WorldWideScience

Sample records for solution viscosity measurements

  1. Measuring the density and viscosity of H2S-loaded aqueous methyldiethanolamine solution

    International Nuclear Information System (INIS)

    Shokouhi, Mohammad; Ahmadi, Reza

    2016-01-01

    Highlights: • Measurement solubility of H 2 S in 46.78 mass% MDEA aqueous solutions. • Measurement density of H 2 S loaded of MDEA aqueous solution. • Measurement viscosity of H 2 S loaded of MDEA aqueous solution. • Correlation of the density and viscosity of H 2 S loaded of MDEA aqueous solution using modified setchenow equation. - Abstract: The density and viscosity of H 2 S-loaded aqueous 46.78 mass% methyldiethanolamine solution were experimentally measured accompanied with the solubility of H 2 S at temperatures (313.15, 328.15 and 343.15) K, pressures from vapor pressure of fresh solution up to 1.0 MPa and loadings up to 1.00 mol of H 2 S per 1 mol of amine. All experimental trials have been carried out using the new setup developed in our laboratory. It was observed that both density and viscosity of mixtures decrease by increasing temperature and density increase by increasing acid gas solubility (loading) by about 4.7%, whereas viscosity has a complicated behavior with H 2 S solubility. Viscosity decreases by increasing acid gas solubility (loading) at 313.15 K by about 20.6% and at 328.15 K by about 15.0%, but it is comparable at 343.15 K in terms of H 2 S solubility. Finally, the experimental density and viscosity data correlated using Modified Setchenow equation.

  2. Dynamic viscosity of polymer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Peterlin, A

    1982-03-01

    The dynamic viscosity investigation of solutions of long chain polymers in very viscous solvents has definitely shown the existence of the low and high frequency plateau with the gradual transition between them. In both extreme cases the extrapolation of the measured Newtonian viscosities of the plateaus to the infinite dilution yields the limiting intrinsic viscosities. Such a behavior is expected from the dynamic intrinsic viscosity of the necklace model of the linear polymer with finite internal viscosity. The plateau at low frequency shows up in any model of polymer solution. This work shows the constant dynamic intrinsic viscosity in both extreme cases is well reproducible by the necklace model with the internal viscosity acting only between the beads on the same link. 20 references.

  3. Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements

    Directory of Open Access Journals (Sweden)

    Martin Alberto Masuelli

    2013-01-01

    Full Text Available The behavior of bovine serum albumin (BSA in water is scarcely studied, and the thermodynamic properties arising from the experimental measurements have not been reported. Intrinsic viscosity measurements are very useful in assessing the interaction between the solute and solvent. This work discussed in a simple determination of the enthalpy of BSA in aqueous solution when the concentration ranges from 0.2 to 36.71% wt. and the temperature from 35 to 40°C. The relationship between the concentration and intrinsic viscosity is determined according to the method of Huggins. The temperature increase reduces the ratio between inherent viscosity and concentration (ηi/c. This is reflected in the Van't Hoff curve. Furthermore, this work proposes hydrodynamic cohesion value as an indicator of the degree of affinity of protein with water and thermodynamic implications in conformational changes.

  4. Measurements of the viscosity of sodium tetraborate (borax)-UO2 and of sodium metaborate-UO2 liquid solutions

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Roth, A.

    1983-01-01

    Adding UO 2 produces an increase of viscosity of borax and sodium metaborate. For temperatures below 920 0 C the measurements with the borax-UO 2 solution show a phase separation. Contrary to borax the sodium metaborate solutions indicate a well defined melting point. At temperatures slightly below the melting point a solid phase is formed. The tested sodium-borates-UO 2 mixtures are in liquid form. (DG)

  5. Viscosity of concentrated solutions and of human erythrocyte cytoplasm determined from NMR measurement of molecular correlation times

    International Nuclear Information System (INIS)

    Endre, Z.H.; Kuchel, P.W.

    1986-01-01

    Metabolically active human erythrocytes were incubated with [α- 13 C]glycine which led to the specific enrichment of intracellular glutathione. The cells were then studied using 13 C-NMR in which the longitudinal relaxation times (T 1 ) and nuclear Overhauser enhancements of the free glycine and glutathione were measured. Bulk viscosities of the erythrocyte cytoplasm were measured using Ostwald capillary viscometry. Large differences existed between the latter viscosity estimates and those based upon NMR-T 1 measurements. The authors derived an equation from the theory of the viscosity of concentrated solutions which contains two phenomenological interaction parameters, a 'shape' factor and a 'volume' factor; it was fitted to data relating to the concentration dependence of viscosity measured by both methods. Under various conditions of extracellular osmotic pressure, erythrocytes change volume and thus the viscosity of the intracellular milieu is altered. The volume changes resulted in changes in the T 1 of [α- 13 C]glycine. Conversely, the authors showed that alterations in T 1 , when appropriately calibrated, could be used for monitoring changes in volume of metabolically active cells. (Auth.)

  6. From Suitable Weak Solutions to Entropy Viscosity

    KAUST Repository

    Guermond, Jean-Luc

    2010-12-16

    This paper focuses on the notion of suitable weak solutions for the three-dimensional incompressible Navier-Stokes equations and discusses the relevance of this notion to Computational Fluid Dynamics. The purpose of the paper is twofold (i) to recall basic mathematical properties of the three-dimensional incompressible Navier-Stokes equations and to show how they might relate to LES (ii) to introduce an entropy viscosity technique based on the notion of suitable weak solution and to illustrate numerically this concept. © 2010 Springer Science+Business Media, LLC.

  7. Measurement and COrrelation on Viscosity and Apparent Molar Volume of Ternary System for L—ascorbic Acid in Aqueous D—Glucose and Sucrose Solutions

    Institute of Scientific and Technical Information of China (English)

    赵长伟; 马沛生

    2003-01-01

    Visosities and densities at ,several temperatures from 293.15 K to 313.15K are reported for L-ascorbic acid in aqueous glucose and sucrose solutions at different concentrations.The parameters of density,Viscosity coefficient B and partial molar volume are calculated by regression.The experimental results show that densities and viscositis decrease as temperature increases at the same solute and solvent (glucose and sucrose aueous solution)concentrations,and increase with concentration of glucose and sucrose at the same solute concentration and temperature,B increases with concentration of glucose and sucrose and temaperature,L-ascorbic acid is sturcture-breaker or structure-making for the glucose and sucrose aqueous solutions ,Furthermore,the solute-solvent interactions in ternary systems of water-glucose-electrolyte and water-sucrose-electrolyte are discussed.

  8. Viscosity measurement techniques in Dissipative Particle Dynamics

    Science.gov (United States)

    Boromand, Arman; Jamali, Safa; Maia, Joao M.

    2015-11-01

    In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.

  9. Rapid viscosity measurements of powdered thermosetting resins

    Science.gov (United States)

    Price, H. L.; Burks, H. D.; Dalal, S. K.

    1978-01-01

    A rapid and inexpensive method of obtaining processing-related data on powdered thermosetting resins has been investigated. The method involved viscosity measurements obtained with a small specimen (less than 100 mg) parallel plate plastometer. A data acquisition and reduction system was developed which provided a value of viscosity and strain rate about 12-13 second intervals during a test. The effects of specimen compaction pressure and reduction of adhesion between specimen and parallel plates were examined. The plastometer was used to measure some processing-related viscosity changes of an addition polyimide resin, including changes caused by pre-test heat treatment, test temperature, and strain rate.

  10. Viscosity and density tables of sodium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fair, J.A.; Ozbek, H. (comps.)

    1977-04-01

    A file is presented containing tabulated data extracted from the scientific literature on the density and viscosity of aqueous sodium chloride solutions. Also included is a bibliography of the properties of aqueous sodium chloride solutions. (MHR)

  11. Measurement and modeling of density and viscosity of n-octanol-kerosene-phosphoric acid solutions in a temperature range 293.15-333.15 K

    Science.gov (United States)

    Ye, Changwen; Pei, Xiangjun; Liu, J. C.

    2016-12-01

    Densities and viscosities have been measured for the n-octanol + aviation kerosene (AK) + phosphoric acid (H3PO4) system with the mass fraction of H3PO4 in the range from w = 0 to 0.26 and in the temperature of 293.15-333.15 K. According to the experimental data, the measured viscosities were found well correlated with the temperature and mass fraction of H3PO4, which were fitted to regression equations. The result shows that the dilution effect of AK is obvious under the same temperature and mass fraction of H3PO4.

  12. Measuring Viscosities of Gases at Atmospheric Pressure

    Science.gov (United States)

    Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini

    1987-01-01

    Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.

  13. Artificial Neural Network Model to Estimate the Viscosity of Polymer Solutions for Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Pan-Sang Kang

    2016-06-01

    Full Text Available Polymer flooding is now considered a technically- and commercially-proven method for enhanced oil recovery (EOR. The viscosity of the injected polymer solution is the key property for successful polymer flooding. Given that the viscosity of a polymer solution has a non-linear relationship with various influential parameters (molecular weight, degree of hydrolysis, polymer concentration, cation concentration of polymer solution, shear rate, temperature and that measurement of viscosity based on these parameters is a time-consuming process, the range of solution samples and the measurement conditions need to be limited and precise. Viscosity estimation of the polymer solution is effective for these purposes. An artificial neural network (ANN was applied to the viscosity estimation of FlopaamTM 3330S, FlopaamTM 3630S and AN-125 solutions, three commonly-used EOR polymers. The viscosities measured and estimated by ANN and the Carreau model using Lee’s correlation, the only method for estimating the viscosity of an EOR polymer solution in unmeasured conditions, were compared. Estimation accuracy was evaluated by the average absolute relative deviation, which has been widely used for accuracy evaluation of the results of ANN models. In all conditions, the accuracy of the ANN model is higher than that of the Carreau model using Lee’s correlation.

  14. On the measurement of magnetic viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, C. [Department of Physics, Aristotle University, Thessaloniki 54124 (Greece); Efthimiadis, K.G., E-mail: kge@auth.gr [Department of Physics, Aristotle University, Thessaloniki 54124 (Greece)

    2012-08-15

    This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved. - Highlights: Black-Right-Pointing-Pointer Magnetic viscosity is affected by initial measurement conditions. Black-Right-Pointing-Pointer Minor field deviations prior to its stabilization cause large changes in viscosity. Black-Right-Pointing-Pointer Viscosity is strongly dependent on the field change rate from saturation to the measurement field. Black-Right-Pointing-Pointer Small changes in field and temperature during the experiment can lead to false measurements. Black-Right-Pointing-Pointer Errors in measurements can be eliminated through the use of a proper fitting function.

  15. Using Quartz Crystal Microbalance for Field Measurement of Liquid Viscosities

    Directory of Open Access Journals (Sweden)

    Qingsong Bai

    2016-01-01

    Full Text Available The field measurement of liquid viscosities, especially the high viscous liquids, is challenging and often requires expensive equipment, long processing time, and lots of reagent. We use quartz crystal microbalances (QCMs operating in solution which are also sensitive to the viscosity and density of the contacting solution. QCMs are typically investigated for sensor applications in which one surface of QCM completely immersed in Newtonian liquid, but the viscous damping in liquids would cause not only large frequency shifts but also large losses in the quality factor Q leading to instability and even cessation of oscillation. A novel mass-sensitivity-based method for field measurement of liquid viscosities using a QCM is demonstrated in this paper and a model describing the influence of the liquid properties on the oscillation frequency is established as well. Two groups of verified experiments were performed and the experimental results show that the presented method is effective and possesses potential applications.

  16. Determination of Viscosity-Average Molecular Weight of Chitosan using Intrinsic Viscosity Measurement

    International Nuclear Information System (INIS)

    Norzita Yacob; Norhashidah Talip; Maznah Mahmud

    2011-01-01

    Molecular weight of chitosan can be determined by different techniques such as Gel Permeation Chromatography (GPC), Static Light Scattering (SLS) and intrinsic viscosity measurement. Determination of molecular weight by intrinsic viscosity measurement is a simple method for characterization of chitosan. Different concentrations of chitosan were prepared and measurement was done at room temperature. The flow time data was used to calculate the intrinsic viscosity by extrapolating the reduced viscosity to zero concentration. The value of intrinsic viscosity was then recalculated into the viscosity-average molecular weight using Mark-Houwink equation. (author)

  17. Sensor for Viscosity and Shear Strength Measurement

    International Nuclear Information System (INIS)

    Dillon, J.; Moore, J.E. Jr.; Ebadian, M.A.; Jones, W.K.

    1998-01-01

    Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. The work for this project will be performed in three phases. The first phase, carried out in FY96, involved (1) an evaluation of acoustic and other methods for viscosity measurement; (2) measurement of the parameters of slurries over the range of percent solids found in tanks and transport systems; (3) a comparison of physical properties (e.g., viscosity and density) to percent solids found composition; and (4) the design of a prototype sensor. The second phase (FY97) will involve the fabrication of a prototype hybrid sensor to measure the viscosity and mechanical properties of slurries in remote, high-radiation environments. Two different viscometer designs are being investigated in this study: a magnetostrictive pulse wave guide viscometer; an oscillating cylinder viscometer. In FY97, the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), which has printed circuit, thick film, thin film, and co-fired ceramic fabrication capability, will fabricate five probes for demonstration after technology selection and evaluation

  18. Gravimetric capillary method for kinematic viscosity measurements

    Science.gov (United States)

    Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing

    1992-01-01

    A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.

  19. Solubility and viscosity for CO_2 capture process using MEA promoted DEAE aqueous solution

    International Nuclear Information System (INIS)

    Fu, Dong; Wang, LeMeng; Zhang, Pan; Mi, ChenLu

    2016-01-01

    Highlights: • Solubility of CO_2 in MEA promoted DEAE aqueous solution was measured. • Mass fraction and temperature dependences of solubility were illustrated. • Viscosities of carbonated MEA–DEAE solutions were measured and calculated. • Temperature, mass fraction and CO_2 loading dependences of viscosity were illustrated. - Abstract: The saturated solubility of CO_2 in monoethanolamine (MEA) promoted 2-diethylaminoethanol (DEAE) aqueous solution was investigated at temperatures ranging from (303.2 to 323.2) K. The mass fraction and temperature dependences of the saturated solubility and CO_2 loading are illustrated. The viscosities of both CO_2-unloaded and CO_2-loaded DEAE–MEA aqueous solutions were measured and then calculated by using the Weiland equation. The effects of temperature, mass fraction and CO_2 loading on viscosities are demonstrated.

  20. Viscosity solutions of fully nonlinear functional parabolic PDE

    Directory of Open Access Journals (Sweden)

    Liu Wei-an

    2005-01-01

    Full Text Available By the technique of coupled solutions, the notion of viscosity solutions is extended to fully nonlinear retarded parabolic equations. Such equations involve many models arising from optimal control theory, economy and finance, biology, and so forth. The comparison principle is shown. Then the existence and uniqueness are established by the fixed point theory.

  1. From Suitable Weak Solutions to Entropy Viscosity

    KAUST Repository

    Guermond, Jean-Luc; Pasquetti, Richard; Popov, Bojan

    2010-01-01

    This paper focuses on the notion of suitable weak solutions for the three-dimensional incompressible Navier-Stokes equations and discusses the relevance of this notion to Computational Fluid Dynamics. The purpose of the paper is twofold (i

  2. Determination of viscosity-average molecular weight of chitosan using intrinsic viscosity measurement

    International Nuclear Information System (INIS)

    Norzita Yacob; Norhashidah Talip; Maznah Mahmud; Nurul Aizam Idayu Mat Sani; Nor Akma Samsuddin; Norafifah Ahmad Fabillah

    2013-01-01

    Determination of molecular weight by intrinsic viscosity measurement is a simple method for characterization of chitosan. To study the effect of radiation on molecular weight, chitosan was first irradiated using electron beam at different doses prior to measurement. Different concentrations of chitosan were prepared and measurement was done at room temperature. The flow time data was used to calculate the intrinsic viscosity by extrapolating the reduced viscosity to zero concentration. The value of intrinsic viscosity was then recalculated into the viscosity-average molecular weight using Mark-Houwink equation. (Author)

  3. Bulk viscosity, interaction and the viability of phantom solutions

    Energy Technology Data Exchange (ETDEWEB)

    Leyva, Yoelsy; Sepulveda, Mirko [Universidad de Tarapaca, Departamento de Fisica, Facultad de Ciencias, Arica (Chile)

    2017-06-15

    We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) Universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with w < -1. From the different cases that we study, the only possible scenario, with bulk viscosity and interaction term, belongs to the quintessence region. In the latter case, we find bounds on the interaction parameter compatible with latest observational data. (orig.)

  4. Molecular mechanism of the viscosity of aqueous glucose solutions

    Science.gov (United States)

    Bulavin, L. A.; Zabashta, Yu. F.; Khlopov, A. M.; Khorol'skii, A. V.

    2017-01-01

    Experimental relations are obtained for the viscosity of aqueous glucose solutions in the temperature range of 10-80°C and concentration range 0.01-2.5%. It is found that the concentration dependence of fluidity is linear when the concentration is higher than a certain value and varies at different temperatures. The existence of such a dependence indicates that the mobilities of solvent and solute molecules are independent of the concentration of solutions. This assumption is used to construct a theoretical model, in which the structure of an aqueous glucose solution is presented as a combination of two weakly interacting networks formed by hydrogen bonds between water molecules and between glucose molecules. Theoretical relations are obtained using this model of network solution structure for the concentration and temperature dependence of solution viscosity. Experimental data are used to calculate the activation energies for water ( U w = 3.0 × 10-20 J) and glucose molecules ( U g = 2.8 × 10-20 J). It is shown that the viscosity of a solution in such a network structure is governed by the Brownian motion of solitons along the chains of hydrogen bonds. The weak interaction between networks results in the contributions to solution fluidity made by the motion of solitons in both of them being almost independent.

  5. Intrinsic viscosity of guar gum in sweeteners solutions | Samavati ...

    African Journals Online (AJOL)

    Rheological methods were applied to study the effect of sweeteners on the rheological behavior of guar gum in dilute solutions. The concentration of the sweeteners were 0.1, 0.2%w/v for aspartame, acesulfame-k and cyclamate, and 0.001, 0.002%w/v for neotame. Gum was evaluated for intrinsic viscosity by various ...

  6. The Asymptotic Solution for the Steady Variable-Viscosity Free ...

    African Journals Online (AJOL)

    Under an arbitrary time-dependent heating of an infinite vertical plate (or wall), the steady viscosity-dependent free convection flow of a viscous incompressible fluid is investigated. Using the asymptotic method of solution on the governing equations of motion and energy, the resulting Ordinary differential equations were ...

  7. On the measurement of magnetic viscosity

    Science.gov (United States)

    Serletis, C.; Efthimiadis, K. G.

    2012-08-01

    This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved.

  8. Conditions of viscosity measurement for detecting irradiated peppers

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoriki, Setsuko; Okadome, Hiroshi; Kohyama, Kaoru

    1995-01-01

    Viscosity of gelatinized suspensions of black and white peppers decreased depending upon dose. The viscosity was influenced by gelatinization and viscosity measurement conditions. The difference between unirradiated pepper and an irradiated one was larger at a higher pH and temperature for gelatinization. A viscosity parameter normalized with the starch content of pepper sample and the viscosity of a 5% suspension of corn starch could get rid of the influence of the conditions for viscosity measurement such as type of viscometer, shear rate and temperature. (author)

  9. Absorption capacity and viscosity for CO_2 capture process using high concentrated PZ-DEAE aqueous solution

    International Nuclear Information System (INIS)

    Fu, Dong; Wang, LeMeng; Mi, ChenLu; Zhang, Pan

    2016-01-01

    Highlights: • Absorption of CO_2 in high concentrated DEAE-PZ aqueous solutions were measured. • Viscosities of CO_2-unloaded and CO_2-loaded DEAE-PZ aqueous solutions were measured. • Weiland equation was used to calculate the viscosities. • Effects of temperature, concentration and CO_2 loading on viscosity were demonstrated. - Abstract: The absorption capacity of CO_2 in piperazine (PZ) promoted 2-diethylaminoethanol (DEAE) aqueous solution was measured. The viscosities of both CO_2-unloaded and CO_2-loaded PZ-DEAE aqueous solutions were measured and then modelled. The temperatures ranged from 303.2 K to 323.2 K. The mass fraction of PZ and DEAE respectively ranged from 0 to 0.075 and 0.3 to 0.5. The temperature and concentration dependences of absorption capacity were determined. The effects of temperature, mass fraction and CO_2 loading on viscosities are demonstrated.

  10. Measurement of viscosity of slush at high shear rates

    OpenAIRE

    小林, 俊一; 川村, 公之; 津川, 圭一; 和泉, 薫; Kobayashi, Shun'ichi; Kawamura, Kimiyuki; Tugawa, Keiichi; Izumi, Kaoru

    1988-01-01

    Measurements of viscosity of slush were carried out using a method of flow along an inclined smooth surface in a 0℃cold room. The method was used to get the values of viscosity under high shear rates (25 and 75s^). From our experiments two important results were obtained: 1) the viscosity of slush decreases with increasing shear rates; 2) The fluid behavior is pseudoplastic that the values of non-Newtonian index of viscosity were less than unity.

  11. Sensor for viscosity and shear strength measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.; Dillion, J.; Moore, J.; Jones, K.

    1998-01-01

    Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. Two different viscometer techniques are being investigated in this study, based on: magnetostrictive pulse generated acoustic waves; and an oscillating cylinder. Prototype sensors have been built and tested which are based on both techniques. A base capability instrumentation system has been designed, constructed, and tested which incorporates both of these sensors. It requires manual data acquisition and off-line calculation. A broad range of viscous media has been tested using this system. Extensive test results appear in this report. The concept for each technique has been validated by these test results. This base capability system will need to be refined further before it is appropriate for field tests. The mass of the oscillating system structure will need to be reduced. A robust acoustic probe assembly will need to be developed. In addition, in March 1997 it was made known for the first time that the requirement was for a deliverable automated viscosity instrumentation system. Since then such a system has been designed, and the hardware has been constructed so that the automated concept can be proved. The rest of the hardware, which interfaced to a computer, has also been constructed and tested as far as possible. However, for both techniques the computer software for automated data acquisition, calculation, and logging had not been completed before funding and time ran out.

  12. Effect of gamma irradiation on viscosity of aqueous solutions of some natural polymers

    International Nuclear Information System (INIS)

    Nguyen Tan Man; Truong Thi Hanh; Le Quang Luan; Le Hai; Nguyen Quoc Hien

    2000-01-01

    Effect of gamma irradiation on viscosity of aqueous solution of alginate and carbon xylmethyl cellulose (CMC) irradiated in solid state has been carried out. the viscosity of aqueous solution of alginate and CMC decreased remarkably with increasing dose and the viscosity of 2% solution of above polymers irradiated at 50 kGy was about 100 times lower than the original one. (author)

  13. Methods of viscosity measurements in sealed ampoules

    Science.gov (United States)

    Mazuruk, Konstantin

    1999-07-01

    Viscosity of semiconductors and metallic melts is usually measured by oscillating cup method. This method utilizes the melts contained in vacuum sealed silica ampoules, thus the problems related to volatility, contamination, and high temperature and pressure can be alleviate. In a typical design, the time required for a single measurement is of the order of one hour. In order to reduce this time to a minute range, a high resolution angular detection system is implemented in our design of the viscometer. Furthermore, an electromagnet generating a rotational magnetic field (RMF) is incorporated into the apparatus. This magnetic field can be used to remotely and nonintrusively measure the electrical conductivity of the melt. It can also be used to induce a well controlled rotational flow in the system. The transient behavior of this flow can potentially yield of the fluid. Based on RMF implementation, two novel viscometry methods are proposed in this work: a) the transient torque method, b) the resonance method. A unified theoretical approach to the three methods is presented along with the initial test result of the constructed apparatus. Advantages of each of the method are discussed.

  14. Viscosity measurements on metal melts at high pressure and viscosity calculations for the earth's core

    International Nuclear Information System (INIS)

    Mineev, Vladimir N; Funtikov, Aleksandr I

    2004-01-01

    A review is given of experimental and calculated data on the viscosity of iron-based melts on the melting curve. The interest in these data originates in the division of opinion on whether viscosity increases rather moderately or considerably in the high-pressure range. This disagreement is especially pronounced in the interpretation of the values of molten iron and its compounds in the environment of the earth's outer core. The conclusion on a substantial rise in viscosity mostly follows from the universal law, proposed by Brazhkin and Lyapin [1], of viscosity changing along the metal melting curve in the high-pressure range. The review analyzes available experimental and computational data, including the most recent ones. Data on viscosity of metals under shock wave compression in the megabar pressure range are also discussed. It is shown that data on viscosity of metal melts point to a small increase of viscosity on the melting curve. Specifics are discussed of the phase diagram of iron made more complex by the presence of several phase transitions and by the uncertainty in the position of the melting curve in the high-pressure range. Inaccuracies that arise in extrapolating the results of viscosity measurements to the pressure range corresponding to the earth's core environment are pointed out. (reviews of topical problems)

  15. Applicability of viscosity measurement to the detection of irradiated peppers

    International Nuclear Information System (INIS)

    Hayashi, T.; Todoriki, S.; Kohyama, K.

    1996-01-01

    Starch is degraded by ionising radiation, resulting in a decrease in viscosity. The viscosities of black and white peppers which contain large amounts of starch are reduced by irradiation so, therefore, viscosity measurement has been proposed as a method to detect the irradiation treatment of these food products. Although detection of irradiated spices by thermoluminescence measurement has been established, it is useful to establish the viscosity measuring technique for detecting irradiated peppers, as this method is carried out widely in the laboratories of food controlling authorities and food processing companies. (author)

  16. Viscosity measurements of molten refractory metals using an electrostatic levitator

    International Nuclear Information System (INIS)

    Ishikawa, Takehiko; Paradis, Paul-François; Okada, Junpei T; Watanabe, Yuki

    2012-01-01

    Viscosities of several refractory metals (titanium, nickel, zirconium, niobium, ruthenium, rhodium, hafnium, iridium and platinum) and terbium have been measured by the oscillation drop method with an improved procedure. The measured data were less scattered than our previous measurements. Viscosities at their melting temperatures showed good agreement with literature values and some predicted values. (paper)

  17. Viscosity of HI-I2-H2O solution at atmospheric pressure

    International Nuclear Information System (INIS)

    Chen, Songzhe; Zhang, Ping; Wang, Laijun; Xu, Jingming; Gao, Mengxue

    2014-01-01

    Iodine-Sulfur thermochemical cycle (IS-cycle) is one of the most promising massive hydrogen production methods. Basic properties data of the HI-I 2 -H 2 O solution involved in the HI decomposition section of IS-cycle are found to be very important. HI, I 2 , and H 2 O make up a highly non-ideal solution system. Viscosity and its variation with the composition/temperature are very essential for the flowsheet work and HI-H 2 O-I 2 solution’s fluid simulation, especially in the distillation and electro-electrodialysis processes. In this paper, viscosity values of HI-H 2 O-I 2 solutions were measured at atmospheric pressure and varying temperatures (from 20 to 125 ºC). As for the composition, the HI/H2O molar ratio of the samples ranged from 1:5.36 to 1:12.00, while the HI/I 2 molar ratio from 1.0 to 1.4.0. Both temperature and composition have dramatic influence on the viscosity. Increasing temperature or H 2 O/HI molar ratio will lead to the reduction of viscosity; while increasing of I 2 /HI molar ratio results in the increase of viscosity. It was also found that I 2 content has a larger and more complex influence on the viscosity of the HI-H 2 O-I 2 solution than H 2 O content does, especially at low temperature (<50 °C). (author)

  18. Segment-based Eyring-Wilson viscosity model for polymer solutions

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat

    2005-01-01

    A theory-based model is presented for correlating viscosity of polymer solutions and is based on the segment-based Eyring mixture viscosity model as well as the segment-based Wilson model for describing deviations from ideality. The model has been applied to several polymer solutions and the results show that it is reliable both for correlation and prediction of the viscosity of polymer solutions at different molar masses and temperature of the polymer

  19. Should you trust your heavy oil viscosity measurement?

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L.; Miller, K.; Almond, R. [Petrovera Resources Ltd., Edmonton, AB (Canada)

    2003-07-01

    For the last 60 years, the heavy oil and bitumen reservoirs from western Canada have been exploited with varying degrees of success. There are many factors that may effect heavy oil and bitumen production rates. Primary production rates, which vary greatly from field to field, were found to improve with the addition of steam. Viscosity is the single most valued criteria in predicting cold production response from a new field. It is also the criteria used to determine whether thermal process are needed to reduce oil viscosity, or whether horizontal or vertical wells should be used. This study examined why production forecasts based on oil viscosity alone have been poor. It is based on an extensive data collection project in the Elk Point area reservoir which has lower than expected and erratic cold production rates. Viscosity values from the same wells were found to vary by a factor of four or more. One of the objectives of this study was to encourage commercial labs to develop an industry-wide standard method of heavy oil sample cleaning and viscosity measurement. It is generally understood that viscosity increases with an increase in the concentration of asphaltenes, but there is little information to quantify the relationship. Some studies suggest that viscosity increases logarithmically with increasing asphaltenes. It was concluded that the prediction of the viscosity of heavy oils and bitumens is very empirical, but there are ways to improve data comparisons and evaluation by applying available information from other scientific fields. 23 refs., 5 tabs., 6 figs.

  20. Effect of gamma irradiation in the viscosity of gelatin and pectin solutions used in food industry

    International Nuclear Information System (INIS)

    Inamura, Patricia Yoko

    2008-01-01

    Pectin is a polysaccharide substance of plant origin that may be used as gelling agent, stabilizer in jams, in yogurt drinks and lactic acid beverages. Gelatin, a protein from bovine origin, in this case, is mainly used as gelling agent due to hydrogel formation during cooling. The 60 Co-irradiation process may cause various modifications in macromolecules, some with industrial application, as reticulation. The dynamic response of viscoelastic materials can be used in order to give information about the structural aspect of a system at molecular level. In the present work samples of pectin with different degree of methoxylation, gelatin and the mixture of both were employed to study the radiation sensitivity by means of viscosity measurements. Solutions prepared with citric pectin with high methoxylation content (ATM) 1 por cent, pectin with low content (BTM) 1 por cent, gelatin 0.5 por cent, 1 por cent and 2 por cent, and the mixture 1 por cent and 2 por cent were irradiated with gamma rays at different doses, up to 15 kGy with dose rate about 2 kGy/h. After irradiation the viscosity was measured within a period of 48 h. The viscosity of ATM and BTM pectin solutions decreased sharply with the radiation dose. However, the gelatin sample presented a great radiation resistance. When pectin and gelatin solutions were mixed a predominance of pectin behavior was found. (author)

  1. Relating Fresh Concrete Viscosity Measurements from Different Rheometers.

    Science.gov (United States)

    Ferraris, Chiara F; Martys, Nicos S

    2003-01-01

    Concrete rheological properties need to be properly measured and predicted in order to characterize the workability of fresh concrete, including special concretes such as self-consolidating concrete (SCC). It was shown by a round-robin test held in 2000 [1,2] that different rheometer designs gave different values of viscosity for the same concrete. While empirical correlation between different rheometers was possible, for a procedure that is supposed to "scientifically" improve on the empirical slump tests, this situation is unsatisfactory. To remedy this situation, a new interpretation of the data was developed. In this paper, it is shown that all instruments tested could be directly and quantitatively compared in terms of relative plastic viscosity instead of the plastic viscosity alone. This should eventually allow the measurements from various rheometer designs to be directly calibrated against known standards of plastic viscosity, putting concrete rheometry and concrete workability on a sounder materials science basis.

  2. Measurement of viscosity as a means to identify irradiated food

    International Nuclear Information System (INIS)

    Nuernberger, E.; Heide, L.; Boegl, K.W.

    1990-01-01

    The measurement of viscosity is a simple method to identify previous irradiation of some kinds of spices and foods, at least in combination with other methods. A possible change of the soaking capacity was examined up to a storage period of 18 months after irradiation of black pepper, white pepper, cinnamon, ginger and onion powder with a radiation dose of 10 kGy each. After irradiation, either increased or decreased viscosity values were measured; the results showed, also after the 18-months-storage period, considerable differences of the viscosity behaviour in non-irradiated and irradiated samples. The time of storage had no effect to the individual viscosity values, so that this method could also be applied to the examined spices after a longer storage period. (orig.) With 51 figs., 25 tabs [de

  3. Experiments and model for the viscosity of carbonated 2-amino-2-methyl-1-propanol and piperazine aqueous solution

    International Nuclear Information System (INIS)

    Fu, Dong; Li, Zhixin; Liu, Feng

    2014-01-01

    Highlights: • The viscosities of the carbonated AMP-PZ aqueous solutions were measured. • The experiments were modeled satisfactorily by using the Weiland equation. • The influence of the mass fractions of amines on the viscosity was illustrated. • The temperature and CO 2 loading dependences of the viscosity were demonstrated. -- Abstract: The viscosities (η) of carbonated 2-amino-2-methyl-1-propanol (AMP)-piperazine (PZ) aqueous solutions were measured by using a NDJ-1 rotational viscometer, with temperatures ranging from 298.15 K to 323.15 K. The total mass fraction of amines ranged from 0.3 to 0.4. The mass fraction of PZ ranged from 0.05 to 0.10. The Weiland equation was used to correlate the viscosities of both CO 2 -unloaded and CO 2 -loaded aqueous solutions and the calculated results agreed well with the experiments. The effects of temperature, mass fractions of amines and CO 2 loading (α) on the viscosities of carbonated aqueous solutions were demonstrated on the basis of experiments and calculations

  4. Microfluidic method for measuring viscosity using images from smartphone

    Science.gov (United States)

    Kim, Sooyeong; Kim, Kyung Chun; Yeom, Eunseop

    2018-05-01

    The viscosity of a fluid is the most important characteristic in fluid rheology. Many microfluidic devices have been proposed for easily measuring the fluid viscosity of small samples. A hybrid system consisting of a smartphone and microfluidic device can offer a mobile laboratory for performing a wide range of detection and analysis functions related to healthcare. In this study, a new mobile sensing method based on a microfluidic device was proposed for fluid viscosity measurements. By separately delivering sample and reference fluids into the two inlets of a Y-shaped microfluidic device, an interfacial line is induced at downstream of the device. Because the interfacial width (W) between the sample and reference fluid flows was determined by their pressure ratio, the viscosity (μ) of the sample could be estimated by measuring the interfacial width. To distinguish the interfacial width of a sample, optical images of the flows at downstream of the Y-shaped microfluidic device were acquired using a smartphone. To check the measurement accuracy of the proposed method, the viscosities of glycerol mixtures were compared with those measured by a conventional viscometer. The proposed technique was applied to monitor the variations in blood and oil samples depending on storage or rancidity. We expect that this mobile sensing method based on a microfluidic device could be utilized as a viscometer with significant advantages in terms of mobility, ease-of-operation, and data management.

  5. Experimental viscosity measurements of biodiesels at high pressure

    Directory of Open Access Journals (Sweden)

    Schaschke C.J.

    2016-01-01

    Full Text Available The viscosity of biodiesels of soybean and rapeseed biodiesels blended with mineral diesel fuel were measured at pressures of up to 200 MPa. Using a falling sinker-type viscometer reproducible viscosity data were obtained based on the time taken for a sinker to descend a fixed distance down an enclosed tube under the influence of gravity. Measurements were taken using pressures which correspond to those of interest in automotive common rail diesel engines, and at temperatures of between 25ºC and 80ºC. In all cases, the viscosity of the biodiesel blends were found to increase exponentially for which the blends were noted as being more viscous than pure mineral fuels. A pressure-freezing effect was not observed for the blends.

  6. Viscosity and Electrical Conductivity of Concentrated Solutions of Soluble Coffee

    Czech Academy of Sciences Publication Activity Database

    Sobolík, Václav; Žitný, R.; Tovčigrečko, Valentin; Delgado, M.; Allaf, K.

    2002-01-01

    Roč. 51, č. 2 (2002), s. 93-98 ISSN 0260-8774 Institutional research plan: CEZ:AV0Z4072921; CEZ:MSM 212200008 Keywords : coffee extract * soluble coffee * viscosity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.085, year: 2002

  7. Approximate Solution of Dam-break Flow of Low Viscosity Bingham Fluid

    Science.gov (United States)

    Puay, How Tion; Hosoda, Takashi

    In this study, we investigate the characteristics of dam-break flow of low viscosity Bingham fluid by deriving an approximate solution for the time development of the front position and depth at the origin of the flow. The asymptotic solutions representing the characteristic of Bingham fluid in the limit of low plastic viscosity are verified with a depth-averaged numerical model. Numerical simulations showed that with the decrease of plastic viscosity, the time development of the front position and depth at the origin approach to the theoretical asymptotic solution.

  8. Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution

    International Nuclear Information System (INIS)

    Choi, Jong-il; Lee, Hee-Sub; Kim, Jae-Hun; Lee, Kwang-Won; Chung, Young-Jin; Byun, Myung-Woo; Lee, Ju-Woon

    2008-01-01

    In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 deg. C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.

  9. Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution

    Science.gov (United States)

    Choi, Jong-il; Lee, Hee-Sub; Kim, Jae-Hun; Lee, Kwang-Won; Chung, Young-Jin; Byun, Myung-Woo; Lee, Ju-Woon

    2008-12-01

    In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 °C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.

  10. Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-il [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Hee-Sub [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Department of Food and Nutrition, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Kwang-Won [Department of Orthopaedic Surgery, Eulji University School of Medicine, Daejeon 302-799 (Korea, Republic of); Chung, Young-Jin [Department of Food and Nutrition, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2008-12-15

    In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 deg. C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.

  11. Measuring viscosity with a levitating magnet: application to complex fluids

    International Nuclear Information System (INIS)

    Even, C; Bouquet, F; Deloche, B; Remond, J

    2009-01-01

    As an experimental project proposed to students in fourth year of university, a viscometer was developed, consisting of a small magnet levitating in a viscous fluid. The viscous force acting on the magnet is directly measured: viscosities in the range 10-10 6 mPa s are obtained. This experiment is used as an introduction to complex fluids and soft matter physics

  12. On the measurement of the relative viscosity of suspensions

    International Nuclear Information System (INIS)

    Acrivos, A.; Fan, X.; Mauri, R.

    1994-01-01

    The relative viscosity of a suspension of rigid, noncolloidal particles immersed in a Newtonian fluid was measured in a Couette device and was found to be shear thinning even for values of the solids fraction as low as 20%. Although such behavior was reported previously, no satisfactory explanation appears to have been given thus far. It shall be shown presently, however, that, at least for our systems, this shear-thinning effect was due to a slight mismatch in the densities of the two phases. Moreover, the apparent relative viscosities measured in our apparatus were found to be in excellent agreement with those predicted theoretically using a model, originally proposed by Leighton and Acrivos [Chem. Eng. Sci. 41, 1377--1384 (1986)], to describe viscous resuspension, according to which the measured relative viscosity should depend on the bulk particle concentration and on the dimensionless Shields number A, and should attain its correct value for a well-mixed suspension only as A→∞. The predictions of this model are also in excellent agreement with the measured transient response of the apparent relative viscosity due to a sudden change in the shear rate

  13. Measuring Viscosity with a Levitating Magnet: Application to Complex Fluids

    Science.gov (United States)

    Even, C.; Bouquet, F.; Remond, J.; Deloche, B.

    2009-01-01

    As an experimental project proposed to students in fourth year of university, a viscometer was developed, consisting of a small magnet levitating in a viscous fluid. The viscous force acting on the magnet is directly measured: viscosities in the range 10-10[superscript 6] mPa s are obtained. This experiment is used as an introduction to complex…

  14. Measurement of Viscosity of Hydrocarbon Liquids Using a Microviscometer

    DEFF Research Database (Denmark)

    Dandekar, Abhijit; Andersen, Simon Ivar; Stenby, Erling Halfdan

    1998-01-01

    The viscosity of normal alkanes, their mixtures, and true boiling point (TBP) fractions (C (sub 6) -C (sub 19)) of four North Sea petroleum reservoir fluids have been measured by use of an automatic rolling ball mixroviscometer at 20°C. The equipment is specially suited for samples of limited amo...

  15. Experiment and model for the viscosities of MEA-PEG400, DEA-PEG400 and MDEA-PEG400 aqueous solutions

    International Nuclear Information System (INIS)

    Fu, Dong; Zhang, Pan; Du, LeiXia; Dai, Jing

    2014-01-01

    Highlights: • The viscosities of the amine-PEG400 aqueous solutions were measured. • The experiments were modeled satisfactorily by using the Weiland equation. • The effect of mass fractions of amine and PEG400 on the viscosity was illustrated. • The temperature dependence of the viscosity was demonstrated. - Abstract: The viscosities (η) of poly(ethylene oxide)400 (PEG400), monoethanolamine (MEA)-PEG400, diethanolamine (DEA)-PEG400 and N-methyldiethanolamine (MDEA)-PEG400 aqueous solutions were measured by using the NDJ-5S digital rotational viscometer. A thermodynamic equation was used to model the viscosities and the calculated results are satisfactory. The effects of temperature, mass fractions of amines and PEG400 on the viscosities were demonstrated on the basis of experiments and calculations

  16. Measurement of viscosity of gaseous mixtures at atmospheric pressure

    Science.gov (United States)

    Singh, J. J.; Mall, G. H.; Chegini, H.

    1986-01-01

    Coefficients of viscosity of various types of gas mixtures, including simulated natural-gas samples, have been measured at atmospheric pressure and room temperature using a modified capillary tube method. Pressure drops across the straight capillary tube section of a thermal mass flowmeter were measured for small, well-defined, volume flow rates for the test gases and for standard air. In this configuration, the flowmeter provides the volumetric flow rates as well as a well-characterized capillary section for differential pressure measurements across it. The coefficients of viscosity of the test gases were calculated using the reported value of 185.6 micro P for the viscosity of air. The coefficients of viscosity for the test mixtures were also calculated using Wilke's approximation of the Chapman-Enskog (C-E) theory. The experimental and calculated values for binary mixtures are in agreement within the reported accuracy of Wilke's approximation of the C-E theory. However, the agreement for multicomponent mixtures is less satisfactory, possible because of the limitations of Wilkes's approximation of the classical dilute-gas state model.

  17. Microcantilever based disposable viscosity sensor for serum and blood plasma measurements.

    Science.gov (United States)

    Cakmak, Onur; Elbuken, Caglar; Ermek, Erhan; Mostafazadeh, Aref; Baris, Ibrahim; Erdem Alaca, B; Kavakli, Ibrahim Halil; Urey, Hakan

    2013-10-01

    This paper proposes a novel method for measuring blood plasma and serum viscosity with a microcantilever-based MEMS sensor. MEMS cantilevers are made of electroplated nickel and actuated remotely with magnetic field using an electro-coil. Real-time monitoring of cantilever resonant frequency is performed remotely using diffraction gratings fabricated at the tip of the dynamic cantilevers. Only few nanometer cantilever deflection is sufficient due to interferometric sensitivity of the readout. The resonant frequency of the cantilever is tracked with a phase lock loop (PLL) control circuit. The viscosities of liquid samples are obtained through the measurement of the cantilever's frequency change with respect to a reference measurement taken within a liquid of known viscosity. We performed measurements with glycerol solutions at different temperatures and validated the repeatability of the system by comparing with a reference commercial viscometer. Experimental results are compared with the theoretical predictions based on Sader's theory and agreed reasonably well. Afterwards viscosities of different Fetal Bovine Serum and Bovine Serum Albumin mixtures are measured both at 23°C and 37°C, body temperature. Finally the viscosities of human blood plasma samples taken from healthy donors are measured. The proposed method is capable of measuring viscosities from 0.86 cP to 3.02 cP, which covers human blood plasma viscosity range, with a resolution better than 0.04 cP. The sample volume requirement is less than 150 μl and can be reduced significantly with optimized cartridge design. Both the actuation and sensing are carried out remotely, which allows for disposable sensor cartridges. Copyright © 2013. Published by Elsevier Inc.

  18. Thermodynamic study of three pharmacologically significant drugs: Density, viscosity, and refractive index measurements at different temperatures

    International Nuclear Information System (INIS)

    Iqbal, Muhammad Javed; Chaudhry, Mansoora Ahmed

    2009-01-01

    Measurements of density, viscosity, and refractive index of three pharmacologically significant drugs, i.e. diclofenac sodium, cetrizine, and doxycycline have been carried in aqueous medium at T = (293.15 to 313.15) K. An automated vibrating-tube densimeter, viscometer, and refractometer are used in a concentration range from (7.5) . 10 -3 to 25 . 10 -3 ) mol . kg -1 . The precise density results are used to evaluate the apparent molar volume, partial molar volume, thermal expansion coefficient, partial molar expansivity, and the Hepler's constant. Viscosity results are used to calculate the Jones-Dole viscosity B-coefficient, free energy of activation of the solute and solvent, activation enthalpy, and activation entropy. The molar refractive indices of the drug solutions can be employed to calculate molar refraction. It is inferred from these results that the above mentioned drugs act as structure-making compounds due to hydrophobic hydration of the molecules in the drugs

  19. Automation of a high-speed imaging setup for differential viscosity measurements

    Science.gov (United States)

    Hurth, C.; Duane, B.; Whitfield, D.; Smith, S.; Nordquist, A.; Zenhausern, F.

    2013-12-01

    We present the automation of a setup previously used to assess the viscosity of pleural effusion samples and discriminate between transudates and exudates, an important first step in clinical diagnostics. The presented automation includes the design, testing, and characterization of a vacuum-actuated loading station that handles the 2 mm glass spheres used as sensors, as well as the engineering of electronic Printed Circuit Board (PCB) incorporating a microcontroller and their synchronization with a commercial high-speed camera operating at 10 000 fps. The hereby work therefore focuses on the instrumentation-related automation efforts as the general method and clinical application have been reported earlier [Hurth et al., J. Appl. Phys. 110, 034701 (2011)]. In addition, we validate the performance of the automated setup with the calibration for viscosity measurements using water/glycerol standard solutions and the determination of the viscosity of an "unknown" solution of hydroxyethyl cellulose.

  20. Automation of a high-speed imaging setup for differential viscosity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hurth, C.; Duane, B.; Whitfield, D.; Smith, S.; Nordquist, A.; Zenhausern, F. [Center for Applied Nanobioscience and Medicine, The University of Arizona College of Medicine, 425 N 5th Street, Phoenix, Arizona 85004 (United States)

    2013-12-28

    We present the automation of a setup previously used to assess the viscosity of pleural effusion samples and discriminate between transudates and exudates, an important first step in clinical diagnostics. The presented automation includes the design, testing, and characterization of a vacuum-actuated loading station that handles the 2 mm glass spheres used as sensors, as well as the engineering of electronic Printed Circuit Board (PCB) incorporating a microcontroller and their synchronization with a commercial high-speed camera operating at 10 000 fps. The hereby work therefore focuses on the instrumentation-related automation efforts as the general method and clinical application have been reported earlier [Hurth et al., J. Appl. Phys. 110, 034701 (2011)]. In addition, we validate the performance of the automated setup with the calibration for viscosity measurements using water/glycerol standard solutions and the determination of the viscosity of an “unknown” solution of hydroxyethyl cellulose.

  1. Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate elliptic equations

    Directory of Open Access Journals (Sweden)

    Espen R. Jakobsen

    2002-05-01

    Full Text Available Using the maximum principle for semicontinuous functions [3,4], we prove a general ``continuous dependence on the nonlinearities'' estimate for bounded Holder continuous viscosity solutions of fully nonlinear degenerate elliptic equations. Furthermore, we provide existence, uniqueness, and Holder continuity results for bounded viscosity solutions of such equations. Our results are general enough to encompass Hamilton-Jacobi-Bellman-Isaacs's equations of zero-sum, two-player stochastic differential games. An immediate consequence of the results obtained herein is a rate of convergence for the vanishing viscosity method for fully nonlinear degenerate elliptic equations.

  2. Viscosity Measurement: A Virtual Experiment - Abstract of Issues 9907W

    Science.gov (United States)

    Papadopoulos, N.; Pitta, A. T.; Markopoulos, N.; Limniou, M.; Lemos, M. A. N. D. A.; Lemos, F.; Freire, F. G.

    1999-11-01

    Viscosity Measurement: A Virtual Experiment simulates a series of viscosity experiments. Viscosity is an important subject in chemistry and chemical engineering. It is important when dealing with intermolecular forces in liquids and gases and it has enormous relevance in all technological aspects of equipment dealing with liquids or gases. Most university-level chemistry courses include viscosity to some extent. Viscosity Measurement includes three virtual experiments: an Ostwald viscometer simulator, a falling-ball viscometer simulator, and a balance simulator for a simple determination of the density of a liquid. The Ostwald viscometer simulator and the balance simulator allow the student to find out how composition and temperature influence the density and viscosity of an ethanol-water mixture. The falling-ball viscometer simulator allows the student to determine experimentally the size and density of the ball required to measure viscosity of various liquids. Each virtual experiment includes a corresponding theoretical section. Support from the program is sufficient to enable the students to carry out a virtual experiment sensibly and on their own. Preparation is not essential. Students can use the program unsupervised, thus saving staff time and allowing flexibility in students' time. The design of the program interface plays a key role in the success of a simulated experiment. Direct manipulation has greater intuitive appeal than alternative interface forms such as menus and has been observed to provide performance and learning advantages (1). We tried to design an interface that is visually attractive, is user friendly with simple and intuitive navigation, and provides appropriate schematic animations to clarify the principles of the laboratory procedures. The opening screen presents the virtual experiments that can be selected. Clicking an icon takes the student to the appropriate section. Viscosity Measurement allows the student to concentrate on the

  3. Reduced viscosity for flagella moving in a solution of long polymer chains

    Science.gov (United States)

    Zhang, Yuchen; Li, Gaojin; Ardekani, Arezoo M.

    2018-02-01

    The bacterial flagellum thickness is smaller than the radius of gyration of long polymer chain molecules. The flow velocity gradient over the length of polymer chains can be nonuniform and continuum models of polymeric liquids break in this limit. In this work, we use Brownian dynamics simulations to study a rotating helical flagellum in a polymer solution and overcome this limitation. As the polymer size increases, the viscosity experienced by the flagellum asymptotically reduces to the solvent viscosity. The contribution of polymer molecules to the local viscosity in a solution of long polymer chains decreases with the inverse of polymer size to the power 1/2. The difference in viscosity experienced by the bacterial cell body and flagella can predict the nonmonotonic swimming speed of bacteria in polymer solutions.

  4. High Resolution Viscosity Measurement by Thermal Noise Detection

    Directory of Open Access Journals (Sweden)

    Felipe Aguilar Sandoval

    2015-11-01

    Full Text Available An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD of thermal fluctuations together with Sader’s model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0.03 mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 µL.

  5. Online shear viscosity measurement of starchy melts enriched in wheat bran.

    Science.gov (United States)

    Robin, Frédéric; Bovet, Nicolas; Pineau, Nicolas; Schuchmann, Heike P; Palzer, Stefan

    2011-01-01

    Addition of wheat bran to flours modifies their expansion properties after cooking extrusion. This can be attributed to changes in the melt shear viscosity at the die. The effect of wheat bran concentration added to achieve 2 levels of dietary fibers of 12. 6% and 24.4%, and process conditions on the shear viscosity of wheat flour was therefore assessed using an online twin-slit rheometer. The shear viscosity measured at 30 s⁻¹ ranged from 9.5 × 10³ to 53.4 × 10³ Pa s. Regardless of the process conditions and bran concentration, the extruded melts showed a pseudoplastic behavior with a power law index n ranging from 0.05 to 0.27. Increasing the barrel temperature of the extruder from 120 to 180 °C, the water content from 18% to 22% or the screw speed from 400 to 800 rpm significantly decreased the melt shear viscosity at the extruder exit. The addition of bran significantly increased the melt shear viscosity only at the highest bran concentration. The effect was process condition dependant. Mathematical interpretations, based upon observations, of the experimental data were carried out. They can be used to predict the effect of the process conditions on the melt shear viscosity at the die of extruded wheat flour with increasing bran concentration. The viscosity data will be applied in future works to study the expansion properties of extruded wheat flour supplemented with bran. Incorporation of wheat bran, a readily available and low cost by-product, in extruded puffed foods is constrained due to its negative effect on the product texture. Understanding the effect of wheat bran on rheological properties of extruded melts, driving the final product properties, is essential to provide solutions to the food industry and enhance its use. © 2011 Institute of Food Technologists®

  6. Intrinsic viscosity and friction coefficient of permeable macromolecules in solution

    NARCIS (Netherlands)

    Wiegel, F.W.; Mijnlieff, P.F.

    1977-01-01

    A polymer molecule in solution is treated as a porous sphere with a spherically symmetric permeability distribution. Solvent motion in and around this sphere is described by the Debije- Brinkman equation (Navier-Stokes equation and Darcy equation combined). The model allows a straightforward

  7. Irradiated pepper and ginger detected by viscosity and starch measurements

    International Nuclear Information System (INIS)

    Wegmueler, F.; Meier, W.

    1999-01-01

    Starch and rheological measurements of alkaline suspensions of white pepper, black pepper and ginger are a useful tool to distinguish not irradiated samples from the gamma-treated spices (dose gtoreq 2 kGy). In addition it is shown that starch is not the material which determines the different rheological behaviour of the alkaline suspensions of the spices. The differences in the viscosity data are rather due to irradiation damages of polymers which are enriched in the cell wall material of the pepper grains and the roots of the ginger

  8. Measurement of changes in viscosity in polymers with gamma-ray dose using a differential viscometer

    International Nuclear Information System (INIS)

    Santra, L.; Bhaumik, D.; Roy, S.C.

    1988-01-01

    Although some works on changes in viscosity of liquids with gamma-ray dose have been made near the ''gel point'', very little works have been done bellow this point. Changes in viscosities of different-grade silicone fluids below gel point have been measured using a differential viscometer developed in our laboratory, capable of measuring change in viscosities of two liquids directly. Preliminary results on viscosity changes when irradiated with energetic alpha particles will also be reported [pt

  9. Measurement of changes in viscosity in polymers with gamma-ray dose using a differential viscometer

    International Nuclear Information System (INIS)

    Santra, L.; Bhaumik, D.; Roy, S.C.

    1989-01-01

    Although some works on changes in viscosity of liquids with gamma-ray dose have been made near the 'gel point', very little works have been done below this point. Changes in viscosities of different-grade silicone fluids below gel point have been measured using a differential viscometer developed in our laboratory, capable of measuring change in viscosities of two liquids directly. Preliminary results on viscosity changes when irradiated with energetic alpha particles will also be reported. (orig.)

  10. Viscosity measurement in the capillary tube viscometer under unsteady flow

    International Nuclear Information System (INIS)

    Park, Heung Jun; Yoo, Sang Sin; Suh, Sang Ho

    2000-01-01

    The objective of the present study is to develop a new device that the viscous characteristics of fluids are determined by applying the unsteady flow concept to the traditional capillary tube viscometer. The capillary tube viscometer consists of a small cylindrical reservoir, capillary tube, a load cell system that measures the mass flow rate, interfaces, and computer. Due to the small size of the reservoir the height of liquid in the reservoir decreases as soon as the liquid in the reservoir drains out through the capillary and the mass flow rate in the capillary decreases as the hydrostatic pressure in the reservoir decreases resulting in a decrease of the shear rate in the capillary tube. The instantaneous shear rate and driving force in the capillary tube are determined by measuring the mass flow rate through the capillary, and the fluid viscosity is determined from the measured flow rate and the driving force

  11. THE LIME PURIFICATION OF SUGAR –CONTAINING SOLUTION USING HIGH VISCOSITY COLLOIDAL SOLUTIONS

    Directory of Open Access Journals (Sweden)

    K. V.

    2015-12-01

    Full Text Available Aim of the work was to determine the efficiency of combined application of lime and high-viscous suspensions, containing the aluminium nanoparticles as a precursor in treatment of sugar-containing solutions. At the first stage the aluminium nanopowder, encapsulated into a salt matrix, was produced by the combined precipitation from a gas phase of metal and halogenide of alkali metal (NaCl. For the long-term stabilization of aluminum nanoparticles the method, developed by the authors, for dispersing these powders in the composition of polyethylene glycols was used, providing the colloidal solution of high viscosity (gel. At the second stage, as an object of investigation a juice of sugar beet, produced in the laboratory conditions by water extracting from the beet chips, was applied. In the produced juice the main characteristics of its quality were determined: the content of solids, sucrose, its purity was calculated (ratio of sucrose to solids content, in%. The content of protein and pectin components was also determined (as the main components of the colloidal fraction of the diffusion juice. Conventionally, as a basic reagent for the process of a lime pretreatment a lime milk of 1.18 g/cm3 density, prepared by liming the burned lime using hot water, was used. During the experiments the effectiveness of reagents, containing aluminum in nanoform, on the degree of removal of the colloidal dispersion substances in the process of juice purification in sugar beet production and improvement of its quality, is shown. However, the obtained results show that, depending on the method of producing, the additional reagents with aluminium nanoparticles have different effect on change of diffusion juice purity in the process of its treatment by the lime milk.

  12. Fabrication and Testing of Viscosity Measuring Instrument (Viscometer

    Directory of Open Access Journals (Sweden)

    A. B. HASSAN

    2006-01-01

    Full Text Available This paper presents the fabrication and testing of a simple and portable viscometer for the measurement of bulk viscosity of different Newtonian fluids. It is aimed at making available the instrument in local markets and consequently reducing or eliminating the prohibitive cost of importation. The method employed is the use of a D.C motor to rotate a disc having holes for infra-red light to pass through and fall on a photo-diode thus undergoing amplification and this signal being translated on a moving-coil meter as a deflection. The motor speed is kept constant but varies with changes in viscosity of the fluid during stirring, which alter signals being read on the meter. The faster is revolution per minute of the disc, the less the deflection on the meter and vise-versa. From the results of tests conducted on various sample fluids using data on standard Newtonian fluids as reliable guide the efficiency of the viscometer was 76.5%.

  13. Microrheometric upconversion-based techniques for intracellular viscosity measurements

    Science.gov (United States)

    Rodríguez-Sevilla, Paloma; Zhang, Yuhai; de Sousa, Nuno; Marqués, Manuel I.; Sanz-Rodríguez, Francisco; Jaque, Daniel; Liu, Xiaogang; Haro-González, Patricia

    2017-08-01

    Rheological parameters (viscosity, creep compliance and elasticity) play an important role in cell function and viability. For this reason different strategies have been developed for their study. In this work, two new microrheometric techniques are presented. Both methods take advantage of the analysis of the polarized emission of an upconverting particle to determine its orientation inside the optical trap. Upconverting particles are optical materials that are able to convert infrared radiation into visible light. Their usefulness has been further boosted by the recent demonstration of their three-dimensional control and tracking by single beam infrared optical traps. In this work it is demonstrated that optical torques are responsible of the stable orientation of the upconverting particle inside the trap. Moreover, numerical calculations and experimental data allowed to use the rotation dynamics of the optically trapped upconverting particle for environmental sensing. In particular, the cytoplasm viscosity could be measured by using the rotation time and thermal fluctuations of an intracellular optically trapped upconverting particle, by means of the two previously mentioned microrheometric techniques.

  14. Viscosity of crystalline proteins in solution, when irradiated with 60 Co

    International Nuclear Information System (INIS)

    Bernardes, D.M.L.; Mastro, N.L. del

    1992-01-01

    In order to study 60 Co radiation effects on proteins, an aqueous solution of bovine crystalline was irradiated with doses from O to 25,000 Gy. Changes in viscosity were followed whether in the presence or absence of radiation response modifiers: glutathione (GSH), amino ethyl isothiourea (AET), mercapto ethyl alanine (MEA) e dimethyl sulfoxide (DMSO). Viscosity data at different temperature revealed that aggregate formation was the predominant process induced by radiation. The results showed also that in presence of those substances the radiation effects was diminished. (author)

  15. Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions

    International Nuclear Information System (INIS)

    Aronu, Ugochukwu E.; Hartono, Ardi; Svendsen, Hallvard F.

    2012-01-01

    Highlights: ► Density of amino acid salt and amine amino acid salt. ► Viscosity of amino acid salt and amine amino acid salt. ► Henry’s law constant/N 2 O solubility of amino acid salt and amine amino acid salt. ► Schumpe model. Correlations for density, viscosity, and N 2 O solubility. - Abstract: Physicochemical properties of aqueous amino acid salt (AAS), potassium salt of sarcosine (KSAR) and aqueous amine amino acid salt (AAAS), 3-(methylamino)propylamine/sarcosine (SARMAPA) have been studied. Densities of KSAR were measured for sarcosine mole fraction 0.02 to 0.25 for temperature range 298.15 K to 353.15 K, the viscosities were measured for 0.02 to 0.10 mole fraction sarcosine (293.15 K to 343.15 K) while the N 2 O solubilities were measured from 0.02 to 0.10 mole fraction sarcosine solutions (298.15 K to 363.15 K). Densities of SARMAPA were measured for sarcosine mole fraction 0.02 to 0.23 for temperature range (298.15 K to 353.15 K), viscosities were measured for 0.02 to 0.16 mole fraction sarcosine (293.15 K to 343.15 K) while the N 2 O solubilities were measured from 0.02 to 0.16 mole fraction sarcosine solutions (298.15 K to 343.15 K). Experimental results were correlated well with empirical correlations and N 2 O solubility results for KSAR were predicted adequately by a Schumpe model. The solubilities of N 2 O in AAS and AAAS are significantly lower than values for amines. The solubilities vary as: amine > AAAS > AAS.

  16. Density, thermal expansion coefficient and viscosity of sodium tetraborate (borax)-UO2 and of sodium metaborate-UO2 solutions at high temperatures

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Roth, A.

    1983-01-01

    Measurements have been performed of the density, of the volumetric thermal expansion coefficient and of the viscosity of liquid sodium tetraborate (borax) and of sodium metaborate both pure and with two different amounts of UO 2 dissolved in each. The viscosity measurements have been performed for the solution of sodium tetraborate with UO 2 and CeO 2 , and with CeO 2 only as well. These data are required for the design of core-catchers based on sodium borates. The density measurements have been performed with the buoyancy method in the temperature range from 825 0 C to 1300 0 C, the viscosity measurements in the temperature range 700-1250 0 C with a modified Haake viscosity balance. The balance was previously calibrated at ambient temperature with a standard calibration liquid and at high temperatures, with data for pure borax available from the literature. (orig.)

  17. On-line measurement of food viscosity during flow

    DEFF Research Database (Denmark)

    Mason, Sarah Louise; Friis, Alan

    2006-01-01

    Sarah L. Mason and Alan Friis discuss some of the principles and equipment used to monitor food viscosity in real time.......Sarah L. Mason and Alan Friis discuss some of the principles and equipment used to monitor food viscosity in real time....

  18. Thermodynamic study of three pharmacologically significant drugs: Density, viscosity, and refractive index measurements at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: mjiqauchem@yahoo.com; Chaudhry, Mansoora Ahmed [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2009-02-15

    Measurements of density, viscosity, and refractive index of three pharmacologically significant drugs, i.e. diclofenac sodium, cetrizine, and doxycycline have been carried in aqueous medium at T = (293.15 to 313.15) K. An automated vibrating-tube densimeter, viscometer, and refractometer are used in a concentration range from (7.5) . 10{sup -3} to 25 . 10{sup -3}) mol . kg{sup -1}. The precise density results are used to evaluate the apparent molar volume, partial molar volume, thermal expansion coefficient, partial molar expansivity, and the Hepler's constant. Viscosity results are used to calculate the Jones-Dole viscosity B-coefficient, free energy of activation of the solute and solvent, activation enthalpy, and activation entropy. The molar refractive indices of the drug solutions can be employed to calculate molar refraction. It is inferred from these results that the above mentioned drugs act as structure-making compounds due to hydrophobic hydration of the molecules in the drugs.

  19. Measurement and Correlation on Viscosity and Apparent Molar Volume of Ternary System for L-ascorbic Acid in Aqueous D-Glucose and Sucrose Solutions%L-抗坏血酸在葡萄糖和蔗糖溶液中的黏度及其热力学性质的研究

    Institute of Scientific and Technical Information of China (English)

    赵长伟; 马沛生

    2003-01-01

    Viscosities and densities at several temperatures from 293.15 K to 313.15 K are reported for L-ascorbic acid in aqueous glucose and sucrose solutions at different concentrations. The parameters of density, viscosity coefficient B and partial molar volume are calculated by regression. The experimental results show that densities and viscosities decrease as temperature increases at the same solute and solvent (glucose and sucrose aqueous solution) concentrations, and increase with concentration of glucose and sucrose at the same solute concentration and temperature. B increases with concentration of glucose and sucrose and temperature. L-ascorbic acid is structure-breaker or structure-making for the glucose and sucrose aqueous solutions. Furthermore, the solute-solvent interactions in ternary systems of water-glucose-electrolyte and water-sucrose-electrolyte are discussed.

  20. Theory of the high-frequency limiting viscosity of a dilute polymer solution. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Doi, M; Nakajima, H; Wada, Y

    1976-06-01

    High-frequency limiting viscosities of dilute polymer solutions are calculated on the basis of the author's previous theory for (1) necklace model of a chain with constant bond length and bond angle under a hindering rotational potential, and (2) broken rod model consisting of N rods with equal length connected by universal joints. Exact treatment is possible for a once-broken rod model, but the Monte Carlo method is used in the other calculations.

  1. On the Measurements of Numerical Viscosity and Resistivity in Eulerian MHD Codes

    Energy Technology Data Exchange (ETDEWEB)

    Rembiasz, Tomasz; Obergaulinger, Martin; Cerdá-Durán, Pablo; Aloy, Miguel-Ángel [Departamento de Astronomía y Astrofísica, Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Müller, Ewald, E-mail: tomasz.rembiasz@uv.es [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2017-06-01

    We propose a simple ansatz for estimating the value of the numerical resistivity and the numerical viscosity of any Eulerian MHD code. We test this ansatz with the help of simulations of the propagation of (magneto)sonic waves, Alfvén waves, and the tearing mode (TM) instability using the MHD code Aenus. By comparing the simulation results with analytical solutions of the resistive-viscous MHD equations and an empirical ansatz for the growth rate of TMs, we measure the numerical viscosity and resistivity of Aenus. The comparison shows that the fast magnetosonic speed and wavelength are the characteristic velocity and length, respectively, of the aforementioned (relatively simple) systems. We also determine the dependence of the numerical viscosity and resistivity on the time integration method, the spatial reconstruction scheme and (to a lesser extent) the Riemann solver employed in the simulations. From the measured results, we infer the numerical resolution (as a function of the spatial reconstruction method) required to properly resolve the growth and saturation level of the magnetic field amplified by the magnetorotational instability in the post-collapsed core of massive stars. Our results show that it is most advantageous to resort to ultra-high-order methods (e.g., the ninth-order monotonicity-preserving method) to tackle this problem properly, in particular, in three-dimensional simulations.

  2. Effects of solution viscosity on heterogeneous electron transfer across a liquid/liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Bai Yamin; Sun Peng; Zhang Meiqin; Gao Zhao; Yang Zhengyu; Shao Yuanhua

    2003-10-15

    Scanning electrochemical microscopy (SECM) is employed to investigate the effect of solution viscosity on the rate constants of electron transfer (ET) reaction between potassium ferricyanide in water and 7,7,8,8-tetracyanoquinodimethane (TCNQ) in 1,2-dichloroethane. Either tetrabutylammonium (TBA{sup +}) or ClO{sub 4}{sup -} is chosen as the common ion in both phases to control the interfacial potential drop. The rate constant of heterogeneous ET reaction between TCNQ and ferrocyanide produced in-situ, k{sub 12}, is evaluated by SECM and is inversely proportional to the viscosity of the aqueous solution and directly proportional to the diffusion coefficient of K{sub 4}Fe(CN){sub 6} in water when the concentration of TCNQ in the DCE phase is in excess. The k{sub 12} dependence on viscosity is explained in terms of the longitudinal relaxation time of the solution. The rate constant of the heterogeneous ET reaction between TCNQ{sup -} and ferricyanide, k{sub 21}, is also obtained by SECM and these results cannot be explained by the same manner.

  3. Ultrasonic speed, densities and viscosities of xylitol in water and in aqueous tyrosine and phenylalanine solutions at different temperatures

    Science.gov (United States)

    Ali, A.; Bidhuri, P.; Uzair, S.

    2014-07-01

    Ultrasonic speed u, densities ρ and viscosities η of xylitol in water and in 0.001 m aqueous l-tyrosine (Tyr) and l-phenylalanine (Phe) have been measured at different temperatures. From the density and ultrasonic speed measurements apparent molar isentropic compression κ_{φ}, apparent molar isentropic compressions at infinite dilution κ_{{S,φ}}0 , experimental slope S K , hydration number n H , transfer partial molar isentropic compressibility Δ_{tr} κ_{{S,φ}}0 of xylitol from water to aqueous Tyr and Phe have been obtained. From the viscosity data, B-coefficient and B-coefficient of transfer Δ tr B of xylitol from water to aqueous Phe and Tyr at different temperatures have also been estimated. Gibbs free energies of activation of viscous flow per mole of solvent Δ μ 1 0# and per mole of solute Δ μ 2 0# have been calculated by using Feakins transition state theory for the studied systems. The calculated parameters have been interpreted in terms of solute-solute and solute-solvent interactions and hydration behavior of xylitol.

  4. A different interpretation of Einstein's viscosity equation provides accurate representations of the behavior of hydrophilic solutes to high concentrations.

    Science.gov (United States)

    Zavitsas, Andreas A

    2012-08-23

    Viscosities of aqueous solutions of many highly soluble hydrophilic solutes with hydroxyl and amino groups are examined with a focus on improving the concentration range over which Einstein's relationship between solution viscosity and solute volume, V, is applicable accurately. V is the hydrodynamic effective volume of the solute, including any water strongly bound to it and acting as a single entity with it. The widespread practice is to relate the relative viscosity of solute to solvent, η/η(0), to V/V(tot), where V(tot) is the total volume of the solution. For solutions that are not infinitely dilute, it is shown that the volume ratio must be expressed as V/V(0), where V(0) = V(tot) - V. V(0) is the volume of water not bound to the solute, the "free" water solvent. At infinite dilution, V/V(0) = V/V(tot). For the solutions examined, the proportionality constant between the relative viscosity and volume ratio is shown to be 2.9, rather than the 2.5 commonly used. To understand the phenomena relating to viscosity, the hydrodynamic effective volume of water is important. It is estimated to be between 54 and 85 cm(3). With the above interpretations of Einstein's equation, which are consistent with his stated reasoning, the relation between the viscosity and volume ratio remains accurate to much higher concentrations than those attainable with any of the other relations examined that express the volume ratio as V/V(tot).

  5. Direct observations of the viscosity of Earth's outer core and extrapolation of measurements of the viscosity of liquid iron

    International Nuclear Information System (INIS)

    Smylie, D E; Brazhkin, Vadim V; Palmer, Andrew

    2009-01-01

    Estimates vary widely as to the viscosity of Earth's outer fluid core. Directly observed viscosity is usually orders of magnitude higher than the values extrapolated from high-pressure high-temperature laboratory experiments, which are close to those for liquid iron at atmospheric pressure. It turned out that this discrepancy can be removed by extrapolating via the widely known Arrhenius activation model modified by lifting the commonly used assumption of pressure-independent activation volume (which is possible due to the discovery that at high pressures the activation volume increases strongly with pressure, resulting in 10 2 Pa s at the top of the fluid core, and in 10 11 Pa s at its bottom). There are of course many uncertainties affecting this extrapolation process. This paper reviews two viscosity determination methods, one for the top and the other for the bottom of the outer core, the former of which relies on the decay of free core nutations and yields 2371 ± 1530 Pa s, while the other relies on the reduction in the rotational splitting of the two equatorial translational modes of the solid inner core oscillations and yields an average of 1.247 ± 0.035 Pa s. Encouraged by the good performance of the Arrhenius extrapolation, a differential form of the Arrhenius activation model is used to interpolate along the melting temperature curve and to find the viscosity profile across the entire outer core. The viscosity variation is found to be nearly log-linear between the measured boundary values. (methodological notes)

  6. Absolute measurement of the viscosity of classical and quantum fluids by rotating-cylinder viscometers

    International Nuclear Information System (INIS)

    Donnelly, R.J.; LaMar, M.M.

    1987-01-01

    We discuss the use of rotating-cylinder viscometers to determine absolute shear viscosities of classical fluids and of helium II in the context of past and current knowledge of the stability and flow of these fluids between concentric cylinders. We identify a problem in measuring the absolute viscosity when the inner cylinder is rotating and the outer cylinder is at rest. We conclude by discussing the design of viscometers for absolute viscosity measurements in helium I and helium II

  7. High-pressure viscosity measurements for the ethanol plus toluene binary system

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Baylaucq, A.; Watson, G.

    2005-01-01

    measured with a classical capillary viscometer (Ubbelohde) with an uncertainty of 1%. A total of 209 experimental measurements have been obtained for this binary system, which reveals a non-monotonic behavior of the viscosity as a function of the composition, with a minimum. The viscosity behavior...... interacting system showing a negative deviation from ideality. The viscosity of this binary system is represented by the Grunberg-Nissan and the Katti-Chaudhri mixing laws with an overall uncertainty of 12% and 8%, respectively. The viscosity of methanol (23 point) has also been measured in order to verify...

  8. Measuring Shear Viscosity Using Transverse Momentum Correlations in Relativistic Nuclear Collisions

    International Nuclear Information System (INIS)

    Gavin, Sean; Abdel-Aziz, Mohamed

    2006-01-01

    Elliptic flow measurements at the Brookhaven National Laboratory Relativistic Heavy Ion Collider suggest that quark-gluon fluid flows with very little viscosity compared to weak-coupling expectations, challenging theorists to explain why this fluid is so nearly ''perfect.'' It is therefore vital to find quantitative experimental information on the viscosity of the fluid. We propose that measurements of transverse momentum fluctuations can be used to determine the shear viscosity. We use current data to estimate the viscosity-to-entropy ratio in the range from 0.08 to 0.3 and discuss how future measurements can reduce this uncertainty

  9. Near-surface viscosity measurements with a love acoustic wave device

    International Nuclear Information System (INIS)

    Collings, A.F.; Cooper, B.J.; Lappas, S.; Sor, J.A.

    1999-01-01

    Full text: In the last decade, considerable research effort has been directed towards interfacing piezoelectric transducers with biological detection systems to produce efficient and highly selective biosensors. Several types of piezoelectric or, more specifically, acoustic wave transducers have been investigated. Our group has developed Love wave (guided surface skimming wave) devices which are made by attaching a thin overlayer with the appropriate acoustic properties to the surface of a conventional surface horizontal mode device. An optimised layer concentrates most of the propagating wave energy in the guiding layer and can improve the device sensitivity in detecting gas-phase mass loading on the surface some 20- to 40-fold. Love wave devices used in liquid phase sensing will also respond to viscous, as well as mass, loading on the device surface. We have studied the propagation of viscous waves into liquid sitting on a Love wave device both theoretically and experimentally. Modelling of the effect of a viscous liquid layer on a Love wave propagating in a layered medium predicts the velocity profile in the solid substrate and in the adjoining liquid. This is a function of the thickness of the guiding layer, the elastic properties of the guiding layer and the piezoelectric substrate, and of the viscosity and density of the liquid layer. We report here on measurements of the viscosity of aqueous glycerine solutions made with a quartz Love wave device with a 5.5 μm SiO 2 guiding layer. The linear relationship between the decrease in the device frequency and the square root of the viscosity density product is accurately observed at Newtonian viscosities. At higher viscosities, there is an increase in damping, the insertion loss of the device saturates, Δf is no longer proportional to (ηp) l/2 and reaches a maximum. We also show results for the determination of the gelation time in protein and inorganic aqueous gels and for the rate of change of viscosity with

  10. Detection of irradiated peppers by viscosity measurement at extremely high pH

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoriki, Setsuko

    1996-01-01

    The viscosities of aqueous suspensions of irradiated peppers determined after heat gelatinization were influenced by the pH of the suspension to a greater degree than those of unirradiated ones. Viscosity measurement under an extremely alkaline condition (pH 13.8) resulted in a significant different between irradiated peppers and unirradiated ones, irrespective of the planting locality and storage period. All of the pepper samples irradiated at 5 kGy showed viscosity values significantly lower than unirradiated ones. (Author)

  11. Hierarchical viscosity of aqueous solution of tilapia scale collagen investigated via dielectric spectroscopy between 500 MHz and 2.5 THz

    Science.gov (United States)

    Kawamata, H.; Kuwaki, S.; Mishina, T.; Ikoma, T.; Tanaka, J.; Nozaki, R.

    2017-03-01

    Aqueous solutions of biomolecules such as proteins are very important model systems for understanding the functions of biomolecules in actual life processes because interactions between biomolecules and the surrounding water molecules are considered to be important determinants of biomolecules’ functions. Globule proteins have been extensively studied via dielectric spectroscopy; the results indicate three relaxation processes originating from fluctuations in the protein molecule, the bound water and the bulk water. However, the characteristics of aqueous solutions of collagens have rarely been investigated. In this work, based on broadband dielectric measurements between 500 MHz and 2.5 THz, we demonstrate that the high viscosity of a collagen aqueous solution is due to the network structure being constructed of rod-like collagen molecules surrounding free water molecules and that the water molecules are not responsible for the viscosity. We determine that the macroscopic viscosity is related to the mean lifetime of the collagen-collagen interactions supporting the networks and that the local viscosity of the water surrounded by the networks is governed by the viscosity of free water as in the bulk. This hierarchical structure in the dynamics of the aqueous solution of biomolecules has been revealed for the first time.

  12. Effects of surfactant micelles on viscosity and conductivity of poly(ethylene glycol) solutions

    Science.gov (United States)

    Wang, Shun-Cheng; Wei, Tzu-Chien; Chen, Wun-Bin; Tsao, Heng-Kwong

    2004-03-01

    The neutral polymer-micelle interaction is investigated for various surfactants by viscometry and electrical conductometry. In order to exclude the well-known necklace scenario, we consider aqueous solutions of low molecular weight poly(ethylene glycol) (2-20)×103, whose radial size is comparable to or smaller than micelles. The single-tail surfactants consist of anionic, cationic, and nonionic head groups. It is found that the viscosity of the polymer solution may be increased several times by micelles if weak attraction between a polymer segment and a surfactant exists, ɛsolutions may be significantly hindered by cooperative interactions between polymers and micelles. Even though ɛ is small, the interaction energy between a macromolecule and a micelle can be a few kBT due to many contacts, and thus leads to polymer adsorption on micelles' surfaces. The rapid growth of the viscosity with surfactant concentration is therefore attributed to the considerable cross links among micelles and polymers (transient network). In addition to substantial alteration of the transport properties, this weak interaction also influences the onset point of thermodynamic instability associated with polymer-surfactant solutions. The examples include the decrease of critical aggregation concentration for ionic surfactant and clouding point for nonionic surfactant due to PEG addition.

  13. Remarks on the Phragmen-Lindelof theorem for Lp-viscosity solutions of fully nonlinear PDEs with unbounded ingredients

    Directory of Open Access Journals (Sweden)

    Kazushige Nakagawa

    2009-11-01

    Full Text Available The Phragmen-Lindelof theorem for Lp-viscosity solutions of fully nonlinear second order elliptic partial differential equations with unbounded coefficients and inhomogeneous terms is established.

  14. Separate density and viscosity measurements of unknown liquid using quartz crystal microbalance

    Directory of Open Access Journals (Sweden)

    Feng Tan

    2016-09-01

    Full Text Available Aqueous liquids have a wide range of applications in many fields. Basic physical properties like the density and the viscosity have great impacts on the functionalities of a given ionic liquid. For the millions kinds of existing liquids, only a few have been systematically measured with the density and the viscosity using traditional methods. However, these methods are limited to measure the density and the viscosity of an ionic liquid simultaneously especially in processing micro sample volumes. To meet this challenge, we present a new theoretical model and a novel method to separate density and viscosity measurements with single quartz crystal microbalance (QCM in this work. The agreement of experimental results and theocratical calculations shows that the QCM is capable to measure the density and the viscosity of ionic liquids.

  15. Numerical solution of problems concerning the thermal convection of a variable-viscosity liquid

    Science.gov (United States)

    Zherebiatev, I. F.; Lukianov, A. T.; Podkopaev, Iu. L.

    A stabilizing-correction scheme is constructed for integrating the fourth-order equation describing the dynamics of a viscous incompressible liquid. As an example, a solution is obtained to the problem of the solidification of a liquid in a rectangular region with allowance for convective energy transfer in the liquid phase as well as temperature-dependent changes of viscosity. It is noted that the proposed method can be used to study steady-state problems of thermal convection in ingots obtained through continuous casting.

  16. Hydrodynamic radii of polyethylene glycols in different solvents determined from viscosity measurements

    NARCIS (Netherlands)

    Dohmen-Speelmans, M.P.J.; Pereira, A.M.; Timmer, J.M.K.; Benes, N.E.; Keurentjes, J.T.F.

    2008-01-01

    The hydrodynamic radius, rh, of low molar mass polyethylene glycol, MPEG = (200 to 1000) g·mol-1, in a homologous series of primary alcohols, acetone, and toluene has been determined from viscosity measurements. The viscosity data have been collected using a fast one-point method as well as a more

  17. Viscosity of aqueous Ni(NO3)2 solutions at temperatures from (297 to 475) K and at pressures up to 30 MPa and concentration between (0.050 and 2.246) mol . kg-1

    International Nuclear Information System (INIS)

    Abdulagatov, I.M.; Zeinalova, A.B.; Azizov, N.D.

    2006-01-01

    Viscosity of nine aqueous Ni(NO 3 ) 2 solutions (0.050, 0.153, 0.218, 0.288, 0.608, 0.951, 1.368, 1.824, and 2.246) mol . kg -1 was measured in the temperature range from (297 to 475) K and at pressures (0.1, 10, 20, and 30) MPa. The measurements were carried out with a capillary flow technique. The total experimental uncertainty of viscosity, pressure, temperature, and composition measurements were estimated to be less than 1.6%, 0.05%, 15 mK, and 0.02%, respectively. All experimental and derived results are compared with experimental and calculated values reported in the literature. Extrapolation of the solution viscosity measurements to zero concentration (pure water values) for the given temperature and pressure are in excellent agreement (average absolute deviation, AAD = 0.13%) with the values of pure water viscosity from IAPWS formulation [J. Kestin, J.V. Sengers, B. Kamgar-Parsi, J.M.H. Levelt Sengers, J. Phys. Chem. Ref. Data 13 (1984) 175-189]. The viscosity data for the solutions as a function of concentration have been interpreted in terms of the extended Jones-Dole equation for strong electrolytes. The values of viscosity A-, B-, and D-coefficients of the extended Jones-Dole equation for the relative viscosity (η/η ) of aqueous Ni(NO 3 ) 2 solutions as a function of temperature are studied. The derived values of the viscosity A- and B-coefficients were compared with the results predicted by Falkenhagen-Dole theory (limiting law) of electrolyte solutions and the values calculated with the ionic B-coefficient data. The measured values of viscosity for the solutions were also used to calculate the effective rigid molar volumes in the extended Einstein relation for the relative viscosity (η/η )

  18. Certain laws governing the influence of high molecular polymer additives on specific electrical conductivity and viscosity of zincate alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrenko, V.Ye.; Toropetsera, T.N.; Zubov, M.S.

    1983-01-01

    A study was made of the influence of polymer additives of different nature: polyelectrolyte, copolymer of ethylene with maleic anhydride, polymethacrylic acid and nonpolyectrolyte copolymer of vinyl alcohol with vinyleneglycol and polyvinyleneglycol on specific electrical conductance and viscosity of the zincate alkaline solution. It is indicated that with an increase in the content of additives, the specific conductance of the solution diminishes according to a linear law, while the viscosity rises. The additives of polyelectrolyte nature reduce more strongly the specific conductance and increase the viscosity than the nonpolyelectrolyte additives. From a comparison of the data on specific conductance and viscosity the following conclusion is drawn: the more the polymer ''structures'' the zincate alkaline solution, the more strongly it reduces its specific electrical conductance.

  19. Effects of the positioning force of electrostatic levitators on viscosity measurements

    International Nuclear Information System (INIS)

    Ishikawa, Takehiko; Paradis, Paul-Francois; Koike, Noriyuki; Watanabe, Yuki

    2009-01-01

    Electrostatic levitators use strong electric fields to levitate and accurately position a sample against gravity. In this study, the effects of the electric field are investigated with regard to viscosity measurements conducted with the oscillating drop method. The effects of the external field on viscosity measurements are experimentally confirmed by changing the sample size. Moreover, a numerical simulation based on a simple mass-spring-damper system can reproduce the experimental observations. Based on the above results, measurement procedures are improved. These help to minimize the effect of the positioning force and to increase the accuracy of the viscosity measurements.

  20. Finite Time Merton Strategy under Drawdown Constraint: A Viscosity Solution Approach

    International Nuclear Information System (INIS)

    Elie, R.

    2008-01-01

    We consider the optimal consumption-investment problem under the drawdown constraint, i.e. the wealth process never falls below a fixed fraction of its running maximum. We assume that the risky asset is driven by the constant coefficients Black and Scholes model and we consider a general class of utility functions. On an infinite time horizon, Elie and Touzi (Preprint, [2006]) provided the value function as well as the optimal consumption and investment strategy in explicit form. In a more realistic setting, we consider here an agent optimizing its consumption-investment strategy on a finite time horizon. The value function interprets as the unique discontinuous viscosity solution of its corresponding Hamilton-Jacobi-Bellman equation. This leads to a numerical approximation of the value function and allows for a comparison with the explicit solution in infinite horizon

  1. Densities, refractive indices, and viscosities of N,N-diethylethanol ammonium chloride–glycerol or –ethylene glycol deep eutectic solvents and their aqueous solutions

    International Nuclear Information System (INIS)

    Siongco, Kathrina R.; Leron, Rhoda B.; Li, Meng-Hui

    2013-01-01

    Highlights: • The densities, refractive indices, and viscosities of aqueous DES solutions were measured. • DES are made from N,N-diethylethanol ammonium chloride + glycerol or ethylene glycol. • The temperature studied was (298.15 to 343.15) K. • The measured data were reported as functions of temperature and composition. • The measured data were represented satisfactorily by the applied correlations. -- Abstract: In this work, we report new experimental data on density, ρ, refractive index, n D, and viscosity, η, of two deep eutectic solvents, N,N-diethylethanol ammonium chloride–glycerol (DEACG) and N,N-diethylethanol ammonium chloride–ethylene glycol (DEACEG), and their aqueous solutions, over the complete composition range, at temperatures from (298.15 to 343.15) K. Densities and viscosities were measured using the vibrating tube and the falling ball techniques, respectively, while the refractive index at the sodium D line was measured using an automatic refractometer. We aimed to represent the measured properties as a function of temperature and composition, and correlated them using the Redlich–Kister-type equation, for density, a polynomial function, for refractive index, and the Vogel–Fulcher–Tammann (VFT) equation, for viscosity

  2. A NOVEL INTERPRETATION OF CONCENTRATION DEPENDENCE OF VISCOSITY OF DILUTE POLYMER SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Yan Pan; Rong-shi Cheng

    2000-01-01

    The concentration dependence of the reduced viscosity of dilute polymer solution is interpreted in the light of a new concept of the self-association of polymer chains in dilute solution. The apparent self-association constant is defined as the molar association constant divided by the molar mass of individual polymer chain and is numerically interconvertible with the Huggins coefficient. The molar association constant is directly proportional to the effective hydrodynamic volume of the polymer chain in solution and is irrespective of the chain architecture. The effective hydrodynamic volume accounts for the non-spherical conformation of a short polymer chain in solution and is a product of a shape factor and hydrodynamic volume. The observed enhancement of Huggins coefficient for short chain and branched polymer is satisfactorily interpreted by the concept of self-association. The concept of self-association allows us to predict the existence of a boundary concentration Cs (dynamic contact concentration) which divides the dilute polymer solution into two regions.

  3. Effect of temperature on the partial molar volume, isentropic compressibility and viscosity of DL-2-aminobutyric acid in water and in aqueous sodium chloride solutions

    International Nuclear Information System (INIS)

    Romero, Carmen M.; Rodríguez, Diana M.; Ribeiro, Ana C.F.; Esteso, Miguel A.

    2017-01-01

    Highlights: • Apparent volumes, apparent compressibilities, viscosities of DL-2-aminobutyric acid. • Effect of temperature on the values for these properties. • Hydrophobic and hydrophilic interactions and the effect of sodium chloride. - Abstract: Density, sound velocity and viscosity of DL-2-aminobutyric acid in water and in aqueous sodium chloride solutions have been measured at temperatures of (293.15, 298.15, 303.15, 308.15 and 313.15) K. The experimental results were used to determine the apparent molar volume and the apparent molar compressibility as a function of composition at these temperatures. The limiting values of both the partial molar volume and the partial molar adiabatic compressibility at infinite dilution of DL-2-aminobutyric acid in water and in aqueous sodium chloride solutions were determined at each temperature. The experimental viscosity values were adjusted by a least-squares method to a second order equation as proposed by Tsangaris-Martin to obtain the viscosity B coefficient which depends on the size, shape and charge of the solute molecule. The influence of the temperature on the behaviour of the selected properties is discussed in terms of both the solute hydration and the balance between hydrophobic and hydrophilic interactions between the acids and water, and the effect of the sodium chloride concentration.

  4. Clinical diagnostic of pleural effusions using a high-speed viscosity measurement method

    Science.gov (United States)

    Hurth, Cedric; Klein, Katherine; van Nimwegen, Lena; Korn, Ronald; Vijayaraghavan, Krishnaswami; Zenhausern, Frederic

    2011-08-01

    We present a novel bio-analytical method to discriminate between transudative and exudative pleural effusions based on a high-speed video analysis of a solid glass sphere impacting a liquid. Since the result depends on the solution viscosity, it can ultimately replace the battery of biochemical assays currently used. We present results obtained on a series of 7 pleural effusions obtained from consenting patients by analyzing both the splash observed after the glass impactor hits the liquid surface, and in a configuration reminiscent of the drop ball viscometer with added sensitivity and throughput provided by the high-speed camera. The results demonstrate distinction between the pleural effusions and good correlation with the fluid chemistry analysis to accurately differentiate exudates and transudates for clinical purpose. The exudative effusions display a viscosity around 1.39 ± 0.08 cP whereas the transudative effusion was measured at 0.89 ± 0.09 cP, in good agreement with previous reports.

  5. Separate measurement of the density and viscosity of a liquid using a quartz crystal microbalance based on admittance analysis (QCM-A)

    International Nuclear Information System (INIS)

    Itoh, Atsushi; Ichihashi, Motoko

    2011-01-01

    We previously used a quartz crystal microbalance (QCM) to identify a frequency f 2 that allows measurement of the mass load without being affected by the viscous load of a liquid in the liquid phase. Here, we determined that frequency in order to separately measure the density and viscosity of a Newtonian liquid. Martin et al separately measured the density and viscosity of a liquid by immersing two quartz resonators, i.e. a smooth-surface resonator and a textured-surface resonator, in the liquid. We used a QCM based on admittance analysis (QCM-A) in the current study to separately measure the viscosity and density of a liquid using only a textured-surface resonator. In the current experiments, we measured the density and viscosity of 500 µl of 10%, 30%, and 50% aqueous glycerol solutions and compared the measured values to reference values. The density obtained had an error of ±1.5% of reference values and the viscosity had an error of about ±5% of reference values. Similar results were obtained with 500 µl of 10%, 30%, and 50% ethanol solutions. Measurement was possible with a quartz resonator, so measurements were made with even smaller samples. The density and viscosity of a liquid were successfully determined with an extremely small amount of liquid, i.e. 10 µl, with almost the same precision as when using 500 µl of the liquid

  6. Gas viscosity measurement with diamagnetic-levitation viscometer based on electromagnetically spinning system.

    Science.gov (United States)

    Shimokawa, Y; Matsuura, Y; Hirano, T; Sakai, K

    2016-12-01

    Utilizing a graphite-disk probe attached with a thin aluminum disk, we have developed a friction-free viscosity measurement system. The probe is levitated above a NdFeB magnet because of diamagnetic effect and rotated by an electromagnetically induced torque. The probe is absolutely free form mechanical friction, and therefore, the accurate measurements of the viscosity of gases can be achieved. To demonstrate the accuracy and sensitivity of our method, we measured the viscosity of 8 kinds of gases and its temperature change from 278 K to 318 K, and we confirmed a good agreement between the obtained values and literature values. This paper demonstrates that our method has the ability to measure the fluid viscosity in the order of μPa ⋅ s.

  7. Gas viscosity measurement with diamagnetic-levitation viscometer based on electromagnetically spinning system

    Science.gov (United States)

    Shimokawa, Y.; Matsuura, Y.; Hirano, T.; Sakai, K.

    2016-12-01

    Utilizing a graphite-disk probe attached with a thin aluminum disk, we have developed a friction-free viscosity measurement system. The probe is levitated above a NdFeB magnet because of diamagnetic effect and rotated by an electromagnetically induced torque. The probe is absolutely free form mechanical friction, and therefore, the accurate measurements of the viscosity of gases can be achieved. To demonstrate the accuracy and sensitivity of our method, we measured the viscosity of 8 kinds of gases and its temperature change from 278 K to 318 K, and we confirmed a good agreement between the obtained values and literature values. This paper demonstrates that our method has the ability to measure the fluid viscosity in the order of μPa ṡ s.

  8. On viscosity measurements of nanofluids in micro and mini tube flow

    International Nuclear Information System (INIS)

    Egan, V M; Walsh, P A; Walsh, E J

    2009-01-01

    This study presents measurements on the relative viscosity of Al 2 O 3 nanofluids, obtained using capillary and rotational viscometers. Suspension volume concentrations between 0.3% and 6.3% were considered and all exhibited Newtonian behaviour. This paper questions previously published data (Jang et al 2007 Appl. Phys. Lett. 91 243112) which show effective viscosity measurements of nanofluids to be strongly dependent on the tube dimension used in a microscale capillary viscometer. Hence, tubes of diameter 337 μm and 1017 μm were employed but no effect on relative viscosity was observed as all measurements compared favourably. Additionally, all viscosity measurements were found to correlate well using classical models when aggregate size was considered in calculating volume concentration.

  9. Experimental density and viscosity measurements of di(2ethylhexyl)sebacate at high pressure

    International Nuclear Information System (INIS)

    Paredes, Xavier; Fandino, Olivia; Pensado, Alfonso S.; Comunas, Maria J.P.; Fernandez, Josefa

    2012-01-01

    Highlights: → We measure viscosities for di(2-ethylhexyl)sebacate from (298.15 to 398.15) K and up to 60 MPa. → We measure densities for DEHS from (298.15 to 373.15) K and from (0.1 to 60) MPa. → The reported and lit. data were used in a viscosity correlation from (273 to 491) K and up to 1.1 GPa. → This correlation could be used in industrial equipment that operate at high pressures. - Abstract: Experimental densities and dynamic viscosities of di(2-ethylhexyl)sebacate (DEHS) are the object of study in this work. DEHS could be a useful industrial reference fluid for moderately high viscosity at high pressures as it is often used as a pressure transmitting fluid. At atmospheric pressure the density and viscosity measurements have been performed in a rotational SVM 3000 Stabinger viscometer from (273.15 to 373.15) K, whereas from (0.1 to 60) MPa and from (298.15 to 398.15) K an automated Anton Paar DMA HPM vibrating-tube densimeter, and a high-pressure rolling-ball viscometer were used. Several Vogel-Fulcher-Tammann type equations were used to fit the experimental values of viscosity to the pressure and temperature. The measured viscosity data have been used together with previous data found in the literature to establish a correlation of the viscosity surface η(T, p) of DEHS, covering a temperature range from (273 to 491) K and pressure up to 1.1 GPa. This correlation could be used in industrial equipment like viscometers and other devices that operate at high pressures. Our viscosity data have also been fitted as a function of temperature and volume to the thermodynamic scaling model of Roland et al. [C.M. Roland, S. Bair, R. Casalini, J. Chem. Phys. 125 (2006) 124508].

  10. Concentration dependence of the partial volume, viscosity, and electric conductivity of solutions of lithium salts in aliphatic alcohols

    International Nuclear Information System (INIS)

    Eliseeva, O.V.; Golubev, V.V.

    2003-01-01

    Concentration dependence of partial volumes, electric conductivity and viscosity of lithium nitrate and chloride solutions in methanol, propanol, isopropanol, butanol, isobutanol, pentanol and isopentanol at 298.15 K were studied by the methods of densimetry, conductometry and viscosimetry. Structural specific features of the solutions studied are discussed on the basis of the calculated volumetric characteristics of the substance dissolved and solvent [ru

  11. Solution for laminar natural convection flows in a square cavity with temperature dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J.G. [Parsons Brinckerhoff, New York, NY (United States)

    1995-12-31

    This paper presents an examination of numerical results for the buoyancy-driven convection heat transfer problem, in a two-dimensional enclosure under steady-state, laminar, incompressible, and temperature dependent viscosity fluid flow conditions. The vertical walls are exposed to different temperatures and the top and bottom are insulated. Rayleigh numbers of 10{sup 4}, 10{sup 5}, and 10{sup 6} are considered. Specific heat, thermal conductivity, and the thermal expansion coefficient are assumed constant. Density variation is included using the Oberbeck-Boussinesq approximation. The results are obtained using the SIMPLEC solution technique based on a power-law, finite-volume discretization scheme. The hydrodynamic and thermal fields are presented at various locations in the enclosures.

  12. Study of thermal and chemical effects on cellulase enzymes: Viscosity measurements

    International Nuclear Information System (INIS)

    Ghaouar, N.; Aschi, A.; Belbahri, L.; Trabelsi, S.; Gharbi, A.

    2009-01-01

    The behaviour of cellulase enzymes in phosphate saline buffer has been studied over a wide range of temperatures and enzyme concentrations by using viscosity measurements. To characterize the conformation change of cellulase versus temperature and chemical denaturants, such as guanidinium chloride (GdmCl) and urea, the information about the intrinsic viscosity and the hydrodynamic radius are necessary. The dependence of the intrinsic viscosity and the hydrodynamic radius in its random coil conformation on temperature and denaturant concentration were studied. Our results and discussions are limited to the dilute regime of concentration because of abnormalities in conformation observed in the very dilute regime due to the presence of capillary absorption effects.

  13. Study of thermal and chemical effects on cellulase enzymes: Viscosity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ghaouar, N., E-mail: naoufel-ghaouar@lycos.co [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Institut National des Sciences Appliquees et de Technologie, INSAT, Centre Urbain Nord, BP. 676, Tunis (Tunisia); Aschi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Belbahri, L. [Agronomy Department, School of Engineering of Lullier, University of Applied Sciences of Western Switzerland, 150, Route de Presinge, 1254 Jussy (Switzerland); Trabelsi, S.; Gharbi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia)

    2009-11-15

    The behaviour of cellulase enzymes in phosphate saline buffer has been studied over a wide range of temperatures and enzyme concentrations by using viscosity measurements. To characterize the conformation change of cellulase versus temperature and chemical denaturants, such as guanidinium chloride (GdmCl) and urea, the information about the intrinsic viscosity and the hydrodynamic radius are necessary. The dependence of the intrinsic viscosity and the hydrodynamic radius in its random coil conformation on temperature and denaturant concentration were studied. Our results and discussions are limited to the dilute regime of concentration because of abnormalities in conformation observed in the very dilute regime due to the presence of capillary absorption effects.

  14. Resistor capacitor, primitive variable solution of buoyant fluid flow within an enclosure with highly temperature dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.P. [Texas Univ., Austin, TX (United States); Gianoulakis, S.E. [Sandia National Labs., Albuquerque, NM (United States)

    1995-07-01

    A numerical solution for buoyant natural convection within a square enclosure containing a fluid with highly temperature dependent viscosity is presented. Although the fluid properties employed do not represent any real fluid, the large variation in the fluid viscosity with temperature is characteristic of turbulent flow modeling with eddy-viscosity concepts. Results are obtained using a primitive variable formulation and the resistor method. The results presented include velocity, temperature and pressure distributions within the enclosure as well as shear stress and heat flux distributions along the enclosure walls. Three mesh refinements were employed and uncertainty values are suggested for the final mesh refinement. These solutions are part of a contributed benchmark solution set for the subject problem.

  15. Viscosity and Liquid Density of Asymmetric n-Alkane Mixtures: Measurement and Modelling

    DEFF Research Database (Denmark)

    Queimada, António J.; Marrucho, Isabel M.; Coutinho, João A.P.

    2005-01-01

    Viscosity and liquid density Measurements were performed, at atmospheric pressure. in pure and mixed n-decane. n-eicosane, n-docosane, and n-tetracosane from 293.15 K (or above the melting point) up to 343.15 K. The viscosity was determined with a rolling ball viscometer and liquid densities...... with a vibrating U-tube densimeter. Pure component results agreed, oil average, with literature values within 0.2% for liquid density and 3% for viscosity. The measured data were used to evaluate the performance of two models for their predictions: the friction theory coupled with the Peng-Robinson equation...... of state and a corresponding states model recently proposed for surface tension, viscosity, vapor pressure, and liquid densities of the series of n-alkanes. Advantages and shortcoming of these models are discussed....

  16. Viscosity Measurements of "FeO"-SiO2 Slag in Equilibrium with Metallic Fe

    Science.gov (United States)

    Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun

    2013-06-01

    The current study delivered the measurements of viscosities in the system "FeO"-SiO2 in equilibrium with metallic Fe in the composition range between 15 and 40 wt pct SiO2. The experiments were carried out in the temperature range of 1473 K to 1773 K (1200 °C to 1500 °C) using a rotational spindle technique. An analysis of the quenched sample by electron probe X-ray microanalysis (EPMA) after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The current results are compared with available literature data. The significant discrepancies of the viscosity measurements in this system have been clarified. The possible reasons affecting the accuracy of the viscosity measurement have been discussed. The activation energies derived from the experimental data have a sharp increase at about 33 wt pct SiO2, which corresponds to the composition of fayalite (Fe2SiO4). The modified quasi-chemical model was constructed in the system "FeO"-SiO2 to describe the current viscosity data.

  17. Study on viscosity measurement using fiber Bragg grating micro-vibration

    International Nuclear Information System (INIS)

    Song, Le; Fang, Fengzhou; Zhao, Jibo

    2013-01-01

    It is now ascertained that traditional electric sensors are vulnerable to electromagnetic interference when measuring viscosity. Here, we propose a new viscosity-sensitive structure based on the fiber Bragg grating (FBG) sensing principle and a micro-vibration measurement method. The symmetric micro-vibration motivation method is also described, and a mathematical model for compensational voltage and fluid viscosity is established. The probe amplitude, which is produced by reciprocating stimulation, is accessible by means of an FBG sensor mounted on an equal-strength beam. Viscosity can be therefore calculated using a demodulation technique based on linear edge filtering with long period grating. After performing a group of verifying tests, the sensor has been subsequently calibrated with a series of standard fluids to determine uncertain parameters in the mathematical model. The results of the experiment show that the relative measurement error was less than 2% when the viscosity ranged from 200 to 500 mPa s. The proposed architecture utilizes the characteristics of anti-interference, fast response speed, high resolution and compact structure of FBG, thereby offering a novel modality to achieve an online viscosity measurement. (paper)

  18. Viscosity estimation utilizing flow velocity field measurements in a rotating magnetized plasma

    International Nuclear Information System (INIS)

    Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2008-01-01

    The importance of viscosity in determining plasma flow structures has been widely recognized. In laboratory plasmas, however, viscosity measurements have been seldom performed so far. In this paper we present and discuss an estimation method of effective plasma kinematic viscosity utilizing flow velocity field measurements. Imposing steady and axisymmetric conditions, we derive the expression for radial flow velocity from the azimuthal component of the ion fluid equation. The expression contains kinematic viscosity, vorticity of azimuthal rotation and its derivative, collision frequency, azimuthal flow velocity and ion cyclotron frequency. Therefore all quantities except the viscosity are given provided that the flow field can be measured. We applied this method to a rotating magnetized argon plasma produced by the Hyper-I device. The flow velocity field measurements were carried out using a directional Langmuir probe installed in a tilting motor drive unit. The inward ion flow in radial direction, which is not driven in collisionless inviscid plasmas, was clearly observed. As a result, we found the anomalous viscosity, the value of which is two orders of magnitude larger than the classical one. (author)

  19. A viscosity measurement during the high pressure phase transition in triolein

    International Nuclear Information System (INIS)

    Siegoczynski, R M; Rostocki, A J; Kielczynski, P; Szalewski, M

    2008-01-01

    The high-pressure properties of triolein, a subject of extensive research at the Faculty of Physics of Warsaw University of Technology (WUT) have been enhanced by the results of viscosity measurement within the pressure range up to 0.8 GPa. For the measurement the authors have adopted a new ultrasonic method based on Bleustein-Gulyaev waves, successfully developed earlier for the low pressures in the Section of Acoustoelectronics of the Institute of Fundamental Technological Research. The measurements have shown: 1. Exponential rise of viscosity with pressure up to 0.5 GPa. 2. Extraordinary increment of viscosity at constant pressure during phase transition. 3. Further exponential rise of viscosity with pressure of the high-pressure phase of triolein. 4. The pressure exponents of the viscosity of both phases were different (the high-pressure phase had much smaller exponent). 5. The decomposition of the high pressure phase due to the slow decompression have shown very large hysteresis of viscosity on pressure dependence

  20. Application of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperature.

    Science.gov (United States)

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Rostocki, A J; Tefelski, D B

    2011-12-01

    Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10°C to 40°C using ultrasonic measuring setup. Bleustein-Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Apparent molar volumes and viscosity B-coefficients of caffeine in aqueous thorium nitrate solutions at T = (298.15, 308.15, and 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Biswajit, E-mail: biswachem@gmail.co [Department of Chemistry, University of North Bengal, Darjeeling 734013 (India); Roy, Pran Kumar; Sarkar, Bipul Kumar; Brahman, Dhiraj [Department of Chemistry, University of North Bengal, Darjeeling 734013 (India); Roy, Mahendra Nath, E-mail: mahendraroy2002@yahoo.co.i [Department of Chemistry, University of North Bengal, Darjeeling 734013 (India)

    2010-03-15

    Apparent molar volumes phi{sub V} and viscosity B-coefficients for caffeine in (0.00, 0.03, 0.05, and 0.07) mol . dm{sup -3} aqueous thorium nitrate, Th(NO{sub 3}){sub 4}, solutions were determined from solution density and viscosity measurements over the temperature range (298.15 to 318.15) K as function of concentration of caffeine and the relation: phi{sub V}{sup 0}=a{sub 0}+a{sub 1}T+a{sub 2}T{sup 2}, have been used to describe the temperature dependence of the standard partial molar volumes phi{sub V}{sup 0}. These results have been used to deduce the standard volumes of transfer DELTAphi{sub V}{sup 0} and viscosity B-coefficients of transfer DELTAB for caffeine from water to aqueous Th(NO{sub 3}){sub 4} solutions for rationalizing various interactions in the ternary solutions. The structure-making or breaking ability of caffeine has been discussed in terms of the sign of (delta{sup 2}phi{sub V}{sup 0}/deltaT{sup 2}){sub P}. The Friedman-Krishnan co-sphere model was used to explain the transfer volume of caffeine with increasing Th(NO{sub 3}){sub 4} molarity. The activation parameters of viscous flow for the ternary solutions were also discussed in terms of transition state theory.

  2. Apparent molar volumes and viscosity B-coefficients of caffeine in aqueous thorium nitrate solutions at T = (298.15, 308.15, and 318.15) K

    International Nuclear Information System (INIS)

    Sinha, Biswajit; Roy, Pran Kumar; Sarkar, Bipul Kumar; Brahman, Dhiraj; Roy, Mahendra Nath

    2010-01-01

    Apparent molar volumes φ V and viscosity B-coefficients for caffeine in (0.00, 0.03, 0.05, and 0.07) mol . dm -3 aqueous thorium nitrate, Th(NO 3 ) 4 , solutions were determined from solution density and viscosity measurements over the temperature range (298.15 to 318.15) K as function of concentration of caffeine and the relation: φ V 0 =a 0 +a 1 T+a 2 T 2 , have been used to describe the temperature dependence of the standard partial molar volumes φ V 0 . These results have been used to deduce the standard volumes of transfer Δφ V 0 and viscosity B-coefficients of transfer ΔB for caffeine from water to aqueous Th(NO 3 ) 4 solutions for rationalizing various interactions in the ternary solutions. The structure-making or breaking ability of caffeine has been discussed in terms of the sign of (δ 2 φ V 0 /δT 2 ) P . The Friedman-Krishnan co-sphere model was used to explain the transfer volume of caffeine with increasing Th(NO 3 ) 4 molarity. The activation parameters of viscous flow for the ternary solutions were also discussed in terms of transition state theory.

  3. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets

    Science.gov (United States)

    Kremer, J.; Kilzer, A.; Petermann, M.

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  4. Electroosmotic flow in capillary channels filled with nonconstant viscosity electrolytes: exact solution of the Navier-Stokes equation.

    Science.gov (United States)

    Otevrel, Marek; Klepárník, Karel

    2002-10-01

    The partial differential equation describing unsteady velocity profile of electroosmotic flow (EOF) in a cylindrical capillary filled with a nonconstant viscosity electrolyte was derived. Analytical solution, based on the general Navier-Stokes equation, was found for constant viscosity electrolytes using the separation of variables (Fourier method). For the case of a nonconstant viscosity electrolyte, the steady-state velocity profile was calculated assuming that the viscosity decreases exponentially in the direction from the wall to the capillary center. Since the respective equations with nonconstant viscosity term are not solvable in general, the method of continuous binding conditions was used to solve this problem. In this method, an arbitrary viscosity profile can be modeled. The theoretical conclusions show that the relaxation times at which an EOF approaches the steady state are too short to have an impact on a separation process in any real systems. A viscous layer at the wall affects EOF significantly, if it is thicker than the Debye length of the electric double layer. The presented description of the EOF dynamics is applicable to any microfluidic systems.

  5. Drifting solutions with elliptic symmetry for the compressible Navier-Stokes equations with density-dependent viscosity

    International Nuclear Information System (INIS)

    An, Hongli; Yuen, Manwai

    2014-01-01

    In this paper, we investigate the analytical solutions of the compressible Navier-Stokes equations with dependent-density viscosity. By using the characteristic method, we successfully obtain a class of drifting solutions with elliptic symmetry for the Navier-Stokes model wherein the velocity components are governed by a generalized Emden dynamical system. In particular, when the viscosity variables are taken the same as Yuen [M. W. Yuen, “Analytical solutions to the Navier-Stokes equations,” J. Math. Phys. 49, 113102 (2008)], our solutions constitute a generalization of that obtained by Yuen. Interestingly, numerical simulations show that the analytical solutions can be used to explain the drifting phenomena of the propagation wave like Tsunamis in oceans

  6. Concentration dependences of the density, viscosity, and refraction index of Cu(NO3)2 · 3H2O solutions in DMSO at 298 K

    Science.gov (United States)

    Mamyrbekova, A. K.

    2013-03-01

    Physicochemical properties (density, dynamic viscosity, refraction index) of the DMSO-Cu(NO3)2 · 3H2O system are studied in the concentration range of 0.01-2 M at 298 K. The refraction index of a solution of copper(II) nitrate in dimethylsulfoxide (DMSO) is measured at 288-318 K. The excess and partial molar volumes of the solvent and dissolved substance are calculated analytically.

  7. Noncontact surface tension and viscosity measurements of rhenium in the liquid and undercooled states

    International Nuclear Information System (INIS)

    Ishikawa, Takehiko; Paradis, Paul-Francois; Yoda, Shinichi

    2004-01-01

    Surface tension and viscosity of liquid rhenium, which have hardly been measured due to the extremely high melting temperature of rhenium, were measured using an electrostatic levitation method combined with the oscillation drop technique. Sample position instability problems caused by the photon pressure of the heating lasers and by sample evaporation were solved by modifying the electrodes design. Good sample stability allowed the measurements of the surface tension and the viscosity over wide temperature ranges including the undercooled states. Over the 2800-3600 K interval, the surface tension of rhenium was measured as σ(T)=2.71x10 3 -0.23(T-T m ), where T m is the melting temperature, 3453 K. At T m , the datum agrees well with the literature values. Similarly, on the same temperature range, the viscosity was determined as η(T)=0.08 exp[1.33x10 5 /(RT)] (mPa s)

  8. Simultaneous viscosity and density measurement of small volumes of liquids using a vibrating microcantilever.

    Science.gov (United States)

    Payam, A F; Trewby, W; Voïtchovsky, K

    2017-05-02

    Many industrial and technological applications require precise determination of the viscosity and density of liquids. Such measurements can be time consuming and often require sampling substantial amounts of the liquid. These problems can partly be overcome with the use of microcantilevers but most existing methods depend on the specific geometry and properties of the cantilever, which renders simple, accurate measurement difficult. Here we present a new approach able to simultaneously quantify both the density and the viscosity of microliters of liquids. The method, based solely on the measurement of two characteristic frequencies of an immersed microcantilever, is completely independent of the choice of a cantilever. We derive analytical expressions for the liquid's density and viscosity and validate our approach with several simple liquids and different cantilevers. Application of our model to non-Newtonian fluids shows that the calculated viscosities are remarkably robust when compared to measurements obtained from a standard rheometer. However, the results become increasingly dependent on the cantilever geometry as the frequency-dependent nature of the liquid's viscosity becomes more significant.

  9. A MEMS Resonant Sensor to Measure Fluid Density and Viscosity under Flexural and Torsional Vibrating Modes

    Directory of Open Access Journals (Sweden)

    Libo Zhao

    2016-06-01

    Full Text Available Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m3 to 900 kg/m3 and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail.

  10. Applicability of Stokes method for measuring viscosity of mixtures with concentration gradient

    Directory of Open Access Journals (Sweden)

    César Medina

    2017-12-01

    Full Text Available After measuring density and viscosity of a mixture of glycerin and water contained in a vertical pipe, a variation of these properties according to depth is observed. These gradients are typical of non-equilibrium states related to the lower density of water and the fact that relatively long times are necessary to achieve homogeneity. In the same pipe, the falling velocity of five little spheres is measured as a function of depth, and then a numerical fit is performed which agrees very well with experimental data. Based on the generalization of these results, the applicability of Stokes method is discussed for measuring viscosity of mixtures with a concentration gradient.

  11. Viscosity measurement - probably a means for detecting radiation treatment of spices?

    International Nuclear Information System (INIS)

    Heide, L.; Albrich, S.; Boegl, K.W.

    1987-12-01

    The viscosity of 13 different spices and dried vegetables in total was measured. Optimal conditions were first determined for each product, i.e. concentration, pH-value, temperature, particle size and soaking time. For method evaluation, examinations were primarily performed to study the effect of storage, the reproducibility and the influence of the different varieties of the same spice. In supplement, for pepper, the viscosity was measured as a function of radiation dose. In summation, significant changes in the gel forming capability after irradiation could be observed after preliminary experiments in 8 dried spices (ginger, carrots, leek, cloves, pepper, celery, cinnamon and onions). With 3 spices (ginger, pepper and cinnamon) could the results from examining all different varieties of the same spice be substantiated. An additional influence of storage time on viscosity could not be proved during the investigative period of 8 months. Generally seen, there is no possibility of being able to identify an irradiated spice on the basis of viscosity measurements alone, since the difference between the varieties of one and the same spice is considerably great. However, radiation treatment can be reliably excluded with ginger, pepper and cinnamon, if the viscosities are high (10-20 Pa x s). (orig./MG) [de

  12. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    Science.gov (United States)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  13. Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass - Prediction of viscosity through protein-protein interaction measurements

    DEFF Research Database (Denmark)

    Neergaard, Martin S; Kalonia, Devendra S; Parshad, Henrik

    2013-01-01

    The purpose of this work was to explore the relation between protein-protein interactions (PPIs) and solution viscosity at high protein concentration using three monoclonal antibodies (mAbs), two of the IgG4 subclass and one of the IgG1 subclass. A range of methods was used to quantify the PPI...... low or high protein concentration determined using DLS. The PPI measurements were correlated with solution viscosity (measured by DLS using polystyrene nanospheres and ultrasonic shear rheology) as a function of pH (4-9) and ionic strength (10, 50 and 150mM). Our measurements showed that the highest...... solution viscosity was observed under conditions with the most negative kD, the highest apparent radius and the lowest net charge. An increase in ionic strength resulted in a change in the nature of the PPI at low pH from repulsive to attractive. In the neutral to alkaline pH region the mAbs behaved...

  14. Extensional viscosity for polymer melts measured in the filament stretching rheometer

    DEFF Research Database (Denmark)

    Bach, Anders; Rasmussen, Henrik K.; Hassager, Ole

    2003-01-01

    A new filament stretching rheometer has been constructed to measure the elongational viscosity of polymer melts at high temperatures. Two polymer melts, a LDPE and a LLDPE, were investigated with this rheometer. A constant elongational rate has been obtained by an iterative application of the Orr...

  15. The determination of the pressure-viscosity coefficient of two traction oils using film thickness measurements

    NARCIS (Netherlands)

    Leeuwen, van H.J.

    2010-01-01

    The pressure-viscosity coefficients of two commercial traction fluids are determined by fitting calculation results on accurate film thickness measurements, obtained at a wide range of speeds, and different temperatures. Film thickness values are calculated using a numerical method and approximation

  16. Determination of temperature dependant viscosity values of lubricants via simultaneous measurements of refractive index

    International Nuclear Information System (INIS)

    Yaltkaya, S.

    2005-01-01

    Viscosity is one of the most important parameter in rheological and tribological properties of fluids. The objective of this study is to obtain the viscosity values from the simultaneous refractive-index measurements of lubricants, simply by dipping the fiber-optic probe into the oil to be measured. Due to the fact that these parameters are temperature dependent, within the interval under consideration, oil heated up steadily while measuring the viscosity and refractive index at the same time. The refractive index sensor, the digital viscometer and the thermometer were connected to a PC via an analog to digital converter and the values were acquired at the same time. The fiber optic refractive index sensor has been designed in our laboratory. By utilising Fresnel's fundamental reflection law, the intensity of reflected light from boundary surface (optic fiber core-motor oil) was measured at 660 nm wavelength and then refractive index of the oil was calculated. The derived refractive index values were converted viscosity values that acquired by using the calibration equation. The viscometer, used during the study, was the rotational Brookfield type

  17. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    Science.gov (United States)

    Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.

    2015-10-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.

  18. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    International Nuclear Information System (INIS)

    Santos, José; Ramos, Pedro M; Janeiro, Fernando M

    2015-01-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed. (paper)

  19. Density and Viscosity Measurement of Diesel Fuels at Combined High Pressure and Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2013-07-01

    Full Text Available We report the measurement of the viscosity and density of various diesel fuels, obtained from British refineries, at elevated pressures up to 500 MPa and temperatures in the range 298 K to 373 K. The measurement and prediction procedures of fluid properties under high pressure conditions is of increasing interest in many processes and systems including enhanced oil recovery, automotive engine fuel injection, braking, and hydraulic systems. Accurate data and understanding of the fluid characteristic in terms of pressure, volume and temperature is required particularly where the fluid is composed of a complex mixture or blend of aliphatic or aromatic hydrocarbons. In this study, high pressure viscosity data was obtained using a thermostatically-controlled falling sinker-type high pressure viscometer to provide reproducible and reliable viscosity data based on terminal velocity sinker fall times. This was supported with density measurements using a micro-pVT device. Both high-pressure devices were additionally capable of illustrating the freezing points of the hydrocarbon mixtures. This work has, thus, provided data that can extend the application of mixtures of commercially available fuels and to test the validity of available predictive density and viscosity models. This included a Tait-style equation for fluid compressibility prediction. For complex diesel fuel compositions, which have many unidentified components, the approach illustrates the need to apply appropriate correlations, which require accurate knowledge or prediction of thermodynamic properties.

  20. Density and viscosity of aqueous solutions of N,N-dimethylethanolamine at p = 0.1 MPa from T = (293.15 to 363.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Bernal-Garcia, J. Manuel [Instituto Mexicano del Petroleo, Mexico D.F. C.P. 07330 (Mexico); Hall, Kenneth R. [Chemical Engineering Department, Texas A and M University, College Station, TX 77843 (United States); Estrada-Baltazar, Alejandro [Departamento de Ingenieria Quimica, Instituto Tecnologico de Celaya, Celaya, Guanajuato, CP 38010 (Mexico); Iglesias-Silva, Gustavo A. [Departamento de Ingenieria Quimica, Instituto Tecnologico de Celaya, Celaya, Guanajuato, CP 38010 (Mexico)]. E-mail: gais@iqcelaya.itc.mx

    2005-08-15

    This work presents atmospheric density and viscosity values for (N,N-dimethylethanolamine + water) over the entire composition range from T (293.15 to 363.15) K for density and from T = (313.15 to 353.15) K for viscosity. Density measurements come from a vibrating tube densimeter while we have used three different Cannon-Fenske viscosimeters for the viscosity measurements. Excess molar volumes and viscosity deviations are calculated using a Redlich-Kister type equation. Excess molar volumes present negative deviations from ideality and viscosity deviations are positive at all temperatures and compositions in this work.

  1. Density and viscosity of aqueous solutions of N,N-dimethylethanolamine at p = 0.1 MPa from T = (293.15 to 363.15) K

    International Nuclear Information System (INIS)

    Bernal-Garcia, J. Manuel; Hall, Kenneth R.; Estrada-Baltazar, Alejandro; Iglesias-Silva, Gustavo A.

    2005-01-01

    This work presents atmospheric density and viscosity values for (N,N-dimethylethanolamine + water) over the entire composition range from T (293.15 to 363.15) K for density and from T = (313.15 to 353.15) K for viscosity. Density measurements come from a vibrating tube densimeter while we have used three different Cannon-Fenske viscosimeters for the viscosity measurements. Excess molar volumes and viscosity deviations are calculated using a Redlich-Kister type equation. Excess molar volumes present negative deviations from ideality and viscosity deviations are positive at all temperatures and compositions in this work

  2. Calibration and Measurement of the Viscosity of DWPF Start-Up Glass

    International Nuclear Information System (INIS)

    Schumacher, R.F.

    2001-01-01

    The Harrop, High-Temperature Viscometer has been in operation at the Savannah River Technology Center (SRTC) for several years and has proven itself to be reasonably accurate and repeatable. This is particularly notable when taking into consideration the small amount of glass required to make the viscosity determination. The volume of glass required is only 2.60 cc or about 6 to 7 grams of glass depending on the glass density. This may be compared to the more traditional viscosity determinations, which generally require between 100 to 1000 grams of glass. Before starting the present investigation, the unit was re-aligned and the furnace thermal gradients measured. The viscometer was again calibrated with available NIST Standard Reference Material glasses (717a and 710a) and a spindle constant equation was determined. Standard DWPF Waste Compliance Glasses (Purex, HM, and Batch 1) were used to provide additional verification for the determinations at low temperature. The Harrop, High-Temperature Viscometer was then used to determine the viscosity of three random samples of ground and blended DWPF, Black, Start -Up Frit, which were obtained from Pacific Northwest National Laboratory (PNNL). The glasses were in powder form and required melting prior to the viscosity determination. The results from this evaluation will be compared to ''Round Robin'' measurements from other DOE laboratories and a number of commercial laboratories

  3. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network

    OpenAIRE

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network i...

  4. Investigations on the detection of irradiated food by measuring the viscosity of suspended spices and dried vegetables

    Science.gov (United States)

    Heide, L.; Nürnberger, E.; Bögl, K. W.

    Studies on the viscosity behavior were performed with 20 different spices or dried vegetables. In nine spices (cinnamon, ginger, mustard seed, celery, onions, shallots, lemon peel, black and white pepper) differences between unirradiated and irradiated samples were observed. Further lots were investigated to estimate the variations of viscosity depending on the origin of the samples. Additional storage experiments showed that measuring the viscosity may be a simple method to identify some radiation treated spices even after years.

  5. Viscosity Solutions for a System of Integro-PDEs and Connections to Optimal Switching and Control of Jump-Diffusion Processes

    International Nuclear Information System (INIS)

    Biswas, Imran H.; Jakobsen, Espen R.; Karlsen, Kenneth H.

    2010-01-01

    We develop a viscosity solution theory for a system of nonlinear degenerate parabolic integro-partial differential equations (IPDEs) related to stochastic optimal switching and control problems or stochastic games. In the case of stochastic optimal switching and control, we prove via dynamic programming methods that the value function is a viscosity solution of the IPDEs. In our setting the value functions or the solutions of the IPDEs are not smooth, so classical verification theorems do not apply.

  6. Study of cellulase enzymes self-assembly in aqueous-acetonitrile solvent: Viscosity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ghaouar, N., E-mail: naoufel-ghaouar@lycos.co [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Institut National des Sciences Appliquees et de Technologie, INSAT, Centre Urbain Nord, BP. 676, Tunis (Tunisia); Aschi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Belbahri, L. [School of Engineering of Lullier, University of Applied Sciences of Western Switzerland, 150, Route de Presinge, 1254 Jussy (Switzerland); Trabelsi, S.; Gharbi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia)

    2009-11-15

    The present study extends the viscosity measurements performed by Ghaouar et al. [Physica B, submitted for publication.] to study the conformational change of the cellulase enzymes in aqueous-acetonitrile mixture. We aim to investigate: (i) the denaturation process by measuring the specific viscosity for temperatures varying between 25 and 65 deg. C and acetonitrile concentrations between 0% and 50%, (ii) the enzyme-enzyme interaction by calculating the Huggins coefficient and (iii) the enzyme sizes by following the hydrodynamic radius for various temperatures. The precipitation of cellulases versus acetonitrile concentration is also considered. We show from all physical quantities measured in this work that the precipitation and the denaturation processes of cellulase enzymes exist together.

  7. Study of cellulase enzymes self-assembly in aqueous-acetonitrile solvent: Viscosity measurements

    International Nuclear Information System (INIS)

    Ghaouar, N.; Aschi, A.; Belbahri, L.; Trabelsi, S.; Gharbi, A.

    2009-01-01

    The present study extends the viscosity measurements performed by Ghaouar et al. [Physica B, submitted for publication.] to study the conformational change of the cellulase enzymes in aqueous-acetonitrile mixture. We aim to investigate: (i) the denaturation process by measuring the specific viscosity for temperatures varying between 25 and 65 deg. C and acetonitrile concentrations between 0% and 50%, (ii) the enzyme-enzyme interaction by calculating the Huggins coefficient and (iii) the enzyme sizes by following the hydrodynamic radius for various temperatures. The precipitation of cellulases versus acetonitrile concentration is also considered. We show from all physical quantities measured in this work that the precipitation and the denaturation processes of cellulase enzymes exist together.

  8. Control of radio degradation of natural polymers by measurement of viscosity and molecular weight determination

    International Nuclear Information System (INIS)

    Nabinger Machado, Patricia; Cerchietti, Maria Luciana; Mondino, Angel V.; Smolko, Eduardo E.

    2009-01-01

    Applications are now being made in various fields of oligosaccharides obtained by the depolymerization of large molecules such as natural alginates, carrageenan, pectin and chitosan. Find use in various disciplines such as crop production, sanitation, pharmacy, cosmetics, etc. Given the diversity of origins of these materials, almost all of marine origin, was the need for universal methods for recognition and composition, then the possible ways to get processed. A centralized program by the IAEA is promoting the use of ionizing radiation for these changes. This paper resents the calculations used to obtain the molecular weight of polysaccharides from determinations of viscosity. It has been found the molecular weight of sodium alginate and kappa-carrageenan irradiated with cobalt-60 gamma rays at doses between 2 and 35 kGy in solid state. We used a capillary Cannon Viscometer Ubbelohde-type and a protocol for standardized calculation procedure for this purpose. Were obtained reading times for passage through the capillary Viscometer, with various concentrations of polymer solutions of virgin material and the irradiated and from there calculated the relative viscosities, specific, inherent, reduced and intrinsic and then using the ratio of Mark-Houwink-SAKURADA calculate the viscosity average molecular weight of the different polymers. The changes found in the molecular weights by radio-depolymerization reach two orders of magnitude in some cases giving oligosaccharides of 8-12 monomer units. It is considered that this depolymerization method is effective and inexpensive compared to enzymatic or chemical methods. (author)

  9. Measurements and correlation of viscosities and conductivities for the mixtures of ethylammonium nitrate with organic solvents

    International Nuclear Information System (INIS)

    Litaeim, Yousra; Zarrougi, Ramzi; Dhahbi, Mahmoud

    2009-01-01

    Room temperature ionic liquids (IL) as a new class of organic molten salts have been considered as an alternative of traditional organic solvents (OS). The physico-chemical transport properties of mixtures IL/OS were investigated and described by ion-ion, ion solvent and solvent-solvent interactions. Ethylammonium nitrate (EAN) was studied in presence of two types of organic solvents: the dimethyl carbonate (DMC) and the formamide (FA). The variation of the viscosity with salt concentration and temperature shows that EAN ions behave as a structure breaker for the DMC. However, no effect was recorded in the case of FA. Concentrated electrolyte solutions behave as very structured media and checked a theory of pseudo-lattice. The existence of a conductivity maximum indicates two competing effects; the increasing number of charge carriers and the higher viscosity of the electrolyte as the salt concentration was raised. The use of the Walden product to investigate ionic interactions of EAN with both solvents was discussed. A study of the effect of temperature on the conductivity and viscosity reveals that both systems (EAN/DMC and EAN/FA) obey an Arrhenius low. The activation energies for the tow transport process (Ea,L and Ea,h) as a function of the salt concentration were evaluated.

  10. Viscosity Measurements of SiO2-"FeO"-MgO System in Equilibrium with Metallic Fe

    Science.gov (United States)

    Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun

    2014-01-01

    The present study delivers the measurements of viscosities in the SiO2-"FeO"-MgO system in equilibrium with metallic Fe. The rotational spindle technique was used for the measurements at the temperature range of 1523 K to 1773 K (1250 °C to 1500 °C). Molybdenum crucibles and spindles were employed in all measurements. The viscosity measurements were carried out at 31 to 47 mol pct SiO2 and up to 18.8 mol pct MgO. Analysis of the quenched sample by Electron probe X-ray microanalysis after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The replacement of "FeO" by MgO was found to increase viscosity and activation energy of the SiO2-"FeO"-MgO slags. The modified Quasi-chemical Viscosity Model was further optimized in this system based on the current viscosity measurements.

  11. Solitary traveling wave solutions of pressure equation of bubbly liquids with examination for viscosity and heat transfer

    Science.gov (United States)

    Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen

    2018-03-01

    In this research, we investigate one of the most popular model in nature and also industrial which is the pressure equation of bubbly liquids with examination for viscosity and heat transfer which has many application in nature and engineering. Understanding the physical meaning of exact and solitary traveling wave solutions for this equation gives the researchers in this field a great clear vision of the pressure waves in a mixture liquid and gas bubbles taking into consideration the viscosity of liquid and the heat transfer and also dynamics of contrast agents in the blood flow at ultrasonic researches. To achieve our goal, we apply three different methods which are extended tanh-function method, extended simple equation method and a new auxiliary equation method on this equation. We obtained exact and solitary traveling wave solutions and we also discuss the similarity and difference between these three method and make a comparison between results that we obtained with another results that obtained with the different researchers using different methods. All of these results and discussion explained the fact that our new auxiliary equation method is considered to be the most general, powerful and the most result-oriented. These kinds of solutions and discussion allow for the understanding of the phenomenon and its intrinsic properties as well as the ease of way of application and its applicability to other phenomena.

  12. Influence Of Specific Mechanical Energy On Cornmeal Viscosity Measured By An On-line System During Twin-screw Extrusion

    OpenAIRE

    Chang Y.K.; Martinez-Bustos F.; Park T.S.; Kokini J.L.

    1999-01-01

    The influence of specific mechanical energy (SME) on cornmeal viscosity during the twin-screw extrusion at feed moisture contents of 25 and 30% and screw speeds in the range from 100 to 500 rpm was measured. Cornmeal was extruded in a co-rotating, intermeshing twin-screw coupled to a slit die rheometer. One approach to the on-line rheological measurement is to use a slit die with the extruder. In the present work it was show that shear viscosity decreased as a function of SME. The viscosity o...

  13. Viscosity Measurements and Correlations for 1,1,1,2-tetrafluoroethane (HFC-134a) up to 140 MPa

    DEFF Research Database (Denmark)

    Comuñas, M.J.P.; Baylaucq, A.; Cisneros, Sergio

    2003-01-01

    In spite of being one of the most studied refrigerants, large discrepancies in the experimental determination of the dynamic viscosity of 1, 1, 1,2-tetrafluoroethane (HFC-134a) prevail. Additionally, there is a need for supplementary high-pressure measurements that can help to derive sound general...... correlations for the viscosity of this compound. Hence, in this work new dynamic viscosity measurements for HFC-134a using a falling-body viscometer in the temperature range of 293.15-373.15 K and pressures up to 140 MPa are presented. This work high-pressure data in combination with already published data...

  14. Effectiveness of the squeezing out and final squeezing out of petroleum of an increased viscosity by alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Begnazarov, T.

    1979-01-01

    The remaining petroleum in the flooded zone is determined by the ratio of viscosity forces to the forces of the surface tension, which are expressed by the coefficient Ka. With this, for each kind of porous medium, there exists a natural cricial value Ka. For the purpose of studying the effect of the given parameters on the value of the remaining petroleum, experiments were carried out on artificial specimens. In the tests, using petroleum of the Mishkin deposit, the surface tension on the boundary of the petroleum with the distilled water and alkaline solutions were respectively equal to 37.1 and 1.33 dynes per centimeter. The experiments showed, that the squeezing out of the petroleum with water or alkaline solutions leads to similar results. This means, that the composite parameter Ka does not affect the value of the remaining petroleum saturation. The effectiveness of the final squeezing out of the petroleum of increased viscosity was also studied. These experiments were carried out in two variations of the injection of the squeezed out agent: in the first variation, the petroleum was squeezed out with water in the first stage, and in the second stage it was squeezed out by an alkaline solution, and in the subsequent stages, a change in the squeezing out agent took place. By finishing the first stage, the attained values of the coefficients of the squeezing out were practically similar (0.72). In the second stage, the final squeezing out of the petroleum with a solution of alkaline, provided a major effect.

  15. Nano-viscosity of supercooled liquid measured by fluorescence correlation spectroscopy: Pressure and temperature dependence and the density scaling

    Science.gov (United States)

    Meier, G.; Gapinski, J.; Ratajczyk, M.; Lettinga, M. P.; Hirtz, K.; Banachowicz, E.; Patkowski, A.

    2018-03-01

    The Stokes-Einstein relation allows us to calculate apparent viscosity experienced by tracers in complex media on the basis of measured self-diffusion coefficients. Such defined nano-viscosity values can be obtained through single particle techniques, like fluorescence correlation spectroscopy (FCS) and particle tracking (PT). In order to perform such measurements, as functions of pressure and temperature, a new sample cell was designed and is described in this work. We show that this cell in combination with a long working distance objective of the confocal microscope can be used for successful FCS, PT, and confocal imaging experiments in broad pressure (0.1-100 MPa) and temperature ranges. The temperature and pressure dependent nano-viscosity of a van der Waals liquid obtained from the translational diffusion coefficient measured in this cell by means of FCS obeys the same scaling as the rotational relaxation and macro-viscosity of the system.

  16. Measure-valued solutions to the complete Euler system revisited

    Science.gov (United States)

    Březina, Jan; Feireisl, Eduard

    2018-06-01

    We consider the complete Euler system describing the time evolution of a general inviscid compressible fluid. We introduce a new concept of measure-valued solution based on the total energy balance and entropy inequality for the physical entropy without any renormalization. This class of so-called dissipative measure-valued solutions is large enough to include the vanishing dissipation limits of the Navier-Stokes-Fourier system. Our main result states that any sequence of weak solutions to the Navier-Stokes-Fourier system with vanishing viscosity and heat conductivity coefficients generates a dissipative measure-valued solution of the Euler system under some physically grounded constitutive relations. Finally, we discuss the same asymptotic limit for the bi-velocity fluid model introduced by H.Brenner.

  17. Stability of Solutions of Parabolic PDEs with Random Drift and Viscosity Limit

    International Nuclear Information System (INIS)

    Deck, T.; Potthoff, J.; Vage, G.; Watanabe, H.

    1999-01-01

    Let u α be the solution of the Ito stochastic parabolic Cauchy problem ∂u/∂t - L =ξ.∇u,u , where ξ is a space-time noise. We prove that u α depends continuously on α , when the coefficients in L α converge to those in L 0 . This result is used to study the diffusion limit for the Cauchy problem in the Stratonovich sense: when the coefficients of L α tend to 0 the corresponding solutions u α converge to the solution u 0 of the degenerate Cauchy problem ∂u 0 /∂t=ξ o ∇u 0 , u o . These results are based on a criterion for the existence of strong limits in the space of Hida distributions (S) * . As a by-product it is proved that weak solutions of the above Cauchy problem are in fact strong solutions

  18. Design of instantaneous liquid film thickness measurement system for conductive or non-conductive fluid with high viscosity

    Directory of Open Access Journals (Sweden)

    Yongxin Yu

    2017-06-01

    Full Text Available In the paper, a new capacitive sensor with a dielectric film coating was designed to measure the thickness of the liquid film on a flat surface. The measured medium can be conductive or non-conductive fluid with high viscosity such as silicone oil, syrup, CMC solution and melt. With the dielectric film coating, the defects caused by the humidity in a capacitor can be avoided completely. With a excitation frequency 0-20kHz, the static permittivity of capacitive sensor is obtained and stable when small thicknesses are monitored within the frequency of 0-3kHz. Based on the measurement principle, an experimental system was designed and verified including calibration and actual measurement for different liquid film thickness. Experimental results showed that the sensitivity, the resolution, repeatability and linear range of the capacitive sensor are satisfied to the liquid film thickness measurement. Finally, the capacitive measuring system was successfully applied to the water, silicone oil and syrup film thickness measurement.

  19. Measuring and overcoming limits of the Saffman-Delbrück model for soap film viscosities.

    Science.gov (United States)

    Vivek, Skanda; Weeks, Eric R

    2015-01-01

    We observe tracer particles diffusing in soap films to measure the two-dimensional (2D) viscous properties of the films. Saffman-Delbrück type models relate the single-particle diffusivity to parameters of the film (such as thickness h) for thin films, but the relation breaks down for thicker films. Notably, the diffusivity is faster than expected for thicker films, with the crossover at h/d = 5.2 ± 0.9 using the tracer particle diameter d. This indicates a crossover from purely 2D diffusion to diffusion that is more three-dimensional. We demonstrate that measuring the correlations of particle pairs as a function of their separation overcomes the limitations of the Saffman-Delbrück model and allows one to measure the viscosity of a soap film for any thickness.

  20. Measurement and calculation of the viscosity of metals—a review of the current status and developing trends

    International Nuclear Information System (INIS)

    Cheng, J; Hort, N; Kainer, K U; Gröbner, J; Schmid-Fetzer, R

    2014-01-01

    Viscosity is an important rheological property of metals in casting because it controls the rate of transport of liquid metals, which may lead to casting defects such as hot tearing and porosity. The measurement methods and numerical models of the viscosity of liquid and semi-solid state metals that have been published to date are reviewed in this paper. Most experimental measurements have been performed with rotational and oscillatory viscometers, which offer advantages at low viscosities in particular. Besides these two traditional methods for measuring viscosities, a couple of studies also introduced the technique of isothermal compression for alloys in the semi-solid state, and even an optical basicity method for the viscosity of slags. As to numerical models, most published results show that the viscosity of liquid and semi-solid state metals can be described by the Arrhenius, Andrade, Kaptay or Budai–Bemkő–Kaptay equations. In addition, there are some alternative models, such as the power model and the isothermal stress–strain model. (topical review)

  1. Viscosity, surface tension, density and contact angle of selected PbI2, PbCl2 and methylammonium lead halide perovskite solutions used in perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Mohammad-Reza Ahmadian-Yazdi

    2018-02-01

    Full Text Available Perovskite solar cells (PSCs are currently under vigorous research and development, owing to their compelling power conversion efficiencies. PSCs are solution-processed and, therefore, are fabricated using casting and printing methods, such as spin, spray and blade coating. The coating characteristics significantly depend on the physical and rheological properties of the solutions. Thus, due to the scarcity of such properties, in this work, we report the surface tension, viscosity, density, and contact angle of selected methylammonium lead halide perovskite solutions, in order to gain insight into the behavior of the perovskite solutions and the range of such physical properties. The contact angles were measured on PEDOT:PSS and compact TiO2 (c-TiO2 substrates, commonly used as the underneath layers of the perovskite film. In total, 12 solutions of CH3NH3PbI3 and CH3NH3PbI3-xClx dissolved in common solvents, as well as solutions of PbI2, PbCl2, and CH3NH3I were tested. Among the results, it is shown that the tested perovskite solutions are Newtonian, the apparent contact angles on the mesoporous TiO2 (m-TiO2 are close to zero, on the PEDOT:PSS are around 10°, and on the c-TiO2 are around 30°. Also, contact angle hysteresis is observed in the case of the c-TiO2 substrates. Representative impact dynamics and spreading of perovskite solution droplets are also studied, to demonstrate the importance of the solution properties and process parameters on the coating process.

  2. Viscosity, surface tension, density and contact angle of selected PbI2, PbCl2 and methylammonium lead halide perovskite solutions used in perovskite solar cells

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad-Reza; Rahimzadeh, Amin; Chouqi, Zineb; Miao, Yihe; Eslamian, Morteza

    2018-02-01

    Perovskite solar cells (PSCs) are currently under vigorous research and development, owing to their compelling power conversion efficiencies. PSCs are solution-processed and, therefore, are fabricated using casting and printing methods, such as spin, spray and blade coating. The coating characteristics significantly depend on the physical and rheological properties of the solutions. Thus, due to the scarcity of such properties, in this work, we report the surface tension, viscosity, density, and contact angle of selected methylammonium lead halide perovskite solutions, in order to gain insight into the behavior of the perovskite solutions and the range of such physical properties. The contact angles were measured on PEDOT:PSS and compact TiO2 (c-TiO2) substrates, commonly used as the underneath layers of the perovskite film. In total, 12 solutions of CH3NH3PbI3 and CH3NH3PbI3-xClx dissolved in common solvents, as well as solutions of PbI2, PbCl2, and CH3NH3I were tested. Among the results, it is shown that the tested perovskite solutions are Newtonian, the apparent contact angles on the mesoporous TiO2 (m-TiO2) are close to zero, on the PEDOT:PSS are around 10°, and on the c-TiO2 are around 30°. Also, contact angle hysteresis is observed in the case of the c-TiO2 substrates. Representative impact dynamics and spreading of perovskite solution droplets are also studied, to demonstrate the importance of the solution properties and process parameters on the coating process.

  3. New instrument for on-line viscosity measurement of fermentation media.

    Science.gov (United States)

    Picque, D; Corrieu, G

    1988-01-01

    In an attempt to resolve the difficult problem of on-line determination of the viscosity of non-Newtonian fermentation media, the authors have used a vibrating rod sensor mounted on a bioreactor. The sensor signal decreases nonlinearly with increased apparent viscosity. Electronic filtering of the signal damps the interfering effect of aeration and mechanical agitation. Sensor drift is very low (0.03% of measured value per hour). On the rheological level the sensor is primarily an empirical tool that must be specifically calibrated for each fermentation process. Once this is accomplished, it becomes possible to establish linear or second-degree correlations between the electrical signal from the sensor and the essential parameters of the fermentation process in question (pH of a fermented milk during acidification, concentration of extra cellular polysaccharide). In addition, by applying the power law to describe the rheological behavior of fermentation media, we observe a second-order polynomial correlation between the sensor signal and the behavior index (n).

  4. In situ droplet surface tension and viscosity measurements in gas metal arc welding

    International Nuclear Information System (INIS)

    Bachmann, B; Siewert, E; Schein, J

    2012-01-01

    In this paper, we present an adaptation of a drop oscillation technique that enables in situ measurements of thermophysical properties of an industrial pulsed gas metal arc welding (GMAW) process. Surface tension, viscosity, density and temperature were derived expanding the portfolio of existing methods and previously published measurements of surface tension in pulsed GMAW. Natural oscillations of pure liquid iron droplets are recorded during the material transfer with a high-speed camera. Frame rates up to 30000 fps were utilized to visualize iron droplet oscillations which were in the low kHz range. Image processing algorithms were employed for edge contour extraction of the droplets and to derive parameters such as oscillation frequencies and damping rates along different dimensions of the droplet. Accurate surface tension measurements were achieved incorporating the effect of temperature on density. These are compared with a second method that has been developed to accurately determine the mass of droplets produced during the GMAW process which enables precise surface tension measurements with accuracies up to 1% and permits the study of thermophysical properties also for metals whose density highly depends on temperature. Thermophysical properties of pure liquid iron droplets formed by a wire with 1.2 mm diameter were investigated in a pulsed GMAW process with a base current of 100 A and a pulse current of 600 A. Surface tension and viscosity of a sample droplet were 1.83 ± 0.02 N m -1 and 2.9 ± 0.3 mPa s, respectively. The corresponding droplet temperature and density are 2040 ± 50 K and 6830 ± 50 kg m -3 , respectively. (paper)

  5. Dissipative weak solutions to compressible Navier–Stokes–Fokker–Planck systems with variable viscosity coefficients

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Lu, Y.; Süli, E.

    2016-01-01

    Roč. 443, č. 1 (2016), s. 322-351 ISSN 0022-247X Keywords : weak solutions * kinetic polymer models * FENE chain Subject RIV: BA - General Mathematics Impact factor: 1.064, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022247X1630172X

  6. Phenomenology of polymer solution dynamics

    National Research Council Canada - National Science Library

    Phillies, George D. J

    2011-01-01

    ... solutions, not dilute solutions or polymer melts. From centrifugation and solvent dynamics to viscosity and diffusion, experimental measurements and their quantitative representations are the core of the discussion...

  7. Evaluation of stability and viscosity measurement of emulsion from oil from production in northern oilfield in Thailand

    Science.gov (United States)

    Juntarasakul, O.; Maneeintr, K.

    2018-04-01

    Emulsion is normally present in oil due to the mixing occurring during oil recovery. The formation of emulsion can cause some problems in production and transportation. Viscosity and stability of emulsion play a key roles in oil transportation and separation to meet sales specification. Therefore, the aims of this research are to measure the viscosity of oil an emulsion and to evaluate the stability of emulsion of light oil from Fang oilfield in Thailand. The parameters of this study are temperature, shear rate and water cut ranging from 50 to 80 °C, 3.75 to 70 s-1 and 0 to 60%, respectively. These effects of parameters on viscosity and stability of emulsion are required for the design of the process and to increase oil production with various conditions. The results shows that viscosity decreases as temperature and shear rate increase. In contrast, viscosity becomes higher when water cut is lower. Furthermore, droplet sizes of water-in-oil emulsion at different conditions are investigated the stability of emulsion. The droplet sizes become smaller when high shear rate is applied and emulsion becomes more stable. Furthermore, correlations are developed to predict the viscosity and stability of the oil and emulsion from Thailand.

  8. Containerless Measurements of Density and Viscosity of Fe-Co Alloys

    Science.gov (United States)

    Lee, Jonghyun; Choufani, Paul; Bradshaw, Richard C.; Hyers, Robert W.; Matson, Douglas M.

    2012-01-01

    During the past years, extensive collaborative research has been done to understand phase selection in undercooled metals using novel containerless processing techniques such as electrostatic and electromagnetic levitation. Of major interest is controlling a two-step solidification process, double recalescence, in which the metastable phase forms first and then transforms to the stable phase after a certain delay time. The previous research has shown that the delay time is greatly influenced by the internal convection velocity. In the prediction of internal flow, the fidelity of the results depends on the accuracy of the material properties. This research focuses on the measurements of density and viscosity of Fe-Co alloys which will be used for the fluid simulations whose results will support upcoming International Space Station flight experiments.

  9. Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements

    Science.gov (United States)

    Johnson, Tyler; Lang, Amy

    2009-11-01

    Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.

  10. Viscosity measurement - probably a means for detecting radiation treatment of spices. Viskositaetsmessung - ein Verfahren zur Identifizierung strahlenbehandelter Gewuerze

    Energy Technology Data Exchange (ETDEWEB)

    Heide, L; Albrich, S; Boegl, K W; Mohr, E; Wichmann, G

    1987-12-01

    The viscosity of 13 different spices and dried vegetables in total was measured. Optimal conditions were first determined for each product, i.e. concentration, pH-value, temperature, particle size and soaking time. For method evaluation, examinations were primarily performed to study the effect of storage, the reproducibility and the influence of the different varieties of the same spice. In supplement, for pepper, the viscosity was measured as a function of radiation dose. In summation, significant changes in the gel forming capability after irradiation could be observed after preliminary experiments in 8 dried spices (ginger, carrots, leek, cloves, pepper, celery, cinnamon and onions). With 3 spices (ginger, pepper and cinnamon) could the results from examining all different varieties of the same spice be substantiated. An additional influence of storage time on viscosity could not be proved during the investigative period of 8 months. Generally seen, there is no possibility of being able to identify an irradiated spice on the basis of viscosity measurements alone, since the difference between the varieties of one and the same spice is considerably great. However, radiation treatment can be reliably excluded with ginger, pepper and cinnamon, if the viscosities are high (10-20 Pa x s).

  11. Perturbation Solutions for Hagen-Poiseuille Flow and Heat Transfer of Third-Grade Fluid with Temperature-Dependent Viscosities and Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    B. Y. Ogunmola

    2016-01-01

    Full Text Available Regular perturbation technique is applied to analyze the fluid flow and heat transfer in a pipe containing third-grade fluid with temperature-dependent viscosities and heat generation under slip and no slip conditions. The obtained approximate solutions were used to investigate the effects of slip on the heat transfer characteristics of the laminar flow in a pipe under Reynolds’s and Vogel’s temperature-dependent viscosities. Also, the effects of parameters such as variable viscosity, non-Newtonian parameter, viscous dissipation, and pressure gradient at various values were established. The results of this work were compared with the numerical results found in literature and good agreements were established. The results can be used to advance the analysis and study of the behavior of third-grade fluid flow and steady state heat transfer processes such as those found in coal slurries, polymer solutions, textiles, ceramics, catalytic reactors, and oil recovery applications.

  12. Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory

    NARCIS (Netherlands)

    Meijer, A.S.; Wijn, de A.S.; Peters, M.F.E.; Dam, N.J.; Water, van de W.

    2010-01-01

    We investigate coherent Rayleigh–Brillouin spectroscopy as an efficient process to measure the bulk viscosity of gases at gigahertz frequencies. Scattered spectral distributions are measured using a Fizeau spectrometer. We discuss the statistical error due to the fluctuating mode structure of the

  13. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network.

    Science.gov (United States)

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for

  14. Technical Note: New methodology for measuring viscosities in small volumes characteristic of environmental chamber particle samples

    Directory of Open Access Journals (Sweden)

    L. Renbaum-Wolff

    2013-01-01

    Full Text Available Herein, a method for the determination of viscosities of small sample volumes is introduced, with important implications for the viscosity determination of particle samples from environmental chambers (used to simulate atmospheric conditions. The amount of sample needed is < 1 μl, and the technique is capable of determining viscosities (η ranging between 10−3 and 103 Pascal seconds (Pa s in samples that cover a range of chemical properties and with real-time relative humidity and temperature control; hence, the technique should be well-suited for determining the viscosities, under atmospherically relevant conditions, of particles collected from environmental chambers. In this technique, supermicron particles are first deposited on an inert hydrophobic substrate. Then, insoluble beads (~1 μm in diameter are embedded in the particles. Next, a flow of gas is introduced over the particles, which generates a shear stress on the particle surfaces. The sample responds to this shear stress by generating internal circulations, which are quantified with an optical microscope by monitoring the movement of the beads. The rate of internal circulation is shown to be a function of particle viscosity but independent of the particle material for a wide range of organic and organic-water samples. A calibration curve is constructed from the experimental data that relates the rate of internal circulation to particle viscosity, and this calibration curve is successfully used to predict viscosities in multicomponent organic mixtures.

  15. Influence of calcium chelators on concentrated micellar casein solutions : from micellar structure to viscosity and heat stability

    NARCIS (Netherlands)

    Kort, de E.J.P.

    2012-01-01

    In practice it is challenging to prepare a concentrated medical product with high heat stability
    and low viscosity. Calcium chelators are often added to dairy products to improve heat stability,
    but this may increase viscosity through interactions with the casein proteins. The aim of

  16. An ultrasonic instrument for measuring density and viscosity of tank waste

    International Nuclear Information System (INIS)

    Sheen, S.H.; Chien, H.T.; Raptis, A.C.

    1997-01-01

    An estimated 381,000 m 3 /1.1 x 10 9 Ci of radioactive waste are stored in high-level waste tanks at the Hanford Savannah River, Idaho Nuclear Engineering and Environmental Laboratory, and West Valley facilities. This nuclear waste has created one of the most complex waste management and cleanup problems that face the United States. Release of radioactive materials into the environment from underground waste tanks requires immediate cleanup and waste retrieval. Hydraulic mobilization with mixer pumps will be used to retrieve waste slurries and salt cakes from storage tanks. To ensure that transport lines in the hydraulic system will not become plugged, the physical properties of the slurries must be monitored. Characterization of a slurry flow requires reliable measurement of slurry density, mass flow, viscosity, and volume percent of solids. Such measurements are preferably made with on-line nonintrusive sensors that can provide continuous real-time monitoring. With the support of the U.S. Department of Energy (DOE) Office of Environmental Management (EM-50), Argonne National Laboratory (ANL) is developing an ultrasonic instrument for in-line monitoring of physical properties of radioactive tank waste

  17. Field device to measure viscosity, density, and other slurry properties in drilled shafts : final report.

    Science.gov (United States)

    2016-04-01

    Proper performance of mineral slurries used to stabilize drilled shaft excavations is maintained by assuring the : density, viscosity, pH, and sand content stay within state specified limits. These limits have been set either by : past experience, re...

  18. Validation of the Eddy Viscosity and Lange Wake Models using Measured Wake Flow Characteristics Behind a Large Wind Turbine Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hyeon; Kim, Bum Suk; Huh, Jong Chul [Jeju National Univ., Jeju (Korea, Republic of); Go, Young Jun [Hanjin Ind, Co., Ltd., Yangsan (Korea, Republic of)

    2016-01-15

    The wake effects behind wind turbines were investigated by using data from a Met Mast tower and the SCADA (Supervisory Control and Data Acquisition) system for a wind turbine. The results of the wake investigations and predicted values for the velocity deficit based on the eddy viscosity model were compared with the turbulence intensity from the Lange model. As a result, the velocity deficit and turbulence intensity of the wake increased as the free stream wind speed decreased. In addition, the magnitude of the velocity deficit for the center of the wake using the eddy viscosity model was overestimated while the turbulence intensity from the Lange model showed similarities with measured values.

  19. Effect of gamma irradiation in the viscosity of gelatin and pectin solutions used in food industry; Efeito da radiacao gama sobre a viscosidade de solucoes de gelatina e pectina utilizadas na industria de alimentos

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Patricia Yoko

    2008-07-01

    Pectin is a polysaccharide substance of plant origin that may be used as gelling agent, stabilizer in jams, in yogurt drinks and lactic acid beverages. Gelatin, a protein from bovine origin, in this case, is mainly used as gelling agent due to hydrogel formation during cooling. The {sup 60} Co-irradiation process may cause various modifications in macromolecules, some with industrial application, as reticulation. The dynamic response of viscoelastic materials can be used in order to give information about the structural aspect of a system at molecular level. In the present work samples of pectin with different degree of methoxylation, gelatin and the mixture of both were employed to study the radiation sensitivity by means of viscosity measurements. Solutions prepared with citric pectin with high methoxylation content (ATM) 1 por cent, pectin with low content (BTM) 1 por cent, gelatin 0.5 por cent, 1 por cent and 2 por cent, and the mixture 1 por cent and 2 por cent were irradiated with gamma rays at different doses, up to 15 kGy with dose rate about 2 kGy/h. After irradiation the viscosity was measured within a period of 48 h. The viscosity of ATM and BTM pectin solutions decreased sharply with the radiation dose. However, the gelatin sample presented a great radiation resistance. When pectin and gelatin solutions were mixed a predominance of pectin behavior was found. (author)

  20. Viscosity measurements - a comprehensive overview on the method and its applicability for the identification of irradiated foodstuffs

    International Nuclear Information System (INIS)

    Nuernberger, E.; Heide, L.; Boegl, K.W.

    1991-01-01

    The viscosity of a foodstuff depends mainly on the composition and the amount of starch, pectins and cellulose, which may undergo changes after irradiation. The investigation on the applicability of viscosity measurement for the identification of irradiated foods showed so far that this method seems to be applicable only to a definite number of spices and foods. The optimal method has to be determined empirically, because the reason is still unknown, why in some cases, the viscosity values decrease and in other cases increase after irradiation - and why sometimes no changes occur at all. Until now, the following irradiated spices can be identified by this method: cardamom, cinnamon, curcuma, horse-radish, nutmeg, mustard-seed and white pepper. (21 figs, 2 tabs, 10 refs)

  1. Applying of centrifugal chromatography on DEAE cellulose and viscosity measurement to estimate damage caused by gamma irradiation in lymphocyte DNA

    International Nuclear Information System (INIS)

    Olinski, R.

    1977-01-01

    DNA isolated from limphocytes of pig blood was irradiated by γ radiation in the range of 0.5-50 Krads. Changes caused by irradiation (single and double breaks) were determined by using viscosity measurement and centrifugal chromatography on DEAE cellulose. Study of DNA chromatograms showed possibility to apply centrifugal chromatography on DEAE cellulose to estimate changes caused by irradiation. (author)

  2. Volumetric, viscosity, and electrical conductivity properties of aqueous solutions of two n-butylammonium-based protic ionic liquids at several temperatures

    International Nuclear Information System (INIS)

    Xu, Yingjie

    2013-01-01

    Highlights: • Densities and viscosities of N4AC + water and N4NO 3 + water mixtures were measured. • Volumetric and viscosity properties were calculated. • Redlich–Kister equation was used to correlate the excess molar volumes and viscosity deviations. • Electrical conductivity was fitted according to the empirical Casteel–Amis equation. • The interactions and structural effects of N4AC or N4NO 3 with water were analyzed. -- Abstract: Densities and viscosities of (n-butylammonium acetate (N4AC) protic ionic liquid + water) and (n-butylammonium nitrate (N4NO 3 ) protic ionic liquid + water) mixtures were measured at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K under atmospheric pressure. Electrical conductivities of the above-mentioned systems were determined at 298.15 K. Excess molar volumes and viscosity deviations were obtained from the experimental results and fitted to the Redlich–Kister equation with satisfactory results. Other volumetric properties, such as apparent molar volumes, partial molar volumes, and excess partial molar volumes were also calculated. The concentration dependence of electrical conductivity was fitted according to the empirical Casteel–Amis equation. Based on the measured and derived properties, the molecular interactions and structural factors in the above-mentioned systems were discussed

  3. Determination of viscosity of fayalite slags for kv model and measurements by means of inclined plane

    International Nuclear Information System (INIS)

    Bazan, V.; Goni, C.; Castella, L.; Brandaleze, E.; Verdeja, L. F.; Parra, R.

    2006-01-01

    The viscosity of the lands represents one of the most relevant variables of most of the processes metallurgical and kinetics of the refine operations, since it is one of the decisive factors of the efficiency in the reactions between metal and lag, as much as slag-refractory. In the last decades, the mathematical models of different metallurgical processes have established methods to predict viscosity of mixtures of oxides fused to high temperatures in function of the chemical composition. The model developed by Toguri, based on the data reported by Johasen and Winterhager et al has proposed the Kv model. The used index it is similar to the relationship used in the steel industry like the basicity index. It is presented in this work values determined of viscosity in experimental form by means of the technique of inclined plane. (Author)

  4. Spray-dried HPMC microparticles of Indomethacin: Impact of drug-polymer ratio and viscosity of the polymeric solution on dissolution

    International Nuclear Information System (INIS)

    Alanazi, Fars K.; El-Badry, M.; Alsarra, Ibrahim A.

    2006-01-01

    Polymeric microparticles prepared by spray-drying techniques were investigated to enhance the dissolution rate of indomethacin (IM) in comparison with conventional microparticles prepared by co-precipitation solid dispersion method. Drug-polymer ratios and viscosity of polymeric solutions as potential factors were used in order to enhance the dissolution rate of IM. Spray-drying technique was used for preparing of microparticles using aqueous suspension of IM in hydroxypropyl methylcellulose (HPMC) polymer solution. The effect of drug-polymer ratios on dissolution rates of IM was studied in simulating intestinal medium. IM was analyzed spectrophotometrically at λ =320nm. For each drug-polymer ratios, low and high viscosity polymeric solutions were prepared and their impacts on the dissolution of IM were observed. Microparticles were morphologically characterized by optical microscopy. The interaction between IM and HPMC was studied by differential scanning caloremetry (DSC) and x-ray diffractometry (XRD). Spherical fluffy microparticles of IM were obtained using HPMC. It was observed that the prepared spray-dried microparticles significantly increase the dissolution rate of IM. The increase in dissolution rates was achieved with drug: polymer ratios 1: 1 as well as 1:2 and interestingly, the decrease in drug content in ratio exceeding 1:2 resulted in reduction in dissolution rates. Also, with all drug-polymer ratios, the low viscosity polymeric solutions gave the higher dissolution rates. In conclusion, HPMC microparticles loaded with IM were prepared by spray drying-technique and the potential of this technique to enhance the dissolution was studied. The findings indicate that the dissolution profile of IM microparticles prepared by spray -drying technique relied on drug-polymer ratios and viscosity of polymeric solutions. (author)

  5. Viscosity overshoot followed by steady state measured in uni-axial elongation of LDPE. Ole Hassager, Henrik Koblitz Rasmussen, Anders Bach and Jens Kromann Nielsen

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole; Bach, Anders

    2004-01-01

    The transient (e.g. start up of) elongational viscosity of three low-density polyethylene (LDPE) melts (BASF Lupolen 1810H, 1840D and 3020D) was measured using a filament stretching rheometer (FSR) capable of measuring at elevated temperatures. The transient uni-axial elongational viscosity showe...

  6. Density and viscosity study of nicotinic acid and nicotinamide in dilute aqueous solutions at and around the temperature of the maximum density of water

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Dahasahasra, Prachi N.; Paliwal, Lalitmohan J.; Deshmukh, Dinesh W.

    2014-01-01

    Highlights: • Volumetric and transport behaviour of aqueous solutions of important vitamins are reported. • Various interactions of nicotinic acid and nicotinamide with water have been reported. • The temperature dependence of interactions between solute and solvent is discussed. • The study indicates that nicotinamide is more hydrated as compared to nicotinic acid. - Abstract: In the present study, we report experimental densities (ρ) and viscosities (η) of aqueous solutions of nicotinic acid and nicotinamide within the concentration range (0 to 0.1) mol · kg −1 at T = (275.15, 277.15 and 279.15) K. These parameters are then used to obtain thermodynamic and transport functions such as apparent molar volume of solute (V ϕ ), limiting apparent molar volume of solute (V ϕ 0 ), limiting apparent molar expansivity of solute (E ϕ 0 ), coefficient of thermal expansion (α ∗ ), Jones–Dole equation viscosity A, B and D coefficients, temperature derivative of B coefficient i.e. (dB/dT) and hydration number (n H ), etc. The activation parameters of viscous flow for the binary mixtures have been determined and discussed in terms of Eyring’s transition state theory. These significant parameters are helpful to study the structure promoting or destroying tendency of solute and various interactions present in (nicotinic acid + water) and (nicotinamide + water) binary mixtures

  7. [Sputum viscosity and pulmonary function measurements during a one-week parenteral treatment with a standardized oxidation product of oil of turpentine and terpin hydrate].

    Science.gov (United States)

    Löllgen-Horres, I; Löllgen, H

    1976-01-01

    In 23 patients with chronic obstructive lung diseases, viscosity, airway resistance, arterial blood gases and acid-base balance, and sputum aspect were measured before and after one-week treatment with Ozothin, a substance from oxidation products of ol. terebinth. and terpinum hydratum. Within this time, viscosity of the sputum was reduced, airway resistance decreased, and arterial oxygen pressure slightly increased, whereas arterial carbon dioxide tension obvious change of sputum aspect could be observed. Correlation calculations revealed no significant relations between viscosity and the above cited lung function values. The results indicate that administration of Ozothin may liquefy viscous secretion and reduce sputum viscosity.

  8. Errors detection in viscosity temperature measurements. Pt. B. Results, usefullness. Fehlersuche bei Viskositaet-Temperatur-Messungen. T. B. Resultate, Nuetzlichkeit

    Energy Technology Data Exchange (ETDEWEB)

    Schwen, R. (BASF, Farbenlaboratorium, Ludwigshafen am Rhein (Germany)); Puhl, H. (BASF, Ammoniaklaboratorium, Ludwigshafen am Rhein (Germany))

    1992-06-01

    The temperature dependence of the viscosity spreads often over a large range. It can be measured with less then one per cent error with usual effort, but the result cannot yet be controlled to the same accuracy: Graphic methods are far too incorrect and the numerous approximate equations given in literature do not adequately represent the true shape of the curves of all types of substances at the whole range of interesting temperatures. The different slopes and curvatures of the temperature dependence of the dynamic and kinematic viscosities can now be represented by means of one-term or multi-term exponential-functions with a maximum of eight coefficients. The Antoine equation is included in this investigation and the Ubbelohde-Walter-equation for comparison only. Tests on more than 400 data sets show, that there is no single equation to cope with all existing slopes. The numerical values of the coefficients are determined by the Marquardt statistical search method; the starting values are obtained by fixed rules. Using a non-linear regression of exponential sums, the method exactly describes the viscosity-temperature-behavior of normal liquids and real gases as well as the supercritical region over any desired range starting with four measured values and being complete with nine measured values or more; it allows tabellation, interpolation and, with caution, extrapolation. In the first part published, the problem and the mathematic procedure were discussed. The following publication presents the results and considers the applicability. (orig.).

  9. Measurement of elongational viscosity of polymer melts using SER Universal Testing Platform

    Czech Academy of Sciences Publication Activity Database

    Filip, Petr; Švrčinová, Petra

    2012-01-01

    Roč. 22, č. 1 (2012), s. 14776 ISSN 1430-6395 R&D Projects: GA ČR GA103/08/1307; GA ČR GA103/09/2066 Institutional research plan: CEZ:AV0Z20600510 Keywords : elongational viscosity * SER Universal Testing Platform * polymer melts * LDPE Subject RIV: BK - Fluid Dynamics Impact factor: 1.226, year: 2012 http://www.ar.ethz.ch/TMPPDF/23074299892.48/ApplRheol_22_14776.pdf

  10. Numerical Solution of the Time-Dependent Navier–Stokes Equation for Variable Density–Variable Viscosity. Part I

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Xin, H.; Neytcheva, M.

    2015-01-01

    Roč. 20, č. 2 (2015), s. 232-260 ISSN 1392-6292 Institutional support: RVO:68145535 Keywords : variable density * phase-field model * Navier-Stokes equations * preconditioning * variable viscosity Subject RIV: BA - General Mathematics Impact factor: 0.468, year: 2015 http://www.tandfonline.com/doi/abs/10.3846/13926292.2015.1021395

  11. Comparison of quartz tuning forks and AlN-based extensional microresonators for viscosity measurements in oil/fuel mixtures

    Science.gov (United States)

    Toledo, J.; Manzaneque, T.; Hernando-García, J.; Vazquez, J.; Ababneh, A.; Seidel, H.; Lapuerta, M.; Sánchez-Rojas, J. L.

    2013-05-01

    In-situ monitoring of the physical properties of liquids is of great interest in the automotive industry. For example, lubricants are subject to dilution with diesel fuel as a consequence of late-injection processes, which are necessary for regenerating diesel particulate filters. This dilution can be determined by tracking the viscosity and the density of the lubricant. Here we report the test of two in-plane movement based resonators to explore their capability to monitor oil dilution with diesel and biodiesel. One of the resonators is the commercially available millimeter-sized quartz tuning fork, working at 32.7 kHz. The second resonator is a state-of-the-art micron-sized AlN-based rectangular plate, actuated in the first extensional mode in the MHz range. Electrical impedance measurements were carried out to characterize the performance of the structures in various liquid media in a wide range of viscosities. These measurements were completed with the development of low-cost electronic circuits to track the resonance frequency and the quality factor automatically, these two parameters allow to obtain the viscosity of various fluids under investigation, as in the case of dilution of lubricant SAE 15W40 and biodiesel.

  12. Radioactivity measurements and control solutions

    International Nuclear Information System (INIS)

    Bartos, D.; Ciobanu, M.; Constantin, F.; Petcu, M.; Rusu, Al.

    2003-01-01

    In our department, in the last years, a new line of production has been developed devoted to the radioactivity measurements (portal monitor, gamma source detector, neutron monitor). Instruments of different design (hand-held, portals or steady-state) are intended for detection and locating of radioactive sources. Monitors are intended to detect radioactive and special nuclear materials in vehicles, pedestrians, luggage, as well as for illegal traffic prevention of radioactive sources. Monitors provide audio and visual alarm signals when radioactive and/or special nuclear materials are detected. Neutron dosimeters are designed for the determination of dose equivalent rate around neutron generators or sources. All devices can be recommended for use to officers of customs, border guard and emergency services, civil defense, fire brigades, police and military departments, nuclear research or power facilities. Incorporating micro controllers and new design, our products span almost all the spectra of radioactivity detection (gamma, beta, X and neutrons). No special knowledge is needed to operate these instruments as all service functions are performed automatically (self-tests, background updating and threshold calculation). The Portal monitor is intended to be a checkpoint in contamination control or in unauthorized traffic of radioactive materials. The portal monitor can be installed both in open, unprotected to environmental conditions areas or in enclosed areas. It may be used at pedestrian cross border points, at check points of Nuclear Power Plants, enterprises of nuclear industry, weapons manufacturing and storage plants, nuclear waste disposal and storage sites, at the entrances to steel plants, the post-offices and airports, the governmental offices, banks, private companies etc. The monitor provides audio alarming signals when radioactive and/or special nuclear materials are detected. The monitor consists in a portal frame, which sustains 5 detectors. Each

  13. The influence of specific mechanical energy on cornmeal viscosity measured by an on-line system during twin-screw extrusion

    OpenAIRE

    CHANG, Y. K.; MARTINEZ-BUSTOS, F.; PARK, T. S.; KOKINI, J .L.

    1999-01-01

    The influence of specific mechanical energy (SME) on cornmeal viscosity during the twin-screw extrusion at feed moisture contents of 25 and 30% and screw speeds in the range from 100 to 500 rpm was measured. Cornmeal was extruded in a co-rotating, intermeshing twin-screw coupled to a slit die rheometer. One approach to the on-line rheological measurement is to use a slit die with the extruder. In the present work it was show that shear viscosity decreased as a function of SME. The viscosity o...

  14. Extremal solutions of measure differential equations

    Czech Academy of Sciences Publication Activity Database

    Monteiro, Giselle Antunes; Slavík, A.

    2016-01-01

    Roč. 444, č. 1 (2016), s. 568-597 ISSN 0022-247X Institutional support: RVO:67985840 Keywords : measure differential equations * extremal solution * lower solution Subject RIV: BA - General Mathematics Impact factor: 1.064, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022247X16302724

  15. Measurements of the viscosity of carbon dioxide at temperatures from (253.15 to 473.15) K with pressures up to 1.2 MPa

    International Nuclear Information System (INIS)

    Schäfer, Michael; Richter, Markus; Span, Roland

    2015-01-01

    Highlights: • A new rotating-body viscometer for the low-pressure region was presented. • A viscosity dependent offset was compensated by calibrating the viscometer. • The viscosity of carbon dioxide was measured at low pressures. • Measurements were carried out from T = (253.15 to 473.15) K with p ≤ 1.2 MPa. • The relative expanded combined uncertainty (k = 2) was U r,c (η) = (0.20 to 0.41)%. - Abstract: The viscosity of carbon dioxide was measured over the temperature range T = (253.15 to 473.15) K with pressures up to 1.2 MPa utilizing a new rotating-body viscometer. The relative expanded combined uncertainty (k = 2) in viscosity (including uncertainties of temperature and pressure) was (0.20 to 0.41)%. The instrument was specifically designed for measurements at low gas densities and enables measurements of the dynamic viscosity at temperatures between T = 253.15 K and T = 473.15 K with pressures up to 2 MPa. For carbon dioxide, the fluid specific measuring range with regard to pressure was limited to 1.2 MPa due to the formation of disturbing vortices inside the measuring cell at higher pressures. The model function for the viscosity measurement was extended in such a way that the dynamic viscosity was measured relative to helium. Therefore, the influence of the geometry of the concentric cylindrical system inside the measuring cell became almost negligible. Moreover, a systematic offset resulting from a small but inevitable eccentricity of the cylindrical system was compensated for. The residual damping, usually measured in vacuum, was calibrated in the entire temperature range using viscosity values of helium, neon and argon calculated ab initio; at T = 298.15 K recommended reference values were used. A viscosity dependent offset of the measured viscosities, which was observed in previously published data, did not occur when using the calibrated residual damping. The new carbon dioxide results were compared to other experimental literature data

  16. Suitability of thermoluminescence, chemiluminescence, ESR and viscosity measurements as detection method for the irradiation of medicinal herbs

    International Nuclear Information System (INIS)

    Schuettler, C.; Gebhardt, G.; Stock, A.; Helle, N.; Boegl, K.W.

    1993-01-01

    Chemiluminescence, electron spin resonance, thermoluminescence and viscosity measurements have been investigated for their suitability as detection method for the irradiation of the medicinal herbs anise seeds (anisi fructus), valerian roots (valerianae radix), redberry leaves (uvae ursi folium), birch leaves (betulae folium), greek hay seeds (foenugraeci semen), cayenne pepper (capsici fructus acer), black-aldertee bark (frangulae cortex), fennel fruits (feoniculi fructus), rose hip shells (cynosbati fructus), coltsfoot (farfarae folium), acorus roots (calami rhizoma), chamomile flowers (matricariae flos), caraway (carvi fructus), lavender flowers (lavandulae flos), linseed (lini semen), lime tree flowers (tiliae flos), St. Mary's thistle fruit (cardui mariae herba), lemon balm (melissae folium), java tea (orthosiphonis folium), peppermint (menthae piperitae folium), sage leaves (salviae folium), scouring rush (equiseti herba), senna leaves (sennae folium), plantain herbs (plantaginis lanceolata herba), thyme herbs (thymi herba), juniper berries (juniperi fructus), hawthorne herbs (crataegi folium), wheat starch (amylum tritici) and wormwood (absinthii herba). Depending on the herbs, the methods used were more or less suitable. Chemiluminescence measurements showed the smallest differences between untreated and irradiated samples whereas thermoluminescence measurements on isolated minerals from the vegetable drugs gave better results. In some herbs radiation-specific radicals could be identified by ESR spectroscopy. Viscosity measurement is suitable for some herbs as fast and inexpensive method for screening. (orig.) [de

  17. Determining Quiescent Colloidal Suspension Viscosities Using the Green-Kubo Relation and Image-Based Stress Measurements

    Science.gov (United States)

    Lin, Neil Y. C.; Bierbaum, Matthew; Cohen, Itai

    2017-09-01

    By combining confocal microscopy and stress assessment from local structural anisotropy, we directly measure stresses in 3D quiescent colloidal liquids. Our noninvasive and nonperturbative method allows us to measure forces ≲50 fN with a small and tunable probing volume, enabling us to resolve the stress fluctuations arising from particle thermal motions. We use the Green-Kubo relation to relate these measured stress fluctuations to the bulk Brownian viscosity at different volume fractions, comparing against simulations and conventional rheometry measurements. We find that the Green-Kubo analysis gives excellent agreement with these prior results, suggesting that similar methods could be applied to investigations of local flow properties in many poorly understood far-from-equilibrium systems, including suspensions that are glassy, strongly sheared, or highly confined.

  18. Effect of hydrophilic additives on volumetric and viscosity properties of amino acids in aqueous solutions at T = (283.15 to 333.15) K

    International Nuclear Information System (INIS)

    Sastry, Nandhibatla V.; Valand, Pinakin H.; Macwan, Pradip M.

    2012-01-01

    Highlights: ► Densities and viscosities of amino acids in aqueous additive solutions at different temperatures. ► Side chain partial molar volumes, V ¯ 2,tr ∘ and transfer volumes ΔV tr ∘ were calculated. ► Temperature effect on volumetric functions and B-coefficients were analyzed. ► Hydrophobic side chains facilitate the solute–solute interactions and hydrophobic hydration. - Abstract: Apparent molar volumes and partial molar volumes at infinite dilution, V ¯ 2 ∘ for amino acids (glycine, L-valine, L-leucine, L-phenylalanine, and L-aspargine) aqueous solutions in sucrose (0.05 to 0.2 (w/w)), urea (0.05), 2,3-butane diol (0.05) and 2-butoxyethanol (0.05) as additives have been calculated from the experimental densities at T = (283.15 to 233.15) K. Limiting partial molar expansibilities, E 2 ∘ , side chain partial molar volumes, V ¯ 2,tr ∘ and transfer volumes (from water to aqueous additive environment), ΔV tr ∘ for both the amino acids and their side chains have also been calculated. Relative viscosities for same systems were also calculated over the same temperature range and were analyzed in terms of Jones–Dole equation to calculate B-coefficients. The analysis of volumetric functions and B-coefficients suggests that the solute–co-solute interactions are more favored at elevated temperatures and in presence of high concentration of sucrose. Otherwise the hydrophobic side chains facilitate the solute–solute interactions and also time induced hydrophobic hydration in the bulk water.

  19. Attenuation measurements in solutions of some carbohydrates

    International Nuclear Information System (INIS)

    Gagandeep; Singh, K.; Lark, B.S.; Sahota, H.S.

    2000-01-01

    The linear attenuation coefficients in aqueous solutions of three carbohydrates, glucose (C 6 H 12 O 6 ), maltose monohydrate (C 12 H 22 O 11 ·H 2 O), and sucrose (C 12 H 22 O 11 ), were determined at 81, 356, 511, 662, 1,173, and 1,332 keV by the gamma-ray transmission method in a good geometry setup. From the precisely measured densities of these solutions, mass attenuation coefficients were then obtained that varied systematically with the corresponding changes in the concentrations (g/cm 3 ) of these solutions. The experimental results were used in terms of effective atomic numbers and electron densities. A comparison between experimental and theoretical values of attenuation coefficients has proven that the study has a potential application for the determination of attenuation coefficients of solid solutes from their solutions without obtaining them in pure crystalline form

  20. Attenuation Measurements in Solutions of Some Carbohydrates

    International Nuclear Information System (INIS)

    Gagandeep; Singh, Kulwant; Lark, B.S.; Sahota, H.S.

    2000-01-01

    The linear attenuation coefficients in aqueous solutions of three carbohydrates, glucose (C 6 H 12 O 6 ), maltose monohydrate (C 12 H 22 O 11 .H 2 O), and sucrose (C 12 H 22 O 11 ), were determined at 81, 356, 511, 662, 1173, and 1332 keV by the gamma-ray transmission method in a good geometry setup. From the precisely measured densities of these solutions, mass attenuation coefficients were then obtained that varied systematically with the corresponding changes in the concentrations (g/cm 3 ) of these solutions. The experimental results were used in terms of effective atomic numbers and electron densities. A comparison between experimental and theoretical values of attenuation coefficients has proven that the study has a potential application for the determination of attenuation coefficients of solid solutes from their solutions without obtaining them in pure crystalline form

  1. Using Micromechanical Resonators to Measure Rheological Properties and Alcohol Content of Model Solutions and Commercial Beverages

    Directory of Open Access Journals (Sweden)

    Bart W. Hoogenboom

    2012-05-01

    Full Text Available Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks.

  2. Partial molar volumes and viscosities of aqueous hippuric acid solutions containing LiCl and MnCl2 · 4H2O at 303.15 K

    Science.gov (United States)

    Deosarkar, S. D.; Tawde, P. D.; Zinjade, A. B.; Shaikh, A. I.

    2015-09-01

    Density (ρ) and viscosity (η) of aqueous hippuric acid (HA) solutions containing LiCl and MnCl2 · 4H2O have been studied at 303.15 K in order to understand volumetric and viscometric behavior of these systems. Apparent molar volume (φv) of salts were calculated from density data and fitted to Massons relation and partial molar volumes (φ{v/0}) at infinite dilution were determined. Relative viscosity data has been used to determine viscosity A and B coefficients using Jones-Dole relation. Partial molar volume and viscosity coefficients have been discussed in terms of ion-solvent interactions and overall structural fittings in solution.

  3. Scaling for turbulent viscosity of buoyant plumes in stratified fluids: PIV measurement with implications for submarine hydrothermal plume turbulence

    Science.gov (United States)

    Zhang, Wei; He, Zhiguo; Jiang, Houshuo

    2017-11-01

    Time-resolved particle image velocimetry (PIV) has been used to measure instantaneous two-dimensional velocity vector fields of laboratory-generated turbulent buoyant plumes in linearly stratified saltwater over extended periods of time. From PIV-measured time-series flow data, characteristics of plume mean flow and turbulence have been quantified. To be specific, maximum plume penetration scaling and entrainment coefficient determined from the mean flow agree well with the theory based on the entrainment hypothesis for buoyant plumes in stratified fluids. Besides the well-known persistent entrainment along the plume stem (i.e., the 'plume-stem' entrainment), the mean plume velocity field shows persistent entrainment along the outer edge of the plume cap (i.e., the 'plume-cap' entrainment), thereby confirming predictions from previous numerical simulation studies. To our knowledge, the present PIV investigation provides the first measured flow field data in the plume cap region. As to measured plume turbulence, both the turbulent kinetic energy field and the turbulence dissipation rate field attain their maximum close to the source, while the turbulent viscosity field reaches its maximum within the plume cap region; the results also show that maximum turbulent viscosity scales as νt,max = 0.030(B/N)1/2, where B is source buoyancy flux and N is ambient buoyancy frequency. These PIV data combined with previously published numerical simulation results have implications for understanding the roles of hydrothermal plume turbulence, i.e. plume turbulence within the cap region causes the 'plume-cap' entrainment that plays an equally important role as the 'plume-stem' entrainment in supplying the final volume flux at the plume spreading level.

  4. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions

    NARCIS (Netherlands)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; Boekel, van Tiny; Fogliano, Vincenzo; Stieger, Markus

    2016-01-01

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were

  5. Comparison of parallel viscosity with neoclassical theory

    International Nuclear Information System (INIS)

    Ida, K.; Nakajima, N.

    1996-04-01

    Toroidal rotation profiles are measured with charge exchange spectroscopy for the plasma heated with tangential NBI in CHS heliotron/torsatron device to estimate parallel viscosity. The parallel viscosity derived from the toroidal rotation velocity shows good agreement with the neoclassical parallel viscosity plus the perpendicular viscosity. (μ perpendicular = 2 m 2 /s). (author)

  6. Measurement of the Surface Dilatational Viscosity of an Insoluble Surfactant Monolayer at the Air/Water Interface Using a Pendant Drop Apparatus

    Science.gov (United States)

    Lorenzo, Jose; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    When a fluid interface with surfactants is at rest, the interfacial stress is isotropic (as given by the equilibrium interfacial tension), and is described by the equation of state which relates the surface tension to the surfactant surface concentration. When surfactants are subjected to shear and dilatational flows, flow induced interaction of the surfactants; can create interfacial stresses apart from the equilibrium surface tension. The simplest relationship between surface strain rate and surface stress is the Boussinesq-Scriven constitutive equation completely characterized by three coefficients: equilibrium interfacial tension, surface shear viscosity, and surface dilatational viscosity Equilibrium interfacial tension and surface shear viscosity measurements are very well established. On the other hand, surface dilatational viscosity measurements are difficult because a flow which change the surface area also changes the surfactant surface concentration creating changes in the equilibrium interfacial tension that must be also taken into account. Surface dilatational viscosity measurements of existing techniques differ by five orders of magnitude and use spatially damped surface waves and rapidly expanding bubbles. In this presentation we introduce a new technique for measuring the surface dilatational viscosity by contracting an aqueous pendant drop attached to a needle tip and having and insoluble surfactant monolayer at the air-water interface. The isotropic total tension on the surface consists of the equilibrium surface tension and the tension due to the dilation. Compression rates are undertaken slow enough so that bulk hydrodynamic stresses are small compared to the surface tension force. Under these conditions we show that the total tension is uniform along the surface and that the Young-Laplace equation governs the drop shape with the equilibrium surface tension replaced by the constant surface isotropic stress. We illustrate this technique using

  7. The vanishing discount problem and viscosity Mather measures. Part 2: boundary value problems

    OpenAIRE

    Ishii, Hitoshi; Mitake, Hiroyoshi; Tran, Hung V.

    2016-01-01

    In arXiv:1603.01051 (Part 1 of this series), we have introduced a variational approach to studying the vanishing discount problem for fully nonlinear, degenerate elliptic, partial differential equations in a torus. We develop this approach further here to handle boundary value problems. In particular, we establish new representation formulas for solutions of discount problems, critical values, and use them to prove convergence results for the vanishing discount problems.

  8. Evaluation of TLCD Damping Factor from FRF Measurement Due to Variation of the Fluid Viscosity

    OpenAIRE

    Son, Lovely

    2016-01-01

    Tuned Liquid Column Damper (TLCD) has become an alternative solution for reducing low frequency vibration response of machines and structures. This is not surprisingly that the damper has simply structure and low maintenance cost. The main disadvantage of using TLCD is the complexity in controlling TLCD damping factor experimentally. Theoretically, damping factor can be controlled by adjusting the orifice dimension. However, this method is time consuming and not appropriate conducted in the r...

  9. Thermodynamic study on some alkanediol solutions: Measurement and modeling

    International Nuclear Information System (INIS)

    Moosavi, Mehrdad; Motahari, Ahmad; Omrani, Abdollah; Rostami, Abbas Ali

    2013-01-01

    Highlights: • Measuring densities and viscosities for binary mixtures of some alkanediols. • Finding excess molar volume, partial molar volume and thermal expansion coefficient. • Fitting excess molar volume values with PFP and Redlich–Kister polynomial equations. • Deducing excess Gibbs free energy of activation and other thermodynamic parameters. • Predicting viscosity values with different single parameter semi empirical equations. - Abstract: The densities ρ and viscosities η of 1,2-ethanediol with 1,2-propanediol or 1,3-propanediol, and 1,2-propanediol with 1,3-propanediol binary liquid mixtures over the entire concentration range at temperatures (298.15 to 308.15) K with 5 K interval were measured. The experimental data were used to calculate the excess molar volume V m E , partial molar volume V ¯ m,i , partial molar volume at infinite dilution V ¯ i ∞ , apparent molar volume V φi , coefficient of thermal expansion α p , excess coefficient of thermal expansion α p E , excess viscosity η E , excess Gibbs energy of activation ΔG *E , and other thermodynamic parameters. A Redlich–Kister equation and Prigogine–Flory–Patterson (PFP) model was applied to correlate the excess molar volume results. Moreover, the viscosity data were correlated with the Grunberg–Nissan, Tamura–Kurata, Hind–Ubbelohde and Katti–Chaudhary equations. Good agreement was found between experimental data and modeling results

  10. Solute-solvent interactions in chloroform solutions of halogenated symmetric double Schiff bases of 1,1'-bis(4-aminophenyl)cyclohexane at 308.15 K according to ultrasonic and viscosity data

    Science.gov (United States)

    Gangani, B. J.; Patel, J. P.; Parsania, P. H.

    2015-12-01

    The density, viscosity and ultrasonic speed (2 MHz) of chloroform solutions of halogenated symmetric double Schiff bases of 1,1'-bis(4-aminophenyl)cyclohexane were investigated at 308.15 K. Various acoustical parameters such as specific acoustical impedance ( Z), adiabatic compressibility ( Ka), Rao's molar sound function ( R m), van der Waals constant ( b), internal pressure (π), free volume ( V f), intermolecular free path length ( L f), classical absorption coefficient (α/ f 2)Cl) and viscous relaxation time (τ) were determine using ultrasonic speed ( U), viscosity (η) and density (ρ) data of Schiff bases solutions and correlated with concentration. Linear increase of Z, b, R, τ, and (α/ f 2)Cl except π (nonlinear) and linear decrease of Ka and L f except V f (nonlinear) with increasing concentration of Schiff bases suggested presence of strong molecular interactions in the solutions. The positive values of solvation number further supported strong molecular interactions in the solutions. The nature and position of halogen substituent also affected the strength of molecular interactions.

  11. Bulk viscosity and cosmological evolution

    International Nuclear Information System (INIS)

    Beesham, A.

    1996-01-01

    In a recent interesting paper, Pimentel and Diaz-Rivera (Nuovo Cimento B, 109(1994) 1317) have derived several solutions with bulk viscosity in homogeneous and isotropic cosmological models. They also discussed the properties of these solutions. In this paper the authors relate the solutions of Pimentel and Diaz-Rivera by simple transformations to previous solutions published in the literature, showing that all the solutions can be derived from the known existing ones. Drawbacks to these approaches of studying bulk viscosity are pointed out, and better approaches indicated

  12. Measurement and study of density, surface tension, and viscosity of quaternary ammonium-based ionic liquids ([N222(n)]Tf2N)

    International Nuclear Information System (INIS)

    Ghatee, Mohammad Hadi; Bahrami, Maryam; Khanjari, Neda

    2013-01-01

    Highlights: • Characterization of high purity synthesized alkyl quaternary ammonium ionic liquids. • Measurement of temperature dependent surface tension, density, viscosity and critical point. • Systematic increase of surface energy and surface entropy having plateau at high chain length. • Accurate application of VFT and fluidity equations to temperature dependent viscosities. • Particular variation of fluidity exponent with a plateau at high alkyl chain length. -- Abstract: In this work five quaternary ammonium-based ionic liquids with bis(trifluoromethylsulfonyl)imide anion were synthesized and their density, viscosity and surface tensions were measured in the temperature range (298 to 373) K. Surface tensions were measured by capillary rise method using a homemade capillary apparatus, in which the liquid/vapor can be brought into equilibrium practically. Measurements of viscosities and surface tensions were performed under water–vapor free atmosphere. The surface tension of quaternary ammonium-based ILs decreases as the alkyl chain length increases. Also surface energy and surface entropy are found as increasing functions of alkyl chain length with a plateau at high lengths in the surface. The viscosities measured by capillary viscometer fit in VFT equation, indication of non-Arrhenius ionic liquids. Viscosities are also fitted quite accurately in the relation we have developed recently as the fluidity equation with the characteristics exponent ϕ. Values of ϕ for ionic liquids are close to one another and tend to the limiting value, almost 0.328, asymptotically as the alkyl chain length increases. The critical temperatures predicted via the temperature dependent surface tensions decrease with increasing alkyl chain length of the cation. The trend of predicted critical temperature of these ionic liquids conforms to those of imidazolium-based ILs

  13. Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions

    NARCIS (Netherlands)

    Kort, de E.J.P.; Minor, M.; Snoeren, T.H.M.; Hooijdonk, van A.C.M.; Linden, van der E.

    2011-01-01

    The effect of calcium chelators on physical changes of casein micelles in concentrated micellar casein solutions was investigated by measuring calcium-ion activity, viscosity and turbidity, and performing ultracentrifugation. The highest viscosities were measured on addition of sodium

  14. The influence of specific mechanical energy on cornmeal viscosity measured by an on-line system during twin-screw extrusion

    Directory of Open Access Journals (Sweden)

    Y. K. CHANG

    1999-09-01

    Full Text Available The influence of specific mechanical energy (SME on cornmeal viscosity during the twin-screw extrusion at feed moisture contents of 25 and 30% and screw speeds in the range from 100 to 500 rpm was measured. Cornmeal was extruded in a co-rotating, intermeshing twin-screw coupled to a slit die rheometer. One approach to the on-line rheological measurement is to use a slit die with the extruder. In the present work it was show that shear viscosity decreased as a function of SME. The viscosity of cornmeal at the exit die was influenced by screw speed, rate of total mass flow, mass temperature inside the extruder and SME. An increase in screw speed resulted in an increase in SME and a decrease in viscosity. A reduction in slit die height and an increase in screw speed and mass temperature led to a remarkable macromolecular degradation of the starch, as evidenced by the decrease in viscosity.

  15. Effects of olestra and sorbitol consumption on objective measures of diarrhea: impact of stool viscosity on common gastrointestinal symptoms.

    Science.gov (United States)

    McRorie, J; Zorich, N; Riccardi, K; Bishop, L; Filloon, T; Wason, S; Giannella, R

    2000-02-01

    The aim of this study was to determine the effects of olestra and sorbitol consumption on three accepted objective measures of diarrhea (stool output >250 g/day, liquid/watery stools, bowel movement frequency >3/day), and how stool composition influences reports of common gastrointestinal symptoms. A double-blind, placebo-controlled study compared the effects of sorbitol (40 g/day in candy), a poorly absorbed sugar-alcohol with known osmotic effects, with those of olestra (20 or 40 g/day in potato chips), a nonabsorbed fat, on objective measures of stool composition and GI symptoms. Sixty-six subjects resided on a metabolic ward for 12 days: 2 days lead-in, 4 days baseline, 6 days treatment. Sorbitol 40 g/day resulted in loose/liquid stools within 1-3 h of consumption. In contrast, olestra resulted in a dose-responsive stool softening effect after 2-4 days of consumption. Subjects reported "diarrhea" when mean stool apparent viscosity (peak force (PF), g) decreased from a perceived "normal" (mean +/- SE, 1355 +/- 224 g PF; firm stool) to loose (260 +/- 68 g PF) stool. Mean apparent viscosity of stool during treatment: placebo, 1363 +/- 280 g (firm); olestra 20 g/day 743 +/- 65 g (soft); olestra 40 g/day, 563 +/- 105 g (soft); and sorbitol 40 g/day, 249 +/- 53 g (loose). Of the 1098 stool samples collected, 38% (419/1098) were rated by subjects as "diarrhea," yet only 2% of treatment days (all in the sorbitol treatment group) met commonly accepted criteria for a clinical diarrhea. Sorbitol, but not olestra, increased the severity of abdominal cramping, urgency and nausea compared to placebo. Olestra consumption, at levels far in excess of normal snacking conditions, resulted in a gradual stool softening effect after several days of consumption, did not meet any of the three objective measures of diarrhea, and did not increase GI symptoms. Sorbitol consumption, at only 80% of the dose requiring a "laxative effect" information label, resulted in rapid onset loose

  16. Measurement of Density, Sound Velocity, Surface Tension, and Viscosity of Freely Suspended Supercooled Liquids

    Science.gov (United States)

    Trinh, E. H.

    1995-01-01

    Non-contact methods have been implemented in conjunction with levitation techniques to carry out the measurement of the macroscopic properties of liquids significantly cooled below their nominal melting point. Free suspension of the sample and remote methods allow the deep excursion into the metastable liquid state and the determination of its thermophysical properties. We used this approach to investigate common substances such as water, o-terphenyl, succinonitrile, as well as higher temperature melts such as molten indium, aluminum and other metals. Although these techniques have thus far involved ultrasonic, electromagnetic, and more recently electrostatic levitation, we restrict our attention to ultrasonic methods in this paper. The resulting magnitude of maximum thermal supercooling achieved have ranged between 10 and 15% of the absolute temperature of the melting point for the materials mentioned above. The physical properties measurement methods have been mostly novel approaches, and the typical accuracy achieved have not yet matched their standard equivalent techniques involving contained samples and invasive probing. They are currently being refined, however, as the levitation techniques become more widespread, and as we gain a better understanding of the physics of levitated liquid samples.

  17. The viscosity of dimethyl ether

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Jakobsen, Jørgen

    2007-01-01

    and NOx traps are installed. The most significant problem encountered when engines are fuelled with DME is that the injection equipment breaks down prematurely due to extensive wear. This tribology issue can be explained by the very low lubricity and viscosity of DME. Recently, laboratory methods have...... appeared capable of measuring these properties of DME. The development of this is rendered difficult because DME has to be pressurised to remain in the liquid state and it dissolves most of the commercially available elastomers. This paper deals fundamentally with the measurement of the viscosity of DME...... and extends the discussion to the difficulty of viscosity establishing of very thin fluids. The main issue here is that it is not easy to calibrate the viscometers in the very low viscosity range corresponding to about one-fifth of that of water. The result is that the low viscosity is measured at high...

  18. The determination of the pressure-viscosity coefficient of a lubricant through an accurate film thickness formula and accurate film thickness measurements : part 2 : high L values

    NARCIS (Netherlands)

    Leeuwen, van H.J.

    2011-01-01

    The pressure-viscosity coefficient of a traction fluid is determined by fitting calculation results on accurate film thickness measurements, obtained at different speeds, loads, and temperatures. Through experiments, covering a range of 5.6

  19. Viscosity measurements and correlations of binary mixtures: 1,1,1,2-tetrafluoroethane (HFC-134a)+tetraethylene glycol dimethylether (TEGDME)

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Baylaucq, A.; Reghem, P.

    2005-01-01

    .15-373.15 K. The measurements have been carried out with a failing body viscometer for four molar fractions x(1) =(0.28, 0.44, 0.63 and 0.88). The density values of this system were interpolated from previous results obtained at the laboratory. All of the available viscosity data, including pure HFC-134a...

  20. Density, speed of sound, viscosity and refractive index properties of aqueous solutions of vitamins B1.HCl and B6.HCl at temperatures (278.15, 288.15, and 298.15) K

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Deshmukh, Dinesh W.; Paliwal, Lalitmohan J.

    2013-01-01

    Highlights: ► Study of aqueous solutions of vitamins B 1 .HCl and B 6 .HCl at different temperatures has been presented. ► These are important vitamins. ► Different interactions among solute and solvents have been investigated. ► The results are interpreted in terms of water structure making and breaking effects due to cations. -- Abstract: The experimental values of density (ρ), speed of sound (u), absolute viscosity (η) and refractive index (n D ) properties are reported for aqueous solutions of thiamine hydrochloride (vitamin B 1 .HCl) and pyridoxine hydrochloride (vitamin B 6 .HCl) within the concentration range (0.01 to 0.55) mol ⋅ kg −1 at three different temperatures, viz. T/K = 278.15, 288.15, and 298.15. Using experimental data, different derived parameters such as the apparent molar volume of solute (ϕ V ), isentropic compressibility of solution (β S ), apparent molar isentropic compressibility of solute (ϕ KS ) and relative viscosity of solution (η r ) have been computed. The limiting values of apparent molar volume (ϕ V 0 ) and apparent molar isentropic compressibility (ϕ KS 0 ) have been obtained. The limiting apparent molar expansivity (ϕ E 0 ) of solute, coefficient of thermal expansion (α ∗ ) and hydration numbers (n h ) of above vitamins in the aqueous medium have also been estimated. The experimental values of relative viscosity are used to calculate the Jones–Dole equation viscosity A and B coefficients for the hydrochlorides. The temperature coefficients of B i.e. (dB/dT) for these solutes have been used to study water structure making and breaking effects due to cations. Further, a discussion is made on the basis of solute–solute and solute–solvent interactions

  1. Thermodynamic study on some alkanediol solutions: Measurement and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi, Mehrdad; Motahari, Ahmad; Omrani, Abdollah, E-mail: omrani@umz.ac.ir; Rostami, Abbas Ali

    2013-06-10

    Highlights: • Measuring densities and viscosities for binary mixtures of some alkanediols. • Finding excess molar volume, partial molar volume and thermal expansion coefficient. • Fitting excess molar volume values with PFP and Redlich–Kister polynomial equations. • Deducing excess Gibbs free energy of activation and other thermodynamic parameters. • Predicting viscosity values with different single parameter semi empirical equations. - Abstract: The densities ρ and viscosities η of 1,2-ethanediol with 1,2-propanediol or 1,3-propanediol, and 1,2-propanediol with 1,3-propanediol binary liquid mixtures over the entire concentration range at temperatures (298.15 to 308.15) K with 5 K interval were measured. The experimental data were used to calculate the excess molar volume V{sub m}{sup E}, partial molar volume V{sup ¯}{sub m,i}, partial molar volume at infinite dilution V{sup ¯}{sub i}{sup ∞}, apparent molar volume V{sub φi}, coefficient of thermal expansion α{sub p}, excess coefficient of thermal expansion α{sub p}{sup E}, excess viscosity η{sup E}, excess Gibbs energy of activation ΔG{sup *E}, and other thermodynamic parameters. A Redlich–Kister equation and Prigogine–Flory–Patterson (PFP) model was applied to correlate the excess molar volume results. Moreover, the viscosity data were correlated with the Grunberg–Nissan, Tamura–Kurata, Hind–Ubbelohde and Katti–Chaudhary equations. Good agreement was found between experimental data and modeling results.

  2. Viscosity in Modified Gravity 

    Directory of Open Access Journals (Sweden)

    Iver Brevik

    2012-11-01

    Full Text Available A bulk viscosity is introduced in the formalism of modified gravity. It is shownthat, based on a natural scaling law for the viscosity, a simple solution can be found forquantities such as the Hubble parameter and the energy density. These solutions mayincorporate a viscosity-induced Big Rip singularity. By introducing a phase transition inthe cosmic fluid, the future singularity can nevertheless in principle be avoided. 

  3. Effect of Viscosity on Liquid Curtain Stability

    Science.gov (United States)

    Mohammad Karim, Alireza; Suszynski, Wieslaw; Francis, Lorraine; Carvalho, Marcio; Dow Chemical Company Collaboration; PUC Rio Collaboration; University of Minnesota, Twin Cities Collaboration

    2016-11-01

    The effect of viscosity on the stability of Newtonian liquid curtains was explored by high-speed visualization. Glycerol/water solutions with viscosity ranging from 19.1 to 210 mPa.s were used as coating liquids. The experimental set-up used a slide die delivery and steel tube edge guides. The velocity along curtain at different positions was measured by tracking small particles at different flow conditions. The measurements revealed that away from edge guides, velocity is well described by free fall effect. However, close to edge guides, liquid moves slower, revealing formation of a viscous boundary layer. The size of boundary layer and velocity near edge guides are strong function of viscosity. The critical condition was determined by examining flow rate below which curtain broke. Curtain failure was initiated by growth of a hole within liquid curtain, close to edge guides. Visualization results showed that the hole forms in a circular shape then becomes elliptical as it grows faster in vertical direction compared to horizontal direction. As viscosity rises, minimum flow rate for destabilization of curtain increased, indicating connection between interaction with edge guides and curtain stability. We would like to acknowledge the financial support from the Dow Chemical Company.

  4. Gas Near a Wall: Shortened Mean Free Path, Reduced Viscosity, and the Manifestation of the Knudsen Layer in the Navier-Stokes Solution of a Shear Flow

    Science.gov (United States)

    Abramov, Rafail V.

    2018-06-01

    For the gas near a solid planar wall, we propose a scaling formula for the mean free path of a molecule as a function of the distance from the wall, under the assumption of a uniform distribution of the incident directions of the molecular free flight. We subsequently impose the same scaling onto the viscosity of the gas near the wall and compute the Navier-Stokes solution of the velocity of a shear flow parallel to the wall. Under the simplifying assumption of constant temperature of the gas, the velocity profile becomes an explicit nonlinear function of the distance from the wall and exhibits a Knudsen boundary layer near the wall. To verify the validity of the obtained formula, we perform the Direct Simulation Monte Carlo computations for the shear flow of argon and nitrogen at normal density and temperature. We find excellent agreement between our velocity approximation and the computed DSMC velocity profiles both within the Knudsen boundary layer and away from it.

  5. Monitoring the viscosity of diesel engine lubricating oil by using acoustic emission technique, the selection of measurement parameters

    International Nuclear Information System (INIS)

    Othman Inayatullah; Nordin Jamaludin; Fauziah Mat

    2009-04-01

    Acoustic emission technique has been developed through years of monitoring and diagnosis of bearing, but it is still new in the diagnosis and monitoring of lubrication oil to bearings drive. The propagation of acoustic emission signal is generated when the signal piston on the cylinder liner lubricating oil which is a par. The signal is analyzed in time domain to obtain the parameters of root mean squared, amplitude, energy and courtesy. Lubricant viscosity will undergo changes due to temperature, pressure and useful. This study focuses on the appropriate parameters for the diagnosis and monitoring of lubricating oil viscosity. Studies were conducted at a constant rotational speed and temperature, but use a different age. The results showed that the energy parameter is the best parameter used in this monitoring. However, this parameter cannot be used directly and it should be analyzed using mathematical formulas. This mathematical formula is a relationship between acoustic emission energy with the viscosity of lubricating oil. (author)

  6. Capillary waves with surface viscosity

    Science.gov (United States)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2017-11-01

    Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  7. The effect of glycerin solution density and viscosity on vibration amplitude of oblique different piezoelectric MC near the surface in 3D modeling

    Science.gov (United States)

    Korayem, A. H.; Abdi, M.; Korayem, M. H.

    2018-06-01

    The surface topography in nanoscale is one of the most important applications of AFM. The analysis of piezoelectric microcantilevers vibration behavior is essential to improve the AFM performance. To this end, one of the appropriate methods to simulate the dynamic behavior of microcantilever (MC) is a numerical solution with FEM in the 3D modeling using COMSOL software. The present study aims to simulate different geometries of the four-layered AFM piezoelectric MCs in 2D and 3D modeling in a liquid medium using COMSOL software. The 3D simulation was done in a spherical container using FSI domain in COMSOL. In 2D modeling by applying Hamilton's Principle based on Euler-Bernoulli Beam theory, the governing motion equation was derived and discretized with FEM. In this mode, the hydrodynamic force was assumed with a string of spheres. The effect of this force along with the squeezed-film force was considered on MC equations. The effect of fluid density and viscosity on the MC vibrations that immersed in different glycerin solutions was investigated in 2D and 3D modes and the results were compared with the experimental results. The frequencies and time responses of MC close to the surface were obtained considering tip-sample forces. The surface topography of MCs different geometries were compared in the liquid medium and the comparison was done in both tapping and non-contact mode. Various types of surface roughness were considered in the topography for MC different geometries. Also, the effect of geometric dimensions on the surface topography was investigated. In liquid medium, MC is installed at an oblique position to avoid damaging the MC due to the squeezed-film force in the vicinity of MC surface. Finally, the effect of MC's angle on surface topography and time response of the system was investigated.

  8. Electric Double Layer at the Rutile (110) Surface. 3. Inhomogeneous Viscosity and Diffusivity Measurement by Computer Simulations

    Czech Academy of Sciences Publication Activity Database

    Předota, Milan; Cummings, P.T.; Wesolowski, D.J.

    2007-01-01

    Roč. 111, č. 7 (2007), s. 3071-3079 ISSN 1932-7447 R&D Projects: GA ČR(CZ) GP203/03/P083; GA AV ČR(CZ) 1ET400720507 Grant - others:OBES(US) DE/AC05/00OR22 Institutional research plan: CEZ:AV0Z40720504 Keywords : viscosity * rutile * interface Subject RIV: CF - Physical ; Theoretical Chemistry

  9. Viscosity of particle laden films

    Science.gov (United States)

    Timounay, Yousra; Rouyer, Florence

    2017-06-01

    We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  10. Stripped Elliptical Galaxies as Probes of ICM Physics. III. Deep Chandra Observations of NGC 4552: Measuring the Viscosity of the Intracluster Medium

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, R. P.; Roediger, E.; Machacek, M.; Forman, W. R.; Nulsen, P. E. J.; Jones, C.; Randall, S.; Su, Y. [Harvard/Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Churazov, E. [MPI für Astrophysik, Karl-Schwarzschild-Str. 1, Garching D-85741 (Germany); Sheardown, A., E-mail: rkraft@cfa.harvard.edu [E. A. Milne Center for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX (United Kingdom)

    2017-10-10

    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffuse emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high- β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.

  11. Laser Velocimeter Measurements in the Pump of an Automotive Torque Converter Part II – Effect of Pump Speed and Oil Viscosity

    Directory of Open Access Journals (Sweden)

    Ronald D. Flack

    2000-01-01

    Full Text Available The velocity field inside a torque converter pump was studied for two separate effects: variable pump rotational speed and variable oil viscosity. Three-dimensional velocity measurements were taken using a laser velocimeter for both the pump mid- and exit planes. The effect ofvariable pump rotational speed was studied by running the pump at two different speeds and holding speed ratio (pump rotational speed]turbine rotational speed constant. Similarly, the effect of viscosity on the pump flow field was studied by varying the temperature and]or using two different viscosity oils as the working fluid in the pump. Threedimensional velocity vector plots, through-flow contour plots, and secondary flow profiles were obtained for both pump planes and all test conditions. Results showed that torque converter mass flows increased approximately linearly with increasing pump rotational speed (and fixed speed ratio but that the flow was not directly proportional to pump rotational speed. However, mass flows were seen to decrease as the oil viscosity was decreased with a resulting increased Reynolds number; for these conditions the high velocity regions were seen to decrease in size and low velocity regions were seen to increase in size. In the pump mid-plane strong counter-clockwise secondary flows and in the exit plane strong clockwise secondary flows were observed. The vorticities and slip factors were calculated from the experimental results and are presented. The torque core-to-shell and blade-to-blade torque distributions were calculated for both planes. Finally, the flow fields were seen to demonstrate similitude when Reynolds numbers were matched.

  12. Viscosity of aluminum under shock-loading conditions

    International Nuclear Information System (INIS)

    Ma Xiao-Juan; Liu Fu-Sheng; Zhang Ming-Jian; Sun Yan-Yun

    2011-01-01

    A reliable data treatment method is critical for viscosity measurements using the disturbance amplitude damping method of shock waves. In this paper the finite difference method is used to obtain the numerical solutions for the disturbance amplitude damping behaviour of the sinusoidal shock front in a flyer-impact experiment. The disturbance amplitude damping curves are used to depict the numerical solutions of viscous flow. By fitting the experimental data to the numerical solutions of different viscosities, we find that the effective shear viscosity coefficients of shocked aluminum at pressures of 42, 78 and 101 GPa are (1500±100) Pa·s, (2800±100) Pa·s and (3500±100) Pa·s respectively. It is clear that the shear viscosity of aluminum increases with an increase in shock pressure, so aluminum does not melt below a shock pressure of 101 GPa. This conclusion is consistent with the sound velocity measurement. (interdisciplinary physics and related areas of science and technology)

  13. The experimental viscosity and calculated relative viscosity of liquid In-Sn allcoys

    International Nuclear Information System (INIS)

    Wu, A.Q.; Guo, L.J.; Liu, C.S.; Jia, E.G.; Zhu, Z.G.

    2007-01-01

    The experimental measured viscosity of liquid pure Sn, In 20 Sn 80 and In 80 Sn 20 alloys was studied, and to make a comparison, the calculated relative viscosity based on the pair distribution functions, g(r), has also been studied. There is one peak in each experimental viscosity and calculated relative-viscosity curve of liquid pure Sn about 1000 deg. C. One valley appears in each experimental viscosity and calculated viscosity curve of liquid In 20 Sn 80 alloy about 700 deg. C. There is no abnormal behavior on In 80 Sn 20 alloy. The behavior of experimental viscosity and calculated relative viscosity is coincident with each other. Those results conformed that the temperature-induced structure anomalies reported before did take place

  14. Internal Performance Measurement Systems: Problems and Solutions

    DEFF Research Database (Denmark)

    Jakobsen, Morten; Mitchell, Falconer; Nørreklit, Hanne

    2010-01-01

    This article pursues two aims: to identify problems and dangers related to the operational use of internal performance measurement systems of the Balanced Scorecard (BSC) type and to provide some guidance on how performance measurement systems may be designed to overcome these problems....... The analysis uses and extends N rreklit's (2000) critique of the BSC by applying the concepts developed therein to contemporary research on the BSC and to the development of practice in performance measurement. The analysis is of relevance for many companies in the Asia-Pacific area as an increasing numbers...

  15. Effect of electron beam irradiation on viscosity/temperature characteristics of cellulose derivatives

    International Nuclear Information System (INIS)

    Mastro, N.L. del; Villavicencio, A.L.C.; Yamasaki, M.C.R.

    1991-11-01

    The direct relationship between intrinsic viscosity and molecular weight of polymers allowed to attend the aggregation, cross-linking and degradation processes induced by electron beam irradiation on carboxymethylcellulose and hydroxiethylcellulose in aqueous solutions. The changes in viscosity were related to irradiation doses from 2.5x10 4 Gy to 25x10 4 Gy at 5 0 C, 25 0 C, 50 0 C and 75 0 C measured at different intervals after irradiation. The results showed the viscosity decrease characteristics as a function of those parameters for each one of the polymers. (author)

  16. In situ observation of sol-gel transition of agarose aqueous solution by fluorescence measurement.

    Science.gov (United States)

    Wang, Zheng; Yang, Kun; Li, Haining; Yuan, Chaosheng; Zhu, Xiang; Huang, Haijun; Wang, Yongqiang; Su, Lei; Fang, Yapeng

    2018-06-01

    Sol-gel transition behavior of agarose aqueous solution was investigated by using rheology and fluorescence measurement. On heating, the storage modulus G' decreased gradually, then deviated abruptly at the temperature of about 65°C, and finally decreased slowly again. For fluorescence measurement, the phase transition point kept almost at the temperature of 65°C, which was consistent with that in rheology measurement. Upon compression, it was indicated that the fluorescence lifetime for the probe in the agarose aqueous solution showed a dramatic change in the vicinity of the phase transition point. T vs. P phase diagram of agarose aqueous solution was constructed, which showed that the melting point was an increasing function of pressure. Based on the phase diagram, the agarose gels were prepared by cooling under atmospheric pressure and the pressure of 300MPa, respectively. From the result of the recovered samples studied by optical rheometry, it was found that agarose gel prepared under high pressure had a higher elasticity and lower viscosity index, compared with that under atmospheric pressure. It could be speculated that such kinds of properties might be attributed to the smaller pore size during gelation under high pressure. Copyright © 2018. Published by Elsevier B.V.

  17. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...... viscosity, of up to a factor of 7 times the Trouton limit of 3 times the zero-shear viscosity....

  18. VISCOSITY TEST OF VEHICLE ENGINE OILS

    OpenAIRE

    Rita Prasetyowati

    2016-01-01

    This study aims to determine the value of the kinematic viscosity lubricants motorcycle that has been used at various temperatures and the use of distance. This study also aims to remedy mengtahui how the value of the kinematic viscosity of the lubricant car that has been used in a wide range of temperature variation and distance usage. Viscosity liquid, in this case is the lubricants, can be determined using the Redwood viscometer By using Redwood viscometer, can be measured flow time requir...

  19. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    Science.gov (United States)

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Second viscosity effects in cosmology

    International Nuclear Information System (INIS)

    Potupa, A.S.

    1978-01-01

    The object of the investigation is to draw attention to two important aspects in the choice of a substance model, namely an allowance for the viscosity and behaviour of the metrics at the later stages of cosmological evolution. It is shown that in homogeneous cosmological models taking into account the viscosity there are solutions which realize interpolation between the Fridman and steady-state regimes. In a closed model a solution is obtained which corresponds to the ''curvature compensation'' regime with an unboundedly increasing radius. The problem of compensation of singularity at t → o is discussed as well as the choice of the equations of state for the early (hadron) stages of cosmological evolution in connection with the hydrodynamic theory of multiple hadron production

  1. Interferometric measurements of a dendritic growth front solutal diffusion layer

    Science.gov (United States)

    Hopkins, John A.; Mccay, T. D.; Mccay, Mary H.

    1991-01-01

    An experimental study was undertaken to measure solutal distributions in the diffusion layer produced during the vertical directional solidification (VDS) of an ammonium chloride - water (NH4Cl-H2O) solution. Interferometry was used to obtain concentration measurements in the 1-2 millimeter region defining the diffusion layer. These measurements were fitted to an exponential form to extract the characteristic diffusion parameter for various times after the start of solidification. The diffusion parameters are within the limits predicted by steady state theory and suggest that the effective solutal diffusivity is increasing as solidification progresses.

  2. Fission hindrance and nuclear viscosity

    Indian Academy of Sciences (India)

    is in exact conformity with all the previous measurements [7,10–13]. The CASCADE calculations (solid lines in figure 1) used in this first level of analysis do not include any viscosity or temperature-dependent nuclear level density parameter a. The γ and particle decay are calculated using the standard prescriptions as ...

  3. Suitability of thermoluminescence, chemiluminescence, ESR and viscosity measurements as detection method for the irradiation of medicinal herbs; Eignung von Thermolumineszenz-, Chemilumineszenz-, ESR- und Viskositaetsmessungen zur Identifizierung strahlenbehandelter Arzneidrogen

    Energy Technology Data Exchange (ETDEWEB)

    Schuettler, C.; Gebhardt, G.; Stock, A.; Helle, N.; Boegl, K.W.

    1993-12-31

    Chemiluminescence, electron spin resonance, thermoluminescence and viscosity measurements have been investigated for their suitability as detection method for the irradiation of the medicinal herbs anise seeds (anisi fructus), valerian roots (valerianae radix), redberry leaves (uvae ursi folium), birch leaves (betulae folium), greek hay seeds (foenugraeci semen), cayenne pepper (capsici fructus acer), black-aldertee bark (frangulae cortex), fennel fruits (feoniculi fructus), rose hip shells (cynosbati fructus), coltsfoot (farfarae folium), acorus roots (calami rhizoma), chamomile flowers (matricariae flos), caraway (carvi fructus), lavender flowers (lavandulae flos), linseed (lini semen), lime tree flowers (tiliae flos), St. Mary`s thistle fruit (cardui mariae herba), lemon balm (melissae folium), java tea (orthosiphonis folium), peppermint (menthae piperitae folium), sage leaves (salviae folium), scouring rush (equiseti herba), senna leaves (sennae folium), plantain herbs (plantaginis lanceolata herba), thyme herbs (thymi herba), juniper berries (juniperi fructus), hawthorne herbs (crataegi folium), wheat starch (amylum tritici) and wormwood (absinthii herba). Depending on the herbs, the methods used were more or less suitable. Chemiluminescence measurements showed the smallest differences between untreated and irradiated samples whereas thermoluminescence measurements on isolated minerals from the vegetable drugs gave better results. In some herbs radiation-specific radicals could be identified by ESR spectroscopy. Viscosity measurement is suitable for some herbs as fast and inexpensive method for screening. (orig.) [Deutsch] Die Eignung von Chemilumineszenz-, ESR-, Thermolumineszenz- und Viskositaetsmessungen als Nachweismethode fuer die Behandlung von Arzneidrogen mit ionisierenden Strahlen wurde an Anis, Baldrianwurzel, Baerentraubenblaettern, Birkenblaettern, Bockshornsamen, Cayennepfeffer, Faulbaumrinde, Fenchel, Hagebuttenschalen, Huflattichblaettern

  4. Viscosity of confined two-dimensional Yukawa liquids: A nonequilibrium method

    International Nuclear Information System (INIS)

    Landmann, S.; Kählert, H.; Thomsen, H.; Bonitz, M.

    2015-01-01

    We present a nonequilibrium method that allows one to determine the viscosity of two-dimensional dust clusters in an isotropic confinement. By applying a tangential external force to the outer parts of the cluster (e.g., with lasers), a sheared velocity profile is created. The decay of the angular velocity towards the center of the confinement potential is determined by a balance between internal (viscosity) and external friction (neutral gas damping). The viscosity can then be calculated from a fit of the measured velocity profile to a solution of the Navier-Stokes equation. Langevin dynamics simulations are used to demonstrate the feasibility of the method. We find good agreement of the measured viscosity with previous results for macroscopic Yukawa plasmas

  5. Measurement and control in solution mining of copper and uranium

    International Nuclear Information System (INIS)

    Davidson, D.H.; Huff, R.V.; Sonstelie, W.E.

    1978-01-01

    The solution mining of deep-lying mineral deposits requires an integration of oilfield and extractive mineral technology. Although instrumentation is available to measure parameters relating to the oilfield components such as permeability, porosity and flow-logging, only limited services exist for monitoring leaching performance. This paper discusses the history of copper leaching, the need for solution mining development, and solution mining process descriptions. It discusses measurement requirements for deposit evaluation and the injection and production wellfields. It is concluded with a listing of desirable but unavailable instrumentation for further development of this technology

  6. Options for refractive index and viscosity matching to study variable density flows

    Science.gov (United States)

    Clément, Simon A.; Guillemain, Anaïs; McCleney, Amy B.; Bardet, Philippe M.

    2018-02-01

    Variable density flows are often studied by mixing two miscible aqueous solutions of different densities. To perform optical diagnostics in such environments, the refractive index of the fluids must be matched, which can be achieved by carefully choosing the two solutes and the concentration of the solutions. To separate the effects of buoyancy forces and viscosity variations, it is desirable to match the viscosity of the two solutions in addition to their refractive index. In this manuscript, several pairs of index matched fluids are compared in terms of viscosity matching, monetary cost, and practical use. Two fluid pairs are studied in detail, with two aqueous solutions (binary solutions of water and a salt or alcohol) mixed into a ternary solution. In each case: an aqueous solution of isopropanol mixed with an aqueous solution of sodium chloride (NaCl) and an aqueous solution of glycerol mixed with an aqueous solution of sodium sulfate (Na_2SO_4). The first fluid pair allows reaching high-density differences at low cost, but brings a large difference in dynamic viscosity. The second allows matching dynamic viscosity and refractive index simultaneously, at reasonable cost. For each of these four solutes, the density, kinematic viscosity, and refractive index are measured versus concentration and temperature, as well as wavelength for the refractive index. To investigate non-linear effects when two index-matched, binary solutions are mixed, the ternary solutions formed are also analyzed. Results show that density and refractive index follow a linear variation with concentration. However, the viscosity of the isopropanol and NaCl pair deviates from the linear law and has to be considered. Empirical correlations and their coefficients are given to create index-matched fluids at a chosen temperature and wavelength. Finally, the effectiveness of the refractive index matching is illustrated with particle image velocimetry measurements performed for a buoyant jet in a

  7. Construction of a high-temperature viscosimeter and measurement of the viscosity of melts of the system aluminium-nickel; Aufbau eines Hochtemperaturviskosimeters und Messung der Viskositaet von Schmelzen des Systems Aluminium-Nickel

    Energy Technology Data Exchange (ETDEWEB)

    Kehr, Mirko

    2009-10-29

    The system aluminium-nickel is of importance as a model-system in materials science as well as a basic system for superalloys in technical applications. The knowledge of the thermophysical properties of the system aluminium-nickel has been limited to the areas close to the pure elements mainly related to the high melting temperatures of up to 1638 C. The viscosity, which is one of these thermophysical properties, depends on alloy composition as well as on temperature. The viscosity is of importance as an input parameter in computer simulations and for improving casting processes of metallic alloys. The viscosity of aluminium-nickel melts has been measured only once so far. However, not the whole concentration range of the aluminium-nickel system was covered by these data. In particular the viscosity values of the high melting alloys, which are of technological interest, were unknown. The measurement of the missing values was not possible due to the high melting temperatures using existing viscometers. A new oscillating cup viscometer has been constructed within this work. The viscometer has been tested measuring the viscosity values of pure metals, which are well known in literature. The test measurements have been done at temperatures up to 1800 C. A temperature of 2300 C is achievable with slight modifications. A new software for controlling the device and evaluation of the measured data has been developed. Several working equations for calculating the viscosity have been implemented. Furthermore a new approach has been used for detecting the damping of the oscillation of the pendulum containing the liquid sample. The viscosity of aluminium-nickel melts have been measured successfully. The measured values are in good agreement with the little number of known values. A good agreement with values calculated from diffusion experiments and computer simulations was observed as well. Several models for calculating the viscosity of liquid alloys have been tested and

  8. Intrinsic viscosity of a suspension of cubes

    KAUST Repository

    Mallavajula, Rajesh K.

    2013-11-06

    We report on the viscosity of a dilute suspension of cube-shaped particles. Irrespective of the particle size, size distribution, and surface chemistry, we find empirically that cubes manifest an intrinsic viscosity [η]=3.1±0.2, which is substantially higher than the well-known value for spheres, [η]=2.5. The orientation-dependent intrinsic viscosity of cubic particles is determined theoretically using a finite-element solution of the Stokes equations. For isotropically oriented cubes, these calculations show [η]=3.1, in excellent agreement with our experimental observations. © 2013 American Physical Society.

  9. Effect of polycarboxylate ether comb-type polymer on viscosity and interfacial properties of kaolinite clay suspensions.

    Science.gov (United States)

    Zhang, Ling; Lu, Qingye; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo

    2012-07-15

    The interactions between kaolinite clay particles and a comb-type polymer (polycarboxylate ether or PCE), so-called PCE super-plasticizer, were investigated through viscosity and surface forces measurements by a rheometer and a Surface Forces Apparatus (SFA). The addition of PCE shows a strong impact on the viscosity of concentrated kaolinite suspensions in alkaline solutions (pH=8.3) but a weak effect under acidic conditions (pH=3.4). In acidic solutions, the high viscosity measured is attributed to the strong electrostatic interaction between negatively charged basal planes and positively charged edge surfaces of clay particles. Under the alkaline condition, the suspension viscosity was found to first increase significantly and then decrease with increasing PCE dosages. The results from surface forces measurement show that PCE molecules at low dosages can bridge the kaolinite particles in the concentrated suspensions via hydrogen bonding, leading to the formation of a kaolinite-PCE "network" and hence an increased suspension viscosity. At high PCE dosages, clay particles are fully covered by PCE molecules, leading to a more dispersed kaolinite suspensions and hence lower suspension viscosity due to steric repulsion between the adsorbed PCE molecules. The insights derived from measuring viscosity and interfacial properties of kaolinite suspensions containing varying amount of comb-type super-plasticizer PCE at different pH provide the foundation for many engineering applications and optimizing industrial processes. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Simultaneous viscosity and density measurement of small volumes of liquids using a vibrating microcantilever† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6an02674e Click here for additional data file.

    Science.gov (United States)

    Payam, A. F.; Trewby, W.

    2017-01-01

    Many industrial and technological applications require precise determination of the viscosity and density of liquids. Such measurements can be time consuming and often require sampling substantial amounts of the liquid. These problems can partly be overcome with the use of microcantilevers but most existing methods depend on the specific geometry and properties of the cantilever, which renders simple, accurate measurement difficult. Here we present a new approach able to simultaneously quantify both the density and the viscosity of microliters of liquids. The method, based solely on the measurement of two characteristic frequencies of an immersed microcantilever, is completely independent of the choice of a cantilever. We derive analytical expressions for the liquid's density and viscosity and validate our approach with several simple liquids and different cantilevers. Application of our model to non-Newtonian fluids shows that the calculated viscosities are remarkably robust when compared to measurements obtained from a standard rheometer. However, the results become increasingly dependent on the cantilever geometry as the frequency-dependent nature of the liquid's viscosity becomes more significant. PMID:28352874

  11. Viscosity of particle laden films

    Directory of Open Access Journals (Sweden)

    Timounay Yousra

    2017-01-01

    Full Text Available We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  12. The determination of the pressure viscosity coefficient of a lubricant through an accurate film thickness formula and accurate film thickness measurements

    NARCIS (Netherlands)

    Leeuwen, van H.J.

    2009-01-01

    The pressure viscosity coefficient is an indispensable property in the EHD lubrication of hard contacts, but often not known. A guess will easily lead to enormous errors in the film thickness. This paper describes a method to deduct this coefficient by adapting the value of the pressure viscosity

  13. Drop Spreading with Random Viscosity

    Science.gov (United States)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  14. A Riemann problem with small viscosity and dispersion

    Directory of Open Access Journals (Sweden)

    Kayyunnapara Thomas Joseph

    2006-09-01

    Full Text Available In this paper we prove existence of global solutions to a hyperbolic system in elastodynamics, with small viscosity and dispersion terms and derive estimates uniform in the viscosity-dispersion parameters. By passing to the limit, we prove the existence of solution the Riemann problem for the hyperbolic system with arbitrary Riemann data.

  15. Study of accurate volume measurement system for plutonium nitrate solution

    Energy Technology Data Exchange (ETDEWEB)

    Hosoma, T. [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-12-01

    It is important for effective safeguarding of nuclear materials to establish a technique for accurate volume measurement of plutonium nitrate solution in accountancy tank. The volume of the solution can be estimated by two differential pressures between three dip-tubes, in which the air is purged by an compressor. One of the differential pressure corresponds to the density of the solution, and another corresponds to the surface level of the solution in the tank. The measurement of the differential pressure contains many uncertain errors, such as precision of pressure transducer, fluctuation of back-pressure, generation of bubbles at the front of the dip-tubes, non-uniformity of temperature and density of the solution, pressure drop in the dip-tube, and so on. The various excess pressures at the volume measurement are discussed and corrected by a reasonable method. High precision-differential pressure measurement system is developed with a quartz oscillation type transducer which converts a differential pressure to a digital signal. The developed system is used for inspection by the government and IAEA. (M. Suetake)

  16. Radioactivity measurements of 32P solutions by calorimetric methods

    International Nuclear Information System (INIS)

    Genka, T.; Nataredja, I.K.

    1992-01-01

    Radioactivity of 32 P solution is measured with a twin-cup heat-flow microcalorimeter. In order to convert whole decay energy evolved from the 32 P solution in a glass vial into thermal power, 5 mm-thick lead container was used as a radiation absorber. Corrections for heat loss due to thermal radiation and bremsstrahlung escape as well as an effect of impurity ( 33 P) are conducted. The overall uncertainty of the nondestructive measurement as a sample is in a container is estimated to be ± 1.5 %. Discussion about estimates of uncertainties is also given in detail. (author)

  17. Constructing exact symmetric informationally complete measurements from numerical solutions

    Science.gov (United States)

    Appleby, Marcus; Chien, Tuan-Yow; Flammia, Steven; Waldron, Shayne

    2018-04-01

    Recently, several intriguing conjectures have been proposed connecting symmetric informationally complete quantum measurements (SIC POVMs, or SICs) and algebraic number theory. These conjectures relate the SICs to their minimal defining algebraic number field. Testing or sharpening these conjectures requires that the SICs are expressed exactly, rather than as numerical approximations. While many exact solutions of SICs have been constructed previously using Gröbner bases, this method has probably been taken as far as is possible with current computer technology (except in special cases where there are additional symmetries). Here, we describe a method for converting high-precision numerical solutions into exact ones using an integer relation algorithm in conjunction with the Galois symmetries of an SIC. Using this method, we have calculated 69 new exact solutions, including nine new dimensions, where previously only numerical solutions were known—which more than triples the number of known exact solutions. In some cases, the solutions require number fields with degrees as high as 12 288. We use these solutions to confirm that they obey the number-theoretic conjectures, and address two questions suggested by the previous work.

  18. Viscosity of liquid sulfur under high pressure

    International Nuclear Information System (INIS)

    Terasaki, Hidenori; Kato, T; Funakoshi, K; Suzuki, A; Urakawa, S

    2004-01-01

    The viscosity of liquid sulfur up to 9.7 GPa and 1067 K was measured using the in situ x-ray radiography falling sphere method. The viscosity coefficients were found to range from 0.11 to 0.69 Pa s, and decreased continuously with increasing pressure under approximately constant homologous temperature conditions. The observed viscosity variation suggests that a gradual structural change occurs in liquid sulfur with pressure up to 10 GPa. The L-L' transition in liquid sulfur proposed by Brazhkin et al (1991 Phys. Lett. A 154 413) from thermobaric measurements has not been confirmed by the present viscometry

  19. Elongational viscosity of narrow molar mass distribution polystyrene

    DEFF Research Database (Denmark)

    Bach, Anders; Almdal, Kristoffer; Rasmussen, Henrik Koblitz

    2003-01-01

    Transient and steady elongational viscosity has been measured for two narrow molar mass distribution polystyrene melts of molar masses 200 000 and 390 000 by means of a filament stretching rheometer. Total Hencky strains of about five have been obtained. The transient elongational viscosity rises...... above the linear viscoelastic prediction at intermediate strains, indicating strain hardening. The steady elongational viscosities are monotone decreasing functions of elongation rate. At elongation rates larger than the inverse reptation time, the steady elongational viscosity scales linearly...

  20. Retention measurements of nanofiltration membranes with electrolyte solutions

    NARCIS (Netherlands)

    Peeters, J.M.M.; Peeters, J.M.M.; Boom, J.P.; Boom, J.P.; Mulder, M.H.V.; Strathmann, H.

    1998-01-01

    Retention measurements with single salt solutions of CaCl2, NaCl and Na2SO4 revealed that the rejection mechanism of commercial polymeric nanofiltration membranes investigated in this study may be divided into two categories: 1. Membranes for which Donnan exclusion seems to play an important role.

  1. Solution microcalorimeter for measuring heats of solution of radioactive elements and compounds

    International Nuclear Information System (INIS)

    Raschella, D.L.

    1978-12-01

    The microcalorimeter vessel is constructed of tantalum metal, with a nominal volume of 5 cm 3 . Its energy equivalent is 24 J K -1 when containing 5 cm 3 H 2 O. The thermal leakage modulus is 0.010 min -1 . A thermistor is employed as the temperature sensor. The operating sensitivity is about 1 x 10 -5 K (300 μJ). The performance of the calorimetry system was tested using tris(hydroxymethyl)aminomethane (TRIS) and magnesium metal. The results of the TRIS experiments, at a concentration of 1 g dm -3 in 0.1 N HCl at 298 K, yielded a heat of solution of -29.606 +- 0.063 kJ mol -1 . The magnesium experiments, in 1 N HCl at 298 K, gave a heat of solution of -465.965 +- 1.136 kJ mol -1 . The heat of solution of curium-248 metal in 1 N HCl at 298 K was measured. The experiments, which should not be considered definitive, yielded a heat of solution of -606.4 +- 1.8 kJ mol -1 . A single measurement in 6 N HCl gave a heat of solution of -602.3 kJ mol -1 . From these results the heat of formation of Cm 3+ /sub (aq)/ is calculated to be -607.2 +- 2.5 kJ mol -1

  2. Comparative evaluation of aqueous humor viscosity.

    Science.gov (United States)

    Davis, Kyshia; Carter, Renee; Tully, Thomas; Negulescu, Ioan; Storey, Eric

    2015-01-01

    To evaluate aqueous humor viscosity in the raptor, dog, cat, and horse, with a primary focus on the barred owl (Strix varia). Twenty-six raptors, ten dogs, three cats, and one horse. Animals were euthanized for reasons unrelated to this study. Immediately, after horizontal and vertical corneal dimensions were measured, and anterior chamber paracentesis was performed to quantify anterior chamber volume and obtain aqueous humor samples for viscosity analysis. Dynamic aqueous humor viscosity was measured using a dynamic shear rheometer (AR 1000 TA Instruments, New Castle, DE, USA) at 20 °C. Statistical analysis included descriptive statistics, unpaired t-tests, and Tukey's test to evaluate the mean ± standard deviation for corneal diameter, anterior chamber volume, and aqueous humor viscosity amongst groups and calculation of Spearman's coefficient for correlation analyses. The mean aqueous humor viscosity in the barred owl was 14.1 centipoise (cP) ± 9, cat 4.4 cP ± 0.2, and dog 2.9 cP ± 1.3. The aqueous humor viscosity for the horse was 1 cP. Of the animals evaluated in this study, the raptor aqueous humor was the most viscous. The aqueous humor of the barred owl is significantly more viscous than the dog (P humor viscosity of the raptor, dog, cat, and horse can be successfully determined using a dynamic shear rheometer. © 2014 American College of Veterinary Ophthalmologists.

  3. Measurements of transuranium trace amounts in solution. Bibliographic study

    International Nuclear Information System (INIS)

    Billon, A.; Gaudez, M.T.

    1986-01-01

    A critical study based on the data of the literature published up to 1984 has been carried out on the measurements of transuranian traces in solution. The general technical aspects of the dosage of transuranian traces in solution and of their speciations were initially reviewed. The second part is devoted to the detailed review of various methods in use in the laboratories. This work has been carried out in the framework of the MIRAGE (migration of radionuclides in the biosphere) Community project. 85 refs

  4. On-line slurry viscosity and concentration measurement as a real-time waste stream characterization tool. 1998 annual progress report

    International Nuclear Information System (INIS)

    Powell, R.L.

    1998-01-01

    'This project seeks to develop an on-line sensor to measure the viscosity of dense slurries. This report summarizes work after two years of a three year project. The flow behavior of slurries is important for many of the proposed unit operations to be used in the conveying and processing of tank wastes. One alternative for determining the rheological properties of such materials is to obtain samples and test them off-line using conventional rheometers. Such a protocol is not practical for a wide variety of wastes. Rather, it is the goal of this work to find on-line, in-process techniques for measurement. There are two systems that the authors have propose examining: (1) Nuclear magnetic resonance imaging (NMRI), and, (2) Ultrasonic Doppler Velocimetry. Central to both of these techniques is the measurement of velocity profiles in pipe flows. For the NMRI measurements, the presence of particles has two principal effects on the NMRI velocity profiles: a decrease in signal intensity and image blurring. Similar effects are observed in turbulent flows due to the local random fluctuations in the flow. This similarity has led us to turbulent flow using NMRI. The governing equations for the signal obtained by NMRI are the Bloch-Torrey equations. Previously, the author showed a relationship between turbulent fluctuations and spatial signal intensity variations, assuming isotropic turbulence. However, this assumption does not reflect the true nature of turbulence in a pipe flow where the turbulence is not isotropic. In the new work the Bloch-Torrey equations will be solved by first, time averaging and then employing a turbulence model for pipe flow. The purpose of the time averaging is to smooth the fluctuations of time scale smaller than that of NMRI data acquisition. After this work with single phase fluids, the authors shall undertake NMRI experiments of slurry flow. Various operational parameters will be optimized during the experiments to obtain velocity profile of the

  5. A model for the viscosity of dilute smectite gels

    International Nuclear Information System (INIS)

    Liu, L.

    2011-01-01

    A simple yet accurate model describing the viscosity of dilute suspensions of sodium montmorillonite in dilute homo-ionic solutions is presented. Taking the clay particle and the surrounding clouds of ions as a whole as an uncharged but soft, coin-like particle, the Huggins' equation for a suspension of uncharged particles is extended in the model to account for not only the primary and the secondary electro-viscous effects, but also the multi-particle interaction. The agreements between the predicted and measured results are excellent. The Huggins' coefficient obtained compares favorably with available data, while the intrinsic viscosity reduces to the Simha's equation in the large limit of ionic strength, suggesting that the model is robust. (authors)

  6. Measurement of Solute Diffusion Behavior in Fractured Waste Glass Media

    International Nuclear Information System (INIS)

    Saripalli, Kanaka P.; Lindberg, Michael J.; Meyer, Philip D.

    2008-01-01

    Determination of aqueous phase diffusion coefficients of solutes through fractured media is essential for understanding and modeling contaminants transport at many hazardous waste disposal sites. No methods for earlier measurements are available for the characterization of diffusion in fractured glass blocks. We report here the use of time-lag diffusion experimental method to assess the diffusion behavior of three different solutes (Cs, Sr and Pentafluoro Benzoic Acid or PFBA) in fractured, immobilized low activity waste (ILAW) glass forms. A fractured media time-lag diffusion experimental apparatus that allows the measurement of diffusion coefficients has been designed and built for this purpose. Use of time-lag diffusion method, a considerably easier experimental method than the other available methods, was not previously demonstrated for measuring diffusion in any fractured media. Hydraulic conductivity, porosity and diffusion coefficients of a solute were experimentally measured in fractured glass blocks using this method for the first time. Results agree with the range of properties reported for similar rock media earlier, indicating that the time-lag experimental method can effectively characterize the diffusion coefficients of fractured ILAW glass media

  7. Measure-valued solutions to the complete Euler system revisited

    Czech Academy of Sciences Publication Activity Database

    Březina, J.; Feireisl, Eduard

    2018-01-01

    Roč. 69, č. 3 (2018), č. článku 57. ISSN 0044-2275 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Euler system * measure-valued solution * vanishing dissipation limit Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.687, year: 2016 https://link.springer.com/article/10.1007/s00033-018-0951-8

  8. Light scattering measurements supporting helical structures for chromatin in solution.

    Science.gov (United States)

    Campbell, A M; Cotter, R I; Pardon, J F

    1978-05-01

    Laser light scattering measurements have been made on a series of polynucleosomes containing from 50 to 150 nucleosomes. Radii of gyration have been determined as a function of polynucleosome length for different ionic strength solutions. The results suggest that at low ionic strength the chromatin adopts a loosely helical structure rather than a random coil. The helix becomes more regular on increasing the ionic strength, the dimension resembling those proposed by Finch and Klug for their solenoid model.

  9. Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weaver, Jamie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99mTc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH)3. The precipitate of Gd(OH)3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99Mo and 99mTc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.

  10. Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure

    International Nuclear Information System (INIS)

    Soderquist, Chuck Z.; Weaver, Jamie L.

    2015-01-01

    This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99m Tc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99 Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH) 3 . The precipitate of Gd(OH) 3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99 Mo and 99m Tc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.

  11. Nondestructive assay instrument for measurement of plutonium in solutions

    International Nuclear Information System (INIS)

    Shirk, D.G.; Hsue, F.; Li, T.K.; Canada, T.R.

    1979-01-01

    A nondestructive assay (NDA) instrument that measures the 239 Pu content in solutions, using a passive gamma-ray spectroscopy technique, has been developed and installed in the LASL Plutonium Processing Facility. A detailed evaluation of this instrument has been performed. The results show that the instrument can routinely determine 239 Pu concentrations of 1 to 500 g/l with accuracies of 1 to 5% and assay times of 1 to 2 x 10 3 s

  12. Fluidized-Bed Coating with Sodium Sulfate and PVA-TiO2, 2. Influence of Coating Solution Viscosity, Stickiness, pH, and Droplet Diameter on Agglomeration

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, Poul; Jensen, Anker Degn

    2009-01-01

    In the first part of this study [Hede, P. D.; Bach, P.; Jensen, A. D. Ind. Eng. Chem. Res. 2009, 49, 1914], agglomeration regime maps were developed for two types of coatings: sodium sulfate and PVA-TiO2. It was observed here how the agglomeration tendency is always lower for the salt coating...... the PVA-TiO2 coating formulation and process to achieve a low tendency of agglomeration, similar to that of the salt coating process. The best results for the PVA-TiO2 solution are obtained by substituting the PVA-TiO2 in equal amounts with Neodol 23-6.5 and further reducing the pH value in the coating...

  13. Fissile materials in solution concentration measured by active neutron interrogation

    International Nuclear Information System (INIS)

    Romeyer Dherbey, J.; Passard, Ch.; Cloue, J.; Bignan, G.

    1993-01-01

    The use of the active neutron interrogation to measure the concentration of plutonium contained in flow solutions is particularly interesting for fuel reprocessing plants. Indeed, this method gives a signal which is in a direct relation with the fissile materials concentration. Moreover, it is less sensitive to the gamma dose rate than the other nondestructive methods. Two measure methods have been evolved in CEA. Their principles are given into details in this work. The first one consists to detect fission delayed neutrons induced by a 252 Cf source. In the second one fission prompt neutrons induced by a neutron generator of 14 MeV are detected. (O.M.)

  14. Chebyshev super spectral viscosity method for a fluidized bed model

    International Nuclear Information System (INIS)

    Sarra, Scott A.

    2003-01-01

    A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations

  15. Volumetric and viscometric studies of glucose in binary aqueous solutions of urea at different temperatures

    International Nuclear Information System (INIS)

    Samanta, T.; Saharay, S.K.

    2010-01-01

    Densities and viscosities of glucose in (1.0, 2.5, and 5.0) mass% aqueous urea solutions have been measured at T = (298.15, 303.15, 308.15, and 313.15) K, respectively. Apparent molar volumes, limiting partial molar volume, and relative viscosity have been obtained from the density and viscosity results. Limiting partial molar expansibilities have also been calculated from the temperature dependence of limiting partial molar volumes. The viscosity data have been analyzed by using the modified Jones-Dole equation. The results are used to establish the nature of solute-solute and solute-solvent interactions. Transition state treatment of the relative viscosity was also used for the calculation of activation parameters of viscous flow. Pour findings show that the solute acts as a water structure former and provides strong solute-solvent interaction.

  16. Volumetric and viscometric studies of urea in binary aqueous solutions of glucose at different temperatures

    International Nuclear Information System (INIS)

    Samanta, T.; Ray, A.

    2010-01-01

    Densities and viscosities of urea in (1.0, 2.5, and 5.0) mass% of aqueous glucose solutions have been measured at T = (298.15, 303.15, 308.15, and 313.15) K, respectively. Apparent molar volumes, limiting partial molar volume, and relative viscosity have been obtained from the density and viscosity data. Limiting partial molar expansibilities have also been calculated from the temperature dependence of limiting partial molar volumes. The viscosity data has been analyzed using the Jones-Dole equation. The results are used to establish the nature of solute-solute and solute-solvent interactions. The activation parameters of viscous flow have also been calculated on the basis of transition state treatment of the relative viscosity. Result shows that the solute acts as water structure breaker and posses' weak solute-solvent interaction.

  17. Electromotive force measurement of lanthanides in Bi solution

    International Nuclear Information System (INIS)

    Sheng, Jiawei; Yamana, Hajimu; Moriyama, Hirotake

    2000-01-01

    The thermodynamic properties of Tb, Dy and Ho dissolved in liquid Bi were determined by the electromotive force (EMF) measurement method. The EMF of the following galvanic cell was measured in the range of 500-800degC over a wide range of solute concentration. Ln(solid)|KCl-LiCl|Ln-Bi (solution) There was observed a linear relationship between the EMFs and the lanthanide (Ln) concentrations in liquid Bi phase at a constant temperature, which agreed with the Nernst's equation. The obtained activity coefficients of lanthanides in liquid Bi solution were almost constant at a fixed temperature condition. Temperature effects on the activity coefficients could be expressed by the following equation: log γ=a+b/T, where a and b are experimental constants which correspond to the entropy and enthalpy of the formation of Ln-Bi compound in the melt, respectively. The thermodynamic quantities obtained were discussed in terms of their systematics along the 4f series. (author)

  18. A Wavefront Division Polarimeter for the Measurements of Solute Concentrations in Solutions

    Directory of Open Access Journals (Sweden)

    Sergio Calixto

    2017-12-01

    Full Text Available Polarimeters are useful instruments that measure concentrations of optically active substances in a given solution. The conventional polarimetric principle consists of measuring the rotation angle of linearly polarized light. Here, we present a novel polarimeter based on the study of interference patterns. A Mach–Zehnder interferometer with linearly polarized light at the input is used. One beam passes through the liquid sample and the other is a reference beam. As the linearly polarized sample beam propagates through the optically active solution the vibration plane of the electric field will rotate. As a result, the visibility of the interference pattern at the interferometer output will decrease. Fringe contrast will be maximum when both beams present a polarization perpendicular to the plane of incidence. However, minimum visibility is obtained when, after propagation through the sample the polarization of the sample beam is oriented parallel to the plane of incidence. By using different solute concentrations, a calibration plot is obtained showing the behavior of visibility.

  19. Effective viscosity of dispersions approached by a statistical continuum method

    NARCIS (Netherlands)

    Mellema, J.; Willemse, M.W.M.

    1983-01-01

    The problem of the determination of the effective viscosity of disperse systems (emulsions, suspensions) is considered. On the basis of the formal solution of the equations governing creeping flow in a statistically homogeneous dispersion, the effective viscosity is expressed in a series expansion

  20. Finding viscosity of liquids from Brownian motion at students' laboratory

    International Nuclear Information System (INIS)

    Greczylo, Tomasz; Debowska, Ewa

    2005-01-01

    Brownian motion appears to be a good subject for investigation at advanced students' laboratory [1]. The paper presents such an investigation carried out in Physics Laboratory II at the Institute of Experimental Physics of Wroclaw University. The experiment has been designed to find viscosity of liquids from Brownian motion phenomenon. Authors use modern technology that helps to proceed with measurements and makes the procedure less time and effort consuming. Discussion of the process of setting up the experiment and the results obtained for three different solutions of glycerin in water are presented. Advantages and disadvantages of the apparatus are pointed out along with descriptions of possible future uses

  1. Direct rotating ring-disk measurement of the sodium borohydride diffusion coefficient in sodium hydroxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chatenet, M. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS/Grenoble-INP/UJF, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France)], E-mail: Marian.Chatenet@phelma.grenoble-inp.fr; Molina-Concha, M.B. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS/Grenoble-INP/UJF, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France); El-Kissi, N. [Laboratoire de Rheologie, UMR 5520 CNRS/Grenoble-INP/UJF, 1301 rue de la piscine, 38041 Grenoble Cedex 9 (France); Parrour, G.; Diard, J.-P. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS/Grenoble-INP/UJF, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France)

    2009-07-15

    This paper presents the experimental determination of the diffusion coefficient of borohydride anion and solution kinematic viscosity for a large panel of NaOH + NaBH{sub 4} electrolytic solutions relevant for use as anolyte in Direct Borohydride Fuel Cells (DBFC). The diffusion coefficients have been measured by the transit-time technique on gold rotating ring-disk electrodes, and verified using other classical techniques reported in the literature, namely the Levich method and Electrochemical Impedance Spectroscopy on a gold RDE, or chronoamperometry at a gold microdisk. The agreement between these methods is generally good. The diffusion coefficients measured from the RRDE technique are however ca. twice larger than those previously reported in the literature (e.g. ca. 3 x 10{sup -5} cm{sup 2} s{sup -1} in 1 M NaOH + 0.01 M NaBH{sub 4} at 25 deg. C in the present study vs. ca. 1.6 x 10{sup -5} cm{sup 2} s{sup -1} in 1 M NaOH + 0.02 M NaBH{sub 4} at 30 deg. C in the literature, as measured by chronoamperometry at a gold microsphere), which is thoroughly discussed. Our measurements using chronoamperometry at a gold microdisk showed that such technique can yield diffusion coefficient values below what expected. The origin of such finding is explained in the frame of the formation of both a film of boron-oxide(s) at the surface of the (static) gold microdisk and the generation of H{sub 2} bubbles at the electrode surface (as a result of the heterogeneous hydrolysis at Au), which alter the access to the electrode surface and thus prevents efficient measurements. Such film formation and H{sub 2} bubbles generation is not so much of an issue for rotating electrodes thanks to the convection of electrolyte which sweeps the electrode surface. In addition, should such film be present, the transit-time determination technique on a RRDE displays the advantage of not being very sensible to its presence: the parameter measured is the time taken by a perturbation generated the

  2. Direct rotating ring-disk measurement of the sodium borohydride diffusion coefficient in sodium hydroxide solutions

    International Nuclear Information System (INIS)

    Chatenet, M.; Molina-Concha, M.B.; El-Kissi, N.; Parrour, G.; Diard, J.-P.

    2009-01-01

    This paper presents the experimental determination of the diffusion coefficient of borohydride anion and solution kinematic viscosity for a large panel of NaOH + NaBH 4 electrolytic solutions relevant for use as anolyte in Direct Borohydride Fuel Cells (DBFC). The diffusion coefficients have been measured by the transit-time technique on gold rotating ring-disk electrodes, and verified using other classical techniques reported in the literature, namely the Levich method and Electrochemical Impedance Spectroscopy on a gold RDE, or chronoamperometry at a gold microdisk. The agreement between these methods is generally good. The diffusion coefficients measured from the RRDE technique are however ca. twice larger than those previously reported in the literature (e.g. ca. 3 x 10 -5 cm 2 s -1 in 1 M NaOH + 0.01 M NaBH 4 at 25 deg. C in the present study vs. ca. 1.6 x 10 -5 cm 2 s -1 in 1 M NaOH + 0.02 M NaBH 4 at 30 deg. C in the literature, as measured by chronoamperometry at a gold microsphere), which is thoroughly discussed. Our measurements using chronoamperometry at a gold microdisk showed that such technique can yield diffusion coefficient values below what expected. The origin of such finding is explained in the frame of the formation of both a film of boron-oxide(s) at the surface of the (static) gold microdisk and the generation of H 2 bubbles at the electrode surface (as a result of the heterogeneous hydrolysis at Au), which alter the access to the electrode surface and thus prevents efficient measurements. Such film formation and H 2 bubbles generation is not so much of an issue for rotating electrodes thanks to the convection of electrolyte which sweeps the electrode surface. In addition, should such film be present, the transit-time determination technique on a RRDE displays the advantage of not being very sensible to its presence: the parameter measured is the time taken by a perturbation generated the disk to reach the ring trough a distance several orders

  3. Viscosity properties of sodium borophosphate glasses

    International Nuclear Information System (INIS)

    Gaylord, S.; Tincher, B.; Petit, L.; Richardson, K.

    2009-01-01

    The viscosity behavior of (1 - x)NaPO 3 -xNa 2 B 4 O 7 glasses (x = 0.05-0.20) have been measured as a function of temperature using beam-bending and parallel-plate viscometry. The viscosity was found to shift to higher temperatures with increasing sodium borate content. The kinetic fragility parameter, m, estimated from the viscosity curve, decreases from 52 to 33 when x increases from 0.05 to 0.20 indicating that the glass network transforms from fragile to strong with the addition of Na 2 B 4 O 7 . The decrease in fragility with increasing x is due to the progressive depolymerization of the phosphate network by the preferred four-coordinated boron atoms present in the low alkali borate glasses. As confirmed by Raman spectroscopy increasing alkali borate leads to enhanced B-O-P linkages realized with the accompanying transition from solely four-coordinated boron (in BO 4 units) to mixed BO 4 /BO 3 structures. The glass viscosity characteristics of the investigated glasses were compared to those of P-SF67 and N-FK5 commercial glasses from SCHOTT. We showed that the dependence of the viscosity of P-SF67 was similar to the investigated glasses due to similar phosphate network organization confirmed by Raman spectroscopy, whereas N-FK5 exhibited a very different viscosity curve and fragility parameter due to its highly coordinated silicate network

  4. Determination of Viscosity Versus Pressure by Means of a Clearance Seal

    DEFF Research Database (Denmark)

    Christiansen, Peter; Schmidt Hansen, Niels; Lund, Martin Thomas Overdahl

    2018-01-01

    This paper describes the construction and testing of a simple, experimental tool setup that enables determination of the pressure–viscosity relationship for high viscosity oils. Comparing the determined pressure–viscosity relationship with a reference rheometer measuring the viscosity at ambient ...

  5. The Viscosity of Organic Liquid Mixtures

    Science.gov (United States)

    Len, C. W.; Trusler, J. P. M.; Vesovic, V.; Wakeham, W. A.

    2006-01-01

    The paper reports measurements of the viscosity and density of two heavy hydrocarbon mixtures, Dutrex and Arab Light Flashed Distillate (ALFD), and of their mixtures with hydrogen. The measurements have been carried out with a vibrating-wire device over a range of temperatures from 399 to 547 K and at pressures up to 20 MPa. Measurements have also been carried out on systems in which hydrogen at different concentrations has been dissolved in the liquids. The measurements have an estimated uncertainty of ±5% for viscosity and ±2% for density and represent the first results on these prototypical heavy hydrocarbons. The results reveal that the addition of hydrogen reduces both the density and viscosity of the original hydrocarbon mixture at a particular temperature and pressure.

  6. Technological characteristics of meat - viscosity

    OpenAIRE

    DIBĎÁK, Tomáš

    2012-01-01

    This bachelor thesis is focused on the technological characteristics of meat, mainly viscosity of meat. At the beginning I dealt with construction of meat and various types of meat: beef, veal, pork, mutton, rabbit, poultry and venison. Then I described basic chemical composition of meat and it?s characteristic. In detail I dealt with viscosity of meat. Viscosity is the ability of meat to bind water both own and added. I mentioned influences, which effects viscosity and I presented the possib...

  7. Determination of viscosity in recirculating fluidized bed using radioactive tracer

    International Nuclear Information System (INIS)

    Silva, G.G. da.

    1986-01-01

    The use of radioactive tracer for measuring viscosity is proposed. The methodology relates the terminal velocity of a radioactive sphere in interior of fluid with the viscosity, which can be a fluidized bed or total flow of solids. The arrangement is composed by two γ detectors placed externally and along the bed. Both detectors are coupled by amplifier to electronic clock. The drop time of sphere between two detectors is measured. The bed viscosity two detectors is measured. The bed viscosity is calculated from mathematical correlations of terminal velocity of the sphere. (M.C.K.)

  8. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, Katherine [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may

  9. Dose measurement of fast electrons with a modified Fricke solution

    International Nuclear Information System (INIS)

    Nemec, H.W.; Roth, J.; Luethy, H.

    1975-01-01

    A combination of two different modifications indicated in the literature about the ferrosulfate dosimetry is given. This permits a dose measurement which shows compared to the usual Fricke dosimetry above all following advantages: dose specification related to water; displacement of the absorption maximum in the perceptible spectral sphere; increase of the sensibility and lower influence of pollutions. The molar coefficient of extinction of the modified solution has been determined from 60 Co gamma irradiation and is epsilonsub(m) = 1.46 x 10 4 l x Mol -1 x cm -1 . The increase of extinction which has been measured with this method after the irradiation with 18 MeV electrons occurs linearly within the studied region to 1,200 rd at least, the G-value is 15.5. The indicated method renders possible a relative simple calibration of the ionization chambers used in the practice. (orig.) [de

  10. 3D Suspended Polymeric Microfluidics (SPMF3 with Flow Orthogonal to Bending (FOB for Fluid Analysis through Kinematic Viscosity

    Directory of Open Access Journals (Sweden)

    Mostapha Marzban

    2017-10-01

    Full Text Available Measuring of fluid properties such as dynamic viscosity and density has tremendous potential for various applications from physical to biological to chemical sensing. However, it is almost impossible to affect only one of these properties, as dynamic viscosity and density are coupled. Hence, this paper proposes kinematic viscosity as a comprehensive parameter which can be used to study the effect of fluid properties applicable to various fluids from Newtonian fluids, such as water, to non-Newtonian fluids, such as blood. This paper also proposes an ideal microplatform, namely polymeric suspended microfluidics (SPMF3, with flow plane orthogonal to the bending plane of the structure, along with tested results of various fluids covering a wide range of engineering applications. Kinematic viscosity, also called momentum diffusivity, considers changes in both fluid intermolecular forces and molecular inertia that define dynamic viscosity and fluid density, respectively. In this study a 3D suspended polymeric microfluidic system (SPMF3 was employed to detect changes in fluid parameters such as dynamic viscosity and density during fluid processes. Using this innovative design along with theoretical and experimental results, it is shown that, in fluids, the variations of fluid density and dynamic viscosity are not easily comprehensible due to their interconnectivity. Since any change in a fluid will affect both density and dynamic viscosity, measuring both of them is necessary to identify the fluid or process status. Finally, changes in fluid properties were analyzed using simulation and experiments. The experimental results with salt-DI water solution and milk with different fat concentrations as a colloidal fluid show that kinematic viscosity is a comprehensive parameter that can identify the fluids in a unique way using the proposed microplatform.

  11. Feedwater flow measurements: challenges, current solutions, and 'soft' developments

    International Nuclear Information System (INIS)

    Ruan, D.; Roverso, D.; Fantoni, P.F.; Sanabrias, J.I.; Carrasco, J.A.; Fernandez, L.

    2002-07-01

    This report presents an early progress of a feasibility study of a computational intelligence approach to the enhancement of the accuracy of feedwater flow measurements in the framework of an ongoing cooperation between Tecnatom s.a. in Madrid and the OECD Halden Reactor Project (HRP) in Halden. The aim of this research project is to contribute to the development and validation of a flow sensor in a nuclear power plant (NPP). The basic idea is to combine the use of applied computational intelligence approaches (noise analysis, neural networks, fuzzy systems, wavelets etc.) with existing traditional flow measurements, and in particular with cross correlation flow meter concepts. In this report, Section 2 outlines relevant aspects of thermal power calculations on electrical power plants. Section 3 reviews from the available literature possible approaches and solutions for feedwater flow measurement, including ultrasonic flow meters, cross-correlation flow meters, and 'Virtural' flow meters with artificial neural networks. Section 4 reports typical experimental measurements at the Tecnatom's facility. Section 5 presents an integration approach and preliminary experimental tests. Section 6 discusses the role of soft computing techniques in the context of feedwater flow measurements related nuclear fields, and Section 7 highlights the future research direction. (Author)

  12. A model for the viscosity of dilute smectite gels

    International Nuclear Information System (INIS)

    Liu, Di; Liu, Longcheng

    2010-01-01

    Document available in extended abstract form only. A simple yet accurate model describing the viscosity of dilute suspensions of sodium montmorillonite in low ionic strength waters is presented. Taking the clay particle and the surrounding clouds of ions as whole as an uncharged but soft particle, the Huggins' equation is extended in the model to account for both the primary and the secondary electro-viscous effects, by use of the notion of an effective volume fraction. In the model, however, we do not represent the clay particle as a sphere surrounded by immobile water layer with thickness of a Debye length, as did by Adachi et al. (1998) who used the co-volume fraction to approximate the effective volume fraction. We visualize the effective geometry of the particle and the associated ionic atmosphere as an ellipsoid. This representation is more practical and more plausible, because in the limit of large ionic strength, the electrolyte ions have been screened to a significant extent so that the charged particle behaves just like an uncharged one. As a result, the application of the Simha's equation of intrinsic viscosity for ellipsoidal particle following with random Brownian motion enables us to obtain an analytical expression for the primary electro-viscous effect. More importantly, the available models for hard plate-like particles can be used to aid in the quantification of the secondary electro-viscous effect. The development of the model is based firmly on precise measurements of the viscosity of sufficiently dilute suspensions of sodium montmorillonite in low concentration NaCl solutions (at room temperature) using Ostwald capillary viscometers. The obtained data clearly demonstrate the primary and the secondary electro-viscous effects. That is, with an decrease of ionic strength, the intrinsic viscosity which is the intercept of the extrapolation of the plot at zero volume fraction will increase, and the slope of the linear part which appears in

  13. Vanishing Shear Viscosity Limit in the Magnetohydrodynamic Equations

    Science.gov (United States)

    Fan, Jishan; Jiang, Song; Nakamura, Gen

    2007-03-01

    We study an initial boundary value problem for the equations of plane magnetohydrodynamic compressible flows, and prove that as the shear viscosity goes to zero, global weak solutions converge to a solution of the original equations with zero shear viscosity. As a by-product, this paper improves the related results obtained by Frid and Shelukhin for the case when the magnetic effect is neglected.

  14. Viscosity Meaurement Technique for Metal Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Heng [Utah State Univ., Logan, UT (United States). Mechanical and Aerospace Engineering; Kennedy, Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-09

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  15. Viscosity Meaurement Technique for Metal Fuels

    International Nuclear Information System (INIS)

    Ban, Heng

    2015-01-01

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  16. Jet collimation by turbulent viscosity. I

    International Nuclear Information System (INIS)

    Henriksen, R.N.

    1987-01-01

    In this paper it is assumed that the subscale turbulent eddies induced in an ambient medium by the emergence of a (already collimated) jet from a galactic nucleus (VLBI jet) are the source of the viscosity which causes material to be entrained into the large-scale (VLA) jet. New analytic solutions are derived by a generalization of the self-similar Ansatz used in the Landau-Squires solution to include variable density and viscosity. It is shown that such a process of viscous collimation of the VLA jets can account for the observed collimation-luminosity correlation, the magnetic flux, and the inferred mass flux of these jets. Order of magnitude comparisons of velocity and density fields with recently observed emission-line flow regions near radio jets are made. All of the viscosity-dependent observational checks imply roughly the same plausible value for the eddy viscosity. It is emphasized that storing the initial VLBI jet energy in the intermediate scales occupied by the turbulent eddies allows this energy to be largely undetected. 35 references

  17. Possible ambiguities when testing viscosity in compendial monographs - characterisation of grades of cellulose ethers.

    Science.gov (United States)

    Doelker, E

    2010-10-01

    The European Pharmacopoeia (Ph. Eur.) monographs for the water-soluble cellulose ethers require viscosity determination, either in the "Tests" section or in the non-mandatory "Functionality-related characteristics" section. Although the derivatives are chemically closely related and used for similar applications, the viscosity tests strongly differ. Some monographs generically speak of the rotating viscometer method (2.2.10) and a fixed shear rate (e.g. 10 s-1), which would necessitate an absolute measuring system, while others recommend the capillary viscometer method for product grades of less than 600 mPa∙s and the rotating viscometer method and given operating conditions for grades of higher nominal viscosity. Viscometer methods also differ between the United States Pharmacopeia/National Formulary (USP/NF) and the Japanese Pharmacopoeia (JP) monographs. In addition, for some cellulose ethers the tests sometimes diverge from one pharmacopoeia to the other, although the three compendiums are in a harmonisation process. But the main issue is that the viscometer methods originally employed by the product manufacturers are often not those described in the corresponding monographs and generally vary from one manufacturer to the other. The aim of this study was therefore to investigate whether such a situation could invalidate the present pharmacopoeial requirements. 2 per cent solutions of several viscosity grades of hydroxyethylcellulose, hypromellose and methylcellulose were prepared and their (apparent) viscosity determined using both relative and absolute viscometer methods. The viscometer method used not only affects the measured viscosity but experimental values generally do not correspond to the product nominal viscosities. It emerges that, in contrast to Newtonian solutions (i.e. those of grades of up to ca. 50 mPa∙s nominal viscosity), some of the viscometer methods currently specified in the monographs are not able unambiguously to characterise the

  18. Parameters affecting level measurement interpretation of nuclear fuel solutions

    International Nuclear Information System (INIS)

    Hunt, B.A.; Landat, D.A.

    1999-01-01

    This paper describes a level measurement technique commonly used in the measurement of radioactive liquids and equipment utilised by the inspectors for safeguards purposes. Some of the influencing parameters affecting the measurement results by this technique are characterised. An essential requisite for successful process operations in chemical facilities involving liquids generally require some physical measurements to be made in-line for both process and quality control in order to achieve the necessary final product specifications . In nuclear fuel reprocessing facilities, the same objectives apply coupled however with an additional requirement of achieving nuclear material accountancy and control. In view of the strategic importance of some of the process vessels in nuclear facilities, accountancy has to be supported by volume and density measurements of low uncertainty. Inspectors therefore require instruments which are at the very least as good as or better than operator's equipment. The classical measurement technique and most widely applied for process liquids in nuclear installations is the bubbler probe or dip-tube technique. Here a regulated flow of air passes through tubes inserted to various depths into the vessel and pressure readings are measured which are a function of the presence of liquid height and density of solution in the tank. These readings, taken together with a pre-determined calibration curve are sufficient for the volume and amount of liquor in a tank to be quantified. All measurement equipment and instrumentation are long distances from the tank environment. The key physical parameter to measure at this location is therefore pressure. Equipment designed developed, commissioned and tested in the tank measurement facilities at Ispra and in nuclear installations in Europe, Japan and the USA, house digital pressure transducer modules with manufacture's declared features of better than 0.01% accuracy and long term stability of 0.01% full

  19. Chebyshev super spectral viscosity method for water hammer analysis

    Directory of Open Access Journals (Sweden)

    Hongyu Chen

    2013-09-01

    Full Text Available In this paper, a new fast and efficient algorithm, Chebyshev super spectral viscosity (SSV method, is introduced to solve the water hammer equations. Compared with standard spectral method, the method's advantage essentially consists in adding a super spectral viscosity to the equations for the high wave numbers of the numerical solution. It can stabilize the numerical oscillation (Gibbs phenomenon and improve the computational efficiency while discontinuities appear in the solution. Results obtained from the Chebyshev super spectral viscosity method exhibit greater consistency with conventional water hammer calculations. It shows that this new numerical method offers an alternative way to investigate the behavior of the water hammer in propellant pipelines.

  20. Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model

    Science.gov (United States)

    Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing

    2017-12-01

    The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.

  1. Methods for measuring risk-aversion: problems and solutions

    International Nuclear Information System (INIS)

    Thomas, P J

    2013-01-01

    Risk-aversion is a fundamental parameter determining how humans act when required to operate in situations of risk. Its general applicability has been discussed in a companion presentation, and this paper examines methods that have been used in the past to measure it and their attendant problems. It needs to be borne in mind that risk-aversion varies with the size of the possible loss, growing strongly as the possible loss becomes comparable with the decision maker's assets. Hence measuring risk-aversion when the potential loss or gain is small will produce values close to the risk-neutral value of zero, irrespective of who the decision maker is. It will also be shown how the generally accepted practice of basing a measurement on the results of a three-term Taylor series will estimate a limiting value, minimum or maximum, rather than the value utilised in the decision. A solution is to match the correct utility function to the results instead

  2. Methods for measuring risk-aversion: problems and solutions

    Science.gov (United States)

    Thomas, P. J.

    2013-09-01

    Risk-aversion is a fundamental parameter determining how humans act when required to operate in situations of risk. Its general applicability has been discussed in a companion presentation, and this paper examines methods that have been used in the past to measure it and their attendant problems. It needs to be borne in mind that risk-aversion varies with the size of the possible loss, growing strongly as the possible loss becomes comparable with the decision maker's assets. Hence measuring risk-aversion when the potential loss or gain is small will produce values close to the risk-neutral value of zero, irrespective of who the decision maker is. It will also be shown how the generally accepted practice of basing a measurement on the results of a three-term Taylor series will estimate a limiting value, minimum or maximum, rather than the value utilised in the decision. A solution is to match the correct utility function to the results instead.

  3. Measurement of the Structure and Molecular Dynamics of Ionic Solutions for Redox Flow Battery

    Science.gov (United States)

    Li, Zhixia; Robertson, Lily; Moore, Jeffery; Zhang, Yang

    Redox flow battery (RFB) is a promising electrical energy storage technology with great potential to finally realize alternative energy sources for the next-generation vehicles and at grid scales. The design of RFB is unique as the power scales separately from the energy capacity. The latter depends on the size of storage tanks and the concentration of the active materials. Redox-active organic molecules are excellent candidates with high synthetic tunability for both redox properties as well as, importantly, solubility. However, upon increasing concentrations, the flow cell has less cycling stability and more capacity fade. Further, after charging the battery, the viscosity increases while the ionic conductivity decreases, and thus the cell becomes overall ineffective. To understand the mechanism of the increased viscosity, we performed differential scanning calorimetry, wide and small angle X-rays scattering, and quasi-elastic neutron scattering measurements. Herein, we will present the measurement results and relative analysis.

  4. Skyrmions and Hall viscosity

    Science.gov (United States)

    Kim, Bom Soo

    2018-05-01

    We discuss the contribution of magnetic Skyrmions to the Hall viscosity and propose a simple way to identify it in experiments. The topological Skyrmion charge density has a distinct signature in the electric Hall conductivity that is identified in existing experimental data. In an electrically neutral system, the Skyrmion charge density is directly related to the thermal Hall conductivity. These results are direct consequences of the field theory Ward identities, which relate various physical quantities based on symmetries and have been previously applied to quantum Hall systems.

  5. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana

    2013-10-15

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  6. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana; Vasilakopoulos, Thodoris C.; Jeong, Youncheol; Lee, Hyojoon; Rogers, Simon A.; Sakellariou, Georgios; Allgaier, Jü rgen B.; Takano, Atsushi; Brá s, Ana Rita E; Chang, Taihyun; Gooß en, Sebastian; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Hadjichristidis, Nikolaos; Richter, Dieter R.; Rubinstein, Michael H.; Vlassopoulos, Dimitris

    2013-01-01

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  7. Understanding quantum measurement from the solution of dynamical models

    Energy Technology Data Exchange (ETDEWEB)

    Allahverdyan, Armen E. [Laboratoire de Physique Statistique et Systèmes Complexes, ISMANS, 44 Av. Bartholdi, 72000 Le Mans (France); Balian, Roger [Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Nieuwenhuizen, Theo M., E-mail: T.M.Nieuwenhuizen@uva.nl [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2013-04-15

    The quantum measurement problem, to wit, understanding why a unique outcome is obtained in each individual experiment, is currently tackled by solving models. After an introduction we review the many dynamical models proposed over the years for elucidating quantum measurements. The approaches range from standard quantum theory, relying for instance on quantum statistical mechanics or on decoherence, to quantum–classical methods, to consistent histories and to modifications of the theory. Next, a flexible and rather realistic quantum model is introduced, describing the measurement of the z-component of a spin through interaction with a magnetic memory simulated by a Curie–Weiss magnet, including N≫1 spins weakly coupled to a phonon bath. Initially prepared in a metastable paramagnetic state, it may transit to its up or down ferromagnetic state, triggered by its coupling with the tested spin, so that its magnetization acts as a pointer. A detailed solution of the dynamical equations is worked out, exhibiting several time scales. Conditions on the parameters of the model are found, which ensure that the process satisfies all the features of ideal measurements. Various imperfections of the measurement are discussed, as well as attempts of incompatible measurements. The first steps consist in the solution of the Hamiltonian dynamics for the spin-apparatus density matrix D{sup -hat} (t). Its off-diagonal blocks in a basis selected by the spin–pointer coupling, rapidly decay owing to the many degrees of freedom of the pointer. Recurrences are ruled out either by some randomness of that coupling, or by the interaction with the bath. On a longer time scale, the trend towards equilibrium of the magnet produces a final state D{sup -hat} (t{sub f}) that involves correlations between the system and the indications of the pointer, thus ensuring registration. Although D{sup -hat} (t{sub f}) has the form expected for ideal measurements, it only describes a large set of

  8. Effect of ionic and non-ionic contrast media on whole blood viscosity, plasma viscosity and hematocrit in vitro

    International Nuclear Information System (INIS)

    Aspelin, P.

    1978-01-01

    The effect of the ionic contrast media diatrizoate, iocarmate and metrizoate and the non-ionic metrizamide on whole blood viscosity, plasma viscosity and hematocrit was investigated. All the contrast media increased whole blood and plasma viscosity and reduced the hematocrit. The whole blood viscosity increased with increasing osmolality of the contrast medium solutions, whereas the plasma viscosity increased with increasing viscosity of the contrast medium solutions. The higher the osmolality of the contrast media, the lower the hematocrit became. The normal shear-thinning (decreasing viscosity with increasing shear rate) property of blood was reduced when contrast medium was added to the blood. At 50 per cent volume ratio (contrast medium to blood), the ionic contrast media converted the blood into a shear-thickening (increasing viscosity with increasing shear rate) suspension, indicating a marked rigidification of the single red cell, while the non-ionic contrast medium still produced shear-thinning, indicating less rigidification of the red cell (p<0.01). (Auth.)

  9. Isothermal heat measurements of TBP-nitric acid solutions

    International Nuclear Information System (INIS)

    Smith, J.R.; Cavin, W.S.

    1994-01-01

    Net heats of reaction were measured in an isothermal calorimeter for both single phase (organic) and two phase (organic and aqueous) TBP/HNO 3 reacting solutions at temperatures above 100 C. The oxidation rate constant was determined to be 5.4E-4 min -1 at 110 C for an open ''vented'' system as compared to 1.33 E-3 min -1 in the closed system. The heat released per unit material oxidized was also reduced. The oxidation in both phases was found to be first order in nitric acid and pseudo-zero order in butylnitrate and water. The hydrolysis (esterification) rate constant determined by Nichols' (1.33E-3 min -1 ) fit the experimental data from this work well. Forced evaporation of the volatile components by the product gases from oxidation resulted in a cooling mechanism which more than balanced the heat from the oxidation reaction in the two-phased systems. Rate expressions were derived and rate constants determined for both the single and two phase systems. An approximating mathematical model was developed to fit the experimental data and to extrapolate beyond the experimental conditions. This model shows that one foot of ''reacting'' 14.3M HNO 3 aqueous phase solution at 121 C will transport sufficient water to the organic phase to replace evaporative losses, maintaining endothermicity, for organic layers up to 12.2 + 6.0 feet deep. If the pressure in a reacting system is allowed to increase due to insufficient venting the temperature of the organic phase would increase in temperature to reach a new equilibrium. The rate of oxidation would increase not only due to the increase in temperature but also from the increased concentration of dissolved HNO 3 reduction products. Another important factor is that the cooling system described in this work becomes less effective as the total pressure increases. These factors probably contributed to the explosion at Tomsk

  10. Viscosity of glasses containing simulated Savannah River Plant waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1978-08-01

    The viscosity of glass melts containing four simulated sludge types and two frit candidates (Frits 18 and 21) was measured over the temperature range 750 to 1200 0 C. The viscosity of melts made with either frit was reduced by the addition of high iron sludge, unchanged by average sludge, and increased by composite and high aluminum sludge. High aluminium sludge greatly increased the viscosity. Frit 21 (containing 4 wt % Li 2 O substituted for 4 wt % Na 2 O in Frit 18) was clearly better than Frit 18 in terms of its low viscosity. However, further reductions in viscosity are desirable, especially for glasses containing high aluminum sludge. Changing any frit component by 1 wt % did not significantly affect the viscosity of the glasses. Therefore, variability of 1 wt % in any frit component can be tolerated

  11. Viscosity calculations of simulated ion-exchange resin waste glasses

    International Nuclear Information System (INIS)

    Kim, Cheon Woo; Park, Jong Kil; Lee, Kyung Ho; Lee, Myung Chan; Song, Myung Jae; BRUNELOT, Pierre

    2000-01-01

    An induction cold crucible melter (CCM) located in the NETEC-KEPCO has been used to vitrify simulated ion-exchange resin. During vitrification, the CCM operations were tightly constrained by glass viscosity as an important process parameter. Understanding the role of viscosity and quantifying viscosity is highly required in the determination of optimized feed formulations and in the selection of the processing temperature. Therefore, existing process models of glass viscosity based on a relationship between the glass composition, its structure polymerization, and the temperature were searched and adapted to our borosilicate glass systems. Calculated data using a viscosity model based on calculation of non-bridging oxygen (NBO) were in good agreement with the measured viscosity data of benchmark glasses

  12. In vitro evaluation of the erosive potential of viscosity-modified soft acidic drinks on enamel.

    Science.gov (United States)

    Aykut-Yetkiner, Arzu; Wiegand, Annette; Ronay, Valerie; Attin, Rengin; Becker, Klaus; Attin, Thomas

    2014-04-01

    The objective of this in vitro study was to investigate the effect of viscosity-modified soft acidic drinks on enamel erosion. A total of 108 bovine enamel samples (∅ = 3 mm) were embedded in acrylic resin and allocated into six groups (n = 18). Soft acidic drinks (orange juice, Coca-Cola, Sprite) were used both in their regular forms and at a kinetic viscositiy of 5 mm(2)/s, which was adjusted by adding hydroxypropyl cellulose. All solutions were pumped over the enamel surface from a reservoir with a drop rate of 3 ml/min. Each specimen was eroded for 10 min at 20 °C. Erosion of enamel surfaces was measured using profilometry. Data were analyzed using independent t tests and one-way ANOVAs (p Coca-Cola, 5.60 ± 1.04 μm; Sprite, 5.49 ± 0.94 μm; orange juice, 1.35 ± 0.4 μm) than for the viscosity-modified drinks (Coca-Cola, 4.90 ± 0.34 μm; Sprite, 4.46 ± 0.39 μm; orange juice, 1.10 ± 0.22 μm). For both regular and viscosity-modified forms, Coca-Cola and Sprite caused higher enamel loss than orange juice. Increasing the viscosity of acidic soft drinks to 5 mm(2)/s reduced enamel erosion by 12.6-18.7 %. The erosive potential of soft acidic drinks is not only dependent on various chemical properties but also on the viscosity of the acidic solution and can be reduced by viscosity modification.

  13. Viscosity of Ga-Li liquid alloys

    Science.gov (United States)

    Vidyaev, Dmitriy; Boretsky, Evgeny; Verkhorubov, Dmitriy

    2018-03-01

    The measurement of dynamic viscosity of Ga-Li liquid alloys has been performed using low-frequency vibrational viscometer at five temperatures in the range 313-353 K and four gallium-based dilute alloy compositions containing 0-1.15 at.% Li. It was found that the viscosity of the considered alloys increases with decreasing temperature and increasing lithium concentration in the above ranges. It was shown that dependence of the viscosity of Ga-Li alloys in the investigated temperature range has been described by Arrhenius equation. For this equation the activation energy of viscous flow and pre-exponential factor were calculated. This study helped to determine the conditions of the alkali metals separating process in gallam-exchange systems.

  14. Temperature dependence of bulk viscosity in water using acoustic spectroscopy

    International Nuclear Information System (INIS)

    Holmes, M J; Parker, N G; Povey, M J W

    2011-01-01

    Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50 0 C. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.

  15. Low Rm magnetohydrodynamics as a means of measuring the surface shear viscosity of a liquid metal: A first attempt on Galinstan

    Science.gov (United States)

    Delacroix, Jules; Davoust, Laurent; Patouillet, Kévin

    2018-01-01

    This paper introduces an experimental apparatus which generates the end-driven annular flow of a liquid metal pervaded by a uniform magnetic field. Unlike past viscometers involving an annular channel with particular values of the depth-to-width ratio, the present experiment enables us to drive the viscous shear at the surface of an annular liquid metal bath put in rotation. The magnetic interaction parameter N and the Boussinesq number related to the surface shear viscosity can be monitored from the magnitude of the applied magnetic field; the latter being set large enough for avoiding artefacts related to centrifugation and surface dilatation. This essential feature is obtained due to the ability of the magnetic field to set dimensionality of the annular flow in the channel between 2D-1/2 (swirling flow) and 2D axisymmetric (extinction of the overturning flow if N is large enough). By tracking the azimuthal velocity of tracers seeded along the oxidised surface of liquid Galinstan, an estimate for the surface shear viscosity of a liquid metal can be given.

  16. Effects of the kinematic viscosity and surface tension on the bubble take-off period in a catalase-hydrogen peroxide system.

    Science.gov (United States)

    Sasaki, Satoshi; Iida, Yoshinori

    2009-06-01

    The effect of kinematic viscosity and surface tension of the solution was investigated by adding catalase, glucose oxidase, or glucose on the bubble movement in a catalase-hydrogen peroxide system. The kinematic viscosity was measured using a Cannon-Fenske kinematic viscometer. The surface tension of the solution was measured by the Wilhelmy method using a self-made apparatus. The effects of the hole diameter/cell wall thickness, catalase concentration, glucose concentration, and glucose oxidase concentration on the kinematic viscosity, surface tension, and bubble take-off period were investigated. With our system, the effects of the changes in the solution materiality on the bubble take-off period were proven to be very small in comparison to the change in the oxygen-producing rate.

  17. Understanding the Viscosity of Liquids used in Infant Dysphagia Management

    Science.gov (United States)

    Frazier, Jackie; Chestnut, Amanda; Jackson, Arwen; Barbon, Carly E. A.; Steele, Catriona M.; Pickler, Laura

    2016-01-01

    When assessing swallowing in infants, it is critical to have confidence that the liquids presented during the swallow study closely replicate the viscosity of liquids in the infant's typical diet. However, we lack research on rheological properties of frequently used infant formulas or breastmilk, and various forms of barium contrast media used in swallow studies. The aim of the current study was to provide objective viscosity measurements for typical infant liquid diet options and barium contrast media. A TA-Instruments AR2000 Advanced Rheometer was used to measure the viscosity, five standard infant formulas, three barium products and two breastmilk samples. Additionally, this study measured the viscosity of infant formulas and breastmilk when mixed with powdered barium contrast in a 20% weight-to-volume (w/v) concentration. Study findings determined that standard infant formulas and the two breastmilk samples had low viscosities, at the lower end of the National Dysphagia Diet (NDD) thin liquid range. Two specialty formulas tested had much thicker viscosities, close to the NDD nectar-thick liquid range lower boundary. The study showed differences in viscosity between two 60% w/v barium products (Liquid E-Z-Paque® and E-Z-Paque® powder); the powdered product had a much lower viscosity, despite identical barium concentration. When E-Z-Paque® powdered barium was mixed in a 20% w/v concentration using water, standard infant formulas or breastmilk, the resulting viscosities were at the lower end of the NDD thin range, and only slightly thicker than the non-barium comparator liquids. When E-Z-Paque® powdered barium was mixed in a 20% w/v concentration with the two thicker specialty formulas (Enfamil AR 20kcal and 24 kcal), unexpected alterations in their original viscosity occurred. These findings highlight the clinical importance of objective measures of viscosity as well as objective data on how infant formulas or breastmilk may change in consistency when mixed

  18. Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced air sparging

    Science.gov (United States)

    Choi, Jae-Kyeong; Kim, Heonki; Kwon, Hobin; Annable, Michael D.

    2018-03-01

    The effect of groundwater viscosity control on the performance of surfactant-enhanced air sparging (SEAS) was investigated using 1- and 2-dimensional (1-D and 2-D) bench-scale physical models. The viscosity of groundwater was controlled by a thickener, sodium carboxymethylcellulose (SCMC), while an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), was used to control the surface tension of groundwater. When resident DI water was displaced with a SCMC solution (500 mg/L), a SDBS solution (200 mg/L), and a solution with both SCMC (500 mg/L) and SDBS (200 mg/L), the air saturation for sand-packed columns achieved by air sparging increased by 9.5%, 128%, and 154%, respectively, (compared to that of the DI water-saturated column). When the resident water contained SCMC, the minimum air pressure necessary for air sparging processes increased, which is considered to be responsible for the increased air saturation. The extent of the sparging influence zone achieved during the air sparging process using the 2-D model was also affected by viscosity control. Larger sparging influence zones (de-saturated zone due to air injection) were observed for the air sparging processes using the 2-D model initially saturated with high-viscosity solutions, than those without a thickener in the aqueous solution. The enhanced air saturations using SCMC for the 1-D air sparging experiment improved the degradative performance of gaseous oxidation agent (ozone) during air sparging, as measured by the disappearance of fluorescence (fluorescein sodium salt). Based on the experimental evidence generated in this study, the addition of a thickener in the aqueous solution prior to air sparging increased the degree of air saturation and the sparging influence zone, and enhanced the remedial potential of SEAS for contaminated aquifers.

  19. Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation.

    Science.gov (United States)

    Salinas, Branden A; Sathish, Hasige A; Bishop, Steven M; Harn, Nick; Carpenter, John F; Randolph, Theodore W

    2010-01-01

    Opalescence and high viscosities can pose challenges for high concentration formulation of antibodies. Both phenomena result from protein-protein intermolecular interactions that can be modulated with solution ionic strength. We studied a therapeutic monoclonal antibody (mAb) that exhibits high viscosity in solutions at low ionic strength ( approximately 20 cP at 90 mg/mL and 23 degrees C) and significant opalescence at isotonic ionic strength (approximately 100 nephelometric turbidity units at 90 mg/mL and 23 degrees C). The intermolecular interactions responsible for these effects were characterized using membrane osmometry, static light scattering, and zeta potential measurements. The net protein-protein interactions were repulsive at low ionic strength ( approximately 4 mM) and attractive at isotonic ionic strengths. The high viscosities are attributed to electroviscous forces at low ionic strength and the significant opalescence at isotonic ionic strength is correlated with attractive antibody interactions. Furthermore, there appears to be a connection to critical phenomena and it is suggested that the extent of opalescence is dependent on the proximity to the critical point. We demonstrate that by balancing the repulsive and attractive forces via intermediate ionic strengths and by increasing the mAb concentration above the apparent critical concentration both opalescence and viscosity can be simultaneously minimized.

  20. Heritability and Seasonal Changes in Viscosity of Slash Pine Oleoresin

    Science.gov (United States)

    Robert D. McReynolds

    1971-01-01

    Oleoresin viscosity was measured in slash pine (Pinus elliottii var. elliottii) trees of known genetic origin over a 1-year period. A strong broad-sense heritability of this trait was found. Seasonal variation followed a definite pattern, with the highest viscosities occurring in early spring and a gradual decline occurring in...

  1. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The start-up and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 and 103 kg/mole, and for three bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elongational viscosity vs. the elongational...

  2. Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2013-01-01

    The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...

  3. Plugging solution

    Energy Technology Data Exchange (ETDEWEB)

    Sharipov, A U; Yangirov, I Z

    1982-01-01

    A clay-powder, cement, and water-base plugging solution is proposed having reduced solution viscosity characteristics while maintaining tensile strength in cement stone. This solution utilizes silver graphite and its ingredients, by mass weight, are as follows: cement 51.2-54.3%; claypowder 6.06-9.1%; silver graphite 0.24-0.33%; with water making up the remainder.

  4. In situ viscosity of oil sands using low field NMR

    International Nuclear Information System (INIS)

    Bryan, J.; Moon, D.; Kantzas, A.

    2005-01-01

    In heavy oil and bitumen reservoirs, oil viscosity is a vital piece of information that will have great bearing on the chosen EOR scheme and the recovery expected. Prediction of in situ viscosity with a logging tool would he very beneficial in reservoir characterization and exploitation design. Low field NMR is a technology that has shown great potential as a tool for characterizing hydrocarbon properties in heavy oil and bitumen reservoirs. An oil viscosity correlation has previously been developed that is capable of providing order of magnitude viscosity estimates for a wide range of oils taken from various fields in Alberta. This paper presents tuning procedures to improve the NMR predictions for different viscosity ranges, and extends the NMR viscosity model to in situ heavy oil in unconsolidated sands. The results of this work show that the NMR oil peak can be de-convoluted from the in situ signals of the oil and water, and the bulk viscosity correlation that was developed for bulk oils can he applied to predict the in situ oil viscosity. These results can be translated to an NMR logging tool algorithm, allowing for in situ measurements of oil viscosity at the proper reservoir conditions. (author)

  5. Whole-blood viscosity and the insulin-resistance syndrome.

    Science.gov (United States)

    Høieggen, A; Fossum, E; Moan, A; Enger, E; Kjeldsen, S E

    1998-02-01

    In a previous study we found that elevated blood viscosity was linked to the insulin resistance syndrome, and we proposed that high blood viscosity may increase insulin resistance. That study was based on calculated viscosity. To determine whether directly measured whole-blood viscosity was related to the insulin-resistance syndrome in the same way as calculated viscosity had been found to be. Healthy young men were examined with the hyperinsulinemic isoglycemic glucose clamp technique, and we related insulin sensitivity (glucose disposal rate) to other metabolic parameters and to blood viscosity. We established a technique for direct measurement of whole-blood viscosity. There were statistically significant negative correlations between glucose disposal rate and whole-blood viscosity at low and high shear rates (r = -0.41, P = 0.007 for both, n = 42). Whole-blood viscosity was correlated positively (n = 15) to serum triglyceride (r = 0.54, P = 0.04) and total cholesterol (r = 0.52, P = 0.05), and negatively with high-density lipoprotein cholesterol (r = -0.53, P = 0.04) concentrations. Insulin sensitivity index was correlated positively to high-density lipoprotein cholesterol (r = 0.54, P = 0.04) and negatively to serum triglyceride (r = -0.69, P = 0.005) and to total cholesterol (r = -0.81, P = 0.0003) concentrations. The present results demonstrate for the first time that there is a negative relationship between directly measured whole-blood viscosity and insulin sensitivity as a part of the insulin-resistance syndrome. Whole-blood viscosity contributes to the total peripheral resistance, and these results support the hypothesis that insulin resistance has a hemodynamic basis.

  6. Resolution in QCM Sensors for the Viscosity and Density of Liquids: Application to Lead Acid Batteries

    Directory of Open Access Journals (Sweden)

    Jorge Marcos-Acevedo

    2012-08-01

    Full Text Available In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H2SO4 solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical “resolution limit” to measure the square root of the density-viscosity product ( of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for  measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency.

  7. Resolution in QCM sensors for the viscosity and density of liquids: application to lead acid batteries.

    Science.gov (United States)

    Cao-Paz, Ana María; Rodríguez-Pardo, Loreto; Fariña, José; Marcos-Acevedo, Jorge

    2012-01-01

    In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC) is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM) sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H(2)SO(4) solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical "resolution limit" to measure the square root of the density-viscosity product [Formula: see text] of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for [Formula: see text] measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency.

  8. Pressure Effect on Extensional Viscosity

    DEFF Research Database (Denmark)

    Christensen, Jens Horslund; Kjær, Erik Michael

    1999-01-01

    The primary object of these experiments was to investigate the influence of hydrostatic pressure on entrance flow. The effect of pressure on shear and extensional viscosity was evaluated using an axis symmetric capillary and a slit die where the hydrostatic pressure was raised with valves....... The experiments show a significant increase in extensional viscosity with increasing pressure....

  9. Studies of Protein Solution Properties Using Osmotic Pressure Measurements

    Science.gov (United States)

    Agena, S.; Bogle, David; Pusey, Marc; Agena, S.

    1998-01-01

    Examination of the protein crystallization process involves investigation of the liquid and solid state and a protein's properties in these states. Liquid state studies such as protein self association in solution by light scattering methods or other methods have been used to examine a protein Is properties and therefore its crystallization process and conditions. Likewise can osmotic pressure data be used to examine protein properties and various published osmotic pressure studies were examined by us to correlate osmotic pressure to protein solution properties. The solution behavior of serum albumin, alpha - chymotrypsin, beta - lactoglobulin and ovalbumin was examined over a range of temperatures, pH values and different salt types and concentrations. Using virial expansion and a local composition model the non ideal solution behavior in form of the activity coefficients (thermodynamic) was described for the systems. This protein activity coefficient data was related to a protein's solubility behavior and this process and the results will be presented.

  10. Regression and Sparse Regression Methods for Viscosity Estimation of Acid Milk From it’s Sls Features

    DEFF Research Database (Denmark)

    Sharifzadeh, Sara; Skytte, Jacob Lercke; Nielsen, Otto Højager Attermann

    2012-01-01

    Statistical solutions find wide spread use in food and medicine quality control. We investigate the effect of different regression and sparse regression methods for a viscosity estimation problem using the spectro-temporal features from new Sub-Surface Laser Scattering (SLS) vision system. From...... with sparse LAR, lasso and Elastic Net (EN) sparse regression methods. Due to the inconsistent measurement condition, Locally Weighted Scatter plot Smoothing (Loess) has been employed to alleviate the undesired variation in the estimated viscosity. The experimental results of applying different methods show...

  11. Viscosity of iodinated contrast agents during renal excretion

    International Nuclear Information System (INIS)

    Jost, Gregor; Lengsfeld, Philipp; Lenhard, Diana C.; Pietsch, Hubertus; Huetter, Joachim; Sieber, Martin A.

    2011-01-01

    Objective: Modern iodinated non-ionic contrast agents (CAs) can be classified based on their molecular structure into monomeric and dimeric CAs and have at comparable iodine concentrations a different viscosity and osmolality. During their renal excretion, CAs are concentrated in the renal tubuli which might enhance the viscosity difference between monomeric and dimeric CAs. The viscosity of a CA might have an underestimated importance for renal safety, as suggested by recent publications. In this study, we investigated the viscosities of CAs at the concentrations expected to be present in renal tubules. This concentration process was simulated in vitro using dialysis. Furthermore, we investigated urine viscosity and urine flow in rodents after administration of several non-ionic monomeric and dimeric CAs. Materials and methods: To estimate the viscosity of the CAs in vivo, we performed an in vitro dialysis of monomeric and dimeric CAs at various physiological osmolalities of the renal tubulus (290, 400, 500, 700 and 1000 mOsm/kg H 2 O). Following the dialysis, the iodine concentrations and the viscosities of the CAs were determined. Furthermore, to investigate the concentration process in vivo, we measured the urine viscosity and the urine flow in Han Wister rats after the administration of Iopromide, Iohexol, Ioversol, Iomeprol, Iodixanol, and Iosimenol at comparable iodine concentrations. As a control, saline was injected at the same volume. Results: In vitro dialysis of the dimeric CA increased the iodine concentration and strongly increased the viscosity at all tested osmolalities. In contrast, for the monomeric agents an increase in concentration and viscosity was observed only at 700 as well 1000 mOsm/kg H 2 O but to a lesser extent. In summary, dialysis strongly enhanced the viscosity differences between the non-ionic monomeric and dimeric CAs. The administration of dimeric CAs leads to a strong increase in urine viscosity; this was not observed for the

  12. Viscosity of iodinated contrast agents during renal excretion

    Energy Technology Data Exchange (ETDEWEB)

    Jost, Gregor, E-mail: Gregor.Jost@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Lengsfeld, Philipp, E-mail: Philipp.Lengsfeld@bayer.com [Global Medical Affairs Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Lenhard, Diana C., E-mail: Diana.Lenhard@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Pietsch, Hubertus, E-mail: Hubertus.Pietsch@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Huetter, Joachim, E-mail: Joachim.Huetter@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Sieber, Martin A., E-mail: Martin.Sieber@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany)

    2011-11-15

    Objective: Modern iodinated non-ionic contrast agents (CAs) can be classified based on their molecular structure into monomeric and dimeric CAs and have at comparable iodine concentrations a different viscosity and osmolality. During their renal excretion, CAs are concentrated in the renal tubuli which might enhance the viscosity difference between monomeric and dimeric CAs. The viscosity of a CA might have an underestimated importance for renal safety, as suggested by recent publications. In this study, we investigated the viscosities of CAs at the concentrations expected to be present in renal tubules. This concentration process was simulated in vitro using dialysis. Furthermore, we investigated urine viscosity and urine flow in rodents after administration of several non-ionic monomeric and dimeric CAs. Materials and methods: To estimate the viscosity of the CAs in vivo, we performed an in vitro dialysis of monomeric and dimeric CAs at various physiological osmolalities of the renal tubulus (290, 400, 500, 700 and 1000 mOsm/kg H{sub 2}O). Following the dialysis, the iodine concentrations and the viscosities of the CAs were determined. Furthermore, to investigate the concentration process in vivo, we measured the urine viscosity and the urine flow in Han Wister rats after the administration of Iopromide, Iohexol, Ioversol, Iomeprol, Iodixanol, and Iosimenol at comparable iodine concentrations. As a control, saline was injected at the same volume. Results: In vitro dialysis of the dimeric CA increased the iodine concentration and strongly increased the viscosity at all tested osmolalities. In contrast, for the monomeric agents an increase in concentration and viscosity was observed only at 700 as well 1000 mOsm/kg H{sub 2}O but to a lesser extent. In summary, dialysis strongly enhanced the viscosity differences between the non-ionic monomeric and dimeric CAs. The administration of dimeric CAs leads to a strong increase in urine viscosity; this was not observed for

  13. Convergence of a residual based artificial viscosity finite element method

    KAUST Repository

    Nazarov, Murtazo

    2013-02-01

    We present a residual based artificial viscosity finite element method to solve conservation laws. The Galerkin approximation is stabilized by only residual based artificial viscosity, without any least-squares, SUPG, or streamline diffusion terms. We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit time stepping schemes. © 2012 Elsevier B.V. All rights reserved.

  14. Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, P K; McDonnell, A G; Prabhakar, R; Yeo, L Y; Friend, J, E-mail: james.friend@monash.edu.au [MicroNanophysics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800 (Australia); Melbourne Centre for Nanofabrication, Melbourne, VIC 3800 (Australia)

    2011-02-15

    Forming capillary bridges of low-viscosity ({approx}<10 mPa s) fluids is difficult, making the study of their capillary-thinning behavior and the measurement of the fluid's extensional viscosity difficult as well. Current techniques require some time to form a liquid bridge from the stretching of a droplet. Rapidly stretching a liquid bridge using these methods can cause its breakup if the viscosity is too low. Stretching more slowly allows the bridge to thin and break up before a suitable bridge geometry can be established to provide reliable and accurate rheological data. Using a pulsed surface acoustic wave to eject a jet from a sessile droplet, a capillary bridge may be formed in about 7.5 ms, about seven times quicker than current methods. With this approach, capillary bridges may be formed from Newtonian and non-Newtonian fluids having much lower viscosities-water, 0.04% by weight solution of high-molecular-weight (7 MDa) polystyrene in dioctyl phthalate and 0.25% fibrinogen solution in demineralized water, for example. Details of the relatively simple system used to achieve these results are provided, as are experimental results indicating deviations from a Newtonian response by the low-viscosity non-Newtonian fluids used in our study.

  15. Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting

    International Nuclear Information System (INIS)

    Bhattacharjee, P K; McDonnell, A G; Prabhakar, R; Yeo, L Y; Friend, J

    2011-01-01

    Forming capillary bridges of low-viscosity (∼<10 mPa s) fluids is difficult, making the study of their capillary-thinning behavior and the measurement of the fluid's extensional viscosity difficult as well. Current techniques require some time to form a liquid bridge from the stretching of a droplet. Rapidly stretching a liquid bridge using these methods can cause its breakup if the viscosity is too low. Stretching more slowly allows the bridge to thin and break up before a suitable bridge geometry can be established to provide reliable and accurate rheological data. Using a pulsed surface acoustic wave to eject a jet from a sessile droplet, a capillary bridge may be formed in about 7.5 ms, about seven times quicker than current methods. With this approach, capillary bridges may be formed from Newtonian and non-Newtonian fluids having much lower viscosities-water, 0.04% by weight solution of high-molecular-weight (7 MDa) polystyrene in dioctyl phthalate and 0.25% fibrinogen solution in demineralized water, for example. Details of the relatively simple system used to achieve these results are provided, as are experimental results indicating deviations from a Newtonian response by the low-viscosity non-Newtonian fluids used in our study.

  16. Direct measurements of the enthalpy of solution of solid solute in supercritical fluids: study on the CO2-naphthalene system.

    Science.gov (United States)

    Zhang, X; Han, B; Zhang, J; Li, H; He, J; Yan, H

    2001-10-01

    A setup for a calorimeter for simultaneously measuring the solubility and the solution enthalpy of solid solutes in supercritical fluids (SCFs) has been established. The enthalpy of solution of naphthalene in supercritical CO2 was measured at 308.15 K in the pressure range from 8.0-11.0 MPa. It was found that the enthalpy of solution (deltaH) was negative in the pressure range from 8.0 to 9.5 MPa, and the absolute value decreased with increasing pressure. In this pressure range, the dissolution of the solute was enthalpy driven. However, the deltaH became positive at pressures higher than 9.5 MPa, and the dissolution was entropy driven. Monte Carlo simulation was performed to analyze the local structural environment of the solvated naphthalene molecules in supercritical CO2 under the experimental conditions for the calorimetric measurements. By combining the enthalpy data and the simulation results, it can be deduced that the energy level of CO2 in the high compressible region is higher than that at higher pressures, which results in the large negative enthalpy of solution and the larger degree of solvent-solute clustering in the high compressible region.

  17. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions.

    Science.gov (United States)

    Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J

    2015-01-01

    High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption.

  18. Effect of viscosity on tear drainage and ocular residence time.

    Science.gov (United States)

    Zhu, Heng; Chauhan, Anuj

    2008-08-01

    An increase in residence time of dry eye medications including artificial tears will likely enhance therapeutic benefits. The drainage rates and the residence time of eye drops depend on the viscosity of the instilled fluids. However, a quantitative understanding of the dependence of drainage rates and the residence time on viscosity is lacking. The current study aims to develop a mathematical model for the drainage of Newtonian fluids and also for power-law non-Newtonian fluids of different viscosities. This study is an extension of our previous study on the mathematical model of tear drainage. The tear drainage model is modified to describe the drainage of Newtonian fluids with viscosities higher than the tear viscosity and power-law non-Newtonian fluids with rheological parameters obtained from fitting experimental data in literature. The drainage rate through canaliculi was derived from the modified drainage model and was incorporated into a tear mass balance to calculate the transients of total solute quantity in ocular fluids and the bioavailability of instilled drugs. For Newtonian fluids, increasing the viscosity does not affect the drainage rate unless the viscosity exceeds a critical value of about 4.4 cp. The viscosity has a maximum impact on drainage rate around a value of about 100 cp. The trends are similar for shear thinning power law fluids. The transients of total solute quantity, and the residence time agrees at least qualitatively with experimental studies. A mathematical model has been developed for the drainage of Newtonian fluids and power-law fluids through canaliculi. The model can quantitatively explain different experimental observations on the effect of viscosity on the residence of instilled fluids on the ocular surface. The current study is helpful for understanding the mechanism of fluid drainage from the ocular surface and for improving the design of dry eye treatments.

  19. Study of specific loss power of magnetic fluids with various viscosities

    Energy Technology Data Exchange (ETDEWEB)

    Phong, P.T., E-mail: phamthanhphong@tdt.edu.vn [Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Nguyen, L.H., E-mail: luuhuunguyen@ukh.edu.vn [Institute of Materials Science, Vietnam Academy of Science and Technology,18- Hoang Quoc Viet Street, Cau Giay District, Ha Noi City (Viet Nam); Khanh Hoa University, 1- Nguyen Chanh Street, Nha Trang City, Khanh Hoa Province (Viet Nam); Phong, L.T.H., E-mail: lthp52a@gmail.com [Institute of Materials Science, Vietnam Academy of Science and Technology,18- Hoang Quoc Viet Street, Cau Giay District, Ha Noi City (Viet Nam); Nam, P.H., E-mail: namph.ims@gmail.com [Institute of Materials Science, Vietnam Academy of Science and Technology,18- Hoang Quoc Viet Street, Cau Giay District, Ha Noi City (Viet Nam); Manh, D.H., E-mail: manhdh.ims@gmail.com [Institute of Materials Science, Vietnam Academy of Science and Technology,18- Hoang Quoc Viet Street, Cau Giay District, Ha Noi City (Viet Nam); Lee, I.J., E-mail: lij@dongguk.ac.kr [Department of Advanced Materials Chemistry, Dongguk University-Gyeongju, Dongdae-roDongdae-ro 123, Gyeongju-Si, Gyeongbuk 38066 (Korea, Republic of); Phuc, N.X., E-mail: phucnx1949@gmail.com [Institute of Materials Science, Vietnam Academy of Science and Technology,18- Hoang Quoc Viet Street, Cau Giay District, Ha Noi City (Viet Nam)

    2017-04-15

    Abstracts: Using hydrothermal method, CoFe{sub 2}O{sub 4} (hard ferrite) and MnFe{sub 2}O{sub 4} (soft ferrite) nanoparticles of size up to 20 nm were synthesized and the viscosities were controlled using various concentrations of agar. The hydrodynamic diameter of these particles was measured and fitted to a lognormal distribution and the results showed their polydispersity is very narrow. From the calorimetric measurements of the particles stabilized in agar solutions, we have demonstrated that at a given frequency, the dependence of the specific loss power of magnetic fluids on the viscosity is in good agreement with the theoretical predictions made in the earlier studies. - Highlights: • CoFe{sub 2}O{sub 4} (hard ferrite) and MnFe{sub 2}O{sub 4} (soft ferrite) nanoparticles size up to 20 nm were synthesized. • The relaxation loss depends on both the particle's intrinsic properties and the viscosity of the environment. • The SLP of hard nanoparticles strongly decreases with increasing the viscosity whereas that of soft nanoparticles remains almost unchanged.

  20. Various methods for determination of liquid viscosity with nuclear track membranes

    International Nuclear Information System (INIS)

    Guo Shilun

    1991-01-01

    A systematic study has been performed of the methods for determination of liquid viscosity with nuclear track membranes. Absolute and relative measurements have been suggested, the latter including relative measurements of absolute viscosity and kinematic viscosity. The study shows that the nuclear track membrane is a unique element for determination of liquid viscosity because it is small in volume, accurate in results and easy to manipulate in industries and laboratories

  1. Universality of the high-temperature viscosity limit of silicate liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, John C.; Ellison, Adam J.

    2011-01-01

    We investigate the high-temperature limit of liquid viscosity by analyzing measured viscosity curves for 946 silicate liquids and 31 other liquids including metallic, molecular, and ionic systems. Our results show no systematic dependence of the high-temperature viscosity limit on chemical...... composition for the studied liquids. Based on theMauro-Yue-Ellison-Gupta-Allan (MYEGA) model of liquid viscosity, the high-temperature viscosity limit of silicate liquids is 10−2.93 Pa·s. Having established this value, there are only two independent parameters governing the viscosity-temperature relation...

  2. The relationship between blood viscosity and blood pressure in a random sample of the population aged 55 to 74 years.

    Science.gov (United States)

    Fowkes, F G; Lowe, G D; Rumley, A; Lennie, S E; Smith, F B; Donnan, P T

    1993-05-01

    Blood viscosity is elevated in hypertensive subjects, but the association of viscosity with arterial blood pressure in the general population, and the influence of social, lifestyle and disease characteristics on this association, are not established. In the Edinburgh Artery Study, 1592 men and women aged 55-74 years selected randomly from the general population attended a university clinic. A fasting blood sample was taken for the measurement of blood viscosity and its major determinants (haematocrit, plasma viscosity and fibrinogen). Systolic pressure was related univariately to blood viscosity (P viscosity (P index. Diastolic pressure was related univariately to blood viscosity (P viscosity (P viscosity and systolic pressure was confined to males. Blood viscosity was associated equally with systolic and diastolic pressures in males, and remained independently related on multivariate analysis adjusting for age, sex, body mass index, social class, smoking, alcohol intake, exercise, angina, HDL and non-HDL cholesterol, diabetes mellitus, plasma viscosity, fibrinogen, and haematocrit.

  3. Power Measures and Solutions for Games Under Precedence Constraints

    NARCIS (Netherlands)

    Algaba, Encarnación; van den Brink, René; Dietz, Chris

    2017-01-01

    Games under precedence constraints model situations, where players in a cooperative transferable utility game belong to some hierarchical structure, which is represented by an acyclic digraph (partial order). In this paper, we introduce the class of precedence power solutions for games under

  4. Viscosity Prediction of Natural Gas Using the Friction Theory

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan

    2002-01-01

    Based on the concepts of the friction theory (f-theory) for viscosity modeling, a procedure is introduced for predicting the viscosity of hydrocarbon mixtures rich in one component, which is the case for natural gases. In this procedure, the mixture friction coefficients are estimated with mixing...... rules based on the values of the pure component friction coefficients. Since natural gases contain mainly methane, two f-theory models are combined, where the friction coefficients of methane are estimated by a seven-constant f-theory model directly fitted to methane viscosities, and the friction...... coefficients of the other components are estimated by the one-parameter general f-theory model. The viscosity predictions are performed with the SRK, the PR, and the PRSV equations of state, respectively. For recently measured viscosities of natural gases, the resultant AAD (0.5 to 0.8%) is in excellent...

  5. Viscosity characteristics of selected volcanic rock melts

    Science.gov (United States)

    Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd

    2011-02-01

    A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.

  6. Measurement of acidity and density of plutonium solutions

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Bowers, D.L.; Kemmerlin, R.P.

    1978-01-01

    The solutions were analyzed for acidity and total Pu concentration at ambient temperature while the density was determined at 25, 35, 45, and 60 0 C. From least squares fitting, it was found that the density could be computed to within 1% of the experimental value using the equation D = 1 + 0.0477[H + ] - 4.25 x 10 -3 [H + ] 2 + 1.477 x 10 -3 [Pu] - (T - 25)/1000

  7. A viscosity and density meter with a magnetically suspended rotor

    International Nuclear Information System (INIS)

    Bano, Mikulas; Strharsky, Igor; Hrmo, Igor

    2003-01-01

    A device for measuring the viscosity and density of liquids is presented. It is a Couette-type viscometer that uses a submerged rotor to measure the viscosity without errors originating in the contact of the rotor with the sample/air boundary. The inner cylinder is a glass rotor suspended in the liquid, and the outer cylinder is also made of glass. The rotor is stabilized on the axis of the outer cylinder by an electromagnetic force controlled by feedback from the rotor's vertical position. In the lower part of the rotor is an aluminum cylinder located in a magnetic field generated by rotating permanent magnets. The interaction of this rotating magnetic field with eddy currents generated in the aluminum cylinder causes rotation of the rotor. This rotation is optically detected, and viscosity is calculated from the measured angular velocity of rotor. The density of the liquid is calculated from the applied vertical equilibrating force. A computer controls the whole measurement. The device works at constant temperature or while scanning temperature. The sample volume is 1.6 ml, and the accuracy of measurement of both viscosity and density is ∼0.1%. The range of measured densities is (0.7-1.4) g/ml, and viscosity can be measured in the range (3x10 -4 -0.3) Pa s. The shear rate of the viscosity measurement varies in the range (20-300) s-1. The accuracy of the temperature measurement is 0.02 K

  8. Utilizing the non-bridge oxygen model to predict the glass viscosity

    International Nuclear Information System (INIS)

    Choi, Kwansik; Sheng, Jiawei; Maeng, Sung Jun; Song, Myung Jae

    1998-01-01

    Viscosity is the most important process property of waste glass. Viscosity measurement is difficult and costs much. Non-bridging Oxygen (NBO) model which relates glass composition to viscosity had been developed for high level waste at the Savannah River Site (SRS). This research utilized this NBO model to predict the viscosity of KEPRI's 55 glasses. It was found that there was a linear relationship between the measured viscosity and the predicted viscosity. The NBO model could be used to predict glass viscosity in glass formulation development. However the precision of predicted viscosity is out of satisfaction because the composition ranges are very different between the SRS and KEPRI glasses. The modification of NBO calculation, which included modification of alkaline earth elements and TiO 2 , could not strikingly improve the precision of predicted values

  9. New CNB measures to stimulate credit growth: problems and solutions

    OpenAIRE

    Vidakovic, Neven; Zbašnik, Dušan

    2014-01-01

    The paper analyses the new measure implemented by Croatian national bank (CNB). The measure is a decrease in the reserve requirement, but the actual release of funds is contingent on increase in lending to firms. This new measure is significant because for the first time in Croatia there is a measure whose purpose is to affect specifically credit policy of the banks. Although this new measure has good intentions it does not solve the problem of why highly liquid banking system in Croatia is n...

  10. Design of Oil Viscosity Sensor Based on Plastic Optical Fiber

    Science.gov (United States)

    Yunus, Muhammad; Arifin, A.

    2018-03-01

    A research of plastic optical fiber based sensors have been studied for measurement of oil viscosity. This sensor was made with straight configuration, U configuration, and gamma configuration have two types, there are optical fiber sensor with cladding and without cladding. Viscosity sensor was made, dipped into an oil sample with a concentration of viscosity percentage about 270 mPa.s - 350 mPa.s. The light from the LED propagated into the optical fiber, then it was received by the photodetector converted to output power. When plastic optical fiber dipped into an oil sample, viscosity of oil affect increase of refractive index on optical fiber resulting in a bigger loss of power so the light intensity will be smaller, consequences the measured output power will be smaller. Sensitivity and resolution viscosity sensor without cladding peel showed the best result rather than viscosity sensor with cladding peel. The best result in the measurement showed in gamma configuration with 3 cm length of cladding peel and the diameter of bending 0,25 cm is the range 103,090 nWatt, sensitivity 1,289 nWatt/mPa.s, and resolution 0,776 mPa.s. This method is effectively and efficiently used as an oil viscosity sensor with high sensitivity and resolution.

  11. Determination of the viscosity by spherical drop using nuclear tecniques

    International Nuclear Information System (INIS)

    Silva, F.V. da; Qassim, R.Y.; Souza, Roberto de; Rio de Janeiro Univ.

    1983-01-01

    The measurements of the drop limit velocity of a Sphere in a fluid using a radiotracer method are analyzed. The dynamic process involved was observed, identifying the density and viscosity of the fluid. (E.G.) [pt

  12. Improved Pedagogy for Linear Differential Equations by Reconsidering How We Measure the Size of Solutions

    Science.gov (United States)

    Tisdell, Christopher C.

    2017-01-01

    For over 50 years, the learning of teaching of "a priori" bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to "a priori" bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving…

  13. Effect of Fluid Dynamic Viscosity on the Strength of Chalk

    DEFF Research Database (Denmark)

    Hedegaard, K.; Fabricius, Ida Lykke

    The mechanical strength of high porosity and weakly cemented chalk is affected by the fluid in the pores. In this study, the effect of the dynamic viscosity of non-polar fluids has been measured on outcrop chalk from Sigerslev Quarry, Stevns, Denmark. The outcome is that the measured strength...... of the chalk decreases with increasing dynamic viscosity. The proposed qualitative explanation is that pressure difference supports and enhances the generation of microscopic shear and tensile failures....

  14. Refractive index and viscosity: dual sensing with plastic fibre gratings

    Science.gov (United States)

    Ferreira, Ricardo; Bilro, Lúcia; Marques, Carlos; Oliveira, Ricardo; Nogueira, Rogério

    2014-05-01

    A refractive index and viscosity sensor based on FBGs in mPOF is reported for the first time. The refractive index was measured with a sensitivity of -10:98nm=RIU and a resolution of 1 - 10-4RIU. Viscosity measurements were performed with acousto-optic modulation, obtaining a sensitivity of -94:42%=mPa • s and a resolution of 0:06mPa • s.

  15. Experimental study of the density and viscosity of 1-ethyl-3-methylimidazolium ethyl sulfate

    International Nuclear Information System (INIS)

    Schmidt, H.; Stephan, M.; Safarov, J.; Kul, I.; Nocke, J.; Abdulagatov, I.M.; Hassel, E.

    2012-01-01

    Highlights: ► Density of the ionic liquid [EMIM][EtSO 4 ]. ► Viscosity of the ionic liquid [EMIM][EtSO 4 ]. ► Thermodynamic properties of ionic liquid [EMIM][EtSO 4 ]. ► Equation of state of ionic liquid [EMIM][EtSO 4 ]. - Abstract: Density and viscosity of 1-ethyl-3-methylimidazolium ethyl sulfate [EMIM][EtSO 4 ] have been measured over the temperature range from (283.15 to 413.15) K and at pressures up to 140 MPa and in the temperature range from (283.15 to 373.15) K at 0.1 MPa, respectively. The expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be (0.01 to 0.08)%, 0.1%, 15 mK, and 0.35%, respectively. The measurements were carried out with an Anton–Paar DMA HPM vibration-tube densimeter and a fully automated SVM 3000 Anton–Paar rotational Stabinger viscometer. The vibration-tube densimeter was calibrated using various reference fluids, double-distilled water, methanol, toluene, and aqueous NaCl solutions. An empiric equation of state for [EMIM][EtSO 4 ] has been developed using the measured (p, ρ, T) data. This equation was used to calculate the various thermodynamic properties of the IL and for compare with measured properties (speed of sound and enthalpy). Theoretically based Arrhenius–Andrade and Vogel–Tamman–Fulcher type equations were use to describe of the temperature dependence of measured viscosities for [EMIM][EtSO 4 ]. All measured properties were detailed compared with the reported data by other author.

  16. Elongational viscosity of narrow molar mass distribution polystyrene. A Bach, K. Almdal, H.K. Rasmussen and O. Hassager

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Bach, Anders; Almdal, Kristoffer

    2003-01-01

    Transient and steady elongational viscosity has been measured for two narrow molar mass distributin polystyrene melts ......Transient and steady elongational viscosity has been measured for two narrow molar mass distributin polystyrene melts ...

  17. Experimental measurements of U60 nanocluster stability in aqueous solution

    Science.gov (United States)

    Flynn, Shannon L.; Szymanowski, Jennifer E. S.; Gao, Yunyi; Liu, Tianbo; Burns, Peter C.; Fein, Jeremy B.

    2015-05-01

    In this study, the aqueous behavior of isolated U60 nanoclusters (K16Li25[UO2(O2)OH]60)-19 was studied under several pH conditions and nanocluster concentrations to determine if the nanoclusters exhibit solid phase buffering behavior or if they exhibit behavior more like aqueous complexes. U60 is a cage cluster consisting of 60 (UO2)(O2)2(OH)2 uranyl polyhedral which share OH and O2 groups with their neighboring uranyl polyhedral, resulting in negatively charged cage clusters whose charge is at least partially offset by K+ and Li+ in the aqueous phase. Batch experiments to monitor nanocluster stability were conducted for 16 days at pH 7.5, 8.0 and 8.5 at nanocluster suspension concentrations of 1.4, 2.8 and 6.0 g/L. The aqueous concentrations of U, Li, and K, determined after 10 kDa molecular weight filtration, achieved steady-state with the nanoclusters within 24 h. The steady-state aqueous U, Li, and K concentrations were independent of solution pH, however they increased with increasing nanocluster concentration, indicating that the nanoclusters do not buffer the aqueous activities as a bulk solid phase would, but exhibit behavior that is more characteristic of dissolved aqueous complexes. The ion activity product (I.A.P.) value was calculated using two approaches: (1) treating the nanoclusters as a solid phase with an activity of one, and (2) treating the nanoclusters as aqueous complexes with a non-unit activity equal to their concentration in solution. The I.A.P. values that were calculated with non-unit activity for the nanoclusters exhibited significantly less variation as a function of nanocluster concentration compared to the I.A.P. values calculated with a nanocluster activity of one. The results yield a calculated log dissociation constant for the U60 nanoclusters of 9.2 + 0.2/-0.3 (1σ). Our findings provide a better understanding of the thermodynamic stability and behavior of U60 nanoclusters in aqueous systems, and can be used to estimate the

  18. Measuring health: a practical challenge with a philosophical solution?

    Science.gov (United States)

    Shroufi, Amir; Chowdhury, Rajiv; Aston, Louise M; Pashayan, Nora; Franco, Oscar H

    2011-03-01

    With the current demographic shift being experienced by populations globally, almost linear increases in life expectancy have been seen and can be expected. However, increases in healthy life expectancy may not keep pace. Among older populations the proportion of time spent in less than full health tends to increase. As a result, the accurate valuation of life spent in states less than full health will become increasingly important. Different techniques and approaches have been used to measure health in populations. The use of summary measures of population health such as DALYs (Disability Adjusted Life Years) has become common, and is widely used to compare health between populations and to evaluate the potential impact of interventions in economic analyses. Most of the commonly used summary measures of health express some measure of life lived in full health and life lived with disability or in a state of sub-optimal health. Critical to the construction of summary health measures are values assigned to health states. Current tools used in determining these values include the standard gamble, time trade off, person trade off, and the visual analogue scale. However, these techniques all have the disadvantage of incorporating individual biases (derived from particular characteristics specific to individuals or populations) into the process through which health state valuations are derived. As a consequence health states are often not directly comparable between populations, since characteristics such as nationality and ethnicity can influence how health states are valued. Furthermore, health can be judged differently by those of different ages, with the young often assigning a lower value to life lived at less than full health compared to older people. The challenge of obtaining opinions which are not influenced by an individual's own circumstances is not new. This issue was encountered and described by the American philosopher John Rawls in 'A Theory of Justice

  19. Searching for new solutions Humidity measurements in the environments

    Directory of Open Access Journals (Sweden)

    Gianina Creţu

    2008-05-01

    Full Text Available More attention is nowadays being paid to thequality of the air we breathe, resulting in an increasingneed for humidity measurements in the home and officeenvironments. Maintaining the proper level of relativehumidity is also necessary to avoid conditions of extremehumidity condensation in buildings.The facts that construction problems and excessive waterand humidity often go together is well-known around theworld today. Moisture and water damage is a wellknown problem in construction in many countries.Problems of all construction are caused by humidity and50 per cent of all buildings have some kind of moisturerelatedproblems. Growing awareness of percentages suchas these has led to greater attention being paid toconstruction humidity and its measurement throughoutthe world in recent years.This paper presents a condensed review of nowadayshumidity sensors technology, problem implicated andsome modern tendencies.

  20. Comparing Two Methods of Neural Networks to Evaluate Dead Oil Viscosity

    Directory of Open Access Journals (Sweden)

    Meysam Dabiri-Atashbeyk

    2018-01-01

    Full Text Available Reservoir characterization and asset management require comprehensive information about formation fluids. In fact, it is not possible to find accurate solutions to many petroleum engineering problems without having accurate pressure-volume-temperature (PVT data. Traditionally, fluid information has been obtained by capturing samples and then by measuring the PVT properties in a laboratory. In recent years, neural network has been applied to a large number of petroleum engineering problems. In this paper, a multi-layer perception neural network and radial basis function network (both optimized by a genetic algorithm were used to evaluate the dead oil viscosity of crude oil, and it was found out that the estimated dead oil viscosity by the multi-layer perception neural network was more accurate than the one obtained by radial basis function network.

  1. Pipeline flow of heavy oil with temperature-dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Maza Quinones, Danmer; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msc@puc-rio.br

    2010-07-01

    The heavy oil produced offshore needs to be transported through pipelines between different facilities. The pipelines are usually laid down on the seabed and are submitted to low temperatures. Although heavy oils usually present Newtonian behavior, its viscosity is a strong function of temperature. Therefore, the prediction of pressure drops along the pipelines should include the solution of the energy equation and the dependence of viscosity to temperature. In this work, an asymptotic model is developed to study this problem. The flow is considered laminar and the viscosity varies exponentially with temperature. The model includes one-dimensional equations for the temperature and pressure distribution along the pipeline at a prescribed flow rate. The solution of the coupled differential equation is obtained by second-order finite difference. Results show a nonlinear behavior as a result of coupled interaction between the velocity, temperature, and temperature dependent material properties. (author)

  2. Shear viscosity enhancement in water–nanoparticle suspensions

    International Nuclear Information System (INIS)

    Balasubramanian, Ganesh; Sen, Swarnendu; Puri, Ishwar K.

    2012-01-01

    Equilibrium molecular dynamics simulations characterize the increase in the shear viscosity of water around a suspended silicon dioxide nanoparticle. Water layering on the solid surface decreases the fraction of adjacent fluid molecules that are more mobile and hence less viscous, thereby increasing the shear viscosity. The contribution of the nanoparticle surface area to this rheological behavior is identified and an empirical model that accounts for it is provided. The model successfully reproduces the shear viscosity predictions from previous experimental measurements as well as our simulations. -- Highlights: ► Layering of water on the solid surfaces increases the fraction of less mobile molecules adjacent to them. ► A nondimensional parameter predicts of viscosity enhancement due to particle shape, volume fraction. ► Model predictions agree with the results of atomistic simulations and experimental measurements.

  3. Suprathermal viscosity of dense matter

    International Nuclear Information System (INIS)

    Alford, Mark; Mahmoodifar, Simin; Schwenzer, Kai

    2010-01-01

    Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation μ Δ of the chemical potentials from chemical equilibrium fulfills μ Δ > or approx. T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.

  4. Innovative testing and measurement solutions for smart grid

    CERN Document Server

    Huang, Qi; Yi, Jianbo; Zhen, Wei

    2015-01-01

    Focuses on sensor applications and smart meters in the newly developing interconnected smart grid Focuses on sensor applications and smart meters in the newly developing interconnected smart grid Presents the most updated technological developments in the measurement and testing of power systems within the smart grid environment Reflects the modernization of electric utility power systems with the extensive use of computer, sensor, and data communications technologies, providing benefits to energy consumers and utility companies alike The leading author heads a group of researchers focusing on

  5. Viscosity Control Experiment Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Heidi E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bradley, Paul Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-31

    Turbulent mix has been invoked to explain many results in Inertial Confinement Fusion (ICF) and High Energy Density (HED) physics, such as reduced yield in capsule implosions. Many ICF capsule implosions exhibit interfacial instabilities seeded by the drive shock, but it is not clear that fully developed turbulence results from this. Many simulations use turbulent mix models to help match simulation results to data, but this is not appropriate if turbulence is not present. It would be useful to have an experiment where turbulent mixing could be turned on or off by design. The use of high-Z dopants to modify viscosity and the resulting influence on turbulence is considered here. A complicating factor is that the plasma in some implosions can become strongly coupled, which makes the Spitzer expression for viscosity invalid. We first consider equations that cover a broad parameter space in temperature and density to address regimes for various experimental applications. Next, a previous shock-tube and other ICF experiments that investigate viscosity or use doping to examine the effects on yield are reviewed. How viscosity and dopants play a role in capsule yield depends on the region and process under consideration. Experiments and simulations have been performed to study the effects of viscosity on both the hot spot and the fuel/ablator mix. Increases in yield have been seen for some designs, but not all. We then discuss the effect of adding krypton dopant to the gas region of a typical OMEGA and a 2-shock NIF implosion to determine approximately the effect of adding dopant on the computed Reynolds number. Recommendations for a path forward for possible experiments using high-Z dopants to affect viscosity and turbulence are made.

  6. Measuring process solutions in a reprocessing plant to 0.1%

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Ellis, J.H.

    1980-03-01

    Measurement of SNM in reprocessing plant solutions involves two major problems; measurement of bulk solution quantities and analysis of highly radioactive samples. It has been shown at the BNFP that bulk measurements can be made routinely under operating conditions to less than 0.1% total uncertainty. Two specific advances in measurement technology have been largely responsible for this improved performance. The quartz bourdon tube electromanometer replaces the fluid manometer for differential pressure measurements. The vibrating tube densimeter provides accurate measurement of density in lab samples. These instruments, coupled with a rigorous measurement and quality control procedures, are the means to achieve better than 0.1% performance

  7. Viscosity kernel of molecular fluids

    DEFF Research Database (Denmark)

    Puscasu, Ruslan; Todd, Billy; Daivis, Peter

    2010-01-01

    , temperature, and chain length dependencies of the reciprocal and real-space viscosity kernels are presented. We find that the density has a major effect on the shape of the kernel. The temperature range and chain lengths considered here have by contrast less impact on the overall normalized shape. Functional...... forms that fit the wave-vector-dependent kernel data over a large density and wave-vector range have also been tested. Finally, a structural normalization of the kernels in physical space is considered. Overall, the real-space viscosity kernel has a width of roughly 3–6 atomic diameters, which means...

  8. Solutions for acceleration measurement in vehicle crash tests

    Science.gov (United States)

    Dima, D. S.; Covaciu, D.

    2017-10-01

    Crash tests are useful for validating computer simulations of road traffic accidents. One of the most important parameters measured is the acceleration. The evolution of acceleration versus time, during a crash test, form a crash pulse. The correctness of the crash pulse determination depends on the data acquisition system used. Recommendations regarding the instrumentation for impact tests are given in standards, which are focused on the use of accelerometers as impact sensors. The goal of this paper is to present the device and software developed by authors for data acquisition and processing. The system includes two accelerometers with different input ranges, a processing unit based on a 32-bit microcontroller and a data logging unit with SD card. Data collected on card, as text files, is processed with a dedicated software running on personal computers. The processing is based on diagrams and includes the digital filters recommended in standards.

  9. Real-time monitoring of viscosity changes triggered by chemical reactions using a high-speed imaging method

    Directory of Open Access Journals (Sweden)

    Wooseok Jung

    2015-09-01

    Full Text Available We present a method to monitor in real time peptide self-assembly or polymerization events. The temperature controlled modification of a previously reported splash test setup using high speed imaging enables to observe and measure rheological changes in liquid samples and can, in turn, monitor a peptide self-assembly or polymerization reaction accompanied with specific changes in solution viscosity. A series of 2 mm glass beads were dropped into an Fmoc-L3-OMe (methylated Fluorenylmethyloxycarbonyl-trileucine solution mixed with Alcalase 2.4 L (EC 3.4.21.62 or first dipped in Tetramethylethylenediamine (TEMED, a catalyst for acrylamide polymerization, then dropped into acrylamide. The resulting splashes were observed using a high speed camera. The results demonstrate that the viscosity changes of the peptide sample during the peptide self-assembly or acrylamide polymerization affect the specific shape and evolution of the splashing event. Typically, the increase in viscosity while the reaction occurs decreased the size of the splash and the amount of time for the splash to reach maximum extension from the moment for the beads to impact the sample. The ability to observe rheological changes of sample state presents the opportunity to monitor the real time dynamics of peptide self-assembly or cross-polymerization. Keywords: High-speed imaging, Self-assembly, Viscosity sensor

  10. Temperature Dependence Viscosity and Density of Different Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2015-01-01

    Full Text Available The main goal of this paper is to assess the effect of rapeseed oil methyl ester (RME concentration in diesel fuel on its viscosity and density behaviour. The density and dynamic viscosity were observed at various mixing ratios of RME and diesel fuel. All measurements were performed at constant temperature of 40 °C. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In case of pure RME, pure diesel fuel, and a blend of both (B30, temperature dependence of dynamic viscosity and density was examined. Temperature range in the experiment was −10 °C to 80 °C. Considerable temperature dependence of dynamic viscosity and density was found and demonstrated for all three samples. This finding is in accordance with theoretical assumptions and reference data. Mathematical models were developed and tested. Temperature dependence of dynamic viscosity was modeled using a polynomial 3rd polynomial degree. Correlation coefficients R −0.796, −0.948, and −0.974 between measured and calculated values were found. Temperature dependence of density was modeled using a 2nd polynomial degree. Correlation coefficients R −0.994, −0.979, and −0.976 between measured and calculated values were acquired. The proposed models can be used for flow behaviour prediction of RME, diesel fuel, and their blends.

  11. Experimental study of ERT monitoring ability to measure solute dispersion.

    Science.gov (United States)

    Lekmine, Grégory; Pessel, Marc; Auradou, Harold

    2012-01-01

    This paper reports experimental measurements performed to test the ability of electrical resistivity tomography (ERT) imaging to provide quantitative information about transport parameters in porous media such as the dispersivity α, the mixing front velocity u, and the retardation factor R(f) associated with the sorption or trapping of the tracers in the pore structure. The flow experiments are performed in a homogeneous porous column placed between two vertical set of electrodes. Ionic and dyed tracers are injected from the bottom of the porous media over its full width. Under such condition, the mixing front is homogeneous in the transverse direction and shows an S-shape variation in the flow direction. The transport parameters are inferred from the variation of the concentration curves and are compared with data obtained from video analysis of the dyed tracer front. The variations of the transport parameters obtained from an inversion performed by the Gauss-Newton method applied on smoothness-constrained least-squares are studied in detail. While u and R(f) show a relatively small dependence on the inversion procedure, α is strongly dependent on the choice of the inversion parameters. Comparison with the video observations allows for the optimization of the parameters; these parameters are found to be robust with respect to changes in the flow condition and conductivity contrast. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  12. Understanding the Viscosity of Liquids used in Infant Dysphagia Management.

    Science.gov (United States)

    Frazier, Jacqueline; Chestnut, Amanda H; Jackson, Arwen; Barbon, Carly E A; Steele, Catriona M; Pickler, Laura

    2016-10-01

    When assessing swallowing in infants, it is critical to have confidence that the liquids presented during the swallow study closely replicate the viscosity of liquids in the infant's typical diet. However, we lack research on rheological properties of frequently used infant formulas or breastmilk, and various forms of barium contrast media used in swallow studies. The aim of the current study was to provide objective viscosity measurements for typical infant liquid diet options and barium contrast media. A TA-Instruments AR2000 Advanced Rheometer was used to measure the viscosity of five standard infant formulas, three barium products, and two breastmilk samples. Additionally, this study measured the viscosity of infant formulas and breastmilk when mixed with powdered barium contrast in a 20 % weight-to-volume (w/v) concentration. The study findings determined that standard infant formulas and the two breastmilk samples had low viscosities, at the lower end of the National Dysphagia Diet (NDD) thin liquid range. Two specialty formulas tested had much thicker viscosities, close to the lower boundary of the NDD nectar-thick liquid range. The study showed differences in viscosity between 60 % w/v barium products (Liquid E-Z-Paque(®) and E-Z-Paque(®) powder); the powdered product had a much lower viscosity, despite identical barium concentration. When E-Z-Paque(®) powdered barium was mixed in a 20 % w/v concentration using water, standard infant formulas, or breastmilk, the resulting viscosities were at the lower end of the NDD thin range and only slightly thicker than the non-barium comparator liquids. When E-Z-Paque(®) powdered barium was mixed in a 20 % w/v concentration with the two thicker specialty formulas (Enfamil AR 20 and 24 kcal), unexpected alterations in their original viscosity occurred. These findings highlight the clinical importance of objective measures of viscosity as well as objective data on how infant formulas or breastmilk may change in

  13. Evanescent Wave Absorption Based Fiber Sensor for Measuring Glucose Solution Concentration

    Science.gov (United States)

    Marzuki, Ahmad; Candra Pratiwi, Arni; Suryanti, Venty

    2018-03-01

    An optical fiber sensor based on evanescent wave absorption designed for measuring glucose solution consentration was proposed. The sensor was made to detect absorbance of various wavelength in the glucose solution. The sensing element was fabricated by side polishing of multimode polymer optical fiber to form a D-shape. The sensing element was immersed in different concentration of glucoce solution. As light propagated through the optical fiber, the evanescent wave interacted with the glucose solution. Light was absorbed by the glucose solution. The larger concentration the glucose solution has, the more the evanescent wave was absorbed in particular wavelenght. Here in this paper, light absorbtion as function of glucose concentration was measured as function of wavelength (the color of LED). We have shown that the proposed sensor can demonstrated an increase of light absorption as function of glucose concentration.

  14. Nonlinear second order evolution inclusions with noncoercive viscosity term

    Science.gov (United States)

    Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D.; Repovš, Dušan D.

    2018-04-01

    In this paper we deal with a second order nonlinear evolution inclusion, with a nonmonotone, noncoercive viscosity term. Using a parabolic regularization (approximation) of the problem and a priori bounds that permit passing to the limit, we prove that the problem has a solution.

  15. Thermal ignition in a reactive variable viscosity Poiseuille flow ...

    African Journals Online (AJOL)

    In this paper, we investigate the thermal ignition in a strongly exothermic reaction of a variable viscosity combustible material flowing through a channel with isothermal walls under Arrhenius kinetics, neglecting the consumption of the material. Analytical solutions are constructed for the governing nonlinear boundary-value ...

  16. In situ composition measurements of Bunsen reaction solution by radiation probes

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Shinji; Nagaya, Yasunobu [Japan Atomic Energy Agency (Japan)

    2010-07-01

    Measuring equipments are integral to chemical process controls. A stable hydrogen production by the Iodine-Sulfur thermochemical water-splitting process is relatively difficult because of lack of existing in situ composition measurement techniques for multiple components and corrosive solution. Composition regulations of Bunsen reaction solution is particularly important, since a closed cycle system provided with this process causes that the many streams with different composition return to this section. Accordingly Bunsen solution becomes changeable composition. Radiation probes have a potential for applications to determine this multiple component solution while the non-contact approach avoids the corrosive issues. Moreover the probes have features of the promptness, contact-less and sequential use. Laboratory scale experiments to evaluate these possibilities of the measurement were conducted with use of simulated Bunsen solution, HIx solution and H{sub 2}SO{sub 4} solution, containing HI, I2, H{sub 2}SO{sub 4} and H{sub 2}O and sealed radiation sources. Radiations were counted, which were interacted with the solutions in various compositions around room temperature contained in vessels. For HIx solution, the obtained counting rates were correlated with hydrogen volume concentrations; moreover, the application of the Monte Carlo method suggests possibilities that the detector responses for HIx solution by the radiation probes are predictable. For H{sub 2}SO{sub 4} solution, iodine atoms had significant influences on the relationship between output values of two gamma-ray density meters, cesium source as higher energy and barium source as lower energy. This results suggest that the neutron ray probe, the gamma-ray probes of both lower energy and higher energy have possibilities to determine the composition of Bunsen solution of HIx and H{sub 2}SO{sub 4} solutions. (orig.)

  17. A method for valuing architecture-based business transformation and measuring the value of solutions architecture

    OpenAIRE

    Slot, R.G.

    2010-01-01

    Enterprise and Solution Architecture are key in today’s business environment. It is surprising that the foundation and business case for these activities are nonexistent; the financial value for the business of these activities is largely undetermined. To determine business value of enterprise and solution architecture, this thesis shows how to measure and quantify, in business terms, the value of enterprise architecture-based on business transformation and the value of solution architecture.

  18. Effective viscosity of confined hydrocarbons

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.

    2012-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...

  19. Bulk viscosity of molecular fluids

    Science.gov (United States)

    Jaeger, Frederike; Matar, Omar K.; Müller, Erich A.

    2018-05-01

    The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the μs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.

  20. Preparation of encapsulated proteins dissolved in low viscosity fluids

    International Nuclear Information System (INIS)

    Ehrhardt, Mark R.; Flynn, Peter F.; Wand, A. Joshua

    1999-01-01

    The majority of proteins are too large to be comprehensively examined by solution NMR methods, primarily because they tumble too slowly in solution. One potential approach to making the NMR relaxation properties of large proteins amenable to modern solution NMR techniques is to encapsulate them in a reverse micelle which is dissolved in a low viscosity fluid. Unfortunately, promising low viscosity fluids such as the short chain alkanes, supercritical carbon dioxide, and various halocarbon refrigerants all require the application of significant pressure to be kept liquefied at room temperature. Here we describe the design and use of a simple cost effective NMR tube suitable for the preparation of solutions of proteins encapsulated in reverse micelles dissolved in such fluids

  1. Where does the standard application end and where does the solution made-to measure begin?

    International Nuclear Information System (INIS)

    Chovan, P.

    2004-01-01

    Aim of this presentation is to explain necessity of made-to measure solutions and their extent within the enterprise information systems development. The author presents DELTA E S, Plc approach to these questions, explains possible risks and benefits from these tailored made solutions. All the presentation is going to be supported by experiences and results from the realised or active projects

  2. Temperature dependent kinematic viscosity of different types of engine oils

    Directory of Open Access Journals (Sweden)

    Libor Severa

    2009-01-01

    Full Text Available The objective of this study is to measure how the viscosity of engine oil changes with temperature. Six different commercially distributed engine oils (primarily intended for motorcycle engines of 10W–40 viscosity grade have been evaluated. Four of the oils were of synthetic type, two of semi–synthetic type. All oils have been assumed to be Newtonian fluids, thus flow curves have not been determined. Oils have been cooled to below zero temperatures and under controlled temperature regulation, kinematic viscosity (mm2 / s have been measured in the range of −5 °C and +115 °C. Anton Paar digital viscometer with concentric cylinders geometry has been used. In accordance with expected behavior, kinematic viscosity of all oils was decreasing with increasing temperature. Viscosity was found to be independent on oil’s density. Temperature dependence has been modeled using se­ve­ral mathematical models – Vogel equation, Arrhenius equation, polynomial, and Gaussian equation. The best match between experimental and computed data has been achieved for Gaussian equation (R2 = 0.9993. Knowledge of viscosity behavior of an engine oil as a function of its temperature is of great importance, especially when considering running efficiency and performance of combustion engines. Proposed models can be used for description and prediction of rheological behavior of engine oils.

  3. On-line slurry viscosity and concentration measurement as a real-time waste stream characterization tool. 1997 annual progress report

    International Nuclear Information System (INIS)

    Powell, R.L.

    1997-01-01

    'The main scope of this work is to: (1) develop a novel tomographic ultrasonic technique to obtain the real-time distribution of acoustic velocity and flow velocity; (2) use nuclear magnetic resonance imaging (NMRI) to measure velocity profiles and rheological properties of complex fluids and suspensions; (3) establish a facility for making laser Doppler velocimetry (LDV) measurements that can be The overall goal is to obtain real-time rheology and solids concentration within a solid-liquid suspension flowing in a pipeline. To nondestructively obtain the rheology of the fluid flowing in a pipe, accurate measurement of local shear rate distribution is required. This objective was met by using two real-time tomographic techniques: an ultrasonic Doppler velocimetry system and an NMRI system. The first method combines the existing state-of-the-art ultrasonic velocimetry technology base with a novel tomographic concept to non-intrusively obtain high resolution acoustic and flow velocity profile at a section of the flow field. The acoustic velocity profile provides a means of improving the flow velocity measurement accuracy. These data are also, used to yield the profile of solids concentration. In addition, the volumetric flow rate was determined from integration of the velocity profile. From the knowledge of the concentration profile the mass flow rate can also be determined, Similar work was undertaken for the NMNRI system. In this case, single phase Newtonian fluids have been used to model complex rheological behavior. Finally, a LDV system has been purchased and set - up in the laboratory at UC Davis.'

  4. High-pressure viscosity behavior of x 1,1,1,2-tetrafluoroethane (HFC-134a)+(1-x) triethylene glycol dimethylether (TriEGDME) mixtures: Measurements and modeling

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Baylaucq, A.; Cisneros, Sergio

    2006-01-01

    fractions x(HFC) = 0.3427 and 0.5940 (a total of 100 experimental values). Since lubricants and refrigerants are in two different thermodynamic states at atmospheric pressure and ambient temperature, an especially designed falling-body viscometer has been used to perform the measurements. The data obtained...... with a physical and theoretical background, such as the hard-sphere scheme, the free-volume model, and the friction theory....

  5. An induced current method for measuring zeta potential of electrolyte solution-air interface.

    Science.gov (United States)

    Song, Yongxin; Zhao, Kai; Wang, Junsheng; Wu, Xudong; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2014-02-15

    This paper reports a novel and very simple method for measuring the zeta potential of electrolyte solution-air interface. When a measuring electrode contacts the electrolyte solution-air interface, an electrical current will be generated due to the potential difference between the electrode-air surface and the electrolyte solution-air interface. The amplitude of the measured electric signal is linearly proportional to this potential difference; and depends only on the zeta potential at the electrolyte solution-air interface, regardless of the types and concentrations of the electrolyte. A correlation between the zeta potential and the measured voltage signal is obtained based on the experimental data. Using this equation, the zeta potential of any electrolyte solution-air interface can be evaluated quickly and easily by inserting an electrode through the electrolyte solution-air interface and measuring the electrical signal amplitude. This method was verified by comparing the obtained results of NaCl, MgCl2 and CaCl2 solutions of different pH values and concentrations with the zeta potential data reported in the published journal papers. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Excess molar volume and viscosity deviation for binary mixtures of γ-butyrolactone with dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Krakowiak, Joanna; Śmiechowski, Maciej

    2017-01-01

    Highlights: • Densities and viscosities of DMSO-GBL binary liquid mixtures were measured. • The volumetric parameters and excess quantities were obtained. • Ab initio calculations were performed for single molecules and dimers in the studied mixture. • The interactions in solutions are weaker than in pure solvents. - Abstract: The densities of binary liquid mixtures of dimethyl sulfoxide and γ-butyrolactone at (293.15, 298.15, 303.15 and 313.15) K and viscosity at T = 298.15 K have been measured at atmospheric pressure over the entire range of concentration. From these data the excess molar volumes V E at (293.15, 298.15, 303.15 and 313.15) K and the viscosity deviation, the excess entropy, and the excess Gibbs energy of activation for viscous flow at T = 298.15 K have been determined. These data were mathematically represented by the Redlich-Kister polynomial. Partial and apparent molar volumes have been calculated for better understanding of the interactions in the binary systems. The obtained data indicate the lack of specific interactions between unlike molecules, which seem to be a little weaker as compared to the interactions in pure solvents.

  7. Whispering Gallery Mode Based Optical Fiber Sensor for Measuring Concentration of Salt Solution

    Directory of Open Access Journals (Sweden)

    Chia-Chin Chiang

    2013-01-01

    Full Text Available An optical fiber solution-concentration sensor based on whispering gallery mode (WGM is proposed in this paper. The WGM solution-concentration sensors were used to measure salt solutions, in which the concentrations ranged from 1% to 25% and the wavelength drifted from the left to the right. The experimental results showed an average sensitivity of approximately 0.372 nm/% and an R2 linearity of 0.8835. The proposed WGM sensors are of low cost, feasible for mass production, and durable for solution-concentration sensing.

  8. Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Amani, Mohammad, E-mail: m_amani@sbu.ac.ir [Mechanical and Energy Engineering Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Amani, Pouria, E-mail: pouria.amani@ut.ac.ir [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Kasaeian, Alibakhsh, E-mail: akasa@ut.ac.ir [Department of Renewable Energies, Faculty of New Science & Technologies, University of Tehran, Tehran (Iran, Islamic Republic of); Mahian, Omid, E-mail: omid.mahian@mshdiau.ac.ir [Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Kasaeian, Fazel, E-mail: f.kasa92@student.sharif.edu [Faculty of Material Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Wongwises, Somchai, E-mail: somchai.won@kmutt.ac.th [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi (KMUTT), Bangmod, Bangkok (Thailand)

    2017-04-15

    In this paper, an experimental evaluation on the viscosity of water-based manganese ferrite nanofluid with and without magnetic field with 100, 200, 300, and 400 G intensities has been conducted. The Brookfield DV-I PRIME viscometer is implemented to measure the MnFe{sub 2}O{sub 4}/water nanofluid viscosity and to evaluate the influence of different volume concentrations (from 0.25% to 3%) and various temperatures (from 20 to 60 °C) on the viscosity. According to the measurements, viscosity incrementally increases with the augmentation of nanoparticles concentration while it remarkably decreases at higher temperatures under absence and attendance of magnetic field. The maximum viscosity ratio of 1.14 is achieved at 3 vol% of nanoparticles and 20 °C under no magnetic field, whereas it increments to maximum viscosity ratio of 1.75 at 3 vol% of nanoparticles and 40 °C under 400 G magnetic field. Furthermore, new correlation is proposed for determination of viscosity of MnFe{sub 2}O{sub 4}/water nanofluids in terms of magnetic field intensity, volume concentration and temperature. - Highlights: • Viscosity of spinel-type manganese ferrite nanofluids is measured. • Effect of a constant magnetic field on the viscosity is investigated. • A novel correlation is proposed for estimation of the measured viscosity.

  9. Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field

    International Nuclear Information System (INIS)

    Amani, Mohammad; Amani, Pouria; Kasaeian, Alibakhsh; Mahian, Omid; Kasaeian, Fazel; Wongwises, Somchai

    2017-01-01

    In this paper, an experimental evaluation on the viscosity of water-based manganese ferrite nanofluid with and without magnetic field with 100, 200, 300, and 400 G intensities has been conducted. The Brookfield DV-I PRIME viscometer is implemented to measure the MnFe 2 O 4 /water nanofluid viscosity and to evaluate the influence of different volume concentrations (from 0.25% to 3%) and various temperatures (from 20 to 60 °C) on the viscosity. According to the measurements, viscosity incrementally increases with the augmentation of nanoparticles concentration while it remarkably decreases at higher temperatures under absence and attendance of magnetic field. The maximum viscosity ratio of 1.14 is achieved at 3 vol% of nanoparticles and 20 °C under no magnetic field, whereas it increments to maximum viscosity ratio of 1.75 at 3 vol% of nanoparticles and 40 °C under 400 G magnetic field. Furthermore, new correlation is proposed for determination of viscosity of MnFe 2 O 4 /water nanofluids in terms of magnetic field intensity, volume concentration and temperature. - Highlights: • Viscosity of spinel-type manganese ferrite nanofluids is measured. • Effect of a constant magnetic field on the viscosity is investigated. • A novel correlation is proposed for estimation of the measured viscosity.

  10. Determinação experimental da viscosidade e condutividade térmica de óleos vegetais Experimental measurements of viscosity and thermal conductivity of vegetable oils

    Directory of Open Access Journals (Sweden)

    Josiane Brock

    2008-09-01

    Full Text Available O presente trabalho tem por objetivo reportar valores experimentais de condutividade térmica e viscosidade dinâmica dos óleos vegetais refinados de soja, milho, girassol, algodão, canola, oliva e de farelo de arroz. As medidas de condutividade térmica foram realizadas em célula acoplada a um banho termostático no intervalo de temperatura de 20 a 70 °C, utilizando uma sonda de fio quente. Os resultados obtidos demonstram que para todos os óleos vegetais investigados a condutividade térmica possui fraca dependência com a temperatura, apresentando ligeiro decréscimo com o aumento desta variável. O método gravimétrico foi empregado para a medida da densidade dos óleos vegetais estudados à temperatura ambiente, não tendo sido verificada diferença significativa entre os valores encontrados. Para as medidas de viscosidade dos óleos vegetais foi utilizado um viscosímetro do tipo Brookfield, acoplado a um banho termostatizado com controle de temperatura. A partir dos resultados obtidos verificou-se que a viscosidade decresce acentuadamente com o aumento da temperatura para todos os óleos vegetais.This work reports experimental data of thermal conductivity and dynamic viscosity of the following refined vegetable oils: rice, soybean, corn oil, sunflower, cottonseed, and olive oil. Measurements of thermal properties were carried out in a cell coupled to a thermostatic bath in the temperature range of 20-70 °C, using a single-needle stainless steel sensor. It was experimentally observed that the thermal conductivity decreased slightly with increasing temperature for all samples investigated. The gravimetric method was employed for density data acquisition, and revealed no significant difference among the values obtained. The Brookfield apparatus was employed in measuring the dynamic viscosity and it was verified that a raise in temperature led to a sharp decrease for this property for all samples investigated.

  11. A new method to measure effective soil solution concentration predicts copper availability to plants.

    Science.gov (United States)

    Zhang, H; Zhao, F J; Sun, B; Davison, W; McGrath, S P

    2001-06-15

    Risk assessments of metal contaminated soils need to address metal bioavailability. To predict the bioavailability of metals to plants, it is necessary to understand both solution and solid phase supply processes in soils. In striving to find surrogate chemical measurements, scientists have focused either on soil solution chemistry, including free ion activities, or operationally defined fractions of metals. Here we introduce the new concept of effective concentration, CE, which includes both the soil solution concentration and an additional term, expressed as a concentration, that represents metal supplied from the solid phase. CE was measured using the technique of diffusive gradients in thin films (DGT) which, like a plant, locally lowers soil solution concentrations, inducing metal supply from the solid phase, as shown by a dynamic model of the DGT-soil system. Measurements of Cu as CE, soil solution concentration, by EDTA extraction and as free Cu2+ activity in soil solution were made on 29 different soils covering a large range of copper concentrations. Theywere compared to Cu concentrations in the plant material of Lepidium heterophyllum grown on the same soils. Plant concentrations were linearly related and highly correlated with CE but were more scattered and nonlinear with respect to free Cu2+ activity, EDTA extraction, or soil solution concentrations. These results demonstrate that the dominant supply processes in these soils are diffusion and labile metal release, which the DGT-soil system mimics. The quantity CE is shown to have promise as a quantitative measure of the bioavailable metal in soils.

  12. Dependence of Helium II viscosity properties on oscillation frequency

    International Nuclear Information System (INIS)

    Nadirashvili, Z.S.; Tsakadze, J.S.

    1979-01-01

    The causes of a discrepancy in the results of measurements of He II viscosity below Tapprox. =1.6 K obtained with different measurement methods are investigated. It is shown that to obtain correct results in oscillation experiments, the condition delta>>lambda/sub ph/ should obtain, where delta is the depth of viscous wave penetration and lambda/sub ph/ is the phonon free path length. Results of viscosity measurements at different ratios delta/lambda/sub ph/ (by a wire viscometer) are presented. It is shown that for the condition delta>>lambda/sub ph/, the results obtained are in good agreement with the results of Andronikashvili (in which delta/lambda/sub ph/>100). If the mentioned relation is not satisfied, then as the value of the ratio delta/lambda/sub ph/ is decreased, the value measured for the viscosity is increasingly lower than the results of Andronikashvili

  13. Viscosity and volume properties of the Al-Cu melts

    Directory of Open Access Journals (Sweden)

    Kurochkin A.

    2011-05-01

    Full Text Available Temperature dependences of the kinematic viscosity v and the density ρ of Al-Cu melts were investigated in the same regime taking into account that viscometric experiments with the melts enriched with cupper have not been repeated since 1960th and densimetric measurements did not perform before at all. The first measurements were fulfilled using the method of dumping oscillation of a crucible filled in by a melt investigated. Its precision was as high as 1.5%. Density was measured using the gamma-absorption method with the accuracy of 0.2 to 0.3%. Crucibles of BeO were used in both the cases. In the course of the measurements a distinct branching of the heating and cooling curves were fixed below some temperature characteristic of each composition for most of the investigated samples. The branching temperature systematically changes with growth of cupper content. The authors believe that the effect is caused by the irreversible transition of the melts from microheterogeneous state inherited from the initial rough materials into a true solution state.

  14. Effect of viscosity on learned satiation

    NARCIS (Netherlands)

    Mars, M.; Hogenkamp, P.S.; Gosses, A.M.; Stafleu, A.; Graaf, C.de

    2009-01-01

    A higher viscosity of a food leads to a longer orosensory stimulation. This may facilitate the learned association between sensory signals and metabolic consequences. In the current study we investigated the effect of viscosity on learned satiation. In two intervention groups a low viscosity (LV)

  15. Measurement and prediction of aromatic solute distribution coefficients for aqueous-organic solvent systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.R.; Luthy, R.G.

    1984-06-01

    Experimental and modeling activities were performed to assess techniques for measurement and prediction of distribution coefficients for aromatic solutes between water and immiscible organic solvents. Experiments were performed to measure distribution coefficients in both clean water and wastewater systems, and to assess treatment of a wastewater by solvent extraction. The theoretical portions of this investigation were directed towards development of techniques for prediction of solute-solvent/water distribution coefficients. Experiments were performed to assess treatment of a phenolic-laden coal conversion wastewater by solvent extraction. The results showed that solvent extraction for recovery of phenolic material offered several wastewater processing advantages. Distribution coefficients were measured in clean water and wastewater systems for aromatic solutes of varying functionality with different solvent types. It was found that distribution coefficients for these compounds in clean water systems were not statistically different from distribution coefficients determined in a complex coal conversion process wastewater. These and other aromatic solute distribution coefficient data were employed for evaluation of modeling techniques for prediction of solute-solvent/water distribution coefficients. Eight solvents were selected in order to represent various chemical classes: toluene and benzene (aromatics), hexane and heptane (alkanes), n-octanol (alcohols), n-butyl acetate (esters), diisopropyl ether (ethers), and methylisobutyl ketone (ketones). The aromatic solutes included: nonpolar compounds such as benzene, toluene and naphthalene, phenolic compounds such as phenol, cresol and catechol, nitrogenous aromatics such as aniline, pyridine and aminonaphthalene, and other aromatic solutes such as naphthol, quinolinol and halogenated compounds. 100 references, 20 figures, 34 tables.

  16. Magnetically-charged black branes and viscosity/entropy ratios

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Shan [Institute for Advanced Physics & Mathematics,Zhejiang University of Technology, Hangzhou 310023 (China); George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843 (United States); Lü, H. [Department of Physics, Beijing Normal University,Beijing 100875 (China); Pope, C.N. [George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843 (United States); DAMTP, Centre for Mathematical Sciences,Cambridge University, Wilberforce Road, Cambridge CB3 OWA (United Kingdom)

    2016-12-19

    We consider asymptotically-AdS n-dimensional black brane solutions in a theory of gravity coupled to a set of Np-form field strengths, in which the field strengths carry magnetic charges. For appropriately chosen charges, the metrics are isotropic in the (n−2) transverse directions. However, in general the field strength configurations break the full Euclidean symmetry of the (n−2)-dimensional transverse space, and the shear viscosity tensor in the dual theory is no longer isotropic. We study the linearised equations for transverse traceless metric perturbations in these backgrounds, and by employing the Kubo formula we obtain expressions for the ratios η/S of the shear viscosity components divided by the entropy density. We find that the KSS bound on the ratios η/S is generally violated in these solutions. We also extend the discussion by including a dilatonic scalar field in the theory, leading to solutions that are asymptotically Lifshitz with hyperscaling violation.

  17. Enhancement of the spectral selectivity of complex samples by measuring them in a frozen state at low temperatures in order to improve accuracy for quantitative analysis. Part II. Determination of viscosity for lube base oils using Raman spectroscopy.

    Science.gov (United States)

    Kim, Mooeung; Chung, Hoeil

    2013-03-07

    The use of selectivity-enhanced Raman spectra of lube base oil (LBO) samples achieved by the spectral collection under frozen conditions at low temperatures was effective for improving accuracy for the determination of the kinematic viscosity at 40 °C (KV@40). A collection of Raman spectra from samples cooled around -160 °C provided the most accurate measurement of KV@40. Components of the LBO samples were mainly long-chain hydrocarbons with molecular structures that were deformable when these were frozen, and the different structural deformabilities of the components enhanced spectral selectivity among the samples. To study the structural variation of components according to the change of sample temperature from cryogenic to ambient condition, n-heptadecane and pristane (2,6,10,14-tetramethylpentadecane) were selected as representative components of LBO samples, and their temperature-induced spectral features as well as the corresponding spectral loadings were investigated. A two-dimensional (2D) correlation analysis was also employed to explain the origin for the improved accuracy. The asynchronous 2D correlation pattern was simplest at the optimal temperature, indicating the occurrence of distinct and selective spectral variations, which enabled the variation of KV@40 of LBO samples to be more accurately assessed.

  18. VISCOSE BASED MAGNETIC YARNS – PHYSICAL AND MECHANICAL CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    GROSU Marian-Cătălin

    2017-05-01

    Full Text Available In the context of the rapid growth in the number of electrical and electronic devices and accessories that emit electromagnetic energy in different frequency bands we present and characterize here several magnetic functionalized viscose twisted yarns. A 100% viscose twisted staple yarn was covered through an in-house developed process with a polymeric solution containing micrometric sized barium hexaferrite magnetic powder. The in-house developed process allows deposition of micrometric thickness polymeric paste layer on the yarn surface. Barium hexaferrite is a hard magnetic material exhibiting high chemical stability and corrosion resistivity, relatively large saturation and residual magnetization and microwave absorbing properties. Five different percentages of the magnetic powder in the polymer solution were used, i.e. ranging from 15 wt% to 45 wt%. Physical characterization shows a very good adherence between the highly hygroscopic viscose staple fibers and the polymeric solution that contains polyvinyl acetate and polyurethane as binders. SEM images evidenced the fact that the polymeric solution penetrated more than 1/3 of the yarn diameter. The concentration of magnetic powder in the polymeric solution has a direct influence on the coating amount, diameter and density. The mechanical characterization of the coated yarns revealed that the breaking force is increasing with increasing magnetic powder content up to o certain value and then decreased because the magnetic layer became stiffer. At the same time, the elongation at brake is decreasing.

  19. Viscometric study of high-cis polybutadiene in toluene solution

    International Nuclear Information System (INIS)

    Mwllo, Ivana L.; Coutinho, Fernanda M.B.; Delpech, Marcia C.; Albino, Fernanda F.M.

    2006-01-01

    Viscometric measurements, in toluene solution at 30 deg C, were performed with high-cis polybutadiene synthesized by neodymium based catalyst. Six different equations were used to calculate intrinsic viscosities and viscosimetric constant values: Huggins, Kraemer, Martin and Schulz-Blaschke by graphic extrapolation, and Solomon-Ciuta, Deb-Chanterjee and again Schulz- Blaschke, through a single point determination. The molecular weight of the polymers was also determined applying Mark-Houwink-Sakurada equation using the values of intrinsic viscosity obtained by the six equations. The values of intrinsic viscosity and viscosity-average molecular weight obtained by the two methods were compared in order to verify the validity of the single point determination for high-cis polybutadiene. (author)

  20. Estimation of shear viscosity based on transverse momentum correlations

    International Nuclear Information System (INIS)

    Sharma, Monika

    2009-01-01

    Event anisotropy measurements at RHIC suggest the strongly interacting matter created in heavy ion collisions flows with very little shear viscosity. Precise determination of 'shear viscosity-to-entropy' ratio is currently a subject of extensive study [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302]. We present preliminary results of measurements of the evolution of transverse momentum correlation function with collision centrality of Au+Au interactions at √(s NN )=200 GeV. We compare two differential correlation functions, namely inclusive [J. Adams et al. (STAR Collaboration), Phys. Rev. C 72 (2005) 044902] and a differential version of the correlation measure C introduced by Gavin et al. [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302; M. Sharma and C. A. Pruneau, Phys. Rev. C 79 (2009) 024905.]. These observables can be used for the experimental study of the shear viscosity per unit entropy.

  1. Estimation of shear viscosity based on transverse momentum correlations

    Science.gov (United States)

    STAR Collaboration; Sharma, Monika; STAR Collaboration

    2009-11-01

    Event anisotropy measurements at RHIC suggest the strongly interacting matter created in heavy ion collisions flows with very little shear viscosity. Precise determination of “shear viscosity-to-entropy” ratio is currently a subject of extensive study [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302]. We present preliminary results of measurements of the evolution of transverse momentum correlation function with collision centrality of Au+Au interactions at s=200 GeV. We compare two differential correlation functions, namely inclusive [J. Adams et al. (STAR Collaboration), Phys. Rev. C 72 (2005) 044902] and a differential version of the correlation measure C˜ introduced by Gavin et al. [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302; M. Sharma and C. A. Pruneau, Phys. Rev. C 79 (2009) 024905.]. These observables can be used for the experimental study of the shear viscosity per unit entropy.

  2. Stern potential and Debye length measurements in dilute ionic solutions with electrostatic force microscopy

    International Nuclear Information System (INIS)

    Kumar, Bharat; Crittenden, Scott R

    2013-01-01

    We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson–Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length. (paper)

  3. Stern potential and Debye length measurements in dilute ionic solutions with electrostatic force microscopy.

    Science.gov (United States)

    Kumar, Bharat; Crittenden, Scott R

    2013-11-01

    We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson-Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length.

  4. Remote measurements of actinide species in aqueous solutions using an optical fiber photoacoustic spectrometer

    International Nuclear Information System (INIS)

    Russo, R.E.; Robouch, P.B.; Silva, R.J.

    1990-01-01

    A photoacoustic spectrometer, equipped with an 85 meter optical fiber, was used to perform absorption measurements of lanthanide and actinide samples, located in a glovebox. The spectrometer was tested using aqueous solutions of praseodymium and americium ions; the sensitivity for remote measurements was found to be similar to that achieved in the laboratory without the fiber. 14 refs., 3 figs

  5. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems

    International Nuclear Information System (INIS)

    Toghraie, Davood; Alempour, Seyed Mohammadbagher; Afrand, Masoud

    2016-01-01

    In this paper, experimental determination of dynamic viscosity of water based magnetite nanofluid (Fe 3 O 4 /water) was performed. The viscosity was measured in the temperature range of 20–55 °C for various samples with solid volume fractions of 0.1%, 0.2%, 0.4%, 1%, 2% and 3%. The results showed that the viscosity considerably decreases with increasing temperature. Moreover, the viscosity enhances with an increase in the solid volume fraction, remarkably. The calculated viscosity ratios showed that the maximum viscosity enhancement was 129.7%. Using experimental data, a new correlation has been proposed to predict the viscosity of magnetite nanofluid (Fe 3 O 4 /water). A comparison between the experimental results and the correlation outputs showed that the proposed model has a suitable accuracy. - Highlights: • Preparing Magnetite nanofluids with solid volume fractions up to 3%. • Measuring viscosity in temperature range of 20–55 °C using Brookfield Viscometer. • Maximum viscosity enhancement occurred at volume fraction of 3% and was 129.7%. • Proposing new correlation to predict the viscosity of Fe3O4/water nanofluid.

  6. Solution standards for quality control of nuclear-material analytical measurements

    International Nuclear Information System (INIS)

    Clark, J.P.

    1981-01-01

    Analytical chemistry measurement control depends upon reliable solution standards. At the Savannah River Plant Control Laboratory over a thousand analytical measurements are made daily for process control, product specification, accountability, and nuclear safety. Large quantities of solution standards are required for a measurement quality control program covering the many different analytical chemistry methods. Savannah River Plant produced uranium, plutonium, neptunium, and americium metals or oxides are dissolved to prepare stock solutions for working or Quality Control Standards (QCS). Because extensive analytical effort is required to characterize or confirm these solutions, they are prepared in large quantities. These stock solutions are diluted and blended with different chemicals and/or each other to synthesize QCS that match the matrices of different process streams. The target uncertainty of a standard's reference value is 10% of the limit of error of the methods used for routine measurements. Standard Reference Materials from NBS are used according to special procedures to calibrate the methods used in measuring the uranium and plutonium standards so traceability can be established. Special precautions are required to minimize the effects of temperature, radiolysis, and evaporation. Standard reference values are periodically corrected to eliminate systematic errors caused by evaporation or decay products. Measurement control is achieved by requiring analysts to analyze a blind QCS each shift a measurement system is used on plant samples. Computer evaluation determines whether or not a measurement is within the +- 3 sigma control limits. Monthly evaluations of the QCS measurements are made to determine current bias correction factors for accountability measurements and detect significant changes in the bias and precision statistics. The evaluations are also used to plan activities for improving the reliability of the analytical chemistry measurements

  7. Longitudinal and bulk viscosities of expanded rubidium

    International Nuclear Information System (INIS)

    Zaheri, Ali Hossein Mohammad; Srivastava, Sunita; Tankeshwar, K

    2003-01-01

    First three non-vanishing sum rules for the bulk and longitudinal stress auto-correlation functions have been evaluated for liquid Rb at six thermodynamic states along the liquid-vapour coexistence curve. The Mori memory function formalism and the frequency sum rules have been used to calculate bulk and longitudinal viscosities. The results thus obtained for the ratio of bulk viscosity to shear viscosity have been compared with experimental and other theoretical predictions wherever available. The values of the bulk viscosity have been found to be more than the corresponding values of the shear viscosity for all six thermodynamic states investigated here

  8. Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation

    OpenAIRE

    Salinas, Branden A; Sathish, Hasige A; Bishop, Steven M; Harn, Nick; Carpenter, John F; Randolph, Theodore W

    2010-01-01

    Opalescence and high viscosities can pose challenges for high concentration formulation of antibodies. Both phenomena result from protein-protein intermolecular interactions that can be modulated with solution ionic strength. We studied a therapeutic monoclonal antibody that exhibits high viscosity in solutions at low ionic strength (~20 centipoise (cP) at 90 mg/mL and 23°C) and significant opalescence at isotonic ionic strength (approximately 100 nephelometric turbidity units at 90 mg/mL and...

  9. Toward new instruments for measurement of low concentration hydrogen sulfide in small-quantity aqueous solutions

    International Nuclear Information System (INIS)

    Wu, Xiao Chu; Wu, Dong Qing; Zhang, W J; Sammynaiken, R; Yang, Wei; Wang, Rui

    2008-01-01

    Endogenously generated hydrogen sulfide (H 2 S) has been found to play some important physiological roles in the nervous and cardiovascular systems, such as a neuromodulator and a vasorelaxant. These roles are in contrast to our common perception that H 2 S is toxic. However, whether H 2 S plays a positive or negative role is dependent on the H 2 S concentration levels in mammals. This further puts a high demand on the accurate measurement of H 2 S in mammals with a further desire to be real time, continuous and in vivo. Existing methods for H 2 S measurement require a large number of tissue samples with complex procedures, and these methods are extremely invasive. The development of new in vivo and real-time methods for measuring H 2 S is, however, a great challenge. In the present study, we proposed and examined five potential H 2 S measurement methods: (1) atomic force microscopy with coating materials, (2) Raman spectroscopy on the H 2 S solutions, (3) gas chromatography/mass spectroscopy (with the static headspace technique) on the H 2 S solutions, (4) mass spectroscopy on unfunctionalized carbon nanotubes treated with the H 2 S solutions and (5) Raman spectroscopy on unfunctionalized carbon nanotubes treated with the H 2 S solutions. Our study concluded that method (5) is the most promising one for detecting low concentration H 2 S in small-quantity aqueous solutions in terms of measurement resolution and non-invasiveness, but the method is not very robust

  10. On estimating the molecular viscosity of the Earth's outer core: comment on the paper by D E Smylie et al

    International Nuclear Information System (INIS)

    Zharkov, Vladimir N

    2009-01-01

    The paper 'Direct observations of the viscosity of Earth's outer core and extrapolation of measurements of the viscosity of liquid iron' by D.E. Smylie, V.V. Brazhkin, and A. Palmer [Phys. Usp. 52 (1) 79 (2009)] is subject to critique for its proposed approach to estimating the viscosity of the Earth's outer core. (methodological notes)

  11. Dynamic viscosity modeling of methane plus n-decane and methane plus toluene mixtures: Comparative study of some representative models

    DEFF Research Database (Denmark)

    Baylaucq, A.; Boned, C.; Canet, X.

    2005-01-01

    Viscosity measurements of well-defined mixtures are useful in order to evaluate existing viscosity models. Recently, an extensive experimental study of the viscosity at pressures up to 140 MPa has been carried out for the binary systems methane + n-decane and methane toluene, between 293.15 and 3...

  12. Effect of electrochemical oxidation of a viscose rayon based ...

    African Journals Online (AJOL)

    A viscose rayon based activated carbon cloth (ACC) was electrochemically oxidised to enhance its cation sorption capacity for comparison with as-received ACC. ACCs were characterised by sodium capacity measurement, pH titration, zeta potential measurement, elemental analysis, Brunauer-Emmet- Teller surface area ...

  13. Magnetisation processes and magnetic viscosity of mechanically alloyed SmCo5

    International Nuclear Information System (INIS)

    Ding, J.; Smith, P.A.I.; McCormick, P.G.; Street, R.

    1996-01-01

    Mechanically alloyed SmCo 5 materials with coercivities in the range of 50-75 kOe were studied in this work. Irreversible magnetisation processes were investigated by measuring remanences after initial magnetisation and after demagnetisation. A large deviation of the demagnetisation remanence from the Wohlfarth relationship indicated that interactions between grains play an important role in the irreversible magnetisation process. Viscosity tests showed nearly linear relationship between the magnetic field and the viscosity parameter for the initial magnetisation, while the viscosity was not strongly dependent on the field for the demagnetisation. High values of the viscosity parameter, Λ, between 120 to 220 Oe were measured at fields near coercivity. (orig.)

  14. Technical Challenge and Demonstration of Advanced Solution Monitoring and Measurement System (ASMS)

    International Nuclear Information System (INIS)

    Takaya, A.; Mukai, Y.; Nakamura, H.; Hosoma, T.; Yoshimoto, K.; Tamura, T.; Iwamoto, T.

    2010-01-01

    JNFL and JAEA have collaboratively started to develop an Advanced Solution Measurement and monitoring System (ASMS) as a part of technical challenge intended for next generation safeguards NDA equipment. After we completed feasibility study by using small detectors, the second stage of ASMS has installed into PCDF tank located in a cell, and then tested and calibrated by Pu nitrate solution experimentally. There was no experience measuring around 50kg Pu inventory directly, so it was very challenging work. The conventional SMMS (Solution Monitoring and Measurement System) that is composed of precision manometers acquires density, level and temperature of solution, so that the sampling and analysis are essential to obtain the nuclear material amount in the tank. The SMMS has two weak points on verification and monitoring of the nuclear material flow and inventory; (1) Direct measurement of the inventory cannot be done, (2) Solution rework and reagent adjustment operation in actual plant will make miss-interpretation on the monitoring evaluation. The purpose of ASMS development is to establish quantitative plutonium mass measurement technique directly by NDA of high concentrated pure plutonium nitrate solution and monitoring capability for solution transfers in a process. The merits of ASMS are considered below; (1) Provide direct Pu measurement and continuous monitoring capability, (2) Eliminate sampling and analysis at IIV, (3) Reduce unmeasured inventory. The target of the measurement uncertainty of ASMS is set less than 6% (1sigma) which is equivalent to meet the detection level of the partial defect at IIV by NDA. Known-alpha coincidence counting technique is applied to the ASMS, which is similar to the NDAs for MOX powder as a principle measurement technique. Especially, three following points are key techniques to establish ASMS. (1) Pre-determination of plutonium isotopic composition because it impacts alpha and rho-zero values to obtain multiplication

  15. Determination of liquid viscosity at high pressure by DLS

    International Nuclear Information System (INIS)

    Fukui, K; Asakuma, Y; Maeda, K

    2010-01-01

    The movement of particles with a size smaller than few microns is governed by random Brownian motion. This motion causes the fluid to flow around the particles. The force acting upon Brownian particles as well as their velocities are measured by using the dynamic light scattering (DLS) technique. It provides the relationship between fluid shear stress and shear rate over the Brownian particle and determines the viscosity properties of the fluid. In this study, we propose a new rheometer which is widely applicable to fluid viscosity measurements at both normal and high pressure levels for Newtonian and non- Newtonian fluids.

  16. Time Dependent and Steady Uni-axial Elongational Viscosity

    DEFF Research Database (Denmark)

    Nielsen, Jens K.; Rasmussen, Henrik Koblitz; Hassager, Ole

    2005-01-01

    Here we present measurements of transient and steady uni-axial elongational viscosity, using the Filament Stretching Rheometer1 or FSR1 (see Fig. 1) of the following melts: Four narrow MMD polystyrene (PS) samples with weight-average molar mass Mw in the range of 50k to 390k. Three different bi......-disperse samples, mixed from the narrow MMD PS. Two low-density polyethylene (LDPE) melts (Lupolen 1840D and 3020D). A steady-state viscosity was kept for 1-2.5 Hencky strain units in all measurements....

  17. Characterization of oscillator circuits for monitoring the density-viscosity of liquids by means of piezoelectric MEMS microresonators

    Science.gov (United States)

    Toledo, J.; Ruiz-Díez, V.; Pfusterschmied, G.; Schmid, U.; Sánchez-Rojas, J. L.

    2017-06-01

    Real-time monitoring of the physical properties of liquids, such as lubricants, is a very important issue for the automotive industry. For example, contamination of lubricating oil by diesel soot has a significant impact on engine wear. Resonant microstructures are regarded as a precise and compact solution for tracking the viscosity and density of lubricant oils. In this work, we report a piezoelectric resonator, designed to resonate with the 4th order out-of-plane modal vibration, 15-mode, and the interface circuit and calibration process for the monitoring of oil dilution with diesel fuel. In order to determine the resonance parameters of interest, i.e. resonant frequency and quality factor, an interface circuit was implemented and included within a closed-loop scheme. Two types of oscillator circuits were tested, a Phase-Locked Loop based on instrumentation, and a more compact version based on discrete electronics, showing similar resolution. Another objective of this work is the assessment of a calibration method for piezoelectric MEMS resonators in simultaneous density and viscosity sensing. An advanced calibration model, based on a Taylor series of the hydrodynamic function, was established as a suitable method for determining the density and viscosity with the lowest calibration error. Our results demonstrate the performance of the resonator in different oil samples with viscosities up to 90 mPa•s. At the highest value, the quality factor measured at 25°C was around 22. The best resolution obtained was 2.4•10-6 g/ml for the density and 2.7•10-3 mPa•s for the viscosity, in pure lubricant oil SAE 0W30 at 90°C. Furthermore, the estimated density and viscosity values with the MEMS resonator were compared to those obtained with a commercial density-viscosity meter, reaching a mean calibration error in the best scenario of around 0.08% for the density and 3.8% for the viscosity.

  18. Viscosity of diluted suspensions of vegetal particles in water

    Directory of Open Access Journals (Sweden)

    Szydłowska Adriana

    2017-01-01

    Full Text Available Viscosity and rheological behaviour of sewage as well as sludge are essential while designing apparatuses and operations employed in the sewage treatment process and its processing. With reference to these substances, the bio-suspensions samples of three size fractions ((i 150÷212 μm, (ii 106÷150 μm and (iii below106 μm of dry grass in water with solid volume fraction 8%, 10% and 11% were prepared. After twenty four hours prior to their preparation time, the suspension samples underwent rheometeric measurements with the use of a rotational rheometer with coaxial cylinders. On the basis of the obtained results, flow curves were plotted and described with both the power model and Herschel-Bulkley model. Moreover, the viscosity of the studied substances was determined that allowed to conclude that the studied bio-suspensions display features of viscoelastic fluids. The experimentally established viscosity was compared to the calculated one according to Manley and Manson equation, recommended in the literature. It occurred that the measured viscosity values substantially exceed the calculation viscosity values, even by 105 times. The observations suggest that it stems from water imbibition of fibrous vegetal particles, which causes their swelling and decreases the amount of liquid phase in the suspension.

  19. Giant Viscosity Enhancement in a Spin-Polarized Fermi Liquid

    International Nuclear Information System (INIS)

    Akimoto, H.; Xia, J. S.; Adams, E. D.; Sullivan, N. S.; Candela, D.; Mullin, W. J.

    2007-01-01

    The viscosity is measured for a Fermi liquid, a dilute 3 He- 4 He mixture, under extremely high magnetic field/temperature conditions (B≤14.8 T, T≥1.5 mK). The spin-splitting energy μB is substantially greater than the Fermi energy k B T F ; as a consequence the polarization tends to unity and s-wave quasiparticle scattering is suppressed for T F . Using a novel composite vibrating-wire viscometer an enhancement of the viscosity is observed by a factor of more than 500 over its low-field value. Good agreement is found between the measured viscosity and theoretical predictions based upon a t-matrix formalism

  20. Viscosity of saturated helium-3-helium-4 mixture below 200 mK

    NARCIS (Netherlands)

    Zeegers, J.C.H.; Waele, de A.T.A.M.; Gijsman, H.M.

    1991-01-01

    The shear viscosity of saturated3He-4He mixture has been measured at temperatures between 7 mK and 200 mK using a vibrating-wire viscometer and a calibrated pressure cell. The reliability of the vibrating-wire technique was tested by measuring the viscosity of pure4He. The results are internally

  1. Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Nielsen, Jens Kromann; Bach, Anders

    2005-01-01

    The transient uniaxial elongational viscosity of BASF Lupolen 1840D and 3020D melts has been measured on a filament stretch rheometer up to Hencky strains of 6-7. The elongational viscosity of both melts was measured at 130 degrees C within a broad range of elongational rates. At high elongation ...

  2. Determination of viscosity of fayalite slags for kv model and measurements by means of inclined plane; Estimacion de la viscosidad de escorias fayaliticas utilizando el modelo de calculo kv y el metodo experimental del plano inclinado

    Energy Technology Data Exchange (ETDEWEB)

    Bazan, V.; Goni, C.; Castella, L.; Brandaleze, E.; Verdeja, L. F.; Parra, R.

    2006-07-01

    The viscosity of the lands represents one of the most relevant variables of most of the processes metallurgical and kinetics of the refine operations, since it is one of the decisive factors of the efficiency in the reactions between metal and lag, as much as slag-refractory. In the last decades, the mathematical models of different metallurgical processes have established methods to predict viscosity of mixtures of oxides fused to high temperatures in function of the chemical composition. The model developed by Toguri, based on the data reported by Johasen and Winterhager et al has proposed the Kv model. The used index it is similar to the relationship used in the steel industry like the basicity index. It is presented in this work values determined of viscosity in experimental form by means of the technique of inclined plane. (Author)

  3. Viscosity properties of tellurite-based glasses

    International Nuclear Information System (INIS)

    Tincher, B.; Massera, J.; Petit, L.; Richardson, K.

    2010-01-01

    The viscosity behavior of glasses with the composition (90-x)TeO 2 -10Bi 2 O 3 -xZnO with x = 15, 17.5, and 20 (TBZ glasses) and 80TeO 2 -(20-y)Na 2 O-yZnO system with y = 0, 5, and 10 (TNZ glasses) have been measured as a function of temperature using a beam-bending (BBV) and a parallel-plate (PPV) viscometer. The structure of the glass' network has been characterized using Raman spectroscopy and has been related to the viscosity temperature behavior and the fragility parameter (m) of the glasses. As the concentration of ZnO in the TBZ system (x) increases, the fragility parameter of the glass increases, whereas it decreases with an increase of the ZnO concentration (y) in the TNZ system. In both glasses, these variations in m have been related to the partial depolymerization of the tellurite network associated with the level of modifier content. The depolymerization of the tellurite network is believed to be the result of a reduction in the number of [TeO 4 ] units and the formation of [TeO 3 ] and [TeO 3+1 ] units that occurs with a change in TeO 2 content in the TBZ system and modifier content in the TNZ system.

  4. In-line bulk supersaturation measurement by electrical conductometry in KDP crystal growth from aqueous solution

    Science.gov (United States)

    Bordui, P. F.; Loiacono, G. M.

    1984-07-01

    A method is presented for in-line bulk supersaturation measurement in crystal growth from aqueous solution. The method is based on a computer-controlled concentration measurement exploiting an experimentally predetermined cross-correlation between the concentration, electrical conductivity, and temperature of the growth solution. The method was applied to Holden crystallization of potassium dihydrogen phosphate (KDP). An extensive conductivity-temperature-concentration data base was generated for this system over a temperature range of 31 to 41°C. The method yielded continous, automated bulk supersaturation output accurate to within ±0.05 g KDP100 g water (±0.15% relative supersaturation).

  5. Characterization of aqueous rose bengal dye solution for the measurement of low doses of gamma radiation

    International Nuclear Information System (INIS)

    Hasan Mahmood Khan; Khan, A.A.

    2010-01-01

    Aqueous solution of rose bengal dye has been studied spectrophotometrically as a gamma-ray dosimeter for the measurement of low doses of radiation. The useful dose range was found to be from 50 to 1000 Gy when the measurements were made at 549 nm. The effects of temperature and light conditions on the stability of response during post-irradiation storage were also investigated. When stored in dark at room temperature, the dosimetric solutions showed a stable response up to 22 days. The storage of irradiated solutions in diffused sunlight showed a stable response only up to 6 days. When exposed to direct sunlight, very prominent and fast bleaching of dye solution occurred. At low storage temperature (ca. 11 deg C), dosimetric response was found to be stable up to 22 days while at higher temperature (ca. 30 deg C), the response of dosimetric solution was stable only up to 6 days. The rose bengal aqueous solution showed promising characteristics as a low dose radiation dosimeter when stored at lower temperatures (<25 deg C) in dark. (author)

  6. Experimental evidence of the role of viscosity in the molecular kinetic theory of dynamic wetting.

    Science.gov (United States)

    Duvivier, D; Seveno, D; Rioboo, R; Blake, T D; De Coninck, J

    2011-11-01

    We report an experimental study of the dynamics of spontaneous spreading of aqueous glycerol drops on glass. For a range of glycerol concentrations, we follow the evolution of the radius and contact angle over several decades of time and investigate the influence of solution viscosity. The application of the molecular kinetic theory to the resulting data allows us to extract the coefficient of contact-line friction ζ, the molecular jump frequency κ(0), and the jump length λ for each solution. Our results show that the modified theory, which explicitly accounts for the effect of viscosity, can successfully be applied to droplet spreading. The viscosity affects the jump frequency but not the jump length. In combining these data, we confirm that the contact-line friction of the solution/air interface against the glass is proportional to the viscosity and exponentially dependent on the work of adhesion.

  7. Vanishing viscosity limits of mixed hyperbolic–elliptic systems arising in multilayer channel flows

    International Nuclear Information System (INIS)

    Papaefthymiou, E S; Papageorgiou, D T

    2015-01-01

    This study considers the spatially periodic initial value problem of 2 × 2 quasi-linear parabolic systems in one space dimension having quadratic polynomial flux functions. These systems arise physically in the interfacial dynamics of viscous immiscible multilayer channel flows. The equations describe the spatiotemporal evolution of phase-separating interfaces with dissipation arising from surface tension (fourth-order) and/or stable stratification effects (second-order). A crucial mathematical aspect of these systems is the presence of mixed hyperbolic–elliptic flux functions that provide the only source of instability. The study concentrates on scaled spatially 2π-periodic solutions as the dissipation vanishes, and in particular the behaviour of such limits when generalized dissipation operators (spanning second to fourth-order) are considered. Extensive numerical computations and asymptotic analysis suggest that the existence (or not) of bounded vanishing viscosity solutions depends crucially on the structure of the flux function. In the absence of linear terms (i.e. homogeneous flux functions) the vanishing viscosity limit does not exist in the L ∞ -norm. On the other hand, if linear terms in the flux function are present the computations strongly suggest that the solutions exist and are bounded in the L ∞ -norm as the dissipation vanishes. It is found that the key mechanism that provides such boundedness centres on persistent spatiotemporal hyperbolic–elliptic transitions. Strikingly, as the dissipation decreases, the flux function becomes almost everywhere hyperbolic except on a fractal set of elliptic regions, whose dimension depends on the order of the regularized operator. Furthermore, the spatial structures of the emerging weak solutions are found to support an increasing number of discontinuities (measure-valued solutions) located in the vicinity of the fractally distributed elliptic regions. For the unscaled problem, such spatially

  8. NVP melt/magma viscosity: insight on Mercury lava flows

    Science.gov (United States)

    Rossi, Stefano; Morgavi, Daniele; Namur, Olivier; Vetere, Francesco; Perugini, Diego; Mancinelli, Paolo; Pauselli, Cristina

    2016-04-01

    After more than four years of orbiting Mercury, NASA's MESSENGER spacecraft came to an end in late April 2015. MESSENGER has provided many new and surprising results. This session will again highlight the latest results on Mercury based on MESSENGER observations or updated modelling. The session will further address instrument calibration and science performance both retrospective on MESSENGER and on the ESA/JAXA BepiColombo mission. Papers covering additional themes related to Mercury are also welcomed. Please be aware that this session will be held as a PICO session. This will allow an intensive exchange of expertise and experience between the individual instruments and mission. NVP melt/magma viscosity: insight on Mercury lava flows S. Rossi1, D. Morgavi1, O. Namur2, D. Perugini1, F.Vetere1, P. Mancinelli1 and C. Pauselli1 1 Dipartimento di Fisica e Geologia, Università di Perugia, piazza Università 1, 06123 Perugia, Italy 2 Uni Hannover Institut für Mineralogie, Leibniz Universität Hannover, Callinstraβe 3, 30167 Hannover, Germany In this contribution we report new measurements of viscosity of synthetic komatitic melts, used the behaviour of silicate melts erupted at the surface of Mercury. Composition of Mercurian surface magmas was calculated using the most recent maps produced from MESSENGER XRS data (Weider et al., 2015). We focused on the northern hemisphere (Northern Volcanic Province, NVP, the largest lava flow on Mercury and possibly in the Solar System) for which the spatial resolution of MESSENGER measurements is high and individual maps of Mg/Si, Ca/Si, Al/Si and S/Si were combined. The experimental starting material contains high Na2O content (≈7 wt.%) that strongly influences viscosity. High temperature viscosity measurements were carried out at 1 atm using a concentric cylinder apparatus equipped with an Anton Paar RheolabQC viscometer head at the Department of Physics and Geology (PVRG_lab) at the University of Perugia (Perugia, Italy

  9. Calculated viscosity-distance dependence for some actively flowing lavas

    International Nuclear Information System (INIS)

    Pieri, D.

    1987-01-01

    The importance of viscosity as a gauge of the various energy and momentum dissipation regimes of lava flows has been realized for a long time. Nevertheless, despite its central role in lava dynamics and kinematics, it remains among the most difficult of flow physical properties to measure in situ during an eruption. Attempts at reconstructing the actual emplacement viscosities of lava flows from their solidified topographic form are difficult. Where data are available on the position of an advancing flow front as a function of time, it is possible to calculate the effective viscosity of the front as a function of distance from the vent, under the assumptions of a steady state regime. As an application and test of an equation given, relevant parameters from five recent flows on Mauna Loa and Kilauea were utilized to infer the dynamic structure of their aggregate flow front viscosity as they advanced, up to cessation. The observed form of the viscosity-distance relation for the five active Hawaiian flows examined appears to be exponential, with a rapid increase just before the flows stopped as one would expect

  10. Dynamic viscosity study of barley malt and chicory concentrates

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2016-01-01

    Full Text Available The purpose of research is to find optimal conditions for dispersing and subsequent dehydration of liquid food environments in the nozzle spray drying chamber through the study of dynamic changes in viscosity according to temperature, velocities gradients and dry residue content. The objects of study were roasted chicory and malt barley concentrates with dry residue content of 20, 40, 60 and 80%. Research of dynamic viscosity were carried out at the measuring complex based on the rotational viscometer Rheotest II, analog-to-digital converter, module Laurent and a personal computer with a unique software that allows to record in real time (not only on a tape recorder, but also in the form of graphic files the behavior of the viscosity characteristics of concentrates. Registration of changes of dynamic viscosity was carried out at a shear rate gradient from 1,0 с -1 to 27,0 с -1 and the products temperature thermostating : 35, 55, 75˚ C. The research results are presented in the form of graphic dependences of effective viscosity on shear rate and flow curves (dependencies of shear stresses on the velocity gradient, which defined flow regimes, the optimal modes of dispersion concentrates into spray dryer chambers in obtaining of powdered semi-finished products and instanting were found: dry residue content - 40 %, concentrate temperature - 75 ˚C, velocity gradient in the air channel of the nozzle at least 20 c-1

  11. Solution dynamics of synthetic and natural polyelectrolytes

    Science.gov (United States)

    Krause, Wendy E.

    Polyelectrolytes are abundant in nature and essential to life, and used extensively in industry. This work discussed two polyelectrolytes: sodium poly(2-acrylamido-2-methylpropanesulfonate) (NaPAMS), synthetic polyelectrolyte, and sodium hyaluronate (NaHA), a glycosaminoglycan. Rheological data of NaPAMS solutions of variable chain length and concentration were reported. A strong dependence of viscosity eta on chain length: eta ˜ M2.4 was found. The comparison of the rheological data with two proposed scaling theories (Dobrynin 1995, Witten 1987) forces the conclusion that neither theory is correct. A possible interpretation of the viscosity data falling between the predictions of the two scaling theories is that some chain rigidity may persist beyond the correlation length. A sample model for the conductivity of semidilute polyelectrolytes with no added salt was presented. The model correctly describes the logarithmic decrease of specific conductance observed for many polyelectrolytes at low concentration (below ca. 10-2M), and is in good agreement with data from NaPAMS solutions. NaHA in phosphate buffered saline behaves as a typical polyelectrolyte in the high-salt limit, as Newtonian viscosities are observed over a wide range of shear rates. There is no evidence of intermolecular hydrogen bonding causing gel formation in NaHA solutions without protein present. The viscosity of 3 mg/mL NaHA was measured in the presence of the selected anti-inflammatory agents. Of the seven additives investigated only (D)-penicillamine significantly altered the rheology of HA. (D)-Penicillamine dramatically reduced the viscosity of HA, probably by disrupting intramolecular hydrogen bonding. The plasma proteins albumin and gamma-globulins bind to HA in solution to form a weak reversible gel. The rheology and osmotic pressure of the simple model for synovial fluid, consisting of 3mg/mL NaHA, 11 mg/mL albumin, and 7 mg/mL gamma-globulins in phosphate buffered saline, were studied

  12. Effect of ?-cyclodextrin on Rheological Properties of some Viscosity Modifiers

    OpenAIRE

    Rao, G. Chandra Sekhara; Ramadevi, K.; Sirisha, K.

    2014-01-01

    Cyclodextrins are a group of novel excipients, extensively used in the present pharmaceutical industry. Sometimes they show significant interactions with other conventional additives used in the formulation of dosage forms. The effect of β-cyclodextrin on the rheological properties of aqueous solutions of some selected viscosity modifiers was studied in the present work. β-cyclodextrin showed two different types of effects on the rheology of the selected polymers. In case of natural polymers ...

  13. Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction

    International Nuclear Information System (INIS)

    Feng Yan; Goree, J.; Liu Bin

    2011-01-01

    A two-dimensional strongly coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity η and the wave-number-dependent viscosity η(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity η(k) is validated by comparing the results of η(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity η in the presence of a modest level of friction as in dusty plasma experiments.

  14. A comparative study of high-viscosity cement percutaneous vertebroplasty vs. low-viscosity cement percutaneous kyphoplasty for treatment of osteoporotic vertebral compression fractures.

    Science.gov (United States)

    Sun, Kai; Liu, Yang; Peng, Hao; Tan, Jun-Feng; Zhang, Mi; Zheng, Xian-Nian; Chen, Fang-Zhou; Li, Ming-Hui

    2016-06-01

    The clinical effects of two different methods-high-viscosity cement percutaneous vertebroplasty (PVP) and low-viscosity cement percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral compression fractures (OVCFs) were investigated. From June 2010 to August 2013, 98 cases of OVCFs were included in our study. Forty-six patients underwent high-viscosity PVP and 52 patients underwent low-viscosity PKP. The occurrence of cement leakage was observed. Pain relief and functional activity were evaluated using the Visual Analog Scale (VAS) and Oswestry Disability Index (ODI), respectively. Restoration of the vertebral body height and angle of kyphosis were assessed by comparing preoperative and postoperative measurements of the anterior heights, middle heights and the kyphotic angle of the fractured vertebra. Nine out of the 54 vertebra bodies and 11 out of the 60 vertebra bodies were observed to have cement leakage in the high-viscosity PVP and low-viscosity PKP groups, respectively. The rate of cement leakage, correction of anterior vertebral height and kyphotic angles showed no significant differences between the two groups (P>0.05). Low-viscosity PKP had significant advantage in terms of the restoration of middle vertebral height as compared with the high-viscosity PVP (Pviscosity PVP and low-viscosity PKP have similar clinical effects in terms of the rate of cement leakage, restoration of the anterior vertebral body height, changes of kyphotic angles, functional activity, and pain relief. Low-viscosity PKP is better than high-viscosity PVP in restoring the height of the middle vertebra.

  15. VISCOSITY DICTATES METABOLIC ACTIVITY of Vibrio ruber

    Directory of Open Access Journals (Sweden)

    Maja eBoric

    2012-07-01

    Full Text Available Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment.

  16. STEREOCHEMICAL ASPECTS OF HYDRATION OF CARBOHYDRATES IN AQUEOUS-SOLUTIONS .3. DENSITY AND ULTRASOUND MEASUREMENTS

    NARCIS (Netherlands)

    GALEMA, SA; HOILAND, H

    1991-01-01

    Density and ultrasound measurements have been performed in aqueous solutions of pentoses, hexoses, methylpyranosides, and disaccharides as a function of molality of carbohydrate (0-0.3 mol kg-1). Partial molar volumes, partial molar isentropic compressibilities, and hydration numbers have been

  17. Mild solutions to a measure-valued mass evolution problem with flux boundary conditions

    NARCIS (Netherlands)

    Evers, J.H.M.; Hille, S.C.; Muntean, A.

    2015-01-01

    We investigate the well-posedness and approximation of mild solutions to a class of linear transport equations on the unit interval [0,1][0,1] endowed with a linear discontinuous production term, formulated in the space M([0,1])M([0,1]) of finite Borel measures. Our working technique includes a

  18. The Flow of a Variable Viscosity Fluid down an Inclined Plane with a Free Surface

    Directory of Open Access Journals (Sweden)

    M. S. Tshehla

    2013-01-01

    Full Text Available The effect of a temperature dependent variable viscosity fluid flow down an inclined plane with a free surface is investigated. The fluid film is thin, so that lubrication approximation may be applied. Convective heating effects are included, and the fluid viscosity decreases exponentially with temperature. In general, the flow equations resulting from the variable viscosity model must be solved numerically. However, when the viscosity variation is small, then an asymptotic approximation is possible. The full solutions for the temperature and velocity profiles are derived using the Runge-Kutta numerical method. The flow controlling parameters such as the nondimensional viscosity variation parameter, the Biot and the Brinkman numbers, are found to have a profound effect on the resulting flow profiles.

  19. On the Usage of Cyclic Voltammetry and Impedance Spectroscopy for Measuring the Concentration of Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Manuel Fiedler

    2015-02-01

    Full Text Available This article describes sensors for concentration measurement based on the electro- chemical properties of the liquid being measured. Herein two electrical methods, namely cyclic voltammetry and impedance spectroscopy, are being presented. The measurement can be performed quasi simultaneously using the same measurement medium. Further optimization of the combined methods is possible by adapting the geometric design of the electrode structure, the electrode material, the optional passivation and the electric coupling (galvanically or capacitively. In summary, by combining multiple sensory principles on a device it becomes possible to analyze mixtures of substances contained in a solution with respect to their composition.

  20. Viscosity and transient electric birefringence study of clay colloidal aggregation.

    Science.gov (United States)

    Bakk, Audun; Fossum, Jon O; da Silva, Geraldo J; Adland, Hans M; Mikkelsen, Arne; Elgsaeter, Arnljot

    2002-02-01

    We study a synthetic clay suspension of laponite at different particle and NaCl concentrations by measuring stationary shear viscosity and transient electrically induced birefringence (TEB). On one hand the viscosity data are consistent with the particles being spheres and the particles being associated with large amount bound water. On the other hand the viscosity data are also consistent with the particles being asymmetric, consistent with single laponite platelets associated with a very few monolayers of water. We analyze the TEB data by employing two different models of aggregate size (effective hydrodynamic radius) distribution: (1) bidisperse model and (2) log-normal distributed model. Both models fit, in the same manner, fairly well to the experimental TEB data and they indicate that the suspension consists of polydisperse particles. The models also appear to confirm that the aggregates increase in size vs increasing ionic strength. The smallest particles at low salt concentrations seem to be monomers and oligomers.

  1. Temperature Dependence of the Viscosity of Isotropic Liquids

    Science.gov (United States)

    Jadzyn, J.; Czechowski, G.; Lech, T.

    1999-04-01

    Temperature dependence of the shear viscosity measured for isotropic liquids belonging to the three homologous series: 4-(trans-4'-n-alkylcyclohexyl) isothiocyanatobenzenes (Cn H2n+1 CyHx Ph NCS; nCHBT, n=0-12), n-alkylcyanobiphenyls (CnH2n+1 Ph Ph CN; nCB, n=2-12) and 1,n-alkanediols (HO(CH2)nOH; 1,nAD, n=2-10) were analysed with the use of Arrhenius equation and its two modifications: Vogel--Fulcher and proposed in this paper. The extrapolation of the isothermal viscosity of 1,n-alkanediols (n=2-10) to n=1 leads to an interesting conclusion concerning the expected viscosity of methanediol, HOCH2OH, the compound strongly unstable in a pure state.

  2. Experimental determination of gamma radiation effect from cobalt 60 on the viscosity of SSBR-B polymer

    International Nuclear Information System (INIS)

    Santos, L.G. dos; Silva Filho, E.

    1989-01-01

    Samples of the polymer known as SSBR-B (Solution Styrenne Butadiene Rubber-Blockade) were irradiated with gamma rays from a 60 Co source. Viscosity analysis performed by using the method of Ostwald Showed that the viscosity remains about constant for doses in the range of zero to 11560 Gray (Gy). For doses greater than 11560 Gy the viscosity increases. This result characterizes an irradiation induced hardening of the polymer. (author) [pt

  3. Improved pedagogy for linear differential equations by reconsidering how we measure the size of solutions

    Science.gov (United States)

    Tisdell, Christopher C.

    2017-11-01

    For over 50 years, the learning of teaching of a priori bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to a priori bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving second-order, linear problems with constant co-efficients, we believe it is not pedagogically optimal. Moreover, the Euclidean method becomes pedagogically unwieldy in the proofs involving higher-order cases. The purpose of this work is to propose a simpler pedagogical approach to establish a priori bounds on solutions by considering a different way of measuring the size of a solution to linear problems, which we refer to as the Uber size. The Uber form enables a simplification of pedagogy from the literature and the ideas are accessible to learners who have an understanding of the Fundamental Theorem of Calculus and the exponential function, both usually seen in a first course in calculus. We believe that this work will be of mathematical and pedagogical interest to those who are learning and teaching in the area of differential equations or in any of the numerous disciplines where linear differential equations are used.

  4. Blood viscosity during coagulation at different shear rates

    Science.gov (United States)

    Ranucci, Marco; Laddomada, Tommaso; Ranucci, Matteo; Baryshnikova, Ekaterina

    2014-01-01

    Abstract During the coagulation process, blood changes from a liquid to a solid gel phase. These changes are reflected by changes in blood viscosity; however, blood viscosity at different shear rates (SR) has not been previously explored during the coagulation process. In this study, we investigated the viscosity changes of whole blood in 10 subjects with a normal coagulation profile, using a cone‐on‐plate viscosimeter. For each subject, three consecutive measurements were performed, at a SR of 20, 40, 80 sec−1. On the basis of the time‐dependent changes in blood viscosity, we identified the gel point (GP), the time‐to‐gel point (TGP), the maximum clot viscosity (MCV), and the clot lysis half‐time (CLH). The TGP significantly (P = 0.0023) shortened for increasing SR, and was significantly associated with the activated partial thromboplastin time at a SR of 20 sec−1 (P = 0.038) and 80 sec−1 (P = 0.019). The MCV was significantly lower at a SR of 80 sec−1 versus 40 sec−1 (P = 0.027) and the CLH significantly (P = 0.048) increased for increasing SR. These results demonstrate that measurement of blood viscosity during the coagulation process offers a number of potentially useful parameters. In particular, the association between the TGP and the activated partial thromboplastin time is an expression of the clotting time (intrinsic and common pathway), and its shortening for increasing SR may be interpreted the well‐known activating effects of SR on platelet activation and thrombin generation. Further studies focused on the TGP under conditions of hypo‐ or hypercoagulability are required to confirm its role in the clinical practice. PMID:24994896

  5. On the density and viscosity of (water + dimethylsulphoxide) binary mixtures

    International Nuclear Information System (INIS)

    Carmen Grande, Maria del; Julia, Jorge Alvarez; Garcia, Mariano; Marschoff, Carlos M.

    2007-01-01

    Density and viscosity of (water + dimethylsulphoxide) were measured precisely over the whole composition range at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K. Differences between values from different authors are clarified and more reliable partial molar volumes are obtained

  6. glutamic acid from high-viscosity fermentation broth

    African Journals Online (AJOL)

    Measurement of IR spectrum was performed using an IR spectrophotometer with ... Results: The results showed that the γ-PGA yield was 35 g/L. The viscosity of ... of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), ...

  7. Measurement and Correlation of the Ionic Conductivity of Ionic Liquid-Molecular Solvent Solutions

    Institute of Scientific and Technical Information of China (English)

    LI,Wen-Jing; HAN,Bu-Xing; TAO,Ran-Ting; ZHANG,Zhao-Fu; ZHANG,Jian-Ling

    2007-01-01

    The ionic conductivity of the solutions formed from 1-n-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) or 1-n-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) and different molecular solvents (MSs) were measured at 298.15 K. The molar conductivity of the ionic liquids (ILs) increased dramatically with increasing concentration of the MSs. It was found that the molar conductivity of the IL in the solutions studied in this work could be well correlated by the molar conductivity of the neat ILs and the dielectric constant and molar volume of the MSs.

  8. Measurement and prediction of the solubility of acid gases in monoethanolamine solutions at low partial pressures

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, P; Mather, A E

    1977-12-01

    An apparatus for the determination of the solubility of hydrogen sulfide, carbon dioxide, and their mixtures in ethanolamine solutions at low pressures is described. With this apparatus, the solubility of H/sub 2/S, CO/sub 2/ and their mixtures in aqueous solutions of monoethanolamine was measured at partial pressures between 0.001 kPa and 9 kPa at temperatures of 80 and 100/sup 0/C. The results for the mixture were compared with two methods of prediction based on a thermodynamic model. 6 figures, 4 tables.

  9. Glasslike behavior in aqueous electrolyte solutions.

    Science.gov (United States)

    Turton, David A; Hunger, Johannes; Hefter, Glenn; Buchner, Richard; Wynne, Klaas

    2008-04-28

    When salts are added to water, generally the viscosity increases, suggesting that the ions increase the strength of the water's hydrogen-bond network. However, infrared pump-probe measurements on electrolyte solutions have found that ions have no influence on the rotational dynamics of water molecules, implying no enhancement or breakdown of the hydrogen-bond network. Here, we report optical Kerr effect and dielectric relaxation spectroscopic measurements, which have enabled us to separate the effects of rotational and transitional motions of the water molecules. These data show that electrolyte solutions behave like a supercooled liquid approaching a glass transition in which rotational and translational molecular motions are decoupled. It is now possible to understand previously conflicting viscosity data, nuclear magnetic resonance relaxation, and ultrafast infrared spectroscopy in a single unified picture.

  10. Prediction of viscosities and surface tensions of fuels using a new corresponding states model

    DEFF Research Database (Denmark)

    Queimada, A.J.; Rolo, L.I.; Caco, A.I.

    2006-01-01

    While some properties of diesels are cheap, easy and fast to measure, such as densities, others such as surface tensions and viscosities are expensive and time consuming. A new approach that uses some basic information such as densities to predict viscosities and surface tensions is here proposed......) 2005 Elsevier Ltd. All rights reserved....

  11. Blood and plasma viscosity in diabetes: possible contribution to late organ complications?

    NARCIS (Netherlands)

    Schut, N. H.; van Arkel, E. C.; Hardeman, M. R.; Bilo, H. J.; Michels, R. P.; Vreeken, J.

    1992-01-01

    It has been postulated that an increased whole blood and plasma viscosity contribute to diabetic organ complications. Blood viscosity was measured in 30 controls and four groups of insulin-dependent diabetic patients at three shear rates: 70 sec-1, 0.5 sec-1 and 0.05 sec-1. Results were compared

  12. Density and viscosity behavior of a North Sea crude oil, natural gas liquid, and their mixtures

    DEFF Research Database (Denmark)

    Schmidt, KAG; Cisneros, Sergio; Kvamme, B

    2005-01-01

    to accurately model the saturation pressures, densities, and viscosities of petroleum systems ranging from natural gases to heavy crude oils. The applicability of this overall modeling technique to reproduce measured bubble points, densities, and viscosities of a North Sea crude oil, a natural gas liquid...

  13. Use of Kinematic Viscosity Data for the Evaluation of the Molecular Weight of Petroleum Oils

    Science.gov (United States)

    Maroto, J. A.; Quesada-Perez, M.; Ortiz-Hernandez, A. J.

    2010-01-01

    A new laboratory procedure for the evaluation of the mean molecular weight (mean relative molecular mass) of petroleum oils with high accuracy is described. The density and dynamic viscosity of three commercial petroleum oils are measured at different temperatures. These experimental data are used to calculate the kinematic viscosity as a function…

  14. High pressure changes of the castor oil viscosity by ultrasonic method

    International Nuclear Information System (INIS)

    Rostocki, A J; Siegoczynski, R M; Kielczynski, P; Szalewski, M

    2008-01-01

    The pressure change of viscosity of castor oil have been measured by ultrasonic method within the range of pressure up to 0.9 GPa. For the measurement, the authors have applied a new ultrasonic method based on Bleustein-Gulyaev (B-G) waves. For the lower pressures (up to 0.3 GPa) the results have been compared with earlier results obtained by falling body method, whereas for the higher pressure range results were compared with those obtained by the flow type viscometer. The measurements have shown: 1. Exponential rise of viscosity with pressure up to 0.4 GPa according to the Barus formula. 2. Extraordinary increment of viscosity at constant pressure during phase transition. 3. The decomposition of the high pressure phase during the decompression process have shown very large hysteresis of viscosity on pressure. 4. After the decompression process the viscosity lasts higher then a initial value for several hours

  15. Kinematic viscosity of liquid Al-Cu alloys

    International Nuclear Information System (INIS)

    Konstantinova, N Yu; Popel, P S

    2008-01-01

    Temperature dependences of kinematic viscosity n of liquid Al 100-x -Cu x alloys (x = 0.0, 10.0, 17.1, 25.0, 32.2, 40.0 and 50.0 at.%) were measured. A technique based on registration of the period and the decrement of damping of rotating oscillations of a cylindrical crucible with a melt was used. Viscosity was calculated in low viscous liquids approximation. Measurements were carried out in vacuum in crucibles of BeO with a temperature step of 30 deg. C and isothermal expositions of 10 to 15 minutes during both heating up to 1100-1250 deg. C and subsequent cooling. We have discovered branching of heating and cooling curves v(T) (hysteresis of viscosity) below temperatures depending on the copper content: 950 deg. C at 10 and 17.1 at.% Cu, 1050 deg. C at 25 and 40 at.% Cu, 850 deg. C at 32.2 at.% Cu. For samples with 10 and 17.1 at.% Cu the cooling curve 'returns' to the heating one near 700 deg. C. An abnormally high spreading of results at repeated decrement measurements was fixed at heating of the alloy containing 50 at.% Cu above 1000 deg. C. During subsequent cooling the effect disappeared. Isotherms of kinematic viscosity have been fitted for several temperatures

  16. Density, viscosity, and saturated vapor pressure of ethyl trifluoroacetate

    International Nuclear Information System (INIS)

    Huang, Zhixian; Jiang, Haiming; Li, Ling; Wang, Hongxing; Qiu, Ting

    2015-01-01

    Highlights: • Density of ethyl trifluoroacetate was measured and its thermal expansion coefficient was determined. • Viscosity of ethyl trifluoroacetate was measured and fitted to the Andrade equation. • Saturated vapor pressure of ethyl trifluoroacetate was reported. • The Clausius–Clapeyron equation was used to calculate the molar evaporation enthalpy of ethyl trifluoroacetate. - Abstract: The properties of ethyl trifluoroacetate (CF 3 COOCH 2 CH 3 ) were measured as a function of temperature: density (278.08 to 322.50) K, viscosity (293.45 to 334.32) K, saturated vapor pressure (293.35 to 335.65) K. The density data were fitted to a quadratic polynomial equation, and the viscosity data were regressed to the Andrade equation. The correlation coefficient (R 2 ) of equations for density and viscosity are 0.9997 and 0.9999, respectively. The correlation between saturated vapor pressures and temperatures was achieved with a maximum absolute relative deviation of 0.142%. In addition, the molar evaporation enthalpy in the range of T = (293.35 to 335.65) K was estimated by the Clausius–Clapeyron equation

  17. Effect of β-cyclodextrin on Rheological Properties of some Viscosity Modifiers.

    Science.gov (United States)

    Rao, G Chandra Sekhara; Ramadevi, K; Sirisha, K

    2014-01-01

    Cyclodextrins are a group of novel excipients, extensively used in the present pharmaceutical industry. Sometimes they show significant interactions with other conventional additives used in the formulation of dosage forms. The effect of β-cyclodextrin on the rheological properties of aqueous solutions of some selected viscosity modifiers was studied in the present work. β-cyclodextrin showed two different types of effects on the rheology of the selected polymers. In case of natural polymers like xanthan gum and guar gum, enhanced apparent viscosity was found and in case of semi-synthetic polymers like sodium carboxymethyl cellulose and methyl cellulose, reduction in apparent viscosity was found. β-cyclodextrin was included at 0.5, 1 and 2% w/v concentrations into the polymeric solutions. These findings are useful in the adjustment of concentrations of viscosity modifiers during the formulation of physically stable disperse systems.

  18. An exploration of viscosity models in the realm of kinetic theory of liquids originated fluids

    Science.gov (United States)

    Hussain, Azad; Ghafoor, Saadia; Malik, M. Y.; Jamal, Sarmad

    The preeminent perspective of this article is to study flow of an Eyring Powell fluid model past a penetrable plate. To find the effects of variable viscosity on fluid model, continuity, momentum and energy equations are elaborated. Here, viscosity is taken as function of temperature. To understand the phenomenon, Reynold and Vogel models of variable viscosity are incorporated. The highly non-linear partial differential equations are transfigured into ordinary differential equations with the help of suitable similarity transformations. The numerical solution of the problem is presented. Graphs are plotted to visualize the behavior of pertinent parameters on the velocity and temperature profiles.

  19. On the bulk viscosity of relativistic matter

    International Nuclear Information System (INIS)

    Canuto, V.; Hsieh, S.-H.

    1978-01-01

    An expression for the bulk viscosity coefficient in terms of the trace of the hydrodynamic energy-stress tensor is derived from the Kubo formula. This, along with a field-theoretic model of an interacting system of scalar particles, suggests that at high temperatures the bulk viscosity tends to zero, contrary to the often quoted resuls of Iso, Mori and Namiki. (author)

  20. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent

  1. Bulk-viscosity-driven asymmetric inflationary universe

    International Nuclear Information System (INIS)

    Waga, I.; Lima, J.A.S.; Portugal, R.

    1987-01-01

    A primordial net bosinic charge is introduced in the context of the bulk-viscosity-driven inflationary models. The analysis is carried through a macroscopic point of view in the framework of the causal thermodynamic theory. The conditions for having exponetial and generalized inflation are obtained. A phenomenological expression for the bulk viscosity coefficient is also derived. (author) [pt

  2. Interaction between lactose and cadmium chloride in aqueous solutions as seen by diffusion coefficients measurements

    International Nuclear Information System (INIS)

    Verissimo, Luis M.P.; Gomes, Joselaine C.S.; Romero, Carmen; Esteso, Miguel A.; Sobral, Abilio J.F.N.; Ribeiro, Ana C.F.

    2013-01-01

    Highlights: ► Diffusion coefficients of aqueous systems containing lactose and cadmium chloride. ► Influence of the lactose on the diffusion of cadmium chloride. ► Interactions between Cd 2+ and lactose. -- Abstract: Diffusion coefficients of an aqueous system containing cadmium chloride 0.100 mol · dm −3 and lactose at different concentrations at 25 °C have been measured, using a conductimetric cell and an automatic apparatus to follow diffusion. The cell relies on an open-ended capillary method and a conductimetric technique is used to follow the diffusion process by measuring the resistance of a solution inside the capillaries, at recorded times. From these results and by ab initio calculations, it was possible to obtain a better understanding of the effect of lactose on transport of cadmium chloride in aqueous solutions

  3. The Friction Theory for Viscosity Modeling

    DEFF Research Database (Denmark)

    Cisneros, Sergio; Zeberg-Mikkelsen, Claus Kjær; Stenby, Erling Halfdan

    2001-01-01

    , in the case when experimental information is available a more accurate modeling can be obtained by means of a simple tuning procedure. A tuned f-theory general model can deliver highly accurate viscosity modeling above the saturation pressure and good prediction of the liquid-phase viscosity at pressures......In this work the one-parameter friction theory (f-theory) general models have been extended to the viscosity prediction and modeling of characterized oils. It is demonstrated that these simple models, which take advantage of the repulsive and attractive pressure terms of cubic equations of state...... such as the SRK, PR and PRSV, can provide accurate viscosity prediction and modeling of characterized oils. In the case of light reservoir oils, whose properties are close to those of normal alkanes, the one-parameter f-theory general models can predict the viscosity of these fluids with good accuracy. Yet...

  4. A Deoxyuridine-Based Far-Red Emitting Viscosity Sensor.

    Science.gov (United States)

    Wang, Mengyuan; Zhang, Yuanwei; Yue, Xiling; Yao, Sheng; Bondar, Mykhailo V; Belfield, Kevin D

    2016-05-30

    A novel deoxyuridine (dU) benzothiazolium (BZ) derivative, referred to as dU-BZ, is reported that was synthesized via Sonogashira coupling reaction methodology. The deoxyuridine building block was introduced to enhance hydrophilicity, while an alkynylated benzothiazolium dye was incorporated for long wavelength absorption to reduce potential phototoxicity that is characteristic of using UV light to excite common fluorphores, better discriminate from native autofluorescence, and potentially facilitate deep tissue imaging. An impressive 30-fold enhancement of fluorescence intensity of dU-BZ was achieved upon increasing viscosity. Fluorescence quantum yields in 99% glycerol/1% methanol (v/v) solution as a function of temperature (293-343 K), together with viscosity-dependent fluorescence lifetimes and radiative and non-radiative rate constants in glycerol/methanol solutions (ranging from 4.8 to 950 cP) were determined. Both fluorescence quantum yields and lifetimes increased with increased viscosity, consistent with results predicted by theory. This suggests that the newly-designed compound, dU-BZ, is capable of functioning as a probe of local microviscosity, an aspect examined by in vitro bioimaging experiments.

  5. A Deoxyuridine-Based Far-Red Emitting Viscosity Sensor

    Directory of Open Access Journals (Sweden)

    Mengyuan Wang

    2016-05-01

    Full Text Available A novel deoxyuridine (dU benzothiazolium (BZ derivative, referred to as dU-BZ, is reported that was synthesized via Sonogashira coupling reaction methodology. The deoxyuridine building block was introduced to enhance hydrophilicity, while an alkynylated benzothiazolium dye was incorporated for long wavelength absorption to reduce potential phototoxicity that is characteristic of using UV light to excite common fluorphores, better discriminate from native autofluorescence, and potentially facilitate deep tissue imaging. An impressive 30-fold enhancement of fluorescence intensity of dU-BZ was achieved upon increasing viscosity. Fluorescence quantum yields in 99% glycerol/1% methanol (v/v solution as a function of temperature (293–343 K, together with viscosity-dependent fluorescence lifetimes and radiative and non-radiative rate constants in glycerol/methanol solutions (ranging from 4.8 to 950 cP were determined. Both fluorescence quantum yields and lifetimes increased with increased viscosity, consistent with results predicted by theory. This suggests that the newly-designed compound, dU-BZ, is capable of functioning as a probe of local microviscosity, an aspect examined by in vitro bioimaging experiments.

  6. Use of Intrinsic Viscosity for evaluation of polymer-solvent affinity

    DEFF Research Database (Denmark)

    Marani, Debora; Hjelm, Johan; Wandel, Marie

    2013-01-01

    The objective of the current paper was to define a rheological method for the study of the solvent/binder affinity. The adopted strategy involves the study of the intrinsic viscosity [η] of polymer solutions. [η] was estimated via an extrapolation procedure using the Huggins and Kramer equations....... The intrinsic viscosity and the Mark-Houwink shape parameter were estimated for the three polymers and used as criteria for estimating the polymer/solvent affinity....

  7. The adhesive strength and initial viscosity of denture adhesives.

    Science.gov (United States)

    Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi

    2014-11-01

    To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.

  8. Microfluidics for simultaneous quantification of platelet adhesion and blood viscosity

    Science.gov (United States)

    Yeom, Eunseop; Park, Jun Hong; Kang, Yang Jun; Lee, Sang Joon

    2016-01-01

    Platelet functions, including adhesion, activation, and aggregation have an influence on thrombosis and the progression of atherosclerosis. In the present study, a new microfluidic-based method is proposed to estimate platelet adhesion and blood viscosity simultaneously. Blood sample flows into an H-shaped microfluidic device with a peristaltic pump. Since platelet aggregation may be initiated by the compression of rotors inside the peristaltic pump, platelet aggregates may adhere to the H-shaped channel. Through correlation mapping, which visualizes decorrelation of the streaming blood flow, the area of adhered platelets (APlatelet) can be estimated without labeling platelets. The platelet function is estimated by determining the representative index IA·T based on APlatelet and contact time. Blood viscosity is measured by monitoring the flow conditions in the one side channel of the H-shaped device. Based on the relation between interfacial width (W) and pressure ratio of sample flows to the reference, blood sample viscosity (μ) can be estimated by measuring W. Biophysical parameters (IA·T, μ) are compared for normal and diabetic rats using an ex vivo extracorporeal model. This microfluidic-based method can be used for evaluating variations in the platelet adhesion and blood viscosity of animal models with cardiovascular diseases under ex vivo conditions. PMID:27118101

  9. Glass viscosity calculation based on a global statistical modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Fluegel, Alex

    2007-02-01

    A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.

  10. [Measurement of carotenoids by high pressure liquid chromatography: from difficulties to solutions].

    Science.gov (United States)

    Steghens, J P; Lyan, B; Le Moel, G; Galabert, C; Fayol, V; Faure, H; Grolier, P; Cheribi, N; Dubois, F; Nabet, F

    2000-01-01

    The measurement of serum carotenoids by HPLC has been largely improved during the last 10 years. However these techniques still require much time and skills, and direct application of published methods is rarely satisfying. We report here the difficulties that we met to transfer some HPLC methods described in the literature to our laboratories. We propose some solution to overcome the problems that we have encountered, our experience will perhaps help out other biologists. We reported also some results obtained in healthy populations.

  11. Measuring the Success of Changes to Existing Business Intelligence Solutions to Improve Business Intelligence Reporting

    OpenAIRE

    Dedić, Nedim; Stanier, Clare

    2016-01-01

    Evaluating the success of changes to an existing Business Intelligence (BI) environment means that there is a need to compare the level of user satisfaction with the original and amended versions of the application. The focus of this paper is on producing an evaluation tool, which can be used to measure the success of changes to existing BI solutions to support improved BI reporting. The paper identifies the users involved in the BI process and investigates what is meant by satisfaction in th...

  12. Thermophysical properties of fluids: dynamic viscosity and thermal conductivity

    Science.gov (United States)

    Latini, G.

    2017-11-01

    Thermophysical properties of fluids strongly depend upon atomic and molecular structure, complex systems governed by physics laws providing the time evolution. Theoretically the knowledge of the initial position and velocity of each atom, of the interaction forces and of the boundary conditions, leads to the solution; actually this approach contains too many variables and it is generally impossible to obtain an acceptable solution. In many cases it is only possible to calculate or to measure some macroscopic properties of fluids (pressure, temperature, molar volume, heat capacities...). The ideal gas “law,” PV = nRT, was one of the first important correlations of properties and the deviations from this law for real gases were usefully proposed. Moreover the statistical mechanics leads for example to the “hard-sphere” model providing the link between the transport properties and the molecular size and speed of the molecules. Further approximations take into account the intermolecular interactions (the potential functions) which can be used to describe attractions and repulsions. In any case thermodynamics reduces experimental or theoretical efforts by relating one physical property to another: the Clausius-Clapeyron equation provides a classical example of this method and the PVT function must be known accurately. However, in spite of the useful developments in molecular theory and computers technology, often it is usual to search for physical properties when the existing theories are not reliable and experimental data are not available: the required value of the physical or thermophysical property must be estimated or predicted (very often estimation and prediction are improperly used as synonymous). In some cases empirical correlations are useful, if it is clearly defined the range of conditions on which they are based. This work is concerned with dynamic viscosity µ and thermal conductivity λ and is based on clear and important rules to be respected

  13. Determination of the density and the viscosities of biodiesel-diesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Ertan; Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Kocaeli (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Kocaeli (Turkey)

    2008-12-15

    In this study, commercially available two different diesel fuels were blended with the biodiesels produced from six different vegetable oils (sunflower, canola, soybean, cottonseed, corn oils and waste palm oil). The blends (B2, B5, B10, B20, B50 and B75) were prepared on a volume basis. The key fuel properties such as density and viscosities of the blends were measured by following ASTM test methods. Generalized equations for predicting the density and viscosities for the blends were given and a mixing equation, originally proposed by Arrhenius and described by Grunberg and Nissan, was used to predict the viscosities of the blends. For all blends, it was found that there is an excellent agreement between the measured and estimated values of the density and viscosities. According to the results, the density and viscosities of the blends increased with the increase of biodiesel concentration in the fuel blend. (author)

  14. Eruptive viscosity and volcano morphology

    International Nuclear Information System (INIS)

    Posin, S.B.; Greeley, R.

    1988-01-01

    Terrestrial central volcanoes formed predominantly from lava flows were classified as shields, stratovolcanoes, and domes. Shield volcanoes tend to be large in areal extent, have convex slopes, and are characterized by their resemblance to inverted hellenic war shields. Stratovolcanoes have concave slopes, whereas domes are smaller and have gentle convex slopes near the vent that increase near the perimeter. In addition to these differences in morphology, several other variations were observed. The most important is composition: shield volcanoes tend to be basaltic, stratovolcanoes tend to be andesitic, and domes tend to be dacitic. However, important exceptions include Fuji, Pico, Mayon, Izalco, and Fuego which have stratovolcano morphologies but are composed of basaltic lavas. Similarly, Ribkwo is a Kenyan shield volcano composed of trachyte and Suswa and Kilombe are shields composed of phonolite. These exceptions indicate that eruptive conditions, rather than composition, may be the primary factors that determine volcano morphology. The objective of this study is to determine the relationships, if any, between eruptive conditions (viscosity, erupted volume, and effusion rate) and effusive volcano morphology. Moreover, it is the goal of this study to incorporate these relationships into a model to predict the eruptive conditions of extraterrestrial (Martian) volcanoes based on their morphology

  15. Experimental density, viscosity, interfacial tension and water solubility of ethyl benzene-α-methyl benzyl alcohol–water system

    International Nuclear Information System (INIS)

    Barega, Esayas W.; Zondervan, Edwin; Haan, André B. de

    2013-01-01

    Highlights: • Properties were measured for MBA (methyl benzyl alcohol)-EB (ethyl benzene)-water. • MBA concentration was found to influence all the properties strongly. • The water solubility, density, and viscosity increased at high MBA concentration. • The interfacial tension decreased sharply at high MBA concentration. • MBA dictates the phase separation and mass transfer of the ternary system. -- Abstract: Density, viscosity, interfacial tension, and water solubility were measured for the (α-methyl benzyl alcohol (MBA) + Ethyl benzene (EB)) system at different concentrations of MBA in contact with water and sodium hydroxide solution (0.01 mol · kg −1 ) as aqueous phases. The properties were measured to identify the component which plays a governing role in changing the physical properties relevant to mass transfer and phase separation of the ternary system. The concentration of MBA was found to be the major factor influencing all the properties. The water solubility, the density, and the viscosity increased notably at higher concentrations of MBA; while, the interfacial tension decreased strongly. The use of 0.01 mol · kg −1 NaOH as an aqueous phase resulted in a decrease of the interfacial tension and a minor decrease in the water solubility. The density data were correlated using a quadratic mixing rule to describe the influence of concentration at any temperature. The viscosity data are correlated using the Nissan and Grunberg and Katti-Chaudhri equations. The Szyzkowski’s equation was used to correlate the interfacial tension data. The water solubility data were described using an exponential relationship. All the correlations described the experimental physical property data adequately

  16. Effect of various solvents on the viscosity-average molecular weight of poly (vinyl acetate)

    International Nuclear Information System (INIS)

    Rehman, W.U.; But, M.A.; Chughtai, A.; Jamil, T.; Sattar, A.

    2006-01-01

    Solution polymerization of Vinyl Acetate was carried out in various solvents (benzene, toluene, ethyl acetate, acetonitrile). Dilute solution viscometry was used to determine the viscosity-average molecular weight of the resulting Poly (Vinyl Acetate) (PV Ac) in each case. The viscosity-average molecular weight (M,J of PVAc was found to increase in the order benzene < toluene < ethyl acetate < acetonitrile, It was concluded that under the same reaction conditions (polymerization time, initiator quantity, solvent/monomer ratio, temperature), acetonitrile served as the best solvent for solution. polymerization of Vinyl Acetate monomer. (author)

  17. Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Zodape, Sangesh P.; Parwate, Dilip V.

    2012-01-01

    Highlights: ► Study of aqueous solutions of biologically important compounds has been reported. ► MH is used for treating type II diabetes, RH is in treatment of peptic ulcer and TH is used to treat severe pain. ► All the compounds act as structure makers by volumetric studies. ► MH and RH act as weak structure breakers and TH acts as a weak structure maker by viscometric studies. - Abstract: Density and viscosity measurements are reported for aqueous solutions of the drugs like Metformin hydrochloride (MH), Ranitidine hydrochloride (RH) and Tramadol hydrochloride (TH) at different temperatures T = (288.15, 298.15, and 308.15) K within the concentration range (0 to 0.15) mol · kg −1 . The density and viscosity data are used to obtain apparent molar volume of solute (φ V ) and relative viscosity (η r ) of aqueous solutions at different temperatures. The limiting apparent molar volume of solute (φ V 0 ), limiting apparent molar expansivity (φ E 0 ), thermal expansion coefficient (α ∗ ), hydration number (n h ), Jones–Dole equation viscosity A and B coefficients, experimental slope (S V ) at different temperatures, and temperature coefficient of Bi.e.(dB/dT) at T = 298.15 K were also obtained. The results obtained have been interpreted in terms of solute–solvent and solute–solute interactions and structure making/breaking ability of solute in the aqueous solution.

  18. Relationship between viscosity of the ankle joint complex and functional ankle instability for inversion ankle sprain patients.

    Science.gov (United States)

    Lin, Che-Yu; Kang, Jiunn-Horng; Wang, Chung-Li; Shau, Yio-Wha

    2015-03-01

    Measurement of viscosity of the ankle joint complex is a novel method to assess mechanical ankle instability. In order to further investigate the clinical significance of the method, this study intended to investigate the relationship between ankle viscosity and severity of functional ankle instability. Cross-sectional study. 15 participants with unilateral inversion ankle sprain and 15 controls were recruited. Their ankles were further classified into stable and unstable ankles. Ankle viscosity was measured by an instrumental anterior drawer test. Severity of functional ankle instability was measured by the Cumberland Ankle Instability Tool. Unstable ankles were compared with stable ankles. Injured ankles were compared with uninjured ankles of both groups. The spearman's rank correlation coefficient was applied to determine the relationship between ankle viscosity and severity of functional ankle instability in unstable ankles. There was a moderate relationship between ankle viscosity and severity of functional ankle instability (r=-0.64, pankles exhibited significantly lower viscosity (pankle instability (pankles. Injured ankles exhibited significantly lower viscosity and more severe functional ankle instability than uninjured ankles (pankle viscosity and severity of functional ankle instability. This finding suggested that, severity of functional ankle instability may be partially attributed to mechanical insufficiencies such as the degenerative changes in ankle viscosity following the inversion ankle sprain. In clinical application, measurement of ankle viscosity could be a useful tool to evaluate severity of chronic ankle instability. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Solvation consequences of polymer PVP with biological buffers MES, MOPS, and MOPSO in aqueous solutions

    International Nuclear Information System (INIS)

    Gupta, Bhupender S.; Chen, Bo-Ren; Lee, Ming-Jer

    2015-01-01

    Highlights: • Densities and viscosities data for aqueous solutions with PVP and/or buffer. • The studied buffers include MES, MOPS, and MOPSO. • DFT was used to estimate the binding energies of the (PVP + buffer) complexes. • The viscosity data were correlated with the Jones–Dole equation. • The investigated buffers behave as Kosmotropies. - Abstract: Densities and viscosities were measured for the aqueous buffer (MES, MOPS, or MOPSO) solutions containing different concentrations of polyvinylpyrrolidone (PVP) (5, 10, 15, 20 and 30) mass% at temperatures from (298.15 to 318.15) K under atmospheric pressure. The DFT calculations were also performed and the binding energies of the possible (PVP + buffer) complexes were obtained. The experimental and computational results reveal the interactions of the PVP with the constituent compounds in the aqueous buffer solutions. Additionally we have explored the solvation behavior of the buffers by measuring the densities and the viscosities data of the aqueous buffer solutions from (0.0 to 1.0) mol · kg"−"1 at temperatures from (298.15 to 318.15) K. The viscosity results were correlated with the Jones–Dole equation. The correlated results confirmed that all the investigated buffers behave as Kosmotropes (structure makers).

  20. (p,Vm,T,x) measurements for aqueous LiNO3 solutions

    International Nuclear Information System (INIS)

    Abdulagatov, I.M.; Azizov, N.D.

    2004-01-01

    (p,V m ,T,x) properties of four aqueous LiNO 3 solutions (0.181, 0.526, 0.963, and 1.728) mol · kg -1 H 2 O were measured in the liquid phase with a constant-volume piezometer immersed in a precision liquid thermostat. Measurements were made for 10 isotherms between (298 and 573) K. The range of pressure was from (2 to 40) MPa. The total uncertainty of density, pressure, temperature, and concentration measurements were estimated to be less than 0.06 %, 0.05 %, 10 mK, and 0.014 %, respectively. The values of saturated density were determined by extrapolating experimental (p,ρ) data to the vapor-pressure at fixed temperature and composition using an interpolating equation. A polynomial type of equation of state for specific volume was obtained as a function of temperature, pressure, and composition by a least-squares method from the experimental data. The average absolute deviation (AAD) between measured and calculated values from this polynomial equation for density was 0.02 %. Measured values of solution density were compared with values calculated from Pitzer's ion-interaction equation. The agreement is within (0.2 to 0.4) % depending of concentration range

  1. Effects of powdered versus liquid barium on the viscosity of fluids used in modified swallow studies

    International Nuclear Information System (INIS)

    Baron, J.; Alexander, T.

    2003-01-01

    To determine if the viscosity of thickened juice mixtures used in modified barium swallow studies significantly changes with the addition of powdered barium. We also describe a test formulation created using liquid barium, which has a negligible effect on juice viscosity. The viscosities of water and standardized honey- and nectar-consistency juices mixed with different amounts of powdered barium were measured by timing the laminar flow of a given initial hydrostatic head of fluid under gravity though an orifice of fixed diameter. Standardized juices were then mixed with a liquid formulation of barium and with measured quantities of water to produce viscosities that more closely equated with those of the standardized juices. With the addition of powdered barium, viscosity increased in all fluids, most markedly with the nectar-consistency juice. Liquid barium formulations maintained the viscosities of the original thickened juices. Rendering juices radio-opaque with barium powder results in dramatic increases in the viscosity of the resulting mixture and compromises diagnostic accuracy. Liquid barium preparations have the advantage that they can be rapidly and accurately dispensed by syringe, and their use does not significantly increase the viscosity of the preparation. (author)

  2. Effects of powdered versus liquid barium on the viscosity of fluids used in modified swallow studies

    Energy Technology Data Exchange (ETDEWEB)

    Baron, J.; Alexander, T. [Univ. of Alberta, Dept. of Radiology, Edmonton, Alberta (Canada)

    2003-06-01

    To determine if the viscosity of thickened juice mixtures used in modified barium swallow studies significantly changes with the addition of powdered barium. We also describe a test formulation created using liquid barium, which has a negligible effect on juice viscosity. The viscosities of water and standardized honey- and nectar-consistency juices mixed with different amounts of powdered barium were measured by timing the laminar flow of a given initial hydrostatic head of fluid under gravity though an orifice of fixed diameter. Standardized juices were then mixed with a liquid formulation of barium and with measured quantities of water to produce viscosities that more closely equated with those of the standardized juices. With the addition of powdered barium, viscosity increased in all fluids, most markedly with the nectar-consistency juice. Liquid barium formulations maintained the viscosities of the original thickened juices. Rendering juices radio-opaque with barium powder results in dramatic increases in the viscosity of the resulting mixture and compromises diagnostic accuracy. Liquid barium preparations have the advantage that they can be rapidly and accurately dispensed by syringe, and their use does not significantly increase the viscosity of the preparation. (author)

  3. Measuring and modeling aqueous electrolyte/amino-acid solutions with ePC-SAFT

    International Nuclear Information System (INIS)

    Held, Christoph; Reschke, Thomas; Müller, Rainer; Kunz, Werner; Sadowski, Gabriele

    2014-01-01

    Highlights: • Amino-acid solubilities and osmotic coefficients in ternary solutions containing one amino acids and one salt measured. • Weak salt influence on amino-acid solubilities except for salts containing Mg [2+] or NO 3 [−] (salting-in behavior). • Osmotic coefficients dominated by the solute with the highest molality. • Amino-acid solubilities and osmotic coefficients predicted reasonably with ePC-SAFT with deviations of 3.7% and 9.3%. • Predictions based on pure-component parameters for ions and amino acids using no ion/amino-acid fitting parameters. -- Abstract: In this work thermodynamic properties of electrolyte/amino acid/water solutions were measured and modeled. Osmotic coefficients at 298.15 K were measured by means of vapor-pressure osmometry. Amino-acid solubility at 298.15 K was determined gravimetrically. Considered aqueous systems contained one of the four amino acids: glycine, L-/DL-alanine, L-/DL-valine, and L-proline up to the respective amino-acid solubility limit and one of 13 salts composed of the ions Li + , Na + , K + , NH 4 + , Cl − , Br − , I − , NO 3 − , and SO 4 2− at salt molalities of 0.5, 1.0, and 3.0 mol · kg −1 , respectively. The data show that the salt influence is more pronounced on osmotic coefficients than on amino-acid solubility. The electrolyte Perturbed-Chain Statistical Association Theory (ePC-SAFT) was applied to model thermodynamic properties in aqueous electrolyte/amino-acid solutions. In previous works, this model had been applied to binary salt/water and binary amino acid/water systems. Without fitting any additional parameters, osmotic coefficients and amino-acid solubility in the ternary electrolyte/amino acid/water systems could be predicted with overall deviations of 3.7% and 9.3%, respectively, compared to the experimental data

  4. Local entropy as a measure for sampling solutions in constraint satisfaction problems

    International Nuclear Information System (INIS)

    Baldassi, Carlo; Ingrosso, Alessandro; Lucibello, Carlo; Saglietti, Luca; Zecchina, Riccardo

    2016-01-01

    We introduce a novel entropy-driven Monte Carlo (EdMC) strategy to efficiently sample solutions of random constraint satisfaction problems (CSPs). First, we extend a recent result that, using a large-deviation analysis, shows that the geometry of the space of solutions of the binary perceptron learning problem (a prototypical CSP), contains regions of very high-density of solutions. Despite being sub-dominant, these regions can be found by optimizing a local entropy measure. Building on these results, we construct a fast solver that relies exclusively on a local entropy estimate, and can be applied to general CSPs. We describe its performance not only for the perceptron learning problem but also for the random K-satisfiabilty problem (another prototypical CSP with a radically different structure), and show numerically that a simple zero-temperature Metropolis search in the smooth local entropy landscape can reach sub-dominant clusters of optimal solutions in a small number of steps, while standard Simulated Annealing either requires extremely long cooling procedures or just fails. We also discuss how the EdMC can heuristically be made even more efficient for the cases we studied. (paper: disordered systems, classical and quantum)

  5. Studies on Al-Mg solid solutions using electrical resistivity and microhardness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A.; Afify, N.; El-Halawany, S.M.; Mossad, A. [Assiut Univ. (Egypt). Dept. of Physics

    1999-08-01

    Al-C at% Mg alloys (C = 0.82, 1.84, 3.76, 5.74 and 12.18) have been selected for this study. From the electrical resistivity measurements it is concluded that the resistivity increment of Al-Mg alloys (in a solid solution state) is proportional to the atomic fractional constituents (Mg and Al) as {delta}{rho}{sub all} = 64.66 c(1-c) {mu}{omega} cm. In addition, both the temperature coefficient of resistivity, {alpha}{sub all} and the relaxation time of the free electrons {tau}{sub all} in the alloys diminish with increasing the solute Mg concentration. The increase of the scattering power, {eta}, with increasing C is interpreted to be due to the contribution of electron-impurity scattering. The percentage increase due to electron-impurity scattering per one atomic percent Mg has been determined as 12.99%. The Debye temperature {theta} decreases as the Mg concentration increases. The microhardness results showed that the solid solution hardening obeys the relation {delta}HV{sub s} = 135.5C{sup 0.778} MPa which is comparable to the theory of solid solution hardening for all alloys; {delta}HV{sub s} {approx} C{sup 0.5-0.67} MPa. (orig.)

  6. K-edge x-ray fluorescence analysis for actinide and heavy elements solution concentration measurements

    International Nuclear Information System (INIS)

    Camp, D.C.

    1984-07-01

    Advantages of using Co-57 as an exciter for K XRFA include: a compact design that requires no x-ray tubes; the exciter-detector assembly locates remote from support electronics; on-line, at-line, or off-line configurations for monitor/measurements; systems that can be run by semi-skilled technicians, once programmed; and operated via remote terminals with results sent to control rooms; heavy element concentrations that are measurable thru industrial pipes; independent of minor changes in solution matrix or source half life with concentration results reported in near-real-time; a dynamic range of measurable concentrations that is greater than 10 4 ; measurement times that are reasonable even at 1 gram/liter; and for nuclear safeguards, it provides the <0.5% accuracy required by DOE for the accountability of U, Pu, or both, once the system is calibrated

  7. Excessive Additive Effect On Engine Oil Viscosity

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2014-01-01

    Full Text Available The main goal of this paper is excessive additive (for oil filling effect on engine oil dynamic viscosity. Research is focused to commercially distribute automotive engine oil with viscosity class 15W–40 designed for vans. There were prepared blends of new and used engine oil without and with oil additive in specific ratio according manufacturer’s recommendations. Dynamic viscosity of blends with additive was compared with pure new and pure used engine oil. The temperature dependence dynamic viscosity of samples was evaluated by using rotary viscometer with standard spindle. Concern was that the oil additive can moves engine oil of several viscosity grades up. It is able to lead to failure in the engine. Mathematical models were used for fitting experimental values of dynamic viscosity. Exponential fit function was selected, which was very accurate because the coefficient of determination R2 achieved high values (0.98–0.99. These models are able to predict viscosity behaviour blends of engine oil and additive.

  8. Passivation of mechanically polished, chemically etched and anodized zirconium in various aqueous solutions: Impedance measurements

    International Nuclear Information System (INIS)

    Abo-Elenien, G.M.; Abdel-Salam, O.E.

    1987-01-01

    Zirconium and its alloys are finding increasing applications especially in water-cooled nuclear reactors. Because of the fact that zirconium is electronegative (E 0 = -1.529V) its corrosion resistance in aqueous solutions is largely determined by the existence of a thin oxide film on its surface. The structure and properties of this film depend in the first place on the method of surface pre-treatment. This paper presents an experimental study of the nature of the oxide film on mechanically polished, chemically etched and anodized zirconium. Ac impedance measurements carried out in various acidic, neutral and alkaline solutions show that the film thickness depends on the method of surface pre-treatment and the type of electrolyte solution. The variation of the potential and impedance during anodization of zirconium at low current density indicates that the initial stages of polarization consist of oxide build-up at a rate dependent on the nature of the electrode surface and the electrolyte. Oxygen evolution commences at a stage where oxide thickening starts to decline. The effect of frequency on the measured impedance indicates that the surface reactivity, and hence the corrosion rate, decreases in the following order: mechanically polished > chemically etched > anodized

  9. Viscosity and diffusivity in melts: from unary to multicomponent systems

    Science.gov (United States)

    Chen, Weimin; Zhang, Lijun; Du, Yong; Huang, Baiyun

    2014-05-01

    Viscosity and diffusivity, two important transport coefficients, are systematically investigated from unary melt to binary to multicomponent melts in the present work. By coupling with Kaptay's viscosity equation of pure liquid metals and effective radii of diffusion species, the Sutherland equation is modified by taking the size effect into account, and further derived into an Arrhenius formula for the convenient usage. Its reliability for predicting self-diffusivity and impurity diffusivity in unary liquids is then validated by comparing the calculated self-diffusivities and impurity diffusivities in liquid Al- and Fe-based alloys with the experimental and the assessed data. Moreover, the Kozlov model was chosen among various viscosity models as the most reliable one to reproduce the experimental viscosities in binary and multicomponent melts. Based on the reliable viscosities calculated from the Kozlov model, the modified Sutherland equation is utilized to predict the tracer diffusivities in binary and multicomponent melts, and validated in Al-Cu, Al-Ni and Al-Ce-Ni melts. Comprehensive comparisons between the calculated results and the literature data indicate that the experimental tracer diffusivities and the theoretical ones can be well reproduced by the present calculations. In addition, the vacancy-wind factor in binary liquid Al-Ni alloys with the increasing temperature is also discussed. What's more, the calculated inter-diffusivities in liquid Al-Cu, Al-Ni and Al-Ag-Cu alloys are also in excellent agreement with the measured and theoretical data. Comparisons between the simulated concentration profiles and the measured ones in Al-Cu, Al-Ce-Ni and Al-Ag-Cu melts are further used to validate the present calculation method.

  10. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz; Hassager, Ole

    2005-01-01

    The startup and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 kg/mole (PS52K) and 103 kg/mole (PS103K), and for three bidisperse polystyrene melts. The bidisperse melts consist of PS103K or PS52K and a monodisperse...... (closed loop proportional regulator) using the laser in such a way that the stretch rate at the neck is kept constant. The rheometer has been described in more detail in (A. Bach, H.K. Rasmussen and O. Hassager, Journal of Rheology, 47 (2003) 429). PS390K show a decrease in the steady viscosity as a power......-law function of the elongational rate (A. Bach, K. Almdal, H.K. Rasmussen and O. Hassager, Macromolecules 36 (2003) 5174). PS52K and PS103K show that the steady viscosity has a maximum that is respectively 100% and 50% above 3 times the zero-shear-rate viscosity. The bidisperse melts show a significant...

  11. [Relations between plasma-erythrocyte viscosity factors and ESR].

    Science.gov (United States)

    Cortinovis, A; Crippa, A; Crippa, M; Bosoni, T; Moratti, R

    1992-09-01

    The ESR is usually put in relationship: to the real density of the RBCs (erythrocytes) (difference between the RBC specific gravity and the plasma one), and to the resistance that the RBCs meet moving in a medium, which is due to the plasma viscosity and to the total external RBC surface. When the RBCs take shape of aggregates, their external surface is decreased and ESR increases. The most important plasma factor causing changes in ESR is the fibrinogen level followed by the plasma globulins and by the products arising from the tissue damage. The resistance that the RBCs meet moving in the plasma is well expressed by the measurement of the plasma-RBC viscosity considering that is inclusive of both factors that are the plasma viscosity and the external RBC surface. The plasma-RBC viscosity is the resultant of several factors: Fa = Fb - Fe - Fs - Fm, were: Fa is the resultant, Fb the attracting forces due to the proteic macromolecules, Fe the repulsing forces due the negative charges. Fs the repulsing forces due to the shear-stress, Fm the force which opposes itself against the surface tension of the aggregation; it depends on the RBC morphology and on the RBC rigidity. The ESR has been recently used like an index of the RBC aggregation. The Authors study the relationship between several hemorheological parameters and the ESR in infective and inflammatory processes.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Viscosity of komatiite liquid at high pressure and temperature

    Science.gov (United States)

    O Dwyer, L.; Lesher, C. E.; Wang, Y.

    2006-12-01

    The viscosities of komatiite liquids at high pressures and temperatures are being investigated by the in-situ falling sphere technique, using the T-25 multianvil apparatus at the GSECARS 13 ID-D beamline at the Advanced Photon Source, ANL. The refractory and fluid nature of komatiite and other ultramafic liquids relevant to the Earth's deep interior, presents unique challenges for this approach. To reach superliquidus temperatures we use a double reservoir configuration, where marker spheres are placed at the top of both a main melt reservoir and an overlying reservoir containing a more refractory composition. Using this approach, we have successfully measured the viscosity of a komatiite from Gorgona Island (GOR-94-29; MgO - 17.8 wt.%; NBO/T = 1.6) up to 6 GPa and 1900 K. Under isothermal conditions, viscosity increases with pressure, consistent with the depolymerized nature of the komatiite. At 1900 K, viscosity increases from 1.5 (+- 0.3) Pa s at 3.5 GPa to 3.4 (+- 0.3) Pa s at 6 GPa, corresponding to an activation volume of 2.2 cm3/mol. At high pressures, the viscosities of Gorgona Island komatiite melt are an order of magnitude higher than those measured by Liebske et al. (2005, EPSL, v. 240) for peridotite melt (MgO 37.1 wt.%; NBO/T = 2.5), and similar in magnitude to molten diopside (NBO/T = 2) (Reid et al. 2003, PEPI, v. 139). The positive pressure dependence is consistent with the reduction in interatomic space diminishing the free volume of the liquid as it is compressed. Above 6 GPa the free volume reduction may become less important with the production of high-coordinated network formers, as attributed to the reversal of the pressure dependence of viscosity for peridotite melt at ~8.5 GPa and diopside melt at ~10 GPa. Experiments at higher pressures are underway to determine if a similar viscosity maximum occurs for komatiite melt and whether its pressure is greater than 10 GPa, as suggested by the data for peridotite and diopside melts.

  13. Application of stable, nitroxide free radicals in solution to low magnetic fields measurements

    International Nuclear Information System (INIS)

    Besson, Rene

    1973-01-01

    The first attempts to use the Overhauser-Abragam effect for measuring low magnetic fields date back to 1956. However, the instability of the free radical used, PREMY'S Salt, as well as its virtual insolubility in solvents other than water, hampered the development of the nuclear magnetic resonance magnetometer realized in accordance to this principle: dynamic polarization of protons. New free radicals stable and soluble in many solvents, will enhanced the interest in the device. In particular, the use of 2,2,6,6, tetramethyl- piperidine-4-one-1-oxide (TANO or TANONE) leads to a high sensitivity, low field magnetometer. The methods of measurements, the required apparatus and sample preparation are first described. Next the results of measurements made both in high and low magnetic fields with various free radicals in different solvents are presented in tabular and graphical form. These measurements have determined which radical-solvent couple will yield a high dynamic polarization coefficient. In addition, the improvement obtained by complete deuteration of the free radical has been demonstrated. Problems connected with the application of such radicals in solution to the 'double effect probe' of the magnetometer built by LETI at CEN Grenoble and the solutions reached are discussed. (author) [fr

  14. Development and installation of solution measurement and monitoring system (SMMS) at TRP

    International Nuclear Information System (INIS)

    Satoh, Takehiko; Yamanaka, Atsushi; Kashimura, Takao; Yamamoto, Tokuhiro

    2001-01-01

    The IAEA proposed TRP safeguard improvement plants in 1995 for closer and more efficient safeguards of TRP. Development of Solution Measurement and Monitoring System (SMMS) is one item of the plans and has been carried out under the JASPAS program as JA-6. Following to the IAEA's acceptance test, after the installation of the SMMS in 1999, field test of this system has been carried out. The main purpose of the SMMS is to establish the IAEA's independent monitoring system. Besides input and output accountability tanks, seven Pu storage tanks and a pot attached to the Pu storage tanks are monitored continuously, and solution level, density and temperature data of these tanks are recorded by the SMMS. Authentication of the SMMS, confirmed by the IAEA at the acceptance test, is kept by failure detection and recording functions of the system. (author)

  15. Calorimetric measurements on plutonium rich (U,Pu)O2 solid solutions

    International Nuclear Information System (INIS)

    Kandan, R.; Babu, R.; Nagarajan, K.; Vasudeva Rao, P.R.

    2008-01-01

    Enthalpy increments of U (1-y) Pu y O 2 solid solutions with y = 0.45, 0.55 and 0.65 were measured using a high-temperature differential calorimeter by employing the method of inverse drop calorimetry in the temperature range 956-1803 K. From the fit equations for the enthalpy increments, other thermodynamic functions such as heat capacity, entropy and Gibbs energy function have been computed in the temperature range 298-1800 K. The results are presented and compared with the data available in the literature. The results indicate that the enthalpies of U (1-y) Pu y O 2 solid solutions with y = 0.45, 0.55 and 0.65 obey the Neumann-Kopp's molar additivity rule

  16. Measurement of low neutron fluences with polycarbonate foils electrochemically etched with methyl alcohol-KOH solution

    International Nuclear Information System (INIS)

    Kumamoto, Y.

    1982-01-01

    Electrochemical etching of polycarbonate foils was performed using a KOH solution with a high concentration of methyl alcohol under different conditions of field strength, frequency, temperature and etching time. These studies showed that the highest neutron sensitivity relative to the inherent background in the foil was obtained under the following etching conditions: 52 kV/cm, 1 kHz, 30 0 C, 30 min in a solution of 45 gm KOH + 80 cc CH 3 OH + 20 cc H 2 O. Under these conditions, 100 mrem of neutrons from a Ra-Be source gave 70 pits per cm 2 while background was 7 +- 3 pits per cm 2 (10 +- 5 mrem). The pit diameters were about 90 μm. This sensitivity (giving lowest measurable dose of 15 mrem) is quite sufficient for personnel neutron dosimetry applications and the size of the pits is large enough for easy counting using a microscope at magnification of 40X. (author)

  17. Bulk viscosity in holographic Lifshitz hydrodynamics

    International Nuclear Information System (INIS)

    Hoyos, Carlos; Kim, Bom Soo; Oz, Yaron

    2014-01-01

    We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent

  18. Shear viscosity of liquid mixtures: Mass dependence

    International Nuclear Information System (INIS)

    Kaushal, Rohan; Tankeshwar, K.

    2002-06-01

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model. (author)

  19. Laboratory Tests for Dispersive Soil Viscosity Determining

    Science.gov (United States)

    Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Sobolev, E. S.

    2017-11-01

    There are several widespread methods for soil viscosity determining now. The standard shear test device and torsion test apparatus are the most commonly used installations to do that. However, the application of them has a number of disadvantages. Therefore, the specialists of Moscow State University of Civil Engineering proposed a new device to determine the disperse soil viscosity on the basis of a stabilometer with the B-type camera (viscosimeter). The paper considers the construction of a viscosimeter and the technique for determining soil viscosity inside this tool as well as some experimental verification results of its work.

  20. Shear viscosity of liquid mixtures Mass dependence

    CERN Document Server

    Kaushal, R

    2002-01-01

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.