreased mRNA for the 608-kd NF protein in spinal neurons

  11. Acid-generating salts and their relationship to the chemistry of groundwater and storm runoff at an abandoned mine site in southwestern Indiana, USA

    International Nuclear Information System (INIS)

    Bayless, E.R.; Olyphant, G.A.

    1993-01-01

    Cation distributions in twenty samples of acid-generating salts were compared to those in groundwater and storm runoff from a coal-refuse deposit in an effort to identify source-product relationships. Two mineral suites, one primarily composed of melanterite, rozenite and szomolnokite, and the other composed almost entirely of copiapite, were found to be most abundant at the study site. Comparisons of cation distributions in salts with those in water samples led to an hypothesis that a copiapite-rich suite precipitated from vadose-zone groundwater that was brought to the surface by evaporative forcing. The copiapite-rich suite, which contained larger concentrations of aluminum, calcium and zinc than the melanterite-rozenite-szomolnokite mineral suite, was the primary source of solutes in captured storm runoff. An analysis of samples collected during a summer thunderstorm indicated that the chemistry of surface runoff varied little with time or with distance downstream. The cation distributions in samples of groundwater indicated that iron-rich pore waters observed near the surface in late autumn may have influenced water chemistry in the deeper portions of the unsaturated zone during the 1989 recharge season. The results of this study show that the solutes produced by the two observed salt suites can be distinguished by their mole percent iron and that the source-product relationships can explain observed variability in mine drainage chemistry at the study site

  12. THERMOCHEMISTRY OF INTERACTION REACTIONS FOR SODIUM AND ALUMINUM SULPHATES WITH COMPONENTS OF HYDRATING PORTLAND CEMENT

    Directory of Open Access Journals (Sweden)

    P. I. Yukhnevskiy

    2018-01-01

    Full Text Available Chemical additives are widely used in the technology of concrete with the purpose to solve various problems and sulphate-containing additives-electrolytes are also used as accelerators for setting and hardening of cement. Action mechanism of additive accelerators for setting and hardening of cement is rather complicated and can not be considered as well-established. An influence of sulfate-containing additives such as sodium sulfate is reduced to acceleration of cement silicate phase hydration by increasing ionic strength of the solution. In addition to it, exchange reactions of anion additive with portlandite phase (Ca(OH2 and aluminate phases of hardening cement have a significant effect on hardening process that lead to formation of readily soluble hydroxides and hardly soluble calcium salts. The influence of sulfate-containing additives on properties of water cement paste and cement stone is quite diverse and depends on salt concentration and cation type. For example, the action of the aluminum sulphate additive becomes more complicated if the additive is subjected to hydrolysis in water, which is aggravated in an alkaline medium of the water cement paste. Formation of hydrolysis products and their reaction with aluminate phases and cement portlandite lead to a significant acceleration of setting. Thus, despite the similarity of additives ensuring participation of anions in the exchange reactions, the mechanism of their influence on cement setting and hardening varies rather significantly. The present paper considers peculiar features concerning the mechanism of interaction of sodium and aluminum sulfate additives in cement compositions from the viewpoint of thermochemistry. Thermochemical equations for reactions of sulfate-containing additives with phases of hydrated cement clinker have been given in the paper. The paper contains description how to calculate thermal effects of chemical reactions and determine an influence of the formed

  13. Subthreshold displacement damage in copper--aluminum alloys during electron irradiation

    International Nuclear Information System (INIS)

    Drosd, R.; Kosel, T.; Washburn, J.

    1976-12-01

    During electron irradiation at low energies which results in a negligible damage rate in a pure material, lighter solute atoms are displaced, which may in turn indirectly displace solvent atoms by a focussed replacement collision or an interstitial diffusion jump. The extent to which lighter solute atoms contribute to the subthreshold damage rate has been examined by irradiating copper--aluminum alloys at high temperatures in a high voltage electron microscope. The damage rate, as measured by monitoring the growth rate of dislocation loops, at 300 kV was found to increase linearly with the aluminum concentration

  14. Corrosion inhibition of aluminum with a series of aniline monomeric surfactants and their analog polymers in 0.5 M HCl solution

    Directory of Open Access Journals (Sweden)

    M.M. El-Deeb

    2015-07-01

    Full Text Available The inhibition effect of 3-(12-sodiumsulfonate dodecyloxy aniline monomeric surfactant (MC12 and its analog polymer Poly 3-(dodecyloxy sulfonic acid aniline (PC12 on the corrosion of aluminum in 0.5 M HCl solution was investigated using weight loss and potentiodynamic polarization techniques. The presence of these two compounds in 0.5 M HCl inhibits the corrosion of aluminum without modifying the mechanism of corrosion process. It was found that these inhibitors act as mixed-type inhibitors with anodic predominance as well as the inhibition efficiency increases with increasing inhibitor concentration, but decreases with raising temperature. Langmuir and Frumkin adsorption isotherms fit well with the experimental data. Thermodynamic functions for both dissolution and adsorption processes were determined. The obtained results from weight loss and potentiodynamic polarization techniques are in good agreement with contact angle measurements.

  15. Separation and recovery of uranium ore by chlorinating, chelate resin and molten salt treatment

    International Nuclear Information System (INIS)

    Taki, Tomohiro

    2000-12-01

    Three fundamental researches of separation and recovery of uranium from uranium ore are reported in this paper. Three methods used the chloride pyrometallurgy, sodium containing molten salts and chelate resin. When uranium ore is mixed with activated carbon and reacted for one hour under the mixed gas of chlorine and oxygen at 950 C, more than 90% uranium volatilized and vaporization of aluminum, silicone and phosphorus were controlled. The best activated carbon was brown coal because it was able to control the large range of oxygen concentration. By blowing oxygen into the molten sodium hydroxide, the elution rate of uranium attained to about 95% and a few percent of uranium was remained in the residue. On the uranium ore of unconformity-related uranium deposits, a separation method of uranium, molybdenum, nickel and phosphorus from the sulfuric acid elusion solution with U, Ni, As, Mo, Fe and Al was developed. Methylene phosphonic acid type chelate resin (RCSP) adsorbed Mo and U, and then 100 % Mo was eluted by sodium acetate solution and about 100% U by sodium carbonate solution. Ni and As in the passing solution were recovered by imino-diacetic acid type chelate resin and iron hydroxide, respectively. (S.Y.)

  16. Formation of oxide layers on aluminum, niobium, and tantalum in molten alkali metal carbonates

    Science.gov (United States)

    Nikitina, E. V.; Kazakovtseva, N. A.

    2013-08-01

    The electrochemical synthesis of niobium, tantalum, and aluminum oxide nanolayers is studied in the melt of lithium, sodium, and potassium carbonates with various additives to a salt phase in an oxidizing atmosphere at a temperature of 773 and 873 K. A scheme is proposed for high-temperature anion local activation of the process.

  17. Experimental investigation of aluminum complexing with sodium ion and of gallium and iron (III) speciation in natural solutions

    International Nuclear Information System (INIS)

    Diakonov, Igor

    1995-01-01

    The aim of this work is to acquire thermodynamic data on the aqueous complexes forming between sodium and aluminum, gallium and hydroxide, and iron (III) and hydroxide. These data will provide for a better understanding of the transport and distribution of these elements in surface and hydrothermal fluids. Stability constants of the sodium-aluminate complex (Na Al(OH) 4 deg.) were obtained from boehmite solubility measurements at temperatures from 125 to 350 deg. C in alkaline solutions containing from 0.1 to 1 mol/L sodium. Complementary potentiometric measurements were performed with a sodium selective electrode, between 75 and 200 deg C (the potentiometric study was carried out by Gleb Pokrovski). Analyses of these data within the framework of the revised Helgeson-Kirkham-Flowers (HKF) model allowed determination of the HKF parameters for Na Al(OH) 4 deg. and calculation of its thermodynamic properties to 800 deg. C and 5 kb. The results of this work show that Na Al(OH) 4 deg. complex formation increases significantly the solubility of aluminum-bearing minerals and consequently aluminum mobility in hydrothermal fluids. Gallium speciation in surface and hydrothermal fluids is dominated by the negatively charged species, Ga(OH) 4 - . The thermodynamic properties of this species were determined from of OEGaOOH solubility measurements as a function of pH and temperature from 25 to 250 deg. C. In general, the variation of gallium aqueous speciation with pH is similar to that of aluminum other than at temperatures less than 200 deg. C over the pH range 3 - 6. This difference can account for the independent behavior of gallium versus aluminum in numerous low temperature natural systems. The thermodynamic properties of Fe(OH) 3 deg. which dominates the speciation of Fe(III) in surface waters and Fe(OH) 4 - were determined from hematite solubility measurements as a function of pH, oxygen pressure and temperature from 110 to 300 deg. C. The available thermodynamic data on

  18. Semi-rechargeable Aluminum-Air Battery with a TiO2 Internal Layer with Plain Salt Water as an Electrolyte

    Science.gov (United States)

    Mori, Ryohei

    2016-07-01

    To develop a semi-rechargeable aluminum-air battery, we attempted to insert various kinds of ceramic oxides between an aqueous NaCl electrolyte and an aluminum anode. From cyclic voltammetry experiments, we found that some of the ceramic oxide materials underwent an oxidation-reduction reaction, which indicates the occurrence of a faradaic electrochemical reaction. Using a TiO2 film as an internal layer, we successfully prepared an aluminum-air battery with secondary battery behavior. However, cell impedance increased as the charge/discharge reactions proceeded probably because of accumulation of byproducts in the cell components and the air cathode. Results of quantum calculations and x-ray photoelectron spectroscopy suggest the possibility of developing an aluminum rechargeable battery using TiO2 as an internal layer.

  19. Influence of electro-activated solutions of weak organic acid salts on microbial quality and overall appearance of blueberries during storage.

    Science.gov (United States)

    Liato, Viacheslav; Hammami, Riadh; Aïder, Mohammed

    2017-06-01

    The aim of this work was to study the potential of diluted electro-activated solutions of weak organic acid salts (potassium acetate, potassium citrate and calcium lactate) to extend the shelf life of blueberries during post-harvest storage. The sanitizing capacity of these solutions was studied against pathogenic bacteria Listeria monocytogenes and E. coli O157:H7 as well as phytopathogenic fungi A. alternata, F. oxysporum and B. cinerea. The results showed that a 5-min treatment of inoculated blueberries with electro-activated solutions resulted in a 4 log CFU/g reduction in Listeria monocytogenes for all solutions. For E. coli O157:H7, the electro-activated potassium acetate and potassium citrate solutions achieved a decrease of 3.5 log CFU/g after 5 min of berry washing. The most important fungus reduction was found when blueberries were washed with an electro-activated solution of potassium acetate and a NaOCl solution. After 5 min of blueberry washing with an electro-activated potassium acetate solution, a very high reduction effect was observed for A. alternata, F. oxysporum and B. cinerea, which showed survival levels of only 2.2 ± 0.16, 0.34 ± 0.15 and 0.21 ± 0.16 log CFU/g, respectively. Regarding the effect of the washing on the organoleptic quality of blueberries, the obtained results showed no negative effect on the product color or textural profile. Finally, this work suggests that washing with electro-activated solutions of weak organic acid salts can be used to enhance the shelf-life of blueberries during post-harvest storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Process for using a saturated salt hydrate solution as a heat storing material in a latent heat storage device. Anvendelse av en mettet salthydratloesning som varme-lagringsmateriale i et latent varmemagasin

    Energy Technology Data Exchange (ETDEWEB)

    Wasel-Nielen, J.; Merkenich, K.; Gehrig, O.; Sommer, K.

    1984-06-12

    Disclosed is a process for preparing a salt composition having a phase transition heat greater than the heat capacity of water at a corresponding temperature, for charging a latent heat storage device. The process comprises the steps of providing an acid component of the salt hydrate; providing a base component of the salt hydrate, wherein at least one of the acid or base components comprises a liquid; and mixing the acid component and the base component together to cause a neutralization reaction. The acid and base components are mixed in a ratio and in respective concentrations to produce a salt hydrate solution saturated at the desired phase transition point. The claims concern the use of saturated salt hydrate solution with a certain phase transition heat produced in a particular way.

  1. Thermodynamic study of aqueous solutions of polyelectrolytes of low and medium charge density without added salt by direct measurement of osmotic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Miklos, E-mail: miklosnagy@chem.elte.h [Institute of Chemistry, Department of Physical Chemistry, Laboratory for Colloid and Supermolecular Structures, L. Eoetvoes University, P.O. Box 32 H-1518 Budapest 112 (Hungary)

    2010-03-15

    A special block osmometer has been constructed and applied to a systematic study of poly (vinyl alcohol and vinyl sulphate ester) (PVS) sodium salts in dilute and moderately concentrated salt free aqueous solutions. In order to avoid surely ionic contamination all parts of the equipment that can contact with the polyelectrolyte solutions were made of different kinds of plastics and glass. The pressure range spans from (50 to 1.3 . 10{sup 5}) Pa. The measuring system was found to be appropriate for determination of the molar mass of water soluble polymers, too. Above a certain analytical density of dissociable groups (ADDG) an ion size dependent transition was observed on the reduced osmotic pressure vs. concentration curves. The analysis of the osmotic pressure data has clearly revealed that the dependence of the degree of dissociation on ADDG calculated at zero polyelectrolyte concentration contradicts to 'ion condensation' theory. With increasing polyelectrolyte concentration the degree of dissociation decreased rather steeply but at very low concentrations sharp maximums appeared due either to the change in conformation of these charged macromolecules, or formation of dynamic clusters induced by salting out of neutral parts of the macromolecules by the ionized groups. The applicability of the scaling concept as well as the many possible ways of characterization of non-ideality of polyelectrolyte solutions will be discussed in detail.

  2. The metal-organic framework MIL-53(Al) constructed from multiple metal sources: alumina, aluminum hydroxide, and boehmite.

    Science.gov (United States)

    Li, Zehua; Wu, Yi-nan; Li, Jie; Zhang, Yiming; Zou, Xin; Li, Fengting

    2015-04-27

    Three aluminum compounds, namely alumina, aluminum hydroxide, and boehmite, are probed as the metal sources for the hydrothermal synthesis of a typical metal-organic framework MIL-53(Al). The process exhibits enhanced synthetic efficiency without the generation of strongly acidic byproducts. The time-course monitoring of conversion from different aluminum sources into MIL-53(Al) is achieved by multiple characterization that reveals a similar but differentiated crystallinity, porosity, and morphology relative to typical MIL-53(Al) prepared from water-soluble aluminum salts. Moreover, the prepared MIL-53(Al) constructed with the three insoluble aluminum sources exhibit an improved thermal stability of up to nearly 600 °C and enhanced yields. Alumina and boehmite are more preferable than aluminum hydroxide in terms of product porosity, yield, and reaction time. The adsorption performances of a typical environmental endocrine disruptor, dimethyl phthalate, on the prepared MIL-53(Al) samples are also investigated. The improved structural stability of MIL-53(Al) prepared from these alternative aluminum sources enables double-enhanced adsorption performance (up to 206 mg g(-1)) relative to the conventionally obtained MIL-53(Al). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Digestion of Alumina from Non-Magnetic Material Obtained from Magnetic Separation of Reduced Iron-Rich Diasporic Bauxite with Sodium Salts

    Directory of Open Access Journals (Sweden)

    Guanghui Li

    2016-11-01

    Full Text Available Recovery of iron from iron-rich diasporic bauxite ore via reductive roasting followed by magnetic separation has been explored recently. However, the efficiency of alumina extraction in the non-magnetic materials is absent. In this paper, a further study on the digestion of alumina by the Bayer process from non-magnetic material obtained after magnetic separation of reduced iron-rich diasporic bauxite with sodium salts was investigated. The results indicate that the addition of sodium salts can destroy the original occurrences of iron-, aluminum- and silicon-containing minerals of bauxite ore during reductive roasting. Meanwhile, the reactions of sodium salts with complex aluminum- and silicon-bearing phases generate diaoyudaoite and sodium aluminosilicate. The separation of iron via reductive roasting of bauxite ore with sodium salts followed by magnetic separation improves alumina digestion in the Bayer process. When the alumina-bearing material in bauxite ore is converted into non-magnetic material, the digestion temperature decreases significantly from 280 °C to 240 °C with a nearly 99% relative digestion ratio of alumina.

  4. pH-potentiometric determination of solubility of barely soluble organic extracting agents in water and aqueous solutions of neutral salts

    International Nuclear Information System (INIS)

    Pavlovskaya, E.M.; Charykov, A.K.; Tikhomirov, V.I.

    1977-01-01

    A pH-potentiometric method has been used to estimate the solubility of chloroform, benzene and nitrobenzene in water. The desalting effect is studied of alkali metal chlorides on chloroform solubility to establish the following phenomenological series of alkali metal cations by their desalting action: Li + + + + + . The non-conformity of chloroform solubility values in water-isoactive solutions of different salts is indicative of the high specificity of desalting processes with respect to the chemical nature of the desalting cation. Salt effects also essentially depend on the chemical nature of the desalted substance, particularly on its acid-base properties

  5. Electrochemical-metallothermic reduction of zirconium in molten salt solutions

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Talko, F.

    1990-01-01

    This patent describes a method for separating hafnium from zirconium of the type wherein a feed containing zirconium and hafnium chlorides is prepared from zirconium-hafnium chloride and the feed is introduced into a distillation column, which distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a hafnium chloride enriched stream is taken from the top of the column and a zirconium enriched chloride stream is taken from the bottom of the column. It comprises: reducing the zirconium enriched chloride stream taken from the distillation column to metal by electrochemically reducing an alkaline earth metal in a molten salt bath with the molten salt in the molten salt bath consisting essentially of a mixture of at least one alkali metal chloride and at least one alkaline earth metal chloride and zirconium chloride, with the reduced alkaline earth metal reacting with the zirconium chloride to produce zirconium metal and alkaline earth metal chloride

  6. Synthesis of nanometer metallic powders or its oxides by γ-ray reduction of salts aqueous solution

    International Nuclear Information System (INIS)

    Zhang Manwei; Zhu Yingjie; Qian Yitai; Chen Zuyao

    1995-01-01

    The nanocrystal powders of pure Ag, Cu, Ni, Pt, Au, Pd, Cd, Sn, Pb and Co were obtained by γ-radiation reduction of their salt aqueons solution. The average particle sizes of them are 5-45 nm respectively. the factors affecting the particle size and the formation and growth of the nanocrystal particles into single crystal are illustrated and discussed. the pure nanocrystal Cu 2 O powders were also successfully prepared. The mechanism of its formation is discussed. (author)

  7. Induced genetic variation for aluminum and salt tolerance in rice

    International Nuclear Information System (INIS)

    Chaudhry, M.A.; Yoshida, S.; Vegara, B.S.

    1989-01-01

    Full text: MNH applied to fertilized egg cells of 'Taichung 65' led to an increase in genetic variation in the progenies. Of a M 2 population of 15,000 seedlings, 2.3% were scored tolerant to salt. Tolerant plants showed less shoot and root growth inhibition. 50 variants expressed different degrees of tolerance to Al, even up to 30 ppm. The tolerance was related to longer root development. (author)

  8. Growth behavior of anodic porous alumina formed in malic acid solution

    Science.gov (United States)

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Suzuki, Ryosuke O.

    2013-11-01

    The growth behavior of anodic porous alumina formed on aluminum by anodizing in malic acid solutions was investigated. High-purity aluminum plates were electropolished in CH3COOH/HClO4 solutions and then anodized in 0.5 M malic acid solutions at 293 K and constant cell voltages of 200-350 V. The anodic porous alumina grew on the aluminum substrate at voltages of 200-250 V, and a black, burned oxide film was formed at higher voltages. The nanopores of the anodic oxide were only formed at grain boundaries of the aluminum substrate during the initial stage of anodizing, and then the growth region extended to the entire aluminum surface as the anodizing time increased. The anodic porous alumina with several defects was formed by anodizing in malic acid solution at 250 V, and oxide cells were approximately 300-800 nm in diameter.

  9. Hydrolysis of aluminum dross material to achieve zero hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2012-01-01

    Highlights: ► The hydrolysis of aluminum dross in tap water generates pure hydrogen. ► Aluminum particles from dross are activated by mechanically milling technique. ► The process is completely greenhouse gases free and is cleanly to environment. ► Hydrolysis process leads to recycling of waste aluminum by hydrogen production. - Abstract: A simple method with high efficiency for generating high pure hydrogen by hydrolysis in tap water of highly activated aluminum dross is established. Aluminum dross is activated by mechanically milling to particles of about 45 μm. This leads to removal of surface layer of the aluminum particles and creation of a fresh chemically active metal surface. In contact with water the hydrolysis reaction takes place and hydrogen is released. In this process a Zero Waste concept is achieved because the other product of reaction is aluminum oxide hydroxide (AlOOH), which is nature-friendly and can be used to make high quality refractory or calcium aluminate cement. For comparison we also used pure aluminum powder and alkaline tap water solution (NaOH, KOH) at a ratio similar to that of aluminum dross content. The rates of hydrogen generated in hydrolysis reaction of pure aluminum and aluminum dross have been found to be similar. As a result of the experimental setup, a hydrogen generator was designed and assembled. Hydrogen volume generated by hydrolysis reaction was measured. The experimental results obtained reveal that aluminum dross could be economically recycled by hydrolysis process with achieving zero hazardous aluminum dross waste and hydrogen generation.

  10. Corrosion control of aluminum surfaces by polypyrrole films: influence of electrolyte

    Directory of Open Access Journals (Sweden)

    Andréa Santos Liu

    2007-06-01

    Full Text Available Polypyrrole (PPy films were galvanostatically deposited on 99.9 wt. (% aluminum electrodes from aqueous solutions containing each carboxylic acid: tartaric, oxalic or citric. Scanning Electron Microscopy (SEM was used to analyze the morphology of the aluminum surfaces coated with the polymeric films. It was observed that the films deposited from tartaric acid medium presented higher homogeneity than those deposited from oxalic and citric acid. Furthermore, the corrosion protection of aluminum surfaces by PPy films was also investigated by potentiodynamic polarization experiments.

  11. In vitro selection of induced mutants to salt-tolerance: Inducible gene regulation for salt tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Winicov, I [Department of Microbiology and Biochemistry, Univ. of Nevada-Reno, Reno, NV (United States)

    1997-07-01

    A selection protocol to obtain salt tolerant calli, followed by regeneration and progeny-test of the regenerated plants for salt tolerance in rice was investigated. Callus cultures were initiated from salt-sensitive US elite rice lines and cv. `Pokkali`. Salt-tolerant cell lines were selected from these by a single step selection procedure. The selected salt-tolerant lines grew well on medium with {+-} 0.5% or 1% NaCl, while the parent lines occasionally survived, but did not grow at these salt concentrations. Plants were regenerated from these cell lines through different passages on medium containing salt. Seed was collected from the regenerated plants and salt tolerance of R2 seedlings was compared with those regenerated without salt selection. Salt-tolerance was measured by survival and productive growth of newly germinated seedlings in Hoagland solution with 0.3% and 0.5% NaCl for 4 weeks. Heritable improvement in salt tolerance was obtained in R2 seedlings from one plant regenerated after 5 months selection. Survival and growth of these seedlings was equivalent to that from `Pokkali` seedlings. These results show that cellular tolerance can provide salt-tolerance in rice plants. (author). 6 refs, 2 tabs.

  12. In vitro selection of induced mutants to salt-tolerance: Inducible gene regulation for salt tolerance

    International Nuclear Information System (INIS)

    Winicov, I.

    1997-01-01

    A selection protocol to obtain salt tolerant calli, followed by regeneration and progeny-test of the regenerated plants for salt tolerance in rice was investigated. Callus cultures were initiated from salt-sensitive US elite rice lines and cv. 'Pokkali'. Salt-tolerant cell lines were selected from these by a single step selection procedure. The selected salt-tolerant lines grew well on medium with ± 0.5% or 1% NaCl, while the parent lines occasionally survived, but did not grow at these salt concentrations. Plants were regenerated from these cell lines through different passages on medium containing salt. Seed was collected from the regenerated plants and salt tolerance of R2 seedlings was compared with those regenerated without salt selection. Salt-tolerance was measured by survival and productive growth of newly germinated seedlings in Hoagland solution with 0.3% and 0.5% NaCl for 4 weeks. Heritable improvement in salt tolerance was obtained in R2 seedlings from one plant regenerated after 5 months selection. Survival and growth of these seedlings was equivalent to that from 'Pokkali' seedlings. These results show that cellular tolerance can provide salt-tolerance in rice plants. (author). 6 refs, 2 tabs

  13. Plasma source ion implantation process for corrosion protection of 6061 aluminum

    International Nuclear Information System (INIS)

    Zhang, L.; Booske, J.H.; Shohet, J.L.; Jacobs, J.R.; Bernardini, A.J.

    1995-01-01

    This paper describes results of an investigation of the feasibility of using nitrogen plasma source ion implantation (PSII) treatment to improve corrosion resistance of 6061 aluminum to salt water. Flat Al samples were implanted with various doses of nitrogen. The surface microstructures and profiles of Al and N in the flat samples were examined using transmission electron microscopy (TEM), scanning Auger microprobe, x-ray diffraction. Corrosion properties of the samples and the components were evaluated using both a 500 hour salt spray field test and a laboratory electrochemical corrosion system. The tested samples were then analyzed by scanning electron microscopy. Corrosion measurements have demonstrated that PSII can significantly improve the pitting resistance of 6061 aluminum. By correlating the analytical results with the corrosion test results, it has been verified that the improved corrosion resistance in PSII-treated coupons is due to the formation of a continuous AlN layer. It was also identified that the formation of a continuous AlN layer. It was also identified that the formation of a continuous AlN layer is mainly determined by the bias voltage and the total integrated implantation dose, and relatively insensitive to factors such as the plasma source, pulse length, or frequency

  14. Impedance evaluation of permeability and corrosion of Al-2024 aluminum alloy coated with a chromate free primer

    NARCIS (Netherlands)

    Foyet, A; Wu, T.H.; Kodentsov, A.; Ven, van der L.G.J.; With, de G.; Benthem, van R.A.T.M.

    2009-01-01

    The corrosion of AA-2024 aluminum alloy protected with a chromate free primer is investigated afterimmersion in a 0.5MNaCl aqueous solution. Thewater uptake by the coating increases continuouslywhenthe film, applied on an aluminum AA-2024 substrate, is placed in the 0.5MNaCl solution. This increase

  15. Room Temperature Anodization of Aluminum at Low Voltage

    International Nuclear Information System (INIS)

    Kamal, A.; Abdel-Karim, R.; El-Raghy, S.; EL-Sherif, R.M.; Wheed, A.

    2013-01-01

    Membranes with nanometer-scale features have many applications, such as in optics, electronics, catalysis, selective molecule separation, filtration and purification, bio sensing, and single-molecule detection. Anodization process was conducted using 15, 20, 30 and 35% by volume phosphoric acid. Results showed that Porous Anodized Aluminum (PAA) with ideal nano pore arrays can be fabricated at room temperature by one-step anodization on high purity aluminum foil at 5 V. Morphology of the PAA was characterized by scanning electron microscopy (SEM). The electrochemical behavior of anodized aluminum was studied in 0.1 M Na 2 SO 4 solutions using electrochemical impedance spectroscopy (EIS). The highest resistance of the porous layer (R p ) was detected for the samples anodized in 20% phosphoric acid

  16. Electrochemical Study of Modified Glassy Carbon Electrode with Carboxyphenyl Diazonium Salt in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mariem BOUROUROU

    2014-05-01

    Full Text Available The covalent grafting of carboxyphenyl functionalities to planar carbon substrates by reaction with 2-carboxybenezenediazonium salt has been studied in aqueous acid solution. The surface was characterized, before and after the functionnalization process, by cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep voltammetry (LSV in order to control and to prove the formation of a coating on the carbon surface. The results indicate the presence of substituted phenyl groups on the investigated surface. Electrochemical impedance measurements show that the slowing down of the electron transfer kinetics was more evident by increasing the number of cycles resulting to higher DEp and RCT parameters. Besides, the effect of the pH on the electron transfer processes of the Fe(CN63-/4- at the modified electrode is studied. By changing the solution pH the terminal group’s charge state would vary, based on which the surface pKa value is estimated.

  17. Selection of a mineral binder for the stabilization - solidification of waste containing aluminum metal

    International Nuclear Information System (INIS)

    Lahalle, H.; Cau Dit Counes, C.; Lambertin, D.; Antonucci, P.; Delpech, S.

    2015-01-01

    The dismantling of nuclear facilities produces radioactive waste materials, some of which may contain aluminum metal. In a strongly alkaline medium, such as that encountered in conventional cementitious materials based on Portland cement, aluminum metal becomes corroded, with a continued production of dihydrogen. In order to develop a mineral matrix having enhanced compatibility with aluminum, a literature review was first undertaken to identify binders capable of reducing the pore solution pH compared with Portland cement. An experimental study was then carried out to measure the hydrogen production resulting from corrosion of aluminum metal rods encapsulated in the different selected cement pastes. The best results were achieved with magnesium phosphate cement, which released very little hydrogen over the duration of the study. This production could be reduced further by adding a corrosion inhibitor (lithium nitrate) to the mixing solution

  18. Leach resistance properties and release processes for salt-occluded zeolite A

    International Nuclear Information System (INIS)

    Lewis, M.A.; Fischer, D.F.; Laidler, J.J.

    1992-01-01

    The pyrometallurgical processing of spent fuel from the Integral Fast Reactor (IFR) results in a waste of LiCl-KCl-NaCl salt containing approximately 10 wt% fission products, primarily CsCl and SrCl 2 . For disposal, this waste must be immobilized in a form that it is leach resistant. A salt-occluded zeolite has been identified as a potential waste form for the salt. Its leach resistance properties were investigated using powdered samples. The results were that strontium was not released and cesium had a low release, 0.056 g/m 2 for the 56 day leach test. The initial release (within 7 days) of alkali metal cations was rapid and subsequent releases were much smaller. The releases of aluminum and silicon were 0.036 and 0.028 g/m 2 , respectively, and were constant. Neither alkali metal cation hydrolysis nor exchange between cations in the leachate and those in the zeolite was significant. Only sodium release followed t 0.5 kinetics. Selected dissolution of the occluded salt was the primary release process. These results confirm that salt-occluded zeolite has promise as the waste form for IFR pyroprocess salt

  19. Potentiometric titration of uranium reduced by chromic salts in chloridic solutions; Titulacao potenciometrica de uranio reduzido por sais cromosos em solucoes cloridricas

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, C M.C.; Bastos, E T.R.

    1986-06-01

    The utilization of chromic salts for reducing the uranium (VI) from chloridic solutions, for potentiometric dosage is described. This method is used in the range of 0,002 to 1,0 M of uranium. (C.G.C.).

  20. Contribution to the study of uranyl salts in butyl phosphate solutions; Contribution a l'etude des solutions de sels d'uranyle dans les phosphates butyliques

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, A [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-06-01

    A spectroscopic study in the normal infrared region and involving the following associations: tri-alkyl phosphates (tri-butyl, tri-ethyl, tri-methyl), uranyl salts (nitrate, chloride, acetate) has confirmed the existence of an interaction between the phosphoryl group and the uranium atom, as shown by a movement of absorption band for the valency P = 0 from {approx} 1270 cm{sup -1} to {approx} 1180 cm{sup -1}. A study of the preparation, analysis and spectroscopy of the solids obtained by the precipitation of uranyl salts by acid butyl phosphates has been carried out. By infrared spectrophotometry it has been shown that the tri-butyl and di-butyl phosphates are associated in non-polar diluents even before the uranium is introduced. The extraction of uranyl salts from acid aqueous solutions by a diluted mixture of tri-butyl and di-butyl phosphates proceeds by different mechanisms according to the nature of the ion (nitrate or chloride). (author) [French] Une etude spectroscopique dans l'infrarouge moyen portant sur les associations: - phosphates trialcoyliques (tributylique - triethylique - trimethylique) - sels d'uranyle (nitrate, chlorure, acetate) a confirme l'existence d'une interaction entre le groupement phosphoryle et l'atome d'uranium, se manifestant par un deplacement de la bande d'absorption de la vibration de valence P = 0 de {approx} 1270 cm{sup -1} a {approx} 1180 cm{sup -1}. Une etude preparative, analytique et spectroscopique des solides obtenus par precipitation de sels d'uranyle par les phosphates butyliques acides a ete effectuee. La spectrophotomerie infrarouge met en evidence l'association, anterieure a toute introduction d'uranium, des phosphates tributylique et dibutylique dans des diluants non polaires. L'extraction de sels d'uranyle, d'une solution aqueuse acide par un melange dilue de phosphates tributylique et dibutylique, s'effectue suivant des processus differents a la nature de l'anion (nitrate ou chlorure). (auteur)

  1. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2Reduction

    KAUST Repository

    Saliba, Daniel

    2016-03-30

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2Reduction

    KAUST Repository

    Saliba, Daniel; Ezzeddine, Alaa; Sougrat, Rachid; Khashab, Niveen M.; Hmadeh, Mohamad; Al-Ghoul, Mazen

    2016-01-01

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2 Reduction.

    Science.gov (United States)

    Saliba, Daniel; Ezzeddine, Alaa; Sougrat, Rachid; Khashab, Niveen M; Hmadeh, Mohamad; Al-Ghoul, Mazen

    2016-04-21

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Solidification of metallic aluminum on magnesium phosphate cements

    International Nuclear Information System (INIS)

    Lahalle, Hugo

    2016-01-01

    This work deals with the stabilization/solidification of radioactive waste using cement. More particularly, it aims at assessing the chemical compatibility between metallic aluminum and mortars based on magnesium phosphate cement. The physical and chemical processes leading to setting and hardening of the cement are first investigated. X-ray diffraction (XRD), thermogravimetry (TGA) and nuclear magnetic resonance spectroscopy ("3"1P and "1"1B MAS-NMR) are first used to characterize the solid phases formed during hydration, while inductively coupled plasma atomic emission spectroscopy analysis (ICP-AES), electrical conductometry and pH measurements provide information on the pore solution composition. Then, the corrosion of metallic aluminum in magnesium phosphate mortars is studied by monitoring the equilibrium potential and by electrochemical impedance spectroscopy (EIS). Magnesium phosphate cement is prepared from a mix of magnesium oxide (MgO) and potassium dihydrogen orthophosphate (KH_2PO_4). In the presence of water, hydration occurs according to a dissolution - precipitation process. The main hydrate is K-struvite (MgKPO_4.6H_2O). Its precipitation is preceded by that of two transient phases: phosphorrosslerite (MgHPO_4.7H_2O) and Mg_2KH(PO_4)_2.15H_2O. Boric acid retards cement hydration by delaying the formation of cement hydrates. Two processes may be involved in this retardation: the initial precipitation of amorphous or poorly crystallized minerals containing boron and phosphorus atoms, and/or the stabilization of cations (Mg"2"+, K"+) in solution. As compared with a Portland cement-based matrix, corrosion of aluminum is strongly limited in magnesium phosphate mortar. The pore solution pH is close to neutrality and falls within the passivation domain of aluminum. Corrosion depends on several parameters: it is promoted by a water-to-cement ratio (w/c) significantly higher than the chemical water demand of cement (w/c = 0.51), and by the addition of boric

  5. Effect of alkaline cleaning and activation on aluminum alloy 7075-T6

    International Nuclear Information System (INIS)

    Joshi, Simon; Fahrenholtz, William G.; O'Keefe, Matthew J.

    2011-01-01

    The effect of alkaline cleaning and activation on the composition and thickness of the oxide layer on aluminum alloy 7075-T6 was studied. E-pH diagrams were developed to predict the effect of alkaline cleaning and activation solutions on the stability of the oxide surface layers. The thickness of the native oxide layer was determined to be ∼30 nm by Auger electron spectroscopy depth profiling analysis. The outer ∼20 nm was rich in magnesium while the remaining ∼10 nm was rich in aluminum. Cleaning in a 9.1 pH alkaline solution was found to remove the magnesium-rich layer and leave behind an aluminum-rich oxide layer ∼10 nm thick. Activation in alkaline solutions of NaOH (pH > 12.9) or Na 2 CO 3 (pH > 11.5) produced an oxide that was ∼20 to 60 nm thick and rich in magnesium. Alkaline cleaning and activation altered the oxide composition and thickness making it possible for deposition of thicker cerium-based conversion coatings (∼100 to 250 nm) compared to only alkaline cleaning (∼30 nm), with application of one spray cycle of deposition solution.

  6. Effect of alkaline cleaning and activation on aluminum alloy 7075-T6

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Simon, E-mail: sjwt5@mst.edu [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Fahrenholtz, William G.; O' Keefe, Matthew J. [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2011-01-01

    The effect of alkaline cleaning and activation on the composition and thickness of the oxide layer on aluminum alloy 7075-T6 was studied. E-pH diagrams were developed to predict the effect of alkaline cleaning and activation solutions on the stability of the oxide surface layers. The thickness of the native oxide layer was determined to be {approx}30 nm by Auger electron spectroscopy depth profiling analysis. The outer {approx}20 nm was rich in magnesium while the remaining {approx}10 nm was rich in aluminum. Cleaning in a 9.1 pH alkaline solution was found to remove the magnesium-rich layer and leave behind an aluminum-rich oxide layer {approx}10 nm thick. Activation in alkaline solutions of NaOH (pH > 12.9) or Na{sub 2}CO{sub 3} (pH > 11.5) produced an oxide that was {approx}20 to 60 nm thick and rich in magnesium. Alkaline cleaning and activation altered the oxide composition and thickness making it possible for deposition of thicker cerium-based conversion coatings ({approx}100 to 250 nm) compared to only alkaline cleaning ({approx}30 nm), with application of one spray cycle of deposition solution.

  7. Experimental study of natural convection melting of ice in salt solutions

    International Nuclear Information System (INIS)

    Fang, L.J.; Cheung, F.B.; Linehan, J.H.; Pedersen, D.R.

    1984-01-01

    The solid-liquid interface morphology and the micro-physical process near the moving phase boundary during natural convection melting of a horizontal layer of ice by an overlying pool of salt solution were studied experimentally. A cathetometer which amplifies the interface region was used to measure the ice melting rate. Also measured were the temperature transients of the liquid pool. Within the temperature and the density ratio ranges explored, the ice melting rate was found to be very sensitive to the ratio of pool-to-ice melt density but independent of pool-to-ice temperature difference. By varying the density ratio, three different flow regimes and morphologies of the solid-liquid interface were observed, with melt streamers emanating from the crests of the wavy interface into the pool in all three cases. The measured wavelengths (spacing) between the streamers for four different pairs of materials were correlated with the density ratio and found to agree favorably with the predictions of Taylor instability theory

  8. Hydrogen generation by aluminum corrosion in aqueous alkaline solutions of inorganic promoters: The AlHidrox process

    International Nuclear Information System (INIS)

    Macanas, Jorge; Soler, Lluis; Candela, Angelica Maria; Munoz, Maria; Casado, Juan

    2011-01-01

    The research of alternative processes to obtain clean fuels has become a main issue because of the concerns related to the current energy system, both from economical and environmental points of view. Hydrogen storage and production methods are being investigated for stationary and portable applications. Up to now, a significant part of H 2 production on demand was thought to be fulfilled by using chemical hydrides, but recent studies have proved the limitations of this approach. Conversely, H 2 production based in the corrosion of light metals in water solutions is an interesting alternative. Among all of them, Al is probably the most adequate metal for energetic purposes due to its high electron density and oxidation potential. But concerning H 2 production from Al corrosion in water, a major issue remains unsolved: metal passivation due to the formation of Al(OH) 3 inhibits H 2 evolution. In this work we show the last results obtained for the generation of H 2 from water using Al powder using diverse alkaline solutions. It is confirmed that corrosion is not affected solely by the solution pH but also by the nature of the ionic species found in the aqueous medium. Moreover, we describe the AlHidrox process, which minimizes Al passivation under mild conditions by the addition of different inorganic salts as corrosion promoters, allowing 100% yields and flow rates up to 2.9 L/min per gram of Al. The feasibility of the process has been regarded in terms of stability (by conducting several successive runs) and self-initiation without an external heating. -- Highlights: → The AlHidrox process minimizes Al passivation by the addition of inorganic salts. → Al corrosion to produce H 2 greatly depends on the nature of the dissolved species. → The maximum flow achieved was 2.9 dm 3 H 2 min -1 .per gram of Al using Fe 2 (SO 4 ) 3 . → We found conditions to start up H 2 generation without external energy input.

  9. Retention and release of tritium in aluminum clad, Al-Li alloys

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1991-01-01

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the 6 Li(n,α) 3 He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs

  10. Impact of acid atmosphere deposition on soils : field monitoring and aluminum chemistry

    NARCIS (Netherlands)

    Mulder, J.

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions

  11. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    International Nuclear Information System (INIS)

    Dabbs, Daniel M.; Aksay, Ilhan A.

    2005-01-01

    Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations

  12. Atomic absorption spectrophotometric determination of microamounts of beryllium in aluminum and copper using solvent extraction with acetylacetone

    International Nuclear Information System (INIS)

    Matsusaki, Koji

    1975-01-01

    A sensitive method for the determination of microamounts of beryllium in aluminum and copper by atomic absorption spectrophotometry using the methylisobutylketone (MIBK) extraction with acetylacetone (AA) was investigated. An aqueous sample solution containing (0.5--5)μg of beryllium and less than 100 mg of aluminum or less than 500 mg of copper was taken into a 100-ml separation funnel, and 2 ml of 5% AA, 20 mg of EDTA for 1 mg of aluminum or 8.8 mg of EDTA for 1 mg of copper, and 10 ml of saturated NaCl solution were added. The pH was adjusted to 5--7 with 10 ml of 2 M NaCH 3 COO-CH 3 COOH buffer, and the solution was diluted to 50 ml. After 10 minutes, the solution was shaken for 2 minutes with 10 ml of MIBK. The organic phase was introduced into a nitrous oxide-acetylene flame and the absorption measured at 234.9 nm against a reagent blank. None of metal elements interfered with the determination of beryllium, and beryllium above 0.001% in aluminum, and above 0.0002% in copper was determined. This method was successfully applied to the determination of beryllium in aluminum and copper alloys. (auth.)

  13. Criticality considerations for salt-cake disolution in DOE waste tanks

    International Nuclear Information System (INIS)

    Trumble, E.F.; Niemer, K.A.

    1995-01-01

    A large amount of high-level waste is being stored in the form of salt cake at the Savannah River site (SRS) in large (1.3 x 106 gal) underground tanks awaiting startup of the Defense Waste Processing Facility (DWPF). This salt cake will be dissolved with water, and the solution will be fed to DWPF for immobilization in borosilicate glass. Some of the waste that was transferred to the tanks contained enriched uranium and plutonium from chemical reprocessing streams. As water is added to these tanks to dissolve the salt cake, the insoluble portion of this fissile material will be left behind in the tank as the salt solution is pumped out. Because the salt acts as a diluent to the fissile material, the process of repeated water addition, salt dissolution, and salt solution removal will act as a concentrating mechanism for the undissolved fissile material that will remain in the tank. It is estimated that tank 41 H at SRS contains 20 to 120 kg of enriched uranium, varying from 10 to 70% 235 U, distributed nonuniformly throughout the tank. This paper discusses the criticality concerns associated with the dissolution of salt cake in this tank. These concerns are also applicable to other salt cake waste tanks that contain significant quantities of enriched uranium and/or plutonium

  14. Photobleachable Diazonium Salt-Phenolic Resin Two-Layer Resist System

    Science.gov (United States)

    Uchino, Shou-ichi; Iwayanagi, Takao; Hashimoto, Michiaki

    1988-01-01

    This article describes a new negative two-layer photoresist system formed by a simple, successive spin-coating method. An aqueous acetic acid solution of diazonium salt and poly(N-vinylpyrrolidone) is deposited so as to contact a phenolic resin film spin-coated on a silicon wafer. The diazonium salt diffuses into the phenolic resin layer after standing for several minutes. The residual solution on the phenolic resin film doped with diazonium salt is spun to form the diazonium salt-poly(N-vinylpyrrolidone) top layer. This forms a uniform two-layer resist without phase separation or striation. Upon UV exposure, the diazonium salt in the top layer bleaches to act as a CEL dye, while the diazonium salt in the bottom layer decomposes to cause insolubilization. Half μm line-and-space patterns are obtained with an i-line stepper using 4-diazo-N,N-dimethylaniline chloride zinc chloride double salt as the diazonium salt and a cresol novolac resin for the bottom polymer layer. The resist formation processes, insolubilization mechanism, and the resolution capability of the new two-layer resist are discussed.

  15. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    Science.gov (United States)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  16. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki [Laboratory of Interface Microstructure Analysis (LIMSA), Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)], E-mail: himendra@eng.hokudai.ac.jp

    2008-10-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method.

  17. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    International Nuclear Information System (INIS)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2008-01-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method

  18. Many-electron electrochemical processes. Reactions in molten salts, room-temperature ionic liquids and ionic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Andriiko, Aleksandr A. [National Technical Univ. Ukraine, Kyiv (Ukraine). Kyiv Polytechnic Inst.; Andriyko, Yuriy O. [CEST Centre of Electrochemical Surface Technology, Wiener Neustadt (Austria); Nauer, Gerhard E. [Vienna Univ. (Austria). Inst. of Physical Chemistry

    2013-02-01

    The authors provide a unified concept for understanding multi-electron processes in electrochemical systems such as molten salts, ionic liquids, or ionic solutions. A major advantage of this concept is its independence of assumptions like one-step many-electron transfers or 'discrete' discharge of complex species. This book contains the following main topics: 1. Many-electron electrochemical systems: Concepts and definitions. 2. Many-electron systems at equilibrium. 3. Phenomenology of electrochemical kinetics. 4. Electrode film systems: experimental evidences. 5. Dynamics of a non-equilibrium electrochemical system. 6. Electrochemistry of Ti(IV) in ionic liquids.

  19. Mirror-finished superhydrophobic aluminum surfaces modified by anodic alumina nanofibers and self-assembled monolayers

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2018-05-01

    We demonstrate mirror-finished superhydrophobic aluminum surfaces fabricated via the formation of anodic alumina nanofibers and subsequent modification with self-assembled monolayers (SAMs). High-density anodic alumina nanofibers were formed on the aluminum surface via anodizing in a pyrophosphoric acid solution. The alumina nanofibers became tangled and bundled by further anodizing at low temperature because of their own weight, and the aluminum surface was completely covered by the long falling nanofibers. The nanofiber-covered aluminum surface exhibited superhydrophilic behavior, with a contact angle measuring less than 10°. As the nanofiber-covered aluminum surface was modified with n-alkylphosphonic acid SAMs, the water contact angle drastically shifted to superhydrophobicity, measuring more than 150°. The contact angle increased with the applied voltage during pyrophosphoric acid anodizing, the anodizing time, and the number of carbon atoms contained in the SAM molecules modified on the alumina nanofibers. By optimizing the anodizing and SAM-modification conditions, superhydrophobic behavior could be achieved with only a brief pyrophosphoric acid anodizing period of 3 min and subsequent simple immersion in SAM solutions. The superhydrophobic aluminum surface exhibited a high reflectance, measuring approximately 99% across most of the visible spectrum, similar to that of an electropolished aluminum surface. Therefore, our mirror-finished superhydrophobic aluminum surface based on anodic alumina nanofibers and SAMs can be used as a reflective mirror in various optical applications such as concentrated solar power systems.

  20. Fabrication and Corrosion Resistance of Superhydrophobic Hydroxide Zinc Carbonate Film on Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    Jin Liang

    2013-01-01

    Full Text Available Superhydrophobic hydroxide zinc carbonate (HZC films were fabricated on aluminum substrate through a convenient in situ deposition process. Firstly, HZC films with different morphologies were deposited on aluminum substrates through immersing the aluminum substrates perpendicularly into aqueous solution containing zinc nitrate hexahydrate and urea. Secondly, the films were then modified with fluoroalkylsilane (FAS: CH3(CF26(CH23Si(OCH33 molecules by immersing in absolute ethanol solution containing FAS. The morphologies, hydrophobicity, chemical compositions, and bonding states of the films were analyzed by scanning electron microscopy (SEM, water contact angle measurement (CA, Fourier transform infrared spectrometer (FTIR, and X-ray photoelectron spectroscopy (XPS, respectively. It was shown by surface morphological observation that HZC films displayed different microstructures such as microporous structure, rose petal-like structure, block-shaped structure, and pinecone-like structure by altering the deposition condition. A highest water contact angle of 156.2° was obtained after FAS modification. Moreover, the corrosion resistance of the superhydrophobic surface on aluminum substrate was investigated using electrochemical impedance spectroscopy (EIS measurements. The EIS measurements’ results revealed that the superhydrophobic surface considerably improved the corrosion resistance of aluminum.

  1. INORGANIC AND ORGANIC ONIUM SALTS

    Science.gov (United States)

    The nitrosonium NO ion absorbs in the infrared between 1/2400 and 1/ 2150 cm. Salts of complex fluoro-acids absorb at higher frequencies than salts...halide adducts generally contain nitrosonium ions . Hexaphenylditin does not undergo marked heterolytic dissociation in nitromethane solution...influencing the covalent-ionic equilibrium are discussed. Infrared spectrum nitrosonium ion ; ionic character in lattice and position nitrosonium ion absorption

  2. Optical constants of anodic aluminum oxide films formed in oxalic acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jian [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Chengwei [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: cwwang@nwnu.edu.cn; Li Yan [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Liu Weimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2008-09-01

    The anodic aluminum oxide (AAO) films with highly ordered nanopore arrays were prepared in oxalic acid solution under different anodizing voltage and time, its surface and cross section appearances were characterized by using field emission scanning electron microscopy, the transmission spectra with the interference fringes were measured at normal incidence over the wavelength range 200 to 2500 nm. Then the modified Swanepoel method was used for the determination of the optical constants and thickness of the free standing AAO films. The results indicate that the refractive index increases with the increase of anodizing voltage and the decrease of anodizing time, which is mainly due to the content of Al{sub 2}O{sub 3} with octahedron increases in the AAO films. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model, and the energy dependence of the absorption coefficient can be described using the direct transition model proposed by Tauc. Likewise, the optical energy gap E{sub g} is derived from Tauc's extrapolation, and E{sub g} increases from 4.178 to 4.256 eV with the anodizing voltage, but is weakly dependent on anodizing time. All the results are self-consistent in the paper.

  3. Plutonium and americium separation from salts

    International Nuclear Information System (INIS)

    Hagan, P.G.; Miner, F.J.

    1976-01-01

    Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution

  4. Effects of the Addictives on Etching Characteristics of Aluminum Foil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.K.; Jang, J.M.; Chi, C.S. [Kookmin University, Seoul (Korea); Shin, D.C. [Sungnam Polytechnic, Sungnam (Korea); Lee, J.H.; Oh, H.J. [Hanseo University, Seosan (Korea)

    2001-01-01

    The effects of additives in the HCI etching solution on etching behaviors of aluminium foil as dielectric film for electrolytic capacitors were investigated. The etch pits formed in 1M hydrochloric acid containing ethylene glycol as an additive contain more fine and homogeneous etch tunnels compared to thoese in 1 M hydrochloric acid only, which led to the increase in the effective internal surface area of aluminum foil. After anodizing of aluminum foil etched in etching solutions, the LCR meter results have shown that the capacitance of dielectric film etched in hydrochloric acid with ethylene glycol was increased remarkably compared to that etched in hydrochloric acid only. (author). 21 refs., 10 figs.

  5. Core–Shell Electrospun Hollow Aluminum Oxide Ceramic Fibers

    Directory of Open Access Journals (Sweden)

    Jonathan W. Rajala

    2015-10-01

    Full Text Available In this work, core–shell electrospinning was employed as a simple method for the fabrication of composite coaxial polymer fibers that became hollow ceramic tubes when calcined at high temperature. The shell polymer solution consisted of polyvinyl pyrollidone (PVP in ethanol mixed with an aluminum acetate solution to act as a ceramic precursor. The core polymer was recycled polystyrene to act as a sacrificial polymer that burned off during calcination. The resulting fibers were analyzed with X-ray diffraction (XRD and energy dispersive spectroscopy (EDS to confirm the presence of gamma-phase aluminum oxide when heated at temperatures above 700 °C. The fiber diameter decreased from 987 ± 19 nm to 382 ± 152 nm after the calcination process due to the polymer material being burned off. The wall thickness of these fibers is estimated to be 100 nm.

  6. Numerical estimation of structural integrity of salt cavern wells.

    NARCIS (Netherlands)

    Orlic, B.; Thienen-Visser, K. van; Schreppers, G.J.

    2016-01-01

    Finite element analyses were performed to estimate axial deformation of cavern wells due to gas storage operations in solution-mined salt caverns. Caverns shrink over time due to salt creep and the cavern roof subsides potentially threatening well integrity. Cavern deformation, deformation of salt

  7. Dynamic tritium inventory of a NET/ITER fuel cycle with lithium salt solution blanket

    International Nuclear Information System (INIS)

    Spannagel, G.; Gierszewski, P.

    1991-01-01

    At the Karlsruhe Nuclear Research Center (KfK) a flexible tool is being developed to simulate the dynamics of tritium inventories. This tool can be applied to any tritium handling system, especially to the fuel cycle components of future nuclear fusion devices. This instrument of simulation will be validated in equipment to be operated at the Karlsruhe Tritium Laboratory. In this study tritium inventories in a NET/ITER type fuel cycle involving a lithium salt solution blanket are investigated. The salt solution blanket serves as an example because it offers technological properties which are attractive in modeling the process; the example does not impair the general validity of the tool. Usually, the operation strategy of complex structures will deteriorate due to failures of the subsystems involved. These failures together with the reduced availability ensuing from them will be simulated. The example of this study is restricted to reduced availabilities of two subsystems, namely the reactor and the tritium recovery system. For these subsystems the influence of statistically varying intervals of operation is considered. Strategies we selected which are representative of expected modes of operation. In the design of a fuel cycle, care will be taken that prescribed availabilities of the subsystems can be achieved; however, the description of reactor operation is a complex task since operation breaks down into several campaigns for which rules have been specified which enable determination of whether a campaign has been successful and can be stopped. Thus, it is difficult to predict the overall behavior prior to a simulation which includes stochastic elements. Using the example mentioned above the capabilities of the tool will be illustrated; besides the presentation of results of inventory simulation, the applicability of these data will be discussed. (orig.)

  8. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    International Nuclear Information System (INIS)

    Pike, J.; Gillam, J.

    2008-01-01

    aluminum will be stored in Tank 8 and 21,000 kg will be stored in saltcake via evaporation. Up to 77% of the total aluminum planned for SB6 may be removed via aluminum dissolution. Storage of the aluminum-laden supernate in Tank 8 will require routine evaluation of the free hydroxide concentration in order to maintain aluminum in solution. Periodic evaluation will be established on concurrent frequency with corrosion program samples as previously established for aluminum-laden supernate from SB5 that is stored in Tank 11

  9. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Dabbs, Daniel M.; Aksay, I.A.

    2005-12-01

    In the first phase of our study, we focused on the use of simple organics to raise the solubility of aluminum oxyhydroxides in high alkaline aqueous solvents. In a limited survey of common organic acids, we determined that citric acid had the highest potential to achieve our goal. However, our subsequent investigation revealed that the citric acid appeared to play two roles in the solutions: first, raising the concentration of aluminum in highly alkaline solutions by breaking up or inhibiting ''seed'' polycations and thereby delaying the nucleation and growth of particles; and second, stabilizing nanometer-sized particles in suspension when nucleation did occur. The results of this work were recently published in Langmuir: D.M. Dabbs, U. Ramachandran, S. Lu, J. Liu, L.-Q. Wang, I.A. Aksay, ''Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid'' Langmuir, 21, 11690-11695 (2005). The second phase of our work involved the solvation of silicon, again in solutions of high alkalinity. Citric acid, due to its unfavorable pKa values, was not expected to be useful with silicon-containing solutions. Here, the use of polyols was determined to be effective in maintaining silicon-containing particles under high pH conditions but at smaller size with respect to standard suspensions of silicon-containing particles. There were a number of difficulties working with highly alkaline silicon-containing solutions, particularly in solutions at or near the saturation limit. Small deviations in pH resulted in particle formation or dissolution in the absence of the organic agents. One of the more significant observations was that the polyols appeared to stabilize small particles of silicon oxyhydroxides across a wider range of pH, albeit this was difficult to quantify due to the instability of the solutions.

  10. Spectra of luminescence due to microdischarges on an aluminum valve anode

    International Nuclear Information System (INIS)

    Sizikov, A.M.; Vol'f, V.G.; Bugaenko, L.T.

    1995-01-01

    The spectrum of visible and near-UV luminescence due to a microdischarge on an AMg-6 aluminum alloy was studied under conditions of valve anodization in solutions of sodium carbonate and other electrolytes. It was shown that emission spectra exhibit lines that characterize anodic (aluminum and magnesium) and electrolytic (sodium) components. The dependence of the temperature of the microdischarge on the electrolyte concentration and composition is discussed

  11. Cesium Salts of Phosphotungstic Acid: Comparison of Surface ...

    African Journals Online (AJOL)

    NICO

    acidity and lowest solubility in reaction media in comparison with the other cesium content salts. KEYWORDS. Polyoxometalates, cesium ... insoluble salt of HPA is cesium salt of tungstophosphoric acid,. CsxH3-xPW12O40 (CsxPW), a ... of Cs2CO3, very fine particles (precipitates) were formed to make the solution milky.

  12. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    Directory of Open Access Journals (Sweden)

    Ravin Jugdaohsingh

    Full Text Available Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7 we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP. Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2 g(-1 and it competes effectively with transferrin for Al(III binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III species binding monomeric silica to form early phase, non-toxic aluminosilicates.

  13. High-Aluminum-Affinity Silica Is a Nanoparticle That Seeds Secondary Aluminosilicate Formation

    Science.gov (United States)

    Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J.

    2013-01-01

    Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m2 g-1 and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates. PMID:24349573

  14. ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER

    International Nuclear Information System (INIS)

    McCabe, D; Jeff Pike, J; Bill Wilmarth, B

    2007-01-01

    formulations. Disposal of the resulting aluminum and chromium-rich streams are different at the two sites, with vitrification into Low Activity Waste (LAW) glass at Hanford, and solidification in Saltstone at SRS. Prior to disposal, the leachate solutions must be treated to remove radionuclides, resulting in increased operating costs and extended facility processing schedules. Interim storage of leachate can also add costs and delay tank closure. Recent projections at Hanford indicate that up to 40,000 metric tons of sodium would be needed to dissolve the aluminum and maintain it in solution, which nearly doubles the amount of sodium in the entire current waste tank inventory. This underscores the dramatic impact that the aluminum leaching can have on the entire system. A comprehensive view of leaching and the downstream impacts must therefore be considered prior to implementation. Many laboratory scale tests for aluminum and chromium dissolution have been run on Hanford wastes, with samples from 46 tanks tested. Three samples from SRS tanks have been tested, out of seven tanks containing high aluminum sludge. One full-scale aluminum dissolution was successfully performed on waste at SRS in 1982, but generated a very large quantity of liquid waste (∼3,000,000 gallons). No large-scale tests have been done on Hanford wastes. Although the data to date give a generally positive indication that aluminum dissolution will work, many issues remain, predominantly because of variable waste compositions and changes in process conditions, downstream processing, or storage limitations. Better approaches are needed to deal with the waste volumes and limitations on disposal methods. To develop a better approach requires a more extensive understanding of the kinetics of dissolution, as well as the factors that effect rates, effectiveness, and secondary species. Models of the dissolution rate that have been developed are useful, but suffer from limitations on applicable compositional ranges

  15. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn

    2012-05-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts, which can be regenerated using low-temperature waste heat, can also produce sufficient voltage for hydrogen gas generation in an MREC. The maximum hydrogen production rate was 1.6 m3 H2/m3·d, with a hydrogen yield of 3.4 mol H2/mol acetate at a salinity ratio of infinite. Energy recovery was 10% based on total energy applied with an energy efficiency of 22% based on the consumed energy in the reactor. The cathode overpotential was dependent on the catholyte (sodium bicarbonate) concentration, but not the salinity ratio, indicating high catholyte conductivity was essential for maximizing hydrogen production rates. The direction of the HC and LC flows (co- or counter-current) did not affect performance in terms of hydrogen gas volume, production rates, or stack voltages. These results show that the MREC can be successfully operated using ammonium bicarbonate salts that can be regenerated using conventional distillation technologies and waste heat making the MREC a useful method for hydrogen gas production from wastes. © 2012 American Chemical Society.

  16. Results for the Fourth Quarter Calendar Year 2015 Tank 50H Salt Solution Sample

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-11

    In this memorandum, the chemical and radionuclide contaminant results from the Fourth Quarter Calendar Year 2015 (CY15) sample of Tank 50H salt solution are presented in tabulated form. The Fourth Quarter CY15 Tank 50H samples were obtained on October 29, 2015 and received at Savannah River National Laboratory (SRNL) on October 30, 2015. The information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering for the transfer of aqueous waste from Tank 50H to the Salt Feed Tank in the Saltstone Production Facility, where the waste will be treated and disposed of in the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the Task Technical and Quality Assurance Plan (TTQAP) for the Tank 50H saltstone task. The chemical and radionuclide contaminant results from the characterization of the Fourth Quarter Calendar Year 2015 (CY15) sampling of Tank 50H were requested by SRR personnel and details of the testing are presented in the SRNL Task Technical and Quality Assurance Plan.

  17. Bone aluminum measurements in patients with end-stage renal disease

    International Nuclear Information System (INIS)

    Ellis, K.J.; Kelleher, S.P.

    1986-01-01

    Long-term use of aluminum-based phosphate binders and trace aluminum contamination of dialysate solution have led to increased body burden of this metal in patients with end-stage renal disease. Aluminum accumulates in bone and has been associated with the development of a renal osteodystrophy, called aluminum-induced osteomalacia. At present, bone biopsy is the method of diagnosis of this condition. When examined by quantitative histomorphometry, the aluminum accumulation was reported to correlate with the severity of the osteomalacia. This project was therefore undertaken to investigate the possibility of developing a non-invasive technique using neutron activation analysis for the direct in vivo assessment of bone aluminum levels. A bilateral exposure of the patient's hand is performed at the patient port of the Brookhaven Medical Research Reactor. The induced activity is then counted for 5 min using four 4'' x 4'' x 16'' NaI(T1) detectors arranged in a quasi-4! geometry. In addition to Al, Ca is also detected and serves as each individual's internal standard for the volume of bone mass irradiated. The Al/Ca ratio provides an index of the amount of elevated aluminum per unit bone mass. When this ratio is multiplied by the total body calcium value, an estimate of total skeletal aluminum is obtained. These measurements will be presented for a pilot study of ten asymptomatic renal patients

  18. THE HYDROTHERMAL REACTIONS OF MONOSODIUM TITANATE, CRYSTALLINE SILICOTITANATE AND SLUDGE IN THE MODULAR SALT PROCESS: A LITERATURE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.; Pennebaker, F.; Fink, S.

    2010-11-11

    The use of crystalline silicotitanate (CST) is proposed for an at-tank process to treat High Level Waste at the Savannah River Site. The proposed configuration includes deployment of ion exchange columns suspended in the risers of existing tanks to process salt waste without building a new facility. The CST is available in an engineered form, designated as IE-911-CW, from UOP. Prior data indicates CST has a proclivity to agglomerate from deposits of silica rich compounds present in the alkaline waste solutions. This report documents the prior literature and provides guidance for the design and operations that include CST to mitigate that risk. The proposed operation will also add monosodium titanate (MST) to the supernate of the tank prior to the ion exchange operation to remove strontium and select alpha-emitting actinides. The cesium loaded CST is ground and then passed forward to the sludge washing tank as feed to the Defense Waste Processing Facility (DWPF). Similarly, the MST will be transferred to the sludge washing tank. Sludge processing includes the potential to leach aluminum from the solids at elevated temperature (e.g., 65 C) using concentrated (3M) sodium hydroxide solutions. Prior literature indicates that both CST and MST will agglomerate and form higher yield stress slurries with exposure to elevated temperatures. This report assessed that data and provides guidance on minimizing the impact of CST and MST on sludge transfer and aluminum leaching sludge.

  19. Coupling a PEM fuel cell and the hydrogen generation from aluminum waste cans

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Albanil Sanchez, Loyda; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. CP 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad, UPCH, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    High purity hydrogen was generated from the chemical reaction of aluminum and sodium hydroxide. The aluminum used in this study was obtained from empty soft drink cans and treated with concentrated sulfuric acid to remove the paint and plastic film. One gram of aluminum was reacted with a solution of 2moldm{sup -3} of sodium hydroxide to produce hydrogen. The hydrogen produced from aluminum cans and oxygen obtained from a proton exchange membrane electrolyzer or air, was fed to a proton exchange membrane (PEM) fuel cell to produce electricity. Yields of 44 mmol of hydrogen contained in a volume of 1.760dm{sup 3} were produced from one gram of aluminum in a time period of 20 min. (author)

  20. Friction reducing behavior of stearic acid film on a textured aluminum substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Quan [School of Mechanical Engineering, Qingdao Technological University, Qingdao 266033 (China); Wan, Yong, E-mail: wanyong@qtech.edu.cn [School of Mechanical Engineering, Qingdao Technological University, Qingdao 266033 (China); Li, Yang; Yang, Shuyan [School of Mechanical Engineering, Qingdao Technological University, Qingdao 266033 (China); Yao, Wenqing [Analysis Center of Tsinghua University, Beijing 100084 (China)

    2013-09-01

    A simple two-step process was developed to render the aluminum hydrophobicity with lower friction. The textured aluminum substrate was firstly fabricated by immersed in a sodium hydroxide solution at 100 °C for 1 h. Stearic acid film was then deposited to acquire high hydrophobicity. Scanning electron microscopy, IR spectroscopy and water contact angle measurements were used to analyze the morphological features, chemical structure and hydrophobicity of prepared samples, respectively. Moreover, the friction reducing behavior of the organic–inorganic composite film on aluminum sliding against steel was evaluated in a ball-on-plate configuration. It was found that the stearic acid film on the textured aluminum led to decreased friction with significantly extended life.

  1. Generic aspects of salt repositories

    International Nuclear Information System (INIS)

    Laughon, R.B.

    1979-01-01

    The history of geological disposal of radioactive wastes in salt is presented from 1957 when a panel of the National Academy of Sciences-National Research Council recommended burial in bedded salt deposits. Early work began in the Kansas, portion of the Permian Basin where simulated wastes were placed in an abandoned salt mine at Lyons, Kansas, in the late 1960's. This project was terminated when the potential effect of nearby solution mining activities could not be resolved. Evaluation of bedded salts resumed a few years later in the Permian Basin in southeastern New Mexico, and search for suitable sites in the 1970's resulted in the formation of the National Waste Terminal Storage Program in 1976. Evaluation of salt deposits in many regions of the United States has been virtually completed and has shown that deposits having the greatest potential for radioactive waste disposal are those of the largest depositional basins and salt domes of the Gulf Coast region

  2. Micro-Arc oxidation of Ti in a solution of sulfuric acid and Ti+3 salt

    International Nuclear Information System (INIS)

    Ragalevicius, Rimas; Stalnionis, Giedrius; Niaura, Gediminas; Jagminas, Arunas

    2008-01-01

    A comparative study was performed on the behavior of titanium electrode in a sulfuric acid solution with and without Ti +3 during micro-arc oxidation under the constant current density control regime. The composition and microstructure of the obtained micro-arc films were analyzed using scanning electron microscopy, glancing-angle X-ray diffractometry, Raman and energy-dispersive X-ray spectroscopies. We have shown that addition of a Ti +3 salt extends the region of current densities (j a ) can be used for micro-arc oxidation of Ti and results in an obvious change of sparking behavior from extensive, large and long-played sparks to numerous, small and short sparks. As a consequence, the titania films formed in the Ti +3 -containing solutions are relatively thick, more uniform, composed of almost pure crystalline anatase and rutile phases of TiO 2 , and contain a network of evenly distributed small pores. It has also been shown that these films are promising for applications in catalysis, sensors and optoelectronics. The Raman spectra indicate that an increase in the electrolysis time of titanium in the Ti +3 -containing solution leads to the increase in rutile content, as expected

  3. Structural analysis of salt cavities formed by solution mining: I. Method of analysis and preliminary results for spherical cavities

    International Nuclear Information System (INIS)

    Fossum, A.F.

    1976-01-01

    The primary objective of this effort is an analysis of the structural stability of cavities formed by solution mining in salt domes. In particular, the effects of depth (i.e. initial state of in situ stress), shape, volume (i.e. physical dimensions of the cavity), and sequence of salt excavation/fluid evacuation on the timewise structural stability of a cavity are of interest. It is anticipated that an assessment can be made of the interrelation between depth, cavern size, and cavern shape or of the practical limits therewith. In general, the cavity shape is assumed to be axisymmetric and the salt is assumed to exhibit nonlinear creep behavior. The primary emphasis is placed on the methodology of the finite element analysis, and the results of preliminary calculations for a spherically shaped cavity. It is common practice for engineers to apply elasticity theory to the behavior of rock in order to obtain near field stresses and displacements around an underground excavation in an effort to assess structural stability. Rock masses, particularly at depth, may be subjected to a rather complex state of initial stress, and may be nonhomogeneous and anisotropic. If one also includes complex geometrical excavation shape, the use of analytical techniques as an analysis tool is practically impossible. Thus, it is almost a necessity that approximate solution techniques be employed. In this regard, the finite element method is ideal as it can handle complex geometries and nonlinear material behavior with relative ease. An unusual feature of the present study is the incorporation into the finite element code of a procedure for handling the gradual creation or excavation of an underground cavity. During the excavation sequence, the salt is permitted to exhibit nonlinear stress-strain-time dependence. The bulk of this report will be devoted to a description of the analysis procedures, together with a preliminary calculation for a spherically shaped cavity

  4. Investigation of cerium salt/sulfuric acid anodizing technology for 1420 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Di Li; Yue Peng Deng; Bao Lan Guo; Guo Qiang Li [Beijing Univ. of Aeronautics and Astronautics (China). Dept. of Mater. Sci. and Eng.

    2000-07-01

    In this paper, the effect of cerium addition agent on the property of anodized coating of 1420 Al alloy has been studied by corrosion experiment (immersion test and neutral salt spray test), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and measurement of polarization curves. The result show that only pitting could be observed in all corrosion tests while intergranular corrosion and exfoliation corrosion did not appear on 1420 Al-Li alloys. When organic carboxylic acid S or the cerium (IV) salt was added into sulfuric acid anodizing electrolyte separately, there was no significant improvement in corrosion resistance of anodized film. However, in the case of adding them into sulfuric acid anodizing electrolyte together, the corrosion resistance of anodized film increased greatly owing to synergistic effect. The synergistic effect may relate to the formation of cerium-organic carboxylic acid S complex compound and its effects on film growth and film structure. (orig.)

  5. Removal of trace mercury (II) from aqueous solution by in situ MnO(x) combined with poly-aluminum chloride.

    Science.gov (United States)

    Lu, Xixin; Huangfu, Xiaoliu; Zhang, Xiang; Wang, Yaan; Ma, Jun

    2015-06-01

    Removal of trace mercury from aqueous solution by Mn (hydr)oxides formed in situ during coagulation with poly-aluminum chloride (PAC) (in situ MnO(x) combined with PAC) was investigated. The efficiency of trace mercury removal was evaluated under the experimental conditions of reaction time, Mn dosage, pH, and temperature. In addition, the ionic strength and the initial mercury concentration were examined to evaluate trace mercury removal for different water qualities. The results clearly demonstrated that in situ MnO(x) combined with PAC was effective for trace mercury removal from aqueous solution. A mercury removal ratio of 9.7 μg Hg/mg Mn was obtained at pH 3. Furthermore, at an initial mercury concentration of 30 μg/L and pH levels of both 3 and 5, a Mn dosage of 4 mg/L was able to lower the mercury concentration to meet the standards for drinking water quality at less than 1 μg/L. Analysis by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy suggests that the hydroxyls on the surface of Mn (hydr)oxides are the active sites for adsorption of trace mercury from aqueous solution.

  6. Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution.

    Science.gov (United States)

    Esmaeeli, Hadi S; Farnam, Yaghoob; Bentz, Dale P; Zavattieri, Pablo D; Weiss, Jason

    2017-02-01

    This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to -35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained.

  7. Effect of surface modifications and environment on the interfacial adhesion of polymer/aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.F. [Xi' an High-technology Institute, Xi' an 710025 (China)], E-mail: xiaofang_liu@263.net; Wu, Q.Y.; Wang, H.G. [Xi' an High-technology Institute, Xi' an 710025 (China)

    2008-06-15

    This work investigates the influence of surface modifications and environmental conditions on the interfacial adhesion of epoxy resin films on a 6016 aluminum alloy, as measured by peeling experiments. The alloy surfaces were pretreated with an etching solution, and then modified, respectively, with aminopropyl silane solution, aminopropyl phosphonate solution, and hexamethyldisiloxane plasma. The modified surfaces were examined by scanning electron microscopy and their roughness was quantified by a fractal index. The peeling experiments show that the interfacial adhesion of epoxy on the aluminum alloy mainly results from the chemical and mechanical characteristics of the material surface. Environmental factors such as humidity can also weaken interfacial adhesion.

  8. Effect of surface modifications and environment on the interfacial adhesion of polymer/aluminum alloy

    International Nuclear Information System (INIS)

    Liu, X.F.; Wu, Q.Y.; Wang, H.G.

    2008-01-01

    This work investigates the influence of surface modifications and environmental conditions on the interfacial adhesion of epoxy resin films on a 6016 aluminum alloy, as measured by peeling experiments. The alloy surfaces were pretreated with an etching solution, and then modified, respectively, with aminopropyl silane solution, aminopropyl phosphonate solution, and hexamethyldisiloxane plasma. The modified surfaces were examined by scanning electron microscopy and their roughness was quantified by a fractal index. The peeling experiments show that the interfacial adhesion of epoxy on the aluminum alloy mainly results from the chemical and mechanical characteristics of the material surface. Environmental factors such as humidity can also weaken interfacial adhesion

  9. The enigma of cooking salt crystals

    International Nuclear Information System (INIS)

    Nikolskaya, E.

    1987-01-01

    Two Soviet experts, Vladimir Gromov and Valentin Krylov, have discovered an unexpected phenomenon on irradiating cooking salt crystals with electrons. When the crystals are subsequently ground the rate at which they are dissolved increases, but not always. The electrons cause the salt molecules to polarize thus creating an internal electric field. This acts against the double electric layer which is inevitably formed in the part of the solution touching the crystal surface. So, if the permittivity of the solution is much greater than that of the molecules of the crystal, the rate of dissolution is increased, and vice versa. (G.T.H.)

  10. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. Emphasize is put essentially on the fuel salt of the primary circuit inside which fission reactions occur. The reasons why the (LiF-BeF 2 -ThF 4 -UF 4 ) salt was chosen for the M.S.B.R. concept are examined; the physical, physicochemical and chemical properties of this salt are discussed with its interactions with the structural materials and its evolution in time. An important part of this volume is devoted to the continuous reprocessing of the active salt, the project designers having deemed advisable to take advantage at best from the availability of a continuous purification, in a thermal breeding. The problem of tritium formation and distribution inside the reactor is also envisaged and the fundamentals of the chemistry of the secondary coolant salt are given. The solutions proposed are: the hydrogen scavenging of the primary circuit, a reduction in metal permeability by an oxyde layer deposition on the side in contact with the vapor, and tritium absorption through an isotope exchange with the hydroxifluoroborate [fr

  11. Salt disposition alternatives filtration at SRTC

    International Nuclear Information System (INIS)

    Walker, B. W.; Hobbs, D.

    2000-01-01

    Several of the prospective salt disposition alternative technologies require a monosodium titanate (MST) contact to remove strontium and actinides from inorganic salt solution feedstock. This feedstock also contains sludge solids from waste removal operations and may contain defoamers added in the evaporator systems. Filtration is required to remove the sludge and MST solids before sending the salt solution for further processing. This report describes testing performed using the Parallel Theological Experimental Filter (PREF). The PREF contains two single tube Mott sintered metal crossflow filters. For this test one filter was isolated so that the maximum velocities could be achieved. Previous studies showed slurries of MST and sludge in the presence of sodium tetraphenylborate (NaTPB) were filterable since the NaTPB slurry formed a filter cake which aided in removing the smaller MST and sludge particles. Some of the salt disposition alternative technologies do not use NaTPB raising the question of how effective crossflow filtration is with a feed stream containing only sludge and MST. Variables investigated included axial velocity, transmembrane pressure, defoamer effects, and solids concentration (MST and sludge). Details of the tests are outlined in the technical report WSRC-RP-98-O0691. Key conclusions from this study are: (1) Severe fouling of the Mott sintered metal filter did not occur with any of the solutions filtered. (2) The highest fluxes, in the range of .46 to 1.02 gpm/f 2 , were obtained when salt solution decanted from settled solids was fed to the filter. These fluxes would achieve 92 to 204 gpm filtrate production for the current ITP filters. The filtrate fluxes were close to the flux of 0.42 gpm/f 2 reported for In Tank Precipitation Salt Solution by Morrisey. (3) For the range of solids loading studied, the filter flux ranged from .04 to .17 gpm/f 2 which would result in a filtrate production rate of 9 to 31 gpm for the current HP filter. (4

  12. Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks

    KAUST Repository

    Geise, Geoffrey M.

    2014-01-14

    Membrane ionic resistance is usually measured by immersing the membrane in a salt solution at a single, fixed concentration. While salt concentration is known to affect membrane resistance when the same concentration is used on both sides of the membrane, little is known about membrane resistance when the membrane is placed between solutions of different concentrations, such as in a reverse electrodialysis (RED) stack. Ionic resistance measurements obtained using Selemion CMV and AMV that separated sodium chloride and ammonium bicarbonate solutions of different concentrations were greater than those measured using only the high-concentration solution. Measured RED stack resistances showed good agreement with resistances calculated using an equivalent series resistance model, where the membranes accounted for 46% of the total stack resistance. The high area resistance of the membranes separating different salt concentration solutions has implications for modeling and optimizing membranes used in RED systems.

  13. Packaging material and aluminum. Hoso zairyo to aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Itaya, T [Mitsubishi Aluminum Co. Ltd., Tokyo (Japan)

    1992-02-01

    The present paper introduces aluminum foil packaging materials among the relation between packing materials and aluminum. The characteristics of aluminum foil in the packaging area are in its barrier performance, non-toxicity, tastelessness and odorlessness. Its excellent functions and processibility suit best as functional materials for food, medicine and industrial material packaging. While an aluminum foil may be used as a single packing material as in foils used in homes, many of it as a packaging material are used in combination with adhesives, papers or plastic films, or coated or printed. It is used as composite materials laminated or coated with other materials according to their use for the purpose of complementing the aluminum foil as the base material. Representative method to laminate aluminum foils include the wet lamination, dry lamination, thermally dissolved lamination and extruded lamination. The most important quality requirement in lamination is the adhesion strength, which requires a close attention in selecting the kinds of adhesive, laminating conditions, and aging conditions. 8 figs., 6 tabs.

  14. Anomalous Protein-Protein Interactions in Multivalent Salt Solution

    Czech Academy of Sciences Publication Activity Database

    Pasquier, C.; Vazdar, M.; Forsman, J.; Jungwirth, Pavel; Lund, M.

    2017-01-01

    Roč. 121, č. 14 (2017), s. 3000-3006 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GA16-01074S Institutional support: RVO:61388963 Keywords : Monte Carlo * molecular dynamics * membranes * proteins * multivalent salts Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.177, year: 2016

  15. Saturated salt solution method: a useful cadaver embalming for surgical skills training.

    Science.gov (United States)

    Hayashi, Shogo; Homma, Hiroshi; Naito, Munekazu; Oda, Jun; Nishiyama, Takahisa; Kawamoto, Atsuo; Kawata, Shinichi; Sato, Norio; Fukuhara, Tomomi; Taguchi, Hirokazu; Mashiko, Kazuki; Azuhata, Takeo; Ito, Masayuki; Kawai, Kentaro; Suzuki, Tomoya; Nishizawa, Yuji; Araki, Jun; Matsuno, Naoto; Shirai, Takayuki; Qu, Ning; Hatayama, Naoyuki; Hirai, Shuichi; Fukui, Hidekimi; Ohseto, Kiyoshige; Yukioka, Tetsuo; Itoh, Masahiro

    2014-12-01

    This article evaluates the suitability of cadavers embalmed by the saturated salt solution (SSS) method for surgical skills training (SST). SST courses using cadavers have been performed to advance a surgeon's techniques without any risk to patients. One important factor for improving SST is the suitability of specimens, which depends on the embalming method. In addition, the infectious risk and cost involved in using cadavers are problems that need to be solved. Six cadavers were embalmed by 3 methods: formalin solution, Thiel solution (TS), and SSS methods. Bacterial and fungal culture tests and measurement of ranges of motion were conducted for each cadaver. Fourteen surgeons evaluated the 3 embalming methods and 9 SST instructors (7 trauma surgeons and 2 orthopedists) operated the cadavers by 21 procedures. In addition, ultrasonography, central venous catheterization, and incision with cauterization followed by autosuture stapling were performed in some cadavers. The SSS method had a sufficient antibiotic effect and produced cadavers with flexible joints and a high tissue quality suitable for SST. The surgeons evaluated the cadavers embalmed by the SSS method to be highly equal to those embalmed by the TS method. Ultrasound images were clear in the cadavers embalmed by both the methods. Central venous catheterization could be performed in a cadaver embalmed by the SSS method and then be affirmed by x-ray. Lungs and intestines could be incised with cauterization and autosuture stapling in the cadavers embalmed by TS and SSS methods. Cadavers embalmed by the SSS method are sufficiently useful for SST. This method is simple, carries a low infectious risk, and is relatively of low cost, enabling a wider use of cadavers for SST.

  16. Effect of aluminum on metabolism of organic acids and chemical forms of aluminum in root tips of Eucalyptus camaldulensis Dehnh.

    Science.gov (United States)

    Ikka, Takashi; Ogawa, Tsuyoshi; Li, Donghua; Hiradate, Syuntaro; Morita, Akio

    2013-10-01

    Eucalyptus (Eucalyptus camaldulensis) has relatively high resistance to aluminum (Al) toxicity than the various herbaceous plants and model plant species. To investigate Al-tolerance mechanism, the metabolism of organic acids and the chemical forms of Al in the target site (root tips) in Eucalyptus was investigated. To do this, 2-year old rooted cuttings of E. camaldulensis were cultivated in half-strength Hoagland solution (pH 4.0) containing Al (0, 0.25, 0.5, 1.0, 2.5 and 5.0mM) salts for 5weeks; growth was not affected at concentrations up to 2.5mM even with Al concentration reaching 6000μgg(-1) DW. In roots, the citrate content also increased with increasing Al application. Concurrently, the activities of aconitase and NADP(+)-isocitrate dehydrogenase, which catalyze the decomposition of citrate, decreased. On the other hand, the activity of citrate synthase was not affected at concentrations up to 2.5mM Al. (27)Al-NMR spectroscopic analyses were carried out where it was found that Al-citrate complexes were a major chemical form present in cell sap of root tips. These findings suggested that E. camaldulensis detoxifies Al by forming Al-citrate complexes, and that this is achieved through Al-induced citrate accumulation in root tips via suppression of the citrate decomposition pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Helium trapping in aluminum and sintered aluminum powders

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  18. Removal of Cr(III ions from salt solution by nanofiltration: experimental and modelling analysis

    Directory of Open Access Journals (Sweden)

    Kowalik-Klimczak Anna

    2016-09-01

    Full Text Available The aim of this study was experimental and modelling analysis of the nanofiltration process used for the removal of chromium(III ions from salt solution characterized by low pH. The experimental results were interpreted with Donnan and Steric Partitioning Pore (DSP model based on the extended Nernst-Planck equation. In this model, one of the main parameters, describing retention of ions by the membrane, is pore dielectric constant. In this work, it was identified for various process pressures and feed compositions. The obtained results showed the satisfactory agreement between the experimental and modelling data. It means that the DSP model may be helpful for the monitoring of nanofiltration process applied for treatment of chromium tannery wastewater.

  19. Structural and morphological changes in pseudobarrier films of anodic aluminum oxide caused by irradiation with high-energy particles

    International Nuclear Information System (INIS)

    Chernykh, M.A.; Belov, V.T.

    1988-01-01

    We have studied the structural and morphological changes, occurring under the electron beam in pseudobarrier films of anodic aluminum oxide, prepared in seven different solutions and irradiated beforehand by protons of x-rays, with the aim of elucidating the structure of anodic aluminum oxides. An increased stability of the pseudobarrier films of anodic aluminum oxide has been observed towards the action of the electron beam of an UEMV-100K microscope at standard working regimes (75 keV) as a result of irradiation with protons or x-rays. A difference has been found to exist between structural and morphological changes of anodic aluminum oxide films, prepared in different solutions, when irradiated with high-energy particles. A structural and phase inhomogeneity of amorphous pseudobarrier films of anodic aluminum oxide has been detected and its influence on the character of solid-phase transformations under the maximum-intensity electron beam

  20. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Bartolucci, Stephen F.; Paras, Joseph; Rafiee, Mohammad A.; Rafiee, Javad; Lee, Sabrina; Kapoor, Deepak; Koratkar, Nikhil

    2011-01-01

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  1. Electrochemical studies on plutonium in molten salts

    International Nuclear Information System (INIS)

    Bourges, G.; Lambertin, D.; Rochefort, S.; Delpech, S.; Picard, G.

    2007-01-01

    Electrochemical studies on plutonium have been supporting the development of pyrochemical processes involving plutonium at CEA. The electrochemical properties of plutonium have been studied in molten salts - ternary eutectic mixture NaCl-KCl-BaCl 2 , equimolar mixture NaCl-KCl and pure CaCl 2 - and in liquid gallium at 1073 K. The formal, or apparent, standard potential of Pu(III)/Pu redox couple in eutectic mixture of NaCl-KCl-BaCl 2 at 1073 K determined by potentiometry is equal to -2.56 V (versus Cl 2 , 1 atm/Cl - reference electrode). In NaCl-KCl eutectic mixture and in pure CaCl 2 the formal standard potentials deduced from cyclic voltammetry are respectively -2.54 V and -2.51 V. These potentials led to the calculation of the activity coefficients of Pu(III) in the molten salts. Chronoamperometry on plutonium in liquid gallium using molten chlorides - CaCl 2 and equimolar NaCl/KCl - led to the determination of the activity coefficient of Pu in liquid Ga, log γ = -7.3. This new data is a key parameter to assess the thermodynamic feasibility of a process using gallium as solvent metal. By comparing gallium with other solvent metals - cadmium, bismuth, aluminum - gallium appears to be, with aluminum, more favorable for the selectivity of the separation at 1073 K of plutonium from cerium. In fact, compared with a solid tungsten electrode, none of these solvent liquid metals is a real asset for the selectivity of the separation. The role of a solvent liquid metal is mainly to trap the elements

  2. Degradation of lead-based pigments by salt solutions

    Czech Academy of Sciences Publication Activity Database

    Kotulanová, Eva; Bezdička, Petr; Hradil, David; Hradilová, J.; Švarcová, Silvie; Grygar, Tomáš

    2009-01-01

    Roč. 10, č. 3 (2009), s. 367-378 ISSN 1296-2074 R&D Projects: GA ČR(CZ) GA203/07/1324; GA AV ČR KJB400320602 Institutional research plan: CEZ:AV0Z40320502 Keywords : X-ray microdiffraction * salts * red lead Subject RIV: CA - Inorganic Chemistry Impact factor: 1.505, year: 2009

  3. Spectroscopy and Speciation Studies on the Interactions of Aluminum (III with Ciprofloxacin and β-Nicotinamide Adenine Dinucleotide Phosphate in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Xiaodi Yang

    2012-08-01

    Full Text Available In this study, both experimental and theoretical approaches, including absorption spectra, fluorescence emission spectra, 1H- and 31P-NMR, electrospray ionization mass spectrometry (ESI-MS, pH-potentiometry and theoretical approaches using the BEST & SPE computer programs were applied to study the competitive complexation between ciprofloxacin (CIP and b-nicotinamide adenine dinucleotide phosphate (NADP with aluminum (III in aqueous solutions. Rank annihilation factor analysis (RAFA was used to analyze the absorption and fluorescence emission spectra of the ligands, the binary complexes and the ternary complexes. It is found, at the mM total concentration level and pH = 7.0, the bidentate mononuclear species [Al(CIP]2+ and [Al(NADP] predominate in the aqueous solutions of the Al(III-CIP and Al(III-NADP systems, and the two complexes have similar conditional stability constants. However, the pH-potentiometry results show at the mM total concentration level and pH = 7.0, the ternary species [Al(CIP(HNADP] predominates in the ternary complex system. Comparing predicted NMR spectra with the experimental NMR results, it can be concluded that for the ternary complex, CIP binds to aluminum ion between the 3-carboxylic and 4-carbonyl groups, while the binding site of oxidized coenzyme II is through the oxygen of phosphate, which is linked to adenosine ribose, instead of pyrophosphate. The results also suggested CIP has the potential to be a probe molecular for the detection of NADP and the Al(III-NADP complexes under physiological condition.

  4. A Designer Fluid For Aluminum Phase Change Devices: Aluminum Inorganic Aqueous Solutions (IAS) Chemistry and Experiments. Volume 2

    Science.gov (United States)

    2016-11-17

    returned from the condenser to the evaporator by a variety of methods. In the simplest implementation of a heat pipe, a thermo-syphon, the walls of the...flow condensation as compared to that with natural convection cooling spread over the entire exposed pipe. The use of an aluminum heat transfer ...a larger thermal resistance throughout the tube. This resistance would work against heat transfer into the evaporator section. Excess permanganate

  5. Water Uptake By Mars Salt Analogs: An Investigation Of Stable Aqueous Solutions On Mars Using Raman Microscopy

    Science.gov (United States)

    Nuding, D.; Gough, R. V.; Jorgensen, S. K.; Tolbert, M. A.

    2013-12-01

    To understand the formation of briny aqueous solutions on Mars, a salt analog was developed to closely match the individual cation and anion concentrations as reported by the Wet Chemistry Laboratory aboard the Phoenix Lander. ';Instant Mars' is a salt analog developed to fully encompass the correct concentrations of magnesium, calcium, potassium, sodium, perchlorate, chloride, and sulfate ions. Using environmental Raman microscopy, we have studied the water uptake by the Instant Mars analog as a function of temperature and relative humidity. Water uptake was monitored using Raman spectroscopy in combination with optical microscopy. A MicroJet droplet generator was used to generate 30 μm diameter particles that were deposited onto a quartz disc. The particles undergo visual transformations as the relative humidity (RH) is increased and the presence of water uptake is confirmed by Raman spectroscopy. At -30° C, water uptake begins at ~ 35% RH as humidity is increased. The water uptake is marked by the growth of a sulfate peak at 990 cm-1, an indicator that sulfate has undergone a phase transition into an aqueous state. As the RH continues to increase, the peak in the O-H region (~3500 cm-1) broadens as more liquid water accumulates in the particles. The Instant Mars particles achieve complete deliquescence at 68% RH, indicated both visually and with Raman spectroscopy. The gradual water uptake observed suggests that deliquescence of the Instant Mars particles is not an immediate process, but that it occurs in steps marked by the deliquescence of the individual salts. Perhaps of even more significance is the tendency for the Instant Mars particles to remain aqueous at low humidity as RH is decreased. Raman spectra indicate that liquid water is present as low as 2% RH at -30° C. Ongoing work will examine the phase of Instant Mars particles under simulated Martian surface and subsurface conditions to gain insight into the possibility for aqueous solutions on Mars

  6. Effects of sodium chloride salting and substitution with potassium chloride on whey expulsion of Cheddar cheese.

    Science.gov (United States)

    Lu, Y; McMahon, D J

    2015-01-01

    A challenge in manufacturing reduced-sodium cheese is that whey expulsion after salting decreases when less salt is applied. Our objectives were (1) to determine whether changing the salting method would increase whey syneresis when making a lower sodium cheese and (2) to better understand factors contributing to salt-induced curd syneresis. Unsalted milled Cheddar curds were salted using different salting intervals (5 or 10 min), different salting levels (20, 25, or 30g/kg), different numbers of applications when using only 20g/kg salt (1, 2, or 3 applications), and salting with the equivalent of 30g/kg NaCl using a 2:1 molar ratio of NaCl and KCl. Whey from these curds was collected every 5 or 10 min until 30 or 40 min after the start of salting, and curds were subsequently pressed for 3h. Additional trials were conducted in which salted milled Cheddar cheese curd was immersed at 22°C for 6h in various solutions to determine how milled curd pieces respond to different levels of salt and Ca. The use of 10-min intervals delayed whey syneresis without influencing total whey expulsion or cheese composition after pressing. Lowering the salt level reduced whey expulsion, resulting in cheeses with higher moisture and slightly lower pH. Adding salt faster did not increase whey expulsion in reduced-salt cheese. Partial substitution with KCl restored the extent of whey expulsion. When salted milled curd was immersed in a 30g/L salt solution, there was a net influx of salt solution into the curd and curd weight increased. When curd was immersed in 60g/L salt solution, a contraction of curd occurred. Curd shrinkage was more pronounced as the salt solution concentration was increased to 90 and 120g/L. Increasing the Ca concentration in test solutions (such that both serum and total Ca in the curd increased) also promoted curd contraction, resulting in lower curd moisture and pH and less weight gain by the curd. The proportion of Ca in the curd that was bound to the para

  7. COBALT SALTS PRODUCTION BY USING SOLVENT EXTRACTION

    Directory of Open Access Journals (Sweden)

    Liudmila V. Dyakova

    2010-06-01

    Full Text Available The paper deals with the extracting cobalt salts by using mixtures on the basis of tertiary amine from multicomponent solutions from the process of hydrochloride leaching of cobalt concentrate. The optimal composition for the extraction mixture, the relationship between the cobalt distribution coefficients and modifier’s nature and concentration, and the saltingout agent type have been determined. A hydrochloride extraction technology of cobalt concentrate yielding a purified concentrated cobalt solution for the production of pure cobalt salts has been developed and introduced at Severonikel combine.

  8. Burner rig alkali salt corrosion of several high temperature alloys

    Science.gov (United States)

    Deadmore, D. L.; Lowell, C. E.

    1977-01-01

    The hot corrosion of five alloys was studied in cyclic tests in a Mach 0.3 burner rig into whose combustion chamber various aqueous salt solutions were injected. Three nickel-based alloys, a cobalt-base alloy, and an iron-base alloy were studied at temperatures of 700, 800, 900, and 1000 C with various salt concentrations and compositions. The relative resistance of the alloys to hot corrosion attack was found to vary with temperature and both concentration and composition of the injected salt solution. Results indicate that the corrosion of these alloys is a function of both the presence of salt condensed as a liquid on the surface and of the composition of the gas phases present.

  9. Protective film formation on AA2024-T3 aluminum alloy by leaching of lithium carbonate from an organic coating

    NARCIS (Netherlands)

    Liu, Y.; Visser, P.; Zhou, X.; Lyon, S.B.; Hashimoto, T.; Curioni, M.; Gholinia, A.; Thompson, G.E.; Smyth, G.; Gibbon, S.R.; Graham, D.; Mol, J.M.C.; Terryn, H.A.

    2015-01-01

    An investigation into corrosion inhibition properties of a primer coating containing lithium carbonate as corrosion inhibitive pigment for AA2024 aluminum alloy was conducted. It was found that, during neutral salt spray exposure, a protective film of about 0.2 to 1.5 ?m thickness formed within the

  10. Salt power - Is Neptune's ole salt a tiger in the tank

    Science.gov (United States)

    Wick, G. S.

    1980-02-01

    Methods of exploiting the 24 atm osmotic pressure difference between fresh and salt water to generate energy include reverse electrodialysis, wherein 80 millivolts of electricity cross each ion-selective membrane placed between solutions of fresh and salt water. Pressure-retarded osmosis, using pumps and pressure chambers, relies on semipermeable membranes that allow fresh water to flow into saline, with power generated by the permeated water being released through a turbine. In reverse vapor compression, water vapor rapidly transfers from fresh water to salt water in an evacuated chamber (due to the vapor pressure difference between them), and power can be extracted using 24 m diameter turbine blades. Environmental concerns include protecting estuaries from stress, managing sediments, and protecting marine animals, while filtration would be needed to keep the membranes free from corrosion, biological fouling, or silting.

  11. The preparation of lithium aluminate by the hydrolysis of lithium and aluminum alkoxides

    International Nuclear Information System (INIS)

    Turner, C.W.; Clatworthy, B.C.; Gin, A.Y.H.

    1987-10-01

    Lithium aluminate was prepared by heating the hydrolysis products from various combinations of lithium and aluminum alkoxides under an atmosphere of nitrogen. The product was β-LiA1O 2 when aluminum iso-propoxide was a starting material, whereas γ-LiA1O 2 was the product for preparations starting with aluminum n-butoxide. The results were independent of the choice of lithium alkoxide. The hydrolysis of aluminum sec-butoxide with a solution of LiOH led to the γ phase as well. The temperature at which the γ phase developed depended upon the conditions of the hydrolysis reaction and was observed at a temperature as low as 550 degrees Celcius

  12. Pore diameter control of anodic aluminum oxide with ordered array of nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Allen; Yang, Yong-Feng [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu, 30013 (China); Hu, Chi-Chang [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 401 (China); Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China); Lin, Chi-Cheng [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China)

    2008-01-01

    Highly uniform, self-ordered anodic aluminum oxide (AAO) with an ordered nanoporous array can be effectively formed from industrially pure (99.5%) aluminum sheets through an anodizing program in a mixture solution of sulfuric and oxalic acids. The influences of anodizing variables, such as applied voltage, solution temperature, oxalic acid concentration, agitation rate, and sulfuric acid concentration, on the average pore diameter of AAO were systematically investigated using fractional factorial design (FFD). The applied voltage, and sulfuric acid concentration were found to be the key factors affecting the pore diameter of AAO films in the FFD study. The pore diameter of AAO is regularly increased from ca. 50 to 150 nm when the applied voltage and the concentration of sulfuric acid are gradually increased from 53 to 80 V and from 3.5 to 8 M, respectively. Fine tuning of the pore diameter for AAO films with an ordered, nanoporous, arrayed structure from industrially pure aluminum sheets can be achieved. (author)

  13. Sodium transport and distribution in sweet pepper during and after salt stress

    NARCIS (Netherlands)

    Blom-Zandstra, M.

    2000-01-01

    In hydroponic systems often saline water is used in nutrient solutions. Transpiration leads to a steady increase of the salt concentration. To avoid unfavourable salt conditions, solutions are renewed, regularly. So, plants are exposed to varying sodium concentrations. In this paper, the sodium

  14. Line emissions from sonoluminescence in aqueous solutions of halide salts without noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jinfu, E-mail: liang.shi2007@163.com [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001 (China); Chen, Weizhong, E-mail: wzchen@nju.edu.cn [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); Zhou, Chao; Cui, Weicheng; Chen, Zhan [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China)

    2015-02-20

    Line emissions of trivalent terbium (Tb{sup 3+}) ion were observed from single-bubble sonoluminescence (SL) in an aqueous solution of terbium chloride (TbCl{sub 3}) that contained no noble gas. In addition, sodium (Na) lines were observed in multi-bubble SL in aqueous solutions of various halide salts that contained no noble gas. These observations show that the halide ions, such as Cl{sup −}, Br{sup −}, and I{sup −}, help for line emissions as the noble gases. The intensity of a line emission depends on both the chemical species produced by cavitation bubbles and the temperature of SL bubble that responds to the driving ultrasound pressure. With the increase of driving pressure, some line emissions attached to the continuous spectrum may become increasingly clear, while other line emissions gradually become indistinct. - Highlights: • Line emissions of Tb(III) ions were observed without the presence of noble gases. • The halide ions help to generate a line emission during sonoluminescence. • The intensity of a line emission mainly depends on the bubble's temperature. • The definition of a line emission is related to the temperature of caviation bubble and the kind of host liquid.

  15. Pressure-induced brine migration in consolidated salt in a repository

    International Nuclear Information System (INIS)

    Hwang, Y.; Chambre, P.L.; Lee, W.W.L.; Pigford, T.H.

    1987-06-01

    This report describes a mathematical model for brine migration through intact salt near a radioactive waste package emplaced in salt. Solutions indicate limited movement following ten years emplacement

  16. Crushed Salt Constitutive Model

    International Nuclear Information System (INIS)

    Callahan, G.D.

    1999-01-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well

  17. Dehydration of ethanol with salt extractive distillation-a comparative analysis between processes with salt recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ligero, E.L.; Ravagnani, T.M.K. [Departamento de Engenharia de Sistemas Qumicos, Faculdade de Engenharia Qumica, Universidade Estadual de Campinas, Campinas, Sao Paulo (Brazil)

    2003-07-01

    Anhydrous ethanol can be obtained from a dilute aqueous solution of ethanol via extractive distillation with potassium acetate. Two process flowsheets with salt recovery were proposed. In the first, dilute ethanol is directly fed to a salt extractive distillation column and, after that, the salt is recovered in a multiple effect evaporator followed by a spray dryer. In the second, the concentrated ethanol from conventional distillation is fed to a salt extractive distillation column. In this case, salt is recovered in a single spray dryer. In both processes the recovered salt is recycled to be used in the extractive distillation column. Every component of each process was rigorously modeled and its behavior was simulated for a wide range of operating conditions. A global simulation was then carried out. The results show that the second process is more interesting in terms of energy consumption than the first. Furthermore, it would be easier to implement changes on existing benzene extractive anhydrous ethanol plants to convert them to more ecologically attractive concentrated ethanol feed processes. (author)

  18. Carbon nanotubes grown on bulk materials and methods for fabrication

    Science.gov (United States)

    Menchhofer, Paul A [Clinton, TN; Montgomery, Frederick C [Oak Ridge, TN; Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  19. Hofmeister effect of salt mixtures on thermo-responsive poly(propylene oxide)

    DEFF Research Database (Denmark)

    Moghaddam, Saeed Zajforoushan; Thormann, Esben

    2015-01-01

    of aqueous solutions of poly(propylene oxide) is affected by mixtures of ions with different location in the Hofmeister series. Our results show that the Hofmeister effects of pure salt species are not always linearly additive and that the relative effect of some ions can be reversed depending...... on the composition of the salt mixture as well as by the absolute and relative concentration of the different species. We suggest that these results can lead to a better understanding of the potential role of the Hofmeister effect in regulation of biological processes, which does always take place in salt mixtures...... rather than solutions containing just single salt species....

  20. Origin of salt giants in abyssal serpentinite systems

    Science.gov (United States)

    Scribano, Vittorio; Carbone, Serafina; Manuella, Fabio C.; Hovland, Martin; Rueslåtten, Håkon; Johnsen, Hans-K.

    2017-10-01

    Worldwide marine salt deposits ranging over the entire geological record are generally considered climate-related evaporites, derived from the precipitation of salts (mainly chlorides and sulfates) from saturated solutions driven by solar evaporation of seawater. This explanation may be realistic for a salt thickness ≤100 m, being therefore inadequate for thicker (>1 km) deposits. Moreover, sub-seafloor salt deposits in deep marine basins are difficult to reconcile with a surface evaporation model. Marine geology reports on abyssal serpentinite systems provide an alternative explanation for some salt deposits. Seawater-driven serpentinization consumes water and increases the salinity of the associated aqueous brines. Brines can be trapped in fractures and cavities in serpentinites and the surrounding `country' rocks. Successive thermal dehydration of buried serpentinites can mobilize and accumulate the brines, forming highly saline hydrothermal solutions. These can migrate upwards and erupt onto the seafloor as saline geysers, which may form salt-saturated water pools, as are currently observed in numerous deeps in the Red Sea and elsewhere. The drainage of deep-seated saline brines to seafloor may be a long-lasting, effective process, mainly occurring in areas characterized by strong tectonic stresses and/or igneous intrusions. Alternatively, brines could be slowly expelled from fractured serpentinites by buoyancy gradients and, hence, separated salts/brines could intrude vertically into surrounding rocks, forming salt diapirs. Serpentinization is an ubiquitous, exothermic, long-lasting process which can modify large volumes of oceanic lithosphere over geological times. Therefore, buried salt deposits in many areas of the world can be reasonably related to serpentinites.

  1. Corrosion behavior of aluminum-alumina composites in aerated 3.5 percent chloride solution

    Science.gov (United States)

    Acevedo Hurtado, Paul Omar

    Aluminum based metal matrix composites are finding many applications in engineering. Of these Al-Al2O3 composites appear to have promise in a number of defense applications because of their mechanical properties. However, their corrosion behavior remains suspect, especially in marine environments. While efforts are being made to improve the corrosion resistance of Al-Al2O3 composites, the mechanism of corrosion is not well known. In this study, the corrosion behavior of powder metallurgy processed Al-Cu alloy reinforced with 10, 15, 20 and 25 vol. % Al2O3 particles (XT 1129, XT 2009, XT 2048, XT 2031) was evaluated in aerated 3.5% NaCl solution using microstructural and electrochemical measurements. AA1100-O and AA2024T4 monolithic alloys were also studied for comparison purposes. The composites and unreinforced alloys were subjected to potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) testing. Addition of 25 vol. % Al2O 3 to the base alloys was found to increase its corrosion resistance considerably. Microstructural studies revealed the presence of intermetallic Al2Cu particles in these composites that appeared to play an important role in the observations. Pitting potential for these composites was near corrosion potential values, and repassivation potential was below the corresponding corrosion potential, indicating that these materials begin to corrode spontaneously as soon as they come in contact with the 3.5 % NaCl solution. EIS measurements indicate the occurrence of adsorption/diffusion phenomena at the interface of the composites which ultimately initiate localized or pitting corrosion. Polarization resistance values were extracted from the EIS data for all the materials tested. Electrically equivalent circuits are proposed to describe and substantiate the corrosive processes occurring in these Al-Al2O 3 composite materials.

  2. DEVELOPMENT OF AN INSOLUBLE SALT SIMULANT TO SUPPORT ENHANCED CHEMICAL CLEANING TESTS

    International Nuclear Information System (INIS)

    Eibling, R

    2008-01-01

    The closure process for high level waste tanks at the Savannah River Site will require dissolution of the crystallized salts that are currently stored in many of the tanks. The insoluble residue from salt dissolution is planned to be removed by an Enhanced Chemical Cleaning (ECC) process. Development of a chemical cleaning process requires an insoluble salt simulant to support evaluation tests of different cleaning methods. The Process Science and Engineering section of SRNL has been asked to develop an insoluble salt simulant for use in testing potential ECC processes (HLE-TTR-2007-017). An insoluble salt simulant has been developed based upon the residues from salt dissolution of saltcake core samples from Tank 28F. The simulant was developed for use in testing SRS waste tank chemical cleaning methods. Based on the results of the simulant development process, the following observations were developed: (1) A composition based on the presence of 10.35 grams oxalate and 4.68 grams carbonate per 100 grams solids produces a sufficiently insoluble solids simulant. (2) Aluminum observed in the solids remaining from actual waste salt dissolution tests is probably precipitated from sodium aluminate due to the low hydroxide content of the saltcake. (3) In-situ generation of aluminum hydroxide (by use of aluminate as the Al source) appears to trap additional salts in the simulant in a manner similar to that expected for actual waste samples. (4) Alternative compositions are possible with higher oxalate levels and lower carbonate levels. (5) The maximum oxalate level is limited by the required Na content of the insoluble solids. (6) Periodic mixing may help to limit crystal growth in this type of salt simulant. (7) Long term storage of an insoluble salt simulant is likely to produce a material that can not be easily removed from the storage container. Production of a relatively fresh simulant is best if pumping the simulant is necessary for testing purposes. The insoluble

  3. The material flow of salt

    International Nuclear Information System (INIS)

    Kostick, D.S.

    1993-01-01

    Salt (NaCl) is a universal mineral commodity used by virtually every person in the world. Although a very common mineral today, at one time it was considered as precious as gold in certain cultures. This study traces the material flow of salt from its origin through the postconsumer phase of usage. The final disposition of salt in the estimated 14,000 different uses, grouped into several macrocategories, is traced from the dispersive loss of salt into the environment to the ultimate disposal of salt-base products into the waste stream after consumption. The base year for this study is 1990, in which an estimated 196 million short tons of municipal solid waste was discarded by the US population. Approximately three-fourths of domestic salt consumed is released to the environment and unrecovered while about one-fourth is discharged to landfills and incinerators as products derived from salt. Cumulative historical domestic production, trade, and consumption data have been compiled to illustrate the long-term trends within the US salt industry and the cumulative contribution that highway deicing salt has had on the environment. Salt is an important component of drilling fluids in well drilling. It is used to flocculate and to increase the density of the drilling fluid in order to overcome high down-well gas pressures. Whenever drilling activities encounter salt formations, salt is added to the drilling fluid to saturate the solution and minimize the dissolution within the salt strata. Salt is also used to increase the set rate of concrete in cemented casings. This subsector includes companies engaged in oil, gas, and crude petroleum exploration and in refining and compounding lubricating oil. It includes SIC major groups 13 and 29. 13 refs., 14 figs., 6 tabs

  4. Electrolytic experiments of gadolinium and neodymium ions in the fluoride molten salt

    International Nuclear Information System (INIS)

    Sim, J. B.; Hwang, S. C.; Kim, W. H.; Kang, Y. H.; Lee, B. J.; Yoo, J. H.

    2002-01-01

    Electrolytic reductions of Gd 3+ and Nd 3+ ions were carried out to prepare bismuth alloys including Gd and Nd solutes using a molten liquid Bi cathode in the LiF-NaF-KF fluoride salt. It was considered that selective separation of Gd from bismuth alloy is possible by controlling the addition amount of an oxidation agent to a salt phase. Cyclic voltammetry measurements are useful tools not only for in-situ detection of solutes in salt phase in the course of back extraction experiments but also for elucidation of electrochemical reactions of Gd and Nd in the FLINAK molten salt

  5. Quench-age method for the fabrication of niobium-aluminum superconductors

    Science.gov (United States)

    Pickus, Milton R.; Ciardella, Robert L.

    1978-01-01

    A flexible Nb.sub.3 Al superconducting wire is fabricated from a niobium-aluminum composite wire by heating to form a solid solution which is retained at room temperature as a metastable solid solution by quenching. The metastable solid solution is then transformed to the stable superconducting A-15 phase by low temperature aging. The transformation induced by aging can be controlled to yield either a multifilamentary or a solid A-15 core surrounded by ductile niobium.

  6. Quench-age method for the fabrication of niobium--aluminum superconductors

    International Nuclear Information System (INIS)

    Pickus, M.R.; Ciardella, R.L.

    1978-01-01

    A flexible Nb 3 Al superconducting wire is fabricated from a niobium-aluminum composite wire by heating to form a solid solution which is retained at room temperature as a metastable solid solution by quenching. The metastable solid solution is then transformed to the stable superconducting A-15 phase by low temperature aging. The transformation induced by aging can be controlled to yield either a multifilamentary or a solid A-15 core surrounded by ductile niobium

  7. Salt fog corrosion behavior in a powder-processed icosahedral-phase-strengthened aluminum alloy

    International Nuclear Information System (INIS)

    Watson, T.J.; Gordillo, M.A.; Ernst, A.T.; Bedard, B.A.; Aindow, M.

    2017-01-01

    Highlights: • Pitting corrosion resistance has been evaluated for an Al-Cr-Mn-Co-Zr alloy. • Pit densities and depths are far lower than for other high-strength Al alloys. • Corrosion proceeds by selective oxidation of the Al matrix around the other phases. - Abstract: The pitting corrosion resistance has been evaluated for a powder-processed Al-Cr-Mn-Co-Zr alloy which contains ≈35% by volume of an icosahedral quasi-crystalline phase and a little Al 9 Co 2 in an Al matrix. ASTM standard salt fog exposure tests show that the alloy exhibits far lower corrosion pit densities and depths than commercial high-strength aerospace Al alloys under the same conditions. Electron microscopy data show that the salt fog exposure leads to the selective oxidation of the face-centered cubic Al matrix around the other phases, and to the development of a porous outer oxide scale.

  8. Direct current-induced electrogenerated chemiluminescence of hydrated and chelated Tb(III) at aluminum cathodes

    International Nuclear Information System (INIS)

    Hakansson, M.; Jiang, Q.; Spehar, A.-M.; Suomi, J.; Kotiranta, M.; Kulmala, S.

    2005-01-01

    Cathodic DC polarization of oxide-covered aluminum produces electrogenerated chemiluminescence from hydrated and chelated Tb(III) ions in aqueous electrolyte solutions. At the moment of cathodic voltage onset, a strong cathodic flash is observed, which is attributed to a tunnel emission of hot electrons into the aqueous electrolyte solution and the successive chemical reactions with the luminophores. However, within a few milliseconds the insulating oxide film is damaged and finally dissolved due to (i) indiffusion of protons or alkali metal ions into the thin oxide film, (ii) subsequent hydrogen evolution at the aluminum/oxide interface and (iii) alkalization of the electrode surface induced by hydrogen evolution reaction. When the alkalization of the electrode surface has proceeded sufficiently, chemiluminescence is generated with increasing intensity. Aluminum metal, short-lived Al(II), Al(I) or atomic hydrogen and its conjugated base form, hydrated electron, can act as highly reducing species in addition to the less energetic heterogeneously transferred electrons from the aluminum electrode. Tb(III) added as a hydrated ion in the solution probably luminesces in the form of Tb(OH) 3 or Tb(OH) 4 - by direct redox reactions of the central ion whereas multidentate aromatic ligand chelated Tb(III) probably luminesces by ligand sensitized chemiluminescence mechanism in which ligand is first excited by one-electron redox reactions, which is followed by intramolecular energy transfer to the central ion which finally emits light

  9. Mathematical model of salt cavern leaching for gas storage in high-insoluble salt formations.

    Science.gov (United States)

    Li, Jinlong; Shi, Xilin; Yang, Chunhe; Li, Yinping; Wang, Tongtao; Ma, Hongling

    2018-01-10

    A mathematical model is established to predict the salt cavern development during leaching in high-insoluble salt formations. The salt-brine mass transfer rate is introduced, and the effects of the insoluble sediments on the development of the cavern are included. Considering the salt mass conservation in the cavern, the couple equations of the cavern shape, brine concentration and brine velocity are derived. According to the falling and accumulating rules of the insoluble particles, the governing equations of the insoluble sediments are deduced. A computer program using VC++ language is developed to obtain the numerical solution of these equations. To verify the proposed model, the leaching processes of two salt caverns of Jintan underground gas storage are simulated by the program, using the actual geological and technological parameters. The same simulation is performed by the current mainstream leaching software in China. The simulation results of the two programs are compared with the available field data. It shows that the proposed software is more accurate on the shape prediction of the cavern bottom and roof, which demonstrates the reliability and applicability of the model.

  10. Hygroscopic salts and the potential for life on Mars.

    Science.gov (United States)

    Davila, Alfonso F; Duport, Luis Gago; Melchiorri, Riccardo; Jänchen, Jochen; Valea, Sergio; de Los Rios, Asunción; Fairén, Alberto G; Möhlmann, Diedrich; McKay, Christopher P; Ascaso, Carmen; Wierzchos, Jacek

    2010-01-01

    Hygroscopic salts have been detected in soils in the northern latitudes of Mars, and widespread chloride-bearing evaporitic deposits have been detected in the southern highlands. The deliquescence of hygroscopic minerals such as chloride salts could provide a local and transient source of liquid water that would be available for microorganisms on the surface. This is known to occur in the Atacama Desert, where massive halite evaporites have become a habitat for photosynthetic and heterotrophic microorganisms that take advantage of the deliquescence of the salt at certain relative humidity (RH) levels. We modeled the climate conditions (RH and temperature) in a region on Mars with chloride-bearing evaporites, and modeled the evolution of the water activity (a(w)) of the deliquescence solutions of three possible chloride salts (sodium chloride, calcium chloride, and magnesium chloride) as a function of temperature. We also studied the water absorption properties of the same salts as a function of RH. Our climate model results show that the RH in the region with chloride-bearing deposits on Mars often reaches the deliquescence points of all three salts, and the temperature reaches levels above their eutectic points seasonally, in the course of a martian year. The a(w) of the deliquescence solutions increases with decreasing temperature due mainly to the precipitation of unstable phases, which removes ions from the solution. The deliquescence of sodium chloride results in transient solutions with a(w) compatible with growth of terrestrial microorganisms down to 252 K, whereas for calcium chloride and magnesium chloride it results in solutions with a(w) below the known limits for growth at all temperatures. However, taking the limits of a(w) used to define special regions on Mars, the deliquescence of calcium chloride deposits would allow for the propagation of terrestrial microorganisms at temperatures between 265 and 253 K, and for metabolic activity (no growth) at

  11. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts.

    Science.gov (United States)

    Parvez, Khaled; Wu, Zhong-Shuai; Li, Rongjin; Liu, Xianjie; Graf, Robert; Feng, Xinliang; Müllen, Klaus

    2014-04-23

    Mass production of high-quality graphene sheets is essential for their practical application in electronics, optoelectronics, composite materials, and energy-storage devices. Here we report a prompt electrochemical exfoliation of graphene sheets into aqueous solutions of different inorganic salts ((NH4)2SO4, Na2SO4, K2SO4, etc.). Exfoliation in these electrolytes leads to graphene with a high yield (>85%, ≤3 layers), large lateral size (up to 44 μm), low oxidation degree (a C/O ratio of 17.2), and a remarkable hole mobility of 310 cm(2) V(-1) s(-1). Further, highly conductive graphene films (11 Ω sq(-1)) are readily fabricated on an A4-size paper by applying brush painting of a concentrated graphene ink (10 mg mL(-1), in N,N'-dimethylformamide). All-solid-state flexible supercapacitors manufactured on the basis of such graphene films deliver a high area capacitance of 11.3 mF cm(-2) and an excellent rate capability of 5000 mV s(-1). The described electrochemical exfoliation shows great promise for the industrial-scale synthesis of high-quality graphene for numerous advanced applications.

  12. Rheological stratification of the Hormuz Salt Formation in Iran - microstructural study of the dirty and pure rock salts from the Kuh-e-Namak (Dashti) salt diapir

    Science.gov (United States)

    Závada, Prokop; Desbois, Guillaume; Urai, Janos; Schulmann, Karel; Rahmati, Mahmoud; Lexa, Ondrej; Wollenberg, Uwe

    2014-05-01

    Significant viscosity contrasts displayed in flow structures of a mountain namakier (Kuh-e-Namak - Dashti), between 'weak' terrestrial debris bearing rock salt types and 'strong' pure rock salt types are questioned for deformation mechanisms using detailed quantitative microstructural study including crystallographic preferred orientation (CPO) mapping of halite grains. While the solid impurity rich ("dirty") rock salts contain disaggregated siltstone and dolomite interlayers, "clean" salts (debris free) reveal microscopic hematite and remnants of abundant fluid inclusions in non-recrystallized cores of porphyroclasts. Although flow in both, the recrystallized dirty and clean salt types is accommodated by combined mechanisms of pressure-solution creep (PS), grain boundary sliding (GBS) and dislocation creep accommodated grain boundary migration (GBM), their viscosity contrasts are explained by significantly slower rates of intergranular diffusion and piling up of dislocations at hematite inclusions in clean salt types. Porphyroclasts of clean salts deform by semi-brittle and plastic mechanisms with intra-crystalline damage being induced also by fluid inclusions that explode in the crystals at high fluid pressures. Boudins of clean salt types with coarse grained and original sedimentary microstructure suggest that clean rock salts are associated with dislocation creep dominated power law flow in the source layer and the diapiric stem. Rheological contrasts between both rock salt classes apply in general for the variegated and terrestrial debris rich ("dirty") Lower Hormuz and the "clean" rock salt forming the Upper Hormuz, respectively, and suggest that large strain rate gradients likely exist along horizons of mobilized salt types of different composition and microstructure.

  13. Salt effects on isotope partitioning and their geochemical implications: An overview

    International Nuclear Information System (INIS)

    Horita, J.; Cole, D.R.; Fortier, S.M.

    1996-01-01

    Essential to the use of stable isotopes as natural tracers and geothermometers is the knowledge of equilibrium isotope partitioning between different phases and species, which is usually a function of temperature only. The one exception known to date is oxygen and hydrogen isotope fractionation between liquid water and other phases (steam, gases, minerals), which changes upon the addition of salts to water, i.e., the isotope salt salt effect. Our knowledge of this effect, the difference between activity and composition (a-X) of isotopic water molecules in salt solutions, is very limited and controversial, especially at elevated temperatures. For the last several years, we have been conducting a detailed, systematic experimental study at Oak Ridge National Laboratory to determine the isotope salt effects from room temperature to elevated temperatures (currently to 500 degree C). From this effort, a simple, coherent picture of the isotope salt effect is emerging, that differs markedly from the complex results reported in the literature. In this communication, we present an overview on the isotope salt effect, obtained chiefly from our study. Observed isotope salt effects in salt solutions are significant even at elevated temperatures. The importance and implications of the isotope salt effect for isotopic studies of brine-dominated systems are also discussed in general terms

  14. Supramolecular Complexes Formed in Systems Bile Salt-Bilirubin-Silica

    Science.gov (United States)

    Vlasova, N. N.; Severinovskaya, O. V.; Golovkova, L. P.

    The formation of supramolecular complexes between bilirubin and primary micelles of bile salts has been studied. The association constants of bile salts and binding of bilirubin with these associates have been determined. The adsorption of bilirubin and bile salts from individual and mixed aqueous solutions onto hydrophobic silica surfaces has been investigated. The interaction of bilirubin with primary bile salt micelles and the strong retention in mixed micelles, which are supramolecular complexes, result in the adsorption of bilirubin in free state only.

  15. Interaction Free Energies of Eight Sodium Salts and a Phosphatidylcholine Membrane

    DEFF Research Database (Denmark)

    Wang, C. H.; Ge, Y.; Mortensen, J.

    2011-01-01

    Many recent reports have discussed specific effects of anions on the properties of lipid membranes and possible roles of such effects within biochemistry. One key parameter in both theoretical and experimental treatments of membrane-salt interactions is the net affinity, that is, the free energy...... salts by dialysis equilibrium measurements. This method provides model free thermodynamic data and allows investigations in the dilute concentration range where solution nonideality and perturbation of membrane structure is limited. The transfer free energy of DMPC from water to salt solutions, Delta mu...

  16. Yttria hydroxy-salt binders

    International Nuclear Information System (INIS)

    Holcombe, C.E. Jr.

    1978-01-01

    Binder phase (primarily chloride or nitrate) formation was examined in YX 3 --NaOH--H 2 O, Y 2 O 3 --acid--H 2 O, and Y 2 O 3 --salt--H 2 O systems. The cementitious phase consisted mostly of plate- (or needle-) shaped hydroxy salts of the general formula Y 2 (OH)/sub 6-m/X/sub m/ nH 2 O, where m and n normally equal one. These binders were examined by x-ray diffraction and thermal analysis techniques. Nitrate binders decompose to Y 2 O 3 by 600 0 C, whereas chloride binders form oxychlorides that sublime or convert to Y 2 O 3 after oxygen replacement of chlorine (in air) at > 1000 0 C. Although nitric and hydrochloric acid solutions form porous ( 2 O 3 powder, salt solutions (i.e., NH 4 NO 3 , Mg(NO 3 ) 2 , NH 4 Cl, and YCl 3 approx. = 6H 2 O) slow the reaction considerably (48 h to 4 weeks), allowing 70- to 80%-dense cements to form. The effects of formation conditions on physical properties of binders were studied. Examination of scandium and lanthanide oxides showed that several behave in the same way as yttria

  17. Limiting salt crystallization damage in lime mortar by using crystallization modifiers

    NARCIS (Netherlands)

    Granneman, S.J.C.; Shahidzadeh, N.; Lubelli, B.A.; Hees, R.P.J. van

    2014-01-01

    Salt crystallization is a recurrent cause of damage in porous building materials. Lime-based mortars, which were widely used in construction of ancient masonry, are especially prone to salt damage, due to their low mechanical strength. Existing solutions to tackle salt damage in mortars have been

  18. Aluminum recovery as a product with high added value using aluminum hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2013-01-01

    Highlights: • Granular and compact aluminum dross were physically and chemically characterized. • A relationship between density, porosity and metal content from dross was established. • Chemical reactions involving aluminum in landfill and negative consequences are shown. • A processing method for aluminum recovering from aluminum dross was developed. • Aluminum was recovered as an value product with high grade purity such as alumina. -- Abstract: The samples of hazardous aluminum solid waste such as dross were physically and chemically characterized. A relationship between density, porosity and metal content of dross was established. The paper also examines the chemical reactions involving aluminum dross in landfill and the negative consequences. To avoid environmental problems and to recovery the aluminum, a processing method was developed and aluminum was recovered as an added value product such as alumina. This method refers to a process at low temperature, in more stages: acid leaching, purification, precipitation and calcination. At the end of this process aluminum was extracted, first as Al 3+ soluble ions and final as alumina product. The composition of the aluminum dross and alumina powder obtained were measured by applying the leaching tests, using atomic absorption spectrometry (AAS) and chemical analysis. The mineralogical composition of aluminum dross samples and alumina product were determined by X-ray diffraction (XRD) and the morphological characterization was performed by scanning electron microscopy (SEM). The method presented in this work allows the use of hazardous aluminum solid waste as raw material to recover an important fraction from soluble aluminum content as an added value product, alumina, with high grade purity (99.28%)

  19. Precipitation of sparingly soluble salts in packed sandbeds

    Science.gov (United States)

    Pavlakou, Efstathia I.; Sygouni, Varvara; Paraskeva, Christakis A.

    2015-04-01

    One of the main problems encountered by the oil extraction industry, is the reduction of the local permeability of the rock formation near the extraction wells because of salt deposition in the pores of the rocks during the injection of brine water to displace the trapped oil ganglia within the oil formations. This phenomenon makes the oil recovery less efficient and under extreme cases the well is abandoned with a large amount of oil entrapped. Several detailed studies have been conducted in the past concerning sand bed consolidation using sparingly soluble salts for varying conditions (e.g. temperature, grain size, sand type, salt concentrations etc) and various salts [1]. Nevertheless, salt precipitation in the rock formation pores under the presence of other miscible or immiscible substances with water has not been investigated in details yet. In the present study, salt (CaCO3) precipitation experiments were performed in small beds packed with sea sand mixed with a low amount of CaCO3 seed grains. The experiments were performed using pure solutions (NaHCO3, CaCl2.2H2O) and solutions mixed with Ethylene Glycol in sand beds. Additionally, precipitation experiments were performed using pure solutions in sand beds saturated with oil phase (n-dodecane) for a wide range of solution supersaturation. During the experiments the ionic strength was kept constant. pH and concentration values of calcium ion of the effluent were measured and the precipitated salt crystals were identified using X-ray Diffraction (XRD) method. At the end of each experiment Scanning Electron Microscope (SEM) was conducted using a sample of the precipitated sand to identify the morphology of the precipitated crystals and their cohesion with sand grains. Acknowledgments This research was partially funded by the European Union (European Social Fund-ESF) and Greek National Funds through the Operational program "Education and Lifelong Learning" under the action Aristeia II (Code No 4420). References

  20. Geological Feasibility of Underground Oil Storage in Jintan Salt Mine of China

    Directory of Open Access Journals (Sweden)

    Xilin Shi

    2017-01-01

    Full Text Available A number of large underground oil storage spaces will be constructed in deep salt mines in China in the coming years. According to the general geological survey, the first salt cavern oil storage base of China is planned to be built in Jintan salt mine. In this research, the geological feasibility of the salt mine for oil storage is identified in detail as follows. (1 The characteristics of regional structure, strata sediment, and impermeable layer distribution of Jintan salt mine were evaluated and analyzed. (2 The tightness of cap rock was evaluated in reviews of macroscopic geology and microscopic measuring. (3 According to the geological characteristics of Jintan salt mine, the specific targeted formation for building underground oil storage was chosen, and the sealing of nonsalt interlayers was evaluated. (4 Based on the sonar measuring results of the salt caverns, the characteristics of solution mining salt caverns were analyzed. In addition, the preferred way of underground oil storage construction was determined. (5 Finally, the results of closed well observation in solution mining salt caverns were assessed. The research results indicated that Jintan salt mine has the basic geological conditions for building large-scale underground oil storage.

  1. Demonstration of the Impact of Thermomagnetic Processing on Cast Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Murphy, Bart L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kesler, Michael S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Henderson, Hunter B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-01

    This project builds on an earlier Manufacturing Demonstration Facility Technical Collaboration phase 1 project to investigate application of high magnetic fields during solution heat treating and aging of three different cast aluminum alloys.

  2. TiB2 reinforced aluminum based in situ composites fabricated by stir casting

    International Nuclear Information System (INIS)

    Chen, Fei; Chen, Zongning; Mao, Feng; Wang, Tongmin; Cao, Zhiqiang

    2015-01-01

    In this study, a new technique involving mechanical stirring at the salts/aluminum interface was developed to fabricate TiB 2 particulate reinforced aluminum based in situ composites with improved particle distribution. Processing parameters in terms of stirring intensity, stirring duration and stirring start time were optimized according to the microstructure and mechanical properties evaluation. The results show that, the first and last 15 min of the entire 60 min holding are of prime importance to the particle distribution of the final composites. When applying 180 rpm (revolutions per minute) stirring at the salts/aluminum interface in these two intervals, a more uniform microstructure can be achieved and the Al-4 wt% TiB 2 composite thus produced exhibits superior mechanical performance. Synchrotron radiation X-ray computed tomography (SR-CT) was used to give a full-scale imaging of the particle distribution. From the SR-CT results, the in situ Al–xTiB 2 composites (x=1, 4 and 7, all in wt%) fabricated by the present technique are characterized by fine and clean TiB 2 particles distributed uniformly throughout the Al matrix. These composites not only have higher yield strength (σ 0.2 ) and ultimate tensile strength (UTS), but also exhibit superior ductility, with respect to the Al–TiB 2 composites fabricated by the conventional process. The σ 0.2 and UTS of the Al–7TiB 2 composite in the present work, are 260% and 180% higher than those of the matrix. A combined mechanism was also presented to interpret the improvements in yield strength of the composites as influenced by their microstructures and processing history. The predicted values are in good agreement with the experimental results, strongly supporting the strengthening mechanism we proposed. Fractography reveals that the composites thus fabricated, follow ductile fracture mechanism in spite of the presence of stiff reinforcements

  3. Systematic Evaluation of Salt Cavern Well Integrity

    Science.gov (United States)

    Roberts, B. L.; Lord, D. L.; Lord, A. S.; Bettin, G.; Sobolik, S. R.; Park, B. Y.

    2017-12-01

    The U.S. Strategic Petroleum Reserve (SPR) holds a reserve of crude oil ( 700 million barrels) to help ease any interruptions in oil import to the United States. The oil is stored in a set of 63 underground caverns distributed across four sites along the U.S. Gulf Coast. The caverns were solution mined into salt domes at each of the four sites. The plastic nature of the salt is beneficial for the storage of crude oil as it heals any fractures that may occur in the salt. The SPR is responsible for operating and maintaining the nearly 120 wells used to access the storage caverns over operational lifetimes spanning decades. Salt creep can induce deformation of the well casing which must be remediated to insure cavern and well integrity. This is particularly true at the interface between the plastic salt and the rigid caprock. The Department of Energy, the SPR Management and Operations contractor, and Sandia National Laboratories has developed a multidimensional well-grading system for the salt cavern access wells. This system is designed to assign numeric grades to each well indicating its risk of losing integrity and remediation priority. The system consists of several main components which themselves may consist of sub-components. The main components consider such things as salt cavern pressure history, results from geomechanical simulations modeling salt deformation, and measurements of well casing deformation due to salt creep. In addition, the geology of the salt domes and their overlying caprock is also included in the grading. These multiple factors are combined into summary values giving the monitoring and remediation priority for each well. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  4. The Salty Science of the Aluminum-Air Battery

    Science.gov (United States)

    Chasteen, Stephanie V.; Chasteen, N. Dennis; Doherty, Paul

    2008-12-01

    Fruit batteries and saltwater batteries are excellent ways to explore simple circuits in the classroom. These are examples of air batteries in which metal reacts with oxygen in the air in order to generate free electrons, which flow through an external circuit and do work. Students are typically told that the salt or fruit water acts as an electrolyte to bring electrons from the anode to the cathode. That's true, but it leaves the battery as a black box. Physics teachers often don't have the background to explain the chemistry behind these batteries. We've written this paper to explore the electrochemistry behind an air battery using copper cathode, aluminum anode, and saltwater.

  5. The chemistry of salt-affected soils and waters

    Science.gov (United States)

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  6. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    Science.gov (United States)

    de Oliveira, Henrique Bortolaz; Wypych, Fernando

    2016-11-01

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO42-/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO42-/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated.

  7. Characterization of the deviation to the ideality of concentrated actinide and lanthanide salt solutions: contribution of the Bimsa theory; Caracterisation de l'ecart a l'idealite de solutions concentrees de sels d'actinide et de lanthanide: contribution de la theorie Bimsa

    Energy Technology Data Exchange (ETDEWEB)

    Ruas, A

    2006-03-15

    The aim of this work is to describe the mean stoichiometric activity coefficients, osmotic coefficients or water activities of aqueous actinide nitrate salt solutions up to high concentration. These sets of data are required for a better control of the equilibria occurring in liquid-liquid extraction processes. Experimental acquisition of these thermodynamic properties, in the case of some actinide nitrates, is possible and was conducted before.But, many actinide salt solutions cannot be experimentally handled up to high concentration because of unstable oxidation state or very high radioactivity. As a consequence, a suitable predictive theory is necessary for the description of these nitrate salt solutions (such as Am (NO{sub 3}){sub 3}, Cm (NO{sub 3}){sub 3}). The BIMSA ('Binding Mean Spherical Approximation') was chosen for this purpose. This theory, unlike other methods, uses a set of microscopic parameters that have some physical meaning, for the description of macroscopic thermodynamic properties (osmotic coefficients, activity coefficients).The following manuscript is divided by 4 chapters, corresponding to 4 articles accepted in the scientific journal 'Journal of Physical Chemistry'. Chapter 1 first reviews the basic thermodynamic concepts before describing the issues involved in acquiring actinides binary data. An approach based on the thermodynamic concept of simple solutions, the notion of fictive binary data, is described. Within this approach, the activity coefficient of an aqueous phase constituent depends on two parameters: the water activity of the system and total concentration of dissolved constituents. As a first application, new fictive binary data of uranyl nitrate are proposed from measurements on the ternary system UO{sub 2}(NO{sub 3}){sub 2}/HNO{sub 3}/H{sub 2}O.Chapter 2 gives the main principles of the BIMSA theory. It shows also preliminary promising results obtained when modeling lanthanide(III) salt properties. Then

  8. Molten-salt converter reactors

    International Nuclear Information System (INIS)

    Perry, A.M.

    1975-01-01

    Molten-salt reactors appear to have substantial promise as advanced converters. Conversion ratios of 0.85 to 0.9 should be attainable with favourable fuel cycle costs, with 235 U valued at $12/g. An increase in 235 U value by a factor of two or three ($10 to $30/lb. U 3 O 8 , $75/SWU) would be expected to increase the optimum conversion ratio, but this has not been analyzed in detail. The processing necessary to recover uranium from the fuel salt has been partially demonstrated in the MSRE. The equipment for doing this would be located at the reactor, and there would be no reliance on an established recycle industry. Processing costs are expected to be quite low, and fuel cycle optimization depends primarily on inventory and burnup or replacement costs for the fuel and for the carrier salt. Significant development problems remain to be resolved for molten-salt reactors, notably the control of tritium and the elimination of intergranular cracking of Hastelloy-N in contact with tellurium. However, these problems appear to be amenable to solution. It is appropriate to consider separating the development schedule for molten-salt reactors from that for the processing technology required for breeding. The Molten-Salt Converter Reactor should be a useful reactor in its own right and would be an advance towards the achievement of true breeding in thermal reactors. (author)

  9. Contribution to the study of uranyl salts in butyl phosphate solutions; Contribution a l'etude des solutions de sels d'uranyle dans les phosphates butyliques

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, A. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-06-01

    A spectroscopic study in the normal infrared region and involving the following associations: tri-alkyl phosphates (tri-butyl, tri-ethyl, tri-methyl), uranyl salts (nitrate, chloride, acetate) has confirmed the existence of an interaction between the phosphoryl group and the uranium atom, as shown by a movement of absorption band for the valency P = 0 from {approx} 1270 cm{sup -1} to {approx} 1180 cm{sup -1}. A study of the preparation, analysis and spectroscopy of the solids obtained by the precipitation of uranyl salts by acid butyl phosphates has been carried out. By infrared spectrophotometry it has been shown that the tri-butyl and di-butyl phosphates are associated in non-polar diluents even before the uranium is introduced. The extraction of uranyl salts from acid aqueous solutions by a diluted mixture of tri-butyl and di-butyl phosphates proceeds by different mechanisms according to the nature of the ion (nitrate or chloride). (author) [French] Une etude spectroscopique dans l'infrarouge moyen portant sur les associations: - phosphates trialcoyliques (tributylique - triethylique - trimethylique) - sels d'uranyle (nitrate, chlorure, acetate) a confirme l'existence d'une interaction entre le groupement phosphoryle et l'atome d'uranium, se manifestant par un deplacement de la bande d'absorption de la vibration de valence P = 0 de {approx} 1270 cm{sup -1} a {approx} 1180 cm{sup -1}. Une etude preparative, analytique et spectroscopique des solides obtenus par precipitation de sels d'uranyle par les phosphates butyliques acides a ete effectuee. La spectrophotomerie infrarouge met en evidence l'association, anterieure a toute introduction d'uranium, des phosphates tributylique et dibutylique dans des diluants non polaires. L'extraction de sels d'uranyle, d'une solution aqueuse acide par un melange dilue de phosphates tributylique et dibutylique, s'effectue suivant des processus differents a la

  10. Textile Wastewater Treatment by Electrocoagulation Process using Aluminum Electrodes

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    2014-03-01

    Full Text Available Background and purpose: Textile industries are among the most polluting industries regarding the volume and the complexity of treatment of its effluents discharge. This study investigated the efficiency of electrocoagulation process using aluminum electrodes in basic red 18 dye removal from aqueous solutions. Materials and Methods: This study was performed in a bipolar batch reactor with six aluminum electrodes connected in parallel. Several important parameters, such as initial pH of solution, initial dye concentration, applied voltage; conductivity and reaction time were studied in an attempt to achieve higher removal efficiency. Results: The electrochemical technique showed satisfactory dye removal efficiency and reliable performance in treating of basic red 18. The maximum efficiency of dye removal which was obtained in voltage of 50 V, reaction time of 60 min, initial concentration 50 mg/L, conductivity 3000 μS/cm and pH 7 was equal to 97.7%. Dye removal efficiency was increased accordance to increase of applied voltage and in contrast electrode and energy consumption was increased simultaneously. Conclusion: As a conclusion, the method was found to be highly efficient and relatively fast compared to conventional existing techniques for dye removal from aqueous solutions.

  11. Experiments for evaluation of corrosion to develop storage criteria for interim dry storage of aluminum-alloy clad spent nuclear fuel

    International Nuclear Information System (INIS)

    Peacock, H.B.; Sindelar, R.L.; Lam, P.S.; Murphy, T.H.

    1994-01-01

    The technical bases for specification of limits to environmental exposure conditions to avoid excessive degradation are being developed for storage criteria for dry storage of highly-enriched, aluminum-clad spent nuclear fuels owned by the US Department of Energy. Corrosion of the aluminum cladding is a limiting degradation mechanism (occurs at lowest temperature) for aluminum exposed to an environment containing water vapor. Attendant radiation fields of the fuels can lead to production of nitric acid in the presence of air and water vapor and would exacerbate the corrosion of aluminum by lowering the pH of the water solution. Laboratory-scale specimens are being exposed to various conditions inside an autoclave facility to measure the corrosion of the fuel matrix and cladding materials through weight change measurements and metallurgical analysis. In addition, electrochemical corrosion tests are being performed to supplement the autoclave testing by measuring differences in the general corrosion and pitting corrosion behavior of the aluminum cladding alloys and the aluminum-uranium fuel materials in water solutions

  12. Structural features of anodic oxide films formed on aluminum substrate coated with self-assembled microspheres

    International Nuclear Information System (INIS)

    Asoh, Hidetaka; Uchibori, Kota; Ono, Sachiko

    2009-01-01

    The structural features of anodic oxide films formed on an aluminum substrate coated with self-assembled microspheres were investigated by scanning electron microscopy and atomic force microscopy. In the first anodization in neutral solution, the growth of a barrier-type film was partially suppressed in the contact area between the spheres and the underlying aluminum substrate, resulting in the formation of ordered dimple arrays in an anodic oxide film. After the subsequent second anodization in acid solution at a voltage lower than that of the first anodization, nanopores were generated only within each dimple. The nanoporous region could be removed selectively by post-chemical etching using the difference in structural dimensions between the porous region and the surrounding barrier region. The mechanism of anodic oxide growth on the aluminum substrate coated with microspheres through multistep anodization is discussed.

  13. Structural features of anodic oxide films formed on aluminum substrate coated with self-assembled microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Asoh, Hidetaka [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)], E-mail: asoh@cc.kogakuin.ac.jp; Uchibori, Kota; Ono, Sachiko [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)

    2009-07-15

    The structural features of anodic oxide films formed on an aluminum substrate coated with self-assembled microspheres were investigated by scanning electron microscopy and atomic force microscopy. In the first anodization in neutral solution, the growth of a barrier-type film was partially suppressed in the contact area between the spheres and the underlying aluminum substrate, resulting in the formation of ordered dimple arrays in an anodic oxide film. After the subsequent second anodization in acid solution at a voltage lower than that of the first anodization, nanopores were generated only within each dimple. The nanoporous region could be removed selectively by post-chemical etching using the difference in structural dimensions between the porous region and the surrounding barrier region. The mechanism of anodic oxide growth on the aluminum substrate coated with microspheres through multistep anodization is discussed.

  14. Feasibility of laser-induced breakdown spectroscopy (LIBS) for classification of sea salts.

    Science.gov (United States)

    Tan, Man Minh; Cui, Sheng; Yoo, Jonghyun; Han, Song-Hee; Ham, Kyung-Sik; Nam, Sang-Ho; Lee, Yonghoon

    2012-03-01

    We have investigated the feasibility of laser-induced breakdown spectroscopy (LIBS) as a fast, reliable classification tool for sea salts. For 11 kinds of sea salts, potassium (K), magnesium (Mg), calcium (Ca), and aluminum (Al), concentrations were measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and the LIBS spectra were recorded in the narrow wavelength region between 760 and 800 nm where K (I), Mg (I), Ca (II), Al (I), and cyanide (CN) band emissions are observed. The ICP-AES measurements revealed that the K, Mg, Ca, and Al concentrations varied significantly with the provenance of each salt. The relative intensities of the K (I), Mg (I), Ca (II), and Al (I) peaks observed in the LIBS spectra are consistent with the results using ICP-AES. The principal component analysis of the LIBS spectra provided the score plot with quite a high degree of clustering. This indicates that classification of sea salts by chemometric analysis of LIBS spectra is very promising. Classification models were developed by partial least squares discriminant analysis (PLS-DA) and evaluated. In addition, the Al (I) peaks enabled us to discriminate between different production methods of the salts. © 2012 Society for Applied Spectroscopy

  15. Influence of different levels of aluminum on the development of citrus rootstock swingle citrumelo (Citrus paradisi mcf. x Poncirus trifoliata raf. in nutrient solution

    Directory of Open Access Journals (Sweden)

    Carlos Henrique dos Santos

    2000-01-01

    Full Text Available This work aimed at evaluating the influence of different levels of aluminum on the physiological parameters of the citrus rootstock Swingle Citrumelo in hydroponic solution. The experiment was carried out with a completely randomized design with three replications, subdivided in several lots. The levels of aluminum used were: 0, 7.5, 15, 22.5 and 30 mg L-1 in form of AlCl3.6H2O in nutrient solution. Following physiological parameters were evaluated: specific and relative foliar area, relative foliar mass, and the ratio of aerial part dry matter/root system dry matter. The results showed that aluminum did not influence the parameters evaluated except the specific foliar area, which decreased starting at the 7.5 mg L-1 level.O presente trabalho teve como objetivo avaliar a influência de diferentes níveis de alumínio nos parâmetros fisiológicos do porta-enxerto cítrico citrumeleiro Swingle em cultivo hidropônico. O experimento foi conduzido seguindo o delineamento estatístico inteiramente casualizado, com 3 repetições, em parcelas subdivididas. Os níveis de alumínio utilizados foram: 0, 7,5, 15, 22,5 e 30 mg L-1, na forma de AlCl3 6.H2O em solução nutritiva. Foram avaliados os parâmetros fisiológicos área foliar específica, razão de área foliar e massa foliar, relação matéria seca da parte aérea/matéria seca do sistema radicular. De acordo com os resultados obtidos nestas condições, conclui-se que os níveis de alumínio não influenciaram nos valores dos parâmetros acima discutidos, excetuando-se a AFE, havendo decréscimos destes valores a partir de 7,5 mg L-1 de alumínio.

  16. Aluminothermic Reduction-Molten Salt Electrolysis Using Inert Anode for Oxygen and Al-Base Alloy Extraction from Lunar Soil Simulant

    Science.gov (United States)

    Xie, Kaiyu; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen

    2017-10-01

    Aluminothermic reduction-electrolysis using an inert anode process is proposed to extract oxygen and metals from Minnesota Lunar Simulant-1 (MLS-1). Effective aluminothermic reduction between dissolved MLS-1 and dissolved metal aluminum was achieved in cryolite salt media. The product phases obtained by aluminothermic reduction at 980°C for 4 h were Al, Si, and Al5FeSi, while the chemical components were 79.71 mass% aluminum, 12.03 mass% silicon, 5.91 mass% iron, and 2.35 mass% titanium. The cryolite salt containing Al2O3 was subsequently electrolyzed with Fe0.58-Ni0.42 inert anode at 960°C for 4 h. Oxygen was evolved at the anode with an anodic current efficiency of 78.28%. The results demonstrate that this two-step process is remarkably feasible for the extraterrestrial extraction of oxygen and metals. This process will help expand the existing in situ resource utilization methods.

  17. SALT4: a two-dimensional displacement discontinuity code for thermomechanical analysis in bedded salt deposits

    International Nuclear Information System (INIS)

    1983-04-01

    SALT4 is a two-dimensional analytical/displacement-discontinuity code designed to evaluate temperatures, deformation, and stresses associated with underground disposal of radioactive waste in bedded salt. This code was developed by the University of Minnesota. This documentation describes the mathematical equations of the physical system being modeled, the numerical techniques utilized, and the organization of the computer code, SALT4. The SALT4 code takes into account: (1) viscoelastic behavior in the pillars adjacent to excavations; (2) transversely isotropic elastic moduli such as those exhibited by bedded or stratified rock; and (2) excavation sequence. Major advantages of the SALT4 code are: (1) computational efficiency; (2) the small amount of input data required; and (3) a creep law consistent with laboratory experimental data for salt. The main disadvantage is that some of the assumptions in the formulation of SALT4, i.e., temperature-independent material properties, render it unsuitable for canister-scale analysis or analysis of lateral deformation of the pillars. The SALT4 code can be used for parameter sensitivity analyses of two-dimensional, repository-scale, thermal and thermomechanical response in bedded salt during the excavation, operational, and post-closure phases. It is especially useful in evaluating alternative patterns and sequences of excavation or waste canister placement. SALT4 can also be used to verify fully numerical codes. This is similar to the use of analytic solutions for code verification. Although SALT4 was designed for analysis of bedded salt, it is also applicable to crystalline rock if the creep calculation is suppressed. In Section 1.5 of this document the code custodianship and control is described along with the status of verification, validation and peer review of this report

  18. Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks

    KAUST Repository

    Geise, Geoffrey M.; Curtis, Andrew J.; Hatzell, Marta C.; Hickner, Michael A.; Logan, Bruce E.

    2014-01-01

    Membrane ionic resistance is usually measured by immersing the membrane in a salt solution at a single, fixed concentration. While salt concentration is known to affect membrane resistance when the same concentration is used on both sides

  19. Salts-based size-selective precipitation: toward mass precipitation of aqueous nanoparticles.

    Science.gov (United States)

    Wang, Chun-Lei; Fang, Min; Xu, Shu-Hong; Cui, Yi-Ping

    2010-01-19

    Purification is a necessary step before the application of nanocrystals (NCs), since the excess matter in nanoparticles solution usually causes a disadvantage to their subsequent coupling or assembling with other materials. In this work, a novel salts-based precipitation technique is originally developed for the precipitation and size-selective precipitation of aqueous NCs. Simply by addition of salts, NCs can be precipitated from the solution. After decantation of the supernatant solution, the precipitates can be dispersed in water again. By means of adjusting the addition amount of salt, size-selective precipitation of aqueous NCs can be achieved. Namely, the NCs with large size are precipitated preferentially, leaving small NCs in solution. Compared with the traditional nonsolvents-based precipitation technique, the current one is simpler and more rapid due to the avoidance of condensation and heating manipulations used in the traditional precipitation process. Moreover, the salts-based precipitation technique was generally available for the precipitation of aqueous nanoparticles, no matter if there were semiconductor NCs or metal nanoparticles. Simultaneously, the cost of the current method is also much lower than that of the traditional nonsolvents-based precipitation technique, making it applicable for mass purification of aqueous NCs.

  20. Process for anodizing aluminum foil

    International Nuclear Information System (INIS)

    Ball, J.A.; Scott, J.W.

    1984-01-01

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80 0 C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V