WorldWideScience

Sample records for solution state ligand

  1. Highly photoluminescent europium tetraphenylimidodiphosphinate ternary complexes with heteroaromatic co-ligands. Solution and solid state studies

    Energy Technology Data Exchange (ETDEWEB)

    Pietraszkiewicz, Marek, E-mail: mpietraszkiewicz@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Pietraszkiewicz, Oksana; Karpiuk, Jerzy; Majka, Alina [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Dutkiewicz, Grzegorz; Borowiak, Teresa [Adam Mickiewicz University, Faculty of Chemistry, Department of Crystallography, Grunwaldzka 6, 60-780 Poznań (Poland); Kaczmarek, Anna M. [L3–Luminescent Lanthanide Lab, f-element coordination chemistry, Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281, Building S3, 9000 Gent (Belgium); Van Deun, Rik, E-mail: rik.vandeun@ugent.be [L3–Luminescent Lanthanide Lab, f-element coordination chemistry, Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281, Building S3, 9000 Gent (Belgium)

    2016-02-15

    Tetraphenylimidodiphosphinate (tpip) forms neutral 3:1 complexes with lanthanide ions. These complexes can accommodate one ancillary planar heterocyclic ligand to complement their coordination sphere of Eu{sup 3+} to coordination number 8. Several co-ligands were tested to form new complexes: 1,10-phenanthroline, bathophenanthroline, 2,4,6-tris(2-pyridyl)-1,3,5-triazine, dipyrido[3,2-f:2′,3′-h]quinoxaline and 2,2′:6′,2′′-terpyridine. The addition of heterocyclic N,N-bidentate co-ligands to the coordination sphere results in a dramatic (by a factor of 45–50) luminescence enhancement of the parent Eu(tpip){sub 3}. The solid-state measurements confirmed that the ancillary ligands strongly increased the photoluminescence quantum yield (PLQY) of the investigated complexes. - Highlights: • We have disovered highly photoluminescent ternary Eu(III) complexes. • They consist of Eu(III) tetraphenylimidodiphosphinate, and planar heterocyclic ligands. • The increase in photoluminescence quantum yields in solution is enhanced up to 50 times in solution. • The solid-state photoluminescence exceeds 80% at room temperature.

  2. Highly photoluminescent europium tetraphenylimidodiphosphinate ternary complexes with heteroaromatic co-ligands. Solution and solid state studies

    International Nuclear Information System (INIS)

    Pietraszkiewicz, Marek; Pietraszkiewicz, Oksana; Karpiuk, Jerzy; Majka, Alina; Dutkiewicz, Grzegorz; Borowiak, Teresa; Kaczmarek, Anna M.; Van Deun, Rik

    2016-01-01

    Tetraphenylimidodiphosphinate (tpip) forms neutral 3:1 complexes with lanthanide ions. These complexes can accommodate one ancillary planar heterocyclic ligand to complement their coordination sphere of Eu 3+ to coordination number 8. Several co-ligands were tested to form new complexes: 1,10-phenanthroline, bathophenanthroline, 2,4,6-tris(2-pyridyl)-1,3,5-triazine, dipyrido[3,2-f:2′,3′-h]quinoxaline and 2,2′:6′,2′′-terpyridine. The addition of heterocyclic N,N-bidentate co-ligands to the coordination sphere results in a dramatic (by a factor of 45–50) luminescence enhancement of the parent Eu(tpip) 3 . The solid-state measurements confirmed that the ancillary ligands strongly increased the photoluminescence quantum yield (PLQY) of the investigated complexes. - Highlights: • We have disovered highly photoluminescent ternary Eu(III) complexes. • They consist of Eu(III) tetraphenylimidodiphosphinate, and planar heterocyclic ligands. • The increase in photoluminescence quantum yields in solution is enhanced up to 50 times in solution. • The solid-state photoluminescence exceeds 80% at room temperature.

  3. Solid state and solution photoluminescence properties of a novel meso–meso-linked porphyrin dimer Schiff base ligand and its metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Tümer, Mehmet, E-mail: mtumer@ksu.edu.tr; Ali Güngör, S.; Raşit Çiftaslan, A.

    2016-02-15

    We prepared novel meso-meso linked 4-bromo-2,6-bis[5-(4-iminophenyl)-10,15,20-triphenylporphyrin]phenol (HL) and its Cu(II), Fe(III), Mn(III), Pt(II) and Zn(II) transition metal complexes. Structural characterizations of the ligand (HL) and its metal complexes were done by the spectroscopic and analytical methods. The electronic absorption and photoluminescence spectra of the ligand, its metal complexes and the metal salts used for preparing of the complexes were investigated in the solid and solution state. The emission and excitation data of the CuCl{sub 2}·2H{sub 2}O in both solid and the solution state were obsrved in the longest wavelenght. On the other hand, the emission value of the ZnCl{sub 2} salt was shown at the shortest wavelenght. The emission values of the [LCu{sub 4}Cl{sub 3}(H{sub 2}O){sub 2}]H{sub 2}O and LPt{sub 4}Cl{sub 3} complexes in the solid state are bigger than the other metal salts. The ligand and its metal complexes show the very interesting absorption spectral properties in the solid state. Metal complexes have less number Q bands in the solid state. The electrochemical properties of the ligand and its metal complexes were investigated and found that they show the reversible or irreversible redox processes at the different scan rates. Thermal properties of the compopunds were investigated in the 20–900 °C temperature range.

  4. Ligands Exchange Process on Gold Nanoparticles in Acetone Solution

    Science.gov (United States)

    Hu, C. L.; Mu, Y. Y.; Bian, Z. C.; Luo, Z. H.; Luo, K.; Huang, A. Z.

    2018-05-01

    The ligands exchange process on gold nanoparticles (GNPs) was proceeded by using hydrophobic group (PPh3) and hydrophilic group (THPO) in acetone solution. The FTIR and XPS results demonstrated that part of THPO was replaced by PPh3 which was dissolved in polar solution (acetone); the results were in accordance with the electrochemical analysis where the differential capacity decreased with increasing exchange time. After 12 h, the exchange process terminated and the final ratio of PPh3 and THPO was about 1.4: 1. This ratio remained unchanged although the PPh3 and THPO modified GNPs re-dispersed in the PPh3 acetone solution demonstrating the stable adsorption of both ligands after exchanging for 12 h. The TEM images showed that the gold nanoparticles were self-assembled from scattered to arranged morphology due to the existence of hydrophilic and hydrophobic ligands and led to Janus gold nanoparticles.

  5. Long-lived charge-separated states in ligand-stabilized silver clusters

    KAUST Repository

    Pelton, Matthew; Tang, Yun; Bakr, Osman; Stellacci, Francesco

    2012-01-01

    Recently developed synthesis methods allow for the production of atomically monodisperse clusters of silver atoms stabilized in solution by aromatic thiol ligands, which exhibit intense absorption peaks throughout the visible and near-IR spectral regions. Here we investigated the time-dependent optical properties of these clusters. We observed two kinetic processes following ultrafast laser excitation of any of the absorption peaks: a rapid decay, with a time constant of 1 ps or less, and a slow decay, with a time constant that can be longer than 300 ns. Both time constants decrease as the polarity of the solvent increases, indicating that the two processes correspond to the formation and recombination, respectively, of a charge-separated state. The long lifetime of this state and the broad optical absorption spectrum mean that the ligand-stabilized silver clusters are promising materials for solar energy harvesting. © 2012 American Chemical Society.

  6. Long-lived charge-separated states in ligand-stabilized silver clusters

    KAUST Repository

    Pelton, Matthew

    2012-07-25

    Recently developed synthesis methods allow for the production of atomically monodisperse clusters of silver atoms stabilized in solution by aromatic thiol ligands, which exhibit intense absorption peaks throughout the visible and near-IR spectral regions. Here we investigated the time-dependent optical properties of these clusters. We observed two kinetic processes following ultrafast laser excitation of any of the absorption peaks: a rapid decay, with a time constant of 1 ps or less, and a slow decay, with a time constant that can be longer than 300 ns. Both time constants decrease as the polarity of the solvent increases, indicating that the two processes correspond to the formation and recombination, respectively, of a charge-separated state. The long lifetime of this state and the broad optical absorption spectrum mean that the ligand-stabilized silver clusters are promising materials for solar energy harvesting. © 2012 American Chemical Society.

  7. Complexation of trivalent cationic lanthanides by N.O donor ligands: physico-chemical studies of the association and selectivity in solution

    International Nuclear Information System (INIS)

    Bravard, F.

    2004-01-01

    The aim of this work is to study the complexation of f-elements in solution by ligands incorporating N-heterocyclic donors. These ligands display interesting properties for the selective separation of An(III)/Ln(III) have been studied to obtain a better understanding of the coordination properties with f-elements and to develop more selective extractants. The hepta-dentate ligand tpaam shows an affinity for Ln(III) similar to the tetradentate ligand tpa in water even when the three additional amide groups are bonded to the metal. Even though the complexation with tpa is exothermic, that with tpaam is endothermic with a more positive entropy. The dehydration of the cation disfavours the formation of Ln(III) complexes with ligands containing weak donors. The analysis of the solution paramagnetic relaxation times of the tpaam complexes is in agreement with data in the solid-state. There is little difference between the formation constants of the Ln 3+ complexes with different ligands (tpaam, tpzen, tpa and tpza) as determined by UV-vis spectrophotometry in anhydrous acetonitrile. The limitations encountered during this study are intrinsic to the ligands studied. The preliminary study of two tetrapodal ligands containing acid and pyridine groups (L py )or pyrazine (L pz ) show the formation of 1:1 complexes in water. Analysis of the formation constants of the corresponding Gd(III) complexes shows that replacement of a pyridine group by pyrazine result in a loss of stability of 1.6 logarithmic units. (author) [fr

  8. Computing UV/vis spectra using a combined molecular dynamics and quantum chemistry approach: bis-triazin-pyridine (BTP) ligands studied in solution.

    Science.gov (United States)

    Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J

    2016-03-21

    We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution.

  9. Automating crystallographic structure solution and refinement of protein–ligand complexes

    International Nuclear Information System (INIS)

    Echols, Nathaniel; Moriarty, Nigel W.; Klei, Herbert E.; Afonine, Pavel V.; Bunkóczi, Gábor; Headd, Jeffrey J.; McCoy, Airlie J.; Oeffner, Robert D.; Read, Randy J.; Terwilliger, Thomas C.; Adams, Paul D.

    2013-01-01

    A software system for automated protein–ligand crystallography has been implemented in the Phenix suite. This significantly reduces the manual effort required in high-throughput crystallographic studies. High-throughput drug-discovery and mechanistic studies often require the determination of multiple related crystal structures that only differ in the bound ligands, point mutations in the protein sequence and minor conformational changes. If performed manually, solution and refinement requires extensive repetition of the same tasks for each structure. To accelerate this process and minimize manual effort, a pipeline encompassing all stages of ligand building and refinement, starting from integrated and scaled diffraction intensities, has been implemented in Phenix. The resulting system is able to successfully solve and refine large collections of structures in parallel without extensive user intervention prior to the final stages of model completion and validation

  10. Solution structure of the twelfth cysteine-rich ligand-binding repeat in rat megalin

    International Nuclear Information System (INIS)

    Wolf, Christian A.; Dancea, Felician; Shi Meichen; Bade-Noskova, Veronika; Rueterjans, Heinz; Kerjaschki, Dontscho; Luecke, Christian

    2007-01-01

    Megalin, an approx. 600 kDa transmembrane glycoprotein that acts as multi-ligand transporter, is a member of the low density lipoprotein receptor gene family. Several cysteine-rich repeats, each consisting of about 40 residues, are responsible for the multispecific binding of ligands. The solution structure of the twelfth cysteine-rich ligand-binding repeat with class A motif found in megalin features two short β-strands and two helical turns, yielding the typical fold with a I-III, II-V and IV-VI disulfide bridge connectivity pattern and a calcium coordination site at the C-terminal end. The resulting differences in electrostatic surface potential compared to other ligand-binding modules of this gene family, however, may be responsible for the functional divergence

  11. Rapid and Efficient Collection of Platinum from Karstedt's Catalyst Solution via Ligands-Exchange-Induced Assembly.

    Science.gov (United States)

    Yang, Gonghua; Wei, Yanlong; Huang, Zhenzhu; Hu, Jiwen; Liu, Guojun; Ou, Ming; Lin, Shudong; Tu, Yuanyuan

    2018-02-21

    Reported herein is a novel strategy for the rapid and efficient collection of platinum from Karstedt's catalyst solution. By taking advantage of a ligand-exchange reaction between alkynols and the 1,3-divinyltetramethyldisiloxane ligand (M Vi M Vi ) that coordinated with platinum (Pt(0)), the Karstedt's catalyst particles with a size of approximately 2.5 ± 0.7 nm could be reconstructed and assembled into larger particles with a size of 150 ± 35 nm due to the hydrogen bonding between the hydroxyl groups of the alkynol. In addition, because the silicone-soluble M Vi M Vi ligand of the Karstedt's catalyst was replaced by water-soluble alkynol ligands, the resultant large particles were readily dispersed in water, resulting in rapid, efficient, and complete collection of platinum from the Karstedt's catalyst solutions with platinum concentrations in the range from ∼20 000 to 0.05 ppm. Our current strategy not only was used for the rapid and efficient collection of platinum from the Karstedt's catalyst solutions, but it also enabled the precise evaluation of the platinum content in the Karstedt's catalysts, even if this platinum content was extremely low (i.e., 0.05 ppm). Moreover, these platinum specimens that were efficiently collected from the Karstedt's catalyst solutions could be directly used for the evaluation of platinum without the need for pretreatment processes, such as calcination and digestion with hydrofluoric acid, that were traditionally used prior to testing via inductively coupled plasma mass spectrometry in conventional methods.

  12. Deciphering ligands' interaction with Cu and Cu2O nanocrystal surfaces by NMR solution tools.

    Science.gov (United States)

    Glaria, Arnaud; Cure, Jérémy; Piettre, Kilian; Coppel, Yannick; Turrin, Cédric-Olivier; Chaudret, Bruno; Fau, Pierre

    2015-01-12

    The hydrogenolysis of [Cu2{(iPrN)2(CCH3)}2] in the presence of hexadecylamine (HDA) or tetradecylphosphonic acid (TDPA) in toluene leads to 6-9 nm copper nanocrystals. Solution NMR spectroscopy has been used to describe the nanoparticle surface chemistry during the dynamic phenomenon of air oxidation. The ligands are organized as multilayered shells around the nanoparticles. The shell of ligands is controlled by both their intermolecular interactions and their bonding strength on the nanocrystals. Under ambient atmosphere, the oxidation rate of colloidal copper nanocrystals closely relies on the chemical nature of the employed ligands (base or acid). Primary amine molecules behave as soft ligands for Cu atoms, but are even more strongly coordinated on surface Cu(I) sites, thus allowing a very efficient corrosion protection of the copper core. On the contrary, the TDPA ligands lead to a rapid oxidation rate of Cu nanoparticles and eventually to the re-dissolution of Cu(II) species at the expense of the nanocrystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto

    2017-01-01

    iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL...... state lifetime of iron based complexes due to spin crossover-the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand...

  14. Mixed ligand chelates of rare earths in aqueous solution

    International Nuclear Information System (INIS)

    Lakhani, S.U.; Thakur, G.S.; Sangal, S.P.

    1981-01-01

    Mixed ligand chelates of the 1:1 trivalent lanthanoids-EDTA, HEDTA and NTA chelates-1, 2-Dihydroxybenzene (Pyrocatechol) have been investigated at 35degC and 0.2 M ionic strength maintained by NaC10 4 . The formation of mixed ligand chelates has been found in all cases. The formation of mixed ligand chelates with EDTA shows the coordination number of lanthanoids to be eight, while the mixed ligand chelates with HEDTA and NTA shows the coordination number to be seven and six respectively. The stability constants of mixed ligand chelates are smaller than the binary complexes. The order of stability constants with respect to primary ligands follows the order NTA>HEDTA>EDTA. With respect to metal ions the stability constants increases with the decrease in ionic radii such as Gd< Er< Yb. (author)

  15. Luminescence properties of copper(I), zinc(II) and cadmium(II) coordination compounds with picoline ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan Grzegorz, E-mail: gmalecki@us.edu.pl; Maroń, Anna

    2017-06-15

    Mononuclear coordination compounds of copper(I) – [Cu(PPh{sub 3}){sub 2}(picoline)(NO{sub 3})], zinc(II) – [ZnCl{sub 2}(picoline){sub 2}] (picoline=3– and 4–methylpyridine) and polymeric cadmium(II) – [CdCl{sub 2}(β-picoline){sub 2}]{sub n} were prepared and their luminescence properties in solid state and acetonitrile solutions were determined. Single crystal X-ray crystallography revealed distorted tetrahedral geometry around the central ions of the compounds. The compounds exhibit green photoluminescence in solid state and in acetonitrile solutions. The emission of copper(I) compounds originated from metal-to-ligand charge transfer state combined with nitrato-to-picoline charge transfer state i.e. ({sup 1}(M+X)LCT). The presence of nitrato ligand in the coordination sphere of copper(I) compounds quenches the emission. Luminescence of zinc(II) and cadmium(II) compounds results from chloride-to-picoline charge transfer state and the quantum efficiency in the case of the polymeric Cd(II) compound reaches 39%. The photoluminescence quantum yields of the mononuclear zinc(II) compounds vary from 10 to 16% depending on the conditions (solid state, solution). - Graphical abstract: Coordination compounds of copper(I), zinc(II) and polymeric cadmium(II) with picoline ligands were prepared and their luminescence properties in solid state and acetonitrile solutions were determined. The compounds exhibit green photoluminescence in solid state and in acetonitrile solutions. Emission of copper(I) compounds originated from {sup 1}(M+X)LCT state. Luminescence of zinc(II) and cadmium(II) compounds results from chloride-to-picoline charge transfer state and the quantum efficiency in the case of the polymeric Cd(II) compound reaches 39%. The photoluminescence quantum yields of the mononuclear zinc(II) compounds vary from 10 to 16% depending on the conditions (solid state, solution).

  16. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine2(CN2

    Directory of Open Access Journals (Sweden)

    Kasper S. Kjær

    2017-07-01

    Full Text Available We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy2(CN2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2′-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy2(CN2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy2(CN2] complement prior measurement performed on [Fe(bpy3]2+ and [Fe(bpy(CN4]2− in dimethylsulfoxide solution and help complete the chemical series [Fe(bpyN(CN6–2N]2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3d transition metal complexes.

  17. The first example of intensive luminescence of LMCT state based on metal complexes in solution

    International Nuclear Information System (INIS)

    Lukova, G.V.; Vasil'ev, V.P.; Smirnov, V.A.; Huhn, W.

    2007-01-01

    A bridge complex rac-C 6 H 10 (IndH 4 ) 2 ZrC 2 , featuring a unique long-living luminescence in liquid solutions at 20 deg C, has been prepared for the first time by catalytic hydrogenation of bis-indinyl complex C 6 H 10 (Ind) 2 Zr 2 Cl 2 . It has been identified that quantum yields of luminescence of the complex solutions at room temperature are the greatest ones for the known compounds possessing emission states of charge transfer from ligand to metal. Linear correlations of quantum yield of metal complex luminescence in a solution with steric features of the solvent molecules have been detected for the first time [ru

  18. Ligand binding and thermostability of different allosteric states of the insulin zinc-hexamer

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2006-01-01

    The influence of ligand binding and conformation state on the thermostability of hexameric zinc-insulin was studied by differential scanning calorimetry (DSC). The insulin hexamer exists in equilibrium between the forms T6, T3R3, and R6. Phenolic ligands induce and stabilize the T3R3- and R6-stat...

  19. Thermodynamics of mixed-ligand complex formation of mercury (II) ethylenediaminetetraacetate with amino acids in solution

    Energy Technology Data Exchange (ETDEWEB)

    Pyreu, Dmitrii, E-mail: pyreu@mail.ru [Department of Inorganic and Analytic Chemistry, Ivanovo State University, Ermak 39, Ivanovo 153025 (Russian Federation); Kozlovskii, Eugenii [Department of Inorganic and Analytic Chemistry, Ivanovo State University, Ermak 39, Ivanovo 153025 (Russian Federation); Gruzdev, Matvei; Kumeev, Roman [Institute of Solution Chemistry, Ivanovo (Russian Federation)

    2012-11-20

    Highlights: Black-Right-Pointing-Pointer Stable mixed ligand complexes of HgEdta with amino acids at physiological pH value. Black-Right-Pointing-Pointer The thermodynamic and NMR data evident the ambidentate coordination mode of arginine. Black-Right-Pointing-Pointer Participation of the guanidinic group of Arg in coordination process. Black-Right-Pointing-Pointer Binuclear complexes (HgEdta){sub 2}L with the bridging function of amino acid. - Abstract: The mixed-ligand complex formation in the systems Hg{sup 2+} - Edta{sup 4-} - L{sup -}(L = Arg, Orn, Ser) has been studied by means of calorimetry, pH-potentiometry and NMR spectroscopy in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO{sub 3}). The thermodynamic parameters of formation of the HgEdtaL, HgEdtaHL and (HgEdta){sub 2}L complexes have been determined. The most probable coordination mode for the complexone and the amino acid in the mixed-ligand complexes was discussed.

  20. Dynamics of ligand exchange and association processes in solutions of transition 3d-metal fluorides

    International Nuclear Information System (INIS)

    Nazmutdinova, G.A.; Shtyrlin, V.G.; Zakharov, A.V.; Sal'nikov, Yu.I.

    1993-01-01

    By 19 NMR in combination with ESR spectroscopy rate constants and activation parameters of fluoride-ion exchange reactions in solutions of VOF 5 3- and FeF 6 3- complexes were determined. Associative character of the studied reactions of ligand exchange is shown. Dependence of fluoride complex reactivity on the charge, electron structure of the central ion and formation of hydrogen bonds of coordinated F - ions with solvent molecules was demonstrated. Stability constants, rates of formation and dissociation of intercomplex associates in fluoride solutions were ascertained

  1. Synthesis and reactivity of TADDOL-based chiral Fe(II) PNP pincer complexes-solution equilibria between κ(2)P,N- and κ(3)P,N,P-bound PNP pincer ligands.

    Science.gov (United States)

    Holzhacker, Christian; Stöger, Berthold; Carvalho, Maria Deus; Ferreira, Liliana P; Pittenauer, Ernst; Allmaier, Günter; Veiros, Luis F; Realista, Sara; Gil, Adrià; Calhorda, Maria José; Müller, Danny; Kirchner, Karl

    2015-08-07

    Treatment of anhydrous FeX2 (X = Cl, Br) with 1 equiv. of the asymmetric chiral PNP pincer ligands PNP-R,TAD (R = iPr, tBu) with an R,R-TADDOL (TAD) moiety afforded complexes of the general formula [Fe(PNP)X2]. In the solid state these complexes adopt a tetrahedral geometry with the PNP ligand coordinated in κ(2)P,N-fashion, as shown by X-ray crystallography and Mössbauer spectroscopy. Magnetization studies led to a magnetic moment very close to 4.9μB reflecting the expected four unpaired d-electrons (quintet ground state). In solution there are equilibria between [Fe(κ(3)P,N,P-PNP-R,TAD)X2] and [Fe(κ(2)P,N-PNP-R,TAD)X2] complexes, i.e., the PNP-R,TAD ligand is hemilabile. At -50 °C these equilibria are slow and signals of the non-coordinated P-TAD arm of the κ(2)P,N-PNP-R,TAD ligand can be detected by (31)P{(1)H} NMR spectroscopy. Addition of BH3 to a solution of [Fe(PNP-iPr,TAD)Cl2] leads to selective boronation of the pendant P-TAD arm shifting the equilibrium towards the four-coordinate complex [Fe(κ(2)P,N-PNP-iPr,TAD(BH3))Cl2]. DFT calculations corroborate the existence of equilibria between four- and five-coordinated complexes. Addition of CO to [Fe(PNP-iPr,TAD)X2] in solution yields the diamagnetic octahedral complexes trans-[Fe(κ(3)P,N,P-PNP-iPr,TAD)(CO)X2], which react further with Ag(+) salts in the presence of CO to give the cationic complexes trans-[Fe(κ(3)P,N,P-PNP-iPr,TAD)(CO)2X](+). CO addition most likely takes place at the five coordinate complex [Fe(κ(3)P,N,P-PNP-iPr,TAD)X2]. The mechanism for the CO addition was also investigated by DFT and the most favorable path obtained corresponds to the rearrangement of the pincer ligand first from a κ(2)P,N- to a κ(3)P,N,P-coordination mode followed by CO coordination to [Fe(κ(3)P,N,P-PNP-iPr,TAD)X2]. Complexes bearing tBu substituents do not react with CO. Moreover, in the solid state none of the tetrahedral complexes are able to bind CO.

  2. Solution stabilities of some mixed ligand complexes of UO22+ and Th4+ with complexones and salicylic acids

    International Nuclear Information System (INIS)

    Singh, R.K.; Saxena, M.C.

    1991-01-01

    Formation constants (log Ksub(MAL)sup(MA)) of mixed ligands complexes (MAL), where M = UO 2 2+ or Th 4+ , A = IMDA, NTA, HEDTA, EDTA, CDTA or DTPA, L = salicylic acid (SA) or 5-sulphosalicylic acid (SSA), have been determined by pH titrations using Irving-Rossotti approach at 25 o C and at I =0.2 (mol dm -3 , KNO 3 ). The solution stabilities exhibit the sequence (i) Th 4+ >UO 2 2+ , (ii) IMDA>NTA>HEDTA>EDTA>CDTA>DTPA, and (iii) SA>SSA with respect to metal ions, primary ligands and secondary ligands, respectively. The formation constants log Ksub(ML)sup(M) and log Ksub(ML 2 )sup(ML) have also been determined. The Δlog K values have been found to be negative-increasing numerically with the negative charge on the deprotonated primary ligand (A n- ). (author). 17 refs., 1 tab

  3. Effects of Catalytic Action and Ligand Binding on Conformational Ensembles of Adenylate Kinase.

    Science.gov (United States)

    Onuk, Emre; Badger, John; Wang, Yu Jing; Bardhan, Jaydeep; Chishti, Yasmin; Akcakaya, Murat; Brooks, Dana H; Erdogmus, Deniz; Minh, David D L; Makowski, Lee

    2017-08-29

    Crystal structures of adenylate kinase (AdK) from Escherichia coli capture two states: an "open" conformation (apo) obtained in the absence of ligands and a "closed" conformation in which ligands are bound. Other AdK crystal structures suggest intermediate conformations that may lie on the transition pathway between these two states. To characterize the transition from open to closed states in solution, X-ray solution scattering data were collected from AdK in the apo form and with progressively increasing concentrations of five different ligands. Scattering data from apo AdK are consistent with scattering predicted from the crystal structure of AdK in the open conformation. In contrast, data from AdK samples saturated with Ap5A do not agree with that calculated from AdK in the closed conformation. Using cluster analysis of available structures, we selected representative structures in five conformational states: open, partially open, intermediate, partially closed, and closed. We used these structures to estimate the relative abundances of these states for each experimental condition. X-ray solution scattering data obtained from AdK with AMP are dominated by scattering from AdK in the open conformation. For AdK in the presence of high concentrations of ATP and ADP, the conformational ensemble shifts to a mixture of partially open and closed states. Even when AdK is saturated with Ap5A, a significant proportion of AdK remains in a partially open conformation. These results are consistent with an induced-fit model in which the transition of AdK from an open state to a closed state is initiated by ATP binding.

  4. Stability constant determinations for technetium (IV) complexation with selected amino carboxylate ligands in high nitrate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Omoto, Trevor; Wall, Nathalie A. [Washington State Univ., Pullman, WA (United States). Dept. of Chemistry

    2017-10-01

    The stability constants for Tc(IV) complexation with the ligands IDA, NTA, HEDTA, and DTPA were determined in varied nitrate concentrations using liquid-liquid extraction methods. The determined log β{sub 101} stability constants at 0.5 M NaNO{sub 3} were found to be 9.2±0.3, 10.3±0.3, and 15.3±0.3 for IDA, NTA, and HEDTA, respectively. The log β{sub 111} stability constant for DTPA was determined to be 22.0±0.6. These determined stability constants show a slight decrease in magnitude as a function of increasing NaNO{sub 3} concentration. These stability constants were used to model the total dissolution of Tc(IV) in acidic aqueous solutions in the presence of each ligand. The results of these predictive models indicate that amino carboxylic ligands have a high potential for increasing the aqueous dissolution of Tc(IV); at pH 2.3, 0.01 M ligand yield dissolved Tc(IV) concentrations of 1.42.10{sup -5} M, 1.33.10{sup -5} M, 6.07.10{sup -6} M, 9.65.10{sup -7} M, for DTPA, HEDTA, NTA, and IDA, respectively.

  5. Distribution of the ligand field at the Fe2+ ion in frozen aqueous solutions of Fe(ClO4)2

    International Nuclear Information System (INIS)

    Nagy, D.L.; Horvath, D.; Szuecs, I.S.; Spiering, H.

    1981-01-01

    Moessbauer spectra of eutectic frozen aqueous solutions of Fe(ClO 4 ) 2 have been measured at 4.2 K in applied longitudinal magnetic fields up to 5 T. The spectra are interpreted in terms of a model accounting for the random distribution of the ligand field at the Fe 2+ ion owing to the amorphity of the environment. The equilibrium state of the Fe(H 2 O) 6 2+ complex is determined by a static Jahn-Teller calculation. The main features of all spectra can be well reproduced by choosing Esub(JT)(tau)=140 cm -1 and ωsub(tau)=150 cm -1 . (author)

  6. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation

    KAUST Repository

    Tang, Jiang

    2011-09-18

    Colloidal-quantum-dot (CQD) optoelectronics offer a compelling combination of solution processing and spectral tunability through quantum size effects. So far, CQD solar cells have relied on the use of organic ligands to passivate the surface of the semiconductor nanoparticles. Although inorganic metal chalcogenide ligands have led to record electronic transport parameters in CQD films, no photovoltaic device has been reported based on such compounds. Here we establish an atomic ligand strategy that makes use of monovalent halide anions to enhance electronic transport and successfully passivate surface defects in PbS CQD films. Both time-resolved infrared spectroscopy and transient device characterization indicate that the scheme leads to a shallower trap state distribution than the best organic ligands. Solar cells fabricated following this strategy show up to 6% solar AM1.5G power-conversion efficiency. The CQD films are deposited at room temperature and under ambient atmosphere, rendering the process amenable to low-cost, roll-by-roll fabrication. © 2011 Macmillan Publishers Limited. All rights reserved.

  7. Isotopic studies on ligand exchange between complex and simple cyanides in water medium and in liquid hydrogen cyanide. Part 2. Radiocyanide ligand exchange study between hydrogen cyanide and octacyanotungstate(4) in water solutions of mineral acids

    International Nuclear Information System (INIS)

    Zielinski, M.

    1979-01-01

    Radiocyanide ligand exchange between potassium octacyanotungstate(4) and hydrogen cyanide in aqueous solutions of sulfuric acid and between octacyanotungstic(4) acid and hydrogen cyanide in aqueous solutions have been investigated experimentally. The observed enhancement of the rate of ligand exchange in acidic medium has been rationalized in terms of the proposed new general reaction scheme taking into account the reversible decomposition of complex cyanide at low pH, and irreversible one at high pH. The discussion on the results obtained has been carried out within the framework of derived formal kinetic equations. (author)

  8. Organoactinide chemistry: synthesis, structure, and solution dynamics

    International Nuclear Information System (INIS)

    Brennan, J.G.

    1985-12-01

    This thesis considers three aspects of organoactinide chemistry. In chapter one, a bidentate phosphine ligand was used to kinetically stabilize complexes of the type Cp 2 MX 2 . Ligand redistribution processes are present throughout the synthetic work, as has often been observed in uranium cyclopentadienyl chemistry. The effects of covalent M-L bonding on the solution and solid state properties of U(III) coordination complexes are considered. In particular, the nature of the more subtle interaction between the metal and the neutral ligand are examined. Using relative basicity data obtained in solution, and solid state structural data (and supplemented by gas phase photoelectron measurements), it is demonstrated that the more electron rich U(III) centers engage in significant U → L π-donation. Trivalent uranium is shown to be capable of acting either as a one- or two-electron reducing agent toward a wide variety of unsaturated organic and inorganic molecules, generating molecular classes unobtainable via traditional synthetic approaches, as well as offering an alternative synthetic approach to molecules accessible via metathesis reactions. Ligand redistribution processes are again observed, but given the information concerning ligand lability, this reactivity pattern is applied to the synthesis of pure materials inaccessible from redox chemistry. 214 refs., 33 figs., 10 tabs

  9. Enhanced Open-Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivity-Controlled Solution-Phase Ligand Exchange

    KAUST Repository

    Jo, Jea Woong; Kim, Younghoon; Choi, Jongmin; de Arquer, F. Pelayo Garcí a; Walters, Grant; Sun, Bin; Ouellette, Olivier; Kim, Junghwan; Proppe, Andrew H.; Quintero-Bermudez, Rafael; Fan, James; Xu, Jixian; Tan, Chih Shan; Voznyy, Oleksandr; Sargent, Edward H.

    2017-01-01

    The energy disorder that arises from colloidal quantum dot (CQD) polydispersity limits the open-circuit voltage (VOC) and efficiency of CQD photovoltaics. This energy broadening is significantly deteriorated today during CQD ligand exchange and film assembly. Here, a new solution-phase ligand exchange that, via judicious incorporation of reactivity-engineered additives, provides improved monodispersity in final CQD films is reported. It has been found that increasing the concentration of the less reactive species prevents CQD fusion and etching. As a result, CQD solar cells with a VOC of 0.7 V (vs 0.61 V for the control) for CQD films with exciton peak at 1.28 eV and a power conversion efficiency of 10.9% (vs 10.1% for the control) is achieved.

  10. Enhanced Open-Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivity-Controlled Solution-Phase Ligand Exchange

    KAUST Repository

    Jo, Jea Woong

    2017-10-09

    The energy disorder that arises from colloidal quantum dot (CQD) polydispersity limits the open-circuit voltage (VOC) and efficiency of CQD photovoltaics. This energy broadening is significantly deteriorated today during CQD ligand exchange and film assembly. Here, a new solution-phase ligand exchange that, via judicious incorporation of reactivity-engineered additives, provides improved monodispersity in final CQD films is reported. It has been found that increasing the concentration of the less reactive species prevents CQD fusion and etching. As a result, CQD solar cells with a VOC of 0.7 V (vs 0.61 V for the control) for CQD films with exciton peak at 1.28 eV and a power conversion efficiency of 10.9% (vs 10.1% for the control) is achieved.

  11. The role of ligands on the equilibria between functional states of a G protein-coupled receptor.

    Science.gov (United States)

    Kim, Tae Hun; Chung, Ka Young; Manglik, Aashish; Hansen, Alexandar L; Dror, Ron O; Mildorf, Thomas J; Shaw, David E; Kobilka, Brian K; Prosser, R Scott

    2013-06-26

    G protein-coupled receptors exhibit a wide variety of signaling behaviors in response to different ligands. When a small label was incorporated on the cytosolic interface of transmembrane helix 6 (Cys-265), (19)F NMR spectra of the β2 adrenergic receptor (β2AR) reconstituted in maltose/neopentyl glycol detergent micelles revealed two distinct inactive states, an activation intermediate state en route to activation, and, in the presence of a G protein mimic, a predominant active state. Analysis of the spectra as a function of temperature revealed that for all ligands, the activation intermediate is entropically favored and enthalpically disfavored. β2AR enthalpy changes toward activation are notably lower than those observed with rhodopsin, a likely consequence of basal activity and the fact that the ionic lock and other interactions stabilizing the inactive state of β2AR are weaker. Positive entropy changes toward activation likely reflect greater mobility (configurational entropy) in the cytoplasmic domain, as confirmed through an order parameter analysis. Ligands greatly influence the overall changes in enthalpy and entropy of the system and the corresponding changes in population and amplitude of motion of given states, suggesting a complex landscape of states and substates.

  12. Ligands and modifiers in vitreous materials the spectroscopy of condensed systems

    CERN Document Server

    Margaryan, Alfred

    1999-01-01

    The study of the effect of ligand and modifier ions on the spectroscopic properties of dn or fn elements in vitreous materials is important for the development of controllable lasers and amplifiers. The spectroscopic characteristics of inorganic compounds of transition elements and their solutions are well understood theoretically in the spectrochemistry of complexes, but developments for vitreous materials in these conditions have not been well documented. This book fills the gap by applying the ligand field theory of solid materials to the vitreous state, and presenting the data obtained fro

  13. Thermodynamics of mixed-ligand complex formation of zinc nitrilotriacetate with amino acids and dipeptides in solution

    International Nuclear Information System (INIS)

    Pyreu, Dmitrii; Gruzdev, Matvey; Kumeev, Roman; Gridchin, Sergei

    2014-01-01

    Highlights: • Stable mixed ligand complexes of ZnNta with amino acids and dipeptides. • Histamine-like coordination mode of His in the complex ZnNtaHis. • Glycine-like coordination of Lys and Orn in the complexes ZnNtaL and ZnNtaHL • NH 2 , CO-coordination mode of GlyGly in the complex ZnNtaGG. • NH 2 , N − or NH2, N − , COO-coordination modes of GlyGly in the complex ZnNtaGGH −1 . - Abstract: The isothermal calorimetry, pH-potentiometric titration and 1 H and 13 C NMR methods has been used to study the mixed-ligand complex formation in the systems Zn 2+ –Nta 3– –L − (L = His, Orn, Lys, GlyGly, AlaAla) in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO 3 ). The thermodynamic parameters of formation of the mixed complexes have been determined. The relationship between the probable coordination modes of the complexone and amino acid or dipeptide molecules in the mixed-ligand complex and the thermodynamic parameters has been discussed

  14. Thermodynamics of mixed-ligand complex formation of zinc nitrilotriacetate with amino acids and dipeptides in solution

    Energy Technology Data Exchange (ETDEWEB)

    Pyreu, Dmitrii, E-mail: pyreu@mail.ru [Department of Inorganic and Analytic Chemistry, Ivanovo State UniversityErmak 39, Ivanovo 153025 (Russian Federation); Gruzdev, Matvey; Kumeev, Roman [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Gridchin, Sergei [Ivanovo State University of Chemistry and Technology, Ivanovo (Russian Federation)

    2014-10-20

    Highlights: • Stable mixed ligand complexes of ZnNta with amino acids and dipeptides. • Histamine-like coordination mode of His in the complex ZnNtaHis. • Glycine-like coordination of Lys and Orn in the complexes ZnNtaL and ZnNtaHL • NH{sub 2}, CO-coordination mode of GlyGly in the complex ZnNtaGG. • NH{sub 2}, N{sup −} or NH2, N{sup −}, COO-coordination modes of GlyGly in the complex ZnNtaGGH{sub −1}. - Abstract: The isothermal calorimetry, pH-potentiometric titration and {sup 1}H and {sup 13}C NMR methods has been used to study the mixed-ligand complex formation in the systems Zn{sup 2+}–Nta{sup 3–}–L{sup −} (L = His, Orn, Lys, GlyGly, AlaAla) in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO{sub 3}). The thermodynamic parameters of formation of the mixed complexes have been determined. The relationship between the probable coordination modes of the complexone and amino acid or dipeptide molecules in the mixed-ligand complex and the thermodynamic parameters has been discussed.

  15. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng

    2014-12-03

    Background Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. Results In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We propose a combination technique to reduce the effects of different sliding residue windows in the process of encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site predictor. Conclusions Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares favorably with the state-of-the-art protein-ligand binding site prediction methods.

  16. Ammonia formation by metal-ligand cooperative hydrogenolysis of a nitrido ligand

    Science.gov (United States)

    Askevold, Bjorn; Nieto, Jorge Torres; Tussupbayev, Samat; Diefenbach, Martin; Herdtweck, Eberhardt; Holthausen, Max C.; Schneider, Sven

    2011-07-01

    Bioinspired hydrogenation of N2 to ammonia at ambient conditions by stepwise nitrogen protonation/reduction with metal complexes in solution has experienced remarkable progress. In contrast, the highly desirable direct hydrogenation with H2 remains difficult. In analogy to the heterogeneously catalysed Haber-Bosch process, such a reaction is conceivable via metal-centred N2 splitting and unprecedented hydrogenolysis of the nitrido ligands to ammonia. We report the synthesis of a ruthenium(IV) nitrido complex. The high nucleophilicity of the nitrido ligand is demonstrated by unusual N-C coupling with π-acidic CO. Furthermore, the terminal nitrido ligand undergoes facile hydrogenolysis with H2 at ambient conditions to produce ammonia in high yield. Kinetic and quantum chemical examinations of this reaction suggest cooperative behaviour of a phosphorus-nitrogen-phosphorus pincer ligand in rate-determining heterolytic hydrogen splitting.

  17. 5f state interaction with inner coordination sphere ligands: einsteinium 3+ ion fluorescence in aqueous and organic phases

    International Nuclear Information System (INIS)

    Beitz, J.V.; Wester, D.W.; Williams, C.W.

    1983-01-01

    The interaction between 5f electron states of einsteinium 3+ ion and coordinated ligands in solution has been probed using laser-induced fluorescence. Aquo einsteinium 3+ ion was observed to fluoresce from its first excited J = 5 state in a broad-band peaking at 9260 wavenumbers. The observed fluorescence lifetimes were 1.05 microseconds and 2.78 microseconds in H 2 O and D 2 O (99+ % D atom), respectively. The non-radiative decay rates derived from the lifetime data are compared with previously reported data for Cm, Sm, Eu, Tb, and Dy aquo 3+ ions. The 5f actinide states exhibit substantially greater non-radiative decay rates than do lanthanide 4f states of similar energy gap. This provides evidence that actinide 5f electrons interact more strongly with their inner coordination sphere than do lanthanide ion 4f electrons. The fluorescence lifetime of einsteinium 3+ ion complexed with 1 formal di(2-ethylhexyl)orthophosphoric acid in h-heptane was 2.34 microseconds. 3 figures, 1 table

  18. Erbium(III) in aqueous solution: an ab initio molecular dynamics study.

    Science.gov (United States)

    Canaval, Lorenz R; Sakwarathorn, Theerathad; Rode, Bernd M; Messner, Christoph B; Lutz, Oliver M D; Bonn, Günther K

    2013-12-05

    Structural and dynamical properties of the erbium(III) ion in water have been obtained by means of ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) simulations for the ground state and an excited state. The quality of the simulations has been monitored by recording UV/vis and Raman spectra of dilute solutions of ErCl3 and Er(NO3)3 in water and by comparison with EXAFS data from literature. Slight deviations between these data can be mainly attributed to relativistic effects, which are not sufficiently considered by the methodological framework. In both simulations, a mixture of coordination numbers eight and nine and a ligand exchange on the picosecond range are observed. The strength of the Er-ligand bond is considerably lower than that of trivalent transition metal ions but higher than that for La(III) and Ce(III) in aqueous solution. The main difference between ground state and excited state is the ligand exchange rate of the first shell. The second hydration shell is stable in both cases but with significantly different properties.

  19. Effects of electrostatic interactions on ligand dissociation kinetics

    Science.gov (United States)

    Erbaş, Aykut; de la Cruz, Monica Olvera; Marko, John F.

    2018-02-01

    We study unbinding of multivalent cationic ligands from oppositely charged polymeric binding sites sparsely grafted on a flat neutral substrate. Our molecular dynamics simulations are suggested by single-molecule studies of protein-DNA interactions. We consider univalent salt concentrations spanning roughly a 1000-fold range, together with various concentrations of excess ligands in solution. To reveal the ionic effects on unbinding kinetics of spontaneous and facilitated dissociation mechanisms, we treat electrostatic interactions both at a Debye-Hückel (DH) (or implicit ions, i.e., use of an electrostatic potential with a prescribed decay length) level and by the more precise approach of considering all ionic species explicitly in the simulations. We find that the DH approach systematically overestimates unbinding rates, relative to the calculations where all ion pairs are present explicitly in solution, although many aspects of the two types of calculation are qualitatively similar. For facilitated dissociation (FD) (acceleration of unbinding by free ligands in solution) explicit-ion simulations lead to unbinding at lower free-ligand concentrations. Our simulations predict a variety of FD regimes as a function of free-ligand and ion concentrations; a particularly interesting regime is at intermediate concentrations of ligands where nonelectrostatic binding strength controls FD. We conclude that explicit-ion electrostatic modeling is an essential component to quantitatively tackle problems in molecular ligand dissociation, including nucleic-acid-binding proteins.

  20. Mechanism of redox reactions induced by light and electron pulse in solutions of mixed ligand iron(II) complex cyanides

    International Nuclear Information System (INIS)

    Horvath, A.; Szoeke, J.; Wojnarovits, L.

    1991-01-01

    Redox reactions induced by light and electron pulse have been studied in aqueous solutions of mixed ligand iron(II) complex cyanides. The short lived intermediates have been identified by time resolved specroscopy, the results of detailed kinetic analysis have been discussed. (author) 6 refs.; 3 figs.; 2 tabs

  1. Rational Ligand Design for U(VI) and Pu(IV)

    International Nuclear Information System (INIS)

    Szigethy, Geza

    2009-01-01

    Nuclear power is an attractive alternative to hydrocarbon-based energy production at a time when moving away from carbon-producing processes is widely accepted as a significant developmental need. Hence, the radioactive actinide power sources for this industry are necessarily becoming more widespread, which is accompanied by the increased risk of exposure to both biological and environmental systems. This, in turn, requires the development of technology designed to remove such radioactive threats efficiently and selectively from contaminated material, whether that be contained nuclear waste streams or the human body. Raymond and coworkers (University of California, Berkeley) have for decades investigated the interaction of biologically-inspired, hard Lewis-base ligands with high-valent, early-actinide cations. It has been established that such ligands bind strongly to the hard Lewis-acidic early actinides, and many poly-bidentate ligands have been developed and shown to be effective chelators of actinide contaminants in vivo. Work reported herein explores the effect of ligand geometry on the linear U(IV) dioxo dication (uranyl, UO 2 2+ ). The goal is to utilize rational ligand design to develop ligands that exhibit shape selectivity towards linear dioxo cations and provides thermodynamically favorable binding interactions. The uranyl complexes with a series of tetradentate 3-hydroxy-pyridin-2-one (3,2-HOPO) ligands were studied in both the crystalline state as well as in solution. Despite significant geometric differences, the uranyl affinities of these ligands vary only slightly but are better than DTPA, the only FDA-approved chelation therapy for actinide contamination. The terepthalamide (TAM) moiety was combined into tris-beidentate ligands with 1,2- and 3,2-HOPO moieties were combined into hexadentate ligands whose structural preferences and solution thermodynamics were measured with the uranyl cation. In addition to achieving coordinative saturation, these

  2. Rational Ligand Design for U(VI) and Pu(IV)

    Energy Technology Data Exchange (ETDEWEB)

    Szigethy, Geza [Univ. of California, Berkeley, CA (United States)

    2009-08-12

    Nuclear power is an attractive alternative to hydrocarbon-based energy production at a time when moving away from carbon-producing processes is widely accepted as a significant developmental need. Hence, the radioactive actinide power sources for this industry are necessarily becoming more widespread, which is accompanied by the increased risk of exposure to both biological and environmental systems. This, in turn, requires the development of technology designed to remove such radioactive threats efficiently and selectively from contaminated material, whether that be contained nuclear waste streams or the human body. Raymond and coworkers (University of California, Berkeley) have for decades investigated the interaction of biologically-inspired, hard Lewis-base ligands with high-valent, early-actinide cations. It has been established that such ligands bind strongly to the hard Lewis-acidic early actinides, and many poly-bidentate ligands have been developed and shown to be effective chelators of actinide contaminants in vivo. Work reported herein explores the effect of ligand geometry on the linear U(IV) dioxo dication (uranyl, UO2 2+). The goal is to utilize rational ligand design to develop ligands that exhibit shape selectivity towards linear dioxo cations and provides thermodynamically favorable binding interactions. The uranyl complexes with a series of tetradentate 3-hydroxy-pyridin-2-one (3,2-HOPO) ligands were studied in both the crystalline state as well as in solution. Despite significant geometric differences, the uranyl affinities of these ligands vary only slightly but are better than DTPA, the only FDA-approved chelation therapy for actinide contamination. The terepthalamide (TAM) moiety was combined into tris-beidentate ligands with 1,2- and 3,2-HOPO moieties were combined into hexadentate ligands whose structural preferences and solution thermodynamics were measured with the uranyl cation. In addition to achieving coordinative

  3. Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.

    Science.gov (United States)

    Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard

    2014-09-01

    The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Mixed-ligand complexes of ruthenium(II) incorporating a diazo ...

    Indian Academy of Sciences (India)

    Unknown

    Dedicated to the memory of the late Professor Bhaskar G Maiya. *For correspondence. Mixed-ligand complexes of ruthenium(II) incorporating a diazo ligand: Synthesis .... water (1 : 1) for 5 h to give a dark red solution. The solution was cooled to room temperature. After eva- poration of the solvent, the solid was collected,.

  5. Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states.

    Science.gov (United States)

    LeBon, Lauren; Lee, Tom V; Sprinzak, David; Jafar-Nejad, Hamed; Elowitz, Michael B

    2014-09-25

    The Notch signaling pathway consists of multiple types of receptors and ligands, whose interactions can be tuned by Fringe glycosyltransferases. A major challenge is to determine how these components control the specificity and directionality of Notch signaling in developmental contexts. Here, we analyzed same-cell (cis) Notch-ligand interactions for Notch1, Dll1, and Jag1, and their dependence on Fringe protein expression in mammalian cells. We found that Dll1 and Jag1 can cis-inhibit Notch1, and Fringe proteins modulate these interactions in a way that parallels their effects on trans interactions. Fringe similarly modulated Notch-ligand cis interactions during Drosophila development. Based on these and previously identified interactions, we show how the design of the Notch signaling pathway leads to a restricted repertoire of signaling states that promote heterotypic signaling between distinct cell types, providing insight into the design principles of the Notch signaling system, and the specific developmental process of Drosophila dorsal-ventral boundary formation.

  6. Magnetic levitation as a platform for competitive protein-ligand binding assays.

    Science.gov (United States)

    Shapiro, Nathan D; Soh, Siowling; Mirica, Katherine A; Whitesides, George M

    2012-07-17

    This paper describes a method based on magnetic levitation (MagLev) that is capable of indirectly measuring the binding of unlabeled ligands to unlabeled protein. We demonstrate this method by measuring the affinity of unlabeled bovine carbonic anhydrase (BCA) for a variety of ligands (most of which are benzene sulfonamide derivatives). This method utilizes porous gel beads that are functionalized with a common aryl sulfonamide ligand. The beads are incubated with BCA and allowed to reach an equilibrium state in which the majority of the immobilized ligands are bound to BCA. Since the beads are less dense than the protein, protein binding to the bead increases the overall density of the bead. This change in density can be monitored using MagLev. Transferring the beads to a solution containing no protein creates a situation where net protein efflux from the bead is thermodynamically favorable. The rate at which protein leaves the bead for the solution can be calculated from the rate at which the levitation height of the bead changes. If another small molecule ligand of BCA is dissolved in the solution, the rate of protein efflux is accelerated significantly. This paper develops a reaction-diffusion (RD) model to explain both this observation, and the physical-organic chemistry that underlies it. Using this model, we calculate the dissociation constants of several unlabeled ligands from BCA, using plots of levitation height versus time. Notably, although this method requires no electricity, and only a single piece of inexpensive equipment, it can measure accurately the binding of unlabeled proteins to small molecules over a wide range of dissociation constants (K(d) values within the range from ~10 nM to 100 μM are measured easily). Assays performed using this method generally can be completed within a relatively short time period (20 min-2 h). A deficiency of this system is that it is not, in its present form, applicable to proteins with molecular weight greater

  7. The affinity plutonium(IV) for nitrogen donor ligands

    International Nuclear Information System (INIS)

    Jarvis, N.V.; Hancock, R.D.

    1994-01-01

    Established ligand design principles are used to predict the solution chemistry of Pu(IV) with nitrogen donor ligands which do not contain carboxylate donors. pK a 's of the nitrogen donors are lowered by addition of hydroxyalkyl groups causing Pu(IV) to have a greater affinity for these ligands than for hydroxide. Potentiometric studies using the ligands N,N,N'N',N''-pentakis(2-hydroxypropyl)-1,4,7-triazaheptane; N,N,N',N',N''-pentakis(2-hydroxyethyl)-1,4,7-triazaheptane; N,N,N',N',N'-tetrakis(2-hydroxyethyl)-1,2-diaminoethane; N,N,N',N'-tetrakis(2-hydroxyethyl)-trans-1,2-diaminocyclohexane; 1,4,8,11-tetrakis(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane and N,N-bis(2-hydroxyethyl)glycine with Pu(IV) showed that Pu(IV) has a considerable aqueous solution chemistry with these ligands. Data were processed by the ESTA library of programs and stability constants for all the systems are reported. Implications for selective ligand design for Pu(IV) are discussed. (orig.)

  8. Laser-induced flourescence studies of Cm3+ complexes in solution

    International Nuclear Information System (INIS)

    Beitz, J.V.

    1989-01-01

    Photophysical studies of complexed Cm 3 + in solution have been carried out using a laser-induced fluorescence method. The luminescence decay rate of the first excited J=7/2 state of Cm 3 + was measured using carbonate, nitrate, and two extractant aminocarboxylic acids as complexing ligands in aqueous solution. Cm(ClO 4 ) 3 dissolved in methyl sulfoxide also was studied. Solvent deuteration provided insight into the dominant nonradiative luminescence quenching mechanism which was found to be electronic-to- vibrational energy transfer. Emission spectra of Cm 3 + complexed by the various ligands studied are reported. Prior spectroscopic and photophysical studies of Cm 3 + in solution are reviewed. 24 refs. , 2 figs., 1 tab

  9. Systematic Introduction of Aromatic Rings to Diphosphine Ligands for Emission Color Tuning of Dinuclear Copper(I) Iodide Complexes.

    Science.gov (United States)

    Okano, Yuka; Ohara, Hiroki; Kobayashi, Atsushi; Yoshida, Masaki; Kato, Masako

    2016-06-06

    We have newly synthesized two solution-stable luminescent dinuclear copper(I) complexes, [Cu2(μ-I)2(dpppy)2] (Cu-py) and [Cu2(μ-I)2(dpppyz)2] (Cu-pyz), where dpppy = 2,3-bis(diphenylphosphino)pyridine and dpppyz = 2,3-bis(diphenylphosphino)pyrazine, using chelating diphosphine ligands composed of N-heteroaromatic rings. X-ray analysis clearly indicates that the molecular structures of Cu-py and Cu-pyz are almost identical with that of the parent complex, [Cu2(μ-I)2(dppb)2] [Cu-bz; dppb = 2,3-bis(diphenylphosphino)benzene]. Complexes Cu-py and Cu-pyz exhibit luminescence [emission quantum yield (Φem) = 0.48 and 0.02, respectively] in the solid state at 298 K. A wide emission color tuning, from 497 to 638 nm (energy = 0.55 eV, with an emission color ranging from green to reddish-orange), was achieved in the solid state by the introduction of pyridinic N atoms into the bridging phenyl group between the two diphenylphosphine groups. Density functional theory calculations suggest that the emission could originate from the effective combination of the metal-to-ligand charge-transfer excited state with the halide-to-ligand charge-transfer excited state. Thus, the emission color change is due to stabilization of the π* levels of the central aryl group in the diphosphine ligand. Furthermore, these copper(I) complexes exhibit thermally activated delayed fluorescence at 298 K because of the small singlet-triplet energy difference (ΔE = 523 and 564 cm(-1) for Cu-py and Cu-pyz, respectively). The stability of these complexes in chloroform, due to the rigid bonds between the diphosphine ligands and the Cu(I) ions, enables the preparation of emissive poly(methyl methacrylate) films by the solution-doping technique.

  10. Solution chemistry of lanthanide complexes

    International Nuclear Information System (INIS)

    Brittain, H.G.

    1979-01-01

    Intermolecular energy transfer from Tb 3+ to Eu 3+ , luminescence intensity measurements, potentiometric titrations, differential absorption spectroscopy, and spectroscopic titrations were all used to study the binding of lanthanide ions by serine and threonine. At low pH (3.0 to 6.0) the complexes are mononuclear and ligand is only weakly bound. In the pH interval of 6.0 to 8.5 stronger interaction takes place between the ligand and the metal (with possible coordination of the undissociated hydroxyl group), and self-association of complexes becomes important. Above pH 8.5, base hydrolysis of the complexes leads to highly associated species in solution and shortly above this pH an insoluble precipitate is formed. It was found that energy could be transferred from Tb 3+ to Eu 3+ more efficiently among complexes prepared from racemic ligands than in complexes made from resolved ligand, but this stereoselectivity was only observed at pH values greater than 6.5 and in solutions having a 1:10 ratio of metal-to-ligand. No stereoselectivity was found in solutions having 1:5 ratios, and this observation was explained by the existence of 1:2 metal-ligand complexes existing in solutions having the higher ratio of metal-to-ligand (only 1:1 complexes are then found at lower ratios of metal-to-ligand). (author)

  11. A novel signal transduction protein: Combination of solute binding and tandem PAS-like sensor domains in one polypeptide chain: Periplasmic Ligand Binding Protein Dret_0059

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Wilton, R. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Cuff, M. E. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Argonne National Laboratory, Argonne Illinois 60439; Endres, M. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Babnigg, G. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Edirisinghe, J. N. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne Illinois 60439; Computation Institute, University of Chicago, Chicago Illinois 60637; Henry, C. S. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne Illinois 60439; Computation Institute, University of Chicago, Chicago Illinois 60637; Joachimiak, A. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Argonne National Laboratory, Argonne Illinois 60439; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago Illinois 60637; Schiffer, M. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Pokkuluri, P. R. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439

    2017-03-06

    We report the structural and biochemical characterization of a novel periplasmic ligand-binding protein, Dret_0059, from Desulfohalobium retbaense DSM 5692, an organism isolated from the Salt Lake Retba in Senegal. The structure of the protein consists of a unique combination of a periplasmic solute binding protein (SBP) domain at the N-terminal and a tandem PAS-like sensor domain at the C-terminal region. SBP domains are found ubiquitously and their best known function is in solute transport across membranes. PAS-like sensor domains are commonly found in signal transduction proteins. These domains are widely observed as parts of many protein architectures and complexes but have not been observed previously within the same polypeptide chain. In the structure of Dret_0059, a ketoleucine moiety is bound to the SBP, whereas a cytosine molecule is bound in the distal PAS-like domain of the tandem PAS-like domain. Differential scanning flourimetry support the binding of ligands observed in the crystal structure. There is significant interaction between the SBP and tandem PAS-like domains, and it is possible that the binding of one ligand could have an effect on the binding of the other. We uncovered three other proteins with this structural architecture in the non-redundant sequence data base, and predict that they too bind the same substrates. The genomic context of this protein did not offer any clues for its function. We did not find any biological process in which the two observed ligands are coupled. The protein Dret_0059 could be involved in either signal transduction or solute transport.

  12. Solution chemistry and separation of metal ions in leached solution

    International Nuclear Information System (INIS)

    Shibata, J.

    1991-01-01

    The method to presume a dissolved state of metal ions in an aqueous solution and the technology to separate and concentrate metal ions in a leached solution are described in this paper. It is very important for the separation of metal ions to know the dissolved state of metal ions. If we know the composition of an aqueous solution and the stability constants of metal-ligand complexes, we can calculate and estimate the concentration of each species in the solution. Then, we can decide the policy to separate and concentrate metal ions. There are several methods for separation and purification; hydroxide precipitation method, sulfide precipitation method, solvent extraction method and ion exchange resin method. Solvent extraction has been used in purification processes of copper refinery, uranium refinery, platinum metal refinery and rare earth metal refinery. Fundamental process of solvent extraction, a kind of commercial extractants, a way of determining a suitable extractant and an equipment are discussed. Finally, it will be emphasized how the separation of rare earths is improved in solvent extraction. (author) 21 figs., 8 tabs., 8 refs

  13. The Effect of Precursor Ligands and Oxidation State in the Synthesis of Bimetallic Nano-Alloys

    KAUST Repository

    LaGrow, Alec P.

    2015-05-12

    The characteristics of bimetallic nanomaterials are dictated by their size, shape and elemental distribution. Solution synthesis is widely utilized to form nanomaterials, such as nanoparticles, with controlled size and shape. However, the effects of variables on the characteristics of bimetallic nanomaterials are not completely understood. In this study, we used a continuous-flow synthetic strategy to explore the effects of the ligands and the oxidation state of a metal precursor in a shape-controlled synthesis on the final shape of the nanomaterials and the elemental distribution within the alloy. We demonstrate that this strategy can tune the size of monodisperse PtM (M=Ni or Cu) alloy nanocrystals ranging from 3 to 16 nm with an octahedral shape using acetylacetonate or halide precursors of Pt(II), Pt(IV) and Ni or Cu (II). The nanoparticles formed from halide precursors showed an enrichment of platinum on their surfaces, and the bromides could oxidatively etch the nanoparticles during synthesis with the O2/Br- pair. The two nanocrystal precursors can be uti-lized independently and can control the size with a trend of Pt(acac)2ligand shell of a precursor during the synthesis of alloy nanoparticles as well as to control, in a scalable manner, the nanomaterial size and surface chemistry.

  14. The affinity of the uranyl ion for nitrogen donor ligands

    International Nuclear Information System (INIS)

    Jarvis, N.V.; De Sousa, A.S.; Hancock, R.D.

    1992-01-01

    Established ligand design principles are used to predict the solution chemistry of UO 2 2+ with nitrogen donor ligands which do not contain carboxylate donors. pK a 's of the nitrogen donors are lowered by addition of hydroxylalkyl groups causing UO 2 2+ to have a greater affinity for these ligands than for hydroxide. Potentiometric studies using the ligands N,N,N',N',N''-pentakis(2-hydroxypropyl)-1,4,7-triazaheptane; N,N,N',N',N''-pentakis(2-hydroxyethyl)-1,4,7-triazaheptane; N,N,N',N'-tetrakis(2-hydroxypropyl)1,2-diaminoethane, N,N,N',N'-tetrakis(2-hydroxyethyl)-trans-1,2-diaminocyclohexane; 1,4,8,11-tetrakis(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane and N,N-bis(2-hydroxyethyl)glycine with UO 2 2+ showed that UO 2 2+ has a considerable aqueous solution chemistry with these ligands. (orig.)

  15. A Versatile Dinucleating Ligand Containing Sulfonamide Groups

    DEFF Research Database (Denmark)

    Sundberg, Jonas; Witt, Hannes; Cameron, Lisa

    2014-01-01

    ligand can be prepared in aqueous solutions using only divalent metal ions. Two of the copper(II) complexes, [Cu2(psmp)(OH)] and [Cu2(psmp)(OAc)2]-, demonstrate the anticipated 1:2 ligand/metal stoichiometry and show that the dimetallic binding site created for exogenous ligands possesses high inherent...... of antiferromagnetic coupling. This is corroborated computationally by broken-symmetry density functional theory, which for isotropic modeling of the coupling predicts an antiferromagnetic coupling strength of J = 70.5 cm-1....

  16. Ligand adsorption on an activated carbon for the removal of chromate ions from aqueous solutions.

    Science.gov (United States)

    García-Martín, J; López-Garzón, R; Godino-Salido, M Luz; Gutiérrez-Valero, M Dolores; Arranz-Mascarós, P; Cuesta, R; Carrasco-Marín, F

    2005-07-19

    The results presented in this work are related to the design of a guideline to develop specific properties at the surface of an activated carbon (AC). For this, two model aromatic compounds have been synthesized and their electrolytic behavior in aqueous solutions was studied by a potentiometric method. The textural characteristics of the activated carbon were determined by porosimetry methods. The nature of oxygen-carrying functions and the acid-base behavior of the AC surface were characterized by TPD and potentiometric titration methods, respectively. The adsorption and desorption equilibria of the aromatic compounds on activated carbon were measured in aqueous solutions, and the hysteresis between adsorption and desorption, which reveals irreversible adsorption, was discussed on the basis of the frontier orbital theory. HOMO and LUMO orbitals of the adsorbent and adsorbates were calculated, and irreversible adsorption was attributed to the small energy difference between HOMO and LUMO of the aromatic adsorbates and the adsorbent. Adsorption equilibria of K2CrO4 in aqueous solution on the AC alone and on the AC-aromatic ligand adsorbents, respectively, prove the efficient development of specific chemical functions at the carbon surface provided by the adsorbed aromatic compounds.

  17. Technical Solution for Improved Safeguards/State Cooperation

    International Nuclear Information System (INIS)

    Miller, S.

    2015-01-01

    This paper will discuss an information technology solution to allow the IAEA Safeguards Department to improve cooperation with States. The solution will be a portal or hub to integrate the information, processes, and people between Safeguards and States. It will allow for two-way communication and collaboration between Safeguards staff and State representatives. This paper discusses the information security challenges inherent in building such a system. It proposes technical architectures that might allow the existing integration approach (e.g., encrypted email exchange) to be kept, while expanding it to include modern integration technologies (e.g., web services), as well explorer new collaborative web technologies. It looks at current Safeguards processes and approaches to cooperation and discusses efficiencies that could be achieved through the adoption of this technology solution. Example process areas for improvement include: a) Safeguards Agreements: States are obligated to submit data on their nuclear programme to the IAEA on a periodic basis. Declarations are received through two separate systems using encrypted email. The proposed solution would allow for enhanced exchange of declaration where States can submit any type of declaration using one system. When declarations are received and validated, an acknowledgement would automatically be sent to the State. The solution would provide the Safeguards Department the ability to ask for clarification as well as collaborate on the submitted declarations. Both the question and the response would be recorded in the system. The solution could also integrate tools allowing declarations to be added directly and validated before submission. b) Other areas that could benefit from this solution include declarations from States with small quantities protocol, facility declarations, as well as systems that support extra-budgetary funding (e.g., SPRICS). (author)

  18. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B.P. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author`s approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium.

  19. The Effect of Precursor Ligands and Oxidation State in the Synthesis of Bimetallic Nano-Alloys

    KAUST Repository

    LaGrow, Alec P.; Knudsen, Kristian; AlYami, Noktan; Anjum, Dalaver H.; Bakr, Osman

    2015-01-01

    of variables on the characteristics of bimetallic nanomaterials are not completely understood. In this study, we used a continuous-flow synthetic strategy to explore the effects of the ligands and the oxidation state of a metal precursor in a shape

  20. Development of Novel Method for Rapid Extract of Radionuclides from Solution Using Polymer Ligand Film

    Science.gov (United States)

    Rim, Jung H.

    Accurate and fast determination of the activity of radionuclides in a sample is critical for nuclear forensics and emergency response. Radioanalytical techniques are well established for radionuclides measurement, however, they are slow and labor intensive, requiring extensive radiochemical separations and purification prior to analysis. With these limitations of current methods, there is great interest for a new technique to rapidly process samples. This dissertation describes a new analyte extraction medium called Polymer Ligand Film (PLF) developed to rapidly extract radionuclides. Polymer Ligand Film is a polymer medium with ligands incorporated in its matrix that selectively and rapidly extract analytes from a solution. The main focus of the new technique is to shorten and simplify the procedure necessary to chemically isolate radionuclides for determination by alpha spectrometry or beta counting. Five different ligands were tested for plutonium extraction: bis(2-ethylhexyl) methanediphosphonic acid (H2DEH[MDP]), di(2-ethyl hexyl) phosphoric acid (HDEHP), trialkyl methylammonium chloride (Aliquat-336), 4,4'(5')-di-t-butylcyclohexano 18-crown-6 (DtBuCH18C6), and 2-ethylhexyl 2-ethylhexylphosphonic acid (HEH[EHP]). The ligands that were effective for plutonium extraction further studied for uranium extraction. The plutonium recovery by PLFs has shown dependency on nitric acid concentration and ligand to total mass ratio. H2DEH[MDP] PLFs performed best with 1:10 and 1:20 ratio PLFs. 50.44% and 47.61% of plutonium were extracted on the surface of PLFs with 1M nitric acid for 1:10 and 1:20 PLF, respectively. HDEHP PLF provided the best combination of alpha spectroscopy resolution and plutonium recovery with 1:5 PLF when used with 0.1M nitric acid. The overall analyte recovery was lower than electrodeposited samples, which typically has recovery above 80%. However, PLF is designed to be a rapid field deployable screening technique and consistency is more important

  1. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO) 2I 2 complex

    Science.gov (United States)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkiö, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-11-01

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [ trans-I-Ru(dcbpy)(CO) 2I 2] (dcbpy= 4,4 '-dicarboxy-2,2 '-bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [ cis-I-Ru(dcbpy)(CO)(Sol)I 2] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm -1) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes.

  2. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO)2I2 complex

    International Nuclear Information System (INIS)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkioe, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-01-01

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [trans-I-Ru(dcbpy)(CO) 2 I 2 ] (dcbpy4,4 ' -dicarboxy-2,2 ' -bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [cis-I-Ru(dcbpy)(CO)(Sol)I 2 ] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm -1 ) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes

  3. Studies on some mixed ligand complexes of UO2(VI) in solution

    International Nuclear Information System (INIS)

    Katkar, V.S.; Munshi, K.N.

    1987-01-01

    Potentiometric studies on some mixed ligand complexes of UO 2 (VI) with ethylenediamine N,N' diacetic acid as primary ligand and succinic acid, malic acid, maleic acid, fumaric acid, malonic acid, adipic acid, itaconic acid, phthalic acid and mandelic acid as secondary ligands have been carried out employing modified form of Irving-Rossotti's pH titration technique. The study was carried out at three different temperatures, viz. 5deg, 25deg and 45degC and at fixed ionic strength of 0.2M KNO 3 . Thermodynamic parameters, e.g. ΔG, ΔH and ΔS have been evaluated and further ΔG and ΔH values have been separated into their electrostatic components, ΔGe and ΔHe and cratic components, ΔGsub(c) and ΔHsub(c). The effect of change in dielectric constant and change in ionic strength of the medium have also been investigated. The sequence of stability constants has been correlated with the properties of secondary ligands. (author). 21 refs., 5 tabs

  4. Zirconium bisamidinate complexes with sterically demanding ligands : structure, solution dynamics, and reactivity

    NARCIS (Netherlands)

    Otten, Edwin; Dijkstra, Peter; Visser, Cindy; Meetsma, Auke; Hessen, Bart

    2005-01-01

    Bisamidinate zirconium dichloride and dimethyl complexes with the sterically demanding amidinate ligands [PhC(NAr)(2))](-) (A) and [PhC(NAr)(NAr')](-) (B) (Ar = 2,6-(Pr2C6H3)-Pr-i; Ar' = 2,6-Me2C6H3) were prepared. The steric demand of ligand A induces the unusual trans geometry in

  5. The affinity of the uranyl ion for nitrogen donor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, N.V. (Atomic Energy Corp. of South Africa Ltd., Pretoria (South Africa). Dept. of Process Technology); De Sousa, A.S.; Hancock, R.D. (Univ. of the Witwatersrand, Johannesburg (South Africa). Centre for Molecular Design)

    1992-01-01

    Established ligand design principles are used to predict the solution chemistry of UO[sub 2][sup 2+] with nitrogen donor ligands which do not contain carboxylate donors. pK[sub a]'s of the nitrogen donors are lowered by addition of hydroxylalkyl groups causing UO[sub 2][sup 2+] to have a greater affinity for these ligands than for hydroxide. Potentiometric studies using the ligands N,N,N',N',N''-pentakis(2-hydroxypropyl)-1,4,7-triazaheptane; N,N,N',N',N''-pentakis(2-hydroxyethyl)-1,4,7-triazaheptane; N,N,N',N'-tetrakis(2-hydroxypropyl)1,2-diaminoethane, N,N,N',N'-tetrakis(2-hydroxyethyl)-trans-1,2-diaminocyclohexane; 1,4,8,11-tetrakis(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane and N,N-bis(2-hydroxyethyl)glycine with UO[sub 2][sup 2+] showed that UO[sub 2][sup 2+] has a considerable aqueous solution chemistry with these ligands. (orig.).

  6. Phosphorus ligand imaging with two-photon fluorescence spectroscopy: towards rational catalyst immobilization

    NARCIS (Netherlands)

    Marras, F.; Kluwer, A.M.; Siekierzycka, J.R.; Vozza, A.; Brouwer, A.M.; Reek, J.N.H.

    2010-01-01

    Spotless catalysts: Ligand immobilization was studied by two-photon fluorescence microscopy with a fluorescent nixantphos ligand as probe (see picture). In the immobilization process ligand aggregates form in solution and are deposited on the support, where they appear as bright spots in

  7. Investigation of Sc(3) state in nonaqueous solutions by the 45Sc NMR method of high permission

    International Nuclear Information System (INIS)

    Buslaev, Yu.A.; Kirakosyan, G.A.; Tarasov, V.P.

    1980-01-01

    The ScCl 3 + CH 3 CN and ScCl 3 + KNCS + CH 3 CN solutions have been studied by a high-resolution NMR 45 Sc method. It has been estimated that in acetonitrile solutions, with competing ligands of Cl - and NCS - being available, hexacoordination Sc(3) complexes of various compositions are formed, and solvent molecules also take part in formation of the coordination sphere of scandium. Chemical shifts in NMR 45 Sc signals depend linearly on the number of chlor- or NCS - ions bound to scandium(3). This made it possible to determine the value of chemical shifts in signals of all 28 potential complexes formed in a system with three competing ligands

  8. Speciation of Pu(4) complexes with weak ligands from visible spectra

    International Nuclear Information System (INIS)

    Berg, J.M.; Veirs, D.K.

    2001-01-01

    Stoichiometries of early actinide metal ion complexes in solution equilibrium can sometimes be determined by modelling the dependence of a species-sensitive measurement on ligand concentration. Weak ligands present the additional problem that these measurements cannot be made in the simplifying limiting case of low ligand concentration relative to the background electrolyte. At high ligand concentrations, constant ionic strength no longer implies constant activity coefficients. Additional parameters must be included in the equilibrium model to account for the variation of activity coefficients with ligand concentration as well as with overall ionic strength. We present the formalism of such a model based on SIT theory and its implementation for simultaneous fitting of spectra over a wide range of ionic strengths. As a test case, we analyse a subset of the spectra we have collected on complexation of Pu(IV) by nitrate in aqueous acid solutions. (authors)

  9. Organic-inorganic hybrid perovskite quantum dots with high PLQY and enhanced carrier mobility through crystallinity control by solvent engineering and solid-state ligand exchange.

    Science.gov (United States)

    Woo Choi, Jin; Woo, Hee Chul; Huang, Xiaoguang; Jung, Wan-Gil; Kim, Bong-Joong; Jeon, Sie-Wook; Yim, Sang-Youp; Lee, Jae-Suk; Lee, Chang-Lyoul

    2018-05-22

    The photoluminescence quantum yield (PLQY) and charge carrier mobility of organic-inorganic perovskite QDs were enhanced by the optimization of crystallinity and surface passivation as well as solid-state ligand exchange. The crystallinity of perovskite QDs was determined by the Effective solvent field (Esol) of various solvents for precipitation. The solvent with high Esol could more quickly countervail the localized field generated by the polar solvent, and it causes fast crystallization of the dissolved precursor, which results in poor crystallinity. The post-ligand adding process (PLAP) and post-ligand exchange process (PLEP) increase the PLQY of perovskite QDs by reducing non-radiative recombination and the density of surface defect states through surface passivation. Particularly, the post ligand exchange process (PLEP) in the solid-state improved the charge carrier mobility of perovskite QDs in addition to the PLQY enhancement. The ligand exchange with short alkyl chain length ligands could improve the packing density of perovskite QDs in films by reducing the inter-particle distance between perovskite QDs. The maximum hole mobility of 6.2 × 10-3 cm2 V-1 s-1, one order higher than that of pristine QDs without the PLEP, is obtained at perovskite QDs with hexyl ligands. By using PLEP treatment, compared to the pristine device, a 2.5 times higher current efficiency in perovskite QD-LEDs was achieved due to the improved charge carrier mobility and PLQY.

  10. An excited state underlies gene regulation of a transcriptional riboswitch

    Science.gov (United States)

    Zhao, Bo; Guffy, Sharon L.; Williams, Benfeard; Zhang, Qi

    2017-01-01

    Riboswitches control gene expression through ligand-dependent structural rearrangements of the sensing aptamer domain. However, we found that the Bacillus cereus fluoride riboswitch aptamer adopts identical tertiary structures in solution with and without ligand. Using chemical exchange saturation transfer (CEST) NMR spectroscopy, we revealed that the structured ligand-free aptamer transiently accesses a low-populated (~1%) and short-lived (~3 ms) excited conformational state that unravels a conserved ‘linchpin’ base pair to signal transcription termination. Upon fluoride binding, this highly localized fleeting process is allosterically suppressed to activate transcription. We demonstrated that this mechanism confers effective fluoride-dependent gene activation over a wide range of transcription rates, which is essential for robust toxicity response across diverse cellular conditions. These results unveil a novel switching mechanism that employs ligand-dependent suppression of an aptamer excited state to coordinate regulatory conformational transitions rather than adopting distinct aptamer ground-state tertiary architectures, exemplifying a new mode of ligand-dependent RNA regulation. PMID:28719589

  11. Excited state redox properties of phthalocyanines: influence of the axial ligand on the rates of relaxation and electron-transfer quenching of the lowest /sup 3/. pi pi. /sup */ excited state

    Energy Technology Data Exchange (ETDEWEB)

    Ferraudi, G J; Prasad, D R

    1874-01-01

    Laser flash excitations at 640 nm have been used to generate the transient spectra of the lowest-lying /sup 3/..pi pi../sup */ state of phthalocyaninatoruthenium(II) complexes. The properties of this excited state such as the properties of the maxima, lambda/sub max/ = 500 +/- 30 nm, and lifetimes, t/sub 1/2/ = 70-4500 ns, exhibit a large dependence on the electron-accepting and electron-withdrawing tendencies of the axial ligands. A similar influence was observed upon the rate of electron-transfer quenching of the /sup 3/..pi pi../sup */ state. Values between 10/sup 6/ and 10/sup 7/ dm/sup 3/ mol/sup -1/ s/sup -1/ for the self-exchange rate constant have been obtained, according to Marcus-Hush theoretical treatments, for (Ru(pc.)LL')/sup +//(/sup 3/..pi pi../sup */)(Ru(pc)LL') (L and L' = neutral axial ligands; pc = phthalocyaninate (2-)) and isoelectronic cobalt(III) and rhodium(III) couples. The redox properties of the ground and excited states are correlated with axial ligand-induced perturbations of the electronic structure.

  12. Organic ligand-induced dissolution kinetics of antimony trioxide

    Institute of Scientific and Technical Information of China (English)

    Xingyun Hu; Mengchang He

    2017-01-01

    The influence of low-molecular-weight dissolved organic matter (LMWDOM) on the dissolution rate of Sb2O3 was investigated.Some representative LMWDOMs with carboxyl,hydroxyl,hydrosulfuryl and amidogen groups occurring naturally in the solution were chosen,namely oxalic acid,citric acid,tartaric acid,EDTA,salicylic acid,phthalandione,glycine,thiolactic acid,xylitol,glucose and catechol.These LMWDOMs were dissolved in inert buffers at pH =3.7,6.6 and 8.6 and added to powdered Sb2O3 in a stirred,thermostatted reactor (25℃).The addition of EDTA,tartaric acid,thiolactic acid,citric acid and oxalic acid solutions at pH 3.7 and catechol at pH 8.6 increased the rate of release of antimony.In the 10 mmol/L thiolactic acid solution,up to 97% by mass of the antimony was released after 120 min reaction.There was no effect on the dissolution of Sb2O3 for the other ligands.A weak correlation between dissolution rate with the dissociation constant of ligands and the stability of the dissolved complex was also found.All the results showed that the extent of the promoting effect of ligands on the dissolution of Sb2O3 was not determined by the stability of the dissolved complex,but by the dissociation constant of ligands and detachment rate of surface chelates from the mineral surface.This study can not only help in further understanding the effect of individual low-molecular-weight organic ligands,but also provides a reference to deduce the effect of natural organic matters with oxygen-bearing functional groups on the dissolution of antimony oxide minerals.

  13. Enhanced electrical stability of nitrate ligand-based hexaaqua complexes solution-processed ultrathin a-IGZO transistors

    Science.gov (United States)

    Choi, C.; Baek, Y.; Lee, B. M.; Kim, K. H.; Rim, Y. S.

    2017-12-01

    We report solution-processed, amorphous indium-gallium-zinc-oxide-based (a-IGZO-based) thin-film transistors (TFTs). Our proposed solution-processed a-IGZO films, using a simple spin-coating method, were formed through nitrate ligand-based metal complexes, and they were annealed at low temperature (250 °C) to achieve high-quality oxide films and devices. We investigated solution-processed a-IGZO TFTs with various thicknesses, ranging from 4 to 16 nm. The 4 nm-thick TFT films had smooth morphology and high-density, and they exhibited excellent performance, i.e. a high saturation mobility of 7.73  ±  0.44 cm2 V-1 s-1, a sub-threshold swing of 0.27 V dec-1, an on/off ratio of ~108, and a low threshold voltage of 3.10  ±  0.30 V. However, the performance of the TFTs degraded as the film thickness was increased. We further performed positive and negative bias stress tests to examine their electrical stability, and it was noted that the operating behavior of the devices was highly stable. Despite a small number of free charges, the high performance of the ultrathin a-IGZO TFTs was attributed to the small effect of the thickness of the channel, low bulk resistance, the quality of the a-IGZO/SiO2 interface, and high film density.

  14. Ternary complex formation at mineral/solution interfaces

    International Nuclear Information System (INIS)

    Leckie, J.O.

    1995-01-01

    Adsorption of trace concentrations of radionuclides and heavy metals from aqueous solution is dependent on pH, absorbent and adsorbate concentration, and speciation of the metal in solution. In particular, complexation of metal ions by organic and inorganic ligands can dramatically alter adsorption behavior compared to ligand-free systems. The presence of complexing ligands can cause the formation of ''metal like'' or ''ligand like'' ternary surface complexes depending on whether adsorption of the ternary complex increases or decreases with increasing pH, respectively. Examples of ternary surface complexes behaving ''metal like'' include uranyl-EDTA surface complexes on goethite, neptunyl-EDTA surface complexes on hematite and neptunyl-humic surface complexes on gibbsite. Examples of ''ligand like'' ternary surface complexes include uranyl-carbonato and neptunyl-carbonato surface complexes on iron oxides. The effects of complex solutions and multimineralic systems are discussed. (authors). 39 refs., 16 figs., 8 tabs

  15. Remediation of lead-contaminated soil with non-toxic biodegradable natural ligands extracted from soybean.

    Science.gov (United States)

    Lee, Yong-Woo; Kim, Chulsung

    2012-01-01

    Bench-scale soil washing studies were performed to evaluate the potential application of non-toxic, biodegradable extracted soybean-complexing ligands for the remediation of lead-contaminated soils. Results showed that, with extracted soybean-complexing ligands, lead solubility extensively increased when pH of the solution was higher than 6, and approximately 10% (500 mg/kg) of lead was removed from a rifle range soil. Two potential primary factors controlling the effectiveness of lead extraction from lead-contaminated soils with natural ligands are adsorption of extracted aqueous lead ions onto the ground soybean and the pH of the extraction solution. More complexing ligands were extracted from the ground soybean as the reaction pH increased. As a result, significantly higher lead extraction efficiency was observed under basic environments. In addition, less adsorption onto soybean was observed when the pH of the solution was higher than 7. Among two available Lewis base functional groups in the extracted soybean-complexing ligands such as carboxylate and the alpha-amino functional groups, the non-protonated alpha-amino functional groups may play an important role for the dissolution of lead from lead-contaminated soil through the formation of soluble lead--ligand complexes.

  16. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO){sub 2}I{sub 2} complex

    Energy Technology Data Exchange (ETDEWEB)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkioe, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-11-15

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [trans-I-Ru(dcbpy)(CO){sub 2}I{sub 2}] (dcbpy4,4{sup '}-dicarboxy-2,2{sup '}-bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [cis-I-Ru(dcbpy)(CO)(Sol)I{sub 2}] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm{sup -1}) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes.

  17. Organic ligand-induced dissolution kinetics of antimony trioxide.

    Science.gov (United States)

    Hu, Xingyun; He, Mengchang

    2017-06-01

    The influence of low-molecular-weight dissolved organic matter (LMWDOM) on the dissolution rate of Sb 2 O 3 was investigated. Some representative LMWDOMs with carboxyl, hydroxyl, hydrosulfuryl and amidogen groups occurring naturally in the solution were chosen, namely oxalic acid, citric acid, tartaric acid, EDTA, salicylic acid, phthalandione, glycine, thiolactic acid, xylitol, glucose and catechol. These LMWDOMs were dissolved in inert buffers at pH=3.7, 6.6 and 8.6 and added to powdered Sb 2 O 3 in a stirred, thermostatted reactor (25°C). The addition of EDTA, tartaric acid, thiolactic acid, citric acid and oxalic acid solutions at pH3.7 and catechol at pH8.6 increased the rate of release of antimony. In the 10mmol/L thiolactic acid solution, up to 97% by mass of the antimony was released after 120min reaction. There was no effect on the dissolution of Sb 2 O 3 for the other ligands. A weak correlation between dissolution rate with the dissociation constant of ligands and the stability of the dissolved complex was also found. All the results showed that the extent of the promoting effect of ligands on the dissolution of Sb 2 O 3 was not determined by the stability of the dissolved complex, but by the dissociation constant of ligands and detachment rate of surface chelates from the mineral surface. This study can not only help in further understanding the effect of individual low-molecular-weight organic ligands, but also provides a reference to deduce the effect of natural organic matters with oxygen-bearing functional groups on the dissolution of antimony oxide minerals. Copyright © 2016. Published by Elsevier B.V.

  18. Pharmacophore searching: A potential solution for correcting unknown ligands (UNK) labelling errors in Protein Data Bank (PDB'S).

    Science.gov (United States)

    Ibrahim, Musadiq; Lapthorn, Adrian Jonathan; Ibrahim, Mohammad

    2017-08-01

    The Protein Data Bank (PDB) is the single most important repository of structural data for proteins and other biologically relevant molecules. Therefore, it is critically important to keep the PDB data, error-free as much as possible. In this study, we have critically examined PDB structures of 292 protein molecules which have been deposited in the repository along with potentially incorrect ligands labelled as Unknown ligands (UNK). Pharmacophores were generated for all the protein structures by using Discovery Studio Visualizer (DSV) and Accelrys, Catalyst ® . The generated pharmacophores were subjected to the database search containing the reported ligand. Ligands obtained through Pharmacophore searching were then checked for fitting the observed electron density map by using Coot ® . The predicted ligands obtained via Pharmacophore searching fitted well with the observed electron density map, in comparison to the ligands reported in the PDB's. Based on our study we have learned that till may 2016, among 292 submitted structures in the PDB, at least 20 structures have ligands with a clear electron density but have been incorrectly labelled as unknown ligands (UNK). We have demonstrated that Pharmacophore searching and Coot ® can provide potential help to find suitable known ligands for these protein structures, the former for ligand search and the latter for electron density analysis. The use of these two techniques can facilitate the quick and reliable labelling of ligands where the electron density map serves as a reference. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Surface ligands affect photoinduced modulation of the quantum dots optical performance

    Science.gov (United States)

    Krivenkov, Victor A.; Samokhvalov, Pavel S.; Linkov, Pavel A.; Solovyeva, Daria O.; Kotkovskii, Gennadii E.; Chistyakov, Alexander A.; Nabiev, Igor

    2014-05-01

    Changes of optical properties of the solutions of CdSe/ZnS quantum dots (QDs) covered with the trioctylphosphine oxide (TOPO) ligands under the pulsed ultraviolet (UV) laser irradiation are observed. The fluorescence quantum yield (QY) of QDs decreases by more than an order of magnitude when the radiation dose approaches 2 × 10-15 J per particle. This process is accompanied by a blue shift of both fluorescence and the first excitonic absorption peaks. The fluorescence quenching becomes less pronounced when the overall TOPO content in the solution is increased. When ТОРО ligands are replaced with n-hexadecylamine (HDA), QY and spectral properties are not changed at the same irradiation conditions. We assume that the above changes of the optical properties are associated with photooxidation of TOPO ligands by excited QD. Such process is less probable for the HDA ligand due to its different energy structure.

  20. The Colloidal Stabilization of Quantum Dots: Towards Manufacturable, Efficient Solution-Processed Solar Cells

    Science.gov (United States)

    Rollny, Lisa

    Understanding colloidal stabilization can influence the design of optoelectronic devices and enable improvements to their performance and stability. For photovoltaics, important characteristics of the active layer material are high conductivity along with a minimum of recombination centers. In order to capitalize on the benefits of solution-processed materials, it is important to minimize the number of processing steps: ideally, to achieve a low-cost solution, materials would be deposited using a single process step compatible with roll-to-roll manufacturing. Prior to this work, the highest-performing colloidal quantum dots (CQD) solar cells have relied on several deposition steps that are repeated in a layer-by-layer (LBL) fashion. The purpose of these process steps has been to remove the long insulating ligands used in synthesis and replace them with short ligands that allow electrical conduction. The large number of steps combined, typically implemented via spin coating, leads to inefficient materials utilization and fails to show a path to a manufacturable solution. In this work, the first CQD solar cells were designed, built, and characterized combining state-of-art performance with scalable manufacture. Firstly, I report the first automated CQD synthesis to result in CQDs that form high-performance CQD solar cells. I analyze the CQD synthesis and by separating it into two phases---nucleation and growth phase---my insights are used to create higher-quality CQDs exhibiting enhanced monodispersity. I then proceed to develop a CQD ink: a CQD solution ready for direct deposition to form a semiconducting film exhibiting low trap state density. In early trials the CQD ink showed only limited power conversion efficiencies of 2%. I designed a new ink strategy, which I term cleavable hemiketal ligands. This novel two-component ligand strategy enables the combination of colloidal stabilization (via this longer two-component ligand) and cleavability (enabling excellent

  1. Four-state solution of the Yang-Baxter equation

    International Nuclear Information System (INIS)

    Kashaev, R.M.; Mangazeev, V.V.

    1990-01-01

    A new four-state solution of the Yang-Baxter equation is constructed with the help of the lowest dimensional cyclic L-operator related to a 3-state R-matrix. Some special choice of parameters which this solution depends on, leads to the exactly solvable spin model on the chain with Hermitian Hamiltonian. 8 refs

  2. Electrochemistry of oxo-technetium(V) complexes containing Schiff base and 8-quinolinol ligands

    International Nuclear Information System (INIS)

    Refosco, F.; Mazzi, U.; Deutsch, E.; Kirchhoff, J.R.; Heineman, W.R.; Seeber, R.

    1988-01-01

    The electrochemistry of six-coordinate, monooxo technetium(V) complexes containing Schiff base ligands has been studied in acetonitrile and N,N'-dimethylformamide solutions. The complexes have the general formula TcOCl(L B ) 2 or TcO(L T )(L B ), where L B represents a bidentate-N,O Schiff base ligand or a bidentate-N,O 8-quinolinol ligand and L T represents a tridentate-O,N,O Schiff base ligand. Cyclic voltammetry at a platinum-disk electrode, controlled-potential coulometry, and thin-layer spectroelectrochemistry were used to probe both the oxidation and the reduction of these complexes. The results of these studies, and previously reported results on the analogous Re(V) complexes, can be understood within a single general reaction scheme. The salient features of this scheme are (i) one-electron reduction of Tc(V) to Tc(IV), (ii) subsequent loss of a ligand situated cis to the Tc≡O linkage, and (iii) subsequent isomerization of this unstable Tc(IV) product to more stable complex in which the site trans to the Tc≡O linkage is vacant. The Tc(IV) complexes can also be reduced to analogous Tc(III) species, which appear to undergo the same ligand loss and isomerization reactions. The technetium complexes are 400-500 mV easier to reduce than are their rhenium analogues. The 8-quinolinol ligands, and especially the 5-nitro derivative, both thermodynamically and kinetically stabilize the Tc(IV) and Tc(III) oxidation states. These electrogenerated species are unusual in that they constitute the bulk of the known examples of monomeric Tc(IV) and Tc(III) complexes containing only N- and O-donating ligands. 34 refs., 9 figs., 1 tab

  3. Synthesis and binding studies of Alzheimer ligands on solid support.

    Science.gov (United States)

    Rzepecki, Petra; Geib, Nina; Peifer, Manuel; Biesemeier, Frank; Schrader, Thomas

    2007-05-11

    Aminopyrazole derivatives constitute the first class of nonpeptidic rationally designed beta-sheet ligands. Here we describe a double solid-phase protocol for both synthesis and affinity testing. The presented solid-phase synthesis of four types of hybrid compounds relies on the Fmoc strategy and circumvents subsequent HPLC purification by precipitating the final product from organic solution in pure form. Hexa- and octapeptide pendants with internal di- and tetrapeptide bridges are now amenable in high yields to combinatorial synthesis of compound libraries for high-throughput screening purposes. Solid-phase peptide synthesis (SPPS) on an acid-resistant PAM allows us, after PMB deprotection, to subject the free aminopyrazole binding sites in an immobilized state to on-bead assays with fluorescence-labeled peptides. From the fluorescence emission intensity decrease, individual binding constants can be calculated via reference curves by simple application of the law of mass action. Gratifyingly, host/guest complexation can be monitored quantitatively even for those ligands, which are almost insoluble in water.

  4. Study of actinide paramagnetism in solution

    International Nuclear Information System (INIS)

    Autillo, Matthieu

    2015-01-01

    The physiochemical properties of actinide (An) solutions are still difficult to explain, particularly the behavioral differences between An(III) and Ln(III). The study of actinide paramagnetic behavior may be a 'simple' method to analyze the electronic properties of actinide elements and to obtain information on the ligand-actinide interaction. The objective of this PhD thesis is to understand the paramagnetic properties of these elements by magnetic susceptibility measurements and chemical shift studies. Studies on actinide electronic properties at various oxidation states in solution were carried out by magnetic susceptibility measurements in solution according to the Evans method. Unlike Ln(III) elements, there is no specific theory describing the magnetic properties of these ions in solution. To obtain accurate data, the influence of experimental measurement technique and radioactivity of these elements was analyzed. Then, to describe the electronic structure of their low energy states, the experimental results were complemented with quantum chemical calculations from which the influence of the ligand field was studied. Finally, these interpretations were applied to better understand the variations in the magnetic properties of actinide cations in chloride and nitrate media. Information about ligand-actinide interactions may be determined from an NMR chemical shift study of actinide complexes. Indeed, modifications induced by a paramagnetic complex can be separated into two components. The first component, a Fermi contact contribution (δ_c) is related to the degree of covalency in coordination bonds with the actinide ions and the second, a dipolar contribution (δ_p_c) is related to the structure of the complex. The paramagnetic induced shift can be used only if we can isolate these two terms. To achieve this study on actinide elements, we chose to work with the complexes of dipicolinic acid (DPA). Firstly, to characterize the geometrical parameters, a

  5. Colloidal Quantum Dot Inks for Single-Step-Fabricated Field-Effect Transistors: The Importance of Postdeposition Ligand Removal.

    Science.gov (United States)

    Balazs, Daniel M; Rizkia, Nisrina; Fang, Hong-Hua; Dirin, Dmitry N; Momand, Jamo; Kooi, Bart J; Kovalenko, Maksym V; Loi, Maria Antonietta

    2018-02-14

    Colloidal quantum dots are a class of solution-processed semiconductors with good prospects for photovoltaic and optoelectronic applications. Removal of the surfactant, so-called ligand exchange, is a crucial step in making the solid films conductive, but performing it in solid state introduces surface defects and cracks in the films. Hence, the formation of thick, device-grade films have only been possible through layer-by-layer processing, limiting the technological interest for quantum dot solids. Solution-phase ligand exchange before the deposition allows for the direct deposition of thick, homogeneous films suitable for device applications. In this work, fabrication of field-effect transistors in a single step is reported using blade-coating, an upscalable, industrially relevant technique. Most importantly, a postdeposition washing step results in device properties comparable to the best layer-by-layer processed devices, opening the way for large-scale fabrication and further interest from the research community.

  6. Probes of the metal-to-ligand charge-transfer excited states in ruthenium-Am(m)ine-bipyridine complexes: the effects of NH/ND and CH/CD isotopic substitution on the 77 K luminescence.

    Science.gov (United States)

    Chen, Yuan-Jang; Xie, Puhui; Endicott, John F; Odongo, Onduru S

    2006-06-29

    The effects of ligand perdeuteration on the metal-to-ligand charge-transfer (MLCT) excited-state emission properties at 77 K are described for several [Ru(L)(4)bpy](2+) complexes in which the emission process is nominally [uIII,bpy-] --> [RuII,bpy]. The perdeuteration of the 2,2'-bipyridine (bpy) ligand is found to increase the zero-point energy differences between the ground states and MLCT excited states by amounts that vary from 0 +/- 10 to 70 +/- 10 cm(-1) depending on the ligands L. This indicates that there are some vibrational modes with smaller force constants in the excited states than in the ground states for most of these complexes. These blue shifts increase approximately as the energy difference between the excited and ground states decreases, but they are otherwise not strongly correlated with the number of bipyridine ligands in the complex. Careful comparisons of the [Ru(L)(4)(d(8)-bpy)](2+) and [Ru(L)(4)(h(8)-bpy](2+) emission spectra are used to resolve the very weak vibronic contributions of the C-H stretching modes as the composite contributions of the corresponding vibrational reorganizational energies. The largest of these, 25 +/- 10 cm(-1), is found for the complexes with L = py or bpy/2 and smaller when L = NH(3). Perdeuteration of the am(m)ine ligands (NH(3), en, or [14]aneN(4)) has no significant effect on the zero-point energy difference, and the contributions of the NH stretching vibrational modes to the emission band shape are too weak to resolve. Ligand perdeuteration does increase the excited-state lifetimes by a factor that is roughly proportional to the excited-state-ground-state energy difference, even though the CH and NH vibrational reorganizational energies are too small for nuclear tunneling involving these modes to dominate the relaxation process. It is proposed that metal-ligand skeletal vibrational modes and configurational mixing between metal-centered, bpy-ligand-centered, and MLCT excited states are important in

  7. Nonlinear absorbing cationic iridium(III) complexes bearing benzothiazolylfluorene motif on the bipyridine (N∧N) ligand: synthesis, photophysics and reverse saturable absorption.

    Science.gov (United States)

    Li, Yuhao; Dandu, Naveen; Liu, Rui; Hu, Lei; Kilina, Svetlana; Sun, Wenfang

    2013-07-24

    Four new heteroleptic cationic Ir(III) complexes bearing benzothiazolylfluorene motif on the bipyridine (N∧N) (1 and 2) and phenylpyridine (C∧N) (3 and 4) ligands are synthesized and characterized. The influence of the position of the substituent and the extent of π-conjugation on the photophysics of these complexes is systematically investigated by spectroscopic methods and simulated by time-dependent density functional theory (TDDFT). The complexes exhibit ligand-centered (1)π,π* transitions with admixtures of (1)ILCT (π(benzothiazolylfluorene) → π*(bpy)) and (1)MLCT (metal-to-ligand charge transfer) characters below 475 nm, and very weak (1,3)MLCT and (1,3)LLCT (ligand-to-ligand charge transfer) transitions above 475 nm. The emission of these complexes at room temperature in CH2Cl2 solutions is ascribed to be predominantly from the (3)MLCT/(3)LLCT states for 1 and from the (3)π,π* state for 2, while the emitting state of 3 and 4 are assigned to be an admixture of (3)MLCT, (3)LLCT, and (3)π,π* characters. The variations of the photophysical properties of 1-4 are attributed to different degrees of π-conjugation in the bipyridine and phenylpyridine ligands induced by different positions of the benzothiazolylfluorenyl substituents on the bipyridine ligand and different extents of π-conjugation in the phenylpyridine ligands, which alters the energy and lifetime of the lowest singlet and triplet excited states. 1-4 all possess broadband transient absorption (TA) upon nanosecond laser excitation, which extends from the visible to the NIR region. Therefore, 1-4 all exhibit strong reverse saturable absorption (RSA) at 532 nm for ns laser pulses. However, the TA of complexes 1, 2, and 3 are much stronger than that of 4. This feature, combined with the difference in ground-state absorption and triplet excited-state quantum yield, result in the difference in RSA strength, which follows this trend: 1 ≈ 2 ≈ 3 > 4. Therefore, complexes 1-3 are strong

  8. Variations of structures and solid-state conductivity of isomeric silver(I) coordination polymers having linear and V-shaped thiophene-centered ditriazole ligands

    International Nuclear Information System (INIS)

    Hu, Bin; Geng, Jiao; Zhang, Lie; Huang, Wei

    2014-01-01

    A pair of new linear and V-shaped acceptor–donor–acceptor (A−D−A) thiophene-centered ditriazole structural isomers, i.e., 2,5-di(1H-1,2,4-triazol-1-yl)thiophene (L 1 ) and 3,4-di(1H-1,2,4-triazol-1-yl)thiophene (L 2 ), has been synthesized and characterized. They are used as μ 2 -bridging ligands to prepare a pair of silver(I) coordination polymers formulated as [Ag(L 1 )(NO 3 )] n (1) and [Ag(L 2 )(NO 3 )] n (2), which are also structural isomers at the supramolecular level. X-ray single-crystal diffraction analyses for 1 and 2 reveal that they exhibit the same one-dimensional (1D) coordination polymers but different structural architectures because of the distinguishable shape and configuration of isomeric ligands (L 1 and L 2 ) and the alterations of the coordination numbers. More interestingly, compared with the free ligands, 1D silver(I) polymeric isomers 1 and 2 show significant enhancement of solid-state conductivity to different extents (1.42×10 4 and 2.17×10 3 times), where 6.96 times' enhancement of solid-state conductivity from 1 to 2 has been observed. The formation of Ag–N coordinative bonds and the configurational discrepancy of L 1 and L 2 are believed to play important roles in facilitating the electron transport between molecules, which can also be supported by Density Function Theory calculations of their band gaps. - Graphical abstract: A pair of linear and V-shaped isomeric thiophene-centered ditriazole ligands (L 1 ) and L 2 are used to prepare a pair of silver(I) polymeric isomers (1 and 2), where significant enhancement of solid-state conductivity to different extents are observed originating from the distinguishable shape and configuration of isomeric ligands. - Highlights: • A pair of linear and V-shaped thiophene-centered ditriazole structural isomers is prepared. • They are used as µ 2 -bridging ligands to prepare a pair of silver(I) polymeric isomers. • Significant enhancement of solid-state conductivity is observed

  9. Complexation study of NpO2+ and UO22+ ions with several organic ligands in aqueous solutions of high ionic strength

    International Nuclear Information System (INIS)

    Borkowski, M.; Lis, S.; Choppin, G.R.

    1995-01-01

    The acid dissociation constants, pK a , and the stability constants for NpO 2 + and UO 2 2+ have been measured for certain organic ligands [acetate, α-hydroxyisobutyrate, lactate, ascorbate, oxalate, citrate, EDTA, 8-hydroxyquinoline, 1, 10-phenanthroline, and thenoyltrifluoroacetone] in 5 m (NaCl) ionic strength solution. The pK a values were determined by potentiometry or spectrometry. These methods, as well as solvent extraction with 233 U and 237 Np radiotracers, were used to measure the stability constants of the 1:1 and 1:2 complexes of dioxo cations. These constants were used to estimate the concentrations required to result in 10 % competition with hydrolysis in the 5 m NaCl solution. Such estimates are of value in assessing the solubility from radioactive waste of AnO 2 + and AnO 2 2+ in brine solutions in contact with nuclear waste in a salt-bed repository

  10. Electrolytic formation of technetium complexes with π-acceptor ligands

    International Nuclear Information System (INIS)

    Cerda, F.; Kremer, C.; Gambino, D.; Kremer, E.

    1994-01-01

    Electrolytic reduction of pertechnetate was performed in aqueous solution containing π-acceptor ligands. Cyanide and 1,10-phenanthroline were the selected ligands. In both cases, electrolyses produced a cathodic TcO 2 deposit and soluble Tc complexes. When cyanide was the ligand, the complexes formed were [Tc(CN) 6 ] 5- and [TcO 2 (CN) 4 ] 3- . When working with the amine, [Tc(phen) 3 ] 2+ and another positively charged species were found after reaction. Results are compared with previous studies with amines, and the usefulness of the electrolytic route to obtain Tc complexes is evaluated. (author) 11 refs.; 2 figs.; 1 tab

  11. Semiconductor Quantum Dots with Photoresponsive Ligands.

    Science.gov (United States)

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  12. Study of relaxation processes in 'metal-ligand' complexes after electron capture decay using the 111In isotope as an example

    International Nuclear Information System (INIS)

    Shpinkova, L.G.; Golubeva, A.S.; Ryasny, O.K.; Nikitin, S.M.; Sorokin, A.A.; Uzbyakova, A.S.

    2003-01-01

    Full text: Complexes of metals with organic ligands are widely used in different scientific and industrial applications, such as analytical chemistry, oil production and refinery, power engineering, water treatment, agriculture, etc. Several hundred complexes are commercially available and there are still intensive works on synthesizing new complexones in order to obtain complexes with required properties. In this connection, it is important to investigate the molecular characteristics of complexes and their structures and correlate with their properties. One of the methods, which proved to provide useful information about metal-ligand complexes behaviour, is the method of time differential perturbed angular γγ-correlation (Tdpa). Numerous works have been devoted to studies of different complexes by this technique. In the Inst. of Nuclear Physics, Lomonosov Moscow State Univ., Moscow, this method was applied to studies of electron capture (EC) after-effects and their influence on the indium-ligand complexes in aqueous solutions. The present work is devoted to studies of relaxation processes in daughter 111 Cd-ligand complexes formed after 111 In EC decay. EC leaves a hole in an inner electronic shell of the daughter atom, which is followed by Auger-process. This process leads to a highly excited state of a daughter atom, which either causes disintegration of a complex into small fragments or relaxation to a stable complex with the daughter atom. TDPAC measurements were performed for a number of 111 In-complexes with acetic and phosphonic ligands. All measurements were performed for neutral aqueous solutions of complexes at room temperature. Three types of molecules containing radioactive daughter 11C d atoms were observed after 111 In decay for all studied complexes. One fraction corresponds to the intact complexes, the second one - to fully disintegrated complexes. The third fraction was characterized by a fast relaxation parameter indicating high transient

  13. Solution NMR characterization of magnetic/electronic properties of azide and cyanide-inhibited substrate complexes of human heme oxygenase: implications for steric ligand tilt.

    Science.gov (United States)

    Peng, Dungeng; Ogura, Hiroshi; Ma, Li-Hua; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N

    2013-04-01

    Solution 2D (1)H NMR was carried out on the azide-ligated substrate complex of human heme oxygenase, hHO, to provide information on the active site molecular structure, chromophore electronic/magnetic properties, and the distal H-bond network linked to the exogenous ligand by catalytically relevant oriented water molecules. While 2D NMR exhibited very similar patterns of two-dimensional nuclear Overhauser spectroscopy cross peaks of residues with substrate and among residues as the previously characterized cyanide complex, significant, broadly distributed chemical shift differences were observed for both labile and non-labile protons. The anisotropy and orientation of the paramagnetic susceptibility tensor, χ, were determined for both the azide and cyanide complexes. The most significant difference observed is the tilt of the major magnetic axes from the heme normal, which is only half as large for the azide than cyanide ligand, with each ligand tilted toward the catalytically cleaved α-meso position. The difference in chemical shifts is quantitatively correlated with differences in dipolar shifts in the respective complexes for all but the distal helix. The necessity of considering dipolar shifts, and hence determination of the orientation/anisotropy of χ, in comparing chemical shifts involving paramagnetic complexes, is emphasized. The analysis shows that the H-bond network cannot detect significant differences in H-bond acceptor properties of cyanide versus azide ligands. Lastly, significant retardation of distal helix labile proton exchange upon replacing cyanide with azide indicates that the dynamic stability of the distal helix is increased upon decreasing the steric interaction of the ligand with the distal helix. Copyright © 2013. Published by Elsevier Inc.

  14. A feasibility study of unconventional planar ligand spacers in chalcogenide nanocrystals.

    Science.gov (United States)

    Lukose, Binit; Clancy, Paulette

    2016-05-18

    The solar cell efficiency of chalcogenide nanocrystals (quantum dots) has been limited in the past by the insulation between neighboring quantum dots caused by intervening, often long-chain, aliphatic ligands. We have conducted a computationally based feasibility study to investigate the use of ultra-thin, planar, charge-conducting ligands as an alternative to traditional long passive ligands. Not only might these radically unconventional ligands decrease the mean distance between adjacent quantum dots, but, since they are charge-conducting, they have the potential to actively enhance charge migration. Our ab initio studies compare the binding energies, electronic energy gaps, and absorption characteristics for both conventional and unconventional ligands, such as phthalocyanines, porphyrins and coronene. This comparison identified these unconventional ligands with the exception of titanyl phthalocyanine, that bind to themselves more strongly than to the surface of the quantum dot, which is likely to be less desirable for enhancing charge transport. The distribution of finite energy levels of the bound system is sensitive to the ligand's binding site and the levels correspond to delocalized states. We also observed a trap state localized on a single Pb atom when a sulfur-containing phenyldithiocarbamate (PTC) ligand is attached to a slightly off-stoichiometric dot in a manner that the sulfur of the ligand completes stoichiometry of the bound system. Hence, this is indicative of the source of trap state when thio-based ligands are bound to chalcogenide nanocrystals. We also predict that titanyl phthalocyanine in a mix with chalcogenide dots of diameter ∼1.5 Å can form a donor-acceptor system.

  15. Limitations and Extensions of the Lock-and-Key Principle: Differences between Gas State, Solution and Solid State Structures

    Directory of Open Access Journals (Sweden)

    Hans-Jörg Schneider

    2015-03-01

    Full Text Available The lock-and-key concept is discussed with respect to necessary extensions. Formation of supramolecular complexes depends not only, and often not even primarily on an optimal geometric fit between host and guest. Induced fit and allosteric interactions have long been known as important modifications. Different binding mechanisms, the medium used and pH effects can exert a major influence on the affinity. Stereoelectronic effects due to lone pair orientation can lead to variation of binding constants by orders of magnitude. Hydrophobic interactions due to high-energy water inside cavities modify the mechanical lock-and-key picture. That optimal affinities are observed if the cavity is only partially filled by the ligand can be in conflict with the lock-and-key principle. In crystals other forces than those between host and guest often dominate, leading to differences between solid state and solution structures. This is exemplified in particular with calixarene complexes, which by X-ray analysis more often than other hosts show guest molecules outside their cavity. In view of this the particular problems with the identification of weak interactions in crystals is discussed.

  16. Study of substitution reactions of ligands in VO2+ complexes in toluene solutions by ESR method

    International Nuclear Information System (INIS)

    Lundkvist, R.; Panfilov, A.T.; Kalinichenko, N.B.; Marov, I.N.; AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1976-01-01

    Kinetics and equilibrium of stepwise substitution of ligands have been investigated at different temperatures for the complexes of oxovanadium (4) with salicylaldoxime, 8-oxyquinoline, acetylacetone, benzoylacetone, and tenoyltrifluoroacetone. The relative complexability of these ligands in toluene has been studied. The parameters of spin-Hamiltonian of EPR spectra of the VO 2+ complexes have been determined. The equilibrium constants, the rate constants, and activation energy have been found for the substitution reactions of ligands in the complexes VOA 2 : VOA 2 +HB=VOAB+HA; VOAB+HB=VOB 2 +HA, where HA and HB are the ligands with different donor atoms. The mixed complexes have been detected of the general formula VOAB, where HA is salicylaldoxime or 8-oxyquinoline and HB is β-diketone

  17. A Fluid Membrane-Based Soluble Ligand Display System for Live CellAssays

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jwa-Min; Nair, Pradeep N.; Neve, Richard M.; Gray, Joe W.; Groves, Jay T.

    2005-10-14

    Cell communication modulates numerous biological processes including proliferation, apoptosis, motility, invasion and differentiation. Correspondingly, there has been significant interest in the development of surface display strategies for the presentation of signaling molecules to living cells. This effort has primarily focused on naturally surface-bound ligands, such as extracellular matrix components and cell membranes. Soluble ligands (e.g. growth factors and cytokines) play an important role in intercellular communications, and their display in a surface-bound format would be of great utility in the design of array-based live cell assays. Recently, several cell microarray systems that display cDNA, RNAi, or small molecules in a surface array format were proven to be useful in accelerating high-throughput functional genetic studies and screening therapeutic agents. These surface display methods provide a flexible platform for the systematic, combinatorial investigation of genes and small molecules affecting cellular processes and phenotypes of interest. In an analogous sense, it would be an important advance if one could display soluble signaling ligands in a surface assay format that allows for systematic, patterned presentation of soluble ligands to live cells. Such a technique would make it possible to examine cellular phenotypes of interest in a parallel format with soluble signaling ligands as one of the display parameters. Herein we report a ligand-modified fluid supported lipid bilayer (SLB) assay system that can be used to functionally display soluble ligands to cells in situ (Figure 1A). By displaying soluble ligands on a SLB surface, both solution behavior (the ability to become locally enriched by reaction-diffusion processes) and solid behavior (the ability to control the spatial location of the ligands in an open system) could be combined. The method reported herein benefits from the naturally fluid state of the supported membrane, which allows

  18. Selective oxoanion separation using a tripodal ligand

    Energy Technology Data Exchange (ETDEWEB)

    Custelcean, Radu; Moyer, Bruce A.; Rajbanshi, Arbin

    2016-02-16

    The present invention relates to urea-functionalized crystalline capsules self-assembled by sodium or potassium cation coordination and by hydrogen-bonding water bridges to selectively encapsulate tetrahedral divalent oxoanions from highly competitive aqueous alkaline solutions and methods using this system for selective anion separations from industrial solutions. The method involves competitive crystallizations using a tripodal tris(urea) functionalized ligand and, in particular, provides a viable approach to sulfate separation from nuclear wastes.

  19. Photophysical investigation of energy transfer luminescence of lanthanide chelates with aromatic polyaminocarboxylate ligands in aqueous solutions

    International Nuclear Information System (INIS)

    Hoshino, Hitoshi; Saitoh, Takashi; Yotsuyanagi, Takao

    1995-01-01

    Some photophysical data including emission lifetimes (τ), total emission quantum yields (Φ), and ligand phosphorescence data are reported for the energy-transfer luminescence of the Eu(III) chelate of Quin 2 and the Tb(III) chelate of BAPTA: Quin 2 means 2-[(2-amino-5-methylphenoxy)methyl]-6-methoxy-8-aminoquinoline-N,N,N',N'-tetraacetic acid; BAPTA means 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. The energy diagrams for the ligand T 1 and the metal-center f-f levels are proposed. The τ values of Tb(III)-BAPTA chelates are 1.73 ms in H 2 O and 3.44 ms in D 2 O. The Eu(III)-Quin 2 chelate system shows a bi-exponential decay of emission; τ=0.048 and 0.20 ms in H 2 O and 0.066 and 1.44 ms in D 2 O. The Quin 2 chelate is kinetically inert, so that the interchange of these two conformer structures are very slow at room temperature. The number of water molecules in the primary coordination sphere is calculated from the lifetime data to be 1.9-2.4 for Eu-Quin 2 and 0.5 for Tb-BAPTA. The Φ values in aqueous solutions are rather small in these systems; 0.009 for Tb-BAPTA and 0.0023 for Eu-Quin 2, but these are enough counterbalanced by the large molar absorptivities giving the great sensitization factors for the ions; the sensitization factors against each aqua ion are 1380 for Eu-Quin 2 and 1600 for Tb-BAPTA. (author)

  20. Conformational study on cyclic melanocortin ligands and new insight into their binding mode at the MC4 receptor.

    Science.gov (United States)

    Grieco, Paolo; Brancaccio, Diego; Novellino, Ettore; Hruby, Victor J; Carotenuto, Alfonso

    2011-09-01

    The melanocortin receptors are involved in many physiological functions, including pigmentation, sexual function, feeding behavior, and energy homeostasis, making them potential targets to treat obesity, sexual dysfunction, etc. Understanding the basis of the ligand-receptor interactions is crucial for the design of potent and selective ligands for these receptors. The conformational preferences of the cyclic melanocortin ligands MTII (Ac-Nle(4)-c[Asp(5)-His(6)-DPhe(7)-Arg(8)-Trp(9)-Lys(10)]-NH(2)) and SHU9119 (Ac-Nle(4)-c[Asp(5)-His(6)-DNal(2')(7)-Arg(8)-Trp(9)-Lys(10)]-NH(2)), which show agonist and antagonist activity at the h-MC4R, respectively, were comprehensively investigated by solution NMR spectroscopy in different environments. In particular, water and water/DMSO (8:2) solutions were used as isotropic solutions and an aqueous solution of DPC (dodecylphosphocholine) micelles was used as a membrane mimetic environment. NMR-derived conformations of these two ligands were docked within h-MC4R models. NMR and docking studies revealed intriguing differences which can help explain the different activities of these two ligands. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  1. Effect of pH and uranium concentration on interaction of uranium(VI) and uranium(IV) with organic ligands in aqueous solutions

    International Nuclear Information System (INIS)

    Li, W.C.; Victor, D.M.; Chakrabarti, C.L.

    1980-01-01

    The effect of pH and uranium concentration on the interactions of uranium(VI) and uranium(IV) with organic ligands was studied by employing dialysis and ultrafiltration techniques. The interactions of U(VI) and U(IV) with organic ligands in nitrate or chloride aqueous solution have been found to be pH-dependent. The stability constants of uranium-organic complexes decrease in the order: fulvic acid>humic acid>tannic acid for U(VI) and humic acid>tannic acid>fulvic acid for U(IV). Scatchard plots for the uranium-organic acid systems indicate two types of binding sites with a difference in stability constants of about 10 2 . Ultrafiltration of uranium-humic acid complexes indicates that U(VI) and U(IV) ions are concentrated in larger molecular size fractions (>5.1 nm) at pH less than or equal to 3 and in smaller molecular size fractions (in the range 5.1 to 3.1 nm and 2.4 to 1.9 nm) at pH greater than or equal to 5. 7 figures, 4 tables

  2. The role of ligands in the optical and electronic spectra of CdSe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kilina, Svletana [Los Alamos National Laboratory; Sergei, Ivanov A [Los Alamos National Laboratory; Victor, Klimov I [Los Alamos National Laboratory; Sergei, Tretiak [Los Alamos National Laboratory

    2008-01-01

    We investigate the impact of ligands on morphology, electronic structure, and optical response of the Cd33Se33 cluster, which already overlapps in size with the smallest synthesized CdSe quantum dots (QDs). Our Density Functional Theory (DFT) calculations demonstrate significant surface reorganization both for the bare cluster and for the cluster capped by amine and phosphine oxide ligand models. We observe strong surface-ligand interactions leading to substantial charge redistribution and polarization effects on the surface. This effect results in the appearance of hybridized states, where the electronic density is spread over the cluster and the ligands. Neither the ligand's nor hybridized molecular orbitals appear as trap states inside or near the band gap of the QD. Instead, being optically dark, dense hybridized states from the edges of the valence and the conduction bands could open new relaxation channels for high energy photoexcitations. Comparing quantum dots passivated by different ligands, we found that hybridized states are denser in at the edge of the conduction band of the cluster ligated with phosphine oxide molecules than that with primary amines. Such a different manifestation of ligand binding may potentially lead to the faster electron relaxation in dots passivated by phosphine oxide than by amine ligands, which is in agreement with experimental data.

  3. Equilibrium studies on mixed ligand complexes of some tripositive rare earth ions

    International Nuclear Information System (INIS)

    Vimal, Rashmi; Singh, Mamta; Ram Nayan

    1996-01-01

    Interaction of the rare earth ions, La 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ and Eu 3+ with the pair of ligands 1-amino-2-naphthol-4-sulphonic acid (an, H 2 A) and o-aminophenol (ap, HB) have been studied in aqueous solution at 25 degC (μ=0.1 M KNO 3 /NaCl). Equilibrium constants of the reactions involving the formations of the mixed ligand species MAB, MA 2 B 2- , MB 2 A - (M = metal ion) and the binary complexes containing up to three ligand molecules have been evaluated from the pH-metric data, and coordinating behaviour of the ligands in the formation of the mixed ligand complexes has been discussed. (author). 10 refs., 1 tab., 1 fig

  4. Tuning Confinement in Colloidal Silicon Nanocrystals with Saturated Surface Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Neale, Nathan R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carroll, Gerard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Limpens, Rens [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-16

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups - alkyls, amides, and alkoxides - on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative to alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands - not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals - are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. These results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.

  5. Tuning Confinement in Colloidal Silicon Nanocrystals with Saturated Surface Ligands.

    Science.gov (United States)

    Carroll, Gerard M; Limpens, Rens; Neale, Nathan R

    2018-05-09

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups-alkyls, amides, and alkoxides-on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative to alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands-not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals-are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. These results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.

  6. Can ligand addition to soil enhance Cd phytoextraction? A mechanistic model study.

    Science.gov (United States)

    Lin, Zhongbing; Schneider, André; Nguyen, Christophe; Sterckeman, Thibault

    2014-11-01

    Phytoextraction is a potential method for cleaning Cd-polluted soils. Ligand addition to soil is expected to enhance Cd phytoextraction. However, experimental results show that this addition has contradictory effects on plant Cd uptake. A mechanistic model simulating the reaction kinetics (adsorption on solid phase, complexation in solution), transport (convection, diffusion) and root absorption (symplastic, apoplastic) of Cd and its complexes in soil was developed. This was used to calculate plant Cd uptake with and without ligand addition in a great number of combinations of soil, ligand and plant characteristics, varying the parameters within defined domains. Ligand addition generally strongly reduced hydrated Cd (Cd(2+)) concentration in soil solution through Cd complexation. Dissociation of Cd complex ([Formula: see text]) could not compensate for this reduction, which greatly lowered Cd(2+) symplastic uptake by roots. The apoplastic uptake of [Formula: see text] was not sufficient to compensate for the decrease in symplastic uptake. This explained why in the majority of the cases, ligand addition resulted in the reduction of the simulated Cd phytoextraction. A few results showed an enhanced phytoextraction in very particular conditions (strong plant transpiration with high apoplastic Cd uptake capacity), but this enhancement was very limited, making chelant-enhanced phytoextraction poorly efficient for Cd.

  7. Thermodynamics of the complex formation between thorium(IV) and some polydentate ligands in aqueous solution

    International Nuclear Information System (INIS)

    Di Bernado, P.; Cassol, A.; Tomat, G.; Bismondo, A.; Magon, L.

    1983-01-01

    The changes in free energy, enthalpy, and entropy for the formation of thorium(IV)-oxydiacetate, -iminodiacetate, -thiodiacetate, and -succinate complexes have been determined by potentiometric and calorimetric titrations at 25 deg C in aqueous 1 mol dm - 3 sodium perchlorate. All the ligands form 1:1 chelate complexes with the thorium(IV) ion the stability of which is dependent on both the chelate ring dimensions and the nature of the donor group in the chain. The order of the relative stabilities (iminodiacetate > oxydiacetate > thiodiacetate > succinate) is mainly dependent on the reaction enthalpies, since the δS values are close to each other. In the thorium(IV)-oxydiacetate system the maximum number of three ligands for every metal ion was reached. Because of precipitation of solid compounds in the other systems, it was only possible to define complexes with a lower number of co-ordinated ligands: two for succinate and thiodiacetate, and one for iminodiacetate. Owing to the lower stability of the chelate ring of thiodiacetate and succinate complexes and the high basicity of the amino-group of iminodiacetate, these ligands form also unchelated protonated complexes. (author)

  8. Synthesis and evaluation structure/extracting and complexing properties of new bi-topic ligands for group actinides extraction

    International Nuclear Information System (INIS)

    Bisson, J.

    2011-01-01

    The aim of this project is to design and study new extractants for spent nuclear fuel reprocessing. To decrease the long-term radiotoxicity of the waste, the GANEX process is an option to homogeneously recycle actinides. All actinides (U, Np, Pu, Am, Cm) would be extracted together from a highly acidic media and separated from fission products (especially from lanthanides). In this context, fourteen new bi-topic ligands constituted of a nitrogen poly-aromatic unit from the dipyridyl-phenanthroline and dipyridyl-1,3,5-triazine families and functionalized by amid groups were synthesized. Extraction studies performed with some of these ligands confirmed their interest to selectively separate actinides at different oxidation states from an aqueous solution 3M HNO 3 . To determine the influence of ligands structure on cation complexation, a study in a homogenous media (MeOH/H 2 O) has been carried out. Electro-spray ionization mass spectrometry have been used to characterize the complexes stoichiometries formed with several cations (Eu 3+ , Nd 3+ , Am 3+ , Pu 4+ and NpO 2 + ). Stability constants, evaluated by UV-Visible spectrophotometry, confirm the selectivity of these ligands toward actinides. Lanthanides and actinides complexes have also been characterized in the solid state by infra-red spectroscopy and X-Ray diffraction. Associated to nuclear magnetic resonance experiments and DFT calculations (Density Functional Theory), a better knowledge of their coordination mode was achieved. (author) [fr

  9. 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control.

    Science.gov (United States)

    Li, Jianhai; Xu, Leimeng; Wang, Tao; Song, Jizhong; Chen, Jiawei; Xue, Jie; Dong, Yuhui; Cai, Bo; Shan, Qingsong; Han, Boning; Zeng, Haibo

    2017-02-01

    Solution-processed CsPbBr 3 quantum-dot light-emitting diodes with a 50-fold external quantum efficiency improvement (up to 6.27%) are achieved through balancing surface passivation and carrier injection via ligand density control (treating with hexane/ethyl acetate mixed solvent), which induces the coexistence of high levels of ink stability, photoluminescence quantum yields, thin-film uniformity, and carrier-injection efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Complexation of f elements by tripodal ligands containing aromatic nitrogens. Application to the selective extraction of actinides(III)

    International Nuclear Information System (INIS)

    Wietzke, Raphael

    1999-01-01

    This work initiates a research project, whose aim is the actinides(lll)/lanthanides(III) separation by liquid-liquid extraction. We were interested in the study of the coordination chemistry of lanthanides(III) and uranium(III) (uranium(III) as model for the actinides(III)), with the aim to show differences between the two families and to better understand the coordination properties involved in the extraction process. We studied the lanthanide(III) and uranium(III) complexation with tripodal ligands containing aromatic nitrogens. Several tripodal ligands were synthesized varying the type and the number of the donor atoms. The lanthanide(III) complexes have been characterized in the solid state and in solution (by several techniques: "1H NMR, ESMS, luminescence, UV spectrophotometry, conductometry). Differences in the coordination were found depending on the nature of the donor atoms. The new ligands, tris(2-pyrazinylmethyl)amine (tpza) et tris(N,N-diethyl-2-carbamoyl-6- pyridylmethyl)amine (tpaa), have shown a selectivity for the actinides(III) with promising results in liquid-liquid extraction. The comparison between the lanthanum(III) and uranium(III) complexes with the ligand tpza showed differences in the bonding nature, which could be attributed to a covalent contribution to the metal-ligand bond. (author) [fr

  11. Theoretical and experimental study of actinide complexes with monoamides and organophosphorus ligands in solution

    International Nuclear Information System (INIS)

    Ribokaite, Kristina

    2013-01-01

    Monoamides and organophosphate are of great interest for the nuclear fuel cycle. Such ligands can selectively extract actinides in liquid-liquid extraction processes. The structure of the extractant (its functional group and its alkyl substituents) has a predominant role in the selective separation of actinides. This thesis concerns the theoretical and experimental studies of model systems in the aim of better understanding of the effect on molecular structures of the complexes. Structures of actinides complexes formed with model ligands in simple media (water or methanol in the presence of nitrate ions) have been characterized. At first, the complexation of uranyl by monoamide and phosphine oxide was studied in water and methanol. Molecular Dynamics simulations and DFT calculations were used to quantify the stability of uranyl complexes with those ligands, and to determine their structural properties. The theoretical results were then compared with experimental results obtained by UV-visible, infrared, Raman and EXAFS on the same chemical systems. The results were used to highlight the greater stability of uranyl complexes with phosphine oxide and monoamides. Further spectroscopic measurements combined with molecular modeling were used to gain a better understanding of the coordination mode of nitrate ion around the uranyl in both water and methanol. Finally, DFT calculations were used to study the influence of the structure of the monoamide or organophosphorus ligand and their interaction with the actinides (IV, VI) including steric effects in the first coordination sphere. (author) [fr

  12. Kinetics of a redox reaction in the system Ce(IV) β-diketonate - additional ligand

    International Nuclear Information System (INIS)

    Anufrieva, S.I.; Snezhko, N.I.; Pechurova, N.I.; Martynenko, L.N.; Spitsyn, V.I.

    1982-01-01

    Preparation of solutions containing stable compounds of Ce(IV) with organic ligands is difficult, because even strong Ce(IV) complexes undergo intramolecular reduction and have a tendency to hydrolysis. It is known that Ce(IV) β-diketonates have different resistances to reduction inorganic solvents, depending on the structure. Using spectrophotometric analysis we have investigated the oxidation-reduction characteristics of solutions of certain Ce(IV) β-diketonates in benzene in the absence and presence of neutral ligands containing donor O or N atoms

  13. Solution XAS Analysis for Exploring the Active Species in Homogeneous Vanadium Complex Catalysis

    Science.gov (United States)

    Nomura, Kotohiro; Mitsudome, Takato; Tsutsumi, Ken; Yamazoe, Seiji

    2018-06-01

    Selected examples in V K-edge X-ray Absorption Near Edge Structure (XANES) analysis of a series of vanadium complexes containing imido ligands (possessing metal-nitrogen double bond) in toluene solution have been introduced, and their pre-edge and the edge were affected by their structures and nature of ligands. Selected results in exploring the oxidation states of the active species in ethylene dimerization/polymerization using homogeneous vanadium catalysts [consisting of (imido)vanadium(V) complexes and Al cocatalysts] by X-ray absorption spectroscopy (XAS) analyses have been introduced. It has been demonstrated that the method should provide more clear information concerning the active species in situ, especially by combination with the other methods (NMR and ESR spectra, X-ray crystallographic analysis, and reaction chemistry), and should be powerful tool for study of catalysis mechanism as well as for the structural analysis in solution.

  14. Synthesis, spectroscopic studies and reactivity of triphenylphosphine ruthenium (II) complexes with N-heterocyclic ligands

    International Nuclear Information System (INIS)

    Rivera, A.B.

    1989-01-01

    Reported is the chemistry of triphenylphosphine ruthenium (II) complexes of general formula RuCl 2 (PPh 3 ) 2 L 2 and RuCl 2 (PPh 3 ) 2 A, obtained from the reaction of RuCl 2 (PPh 3 ) 3 with N-heterocyclic ligands L, or A (of ambidentate nature). The electronic spectra exhibit two strong metal-to-ligand charge-transfer bands, ascribed to the b 1 (dxz)->b 1 (pi) and a 2 (dxy)->a 2 (pi) transitions, and a third, weak band ascribed to the b 2 (dyz)->a 2 (pi) transition. The electronic states and the vibrational modes of the complexes were characterized by means of their resonance Raman and infrared absorption spectra. Thermogravimetric and thermodifferential analysis indicated that the melting process is succeeded by an exothermic reaction, and that the weigh loss starts to occur only after this step. The complexes dissociated in CHCl 3 solution, showing preferential labilization of the phosphine ligands, as in the case of the hydrogenation catalyst Ru(PPh 3 ) 3 Cl 2 . In the presence of CO, RuCl 2 (CO) 2 L 2 complexes were gennerated. Several derivatives were isolated and characterized. (author) [pt

  15. Solid-state thermolysis of a fac-rhenium(I) carbonyl complex with a redox non-innocent pincer ligand.

    Science.gov (United States)

    Jurca, Titel; Chen, Wen-Ching; Michel, Sheila; Korobkov, Ilia; Ong, Tiow-Gan; Richeson, Darrin S

    2013-03-25

    The development of rhenium(I) chemistry has been restricted by the limited structural and electronic variability of the common pseudo-octahedral products fac-[ReX(CO)3L2] (L2 = α-diimine). We address this constraint by first preparing the bidentate bis(imino)pyridine complexes [(2,6-{2,6-Me2C6H3N=CPh}2C5H3N)Re(CO)3X] (X = Cl 2, Br 3), which were characterized by spectroscopic and X-ray crystallographic means, and then converting these species into tridentate pincer ligand compounds, [(2,6-{2,6-Me2C6H3N=CPh}2C5H3N)Re(CO)2X] (X = Cl 4, Br 5). This transformation was performed in the solid-state by controlled heating of 2 or 3 above 200 °C in a tube furnace under a flow of nitrogen gas, giving excellent yields (≥95 %). Compounds 4 and 5 define a new coordination environment for rhenium(I) carbonyl chemistry where the metal center is supported by a planar, tridentate pincer-coordinated bis(imino)pyridine ligand. The basic photophysical features of these compounds show significant elaboration in both number and intensity of the d-π* transitions observed in the UV/Vis spec tra relative to the bidentate starting materials, and these spectra were analyzed using time-dependent DFT computations. The redox nature of the bis(imino)pyridine ligand in compounds 2 and 4 was examined by electrochemical analysis, which showed two ligand reduction events and demonstrated that the ligand reduction shifts to a more positive potential when going from bidentate 2 to tridentate 4 (+160 mV for the first reduction step and +90 mV for the second). These observations indicate an increase in electrostatic stabilization of the reduced ligand in the tridentate conformation. Elaboration on this synthetic methodology documented its generality through the preparation of the pseudo-octahedral rhenium(I) triflate complex [(2,6-{2,6-Me2C6H3N=CPh}2C5H3N)Re(CO)2OTf] (7, 93 % yield). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    CERN Document Server

    Topolov, Vitaly

    2012-01-01

    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  17. Calculation of relative free energies for ligand-protein binding, solvation, and conformational transitions using the GROMOS software.

    Science.gov (United States)

    Riniker, Sereina; Christ, Clara D; Hansen, Halvor S; Hünenberger, Philippe H; Oostenbrink, Chris; Steiner, Denise; van Gunsteren, Wilfred F

    2011-11-24

    The calculation of the relative free energies of ligand-protein binding, of solvation for different compounds, and of different conformational states of a polypeptide is of considerable interest in the design or selection of potential enzyme inhibitors. Since such processes in aqueous solution generally comprise energetic and entropic contributions from many molecular configurations, adequate sampling of the relevant parts of configurational space is required and can be achieved through molecular dynamics simulations. Various techniques to obtain converged ensemble averages and their implementation in the GROMOS software for biomolecular simulation are discussed, and examples of their application to biomolecules in aqueous solution are given. © 2011 American Chemical Society

  18. 1,2,4-Triazines in the Synthesis of Bipyridine Bisphenolate ONNO Ligands and Their Highly Luminescent Tetradentate Pt(II) Complexes for Solution-Processable OLEDs.

    Science.gov (United States)

    Pander, Piotr; Bulmer, Rachel; Martinscroft, Ross; Thompson, Stuart; Lewis, Frank W; Penfold, Thomas J; Dias, Fernando B; Kozhevnikov, Valery N

    2018-04-02

    This article describes a convenient method for the synthesis of ONNO-type tetradentate 6,6'-bis(2-phenoxy)-2,2'-bipyridine (bipyridine bisphenolate, BpyBph) ligands and their platinum(II) complexes. The methodology includes the synthesis of 1,2,4-triazine precursors followed by their transformation to functionalized pyridines by the Boger reaction. Two complementary routes employing 3,3'- and 5,5'-bis-triazines allow a modification of the central pyridine rings in different positions, which was exemplified by the introduction of cyclopentene rings. The new ligands were used to prepare highly luminescent ONNO-type Pt(II) complexes. The position of the cyclopentene rings significantly influences the solubility and photophysical properties of these complexes. Derivatives with closely positioned cyclopentene rings are soluble in organic solvents and proved to be the best candidate for solution-processable organic light-emitting devices (OLEDs), showing efficient single-dopant candlelight electroluminescence.

  19. Exact solutions of continuous states for Hartmann potential

    International Nuclear Information System (INIS)

    Chen Changyuan; Lu Falin; Sun Dongsheng

    2004-01-01

    In this Letter, we obtain the exact solutions of continuous states for the Hartmann potential. The normalized wave functions of continuous states on the 'k/2π scale' and the calculation formula of phase shifts are presented. Analytical properties of the scattering amplitude are discussed

  20. Heterometallic molecular precursors for a lithium-iron oxide material: synthesis, solid state structure, solution and gas-phase behaviour, and thermal decomposition.

    Science.gov (United States)

    Han, Haixiang; Wei, Zheng; Barry, Matthew C; Filatov, Alexander S; Dikarev, Evgeny V

    2017-05-02

    Three heterometallic single-source precursors with a Li : Fe = 1 : 1 ratio for a LiFeO 2 oxide material are reported. Heterometallic compounds LiFeL 3 (L = tbaoac (1), ptac (2), and acac(3)) have been obtained on a large scale, in nearly quantitative yields by one-step reactions that employ readily available reagents. The heterometallic precursor LiFe(acac) 3 (3) with small, symmetric substituents on the ligand (acac = pentane-2,4-dionate), maintains a 1D polymeric structure in the solid state that limits its volatility and prevents solubility in non-coordinating solvents. The application of the unsymmetrical ligands, tbaoac (tert-butyl acetoacetate) and ptac (1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedionate), that exhibit different bridging properties at the two ends of the ligand, allowed us to change the connectivity pattern within the heterometallic assembly. The latter was demonstrated by structural characterization of heterometallic complexes LiFe(tbaoac) 3 (1) and LiFe(ptac) 3 (2) that consist of discrete heterocyclic tetranuclear molecules Li 2 Fe 2 L 6 . The compounds are highly volatile and exhibit a congruent sublimation character. DART mass spectrometric investigation revealed the presence of heterometallic molecules in the gas phase. The positive mode spectra are dominated by the presence of [M - L] + peaks (M = Li 2 Fe 2 L 6 ). In accord with their discrete molecular structure, complexes 1 and 2 are highly soluble in nearly all common solvents. In order to test the retention of the heterometallic structure in solution, the diamagnetic analog of 1, LiMg(tbaoac) 3 (4), has been isolated. Its tetranuclear molecular structure was found to be isomorphous to that of the iron counterpart. 1 H and 7 Li NMR spectroscopy unambiguously confirmed the presence of heterometallic molecules in solutions of non-coordinating solvents. The heterometallic precursor 1 was shown to exhibit clean thermal decomposition in air that results in phase-pure

  1. f-state luminescence of lanthanide and actinide ions in solution

    International Nuclear Information System (INIS)

    Beitz, J.V.

    1993-01-01

    Detailed studies of the luminescence of aquated Am 3+ are presented in the context of prior lanthanide and actinide ion work. The luminescing state of aquated Am 3+ is confirmed to be 5 D l based on observed emission and excitation spectra. The luminescence lifetime of Am 3+ in H 2 O solution is (22 ± 3) ns and (155 ± 4) ns in D 2 O solution at 295 K. Judd-Ofelt transition intensity theory qualitatively describes the observed Am 3+ relative integrated fluorescence intensities. Recent luminescence studies on complexed trivalent f-element ions in solution are reviewed as to the similarities and differences between lanthanide ion 4f state and actinide ion 5f state properties

  2. Solution of generalized control system equations at steady state

    International Nuclear Information System (INIS)

    Vilim, R.B.

    1987-01-01

    Although a number of reactor systems codes feature generalized control system models, none of the models offer a steady-state solution finder. Indeed, if a transient is to begin from steady-state conditions, the user must provide estimates for the control system initial conditions and run a null transient until the plant converges to steady state. Several such transients may have to be run before values for control system demand signals are found that produce the desired plant steady state. The intent of this paper is (a) to present the control system equations assumed in the SASSYS reactor systems code and to identify the appropriate set of initial conditions, (b) to describe the generalized block diagram approach used to represent these equations, and (c) to describe a solution method and algorithm for computing these initial conditions from the block diagram. The algorithm has been installed in the SASSYS code for use with the code's generalized control system model. The solution finder greatly enhances the effectiveness of the code and the efficiency of the user in running it

  3. One-electron reduction of 1,2-dihydroxy-9,10-anthraquinone and some of its transition metal complexes in aqueous solution and in aqueous isopropanol-acetone-mixed solvent: a steady-state and pulse radiolysis study

    International Nuclear Information System (INIS)

    Das, S.; Bhattacharya, A.; Mandal, P.C.; Rath, M.C.; Mukherjee, T.

    2002-01-01

    One-electron reduction of 1,2-dihydroxy-9,10-anthraquinone (DHA) and its complexes with Cu(II), Ni(II) and Fe(III), by acetone ketyl radical, (CH 3 ) 2 C·OH, was carried out in aqueous solution and in aqueous isopropanol acetone mixed solvent using both steady-state gamma radiolysis and pulse radiolysis techniques. The rate constants for the reduction of DHA at different pH values by the ketyl radical are in the order of ∼10 9 dm 3 mol -1 s -1 , whereas those for the metal complexes are comparatively less. These rate constants are, however, in conformity with the one-electron reduction potentials of the ligand in free DHA and in its metal complexes. Decay kinetics of the one-electron reduced semiquinones of the free ligand and its metal complexes suggest disproportionation of the semiquinone in the case of the free ligand and intermolecular electron transfer from the co-ordinated semiquinone radical to the metal centre in the case of the metal complexes

  4. Ligand-dependent exciton dynamics and photovoltaic properties of PbS quantum dot heterojunction solar cells.

    Science.gov (United States)

    Chang, Jin; Ogomi, Yuhei; Ding, Chao; Zhang, Yao Hong; Toyoda, Taro; Hayase, Shuzi; Katayama, Kenji; Shen, Qing

    2017-03-01

    The surface chemistry of colloidal quantum dots (QDs) plays an important role in determining the photoelectric properties of QD films and the corresponding quantum dot heterojunction solar cells (QDHSCs). To investigate the effects of the ligand structure on the photovoltaic performance and exciton dynamics of QDHSCs, PbS QDHSCs were fabricated by the solid state ligand exchange method with mercaptoalkanoic acid as the cross-linking ligand. Temperature-dependent photoluminescence and ultrafast transient absorption spectra show that the electronic coupling and charge transfer rate within QD ensembles were monotonically enhanced as the ligand length decreased. However, in practical QDHSCs, the second shortest ligand 3-mercaptopropionic acid (MPA) showed higher power conversion efficiency than the shortest ligand thioglycolic acid (TGA). This could be attributed to the difference in their surface trap states, supported by thermally stimulated current measurements. Moreover, compared with the non-conjugated ligand MPA, the conjugated ligand 4-mercaptobenzoic acid (MBA) introduces less trap states and has a similar charge transfer rate in QD ensembles, but has poor photovoltaic properties. This unexpected result could be contributed by the QD-ligand orbital mixing, leading to the charge transfer from QDs to ligands instead of charge transfer between adjacent QDs. This work highlights the significant effects of ligand structures on the photovoltaic properties and exciton dynamics of QDHSCs, which would shed light on the further development of QD-based photoelectric devices.

  5. Assessing the effect of dissolved organic ligands on mineral dissolution rates: An example from calcite dissolution

    International Nuclear Information System (INIS)

    DeMaio, T.; Grandstaff, D.E.

    1997-01-01

    Experiments suggest that dissolved organic ligands may primarily modify mineral dissolution rates by three mechanisms: (1) metal-ligand (M-L) complex formation in solution, which increases the degree of undersaturation, (2) formation of surface M-L complexes that attack the surface, and (3) formation of surface complexes which passivate or protect the surface. Mechanisms (1) and (2) increase the dissolution rate and the third decreases it compared with organic-free solutions. The types and importance of these mechanisms may be assessed from plots of dissolution rate versus degree of undersaturation. To illustrate this technique, calcite, a common repository cementing and vein-filling mineral, was dissolved at pH 7.8 and 22 C in Na-Ca-HCO 3 -Cl solutions with low concentrations of three organic ligands. Low citrate concentrations (50 microM) increased the dissolution rate consistent with mechanism (1). Oxalate decreased the rate, consistent with mechanism (3). Low phthalate concentration (<50 microM) decreased calcite dissolution rates; however, higher concentrations increased the dissolution rates, which became faster than in inorganic solutions. Thus, phthalate exhibits both mechanisms (2) and (3) at different concentrations. In such cases linear extrapolations of dissolution rates from high organic ligand concentrations may not be valid

  6. Surface-Bound Ligands Modulate Chemoselectivity and Activity of a Bimetallic Nanoparticle Catalyst

    KAUST Repository

    Vu, Khanh B.

    2015-04-03

    "Naked" metal nanoparticles (NPs) are thermodynamically and kinetically unstable in solution. Ligands, surfactants, or polymers, which adsorb at a particle\\'s surface, can be used to stabilize NPs; however, such a mode of stabilization is undesirable for catalytic applications because the adsorbates block the surface active sites. The catalytic activity and the stability of NPs are usually inversely correlated. Here, we describe an example of a bimetallic (PtFe) NP catalyst stabilized by carboxylate surface ligands that bind preferentially to one of the metals (Fe). NPs stabilized by fluorous ligands were found to be remarkably competent in catalyzing the hydrogenation of cinnamaldehyde; NPs stabilized by hydrocarbon ligands were significantly less active. The chain length of the fluorous ligands played a key role in determining the chemoselectivity of the FePt NP catalysts. (Chemical Presented). © 2015 American Chemical Society.

  7. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.

    Science.gov (United States)

    Jenkins, Jermaine L; Krucinska, Jolanta; McCarty, Reid M; Bandarian, Vahe; Wedekind, Joseph E

    2011-07-15

    Riboswitches are RNA regulatory elements that govern gene expression by recognition of small molecule ligands via a high affinity aptamer domain. Molecular recognition can lead to active or attenuated gene expression states by controlling accessibility to mRNA signals necessary for transcription or translation. Key areas of inquiry focus on how an aptamer attains specificity for its effector, the extent to which the aptamer folds prior to encountering its ligand, and how ligand binding alters expression signal accessibility. Here we present crystal structures of the preQ(1) riboswitch from Thermoanaerobacter tengcongensis in the preQ(1)-bound and free states. Although the mode of preQ(1) recognition is similar to that observed for preQ(0), surface plasmon resonance revealed an apparent K(D) of 2.1 ± 0.3 nm for preQ(1) but a value of 35.1 ± 6.1 nm for preQ(0). This difference can be accounted for by interactions between the preQ(1) methylamine and base G5 of the aptamer. To explore conformational states in the absence of metabolite, the free-state aptamer structure was determined. A14 from the ceiling of the ligand pocket shifts into the preQ(1)-binding site, resulting in "closed" access to the metabolite while simultaneously increasing exposure of the ribosome-binding site. Solution scattering data suggest that the free-state aptamer is compact, but the "closed" free-state crystal structure is inadequate to describe the solution scattering data. These observations are distinct from transcriptional preQ(1) riboswitches of the same class that exhibit strictly ligand-dependent folding. Implications for gene regulation are discussed.

  8. Strong ligand field effects of blue phosphorescent mono-cyclometalated iridium(III) complexes

    International Nuclear Information System (INIS)

    Ham, Ho Wan; Jung, Kyung Yoon; Kim, Young Sik

    2010-01-01

    A series of mono-cyclometalated blue phosphorescent iridium(III) complexes with two phosphines trans to each other and two cis-ancillary ligands, such as Ir(F 2 Meppy)(PPhMe 2 ) 2 (H)(Cl), [Ir(F 2 Meppy)(PPhMe 2 ) 2 (H)(NCMe)] + and Ir(F 2 Meppy)(PPhMe 2 ) 2 -(H)(CN), [F 2 Meppy = 2-(2',4'-difluorophenyl)-4-methyl-pyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. We investigate the electron-withdrawing capabilities of ancillary ligands using the DFT and TD-DFT calculations on the ground and excited states of the three complexes to gain insight into the factors responsible for the emission color change and the different luminescence efficiency. Reducing the molecular weight of phosphine ligand with PPhMe 2 leads to a strategy of the efficient deep blue organic light-emitting devices (OLED) by thermal processing instead of the solution processing. The electron-withdrawing difluoro group substituted on the phenyl ring and the cyano strong field ancillary ligand in the trans position to the carbon atom of phenyl ring increased HOMO-LUMO gap and achieved the hypsochromic shift in emission color. As a result, the maximum emission spectra of Ir(F 2 Meppy)(PPhMe 2 ) 2 (H)(Cl), [Ir(F 2 Meppy)(PPhMe 2 ) 2 (H)-(NCMe)] + and Ir(F 2 Meppy)(PPh-Me 2 ) 2 (H)(CN) were in the ranges of 446, 440, 439 nm, respectively.

  9. A study of the removal of heavy metals from aqueous solutions by Moringa oleifera seeds and amine-based ligand 1,4-bis[N,N-bis(2-picoyl)amino]butane

    International Nuclear Information System (INIS)

    Obuseng, Veronica; Nareetsile, Florence; Kwaambwa, Habauka M.

    2012-01-01

    Highlights: ► Materials are effective and selective in simultaneous removal of heavy metal ions. ► Use of composite adsorbent of both materials may result in more effective material. ► Seeds biomass has various functional groups involves in metal removal. ► Attainment of sorption equilibrium is rapid for the seeds biomass. ► Seeds biomass effectiveness is not affected over wide effective pH range. - Abstract: Uptake for lead, copper, cadmium, nickel and manganese from aqueous solution using the Moringa oleifera seeds biomass (MOSB) and amine-based ligand (ABL) was investigated. Experiments on two synthetic multi-solute systems revealed that MOSB performed well in the biosorption and followed the decreasing orders Pb(II) > Cu(II) > Cd(II) > Ni(II) > Mn(II) and Zn(II) > Cu(II) > Ni(II). The general trend of the heavy metal ions uptake by the amine-based ligand followed decreased in the order Mn > Cd > Cu > Ni > Pb, which is the reverse trend for what was observed for MOSB. Comparing the single- and multi-metal solutions, there was no clear effect in the biosorption capacity of MOSB suggesting the presence of sufficient active binding sites for all metal ions studied. The MOSB performance is also not affected by pH in the range 3.5–8.

  10. "Precipitation on Nanoparticles": Attractive Intermolecular Interactions Stabilize Specific Ligand Ratios on the Surfaces of Nanoparticles.

    Science.gov (United States)

    Chu, Zonglin; Han, Yanxiao; Kral, Petr; Klajn, Rafal

    2018-04-19

    Confining organic molecules to the surfaces of inorganic nanoparticles can induce intermolecular interactions between them, which can affect the composition of the mixed self-assembled monolayers obtained by co-adsorption from solution of two different molecules. Here, we study co-adsorption of two thiolated ligands-a dialkylviologen and a zwitterionic sulfobetaine-that can interact with each other electrostatically, onto gold nanoparticles. Consequently, the nanoparticles favor a narrow range of ratios of these two molecules that is largely independent of the molar ratio in solution. We show that changing the solution molar ratio of two ligands by a factor of ~5,000 affects the on-nanoparticle ratio of these ligands by only 3 times. This behavior is reminiscent of the formation of insoluble inorganic salts (e.g., AgCl), which similarly compensate positive and negative charges upon crystallizing. Our results pave the way towards developing well-defined hybrid organic-inorganic nanostructures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Unraveling the Solution-State Supramolecular Structures of Donor-Acceptor Polymers and their Influence on Solid-State Morphology and Charge-Transport Properties.

    Science.gov (United States)

    Zheng, Yu-Qing; Yao, Ze-Fan; Lei, Ting; Dou, Jin-Hu; Yang, Chi-Yuan; Zou, Lin; Meng, Xiangyi; Ma, Wei; Wang, Jie-Yu; Pei, Jian

    2017-11-01

    Polymer self-assembly in solution prior to film fabrication makes solution-state structures critical for their solid-state packing and optoelectronic properties. However, unraveling the solution-state supramolecular structures is challenging, not to mention establishing a clear relationship between the solution-state structure and the charge-transport properties in field-effect transistors. Here, for the first time, it is revealed that the thin-film morphology of a conjugated polymer inherits the features of its solution-state supramolecular structures. A "solution-state supramolecular structure control" strategy is proposed to increase the electron mobility of a benzodifurandione-based oligo(p-phenylene vinylene) (BDOPV)-based polymer. It is shown that the solution-state structures of the BDOPV-based conjugated polymer can be tuned such that it forms a 1D rod-like structure in good solvent and a 2D lamellar structure in poor solvent. By tuning the solution-state structure, films with high crystallinity and good interdomain connectivity are obtained. The electron mobility significantly increases from the original value of 1.8 to 3.2 cm 2 V -1 s -1 . This work demonstrates that "solution-state supramolecular structure" control is critical for understanding and optimization of the thin-film morphology and charge-transport properties of conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and 1O2 Generation

    OpenAIRE

    Knoll, Jessica D.; Albani, Bryan A.; Turro, Claudia

    2015-01-01

    Uncovering the factors that govern the electronic structure of Ru(II)–polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and 1O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field (3LF) state proceeds through thermal population from the vibrationally cooled triplet meta...

  13. On the state of phosphomolybdenovanadic heteropolyblue in aqueous solutions

    International Nuclear Information System (INIS)

    Kuznetsova, L.I.; Yurchenko, Eh.N.; Maksimovskaya, R.I.; Kirik, N.P.; Matveev, K.I.

    1977-01-01

    The effect has been investigated of pH solution on the state of the phosphomolybdenovanadic heteropolyblues of the 12. series, containing n=1,2,3,6 atoms of vanadium (6). It has been shown that the free VO 2+ intrusion into the sphere of heteropolyanions takes place alongside with pH increasing from 1 to 3. At the some time the rate of oxidation of the heteropolyblue solutions by oxygen and the optical density of solutions increase too. The dissociation constants of the heteropolyblue molecule in acid medium increase with increasing of the quantity of vanadium atoms. It has been shown that stability of heteropolyblue in relation to molybdenum decreases with increasing of its quantity in the heteropolyblue molecule. Using precipitation of the heteropolyanions by the cation of tetraethyl ammonium, it has been shown that heteropolyanions can consist of 1,2,3 and 6 atoms of V(6). The state of heteropolyblues in an aqueous solution is characterized by electron absorption spectra

  14. Solution characterization of the extracellular region of CD147 and its interaction with its enzyme ligand cyclophilin-A

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, Jennifer; Redzic, Jasmina S.; Porter, Christopher; Yurchenko, Vyacheslav; Bukrinsky, Michael; Labeikovsky, Wladimir; Armstrong, Geoffrey S.; Zhang, Fengli; Isern, Nancy G.; Degregori, James; Hodges, Robert; Eisenmesser, Elan Z.

    2009-08-21

    The CD147 receptor plays an integral role in numerous diseases by stimulating the expression of several protein families and serving as the receptor for extracellular cyclophilins, however, neither CD147 nor its interactions with its cyclophilin ligands have been well characterized in solution. CD147 is a unique protein in that it can function both at the cell membrane and after being released from cells where it continues to retain activity. Thus, the CD147 receptor functions through at least two mechanisms that include both cyclophilin-independent and cyclophilin-dependent modes of action. In regard to CD147 cyclophilin-independent activity, CD147 homophilic interactions are thought to underlie its activity. In regard to CD147 cyclophilin-dependent activity, cyclophilin/CD147 interactions may represent a novel means of signaling since cyclophilins are also peptidyl-prolyl isomerases.

  15. Tuning optoelectronic properties of small semiconductor nanocrystals through surface ligand chemistry

    Science.gov (United States)

    Lawrence, Katie N.

    , can increase the stability of SNCs during solution-phase electrochemical characterization. Therefore, we utilized these properties to characterize solution-state electrochemical properties and photocatalytic activity of ternary copper indium diselenide (CuInSe2) SNCs as a function of their size and surface ligand chemistry. Electrochemical characterization of our PEG-thiolate-coated SNCs showed that the thermodynamic driving force (-?G) for oxygen reduction, which increased with decreasing bandgap, was a major contributor to the overall photocatalytic reaction. Additionally, phenol degradation efficiency was monitored in which the smallest diameter SNC and shortest chain length of PEG provided the highest efficiency. The information provided herein could be used to produce superior SNC photocatalysts for a variety of applications including oxidation of organic contaminants, conversion of water to hydrogen gas, and decomposition of crude oil or pesticides. Therefore, we believe our work will significantly advance quantitative electrochemical characterization of SNCs and allow for the design of highly efficient, sustainable photocatalysts resulting in economic and environmental benefits.

  16. pH-Dependent spin state population and 19F NMR chemical shift via remote ligand protonation in an iron(ii) complex.

    Science.gov (United States)

    Gaudette, Alexandra I; Thorarinsdottir, Agnes E; Harris, T David

    2017-11-30

    An Fe II complex that features a pH-dependent spin state population, by virtue of a variable ligand protonation state, is described. This behavior leads to a highly pH-dependent 19 F NMR chemical shift with a sensitivity of 13.9(5) ppm per pH unit at 37 °C, thereby demonstrating the potential utility of the complex as a 19 F chemical shift-based pH sensor.

  17. Passivating ligand and solvent contribution to the electronics properties of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tretiak, Sergei [Los Alamos National Laboratory; Crotty, Angela [Los Alamos National Laboratory; Fischer, Sean [Los Alamos National Laboratory; Kilina, Svetlana [NON LANL

    2010-10-04

    Expanding on previous work, we examine in detail the impact passivating ligands have on the electronic properties of CdSe quantum dots (QDs). We also explore the importance of the inclusion of solvent in simulating passivated QDs. Most ligand states are found well removed from the band edges, with pyridine being the exception and contributing states that sit right on the conduction band edge. Localized trap states are found for trimethylphosphine and pyridine capped QDs, with solvent helping to eliminate these. The effect of losing a ligand on the electronic properties of the system is observed to vary in proportion with the binding energy and steric bulk of the ligand. More disruption of the electronic properties is seen for tight-binding, sterically large ligands. We also look at the validity of using the single-particle Kohn-Sham (KS) representation to approximate optical absorption spectra. Besides a systematic blue-shift relative to the time-dependent density functional theory spectra, the KS spectra are in very good agreement with the more accurate method for these systems. Such agreement here justifies the use of the KS approach for calculating absorption spectra of QD systems.

  18. Complex chemistry of Np(V) in aqueous solutions

    International Nuclear Information System (INIS)

    Inoue, Yasushi

    1989-01-01

    Despite the importance of Np(V) in both the nuclear chemical engineering and the actinoid chemistry, little work has been performed on the complex chemistry of Np(V) in aqueous solutions, since Np(V) reacts less readily with various ligands. The author has directed his effort to understand the chemical behavior of Np(V) in aqueous solutions, especially the determination of the stability constants of Np(V) complexes with various ligands. A part of the results obtained so far is presented in the following order. (1) The synergistic extraction of Np(V) as a method for studying the complex chemistry of Np(V): TTA-MTOA(methyltrioctylammonium chloride), TTA-phen and TTA-TOPO. (2) The determination of the stability constants of Np(V) complexes with 22 organic- and 5 inorganic ligands by means of the solvent extraction. (3) The distribution of the chemical species of Np(V) in solutions under various conditions

  19. Quantitative analysis of protein-ligand interactions by NMR.

    Science.gov (United States)

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  20. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins.

    Science.gov (United States)

    Rury, Aaron S; Wiley, Theodore E; Sension, Roseanne J

    2015-03-17

    tetraphenyl porphyrin chloride (Fe((III))TPPCl) exhibits picosecond decay to a metal centered d → d* (4)T state. This state decays on a ca. 16 ps time scale in room temperature solution but persists for much longer in a cryogenic glass. The photoreactivity of the (4)T state may lead to novel future applications for these compounds. In contrast, the nonplanar cob(III)alamins contain two axial ligands to the central cobalt atom. The upper axial ligand can be an alkyl group as in the two biologically active coenzymes or a nonalkyl ligand such as -CN in cyanocobalamin (vitamin B12) or -OH in hydroxocobalamin. The electronic structure, energy cascade, and bond cleavage of these compounds is sensitive to the details of the axial ligand. Nonalkylcobalamins exhibit ultrafast internal conversion to a low-lying state of metal to ligand or ligand to metal charge transfer character. The compounds are generally photostable with ground state recovery complete on a time scale of 2-7 ps in room temperature aqueous solution. Alkylcobalamins exhibit ultrafast internal conversion to an S1 state of d/π → π* character. Most compounds undergo bond cleavage from this state with near unit quantum yield within ∼100 ps. Recent theoretical calculations provide a potential energy surface accounting for these observations. Conformation dependent mixing of the corrin π and cobalt d orbitals plays a significant role in the observed photochemistry and photophysics.

  1. Effect of urea on protein-ligand association.

    Science.gov (United States)

    Stepanian, Lora; Son, Ikbae; Chalikian, Tigran V

    2017-12-01

    We combine experimental and theoretical approaches to investigate the influence of a cosolvent on a ligand-protein association event. We apply fluorescence measurements to determining the affinity of the inhibitor tri-N-acetylglucosamine [(GlcNAc) 3 ] for lysozyme at urea concentrations ranging from 0 to 8M. Notwithstanding that, at room temperature and neutral pH, lysozyme retains its native conformation up to the solubility limit of urea, the affinity of (GlcNAc) 3 for the protein steadily decreases as the concentration of urea increases. We analyze the urea dependence of the binding free energy within the framework of a simplified statistical thermodynamics-based model that accounts for the excluded volume effect and direct solute-solvent interactions. The analysis reveals that the detrimental action of urea on the inhibitor-lysozyme binding originates from competition between the free energy contributions of the excluded volume effect and direct solute-solvent interactions. The free energy contribution of direct urea-solute interactions narrowly overcomes the excluded volume contribution thereby resulting in urea weakening the protein-ligand association. More broadly, the successful application of the simple model employed in this work points to the possibility of its use in quantifying the stabilizing/destabilizing action of individual cosolvents on biochemical folding and binding reactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Predicting Efficient Antenna Ligands for Tb(III) Emission

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Amanda P.S.; Xu, Jide; Raymond, Kenneth

    2008-10-06

    A series of highly luminescent Tb(III) complexes of para-substituted 2-hydroxyisophthalamide ligands (5LI-IAM-X) has been prepared (X = H, CH{sub 3}, (C=O)NHCH{sub 3}, SO{sub 3}{sup -}, NO{sub 2}, OCH{sub 3}, F, Cl, Br) to probe the effect of substituting the isophthalamide ring on ligand and Tb(III) emission in order to establish a method for predicting the effects of chromophore modification on Tb(III) luminescence. The energies of the ligand singlet and triplet excited states are found to increase linearly with the {pi}-withdrawing ability of the substituent. The experimental results are supported by time-dependent density functional theory (TD-DFT) calculations performed on model systems, which predict ligand singlet and triplet energies within {approx}5% of the experimental values. The quantum yield ({Phi}) values of the Tb(III) complex increases with the triplet energy of the ligand, which is in part due to the decreased non-radiative deactivation caused by thermal repopulation of the triplet. Together, the experimental and theoretical results serve as a predictive tool that can be used to guide the synthesis of ligands used to sensitize lanthanide luminescence.

  3. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine)2(CN)2

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Zhang, Wenkai; Alonso-Mori, Roberto

    2017-01-01

    We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy)2(CN)2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV-visible...

  4. Ultrafast excited-state relaxation of a binuclear Ag(i) phosphine complex in gas phase and solution.

    Science.gov (United States)

    Kruppa, S V; Bäppler, F; Klopper, W; Walg, S P; Thiel, W R; Diller, R; Riehn, C

    2017-08-30

    The binuclear complex [Ag 2 (dcpm) 2 ](PF 6 ) 2 (dcpm = bis(dicyclohexylphosphino)methane) exhibits a structure with a close silver-silver contact mediated by the bridging ligand and thus a weak argentophilic interaction. Upon electronic excitation this cooperative effect is strongly increased and determines the optical and luminescence properties of the compound. We have studied here the ultrafast electronic dynamics in parallel in gas phase by transient photodissociation and in solution by transient absorption. In particular, we report the diverse photofragmentation pathways of isolated [Ag 2 (dcpm) 2 ] 2+ in an ion trap and its gas phase UV photodissociation spectrum. By pump-probe fragmentation action spectroscopy (λ ex = 260 nm) in the gas phase, we have obtained fragment-specific transients which exhibit a common ultrafast multiexponential decay. This is fitted to four time constants (0.6/5.8/100/>1000 ps), highlighting complex intrinsic photophysical processes. Remarkably, multiexponential dynamics (0.9/8.5/73/604 ps) are as well found for the relaxation dynamics in acetonitrile solution. Ab initio calculations at the level of approximate coupled-cluster singles-doubles (CC2) theory of ground and electronically excited states of the reduced model system [Ag 2 (dmpm) 2 ] 2+ (dmpm = bis(dimethylphosphino)methane) indicate a shortening of the Ag-Ag distance upon excitation by 0.3-0.4 Å. In C 2 geometry two close-lying singlet states S 1 ( 1 MC(dσ*-pπ), 1 B, 4.13 eV) and S 2 ( 1 MC(dσ*-pσ), 1 A, 4.45 eV) are found. The nearly dark S 1 state has not been reported so far. The excitation of the S 2 state carries a large oscillator strength for the calculated vertical transition (266 nm). Two related triplets are calculated at T 1 (3.87 eV) and T 2 (3.90 eV). From these findings we suggest possible relaxation pathways with the two short time constants ascribed to ISC/IVR and propose from the obtained similar values in gas phase that the fast solution dynamics

  5. Solid state structure of thorium(IV) complexes with common aminopoly-carboxylate ligands

    International Nuclear Information System (INIS)

    Thuery, Pierre

    2011-01-01

    The crystal structures of the complexes formed by reaction of thorium(IV) nitrate with iminodiacetic acid (H 2 IDA), nitrilotriacetic acid (H 3 NTA), and ethylenediaminetetraacetic acid (H 4 EDTA) under hydrothermal conditions are reported. In [Th(HIDA) 2 (C 2 O 4 )].H 2 O (1), the metal atom is chelated by two carboxylate groups from two HIDA - anions and by two oxalate ligands formed in situ; two additional oxygen atoms from two more HIDA - anions complete the ten-coordinate environment of bi-capped square anti-prismatic geometry. The uncoordinated nitrogen atom is protonated and involved in hydrogen bonding. Two different ligands are present in [Th(NTA)(H 2 NTA)(H 2 O)].H 2 O (2), one of them being a O 3 ,N-chelating tri-anion which acts also as a bridge toward two neighboring metal ions, and the other being a bis-monodentate bridging species with an uncoordinated carboxylic arm and a central ammonium group. An aqua ligand completes the nine-coordinated, capped square anti-prismatic metal environment. The EDTA 4- anion in [Th(EDTA)(H 2 O)].2H 2 O (3) is chelating through one oxygen atom from each carboxylate group and the two nitrogen atoms, as in a previously reported molecular complex. Two carboxylate groups are bridging, which, with the addition of an aqua ligand, gives a capped square anti-prismatic coordination polyhedron. Aminopoly-carboxylate ligands have been much investigated in relation with actinide decorporation and nuclear wastes management studies, and the present results add to the structural information available on their complexes with thorium(IV), which has mainly been obtained up to now by extended X-ray absorption fine structure (EXAFS) spectroscopy. In particular, the bridging (non-chelating) coordination mode of H 2 NTA - is a novel feature in this context. All three complexes crystallize as two-dimensional assemblies and are thus novel examples of thorium-organic coordination polymers. (author)

  6. Two novel mixed-ligand complexes containing organosulfonate ligands.

    Science.gov (United States)

    Li, Mingtian; Huang, Jun; Zhou, Xuan; Fang, Hua; Ding, Liyun

    2008-07-01

    The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-kappaO)bis(4,5-diazafluoren-9-one-kappa(2)N,N')copper(II), [Cu(C(10)H(8)NO(3)S)(2)(C(11)H(6)N(2)O)(2)], (I), and poly[[[diaquacadmium(II)]-bis(mu-4-aminonaphthalene-1-sulfonato)-kappa(2)O:N;kappa(2)N:O] dihydrate], {[Cd(C(10)H(8)NO(3)S)(2)(H(2)O)(2)].2H(2)O}(n), (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the Cu(II) atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The Cu(II) atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a Cd(II) atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two Cd(II) atoms into one-dimensional infinite chains along the [010] direction, with each Cd(II) center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant pi-pi stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.

  7. New Ru(II) complexes for dual photoreactivity: ligand exchange and (1)O2 generation.

    Science.gov (United States)

    Knoll, Jessica D; Albani, Bryan A; Turro, Claudia

    2015-08-18

    Uncovering the factors that govern the electronic structure of Ru(II)-polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and (1)O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field ((3)LF) state proceeds through thermal population from the vibrationally cooled triplet metal-to-ligand charge transfer ((3)MLCT) state; however, temperature-dependent emission spectroscopy provides varied activation energies using the emission and ligand exchange quantum yields for [Ru(bpy)2(L)2](2+) (bpy = 2,2'-bipyridine; L = CH3CN or py). This suggests that population of the (3)LF state proceeds from the vibrationally excited (3)MLCT state. Because the quantum yield of ligand dissociation for nitriles is much more efficient than that for py, steric bulk was introduced into the ligand set to distort the pseudo-octahedral geometry and lower the energy of the (3)LF state. The py dissociation quantum yield with 500 nm irradiation in a series of [Ru(tpy)(NN)(py)](2+) complexes (tpy = 2,2':6',2″-terpyridine; NN = bpy, 6,6'-dimethyl-2,2'-bipyridine (Me2bpy), 2,2'-biquinoline (biq)) increases by 2-3 orders of magnitude with the sterically bulky Me2bpy and biq ligands relative to bpy. Ultrafast transient absorption spectroscopy reveals population of the (3)LF state within 3-7 ps when NN is bulky, and density functional theory calculations support stabilized (3)LF states. Dual activity via ligand dissociation and (1)O2 production can be achieved by careful selection of the ligand set to tune the excited-state dynamics. Incorporation of an extended π system in Ru(II) complexes such as [Ru(bpy)(dppn)(CH3CN)2](2+) (dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) and [Ru(tpy)(Me2dppn)(py)](2+) (Me2dppn = 3,6-dimethylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine) introduces

  8. New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and 1O2 Generation

    Science.gov (United States)

    Knoll, Jessica D.; Albani, Bryan A.; Turro, Claudia

    2016-01-01

    CONSPECTUS Uncovering the factors that govern the electronic structure of Ru(II)–polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and 1O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field (3LF) state proceeds through thermal population from the vibrationally cooled triplet metal-to-ligand charge transfer (3MLCT) state; however, temperature-dependent emission spectroscopy provides varied activation energies using the emission and ligand exchange quantum yields for [Ru(bpy)2(L)2]2+ (bpy = 2,2′-bipyridine; L = CH3CN or py). This suggests that population of the 3LF state proceeds from the vibrationally excited 3MLCT state. Because the quantum yield of ligand dissociation for nitriles is much more efficient than that for py, steric bulk was introduced into the ligand set to distort the pseudo-octahedral geometry and lower the energy of the 3LF state. The py dissociation quantum yield with 500 nm irradiation in a series of [Ru(tpy)(NN)(py)]2+ complexes (tpy = 2,2′:6′,2″-terpyridine; NN = bpy, 6,6′-dimethyl-2,2′-bipyridine (Me2bpy), 2,2′-biquinoline (biq)) increases by 2–3 orders of magnitude with the sterically bulky Me2bpy and biq ligands relative to bpy. Ultrafast transient absorption spectroscopy reveals population of the 3LF state within 3–7 ps when NN is bulky, and density functional theory calculations support stabilized 3LF states. Dual activity via ligand dissociation and 1O2 production can be achieved by careful selection of the ligand set to tune the excited-state dynamics. Incorporation of an extended π system in Ru(II) complexes such as [Ru(bpy)(dppn)(CH3CN)2]2+ (dppn = benzo[i]dipyrido[3,2-a:2′,3′-c]phenazine) and [Ru(tpy)(Me2dppn)(py)]2+ (Me2dppn = 3,6-dimethylbenzo[i]dipyrido[3,2-a:2′,3

  9. Steady state solution of the Poisson-Nernst-Planck equations

    International Nuclear Information System (INIS)

    Golovnev, A.; Trimper, S.

    2010-01-01

    The exact steady state solution of the Poisson-Nernst-Planck equations (PNP) is given in terms of Jacobi elliptic functions. A more tractable approximate solution is derived which can be used to compare the results with experimental observations in binary electrolytes. The breakdown of the PNP for high concentration and high applied voltage is discussed.

  10. Application of X-ray single crystal diffractometry to investigation of Np(5) complexes with n-donor ligands

    International Nuclear Information System (INIS)

    Andreev, G.

    2007-01-01

    Full text of publication follows. We present here some results of application of conventional X-ray single crystal diffractometry to the research on the interaction of Np(V) with N-donor ligands. Compounds that can coordinate to actinides through one or several nitrogen atoms are of a great variety and occur widely in the biosphere. For example, imidazole, pyridine and their derivatives are the building blocks of many biologically important molecules; triazines are known to occur in some aquatic plants. The presence of anthropogenic organic agents like amine-N-carboxylic acids in surface waters has the potential to re-mobilize metals from sediments and aquifers and to influence their bioavailability. The interaction of radionuclides with such ligands needs to be studied in detail to give fundamental understanding the conditions of the incorporation of long lived a-emitters (Np and Pu primarily) into the food chain. Another aspect of the same problem is the design of new chelating ligands for selective co-ordination of actinide ions as an alternative to the traditional sequestering agents. The problem of the separation of long-lived minor actinides and their transmutation also calls for design of new highly selective ligands for solvent extraction. Polydentate N-donor ligands are now considered to be very promising. A detailed study of structural chemistry is crucial for understanding the relationship between the architecture of the ligands and their binding affinity for actinides. The X-ray single crystal diffractometry became conventional technique as applied to the investigation of actinides in spite of difficulties regarding safe handling of radionuclides. This technique provides unambiguous information about modes of the ligand co-ordination to the metal ion and geometrical parameters of complexes. Moreover, the employment of a synchrotron radiation shows considerable promise for determination of solid state structures as well as obtaining structural

  11. Strong ligand field effects of blue phosphorescent mono-cyclometalated iridium(III) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Ho Wan [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Jung, Kyung Yoon [International Design School for Advanced Studies, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Sik, E-mail: youngkim@hongik.ac.k [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of)

    2010-09-01

    A series of mono-cyclometalated blue phosphorescent iridium(III) complexes with two phosphines trans to each other and two cis-ancillary ligands, such as Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}(H)(Cl), [Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}(H)(NCMe)]{sup +} and Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}-(H)(CN), [F{sub 2}Meppy = 2-(2',4'-difluorophenyl)-4-methyl-pyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. We investigate the electron-withdrawing capabilities of ancillary ligands using the DFT and TD-DFT calculations on the ground and excited states of the three complexes to gain insight into the factors responsible for the emission color change and the different luminescence efficiency. Reducing the molecular weight of phosphine ligand with PPhMe{sub 2} leads to a strategy of the efficient deep blue organic light-emitting devices (OLED) by thermal processing instead of the solution processing. The electron-withdrawing difluoro group substituted on the phenyl ring and the cyano strong field ancillary ligand in the trans position to the carbon atom of phenyl ring increased HOMO-LUMO gap and achieved the hypsochromic shift in emission color. As a result, the maximum emission spectra of Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}(H)(Cl), [Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}(H)-(NCMe)]{sup +} and Ir(F{sub 2}Meppy)(PPh-Me{sub 2}){sub 2} (H)(CN) were in the ranges of 446, 440, 439 nm, respectively.

  12. Complexation of biological ligands with lanthanides(III) for MRI: Structure, thermodynamic and methods; Complexation des cations lanthanides trivalents par des ligands d'origine biologique pour l'IRM: Structure, thermodynamique et methodes

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, C

    2006-07-15

    New cyclic ligands derived from sugars and amino-acids form a scaffold carrying a coordination sphere of oxygen atoms suitable to complex Ln(III) ions. In spite of their rather low molecular weights, the complexes display surprisingly high relaxivity values, especially at high field. The ACX and BCX ligands, which are acidic derivatives of modified and cyclo-dextrins, form mono and bimetallic complexes with Ln(III). The LnACX and LnBCX complexes show affinities towards Ln(III) similar to those of tri-acidic ligands. In the bimetallic Lu2ACX complex, the cations are deeply embedded in the cavity of the ligand, as shown by the X-ray structure. In aqueous solution, the number of water molecules coordinated to the cation in the LnACX complex depends on the nature and concentration of the alkali ions of the supporting electrolyte, as shown by luminescence and relaxometric measurements. There is only one water molecule coordinated in the LnBCX complex, which enables us to highlight an important second sphere contribution to relaxivity. The NMR study of the RAFT peptidic ligand shows the complexation of Ln(III), with an affinity similar to those of natural ligands derived from calmodulin. The relaxometric study also shows an important second sphere contribution to relaxivity. To better understand the intricate molecular factors affecting relaxivity, we developed new relaxometric methods based on probe solutes. These methods allow us to determine the charge of the complex, weak affinity constants, trans-metallation constants, and the electronic relaxation rate. (author)

  13. Prediction of ligand effects in platinum-amyloid-β coordination.

    Science.gov (United States)

    Turner, Matthew; Deeth, Robert J; Platts, James A

    2017-08-01

    Ligand field molecular mechanics (LFMM) and semi-empirical Parametric Model 7 (PM7) methods are applied to a series of six Pt II -Ligand systems binding to the N-terminal domain of the amyloid-β (Aβ) peptide. Molecular dynamics using a combined LFMM/Assisted Model Building with Energy Refinement (AMBER) approach is used to explore the conformational freedom of the peptide fragment, and identifies favourable platinum binding modes and peptide conformations for each ligand investigated. Platinum coordination is found to depend on the nature of the ligand, providing evidence that binding mode may be controlled by suitable ligand design. Boltzmann populations at 310K indicate that each Pt-Aβ complex has a small number of thermodynamically accessible states. Ramachandran maps are constructed for the sampled Pt-Aβ conformations and secondary structural analysis of the obtained complex structures is performed and contrasted with the free peptide; coordination of these platinum complexes disrupts existing secondary structure in the Aβ peptide and promotes formation of ligand-specific turn-type secondary structure. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A study of the removal of heavy metals from aqueous solutions by Moringa oleifera seeds and amine-based ligand 1,4-bis[N,N-bis(2-picoyl)amino]butane

    Energy Technology Data Exchange (ETDEWEB)

    Obuseng, Veronica; Nareetsile, Florence [Department of Chemistry, University of Botswana, Private Bag UB 00704, Gaborone (Botswana); Kwaambwa, Habauka M., E-mail: hmkwaambwa@yahoo.com [Department of Chemistry, University of Botswana, Private Bag UB 00704, Gaborone (Botswana)

    2012-06-12

    Highlights: Black-Right-Pointing-Pointer Materials are effective and selective in simultaneous removal of heavy metal ions. Black-Right-Pointing-Pointer Use of composite adsorbent of both materials may result in more effective material. Black-Right-Pointing-Pointer Seeds biomass has various functional groups involves in metal removal. Black-Right-Pointing-Pointer Attainment of sorption equilibrium is rapid for the seeds biomass. Black-Right-Pointing-Pointer Seeds biomass effectiveness is not affected over wide effective pH range. - Abstract: Uptake for lead, copper, cadmium, nickel and manganese from aqueous solution using the Moringa oleifera seeds biomass (MOSB) and amine-based ligand (ABL) was investigated. Experiments on two synthetic multi-solute systems revealed that MOSB performed well in the biosorption and followed the decreasing orders Pb(II) > Cu(II) > Cd(II) > Ni(II) > Mn(II) and Zn(II) > Cu(II) > Ni(II). The general trend of the heavy metal ions uptake by the amine-based ligand followed decreased in the order Mn > Cd > Cu > Ni > Pb, which is the reverse trend for what was observed for MOSB. Comparing the single- and multi-metal solutions, there was no clear effect in the biosorption capacity of MOSB suggesting the presence of sufficient active binding sites for all metal ions studied. The MOSB performance is also not affected by pH in the range 3.5-8.

  15. A grand unified model for liganded gold clusters

    Science.gov (United States)

    Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi

    2016-12-01

    A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three `flavours' (namely, bottom, middle and top) to represent three possible valence states. The `composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.

  16. Hot 56Mn reactions in permanganate solutions: a quasi solution state study [Paper No. NC-6

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.; Mitra, S.

    1982-01-01

    Neutron activation of aqueous solutions of transition metal and ammonium permanganates over the concentration range 1-10 -3 M has been performed. Retentions for concentrated solutions were much higher than the solid state values, and upon dilution, a limiting value of approx. 4 per cent was attained. Activation of 1-10 -1 M permanganate quasi solutions containing either alumina or a polystyrene cation exchanger allowed continuous extraction of the recoil species before their recombination. (author)

  17. Ionophoretic method in the study of mixed ligand ternary chelates of UO2(II), Ni(II) and Zn(II) involving nitrilotriacetate and cytosine as ligands

    International Nuclear Information System (INIS)

    Mishra, A.P.; Mishra, S.K.; Yadava, K.L.

    1987-01-01

    A novel electrophoretic technique is described for the assessment of the equilibria in mixed-ligand complex system in solution. It is based on the movement of spot of the metal ion under an electric field with the complexants added in the background electrolyte at fixed pH. The concentration of primary ligand nitrilotriacetate was constant while that of secondary ligand (cytosine) was varied. The plot of log (cytosine) against mobility was used to obtain information on the formation of the mixed complexes and to calculate its stability constants. Experimentally obtained logK values are as 5.62, 4.55 and 4.42 for mixed complexes of UO 2 (II), Ni(II) and Zn(II) respectively at μ=0.1 and temp.=35 +- 01.degC. (author). 10 refs

  18. Preparation and characterizations of new U(IV) and U(VI) complexes with carboxylate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Sbrignadello, G; Tomat, G; Battiston, G; Vigato, P A [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi

    1978-01-01

    The synthesis and characterization of some uranyl(VI) complexes containing glycolate (gly = CH/sub 2/OHCOO/sup -/) and methoxyacetate (MeOAc = CH/sub 3/OCH/sub 2/COO/sup -/) ligands with metal:ligand ratios of 1:1 and 1:2 are reported. In addition, new stable uranium(IV) complexes containing the same ligands, or the oxydiacetate (oda = /sup -/OOCCH/sub 2/OCH/sub 2/COO/sup -/) anion, have been prepared by photolysing aqueous solutions of uranyl(VI) nitrate in the presence of an excess of ligand. The possible structures of these complexes are discussed on the basis of IR results. The photoproduction mechanism of U(IV) complexes is proposed from electronic and spectrofluorimetric spectra and quantum yield data.

  19. Online size-exclusion high-performance liquid chromatography light scattering and differential refractometry methods to determine degree of polymer conjugation to proteins and protein-protein or protein-ligand association states.

    Science.gov (United States)

    Kendrick, B S; Kerwin, B A; Chang, B S; Philo, J S

    2001-12-15

    Characterizing the solution structure of protein-polymer conjugates and protein-ligand interactions is important in fields such as biotechnology and biochemistry. Size-exclusion high-performance liquid chromatography with online classical light scattering (LS), refractive index (RI), and UV detection offers a powerful tool in such characterization. Novel methods are presented utilizing LS, RI, and UV signals to rapidly determine the degree of conjugation and the molecular mass of the protein conjugate. Baseline resolution of the chromatographic peaks is not required; peaks need only be sufficiently separated to represent relatively pure fractions. An improved technique for determining the polypeptide-only mass of protein conjugates is also described. These techniques are applied to determining the degree of erythropoietin glycosylation, the degree of polyethylene glycol conjugation to RNase A and brain-derived neurotrophic factor, and the solution association states of these molecules. Calibration methods for the RI, UV, and LS detectors will also be addressed, as well as online methods to determine protein extinction coefficients and dn/dc values both unconjugated and conjugated protein molecules. (c)2001 Elsevier Science.

  20. AutoSite: an automated approach for pseudo-ligands prediction—from ligand-binding sites identification to predicting key ligand atoms

    Science.gov (United States)

    Ravindranath, Pradeep Anand; Sanner, Michel F.

    2016-01-01

    Motivation: The identification of ligand-binding sites from a protein structure facilitates computational drug design and optimization, and protein function assignment. We introduce AutoSite: an efficient software tool for identifying ligand-binding sites and predicting pseudo ligand corresponding to each binding site identified. Binding sites are reported as clusters of 3D points called fills in which every point is labelled as hydrophobic or as hydrogen bond donor or acceptor. From these fills AutoSite derives feature points: a set of putative positions of hydrophobic-, and hydrogen-bond forming ligand atoms. Results: We show that AutoSite identifies ligand-binding sites with higher accuracy than other leading methods, and produces fills that better matches the ligand shape and properties, than the fills obtained with a software program with similar capabilities, AutoLigand. In addition, we demonstrate that for the Astex Diverse Set, the feature points identify 79% of hydrophobic ligand atoms, and 81% and 62% of the hydrogen acceptor and donor hydrogen ligand atoms interacting with the receptor, and predict 81.2% of water molecules mediating interactions between ligand and receptor. Finally, we illustrate potential uses of the predicted feature points in the context of lead optimization in drug discovery projects. Availability and Implementation: http://adfr.scripps.edu/AutoDockFR/autosite.html Contact: sanner@scripps.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27354702

  1. Highly Efficient Interception and Precipitation of Uranium(VI) from Aqueous Solution by Iron-Electrocoagulation Combined with Cooperative Chelation by Organic Ligands.

    Science.gov (United States)

    Li, Peng; Zhun, Bao; Wang, Xuegang; Liao, PingPing; Wang, Guanghui; Wang, Lizhang; Guo, Yadan; Zhang, Weimin

    2017-12-19

    A new strategy combining iron-electrocoagulation and organic ligands (OGLs) cooperative chelation was proposed to screen and precipitate low concentrations (0-18.52 μmol/L) of uranium contaminant in aqueous solution. We hypothesized that OGLs with amino, hydroxyl, and carboxyl groups hydrophobically/hydrophilically would realize precuring of uranyl ion at pH electrocoagulation would achieve faster and more efficient uranium precipitation. Experimentally, the strategy demonstrated highly efficient uranium(VI) precipitation efficiency, especially with hydrophilic macromolecular OGLs. The uranium removal efficiency at optimized experimental condition reached 99.65%. The decrease of zeta potential and the lattice enwrapping between U-OGLs chelates and flocculation precursor were ascribed to the enhanced uranium precipitation activity. Uranium was precipitated as oxides of U(VI) or higher valences that were easily captured in aggregated micelles under low operation current potential. The actual uranium tailing wastewater was treated, and a satisfied uranium removal efficiency of 99.02% was discovered. After elution of the precipitated flocs, a concentrated uranium solution (up to 106.52 μmol/L) with very few other metallic impurities was obtained. Therefore, the proposed strategy could remove uranium and concentrate it concurrently. This work could provide new insights into the purification and recovery of uranium from aqueous solutions in a cost-effective and environmentally friendly process.

  2. Do All X-ray Structures of Protein-Ligand Complexes Represent Functional States? EPOR, a Case Study.

    Science.gov (United States)

    Corbett, Michael S P; Mark, Alan E; Poger, David

    2017-02-28

    Based on differences between the x-ray crystal structures of ligand-bound and unbound forms, the activation of the erythropoietin receptor (EPOR) was initially proposed to involve a cross-action scissorlike motion. However, the validity of the motions involved in the scissorlike model has been recently challenged. Here, atomistic molecular dynamics simulations are used to examine the structure of the extracellular domain of the EPOR dimer in the presence and absence of erythropoietin and a series of agonistic or antagonistic mimetic peptides free in solution. The simulations suggest that in the absence of crystal packing effects, the EPOR chains in the different dimers adopt very similar conformations with no clear distinction between the agonist and antagonist-bound complexes. This questions whether the available x-ray crystal structures of EPOR truly represent active or inactive conformations. The study demonstrates the difficulty in using such structures to infer a mechanism of action, especially in the case of membrane receptors where just part of the structure has been considered in addition to potential confounding effects that arise from the comparison of structures in a crystal as opposed to a membrane environment. The work highlights the danger of assigning functional significance to small differences between structures of proteins bound to different ligands in a crystal environment without consideration of the effects of the crystal lattice and thermal motion. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. The influences of sensitivity of ligand in determination of fluors with LaF3

    International Nuclear Information System (INIS)

    Muzakky; Lahagu, F.; Djawahiri, H.M.; Susiaturi, E.

    1996-01-01

    The influences of acetate and carbonate ligand as a binder of uranium in uranium-tetra fluoride solution, with 0,1 M HNO 3 acid condition was been studied. The aim of binding is to looses of uranium from UO 2 (F 4 ) 2- compound, so the free of fluoride were able detected with LaF 3 membrane electrode on potentiometric method. Base on the free of Fluoride, acetate ligand was more sensitive than carbonate ligand. The addition method was able to prevented influent of HF species in high acidity was realized. The method was use to determination of Fluoride in C oncentrated Uranium , and yield are 1,215x10 -5 M±1,957x10 -4 in acetate ligand and 3,957x10 -5 M±2,57x10 -4 in carbonate ligand. (author)

  4. Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces.

    Science.gov (United States)

    Arai, Yuji; Fuller, C C

    2012-01-01

    Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na(2)SO(4) solutions to simulate the major chemical composition of U-contaminated groundwater (i.e., [SO(4)(2-)] ~13 mM L(-1)) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO(2)-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (carbonato U(VI) ternary surface species became more important. At 2% pCO(2), there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO(2) fluctuates between 1 and 2 pCO(2)%. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Solvent Extraction: Structure of the Liquid-Liquid Interface Containing a Diamide Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Scoppola, Ernesto [Institut Laue-Langevin, 38000 Grenoble France; Institut de Chimie Séparative de Marcoule, UMR 5257 CEA/CNRS/ENSCM/Université Montpellier, 30207 Bagnols-sur-Cèze France; Watkins, Erik B. [Institut Laue-Langevin, 38000 Grenoble France; Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos NM 87545 USA; Campbell, Richard A. [Institut Laue-Langevin, 38000 Grenoble France; Konovalov, Oleg [European Synchrotron Radiation Facility, 38430 Grenoble France; Girard, Luc [Institut de Chimie Séparative de Marcoule, UMR 5257 CEA/CNRS/ENSCM/Université Montpellier, 30207 Bagnols-sur-Cèze France; Dufrêche, Jean-Francois [Institut de Chimie Séparative de Marcoule, UMR 5257 CEA/CNRS/ENSCM/Université Montpellier, 30207 Bagnols-sur-Cèze France; Ferru, Geoffroy [Argonne National Labororatory, Lemont IL 60439 USA; Fragneto, Giovanna [Institut Laue-Langevin, 38000 Grenoble France; Diat, Olivier [Institut de Chimie Séparative de Marcoule, UMR 5257 CEA/CNRS/ENSCM/Université Montpellier, 30207 Bagnols-sur-Cèze France

    2016-06-20

    Knowledge of the (supra)molecular structure of an interface that contains amphiphilic ligand molecules is necessary for a full understanding of ion transfer during solvent extraction. Even if molecular dynamics already yield some insight in the molecular configurations in solution, hardly any experimental data giving access to distributions of both extractant molecules and ions at the liquid–liquid interface exist. Here, the combined application of X-ray and neutron reflectivity measurements represents a key milestone in the deduction of the interfacial structure and potential with respect to two different lipophilic ligands. Indeed, we show for the first time that hard trivalent cations can be repelled or attracted by the extractant-enriched interface according to the nature of the ligand.

  6. Trapping of palindromic ligands within native transthyretin prevents amyloid formation

    Science.gov (United States)

    Kolstoe, Simon E.; Mangione, Palma P.; Bellotti, Vittorio; Taylor, Graham W.; Tennent, Glenys A.; Deroo, Stéphanie; Morrison, Angus J.; Cobb, Alexander J. A.; Coyne, Anthony; McCammon, Margaret G.; Warner, Timothy D.; Mitchell, Jane; Gill, Raj; Smith, Martin D.; Ley, Steven V.; Robinson, Carol V.; Wood, Stephen P.; Pepys, Mark B.

    2010-01-01

    Transthyretin (TTR) amyloidosis is a fatal disease for which new therapeutic approaches are urgently needed. We have designed two palindromic ligands, 2,2'-(4,4'-(heptane-1,7-diylbis(oxy))bis(3,5-dichloro-4,1-phenylene)) bis(azanediyl)dibenzoic acid (mds84) and 2,2'-(4,4'-(undecane-1,11-diylbis(oxy))bis(3,5-dichloro-4,1-phenylene)) bis(azanediyl)dibenzoic acid (4ajm15), that are rapidly bound by native wild-type TTR in whole serum and even more avidly by amyloidogenic TTR variants. One to one stoichiometry, demonstrable in solution and by MS, was confirmed by X-ray crystallographic analysis showing simultaneous occupation of both T4 binding sites in each tetrameric TTR molecule by the pair of ligand head groups. Ligand binding by native TTR was irreversible under physiological conditions, and it stabilized the tetrameric assembly and inhibited amyloidogenic aggregation more potently than other known ligands. These superstabilizers are orally bioavailable and exhibit low inhibitory activity against cyclooxygenase (COX). They offer a promising platform for development of drugs to treat and prevent TTR amyloidosis. PMID:21059958

  7. Synthesis, spectral, thermal, potentiometric and antimicrobial studies of transition metal complexes of tridentate ligand

    Directory of Open Access Journals (Sweden)

    Sarika M. Jadhav

    2014-01-01

    Full Text Available A series of metal complexes of Cu(II, Ni(II, Co(II, Fe(III and Mn(II have been synthesized with newly synthesized biologically active tridentate ligand. The ligand was synthesized by condensation of dehydroacetic acid (3-acetyl-6-methyl-(2H pyran-2,4(3H-dione or DHA, o-phenylene diamine and fluoro benzaldehyde and characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV–Vis spectroscopy and mass spectra. From the analytical data, the stoichiometry of the complexes was found to be 1:2 (metal:ligand with octahedral geometry. The molar conductance values suggest the non-electrolyte nature of metal complexes. The IR spectral data suggest that the ligand behaves as a dibasic tridentate ligand with ONN donor atoms sequence towards central metal ion. Thermal behaviour (TG/DTA and kinetic parameters calculated by the Coats–Redfern and Horowitz–Metzger method suggest more ordered activated state in complex formation. To investigate the relationship between stability constants of metal complexes and antimicrobial activity, the dissociation constants of Schiff bases and stability constants of their binary metal complexes have been determined potentiometrically in THF–water (60:40% solution at 25 ± 1 °C and at 0.1 M NaClO4 ionic strength. The potentiometric study suggests 1:1 and 1:2 complexation. Antibacterial and antifungal activities in vitro were performed against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma, respectively. The stability constants of the metal complexes were calculated by the Irving–Rosotti method. A relation between the stability constant and antimicrobial activity of complexes has been discussed. It is observed that the activity enhances upon complexation and the order of antifungal activity is in accordance with stability order of metal ions.

  8. Transition state structures in solution

    International Nuclear Information System (INIS)

    Bertran, J.; Lluch, J. M.; Gonzalez-Lafont, A.; Dillet, V.; Perez, V.

    1995-01-01

    In the present paper the location of transition state structures for reactions in solution has been studied. Continuum model calculations have been carried out on the Friedel-Crafts alkylation reaction and a proton transfer through a water molecule between two oxygen atoms in formic acid. In this model the separation between the chemical system and the solvent has been introduced. On the other hand, the discrete Monte Carlo methodology has also been used to simulate the solvent effect on dissociative electron transfer processes. In this model, the hypothesis of separability is not assumed. Finally, the validity of both approaches is discussed

  9. Ligand Depot: a data warehouse for ligands bound to macromolecules.

    Science.gov (United States)

    Feng, Zukang; Chen, Li; Maddula, Himabindu; Akcan, Ozgur; Oughtred, Rose; Berman, Helen M; Westbrook, John

    2004-09-01

    Ligand Depot is an integrated data resource for finding information about small molecules bound to proteins and nucleic acids. The initial release (version 1.0, November, 2003) focuses on providing chemical and structural information for small molecules found as part of the structures deposited in the Protein Data Bank. Ligand Depot accepts keyword-based queries and also provides a graphical interface for performing chemical substructure searches. A wide variety of web resources that contain information on small molecules may also be accessed through Ligand Depot. Ligand Depot is available at http://ligand-depot.rutgers.edu/. Version 1.0 supports multiple operating systems including Windows, Unix, Linux and the Macintosh operating system. The current drawing tool works in Internet Explorer, Netscape and Mozilla on Windows, Unix and Linux.

  10. Solution equilibrium behind the room-temperature synthesis of nanocrystalline titanium dioxide

    Science.gov (United States)

    Seisenbaeva, Gulaim A.; Daniel, Geoffrey; Nedelec, Jean-Marie; Kessler, Vadim G.

    2013-03-01

    Formation of nanocrystalline and monodisperse TiO2 from a water soluble and stable precursor, ammonium oxo-lactato-titanate, (NH4)8Ti4O4(Lactate)8.4H2O, often referred to as TiBALDH or TALH, is demonstrated to be due to a coordination equilibrium. This compound, individual in the solid state, exists in solution in equilibrium with ammonium tris-lactato-titanate, (NH4)2Ti(Lactate)3 and uniform crystalline TiO2 nanoparticles (anatase) stabilized by surface-capping with lactate ligands. This equilibrium can be shifted towards nano-TiO2via application of a less polar solvent like methanol or ethanol, dilution of the solution, introduction of salts or raising the temperature, and reverted on addition of polar and strongly solvating media such as dimethyl sulfoxide, according to NMR. Aggregation and precipitation of the particles were followed by DLS and could be achieved by a decrease in their surface charge by adsorption of strongly hydrogen-bonding cations, e.g. in solutions of ammonia, ethanolamine or amino acid arginine or by addition of ethanol. The observed equilibrium may be involved in formation of nano-titania on the surface of plant roots exerting chelating organic carboxylate ligands and thus potentially influencing plant interactions.Formation of nanocrystalline and monodisperse TiO2 from a water soluble and stable precursor, ammonium oxo-lactato-titanate, (NH4)8Ti4O4(Lactate)8.4H2O, often referred to as TiBALDH or TALH, is demonstrated to be due to a coordination equilibrium. This compound, individual in the solid state, exists in solution in equilibrium with ammonium tris-lactato-titanate, (NH4)2Ti(Lactate)3 and uniform crystalline TiO2 nanoparticles (anatase) stabilized by surface-capping with lactate ligands. This equilibrium can be shifted towards nano-TiO2via application of a less polar solvent like methanol or ethanol, dilution of the solution, introduction of salts or raising the temperature, and reverted on addition of polar and strongly solvating

  11. Liquid crystalline states of surfactant solutions of isotropic micelles

    International Nuclear Information System (INIS)

    Bagdassarian, C.; Gelbart, W.M.; Ben-Shaul, A.

    1988-01-01

    We consider micellar solutions whose surfactant molecules prefer strongly to form small, globular aggregates in the absence of intermicellar interactions. At sufficiently high volume fraction of surfactant, the isotropic phase of essentially spherical micelles is shown to be unstable with respect to an orientationally ordered (nematic) state of rodlike aggregates. This behavior is relevant to the phase diagrams reported for important classes of aqueous amphiphilic solutions

  12. Complexation of biological ligands with lanthanides(III) for MRI: Structure, thermodynamic and methods; Complexation des cations lanthanides trivalents par des ligands d'origine biologique pour l'IRM: Structure, thermodynamique et methodes

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, C

    2006-07-15

    New cyclic ligands derived from sugars and amino-acids form a scaffold carrying a coordination sphere of oxygen atoms suitable to complex Ln(III) ions. In spite of their rather low molecular weights, the complexes display surprisingly high relaxivity values, especially at high field. The ACX and BCX ligands, which are acidic derivatives of modified and cyclo-dextrins, form mono and bimetallic complexes with Ln(III). The LnACX and LnBCX complexes show affinities towards Ln(III) similar to those of tri-acidic ligands. In the bimetallic Lu2ACX complex, the cations are deeply embedded in the cavity of the ligand, as shown by the X-ray structure. In aqueous solution, the number of water molecules coordinated to the cation in the LnACX complex depends on the nature and concentration of the alkali ions of the supporting electrolyte, as shown by luminescence and relaxometric measurements. There is only one water molecule coordinated in the LnBCX complex, which enables us to highlight an important second sphere contribution to relaxivity. The NMR study of the RAFT peptidic ligand shows the complexation of Ln(III), with an affinity similar to those of natural ligands derived from calmodulin. The relaxometric study also shows an important second sphere contribution to relaxivity. To better understand the intricate molecular factors affecting relaxivity, we developed new relaxometric methods based on probe solutes. These methods allow us to determine the charge of the complex, weak affinity constants, trans-metallation constants, and the electronic relaxation rate. (author)

  13. Solution structure of human intestinal fatty acid binding protein: Implications for ligand entry and exit

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fengli [Boston University School of Medicine, Department of Biophysics (United States); Luecke, Christian [Johann Wolfgang Goethe-Universitaet (Germany); Baier, Leslie J. [NIDDK, NIH, Phoenix Epidemiology and Clinical Research Branch (United States); Sacchettini, James C. [Texas A and M University, Department of Biochemistry and Biophysics (United States); Hamilton, James A. [Boston University School of Medicine, Department of Biophysics (United States)

    1997-04-15

    The human intestinal fatty acid binding protein (I-FABP) is a small (131 amino acids) protein which binds dietary long-chain fatty acids in the cytosol of enterocytes. Recently, an alanine to threonine substitution at position 54 in I-FABP has been identified which affects fatty acid binding and transport, and is associated with the development of insulin resistance in several populations including Mexican-Americans and Pima Indians. To investigate the molecular basis of the binding properties of I-FABP, the 3D solution structure of the more common form of human I-FABP (Ala54) was studied by multidimensional NMR spectroscopy.Recombinant I-FABP was expressed from E. coli in the presence and absence of 15N-enriched media. The sequential assignments for non-delipidated I-FABP were completed by using 2D homonuclear spectra (COSY, TOCSY and NOESY) and 3D heteronuclear spectra(NOESY-HMQC and TOCSY-HMQC). The tertiary structure of human I-FABP was calculated by using the distance geometry program DIANA based on 2519 distance constraints obtained from the NMR data. Subsequent energy minimization was carried out by using the program SYBYL in the presence of distance constraints. The conformation of human I-FABP consists of 10 antiparallel {beta}-strands which form two nearly orthogonal {beta}-sheets of five strands each, and two short {alpha}-helices that connect the {beta}-strands A and B. The interior of the protein consists of a water-filled cavity between the two {beta}-sheets. The NMR solution structure of human I-FABP is similar to the crystal structure of rat I-FABP.The NMR results show significant conformational variability of certain backbone segments around the postulated portal region for the entry and exit of fatty acid ligand.

  14. Solution structure of human intestinal fatty acid binding protein: Implications for ligand entry and exit

    International Nuclear Information System (INIS)

    Zhang Fengli; Luecke, Christian; Baier, Leslie J.; Sacchettini, James C.; Hamilton, James A.

    1997-01-01

    The human intestinal fatty acid binding protein (I-FABP) is a small (131 amino acids) protein which binds dietary long-chain fatty acids in the cytosol of enterocytes. Recently, an alanine to threonine substitution at position 54 in I-FABP has been identified which affects fatty acid binding and transport, and is associated with the development of insulin resistance in several populations including Mexican-Americans and Pima Indians. To investigate the molecular basis of the binding properties of I-FABP, the 3D solution structure of the more common form of human I-FABP (Ala54) was studied by multidimensional NMR spectroscopy.Recombinant I-FABP was expressed from E. coli in the presence and absence of 15N-enriched media. The sequential assignments for non-delipidated I-FABP were completed by using 2D homonuclear spectra (COSY, TOCSY and NOESY) and 3D heteronuclear spectra(NOESY-HMQC and TOCSY-HMQC). The tertiary structure of human I-FABP was calculated by using the distance geometry program DIANA based on 2519 distance constraints obtained from the NMR data. Subsequent energy minimization was carried out by using the program SYBYL in the presence of distance constraints. The conformation of human I-FABP consists of 10 antiparallel β-strands which form two nearly orthogonal β-sheets of five strands each, and two short α-helices that connect the β-strands A and B. The interior of the protein consists of a water-filled cavity between the two β-sheets. The NMR solution structure of human I-FABP is similar to the crystal structure of rat I-FABP.The NMR results show significant conformational variability of certain backbone segments around the postulated portal region for the entry and exit of fatty acid ligand

  15. Docking of flexible ligands to flexible receptors in solution by molecular dynamics simulation

    NARCIS (Netherlands)

    Mangoni, R; Roccatano, D; Di Nola, A

    1999-01-01

    In this paper, a method of simulating the docking of small flexible ligands to flexible receptors in water is reported. The method is based on molecular dynamics simulations and is an extension of an algorithm previously reported by Di Nola et al, (Di Nola et al,, Proteins 1994;19:174-182), The

  16. A model on valence state evaluation of TRU nuclides in reprocessing solutions

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Fujine, Sachio; Yoshida, Zenko; Maeda, Mitsuru; Motoyama, Satoshi.

    1998-02-01

    A mathematical model was developed to evaluate the valence state of TRU nuclides in reprocessing process solutions. The model consists of mass balance equations, Nernst equations, reaction rate equations and electrically neutrality equations. The model is applicable for the valence state evaluation of TRU nuclides in both steady state and transient state conditions in redox equilibrium. The valence state which is difficult to measure under high radiation and multi component conditions is calculated by the model using experimentally measured data for the TRU nuclide concentrations, nitric acid and redox reagent concentrations, electrode potential and solution temperature. (author)

  17. Precipitation and growth of zinc sulfide nanoparticles in the presence of thiol-containing natural organic ligands.

    Science.gov (United States)

    Lau, Boris L T; Hsu-Kim, Heileen

    2008-10-01

    In sulfidic aquatic systems, metal sulfides can control the mobility and bioavailability of trace metal pollutants such as zinc, mercury, and silver. Nanoparticles of ZnS and other metal sulfides are known to exist in oxic and anoxic waters. However, the processes that lead to their persistence in the aquatic environment are relatively unknown. The objective of this study was to evaluate the importance of dissolved natural organics in stabilizing nanoparticulate ZnS that precipitates under environmentally relevant conditions. Precipitation and growth of ZnS particles were investigated in the presence of dissolved humic acid and low-molecular weight organic acids that are prevalent in sediment porewater. Dynamic light scattering was used to monitor the hydrodynamic diameter of particles precipitating in laboratory solutions. Zn speciation was also measured by filtering the ZnS solutions (precipitation experiments and not to the dissolved organic ligands. X-ray photoelectron spectroscopy and electron microscopy were used to confirm that amorphous particles containing Zn and S were precipitating in the suspensions. Observed growth rates of ZnS particles varied by orders of magnitude, depending on the type and concentration of organic ligand in solution. In the presence of humic acid and thiol-containing ligands (cysteine, glutathione, and thioglycolate), observed growth rates decreased by 1-3 orders of magnitude relative to controls without the ligands. In contrast, growth rates of the particles were consistently within 1 order of magnitude of the ligand-free control when oxygen- and amine-containing ligands (oxalate, serine, and glycolate) were present Furthermore, particle growth rates decreased with an increase in thiol concentration and increased with NaNO3 electrolyte concentration. These studies suggest that specific surface interactions with thiol-containing organics may be one factor that contributes to the persistence of naturally occurring and anthropogenic

  18. Ligand binding to telomeric G-quadruplex DNA investigated by funnel-metadynamics simulations.

    Science.gov (United States)

    Moraca, Federica; Amato, Jussara; Ortuso, Francesco; Artese, Anna; Pagano, Bruno; Novellino, Ettore; Alcaro, Stefano; Parrinello, Michele; Limongelli, Vittorio

    2017-03-14

    G-quadruplexes (G4s) are higher-order DNA structures typically present at promoter regions of genes and telomeres. Here, the G4 formation decreases the replicative DNA at each cell cycle, finally leading to apoptosis. The ability to control this mitotic clock, particularly in cancer cells, is fascinating and passes through a rational understanding of the ligand/G4 interaction. We demonstrate that an accurate description of the ligand/G4 binding mechanism is possible using an innovative free-energy method called funnel-metadynamics (FM), which we have recently developed to investigate ligand/protein interaction. Using FM simulations, we have elucidated the binding mechanism of the anticancer alkaloid berberine to the human telomeric G4 ( d [AG 3 (T 2 AG 3 ) 3 ]), computing also the binding free-energy landscape. Two ligand binding modes have been identified as the lowest energy states. Furthermore, we have found prebinding sites, which are preparatory to reach the final binding mode. In our simulations, the ions and the water molecules have been explicitly represented and the energetic contribution of the solvent during ligand binding evaluated. Our theoretical results provide an accurate estimate of the absolute ligand/DNA binding free energy ([Formula: see text] = -10.3 ± 0.5 kcal/mol) that we validated through steady-state fluorescence binding assays. The good agreement between the theoretical and experimental value demonstrates that FM is a most powerful method to investigate ligand/DNA interaction and can be a useful tool for the rational design also of G4 ligands.

  19. Changing paradigm from one target one ligand towards multi target directed ligand design for key drug targets of Alzheimer disease: An important role of Insilco methods in multi target directed ligands design.

    Science.gov (United States)

    Kumar, Akhil; Tiwari, Ashish; Sharma, Ashok

    2018-03-15

    Alzheimer disease (AD) is now considered as a multifactorial neurodegenerative disorder and rapidly increasing to an alarming situation and causing higher death rate. One target one ligand hypothesis is not able to provide complete solution of AD due to multifactorial nature of disease and one target one drug seems to fail to provide better treatment against AD. Moreover, current available treatments are limited and most of the upcoming treatments under clinical trials are based on modulating single target. So the current AD drug discovery research shifting towards new approach for better solution that simultaneously modulate more than one targets in the neurodegenerative cascade. This can be achieved by network pharmacology, multi-modal therapies, multifaceted, and/or the more recently proposed term "multi-targeted designed drugs. Drug discovery project is tedious, costly and long term project. Moreover, multi target AD drug discovery added extra challenges such as good binding affinity of ligands for multiple targets, optimal ADME/T properties, no/less off target side effect and crossing of the blood brain barrier. These hurdles may be addressed by insilico methods for efficient solution in less time and cost as computational methods successfully applied to single target drug discovery project. Here we are summarizing some of the most prominent and computationally explored single target against AD and further we discussed successful example of dual or multiple inhibitors for same targets. Moreover we focused on ligand and structure based computational approach to design MTDL against AD. However is not an easy task to balance dual activity in a single molecule but computational approach such as virtual screening docking, QSAR, simulation and free energy are useful in future MTDLs drug discovery alone or in combination with fragment based method. However, rational and logical implementations of computational drug designing methods are capable of assisting AD drug

  20. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Broecker, Jana; Vargas, Carolyn; Fanghänel, Jörg; Keller, Sandro

    2012-12-18

    A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.

  1. Structure-dependent photophysical properties of singlet and triplet metal-to-ligand charge transfer states in copper(I) bis(diimine) compounds.

    Science.gov (United States)

    Siddique, Zainul Abedin; Yamamoto, Yuichi; Ohno, Takeshi; Nozaki, Koichi

    2003-10-06

    The photophysical properties of singlet and triplet metal-to-ligand charge transfer (MLCT) states of [Cu(I)(diimine)(2)](+), where diimine is 2,9-dimethyl-1,10-phenanthroline (dmphen), 2,9-dibutyl-1,10-phenanthroline (dbphen), or 6,6'-dimethyl-2,2'-bipyridine (dmbpy), were studied. On 400 nm laser excitation of [Cu(dmphen)(2)](+) in CH(2)Cl(2) solution, prompt (1)MLCT fluorescence with a quantum yield of (2.8 +/- 0.8) x 10(-5) was observed using a picosecond time-correlated single photon counting technique. The quantum yield was dependent on the excitation wavelength, suggesting that relaxation of the Franck-Condon state to the lowest (1)MLCT competes with rapid intersystem crossing (ISC). The fluorescence lifetime of the copper(I) compound was 13-16 ps, unexpectedly long despite a large spin-orbit coupling constant of 3d electrons in copper (829 cm(-1) ). Quantum chemical calculations using a density functional theory revealed that the structure of the lowest (1)MLCT in [Cu(dmphen)(2)](+) (1(1)B(1)) was flattened due to the Jahn-Teller effect in 3d(9) electronic configuration, and the dihedral angle between the two phenanthroline planes (dha) was about 75 degrees with the dha around 90 degrees in the ground state. Intramolecular reorganization energy for the radiative transition of 1(1)B(1) was calculated as 2.1 x 10(3) cm(-1), which is responsible for the large Stokes shift of the fluorescence observed (5.4 x 10(3) cm(-1)). To understand the sluggishness of the intersystem crossing (ISC) of (1)MLCT of the copper(I) compounds, the strength of the spin-orbit interaction between the lowest (1)MLCT (1(1)B(1)) and all (3)MLCT states was calculated. The ISC channels induced by strong spin-orbit interactions (ca. 300 cm(-1)) between the metal-centered HOMO and HOMO - 1 were shown to be energetically unfavorable in the copper(I) compounds because the flattening distortion caused large splitting (6.9 x 10(3) cm(-1)) between these orbitals. The possible ISC is therefore

  2. Solution NMR Spectroscopy in Target-Based Drug Discovery.

    Science.gov (United States)

    Li, Yan; Kang, Congbao

    2017-08-23

    Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.

  3. A Concise Equation of State for Aqueous Solutions of Electrolytes Incorporating Thermodynamic Laws and Entropy

    Directory of Open Access Journals (Sweden)

    Raji Heyrovská

    2004-03-01

    Full Text Available Abstract: Recently, the author suggested a simple and composite equation of state by incorporating fundamental thermodynamic properties like heat capacities into her earlier concise equation of state for gases based on free volume and molecular association / dissociation. This work brings new results for aqueous solutions, based on the analogy of the equation of state for gases and solutions over wide ranges of pressures (for gases and concentrations (for solutions. The definitions of entropy and heat energy through the equation of state for gases, also holds for solutions.

  4. Steric and electronic effects of 1,3-disubstituted cyclopentadienyl ligands on metallocene derivatives of Cerium, Titanium, Manganese, and Iron

    Energy Technology Data Exchange (ETDEWEB)

    Sofield, Chadwick Dean [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    Sterically demanding 1,3-disubstituted cyclopentadienyl ligands were used to modify the physical properties of the corresponding metallocenes. Sterically demanding ligands provided kinetic stabilization for trivalent cerium compounds. Tris(di-t-butylcyclopentadienyl)cerium was prepared and anion competition between halides and cyclopentadienyl groups which had complicated synthesis of the tris(cyclopentadienyl)compound was qualitatively examined. Bis(di-t-butylcyclopentadienyl)cerium methyl was prepared and its rate of decomposition, by ligand redistribution, to tris(di-t-butylcyclopentadienyl)cerium was shown to be slower than the corresponding rate for less sterically demanding ligands. Asymmetrically substituted ligands provided a symmetry label for examination of chemical exchange processes. Tris[trimethylsilyl(t-butyl)cyclopentadienyl]cerium was prepared and the rate of interconversion between the C1 and C3 isomers was examined. The enthalpy difference between the two distereomers is 7.0 kJ/mol. The sterically demanding cyclopentadienyl ligands ansa-di-t-butylcyclopentadiene (Me2Si[(Me3C)2C5H3]2), ansa-bis(trimethylsilyl)cyclopentadiene (Me2Si[(Me3Si)2C5H3]2) and tetra-t-butylfulvalene and metallocene derivatives of the ligands were prepared and their structures were examined by single crystal X-ray crystallography. The effect that substituents on the cyclopentadienyl ring have on the pi-electron system of the ligand was examined through interaction between ligand and metal orbitals. A series of 1,3-disubstituted manganocenes was prepared and their electronic states were determined by solid-state magnetic susceptibility, electron paramagnetic resonance, X-ray crystallography, and variable temperature UV-vis spectroscopy. Spin-equilibria in [(Me3C)2C5H3]2Mn and [(Me3

  5. Lanthanide and actinide complexation studies with tetradentate 'N' donor ligands

    International Nuclear Information System (INIS)

    Bhattacharyya, A.; Mohapatra, M.; Mohapatra, P.K.; Rawat, N.; Tomar, B.S.; Gadly, T.; Ghosh, S.K.; Manna, D.; Ghanty, T.K.

    2014-01-01

    Because of their similar charge and chemical behaviour separation of trivalent actinides and lanthanides is an important and challenging task in nuclear fuel cycle. Soft (S,N) donor ligands show selectivity towards the trivalent actinides over the lanthanides. Out of various 'N' donor ligands studied, bis(1,2,4)triazinyl bipyridine (BTBP) and bis(1,2,4)triazinyl phenanthroline (BTPhen) were found to be most promising. In order to understand the separation behaviour of these ligands, their complexation studies with these 'f' block elements are essential. In the present work, complexation studies of various lanthanide ions (La 3+ , Eu 3+ and Er 3+ ) was studied with ethyl derivatives of BTBP (C 2 BTBP) and BTBPhen (C 2 BTPhen) and pentyl derivative of BTBP (C 5 BTBP) in acetonitrile medium using UV-Vis spectrophotometry, fluorescence spectroscopy and solution calorimetry. Computational studies were also carried out to understand the experimental results

  6. On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein

    International Nuclear Information System (INIS)

    Grosso, Marcos; Kalstein, Adrian; Parisi, Gustavo; Fernandez-Alberti, Sebastian; Roitberg, Adrian E.

    2015-01-01

    The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data

  7. On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein

    Energy Technology Data Exchange (ETDEWEB)

    Grosso, Marcos; Kalstein, Adrian; Parisi, Gustavo; Fernandez-Alberti, Sebastian, E-mail: sfalberti@gmail.com [Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD Bernal (Argentina); Roitberg, Adrian E. [Departments of Physics and Chemistry, University of Florida, Gainesville, Florida 32611 (United States)

    2015-06-28

    The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data.

  8. Solutions of the Noh Problem for Various Equations of State Using Lie Groups

    International Nuclear Information System (INIS)

    Axford, R.A.

    1998-01-01

    A method for developing invariant equations of state for which solutions of the Noh problem will exist is developed. The ideal gas equation of state is shown to be a special case of the general method. Explicit solutions of the Noh problem in planar, cylindrical and spherical geometry are determined for a Mie-Gruneisen and the stiff gas equation of state

  9. Oxidation of ligand-protected aluminum clusters: An ab initio molecular dynamics study

    International Nuclear Information System (INIS)

    Alnemrat, Sufian; Hooper, Joseph P.

    2014-01-01

    We report Car-Parrinello molecular dynamics simulations of the oxidation of ligand-protected aluminum clusters that form a prototypical cluster-assembled material. These clusters contain a small aluminum core surrounded by a monolayer of organic ligand. The aromatic cyclopentadienyl ligands form a strong bond with surface Al atoms, giving rise to an organometallic cluster that crystallizes into a low-symmetry solid and is briefly stable in air before oxidizing. Our calculations of isolated aluminum/cyclopentadienyl clusters reacting with oxygen show minimal reaction between the ligand and O 2 molecules at simulation temperatures of 500 and 1000 K. In all cases, the reaction pathway involves O 2 diffusing through the ligand barrier, splitting into atomic oxygen upon contact with the aluminum, and forming an oxide cluster with aluminum/ligand bonds still largely intact. Loss of individual aluminum-ligand units, as expected from unimolecular decomposition calculations, is not observed except following significant oxidation. These calculations highlight the role of the ligand in providing a steric barrier against oxidizers and in maintaining the large aluminum surface area of the solid-state cluster material

  10. Ligands in PSI structures

    International Nuclear Information System (INIS)

    Kumar, Abhinav; Chiu, Hsiu-Ju; Axelrod, Herbert L.; Morse, Andrew; Elsliger, Marc-André; Wilson, Ian A.; Deacon, Ashley

    2010-01-01

    A survey of the types and frequency of ligands that are bound to PSI structures is analyzed as well as their utility in functional annotation of previously uncharacterized proteins. Approximately 65% of PSI structures report some type of ligand(s) that is bound in the crystal structure. Here, a description is given of how such ligands are handled and analyzed at the JCSG and a survey of the types, variety and frequency of ligands that are observed in the PSI structures is also compiled and analyzed, including illustrations of how these bound ligands have provided functional clues for annotation of proteins with little or no previous experimental characterization. Furthermore, a web server was developed as a tool to mine and analyze the PSI structures for bound ligands and other identifying features

  11. Unexpected self-sorting self-assembly formation of a [4:4] sulfate:ligand cage from a preorganized tripodal urea ligand.

    Science.gov (United States)

    Pandurangan, Komala; Kitchen, Jonathan A; Blasco, Salvador; Boyle, Elaine M; Fitzpatrick, Bella; Feeney, Martin; Kruger, Paul E; Gunnlaugsson, Thorfinnur

    2015-04-07

    The design and synthesis of tripodal ligands 1-3 based upon the N-methyl-1,3,5-benzenetricarboxamide platform appended with three aryl urea arms is reported. This ligand platform gives rise to highly preorganized structures and is ideally suited for binding SO4 (2-) and H2 PO4 (-) ions through multiple hydrogen-bonding interactions. The solid-state crystal structures of 1-3 with SO4 (2-) show the encapsulation of a single anion within a cage structure, whereas the crystal structure of 1 with H2 PO4 (-) showed that two anions are encapsulated. We further demonstrate that ligand 4, based on the same platform but consisting of two bis-urea moieties and a single ammonium moiety, also recognizes SO4 (2-) to form a self-assembled capsule with [4:4] SO4 (2-) :4 stoichiometry in which the anions are clustered within a cavity formed by the four ligands. This is the first example of a self-sorting self-assembled capsule where four tetrahedrally arranged SO4 (2-) ions are embedded within a hydrophobic cavity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  13. Neat and complete: Thiolate-ligand exchange on a silver molecular nanoparticle

    KAUST Repository

    AbdulHalim, Lina G.

    2014-11-12

    Atomically precise thiolate-protected noble metal molecular nanoparticles are a promising class of model nanomaterials for catalysis, optoelectronics, and the bottom-up assembly of true molecular crystals. However, these applications have not fully materialized due to a lack of ligand exchange strategies that add functionality, but preserve the properties of these remarkable particles. Here we present a method for the rapid (<30 s) and complete thiolate-for-thiolate exchange of the highly sought after silver molecular nanoparticle [Ag44(SR)30]-4. Only by using this method were we able to preserve the precise nature of the particles and simultaneously replace the native ligands with ligands containing a variety of functional groups. Crucially, as a result of our method we were able to process the particles into smooth thin films, paving the way for their integration into solution-processed devices.

  14. Neat and complete: Thiolate-ligand exchange on a silver molecular nanoparticle

    KAUST Repository

    AbdulHalim, Lina G.; Kothalawala, Nuwan; Sinatra, Lutfan; Dass, Amala; Bakr, Osman

    2014-01-01

    Atomically precise thiolate-protected noble metal molecular nanoparticles are a promising class of model nanomaterials for catalysis, optoelectronics, and the bottom-up assembly of true molecular crystals. However, these applications have not fully materialized due to a lack of ligand exchange strategies that add functionality, but preserve the properties of these remarkable particles. Here we present a method for the rapid (<30 s) and complete thiolate-for-thiolate exchange of the highly sought after silver molecular nanoparticle [Ag44(SR)30]-4. Only by using this method were we able to preserve the precise nature of the particles and simultaneously replace the native ligands with ligands containing a variety of functional groups. Crucially, as a result of our method we were able to process the particles into smooth thin films, paving the way for their integration into solution-processed devices.

  15. Functionalization of Cadmium Selenide Quantum Dots with Poly(ethylene glycol): Ligand Exchange, Surface Coverage, and Dispersion Stability.

    Science.gov (United States)

    Wenger, Whitney Nowak; Bates, Frank S; Aydil, Eray S

    2017-08-22

    Semiconductor quantum dots synthesized using rapid mixing of precursors by injection into a hot solution of solvents and surfactants have surface ligands that sterically stabilize the dispersions in nonpolar solvents. Often, these ligands are exchanged to disperse the quantum dots in polar solvents, but quantitative studies of quantum dot surfaces before and after ligand exchange are scarce. We studied exchanging trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) ligands on as-synthesized CdSe quantum dots dispersed in hexane with a 2000 g/mol thiolated poly(ethylene glycol) (PEG) polymer. Using infrared spectroscopy we quantify the absolute surface concentration of TOP/TOPO and PEG ligands per unit area before and after ligand exchange. While 50-85% of the TOP/TOPO ligands are removed upon ligand exchange, only a few are replaced with PEG. Surprisingly, the remaining TOP/TOPO ligands outnumber the PEG ligands, but these few PEG ligands are sufficient to disperse the quantum dots in polar solvents such as chloroform, tetrahydrofuran, and water. Moreover, as-synthesized quantum dots once easily dispersed in hexane are no longer dispersible in nonpolar solvents after ligand exchange. A subtle coverage-dependent balance between attractive PEG-solvent interactions and repulsive TOP/TOPO-solvent interactions determines the dispersion stability.

  16. Phosphorescent emissions of phosphine copper(I) complexes bearing 8-hydroxyquinoline carboxylic acid analogue ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan G., E-mail: gmalecki@us.edu.pl [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Łakomska, Iwona, E-mail: iwolak@chem.umk.pl [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Maroń, Anna [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Szala, Marcin [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland); Fandzloch, Marzena [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Nycz, Jacek E., E-mail: jacek.nycz@us.edu.pl [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland)

    2015-05-15

    The pseudotetrahedral complexes of [Cu(PPh{sub 3}){sub 2}(L)], where L=8-hydroxy-2-methylquinoline-7-carboxylic acid (1), 8-hydroxy-2,5-dimethylquinoline-7-carboxylic acid (2) or 5-chloro-8-hydroxy-2-methylquinoline-7-carboxylic acid (3) have been synthesized and structurally characterized by X-ray crystallography. Their properties have been examined through combinations of IR, NMR, electronic absorption spectroscopy and cyclic voltammetry. The complexes exhibit extraordinary photophysical properties. Complex (1) in solid state exhibits an emission quantum yield of 4.67% and an excited life time of 1.88 ms (frozen DCM solution up to 6.7 ms). When dissolved in a coordinating solvent (acetonitrile) the charge transfer emission was quenched on a microsecond scale. - Highlights: • Synthesis of copper(I) complexes with 8-hydroxyquinoline carboxylic acid ligands. • Very long lived phosphorescent copper(I) complexes. • [Cu(PPh{sub 3}){sub 2}(L)] where L=8-hydroxy-2-methylquinoline-7-carboxylic acid luminesce in the solid state exhibits extremely long lifetime on millisecond scale (1.9 ms). • In frozen MeOH:EtOH solution lifetime increases to 7 ms. • Quantum efficiency equal to 4.7%.

  17. Charge-Transfer Effects in Ligand Exchange Reactions of Au25 Monolayer-Protected Clusters.

    Science.gov (United States)

    Carducci, Tessa M; Blackwell, Raymond E; Murray, Royce W

    2015-04-16

    Reported here are second-order rate constants of associative ligand exchanges of Au25L18 nanoparticles (L = phenylethanethiolate) of various charge states, measured by proton nuclear magnetic resonance at room temperature and below. Differences in second-order rate constants (M(-1) s(-1)) of ligand exchange (positive clusters ∼1.9 × 10(-5) versus negative ones ∼1.2 × 10(-4)) show that electron depletion retards ligand exchange. The ordering of rate constants between the ligands benzeneselenol > 4-bromobenzene thiol > benzenethiol reveals that exchange is accelerated by higher acidity and/or electron donation capability of the incoming ligand. Together, these observations indicate that partial charge transfer occurs between the nanoparticle and ligand during the exchange and that this is a rate-determining effect in the process.

  18. H and C NMR investigations of Pb(Zr,Ti)O3 thin-film precursor solutions

    International Nuclear Information System (INIS)

    Assink, R.A.; Schwartz, R.W.

    1993-01-01

    Solvent reactions, ligand substitutions, and the oligomer/polymer backbone structure are important factors in the solution preparation of ceramic films. In this study the authors have used H and C NMR spectroscopy to characterize solvent and ligand effects in precursor solutions used for the deposition of ferroelectric PZT (lead zirconate titanate) thin films. Solutions were prepared by a sequential precursor addition method from carboxylate and alkoxide precursors of the three cations, and the solvent, acetic acid, methanol, and water. The results indicate that acetic acid was a key component in the solution preparation process. As observed previously for single metallic component systems, its presence resulted in esterification reactions, leading in the present case to the formation of methyl, isopropyl, and n-butyl acetates. Second, acetic acid functioned as a chemical modifier, or chelating agent, replacing essentially all of the alkoxy ligands of the original precursors. Since alkoxy replacement appeared to be complete, we may describe the PZT species formed in solution as oxo acetate in nature. Finally, the solvent and ligand behavior of a solution prepared by an inverted mixing order was compared to the behavior of the solution prepared by a sequential precursor addition. The spectra for the two solutions were similar, and only differences in the relative intensities of the ester and alcoholic resonances were observed. 29 refs., 5 figs., 3 tabs

  19. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Directory of Open Access Journals (Sweden)

    Stéphanie Pérot

    Full Text Available Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely

  20. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Science.gov (United States)

    Pérot, Stéphanie; Regad, Leslie; Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A; Villoutreix, Bruno O; Camproux, Anne-Claude

    2013-01-01

    Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket

  1. Probing uranyl(VI) speciation in the presence of amidoxime ligands using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mustapha, Adetayo M; Pasilis, Sofie P

    2013-10-15

    Extraction processes using poly(acrylamidoxime) resins are being developed to extract uranium from seawater. The main complexing agents in these resins are thought to be 2,6-dihydroxyiminopiperidine (DHIP) and N(1),N(5)-dihydroxypentanediimidamide (DHPD), which form strong complexes with uranyl(VI) at the pH of seawater. It is important to understand uranyl(VI) speciation in the presence of these and similar amidoxime ligands to understand factors affecting uranyl(VI) adsorption to the poly(acrylamidoxime) resins. Experiments were carried out in positive ion mode on a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. The ligands investigated were DHIP, DHPD, and N(1),N(2)-dihydroxyethanediimidamide (DHED). DHED and DHPD differ only in the number of carbons separating the oxime groups. The effects on the mass spectra of changes in uranyl(VI):ligand ratio, pH, and ligand type were examined. DHIP binds uranyl(VI) more effectively than DHPD or DHED in the pH range investigated, forming ions derived from solution-phase species with uranyl(VI):DHIP stoichiometries of 1:1, 1:2, and 2:3. The 2:3 uranyl(VI):DHIP complex appears to be a previously undescribed solution species. Ions related to uranyl(VI):DHPD complexes were detected in very low abundance. DHED is a more effective complexing agent for uranyl(VI) than DHPD, forming ions having uranyl(VI):DHED stoichiometries of 1:1, 1:2, 1:3, and 2:3. This study presents a first look at the solution chemistry of uranyl(VI)-amidoxime complexes using electrospray ionization mass spectrometry. The appearance of previously undescribed solution species suggests that the uranyl-amidoxime system is a rich and relatively complex one, requiring a more in-depth investigation. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    Science.gov (United States)

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function.

  3. Digallane with redox-active diimine ligand: dualism of electron-transfer reactions.

    Science.gov (United States)

    Fedushkin, Igor L; Skatova, Alexandra A; Dodonov, Vladimir A; Chudakova, Valentina A; Bazyakina, Natalia L; Piskunov, Alexander V; Demeshko, Serhiy V; Fukin, Georgy K

    2014-05-19

    The reactivity of digallane (dpp-Bian)Ga-Ga(dpp-Bian) (1), which consists of redox-active ligand 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-Bian), has been studied. The reaction of 1 with I2 proceeds via one-electron oxidation of each of two dpp-Bian ligands to a radical-anionic state and affords complex (dpp-Bian)IGa-GaI(dpp-Bian) (2). Dissolution of complex 2 in pyridine (Py) gives monomeric compound (dpp-Bian)GaI(Py) (3) as a result of a solvent-induced intramolecular electron transfer from the metal-metal bond to the dpp-Bian ligands. Treatment of compound 3 with B(C6F5)3 leads to removal of pyridine and restores compound 2. The reaction of compound 1 with 3,6-di-tert-butyl-ortho-benzoquinone (3,6-Q) proceeds with oxidation of all the redox-active centers in 1 (the Ga-Ga bond and two dpp-Bian dianions) and results in mononuclear catecholate (dpp-Bian)Ga(Cat) (4) (Cat = [3,6-Q](2-)). Treatment of 4 with AgBF4 gives a mixture of [(dpp-Bian)2Ag][BF4] (5) and (dpp-Bian)GaF(Cat) (6), which both consist of neutral dpp-Bian ligands. The reduction of benzylideneacetone (BA) with 1 generates the BA radical-anions, which dimerize, affording (dpp-Bian)Ga-(BA-BA)-Ga(dpp-Bian) (7). In this case the Ga-Ga bond remains unchanged. Within 10 min at 95 °C in solution compound 7 undergoes transformation to paramagnetic complex (dpp-Bian)Ga(BA-BA) (8) and metal-free compound C36H40N2 (9). The latter is a product of intramolecular addition of the C-H bond of one of the iPr groups to the C═N bond in dpp-Bian. Diamagnetic compounds 3, 5, 6, and 9 have been characterized by NMR spectroscopy, and paramagnetic complexes 2, 4, 7, and 8 by ESR spectroscopy. Molecular structures of 2-7 and 9 have been established by single-crystal X-ray analysis.

  4. Coordination chemistry of two heavy metals: I, Ligand preferences in lead(II) complexation, toward the development of therapeutic agents for lead poisoning: II, Plutonium solubility and speciation relevant to the environment

    International Nuclear Information System (INIS)

    Neu, M.P.

    1993-11-01

    The coordination chemistry and solution behavior of the toxic ions lead(II) and plutonium(IV, V, VI) have been investigated. The ligand pK a s and ligand-lead(II) stability constants of one hydroxamic acid and four thiohydroaxamic acids were determined. Solution thermodynamic results indicate that thiohydroxamic acids are more acidic and slightly better lead chelators than hydroxamates, e.g., N-methylthioaceto-hydroxamic acid, pK a = 5.94, logβ 120 = 10.92; acetohydroxamic acid, pK a = 9.34, logβ l20 = 9.52. The syntheses of lead complexes of two bulky hydroxamate ligands are presented. The X-ray crystal structures show the lead hydroxamates are di-bridged dimers with irregular five-coordinate geometry about the metal atom and a stereochemically active lone pair of electrons. Molecular orbital calculations of a lead hydroxamate and a highly symmetric pseudo octahedral lead complex were performed. The thermodynamic stability of plutonium(IV) complexes of the siderophore, desferrioxamine B (DFO), and two octadentate derivatives of DFO were investigated using competition spectrophotometric titrations. The stability constant measured for the plutonium(IV) complex of DFO-methylterephthalamide is logβ 110 = 41.7. The solubility limited speciation of 242 Pu as a function of time in near neutral carbonate solution was measured. Individual solutions of plutonium in a single oxidation state were added to individual solutions at pH = 6.0, T = 30.0, 1.93 mM dissolved carbonate, and sampled over intervals up to 150 days. Plutonium solubility was measured, and speciation was investigated using laser photoacoustic spectroscopy and chemical methods

  5. Determining the magnitude and direction of photoinduced ligand field switching in photochromic metal-organic complexes: molybdenum-tetracarbonyl spirooxazine complexes.

    Science.gov (United States)

    Paquette, Michelle M; Patrick, Brian O; Frank, Natia L

    2011-07-06

    The ability to optically switch or tune the intrinsic properties of transition metals (e.g., redox potentials, emission/absorption energies, and spin states) with photochromic metal-ligand complexes is an important strategy for developing "smart" materials. We have described a methodology for using metal-carbonyl complexes as spectroscopic probes of ligand field changes associated with light-induced isomerization of photochromic ligands. Changes in ligand field between the ring-closed spirooxazine (SO) and ring-opened photomerocyanine (PMC) forms of photochromic azahomoadamantyl and indolyl phenanthroline-spirooxazine ligands are demonstrated through FT-IR, (13)C NMR, and computational studies of their molybdenum-tetracarbonyl complexes. The frontier molecular orbitals (MOs) of the SO and PMC forms differ considerably in both electron density distributions and energies. Of the multiple π* MOs in the SO and PMC forms of the ligands, the LUMO+1, a pseudo-b(1)-symmetry phenanthroline-based MO, mixes primarily with the Mo(CO)(4) fragment and provides the major pathway for Mo(d)→phen(π*) backbonding. The LUMO+1 is found to be 0.2-0.3 eV lower in energy in the SO form relative to the PMC form, suggesting that the SO form is a better π-acceptor. Light-induced isomerization of the photochromic ligands was therefore found to lead to changes in the energies of their frontier MOs, which in turn leads to changes in π-acceptor ability and ligand field strength. Ligand field changes associated with photoisomerizable ligands allow tuning of excited-state and ground-state energies that dictate energy/electron transfer, optical/electrical properties, and spin states of a metal center upon photoisomerization, positioning photochromic ligand-metal complexes as promising targets for smart materials.

  6. Ligand binding and crystal structures of the substrate-binding domain of the ABC transporter OpuA.

    Directory of Open Access Journals (Sweden)

    Justina C Wolters

    2010-04-01

    Full Text Available The ABC transporter OpuA from Lactococcus lactis transports glycine betaine upon activation by threshold values of ionic strength. In this study, the ligand binding characteristics of purified OpuA in a detergent-solubilized state and of its substrate-binding domain produced as soluble protein (OpuAC was characterized.The binding of glycine betaine to purified OpuA and OpuAC (K(D = 4-6 microM did not show any salt dependence or cooperative effects, in contrast to the transport activity. OpuAC is highly specific for glycine betaine and the related proline betaine. Other compatible solutes like proline and carnitine bound with affinities that were 3 to 4 orders of magnitude lower. The low affinity substrates were not noticeably transported by membrane-reconstituted OpuA. OpuAC was crystallized in an open (1.9 A and closed-liganded (2.3 A conformation. The binding pocket is formed by three tryptophans (Trp-prism coordinating the quaternary ammonium group of glycine betaine in the closed-liganded structure. Even though the binding site of OpuAC is identical to that of its B. subtilis homolog, the affinity for glycine betaine is 4-fold higher.Ionic strength did not affect substrate binding to OpuA, indicating that regulation of transport is not at the level of substrate binding, but rather at the level of translocation. The overlap between the crystal structures of OpuAC from L.lactis and B.subtilis, comprising the classical Trp-prism, show that the differences observed in the binding affinities originate from outside of the ligand binding site.

  7. C-H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity.

    Science.gov (United States)

    Shul'pin, Georgiy B

    2013-09-28

    This brief essay consists of a few "exciting stories" devoted to relations within a metal-complex catalyst between a metal ion and a coordinated ligand. When, as in the case of a human couple, the rapport of the partners is cordial and a love cements these relations, a chemist finds an ideal married couple, in other words he obtains a catalyst of choice which allows him to functionalize C-H bonds very efficiently and selectively. Examples of such lucky marriages in the catalytic world of ions and ligands are discussed here. Activity of the catalyst is characterized by turnover number (TON) or turnover frequency (TOF) as well as by yield of a target product. Introducing a chelating N,N- or N,O-ligand to the catalyst molecule (this can be an iron or manganese derivative) sharply enhances its activity. However, the activity of vanadium derivatives (with additionally added to the solution pyrazinecarboxylic acid, PCA) as well as of various osmium complexes does not dramatically depend on the nature of ligands surrounding metal ions. Complexes of these metals are very efficient catalysts in oxidations with H2O2. Osmium derivatives are record-holders exhibiting extremely high TONs whereas vanadium complexes are on the second position. Finally, elegant examples of alkane functionalization on the ions of non-transition metals (aluminium, gallium etc.) are described when one ligand within the metal complex (namely, hydroperoxyl ligand HOO(-)) helps other ligand of this complex (H2O2 molecule coordinated to the metal) to disintegrate into two species, generating very reactive hydroxyl radical. Hydrogen peroxide molecule, even ligated to the metal ion, is perfectly stable without the assistance of the neighboring HOO(-) ligand. This ligand can be easily oxidized donating an electron to its partner ligand (H2O2). In an analogous case, when the central ion in the catalyst is a transition metal, this ion changing its oxidation state can donate an electron to the coordinated H2O2

  8. Synthesis and characterisation of luminescent rhenium tricarbonyl complexes with axially coordinated 1,2,3-triazole ligands.

    Science.gov (United States)

    Uppal, Baljinder S; Booth, Rebecca K; Ali, Noreen; Lockwood, Cindy; Rice, Craig R; Elliott, Paul I P

    2011-08-07

    A series of 1-alkyl-4-aryl-1,2,3-triazoles (1-methyl-4-phenyl-1,2,3-triazole (1a); 1-propyl-4-phenyl-1,2,3-triazole (1b); 1-benzyl-4-phenyl-1,2,3-triazole (1c); 1-propyl-4-p-tolyl-1,2,3-triazole (1d)) have been prepared through a one-pot procedure involving in situ generation of the alkyl azide from a halide precursor followed by copper catalysed alkyne/azide cycloaddition (CuAAC) with the appropriate aryl alkyne. Cationic Re(I) complexes [Re(bpy)(CO)(3)(1a-d)]PF(6) (2a-d) were then prepared by stirring [Re(bpy)(CO)(3)Cl] with AgPF(6) in dichloromethane in the presence of ligands 1a-d. X-ray crystal structures were obtained for 2a and 2b. In the solid state, 2a adopts a highly distorted geometry, which is not seen for 2b, in which the plane of the triazole ligand tilts by 13° with respect to the Re-N bond as a result of a π-stacking interaction between the Ph substituent and one of the rings of the bpy ligand. This π-stacking interaction also results in severe twisting of the bpy ligand. Infrared spectra of 2a-d exhibit ν(CO) bands at ∼2035 and ∼1926 cm(-1) suggesting that these ligands are marginally better donors than pyridine (ν(CO) = 2037, 1932 cm(-1)). The complexes are luminescent in aerated dichloromethane at room temperature with emission maxima at 542 to 552 nm comparable to that of the pyridine analogue (549 nm) and blue shifted relative to the parent chloride complex. Long luminescent lifetimes are observed for the triazole complexes (475 to 513 ns) in aerated dichloromethane solutions at room temperature.

  9. X-ray structures of progesterone receptor ligand binding domain in its agonist state reveal differing mechanisms for mixed profiles of 11beta-substituted steroids.

    NARCIS (Netherlands)

    Lusher, S.J.; Raaijmakers, H.C.A.; Vu-Pham, D.; Kazemier, B.; Bosch, R.; McGuire, R.; Azevedo, R.; Hamersma, H.; Dechering, K.; Oubrie, A.; Duin, M. van; Vlieg, J. de

    2012-01-01

    We present here the x-ray structures of the progesterone receptor (PR) in complex with two mixed profile PR modulators whose functional activity results from two differing molecular mechanisms. The structure of Asoprisnil bound to the agonist state of PR demonstrates the contribution of the ligand

  10. Potent inhibition of tau fibrillization with a multivalent ligand

    International Nuclear Information System (INIS)

    Honson, Nicolette S.; Jensen, Jordan R.; Darby, Michael V.; Kuret, Jeff

    2007-01-01

    Small-molecule inhibitors of tau fibrillization are under investigation as tools for interrogating the tau aggregation pathway and as potential therapeutic agents for Alzheimer's disease. Established inhibitors include thiacarbocyanine dyes, which can inhibit recombinant tau fibrillization in the presence of anionic surfactant aggregation inducers. In an effort to increase inhibitory potency, a cyclic bis-thiacarbocyanine molecule containing two thiacarbocyanine moieties was synthesized and characterized with respect to tau fibrillization inhibitory activity by electron microscopy and ligand aggregation state by absorbance spectroscopy. Results showed that the inhibitory activity of the bis-thiacarbocyanine was qualitatively similar to a monomeric cyanine dye, but was more potent with 50% inhibition achieved at ∼80 nM concentration. At all concentrations tested in aqueous solution, the bis-thiacarbocyanine collapsed to form a closed clamshell structure. However, the presence of tau protein selectively stabilized the open conformation. These results suggest that the inhibitory activity of bis-thiacarbocyanine results from multivalency, and reveal a route to more potent tau aggregation inhibitors

  11. Evaluation of Docking Target Functions by the Comprehensive Investigation of Protein-Ligand Energy Minima.

    Science.gov (United States)

    Oferkin, Igor V; Katkova, Ekaterina V; Sulimov, Alexey V; Kutov, Danil C; Sobolev, Sergey I; Voevodin, Vladimir V; Sulimov, Vladimir B

    2015-01-01

    The adequate choice of the docking target function impacts the accuracy of the ligand positioning as well as the accuracy of the protein-ligand binding energy calculation. To evaluate a docking target function we compared positions of its minima with the experimentally known pose of the ligand in the protein active site. We evaluated five docking target functions based on either the MMFF94 force field or the PM7 quantum-chemical method with or without implicit solvent models: PCM, COSMO, and SGB. Each function was tested on the same set of 16 protein-ligand complexes. For exhaustive low-energy minima search the novel MPI parallelized docking program FLM and large supercomputer resources were used. Protein-ligand binding energies calculated using low-energy minima were compared with experimental values. It was demonstrated that the docking target function on the base of the MMFF94 force field in vacuo can be used for discovery of native or near native ligand positions by finding the low-energy local minima spectrum of the target function. The importance of solute-solvent interaction for the correct ligand positioning is demonstrated. It is shown that docking accuracy can be improved by replacement of the MMFF94 force field by the new semiempirical quantum-chemical PM7 method.

  12. Evaluation of Docking Target Functions by the Comprehensive Investigation of Protein-Ligand Energy Minima

    Directory of Open Access Journals (Sweden)

    Igor V. Oferkin

    2015-01-01

    Full Text Available The adequate choice of the docking target function impacts the accuracy of the ligand positioning as well as the accuracy of the protein-ligand binding energy calculation. To evaluate a docking target function we compared positions of its minima with the experimentally known pose of the ligand in the protein active site. We evaluated five docking target functions based on either the MMFF94 force field or the PM7 quantum-chemical method with or without implicit solvent models: PCM, COSMO, and SGB. Each function was tested on the same set of 16 protein-ligand complexes. For exhaustive low-energy minima search the novel MPI parallelized docking program FLM and large supercomputer resources were used. Protein-ligand binding energies calculated using low-energy minima were compared with experimental values. It was demonstrated that the docking target function on the base of the MMFF94 force field in vacuo can be used for discovery of native or near native ligand positions by finding the low-energy local minima spectrum of the target function. The importance of solute-solvent interaction for the correct ligand positioning is demonstrated. It is shown that docking accuracy can be improved by replacement of the MMFF94 force field by the new semiempirical quantum-chemical PM7 method.

  13. Kinetic Isotope Effect Determination Probes the Spin of the Transition State, Its Stereochemistry, and Its Ligand Sphere in Hydrogen Abstraction Reactions of Oxoiron(IV) Complexes.

    Science.gov (United States)

    Mandal, Debasish; Mallick, Dibyendu; Shaik, Sason

    2018-01-16

    identify the reactive-TS in terms of not only its spin state but also its geometry and ligand-sphere constitution. Since tunneling "cuts through" barriers, it serves as a chemical selectivity factor. Thus, we show that in a family of oxoirons reacting with one hydrocarbon, the tunneling efficiency increases as the ligands become better electron donors. This generates counterintuitive-reactivity patterns, like antielectrophilic reactivity, and induces spin-state reactivity reversals because of differing steric demands of the corresponding 2S+1 TS species, etc. Finally, for the same series, the Account reaches intuitive understanding of tunneling trends. It is shown that the increase of ligand's donicity results in electrostatic narrowing of the barrier, while the decrease of donicity and increase of bond-order asymmetry in the TS (inter alia due to Bell-Evans-Polanyi effects) broadens the barrier. Predictions are made that usage of powerful electron-donating ligands may train H-abstractors to activate the strongest C-H bond in a molecule. The concepts developed here are likely to be applicable to other oxometals in the d- and f-blocks.

  14. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    International Nuclear Information System (INIS)

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced 155 Eu: 3+ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor

  15. Interpretation of electronic spectra of ruthenium nitroso complexes with N-heterocyclic ligands

    International Nuclear Information System (INIS)

    Sizova, O.V.; Ivanova, N.V.; Lyubimova, O.O.; Nikol'skij, A.B.

    2004-01-01

    Relaying on ab initio and semiempirical CINDO/CI calculations of free ligands L and complexes trans-[Ru(NO)(NH 3 ) 4 (L)] 3+ (L=pyridine, pyrazine, nicotinamide, l-histidine, imidazole), electronic absorption spectra of nitroso complexes with nitrogen-containing heterocyclic ligands L have been analyzed. Spectral manifestations of strong covalent bond Ru-NO was pointed out and the conclusion was made about advisability of presentation of Ru and NO oxidation states in grouping RuNO 3+ as Ru(III) and NO 0 . Introduction of nitroso group into inner coordination sphere of Ru(II) complexes with nitrogen-containing heterocyclic ligands results in essential rearrangement of the entire structure and deprives ligands L of their ability to manifest chromophore properties [ru

  16. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    Science.gov (United States)

    Liu, Shuang

    Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural

  17. Effect of selected ligands on the U(VI) immobilization by zerovalent iron

    International Nuclear Information System (INIS)

    Noubactep, C.

    2006-01-01

    The effect of Cl - , CO 3 2- , EDTA, NO 2 - , NO 3 - , PO 4 3- , SO 4 2- , and humic substances (HS) on the U(VI) co-precipitation from aqueous solutions by zerovalent iron (ZVI) was investigated in the neutral pH range.Batch experiments without shaking were conducted for 14 days mostly with five different ZVI materials (15 g/l), selected ligands (10mM) and an U(VI) solution (20 mg/l, 0.084mM). Apart from Cl - , all tested ligands induced a decrease of U(VI) coprecipitation. This decrease is attributed to the surface adsorption and complexation of the ligands at the reactive sites on the surface of ZVI and their corrosion products. The decrease of U(VI) removal was not uniform with the five ZVI materials. Generally, groundwater with elevated EDTA concentration could not be remediated with the ZVI barrier technology. The response of the system on the pre-treating by two ZVI materials in 250mM HCl indicated that in situ generated corrosion products favor an irreversible U(VI) uptake. Thus for the long term performance of ZVI barrier, the iron dissolution should continue in such a way that fresh iron oxide be always available for U(VI) coprecipitation. (author)

  18. Solution synthesis of germanium nanocrystals

    Science.gov (United States)

    Gerung, Henry [Albuquerque, NM; Boyle, Timothy J [Kensington, MD; Bunge, Scott D [Cuyahoga Falls, OH

    2009-09-22

    A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.

  19. Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies.

    Science.gov (United States)

    Deganutti, Giuseppe; Moro, Stefano

    2017-04-01

    Kinetic and thermodynamic ligand-protein binding parameters are gaining growing importance as key information to consider in drug discovery. The determination of the molecular structures, using particularly x-ray and NMR techniques, is crucial for understanding how a ligand recognizes its target in the final binding complex. However, for a better understanding of the recognition processes, experimental studies of ligand-protein interactions are needed. Even though several techniques can be used to investigate both thermodynamic and kinetic profiles for a ligand-protein complex, these procedures are very often laborious, time consuming and expensive. In the last 10 years, computational approaches have enormous potential in providing insights into each of the above effects and in parsing their contributions to the changes in both kinetic and thermodynamic binding parameters. The main purpose of this review is to summarize the state of the art of computational strategies for estimating the kinetic and thermodynamic parameters of a ligand-protein binding.

  20. Green function iterative solution of ground state wave function for Yukawa potential

    International Nuclear Information System (INIS)

    Zhang Zhao

    2003-01-01

    The newly developed single trajectory quadrature method is applied to solve central potentials. First, based on the series expansion method an exact analytic solution of the ground state for Hulthen potential and an approximate solution for Yukawa potential are obtained respectively. Second, the newly developed iterative method based on Green function defined by quadratures along the single trajectory is applied to solve Yukawa potential using the Coulomb solution and Hulthen solution as the trial functions respectively. The results show that a more proper choice of the trial function will give a better convergence. To further improve the convergence the iterative method is combined with the variational method to solve the ground state wave function for Yukawa potential, using variational solutions of the Coulomb and Hulthen potentials as the trial functions. The results give much better convergence. Finally, the obtained critical screen coefficient is applied to discuss the dissociate temperature of J/ψ in high temperature QGP

  1. Stability studies on 99mTechnetium(III) complexes with tridentate/monodentate thiol ligands and phosphine ('3+1+1' complexes)

    International Nuclear Information System (INIS)

    Seifert, Sepp; Drews, Antje; Gupta, Antje; Pietzsch, Hans-Juergen; Spies, Hartmut; Johannsen, Bernd

    2000-01-01

    The preparation and characterisation of 3+1+1 technetium complexes of the general formula [Tc(SES)(RS)(PMe 2 Ph)] (SES=tridentate dithiol ligand, E=S, O, NMe; RSH=monothiol ligand) at the n.c.a. level is described. The Tc(III) complexes are prepared in a one-step procedure starting from pertechnetate in yields of 85-95% of radiochemical purity. A comparison of their chromatographic data with the fully characterised 99 Tc complexes indicate the identity of the investigated compounds. Stability studies show that the 99m Tc complexes undergo some alteration in solution. They are oxidised to the 3+1 oxotechnetium (V) complexes and/or decompose in aqueous solution. In challenge experiments performed with glutathione, exchange of the monothiolato ligand occurs in the same manner as known for the 3+1 complexes

  2. Equilibrium Speciation of Select Lanthanides in the Presence of Acidic Ligands in Homo- and Heterogeneous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Troy A [Univ. of Nevada, Las Vegas, NV (United States)

    2011-08-01

    This dissertation explores lanthanide speciation in liquid solution systems related to separation schemes involving the acidic ligands: bis(2-ethylhexyl) phosphoric acid (HDEHP), lactate, and 8-hydroxyquinoline. Equilibrium speciation of neodymium (Nd3+), sodium (Na+), HDEHP, water, and lactate in the TALSPEAK liquid-liquid extraction system was explored under varied Nd3+ loading of HDEHP in the organic phase and through extraction from aqueous HCl and lactate media. System speciation was probed through vapor pressure osmometry, visible and Fourier Transform Infrared (FTIR) spectroscopy, 22Na and 13C labeled lactate radiotracer distribution measurements, Karl Fischer titrations, and equilibrium pH measurements. Distribution of Nd3+, Na+, lactate, and equilibrium pH were modeled using the SXLSQI software to obtain logKNd and logKNa extraction constants under selected conditions. Results showed that high Nd3+ loading of the HDEHP led to Nd3+ speciation that departs from the ion exchange mechanism and includes formation of highly aggregated, polynuclear [NdLactate(DEHP)2]x; (with x > 1). By substituting lanthanum (La3+) for Nd3+ in this system, NMR scoping experiments using 23Na, 31P nuclei and 13C labeled lactate were performed. Results indicated that this technique is sensitive to changes in system speciation, and that further experiments are warranted. In a homogeneous system representing the TALSPEAK aqueous phase, Lactate protonation behavior at various temperatures was characterized using a combination of potentiometric titration and modeling with the Hyperquad computer program. The temperature dependent deprotonation behavior of lactate showed little change with temperature at 2.0 M NaCl ionic strength. Cloud point extraction is a non-traditional separation technique that starts with a homogeneous

  3. Molecular dinamics of tetrahedral clelate compounds of Cd(2) in solutions

    International Nuclear Information System (INIS)

    Nivorozhkin, L.E.; Minkin, V.I.; Borisenko, N.I.; Konstantinovskij, L.E.; Korobov, M.S.; Olekhnovich, R.Ya.

    1981-01-01

    Interconversion kinetics of enantiomers of tetrahedral intracomplex compounds of metals (ICM) on the base of unsymmetric ligands in solu-- tions is studied for several series of compounds according to the temperature dependence of the shape of line of prochiral substituents using the methods of the dynamic NMR (DNMR). The use of tetracoordinated ICM in the solutions of synthesized compounds of Cd(2) with the inclusion of magnetic isotope 111 Cd(S=1/2) to study molecular dynamics and the application of the corresponding methods of calculation of the DNMR signal forms permitted to clearly separate the mechanisms of digonal twist and degenerated ligand exchange. In ICM solutions the low-barrier transformations, connected with intramolecular digonal twist, take place as well as high-barrier processes of degenerated ligand exchange. The technique suggested can be applied to the studies of ICM molecular dynamics with other magnetic isotopes of metals ( 207 Pb, 199 Hg, etc.) and rapid non-degenerated ligand exchanges [ru

  4. Parabolic partial differential equations with discrete state-dependent delay: Classical solutions and solution manifold

    Czech Academy of Sciences Publication Activity Database

    Krisztin, T.; Rezunenko, Oleksandr

    2016-01-01

    Roč. 260, č. 5 (2016), s. 4454-4472 ISSN 0022-0396 R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Parabolic partial differential equations * State dependent delay * Solution manifold Subject RIV: BC - Control Systems Theory Impact factor: 1.988, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/rezunenko-0457879.pdf

  5. Crystallization of protein–ligand complexes

    International Nuclear Information System (INIS)

    Hassell, Anne M.; An, Gang; Bledsoe, Randy K.; Bynum, Jane M.; Carter, H. Luke III; Deng, Su-Jun J.; Gampe, Robert T.; Grisard, Tamara E.; Madauss, Kevin P.; Nolte, Robert T.; Rocque, Warren J.; Wang, Liping; Weaver, Kurt L.; Williams, Shawn P.; Wisely, G. Bruce; Xu, Robert; Shewchuk, Lisa M.

    2007-01-01

    Methods presented for growing protein–ligand complexes fall into the categories of co-expression of the protein with the ligands of interest, use of the ligands during protein purification, cocrystallization and soaking the ligands into existing crystals. Obtaining diffraction-quality crystals has long been a bottleneck in solving the three-dimensional structures of proteins. Often proteins may be stabilized when they are complexed with a substrate, nucleic acid, cofactor or small molecule. These ligands, on the other hand, have the potential to induce significant conformational changes to the protein and ab initio screening may be required to find a new crystal form. This paper presents an overview of strategies in the following areas for obtaining crystals of protein–ligand complexes: (i) co-expression of the protein with the ligands of interest, (ii) use of the ligands during protein purification, (iii) cocrystallization and (iv) soaks

  6. Consensus of sample-balanced classifiers for identifying ligand-binding residue by co-evolutionary physicochemical characteristics of amino acids

    KAUST Repository

    Chen, Peng

    2013-01-01

    Protein-ligand binding is an important mechanism for some proteins to perform their functions, and those binding sites are the residues of proteins that physically bind to ligands. So far, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. Due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we constructed several balanced data sets, for each of which a random forest (RF)-based classifier was trained. The ensemble of these RF classifiers formed a sequence-based protein-ligand binding site predictor. Experimental results on CASP9 targets demonstrated that our method compared favorably with the state-of-the-art. © Springer-Verlag Berlin Heidelberg 2013.

  7. Fundamental aspects of nucleation and growth in the solution-phase synthesis of germanium nanocrystals

    KAUST Repository

    Codoluto, Stephen C.

    2010-01-01

    Colloidal Ge nanocrystals (NCs) were synthesized via the solution phase reduction of germanium(ii) iodide. We report a systematic investigation of the nanocrystal nucleation and growth as a function of synthesis conditions including the nature of coordinating solvents, surface bound ligands, synthesis duration and temperature. NC synthesis in reaction environments with weakly bound phosphine surface ligand led to the coalescence of nascent particles leading to ensembles with broad lognormal particle diameter distributions. Synthesis in the presence of amine or alkene ligands mitigated particle coalescence. High-resolution transmission electron micrographs revealed that NCs grown in the presence of weak ligands had a high crystal defect density whereas NCs grown in amine solutions were predominantly defect-free. We applied infrared spectroscopy to study the NC surface chemistry and showed that alkene ligands project the NCs from surface oxidation. Photoluminescence spectroscopy measurements showed that alkene ligands passivate surface traps, as indicated by infrared fluorescence, conversely oxidized phosphine and amine passivated NCs did not fluoresce. © 2010 The Royal Society of Chemistry.

  8. Formation of mixed ligand complexes of UO22+ involving some nitrogen and oxygen donor ligands

    International Nuclear Information System (INIS)

    Singh, Mamta; Ram Nayan

    1996-01-01

    The complexation reactions of UO 2 2+ ion with nitrogen and oxygen donor ligands, 1-amino-2-naphthol-4-sulphonic acid, o-aminophenol (ap), 2-hydroxybenzoic acid (sa), 3-carboxy-4-hydroxybenzenesulphonic acid (ss) and 1,2-dihydroxybenzene (ca) have been investigated in aqueous solution employing the pH-titration technique. Analysis of the experimental data recorded at 25 degC and at an ionic strength of 0.10 M KNO 3 indicates formation of binary, hydroxo and ternary complexes of uranium. Formation constant values of the existing species have been evaluated and the results have been discussed. (author). 21 refs., 2 figs., 2 tabs

  9. Enthalpies of ligand substitution for [Mo(η5C5H5)(CO)2(NO)] – The role of π-bonding effects in metal–ligand bond strengths

    International Nuclear Information System (INIS)

    Majumdar, Subhojit; Captain, Burjor; Cazin, Catherine S.J.; Nolan, Steven P.; Hoff, Carl D.

    2014-01-01

    Graphical abstract: - Highlights: • Enthalpies of ligand substitution are measured for Mo(C 5 H 5 )(CO) 2 (NO). • Phosphines and N-heterocyclic carbenes are stronger ligands and displace CO. • Backbonding to π ∗ orbitals is an important part of complex stability. • FTIR studies show shifts to lower wavenumbers of ν-CO and ν-NO. • Structural studies show lengthening of the C-O and N-O bonds. - Abstract: Enthalpies of ligand substitution for [Mo(η 5 -C 5 H 5 )(CO) 2 (NO)] producing [Mo(η 5 -C 5 H 5 )Mo(CO)(L)(NO)] have been measured by solution calorimetry at 30 °C in THF for L = P(OMe) 3 2 2 Ph 3 (SIPr = 1,3-bis(2,6-bis(diisopropylphenyl)imidazolinylidene; IPr = 1,3-bis(2,6-bis(diisopropylphenyl)-imidazol-2-ylidene)). The accepting metal fragment [Mo(η 5 -C 5 H 5 )(CO)(NO)] has a vacant site containing strongly π-accepting carbonyl and nitrosyl ligands and this is shown to influence the stability of the product complex. Infrared studies of both ν CO and ν NO show that metal-to-ligand backbonding increases in the order P(OMe) 3 3 5 -C 5 H 5 )(CO)(IPr)(NO)] and [Mo(η 5 -C 5 H 5 )(CO)(SIPr)(NO)] are reported

  10. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state.

    Science.gov (United States)

    Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Lima, Joao C; Lodeiro, Carlos; Melo, Maria J; de Melo, J Seixas; Parola, Antonio Jorge; Pina, Fernando; Pina, Joao; Valtancoli, Barbara

    2004-07-21

    The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.

  11. Investigation of the oxidation states of Pu isotopes in a hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.H. [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, P. O. Box 105, Yuseong, Daejeon 305-353 (Korea, Republic of)], E-mail: mhlee@kaeri.re.kr; Kim, J.Y.; Kim, W.H.; Jung, E.C.; Jee, K.Y. [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, P. O. Box 105, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2008-12-15

    The characteristics of the oxidation states of Pu in a hydrochloric acid solution were investigated and the results were applied to a separating of Pu isotopes from IAEA reference soils. The oxidation states of Pu(III) and Pu(IV) were prepared by adding hydroxylamine hydrochloride and sodium nitrite to a Pu stock solution, respectively. Also, the oxidation state of Pu(VI) was adjusted with concentrated HNO{sub 3} and HClO{sub 4}. The stability of the various oxidation states of plutonium in a HCl solution with elapsed time after preparation were found to be in the following order: Pu(III){approx}Pu(VI)>Pu(IV)>Pu(V). The chemical recoveries of Pu(IV) in a 9 M HCl solution with an anion exchange resin were similar to those of Pu(VI). This method for the determination of Pu isotopes with an anion exchange resin in a 9 M HCl medium was applied to IAEA reference soils where the activity concentrations of {sup 239,240}Pu and {sup 238}Pu in IAEA-375 and IAEA-326 were consistent with the reference values reported by the IAEA.

  12. The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review.

    Science.gov (United States)

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-12-01

    The biotic ligand model (BLM) is a theoretical, potentially mechanistic approach to assess metal bioavailability in soil and aquatic systems. In a BLM, toxicity is linked to the fraction of biotic ligand occupied, which in turn, depends on the various components of the solution, including activity of the metal. Bioavailability is a key factor in determining toxicity and uptake of metals in organisms. In this study, the present status of BLM development for soil and aquatic organisms is summarized. For all species and all metals, toxicity was correlated with the conditional biotic ligand binding constants. For almost all organisms, values for Ag, Cu, and Cd were higher than those for Zn and Ni. The constants derived for aquatic systems seem to be equally valid for soil organisms, but in the case of soils, bioavailability from the soil solution is greatly influenced by the presence of the soil solid phase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Aqueous Solution Chemistry of Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Clark, David L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-28

    Things I have learned working with plutonium: Chemistry of plutonium is complex; Redox equilibria make Pu solution chemistry particularly challenging in the absence of complexing ligands; Understanding this behavior is key to successful Pu chemistry experiments; There is no suitable chemical analog for plutonium.

  14. Moessbauer studies of iron(III)-(indole-3-alkanoic acids) systems in frozen aqueous solutions

    International Nuclear Information System (INIS)

    Kovacs, K.; Kuzmann, E.; Homonnay, Z.; Szilagyi, P.A.; Vertes, A.; Kamnev, A.A.; Sharma, V.K.

    2005-01-01

    Moessbauer investigations of iron(III) salts in aqueous solutions in the presence of indole-3-alkanoic acid ligands are described. The measurements showed two parallel reactions between the ligands and ferric ions: a complex formation and a redox process. The oxidation process takes place in the ligands, and a part of Fe 3+ is reduced to Fe 2+ . (author)

  15. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    Science.gov (United States)

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  16. Coordination chemistry of two heavy metals: I, Ligand preferences in lead(II) complexation, toward the development of therapeutic agents for lead poisoning: II, Plutonium solubility and speciation relevant to the environment

    Energy Technology Data Exchange (ETDEWEB)

    Neu, Mary Patricia [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    The coordination chemistry and solution behavior of the toxic ions lead(II) and plutonium(IV, V, VI) have been investigated. The ligand pKas and ligand-lead(II) stability constants of one hydroxamic acid and four thiohydroaxamic acids were determined. Solution thermodynamic results indicate that thiohydroxamic acids are more acidic and slightly better lead chelators than hydroxamates, e.g., N-methylthioaceto-hydroxamic acid, pKa = 5.94, logβ120 = 10.92; acetohydroxamic acid, pKa = 9.34, logβ120 = 9.52. The syntheses of lead complexes of two bulky hydroxamate ligands are presented. The X-ray crystal structures show the lead hydroxamates are di-bridged dimers with irregular five-coordinate geometry about the metal atom and a stereochemically active lone pair of electrons. Molecular orbital calculations of a lead hydroxamate and a highly symmetric pseudo octahedral lead complex were performed. The thermodynamic stability of plutonium(IV) complexes of the siderophore, desferrioxamine B (DFO), and two octadentate derivatives of DFO were investigated using competition spectrophotometric titrations. The stability constant measured for the plutonium(IV) complex of DFO-methylterephthalamide is logβ120 = 41.7. The solubility limited speciation of 242Pu as a function of time in near neutral carbonate solution was measured. Individual solutions of plutonium in a single oxidation state were added to individual solutions at pH = 6.0, T = 30.0, 1.93 mM dissolved carbonate, and sampled over intervals up to 150 days. Plutonium solubility was measured, and speciation was investigated using laser photoacoustic spectroscopy and chemical methods.

  17. An improvement to the ligand optimisation method (LOM) for measuring the apparent dissociation constant and ligand purity in Ca2+ and Mg2+ buffer solutions.

    Science.gov (United States)

    McGuigan, John A S; Kay, James W; Elder, Hugh Y

    2014-01-01

    In Ca(2+)/Mg(2+) buffers the calculated ionised concentrations ([X(2+)]) can vary by up to a factor of seven. Since there are no defined standards it is impossible to check calculated [X(2+)], making measurement essential. The ligand optimisation method (LOM) is an accurate method to measure [X(2+)] in Ca(2+)/Mg(2+) buffers; independent estimation of ligand purity extends the method to pK(/) buffers, to calculate electrode and buffer characteristics as a function of Σ. Ca(2+)-electrodes have a Σ buffers. These results demonstrated that it is pK(/) that is normally distributed. Until defined standards are available, [X(2+)] in Ca(2+)/Mg(2+) buffers have to be measured. The most appropriate method is to use Ca(2+)/Mg(2) electrodes combined with the Excel programs SALE or AEC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Enhancing the Performance of CdSe/CdS Dot-in-Rod Light-Emitting Diodes via Surface Ligand Modification.

    Science.gov (United States)

    Rastogi, Prachi; Palazon, Francisco; Prato, Mirko; Di Stasio, Francesco; Krahne, Roman

    2018-02-14

    The surface ligands on colloidal nanocrystals (NCs) play an important role in the performance of NC-based optoelectronic devices such as photovoltaic cells, photodetectors, and light-emitting diodes (LEDs). On one hand, the NC emission depends critically on the passivation of the surface to minimize trap states that can provide nonradiative recombination channels. On the other hand, the electrical properties of NC films are dominated by the ligands that constitute the barriers for charge transport from one NC to its neighbor. Therefore, surface modifications via ligand exchange have been employed to improve the conductance of NC films. However, in LEDs, such surface modifications are more critical because of their possible detrimental effects on the emission properties. In this work, we study the role of surface ligand modifications on the optical and electrical properties of CdSe/CdS dot-in-rods (DiRs) in films and investigate their performance in all-solution-processed LEDs. The DiR films maintain high photoluminescence quantum yield, around 40-50%, and their electroluminescence in the LED preserves the excellent color purity of the photoluminescence. In the LEDs, the ligand exchange boosted the luminance, reaching a fourfold increase from 2200 cd/m 2 for native surfactants to 8500 cd/m 2 for the exchanged aminoethanethiol (AET) ligands. Moreover, the efficiency roll-off, operational stability, and shelf life are significantly improved, and the external quantum efficiency is modestly increased from 5.1 to 5.4%. We relate these improvements to the increased conductivity of the emissive layer and to the better charge balance of the electrically injected carriers. In this respect, we performed ultraviolet photoelectron spectroscopy (UPS) to obtain a deeper insight into the band alignment of the LED structure. The UPS data confirm similar flat-band offsets of the emitting layer to the electron- and hole-transport layers in the case of AET ligands, which translates to

  19. Consistent two-dimensional visualization of protein-ligand complex series

    Directory of Open Access Journals (Sweden)

    Stierand Katrin

    2011-06-01

    Full Text Available Abstract Background The comparative two-dimensional graphical representation of protein-ligand complex series featuring different ligands bound to the same active site offers a quick insight in their binding mode differences. In comparison to arbitrary orientations of the residue molecules in the individual complex depictions a consistent placement improves the legibility and comparability within the series. The automatic generation of such consistent layouts offers the possibility to apply it to large data sets originating from computer-aided drug design methods. Results We developed a new approach, which automatically generates a consistent layout of interacting residues for a given series of complexes. Based on the structural three-dimensional input information, a global two-dimensional layout for all residues of the complex ensemble is computed. The algorithm incorporates the three-dimensional adjacencies of the active site residues in order to find an universally valid circular arrangement of the residues around the ligand. Subsequent to a two-dimensional ligand superimposition step, a global placement for each residue is derived from the set of already placed ligands. The method generates high-quality layouts, showing mostly overlap-free solutions with molecules which are displayed as structure diagrams providing interaction information in atomic detail. Application examples document an improved legibility compared to series of diagrams whose layouts are calculated independently from each other. Conclusions The presented method extends the field of complex series visualizations. A series of molecules binding to the same protein active site is drawn in a graphically consistent way. Compared to existing approaches these drawings substantially simplify the visual analysis of large compound series.

  20. Synthesis, spectroscopic characterization, solid state d.c. electrical conductivity and biological studies of some lanthanide(III chloride complexes with a heterocyclic Schiff base ligand

    Directory of Open Access Journals (Sweden)

    K. Mohanan

    2016-07-01

    Full Text Available Condensation of 2-hydroxy-1-naphthaldehyde with 2-amino-3-carboxyethyl-4,5-dimethylthiophene in 1:1 molar ratio, yielded a potentially tridentate Schiff base viz. 2-[N-(2′-hydroxy-1-naphthylideneamino]-3-carboxyethyl-4,5-dimethylthiophene (HNAT. This ligand formed complexes with lanthanum(III, cerium(III, praseodymium(III, neodymium(III, samarium(III, europium(III and gadolinium(III chloride under well defined conditions. These complexes were characterized through elemental analysis, molar conductance, magnetic moment measurements, IR, UV–Vis, FAB mass and 1H NMR spectral studies. Analytical data showed that all the metal complexes exhibited 1:1 metal–ligand ratio. Molar conductance values adequately confirmed the non-electrolytic nature of the metal complexes. The proton NMR spectral observations supplement the IR spectral assignments. The spectral data revealed that the ligand acted as neutral tridentate, coordinating to the metal ion through azomethine nitrogen, ester carbonyl and naphtholate oxygen without deprotonation. The ligand and its lanthanum(III chloride complex were subjected to XRD studies. The lanthanum(III chloride complex has undergone a facile transesterification reaction. The solid state d.c. electrical conductivity of some selected complexes were measured as a function of temperature, indicating the semiconducting nature of the metal complexes. The antimicrobial activities were examined by disk diffusion method against some pathogenic bacterial and fungal species.

  1. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng; Huang, Jianhua Z; Gao, Xin

    2014-01-01

    Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction

  2. Zn and Fe complexes containing a redox active macrocyclic biquinazoline ligand.

    Science.gov (United States)

    Banerjee, Priyabrata; Company, Anna; Weyhermüller, Thomas; Bill, Eckhard; Hess, Corinna R

    2009-04-06

    A series of iron and zinc complexes has been synthesized, coordinated by the macrocyclic biquinazoline ligand, 2-4:6-8-bis(3,3,4,4-tetramethyldihydropyrrolo)-10-15-(2,2'-biquinazolino)-[15]-1,3,5,8,10,14-hexaene-1,3,7,9,11,14-N(6) (Mabiq). The Mabiq ligand consists of a bipyrimidine moiety and two dihydropyrrole units. The electronic structures of the metal-Mabiq complexes have been characterized using spectroscopic and density-functional theory (DFT) computational methods. The parent zinc complex exhibits a ligand-centered reduction to generate the metal-coordinated Mabiq radical dianion, establishing the redox non-innocence of this ligand. Iron-Mabiq complexes have been isolated in three oxidation states. This redox series includes low-spin ferric and low-spin ferrous species, as well as an intermediate-spin Fe(II) compound. In the latter complex, the iron ion is antiferromagnetically coupled to a Mabiq-centered pi-radical. The results demonstrate the rich redox chemistry and electronic properties of metal complexes coordinated by the Mabiq ligand.

  3. Role of solution conformation and flexibility of short peptide ligands that bind to the p56(lck) SH2 domain

    NARCIS (Netherlands)

    Dekker, Frank J; de Mol, Nico J; Bultinck, Patrick; Kemmink, Johan; Hilbers, Hans W; Liskamp, Rob M J; Dekker, Frank

    2003-01-01

    A general approach in drug design is making ligands more rigid in order to avoid loss in conformational entropy (deltaS(conf)) upon receptor binding. We hypothesized that in the high affinity binding of pYEEI peptide ligands to the p56(lck) SH2 domain this loss in deltaS(conf) might be diminished

  4. Thermo-Kinetic Investigation of Comparative Ligand Effect on Cysteine Iron Redox Reaction

    OpenAIRE

    Rizvi, Masood Ahmad; Teshima, Norio; Maqsood, Syed Raashid; Akhoon, Showket Ahmad; Peerzada, Ghulam Mustafa

    2015-01-01

    Transition metal ions in their free state bring unwanted biological oxidations generating oxidative stress. The ligand modulated redox potential can be indispensable in prevention of such oxidative stress by blocking the redundant bio-redox reactions. In this study we investigated the comparative ligand effect on the thermo-kinetic aspects of biologically important cysteine iron (III) redox reaction using spectrophotometric and potentiometric methods. The results were corroborated...

  5. Dynamic translocation of ligand-complexed DNA through solid-state nanopores with optical tweezers

    International Nuclear Information System (INIS)

    Sischka, Andy; Spiering, Andre; Anselmetti, Dario; Khaksar, Maryam; Laxa, Miriam; Koenig, Janine; Dietz, Karl-Josef

    2010-01-01

    We investigated the threading and controlled translocation of individual lambda-DNA (λ-DNA) molecules through solid-state nanopores with piconewton force sensitivity, millisecond time resolution and picoampere ionic current sensitivity with a set-up combining quantitative 3D optical tweezers (OT) with electrophysiology. With our virtually interference-free OT set-up the binding of RecA and single peroxiredoxin protein molecules to λ-DNA was quantitatively investigated during dynamic translocation experiments where effective forces and respective ionic currents of the threaded DNA molecule through the nanopore were measured during inward and outward sliding. Membrane voltage-dependent experiments of reversible single protein/DNA translocation scans yield hysteresis-free, asymmetric single-molecule fingerprints in the measured force and conductance signals that can be attributed to the interplay of optical trap and electrostatic nanopore potentials. These experiments allow an exact localization of the bound protein along the DNA strand and open fascinating applications for label-free detection of DNA-binding ligands, where structural and positional binding phenomena can be investigated at a single-molecule level.

  6. Surface control of blastospore attachment and ligand-mediated hyphae adhesion of Candida albicans.

    Science.gov (United States)

    Varghese, Nisha; Yang, Sijie; Sejwal, Preeti; Luk, Yan-Yeung

    2013-11-14

    Adhesion on a surface via nonspecific attachment or multiple ligand-receptor interactions is a critical event for fungal infection by Candida albicans. Here, we find that the tri(ethylene glycol)- and d-mannitol-terminated monolayers do not resist the blastospore attachment, but prevent the hyphae adhesion of C. albicans. The hyphae adhesion can be facilitated by tripeptide sequences of arginine-glycine-aspartic acid (RGD) covalently decorated on a background of tri(ethylene glycol)-terminated monolayers. This adhesion mediated by selected ligands is sensitive to the scrambling of peptide sequences, and is inhibited by the presence of cyclic RGD peptides in the solution.

  7. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng

    2014-12-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands\\' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  8. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng; Zheng, Bin; Huang, Kuo-Wei

    2014-01-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  9. Plasmon interactions between gold nanoparticles in aqueous solution with controlled spatial separation

    DEFF Research Database (Denmark)

    Sendroiu, I.E.; Mertens, Stijn; Schiffrin, D.J.

    2006-01-01

    The effects of interparticle distance on the UV-visible absorption spectrum of gold nanocrystals aggregates in aqueous solution have been investigated. The aggregates were produced by ion-templated chelation of omega-mercaptocarboxylic acid ligands covalently attached to the nanoparticles surface....... Variation of the ligand chain length provides control over the interparticle separation in the aggregates. The UV-visible spectra consist typically of a single particle band and a secondary band at higher wavelengths associated with the formation of aggregates in solution. The position of the latter depends...

  10. A robust ligand exchange approach for preparing hydrophilic, biocompatible photoluminescent quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sujuan; Zhou, Changhua [Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004 (China); Yuan, Hang [Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Shen, Huaibin [Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004 (China); Zhao, Wenxiu [Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Ma, Lan, E-mail: malan@sz.tsinghua.edu.cn [Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Li, Lin Song, E-mail: lsli@henu.edu.cn [Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004 (China)

    2013-08-01

    Graphical abstract: - Highlights: • Aqueous CdSe/ZnS QDs were prepared using polymaleic anhydrides as capping ligand. • Effect of reaction temperature and time were systematically studied in the synthesis process. • Water-soluble QDs exhibited a good stability in physiological relevant environment. • The aqueous QDs were applied as biological probe to detect human embryonic stem cell. - Abstract: This paper describes a robust ligand exchange approach for preparing biocompatible CdSe/ZnS quantum dots (QDs) to make bioprobe for effective cell imaging. In this method, polymaleic anhydride (PMA) ligand are first used to replace original hydrophobic ligand (oleic acid) and form a protection shell with multiple hydrophilic groups to coat and protect CdSe/ZnS QDs. The as-prepared aqueous QDs exhibit small particle size, good colloidal stability in aqueous solutions with a wide range of pH, salt concentrations and under thermal treatment, which are necessary for biological applications. The use of this new class of aqueous QDs for effective cell imaging shows strong fluorescence signal to human embryonic stem cell, which demonstrate that PMA coated QDs are fully satisfied with the requirements of preparing high quality biological probe.

  11. Reduction of dinitrogen ligands

    International Nuclear Information System (INIS)

    Richards, R.L.

    1983-01-01

    Processes of dinitrogen ligand reduction in complexes of transition metals are considered. The basic character of the dinitrogen ligand is underlined. Data on X-ray photoelectronic spectroscopy and intensities of bands ν (N 2 ) in IR-spectra of nitrogen complexes are given. The mechanism of protonation of an edge dinitrogen ligand is discussed. Model systems and mechanism of nitrogenogenase are compared

  12. Ligand-bridged dinuclear cyclometalated Ir(III) complexes: from metallamacrocycles to discrete dimers.

    Science.gov (United States)

    Chandrasekhar, Vadapalli; Hajra, Tanima; Bera, Jitendra K; Rahaman, S M Wahidur; Satumtira, Nisa; Elbjeirami, Oussama; Omary, Mohammad A

    2012-02-06

    Metallamacrocycles 1, 2, and 3 of the general formula [{Ir(ppy)(2)}(2)(μ-BL)(2)](OTf)(2) (ppyH = 2-phenyl pyridine; BL = 1,2-bis(4-pyridyl)ethane (bpa) (1), 1,3-bis(4-pyridyl)propane (bpp) (2), and trans-1,2-bis(4-pyridyl)ethylene (bpe) (3)) have been synthesized by the reaction of [{(ppy)(2)Ir}(2)(μ-Cl)(2)], first with AgOTf to effect dechlorination and later with various bridging ligands. Open-frame dimers [{Ir(ppy)(2)}(2)(μ-BL)](OTf)(2) were obtained in a similar manner by utilizing N,N'-bis(2-pyridyl)methylene-hydrazine (abp) and N,N'-(bis(2-pyridyl)formylidene)ethane-1,2-diamine (bpfd) (for compounds 4 and 5, respectively) as bridging ligands. Molecular structures of 1, 3, 4, and 5 were established by X-ray crystallography. Cyclic voltammetry experiments reveal weakly interacting "Ir(ppy)(2)" units bridged by ethylene-linked bpe ligand in 3; on the contrary the metal centers are electronically isolated in 1 and 2 where the bridging ligands are based on ethane and propane linkers. The dimer 4 exhibits two accessible reversible reduction couples separated by 570 mV indicating the stability of the one-electron reduced species located on the diimine-based bridge abp. The "Ir(ppy)(2)" units in compound 5 are noninteracting as the electronic conduit is truncated by the ethane spacer in the bpfd bridge. The dinuclear compounds 1-5 show ligand centered (LC) transitions involving ppy ligands and mixed metal to ligand/ligand to ligand charge transfer (MLCT/LLCT) transitions involving both the cyclometalating ppy and bridging ligands (BL) in the UV-vis spectra. For the conjugated bridge bpe in compound 3 and abp in compound 4, the lowest-energy charge-transfer absorptions are red-shifted with enhanced intensity. In accordance with their similar electronic structures, compounds 1 and 2 exhibit identical emissions. The presence of vibronic structures in these compounds indicates a predominantly (3)LC excited states. On the contrary, broad and unstructured

  13. Singular Value Decomposition and Ligand Binding Analysis

    Directory of Open Access Journals (Sweden)

    André Luiz Galo

    2013-01-01

    Full Text Available Singular values decomposition (SVD is one of the most important computations in linear algebra because of its vast application for data analysis. It is particularly useful for resolving problems involving least-squares minimization, the determination of matrix rank, and the solution of certain problems involving Euclidean norms. Such problems arise in the spectral analysis of ligand binding to macromolecule. Here, we present a spectral data analysis method using SVD (SVD analysis and nonlinear fitting to determine the binding characteristics of intercalating drugs to DNA. This methodology reduces noise and identifies distinct spectral species similar to traditional principal component analysis as well as fitting nonlinear binding parameters. We applied SVD analysis to investigate the interaction of actinomycin D and daunomycin with native DNA. This methodology does not require prior knowledge of ligand molar extinction coefficients (free and bound, which potentially limits binding analysis. Data are acquired simply by reconstructing the experimental data and by adjusting the product of deconvoluted matrices and the matrix of model coefficients determined by the Scatchard and McGee and von Hippel equation.

  14. Investigation of hyperfine interactions in hafnium compounds with F1-, OH1-, and EDTA ligands by perturbed γ-γ angular correlation

    International Nuclear Information System (INIS)

    Amaral, Antonio A.; Silva, Andreia dos S.; Lapolli, Andre L.; Carbonari, Artur W.; Saxena, Rajendra N.

    2011-01-01

    In this study the hyperfine parameters, including the dynamical nature, Perturbed Angular Correlation (PAC) spectroscopy was used to measure the hyperfine parameters in molecules of ligand compounds in solutions. The measurements were carried out at 295 K and 77 K using 181 Hf → 181 Ta, as probe nuclei. Samples were prepared by adding a small volume of radioactive solution containing the probe nuclei in aqueous solution, buffer solution and ethylenediaminetetraacetic acid (EDTA) used as a ligand with pH between 4 and 5 which correspond to the pH of the saturated EDTA solution and in buffer solution with pH between 9 and 10. The results made possible to understand the impact of each method for PAC measurements. Finally a comparative analysis for the several methods of inserting of the probe nuclei in the sample was made, considering chemical and nuclear aspects. The lack of measurements in this kind of samples justifies the importance of the obtained results. (author)

  15. Concurrent coordination of ligand in metal chloride complexes with 1-vinyl-2-(2-pyridyl)benzimidazole

    International Nuclear Information System (INIS)

    Bajkalov, L.V.; Domnina, E.S.

    1996-01-01

    The properties and structure of bivalent cadmium and 1-vinyl-2-(2-pyridyl)benzimidazole chloride complexes, which have been prepared for the first time, have been studied by the methods of potentiometric titration and PMR, 35 Cl NQR, UV and IR spectroscopy. For the complexes above di- and polymeric structures in crystal phase are suggested, where ligand plays the role of a bridge. N,N-bidentate ligand. In solution the complexes dissociate with formation of monomeric coordination compounds, their metal being bound by different ways, stemming from participation of N benzimidazole or pyridine fragment of the ligand. Adducts of ionic type with second sphere 1-vinyl-2-(2-pyridyl)benzimidazole cation have been obtained in the course of hydrochlorination of the complexes prepared

  16. Sub-20 nm Stable Micelles Based on a Mixture of Coiled-Coils: A Platform for Controlled Ligand Presentation.

    Science.gov (United States)

    Ang, JooChuan; Ma, Dan; Jung, Benson T; Keten, Sinan; Xu, Ting

    2017-11-13

    Ligand-functionalized, multivalent nanoparticles have been extensively studied for biomedical applications from imaging agents to drug delivery vehicles. However, the ligand cluster size is usually heterogeneous and the local valency is ill-defined. Here, we present a mixed micelle platform hierarchically self-assembled from a mixture of two amphiphilic 3-helix and 4-helix peptide-polyethylene glycol (PEG)-lipid hybrid conjugates. We demonstrate that the local multivalent ligand cluster size on the micelle surface can be controlled based on the coiled-coil oligomeric state. The oligomeric states of mixed peptide bundles were found to be in their individual native states. Similarly, mixed micelles indicate the orthogonal self-association of coiled-coil amphiphiles. Using differential scanning calorimetry, fluorescence recovery spectroscopy, and coarse-grained molecular dynamics simulation, we studied the distribution of coiled-coil bundles within the mixed micelles and observed migration of coiled-coils into nanodomains within the sub-20 nm mixed micelle. This report provides important insights into the assembly and formation of nanophase-separated micelles with precise control over the local multivalent state of ligands on the micelle surface.

  17. Reactivity and effectiveness of traditional and novel ligands for multi-micronutrient fertilization in a calcareous soil

    Directory of Open Access Journals (Sweden)

    Sandra eLópez-Rayo

    2015-09-01

    Full Text Available This study compares the effectiveness of multi-micronutrient formulations containing Fe, Mn, and Zn with traditional (EDTA, DTPA, HEEDTA, EDDHAm or novel chelates (o,p-EDDHA, S,S-EDDS, IDHA and natural complexing agents (gluconate and lignosulfonate. The stability and reactivity of the formulations were studied on batch experiments with calcareous soil and by speciation modeling. Formulations containing traditional ligands maintained higher Mn but lower Zn concentration in soil solution than the novel ligands. The gluconate and lignosulfonate maintained low concentrations of both Mn and Zn in soil solution. Selected formulations were applied into calcareous soil and their efficacy was evaluated in a pot experiment with soybean. The formulation containing DTPA led to the highest Zn concentration in plants, as well as the formulation containing S,S-EDDS in the short-term, which correlated with its biodegradability. The application of traditional or novel ligands in formulations did not result in sufficient plant Mn concentrations, which was related to the low Mn stability observed for all formulations under moderate oxidation conditions. The results highlight the need to consider the effect of metals and ligands interactions in multi-nutrient fertilization and the potential of S,S-EDDS to be used for Zn fertilization. Furthermore, it is necessary to explore new sources of Mn fertilization for calcareous soils that have greater stability and efficiency, or instead to use foliar fertilization.

  18. Ground state solutions for asymptotically periodic Schrodinger equations with critical growth

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.

  19. How do ligands influence the quantum yields of cyclometalated platinum(ii) complexes, a theoretical research study.

    Science.gov (United States)

    Yang, Baozhu; Huang, Shuang; Wang, Jianhao

    2017-08-30

    A series of cyclometalated platinum(ii) complexes have been investigated with the TDDFT method. These complexes have similar structures but distinct phosphorescence quantum yields. Theoretical calculations were carried out to explain the differences in quantum yields from the conjugation effect of the cyclometalated ligand, molecular rigidity and ligand-field strength of the monodentate ligand. The radiative decay rate constants (k r ) have been discussed with the oscillator strength (f n ), the strength of the spin-orbit coupling (SOC) interaction between the lowest energy triplet excited state (T 1 ) and singlet excited states (S n ), and the energy gaps between E(T 1 ) and E(S n ). To illustrate the nonradiative decay processes, the transition states (TS) between the triplet metal-centered state ( 3 MC) and T 1 states have been optimized. In addition, the minimum energy crossing points (MECPs) between 3 MC and the ground states (S 0 ) were optimized. Finally, the potential energy curves along the nonradiative decay pathways are simulated. To obtain a phosphorescent complex with a high quantum yield, the complex should retain molecular rigidity well in the S 1 and T 1 states, while showing significant structural distortion at the MECP structure.

  20. Studies of Tc oxidation states in humic acid solutions

    International Nuclear Information System (INIS)

    Wang Bo; Liu Dejun; Yao Jun

    2011-01-01

    The oxidation state of Tc is an important aspect of the speciation in groundwater which contained organic substances due to it control the precipitation, complexation, sorption and colloid formation behavior of the Tc under HWL geological disposal conditions. In present work, the oxidation states of Tc were investigated using the LaCl 3 coagulation method and solution extraction method in aqueous solutions in which the humic acid concentration range is from 0 to 20 mg/L and the Tc (VII) concentration is about 10 -8 mol/L. The radiocounting of 99 Tc was determined using liquid scintillation spectrometry. The humic acid will influence the radiocounting ratio of 99 Tc apparently, however, the quenching effect can be restrained once keep the volume of the cocktail to about twenty times of the sample volume. The LaCl 3 coagulation method was carried out for the investigation of Tc oxidation states in humic acid aqueous systems at about pH 8. The tetraphenylarsonium chloride (TPA)-chloroform extraction method was used also simultaneously to investigation the concentrations of Tc (IV) and Tc (VII) for the availability of the LaCl 3 precipitation method, and the experimental results demonstrate that tetravalent technetium and pertechnetate concentration are well agreement with the LaCl 3 precipitation method. These two experimental results demonstrated that Tc (VII) is very stable in the Tc (VII)-humic acid system during a 350 days experimental period, and the Tc (IV) concentrations are very lower, that is indicate that there didn't oxidizing reactions between the Fluka humic acid and Tc (VII) in aqueous solutions under anaerobic conditions. That means the presence of humic acids even in anaerobic groundwater is disadvantage for the retardance of radionuclides. (authors)

  1. State memory in solution gated epitaxial graphene

    Science.gov (United States)

    Butko, A. V.; Butko, V. Y.; Lebedev, S. P.; Lebedev, A. A.; Davydov, V. Y.; Smirnov, A. N.; Eliseyev, I. A.; Dunaevskiy, M. S.; Kumzerov, Y. A.

    2018-06-01

    We studied electrical transport in transistors fabricated on a surface of high quality epitaxial graphene with density of defects as low as 5·1010 cm-2 and observed quasistatic hysteresis with a time constant in a scale of hours. This constant is in a few orders of magnitude greater than the constant previously reported in CVD graphene. The hysteresis observed here can be described as a shift of ∼+2V of the Dirac point measured during a gate voltage increase from the position of the Dirac point measured during a gate voltage decrease. This hysteresis can be characterized as a nonvolatile quasistatic state memory effect in which the state of the gated graphene is determined by its initial state prior to entering the hysteretic region. Due to this effect the difference in resistance of the gated graphene measured in the hysteretic region at the same applied voltages can be as high as 70%. The observed effect can be explained by assuming that charge carriers in graphene and oppositely charged molecular ions from the solution form quasistable interfacial complexes at the graphene interface. These complexes likely preserve the initial state by preventing charge carriers in graphene from discharging in the hysteretic region.

  2. Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems.

    Science.gov (United States)

    Wang, Xiang-Sheng; He, Dongdong; Wylie, Jonathan J; Huang, Huaxiong

    2014-02-01

    We study the Poisson-Nernst-Planck (PNP) system with an arbitrary number of ion species with arbitrary valences in the absence of fixed charges. Assuming point charges and that the Debye length is small relative to the domain size, we derive an asymptotic formula for the steady-state solution by matching outer and boundary layer solutions. The case of two ionic species has been extensively studied, the uniqueness of the solution has been proved, and an explicit expression for the solution has been obtained. However, the case of three or more ions has received significantly less attention. Previous work has indicated that the solution may be nonunique and that even obtaining numerical solutions is a difficult task since one must solve complicated systems of nonlinear equations. By adopting a methodology that preserves the symmetries of the PNP system, we show that determining the outer solution effectively reduces to solving a single scalar transcendental equation. Due to the simple form of the transcendental equation, it can be solved numerically in a straightforward manner. Our methodology thus provides a standard procedure for solving the PNP system and we illustrate this by solving some practical examples. Despite the fact that for three ions, previous studies have indicated that multiple solutions may exist, we show that all except for one of these solutions are unphysical and thereby prove the existence and uniqueness for the three-ion case.

  3. Ligand identification using electron-density map correlations

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Adams, Paul D.; Moriarty, Nigel W.; Cohn, Judith D.

    2007-01-01

    An automated ligand-fitting procedure is applied to (F o − F c )exp(iϕ c ) difference density for 200 commonly found ligands from macromolecular structures in the Protein Data Bank to identify ligands from density maps. A procedure for the identification of ligands bound in crystal structures of macromolecules is described. Two characteristics of the density corresponding to a ligand are used in the identification procedure. One is the correlation of the ligand density with each of a set of test ligands after optimization of the fit of that ligand to the density. The other is the correlation of a fingerprint of the density with the fingerprint of model density for each possible ligand. The fingerprints consist of an ordered list of correlations of each the test ligands with the density. The two characteristics are scored using a Z-score approach in which the correlations are normalized to the mean and standard deviation of correlations found for a variety of mismatched ligand-density pairs, so that the Z scores are related to the probability of observing a particular value of the correlation by chance. The procedure was tested with a set of 200 of the most commonly found ligands in the Protein Data Bank, collectively representing 57% of all ligands in the Protein Data Bank. Using a combination of these two characteristics of ligand density, ranked lists of ligand identifications were made for representative (F o − F c )exp(iϕ c ) difference density from entries in the Protein Data Bank. In 48% of the 200 cases, the correct ligand was at the top of the ranked list of ligands. This approach may be useful in identification of unknown ligands in new macromolecular structures as well as in the identification of which ligands in a mixture have bound to a macromolecule

  4. New polymer-supported ion-complexing agents: Design, preparation and metal ion affinities of immobilized ligands

    International Nuclear Information System (INIS)

    Alexandratos, Spiro D.

    2007-01-01

    Polymer-supported reagents are comprised of crosslinked polymer networks that have been modified with ligands capable of selective metal ion complexation. Applications of these polymers are in environmental remediation, ion chromatography, sensor technology, and hydrometallurgy. Bifunctional polymers with diphosphonate/sulfonate ligands have a high selectivity for actinide ions. The distribution coefficient for the uranyl ion from 1 M nitric acid is 70,000, compared to 900 for the monophosphonate/sulfonate polymer and 200 for the sulfonic acid ion-exchange resin. A bifunctional trihexyl/triethylammonium polymer has a high affinity and selectivity for pertechnetate and perchlorate anions from groundwater. In one example, its distribution coefficient for perchlorate ions in the presence of competing anions is 3,300,000, compared to 203,180 for a commercially available anion-exchange resin. Polystyrene modified with N-methyl-D-glucamine ligands is capable of selectively complexing arsenate from groundwater. It complexes 99% of the arsenate present in a solution of 100 mg/L arsenate with 560 mg/L sulfate ions. Its selectivity is retained even in the presence of 400 mg/L phosphate. There is no affinity for arsenate above pH 9, allowing for the polymer to be regenerated with moderate alkali solution. In studies aimed at developing a Hg(II)-selective resin, simple amine resins were found to have a high Hg(II) affinity and that affinity is dependent upon the solution pH and the counterion

  5. Schiff base ligand

    Indian Academy of Sciences (India)

    Unknown

    Low-temperature stoichiometric Schiff base reaction in air in 3 : 1 mole ratio between benz- aldehyde and triethylenetetramine (trien) in methanol yields a novel tetraaza µ-bis(bidentate) acyclic ligand L. It was .... electrochemical work was performed as reported in ..... change in ligand shape through change in oxidation.

  6. Carboxylate ligands drastically enhance the rates of oxo exchange and hydrogen peroxide disproportionation by oxo manganese compounds of potential biological significance.

    Science.gov (United States)

    Dubois, Lionel; Pécaut, Jacques; Charlot, Marie-France; Baffert, Carole; Collomb, Marie-Noëlle; Deronzier, Alain; Latour, Jean-Marc

    2008-01-01

    To mimic the carboxylate-rich active site of the manganese catalases more closely we introduced carboxylate groups into dimanganese complexes in place of nitrogen ligands. The series of dimanganese(III,IV) complexes of tripodal ligands [Mn(2)(L)(2)(O)(2)](3+/+/-/3-) was extended from those of tpa (1) and H(bpg) (2) to those of H(2)(pda) (3) and H(3)(nta) (4) (tpa=tris-picolylamine, H(bpg)=bis-picolylglycylamine, H(2)(pda)=picolyldiglycylamine, H(3)(nta)=nitrilotriacetic acid). While 3 [Mn(2)(pda)(2)(O)(2)][Na(H(2)O)(3)] could be synthesized at -20 degrees C and characterized in the solid state, 4 [Mn(2)(nta)(2)(O)(2)](3-) could be obtained and studied only in solution at -60 degrees C. A new synthetic procedure for the dimanganese(III,III) complexes was devised, using stoichiometric reduction of the dimanganese(III,IV) precursor by the benzil radical with EPR monitoring. This enabled the preparation of the parent dimanganese(III,III) complex 5 [Mn(2)(tpa)(2)(O)(2)](ClO(4))(2), which was structurally characterized. The UV/visible, IR, EPR, magnetic, and electrochemical properties of complexes 1-3 and 5 were analyzed to assess the electronic changes brought about by the carboxylate replacement of pyridine ligands. The kinetics of the oxo ligand exchanges with labeled water was examined in acetonitrile solution. A dramatic effect of the number of carboxylates was evidenced. Interestingly, the influence of the second carboxylate substitution differs from that of the first one probably because this substitution occurs on an out-of-plane coordination while the former occurs in the plane of the [Mn(2)O(2)] core. Indeed, on going from 1 to 3 the exchange rate was increased by a factor of 50. Addition of triethylamine caused a rate increase for 1, but not for 3. The abilities of 1-3 to disproportionate H(2)O(2) were assessed volumetrically. The disproportionation exhibited a sensitivity corresponding to the carboxylate substitution. These observations strongly suggest that

  7. Reversible Redox-Induced Modulation of Sterics in an α-Diimine Ligand Coordinated to Gallium

    Energy Technology Data Exchange (ETDEWEB)

    Zarkesh, Ryan A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Foster, Michael E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ichimura, Andrew S. [San Francisco State Univ., CA (United States); Anstey, Mitchell R. [Davidson College, Davidson, NC (United States)

    2017-07-01

    The ability to tune the steric envelope through redox events post-synthetically or in tandem with other chemical processes is a powerful tool that could assist in enabling new catalytic methodologies and understanding potential pitfalls in ligand design. The α-diimine ligand, dmp-BIAN, exhibits the peculiar and previously unreported feature of varying steric profiles depending on oxidation state when paired with a main group element. A study of the factors that give rise to this behaviour as well as its impact on the incorporation of other ligands is performed.

  8. Ground state solutions for non-local fractional Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Yang Pu

    2015-08-01

    Full Text Available In this article, we study a time-independent fractional Schrodinger equation with non-local (regional diffusion $$ (-\\Delta^{\\alpha}_{\\rho}u + V(xu = f(x,u \\quad \\text{in }\\mathbb{R}^{N}, $$ where $\\alpha \\in (0,1$, $N > 2\\alpha$. We establish the existence of a non-negative ground state solution by variational methods.

  9. Stabilizing the border steady-state solution of two interacting ...

    African Journals Online (AJOL)

    In this paper, we have successfully developed a feedback control which has been used to stabilize an unstable steady-state solution (0, 3.3534). This convergence has occurred when the values of the final time are 190, 200, 210 and 220 which corresponds to the scenario when the value of the step length of our simulation ...

  10. Synthesis and characterization of Mn(III) chloro complexes with salen-type ligands

    International Nuclear Information System (INIS)

    Byun, Jong Chul; Han, Chung Hun; Lee, Nam Ho; Baik, Jong Seok; Park, Yu Chul

    2002-01-01

    A series of novel salen-type complexes ((Mn(III)(L acn )Cl): n=1∼11) containing Cl - ion were obtained by reactions of the Mn(CH 3 COO) 2 ·4H 2 O with the potentially tetradentate compartmental ligand (H 2 L acn ), prepared by condensation the of one mole of diamine (ethylenediamine, 1,3-propanediamine, o-phenylenediamine, and 2,2-dimethyl-1,3-propanediamine) with two moles of aldehyde (salicylaldehyde, 5-chloro- salicylaldehyde, 3,5-dichlorosalicylal-dehyde, and 3,5-di-tert-butyl-2-hydroxy-benzaldehyde) in a methanol solution . The resulting salen-type ligands and their Mn(III) complexes were identified and characterized by elemental analysis, conductivity, thermogravimetry and UV-VIS, IR, and NMR spectroscopy

  11. Investigation into kinetics of redox interaction in the system Ce(4) β-diketonate-additional ligand

    International Nuclear Information System (INIS)

    Anufrieva, S.I.; Snezhko, N.I.; Pechurova, N.I.; Martynenko, L.N.; Spitsyn, V.I.

    1981-01-01

    The rate of reduction of β-diketonate complexes of Ce(4) to Ce(3) β-diketonates in benzene solution in the presence and in the absence of additional ligands is studied using spectrophotometry. The rate of reduction of Ce(4) β-diketonates increases in the series Ce(TTFA) 4 4 4 4 4 (TTFA - thenoyltrifluoroacetone, DPM- --dipivaloylmethane, DBM - dibenzoylemethane, BA benzoylacetone, AA - acetylaceton). The studied phosphorus-containing additional ligands as to their effect on the rate of Ce (4) reduction can be arranged in the following order: trioctylphosphine oxide>triphenylphosphine oxide>tributyl phosphate [ru

  12. Efficient sensitization of Ln{sup 3+}-doped NaYF{sub 4} nanocrystals with organic ligands

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, N. [INAC, CEA, Laboratoire de Reconnaissance Ionique et Chimie de Coordination, Service de Chimie Inorganique et Biologique (UMR E-3 CEA/UJF) (France); Raccurt, O. [CEA, Laboratoire de Chimie et de Securite des NanoMateriaux (DTNM/LITEN/DRT) (France); Imbert, D., E-mail: daniel.imbert@cea.fr; Mazzanti, M. [INAC, CEA, Laboratoire de Reconnaissance Ionique et Chimie de Coordination, Service de Chimie Inorganique et Biologique (UMR E-3 CEA/UJF) (France)

    2013-06-15

    Ligand-capped lanthanide-doped fluoride nanocrystals have been prepared and fully characterized. Organic ligands can be used to promote efficient sensitization of lanthanide luminescence in the fluoride matrix up to a 330-fold enhancement in intensity, and to provide sizeable quantum yields of luminescence. The variation of luminescence efficiency in the capped nanocrystal series can be straightforwardly correlated to the energy of the measured ligand triplet states. The intense luminescence emission of most of the systems renders them very attractive for optical applications.

  13. Spectroscopic and DFT Study of RhIII Chloro Complex Transformation in Alkaline Solutions.

    Science.gov (United States)

    Vasilchenko, Danila B; Berdyugin, Semen N; Korenev, Sergey V; O'Kennedy, Sean; Gerber, Wilhelmus J

    2017-09-05

    The hydrolysis of [RhCl 6 ] 3- in NaOH-water solutions was studied by spectrophotometric methods. The reaction proceeds via successive substitution of chloride with hydroxide to quantitatively form [Rh(OH) 6 ] 3- . Ligand substitution kinetics was studied in an aqueous 0.434-1.085 M NaOH matrix in the temperature range 5.5-15.3 °C. Transformation of [RhCl 6 ] 3- into [RhCl 5 (OH)] 3- was found to be the rate-determining step with activation parameters of ΔH † = 105 ± 4 kJ mol -1 and ΔS † = 59 ± 10 J K -1 mol -1 . The coordinated hydroxo ligand(s) induces rapid ligand substitution to form [Rh(OH) 6 ] 3- . By simulating ligand substitution as a dissociative mechanism, using density functional theory (DFT), we can now explain the relatively fast and slow kinetics of chloride substitution in basic and acidic matrices, respectively. Moreover, the DFT calculated activation energies corroborated experimental data that the kinetic stereochemical sequence of [RhCl 6 ] 3- hydrolysis in an acidic solution proceeds as [RhCl 6 ] 3- → [RhCl 5 (H 2 O)] 2- → cis-[RhCl 4 (H 2 O) 2 ] - . However, DFT calculations predict in a basic solution the trans route of substitution [RhCl 6 ] 3- → [RhCl 5 (OH)] 3- → trans-[RhCl 4 (OH) 2 ] 3- is kinetically favored.

  14. Ligand binding turns moth pheromone-binding protein into a pH sensor: effect on the Antheraea polyphemus PBP1 conformation.

    Science.gov (United States)

    Katre, Uma V; Mazumder, Suman; Prusti, Rabi K; Mohanty, Smita

    2009-11-13

    In moths, pheromone-binding proteins (PBPs) are responsible for the transport of the hydrophobic pheromones to the membrane-bound receptors across the aqueous sensillar lymph. We report here that recombinant Antheraea polyphemus PBP1 (ApolPBP1) picks up hydrophobic molecule(s) endogenous to the Escherichia coli expression host that keeps the protein in the "open" (bound) conformation at high pH but switches to the "closed" (free) conformation at low pH. This finding has bearing on the solution structures of undelipidated lepidopteran moth PBPs determined thus far. Picking up a hydrophobic molecule from the host expression system could be a common feature for lipid-binding proteins. Thus, delipidation is critical for bacterially expressed lipid-binding proteins. We have shown for the first time that the delipidated ApolPBP1 exists primarily in the closed form at all pH levels. Thus, current views on the pH-induced conformational switch of PBPs hold true only for the ligand-bound open conformation of the protein. Binding of various ligands to delipidated ApolPBP1 studied by solution NMR revealed that the protein in the closed conformation switches to the open conformation only at or above pH 6.0 with a protein to ligand stoichiometry of approximately 1:1. Mutation of His(70) and His(95) to alanine drives the equilibrium toward the open conformation even at low pH for the ligand-bound protein by eliminating the histidine-dependent pH-induced conformational switch. Thus, the delipidated double mutant can bind ligand even at low pH in contrast to the wild type protein as revealed by fluorescence competitive displacement assay using 1-aminoanthracene and solution NMR.

  15. Effects of Ligands on a Ternary Hydroxo Complex Formation with Eu(III) in a Aqueous Solution: Comparison of a Pyridine-2,6-dicarboxylate with a Phthalate

    International Nuclear Information System (INIS)

    Park, K. K.; Cho, H. R.; Kim, W. H.; Jung, E. C.

    2008-01-01

    The interaction of a radionuclide with ligands in a groundwater influences its migration through a hydrogeological system due to a change in the characteristics of a dissolution and a sorption. Actinide ions are classified as a hard acid and strongly interact with ligands having an oxygen donor atom of a hard base such as a hydroxide, carbonate and carboxylate. These ligands reveal a large ionic bonding character. A number of experimental results on a binary complex formation of actinides have been reported. However, actinides may easily form a ternary complex by interacting simultaneously with two different ligands, since an ionic bonding does not restrict the spatial orientation of a ligand. In previous studies, a ternary hydroxo complex formation was investigated by using pyridine-2,6-dicarboxylate (PDA) or phthalate as an organic ligand and Eu(III) as an analogue of an actinide(III) ion. Although these organic ligands equally contain two carboxylate groups that interact with an Eu(III) ion, their stabilities reveal big differences. PDA is a tridentate ligand forming two 5-membered chelates, while phthalate is a bidentate ligand forming a 7-membered chelate. The latter reveals a lower stability than the former due to an angle strain. This is one of the reasons for the lower stability of the Eu(III)-phthalate than that of the Eu(III)- PDA. The difference in the stabilities of binary complexes, EuL + (L=organic ligand), influences the stabilities of the ternary hydroxo complexes, Eu(OH)L. The coordination of a phenylic or pyridine ligand can greatly enhance the fluorescence of an Eu(III) ion due to the high absorbance of a ligand by a π → π * transition and the transfer of this energy to an Eu(III) ion. These fluorescence characteristics in a binary complex system could be changed in a ternary complex. In this study, the effect of a ligand on the stability of a ternary hydroxo complex is reported by comparing the stabilities of Eu-PDA with Eu-phthalate systems

  16. ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites.

    Science.gov (United States)

    Konc, Janez; Janežič, Dušanka

    2014-07-01

    The ProBiS-ligands web server predicts binding of ligands to a protein structure. Starting with a protein structure or binding site, ProBiS-ligands first identifies template proteins in the Protein Data Bank that share similar binding sites. Based on the superimpositions of the query protein and the similar binding sites found, the server then transposes the ligand structures from those sites to the query protein. Such ligand prediction supports many activities, e.g. drug repurposing. The ProBiS-ligands web server, an extension of the ProBiS web server, is open and free to all users at http://probis.cmm.ki.si/ligands. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Study on the optical properties of CdSe QDs with different ligands in specific matrix

    International Nuclear Information System (INIS)

    Lin Wei; Zou Wei; Du Zhongjie; Li Hangquan; Zhang Chen

    2013-01-01

    Different ligand structures of CdSe quantum dots were designed and synthesized for the specific matrix and the effect of the ligands on the photoluminescence and optical properties were further investigated. Ligand exchange reaction was used to synthesize thioglycolic acid-capped CdSe QDs and the process was characterized by FT-IR and titration. The influence of environmental pH value and storing time on the properties of thioglycolic acid-capped CdSe QDs in aqueous solution were studied by absorption and photoluminescence spectra. It was found that alkaline environment was more beneficial for the application of CdSe QDs. Therefore, the amino ligands with different molecular weight were grafted onto CdSe QDs for improving the compatibility with epoxy matrix and then amino-capped CdSe QDs/epoxy nanocomposites were fabricated. The morphologies and properties of the nanocomposites were characterized by DLS, HR-TEM, UV–Vis spectra, and photoluminescence spectra. As a result, amino ligands with short-molecular chain-capped CdSe QDs/epoxy nanocomposites exhibited good dispersion, high transparency and photoluminescence, and would be suitable for potential application in light-emitting diode device.

  18. A Solution Study of Complex Formation of Some Diamines with Lanthanones

    Directory of Open Access Journals (Sweden)

    J. J. Vora

    2009-01-01

    Full Text Available To study the metal ligand equilibrium in aqueous solution, the well known Irving-Rossotti titration method was used. The temperature selected is 30±0.10C at ionic strength 0.2 M (NaClO4 which was maintained constant through out the work. The binary metal complex (ML2 formation was studied. The metals selected are Sm3+, Gd3+, Dy3+ and Yb3+. The diamine ligands taken are ethylenediamine, 1,2 diamino propane, 1,3 diamino propane, N-N diethyl ethylenediamine and N-N -dimethyl ethylenediamine. Factors that affected the stability of the complexes are size and ionic potential of lanthanone ions, basicity of ligands, ring size and steric effect of ligands.

  19. Thermo-Kinetic Investigation of Comparative Ligand Effect on Cysteine Iron Redox Reaction

    Directory of Open Access Journals (Sweden)

    Masood Ahmad Rizvi

    2015-03-01

    Full Text Available Transition metal ions in their free state bring unwanted biological oxidations generating oxidative stress. The ligand modulated redox potential can be indispensable in prevention of such oxidative stress by blocking the redundant bio-redox reactions. In this study we investigated the comparative ligand effect on the thermo-kinetic aspects of biologically important cysteine iron (III redox reaction using spectrophotometric and potentiometric methods. The results were corroborated with the complexation effect on redox potential of iron(III-iron(II redox couple. The selected ligands were found to increase the rate of cysteine iron (III redox reaction in proportion to their stability of iron (II complex (EDTA < terpy < bipy < phen. A kinetic profile and the catalytic role of copper (II ions by means of redox shuttle mechanism for the cysteine iron (III redox reaction in presence of 1,10-phenanthroline (phen ligand is also reported.

  20. Interaction of calreticulin with CD40 ligand, TRAIL and Fas ligand

    DEFF Research Database (Denmark)

    Duus, K; Pagh, R T; Holmskov, U

    2007-01-01

    is utilized by many other functionally diverse molecules and in this work the interaction of calreticulin with C1q and structurally similar molecules was investigated. In addition to C1q and MBL, CD40 ligand (CD40L), tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL) were...... found to bind calreticulin strongly. A low level or no binding was observed for adiponectin, tumour necrosis factor-alpha (TNF-alpha), CD30L, surfactant protein-A and -D and collagen VIII. The interaction with calreticulin required a conformational change in CD40L, TRAIL and FasL and showed the same...

  1. Misuse of thermodynamics in the interpretation of isothermal titration calorimetry data for ligand binding to proteins.

    Science.gov (United States)

    Pethica, Brian A

    2015-03-01

    Isothermal titration calorimetry (ITC) has given a mass of data on the binding of small molecules to proteins and other biopolymers, with particular interest in drug binding to proteins chosen as therapeutic indicators. Interpretation of the enthalpy data usually follows an unsound protocol that uses thermodynamic relations in circumstances where they do not apply. Errors of interpretation include incomplete definitions of ligand binding and equilibrium constants and neglect of the non-ideality of the solutions under study, leading to unreliable estimates of standard free energies and entropies of binding. The mass of reported thermodynamic functions for ligand binding to proteins estimated from ITC enthalpies alone is consequently of uncertain thermodynamic significance and utility. ITC and related experiments to test the protocol assumptions are indicated. A thermodynamic procedure avoiding equilibrium constants or other reaction models and not requiring protein activities is given. The discussion draws attention to the fundamental but neglected relation between the thermodynamic activity and bioactivity of drugs and to the generally unknown thermodynamic status of ligand solutions, which for drugs relates directly to effective therapeutic dosimetry. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Characterization of the Raf kinase inhibitory protein (RKIP) binding pocket: NMR-based screening identifies small-molecule ligands.

    Science.gov (United States)

    Shemon, Anne N; Heil, Gary L; Granovsky, Alexey E; Clark, Mathew M; McElheny, Dan; Chimon, Alexander; Rosner, Marsha R; Koide, Shohei

    2010-05-05

    Raf kinase inhibitory protein (RKIP), also known as phoshaptidylethanolamine binding protein (PEBP), has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE). In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized. In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity. This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential.

  3. Characterization of the Raf kinase inhibitory protein (RKIP binding pocket: NMR-based screening identifies small-molecule ligands.

    Directory of Open Access Journals (Sweden)

    Anne N Shemon

    2010-05-01

    Full Text Available Raf kinase inhibitory protein (RKIP, also known as phoshaptidylethanolamine binding protein (PEBP, has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE. In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized.In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity.This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential.

  4. Kinetics of protein–ligand unbinding: Predicting pathways, rates, and rate-limiting steps

    Science.gov (United States)

    Tiwary, Pratyush; Limongelli, Vittorio; Salvalaglio, Matteo; Parrinello, Michele

    2015-01-01

    The ability to predict the mechanisms and the associated rate constants of protein–ligand unbinding is of great practical importance in drug design. In this work we demonstrate how a recently introduced metadynamics-based approach allows exploration of the unbinding pathways, estimation of the rates, and determination of the rate-limiting steps in the paradigmatic case of the trypsin–benzamidine system. Protein, ligand, and solvent are described with full atomic resolution. Using metadynamics, multiple unbinding trajectories that start with the ligand in the crystallographic binding pose and end with the ligand in the fully solvated state are generated. The unbinding rate koff is computed from the mean residence time of the ligand. Using our previously computed binding affinity we also obtain the binding rate kon. Both rates are in agreement with reported experimental values. We uncover the complex pathways of unbinding trajectories and describe the critical rate-limiting steps with unprecedented detail. Our findings illuminate the role played by the coupling between subtle protein backbone fluctuations and the solvation by water molecules that enter the binding pocket and assist in the breaking of the shielded hydrogen bonds. We expect our approach to be useful in calculating rates for general protein–ligand systems and a valid support for drug design. PMID:25605901

  5. EPR spectra of vanadyl(2) intra-complexes with amino acids in solutions

    International Nuclear Information System (INIS)

    Shodiev, U.M.; Musaev, Z.M.; Khodzhaev, O.F.; Usmankhodzhaeva, Ya.S.; Parpiev, N.A.

    1987-01-01

    EPR spectra of vanadyl (2) intracomplexes with glycine, α- and β-alanines, benzoylglycine, lencine, glutamine and the aspartic acid of VOL 2 xH 2 O composition as well as with cystine of VOLxH 2 O composition (where L-monodeprotonated, in case of cystine and the aspartic acid - dideprotonated form of the amino acid) in aqueous, methanol, dimethylsulfoxide and pyridine solutions are studied. It is established that the structure determined in the solid state is retained in the dimethylsulfoxide solution and partially - in methanol. In aqueous, pyridine and partially in methanol solutions complexes are distorted and two molecules of the amino acid are coordinated monodentately through oxygen atoms of the carboxyl group, and ''vacant'' coordination places in the equatorial plane take two molecules of the solvent. From the data obtained it follows that the metal - nitrogen bond in the vanadyl (2) complexes studied with amino acids is not so strong than the metal - oxygen bond of the carboxyl ligand group

  6. Spectroscopic study of cadmium (II) complexes with heterocyclic dithiocarbamate ligands

    International Nuclear Information System (INIS)

    Garcia-Fontan, S.; Rodriguez-Seoane, P.; Casas, J.S.; Sordo, J.; Jones, M.M.

    1993-01-01

    Cadmium(II) dithiocarbamates [Cd(dtc) 2 ] (dtc=4-carboxamidopiperidine-1-carbodithioate, morpholine-1-carbodithioate or 4-(2-hydroxyethyl)piperazine-1-carbodithioate) and [Cd(dtc) 2 ].H 2 O (dtc=4-hydroxypiperidine-1-carbodithioate} have been prepared and characterized by thermal analysis and IR and NMR ( 13 C, 113 Cd) spectrometry. Two of these ligands have previously been shown capable of removing cadmium from its aged in vivo storage sites. The use of solid state 13 C NMR measurements to establish the coordination mode of the dithiocarbomate ligands is also examined and the difficulties which arise are discussed. (orig.)

  7. A series of Zn/Cd coordination polymers constructed from 1,4-naphthalenedicarboxylate and N-donor ligands: Syntheses, structures and luminescence sensing of Cr{sup 3+} in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dong-Cheng [College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063 (China); Fan, Yan; Si, Chang-Dai; Wu, Ya-Jun; Dong, Xiu-Yan; Yang, Yun-Xia; Yao, Xiao-Qiang [College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Liu, Jia-Cheng, E-mail: jcliu8@nwnu.edu.cn [College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2016-09-15

    A novel series of Zn/Cd coordination polymers based on H{sub 3}L, namely, [Zn{sub 2}(HL){sub 2}(bipy){sub 2}(H{sub 2}O){sub 6}]{sub n} (1), [Zn(HL)(phen)]{sub n} (2), [Cd{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (3), [Zn{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (4) [(H{sub 3}L =4-[(1-carboxynaphthalen-2-yl)oxy]phthalic acid, bipy =4,4′-bipyridine, phen =1,10-phenanthroline, bbi =1,1′-(1,4-butanediyl)bis(imidazole] have been successfully synthesized by solvothermal reaction. Compound 1 possesses two diverse 1D chains constructed by different bipy coligands, which were further connected to form a 3D supramolecular architecture by hydrogen bonding interactions. Compound 2 possesses a complicated 1D chain based on secondary building unit (SBU) with binuclear Zn cluster. Compounds 3 and 4 exhibit similar 2D→3D framework, which can be rationalized as (3,4,4)-connected 3D net with a Schläfli symbol of (6{sup 3}.8.10{sup 2}){sub 2}(6{sup 3}){sub 2}(6{sup 4}.8.10). In particular, compound 3 exhibited a high sensitivity for Cr{sup 3+} in aqueous solutions, which suggest that compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+}. - Graphical abstract: A series of novel Zn/Cd coordination polymers have been successfully synthesized by solvothermal reaction. The unique 3D Cd{sup 2+} polymer containing bbi as second ligand demonstrates high sensitivity for detection of toxic Cr{sup 3+} in aqueous solutions. Display Omitted - Highlights: • π-conjugated semirigid tricarboxylate ligands with naphthalene rings(H{sub 3}L) were rationally designed. • Four Zn/Cd coordination polymers based on H{sub 3}L have been successfully synthesized by solvothermal reaction. • Compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+} with high sensitivity in aqueous solutions.

  8. Radiolytic effect on the chemical state of iodine in aqueous solution

    International Nuclear Information System (INIS)

    Shiraishi, H.; Kimiya, T.; Ohmae, M.; Ishigure, K.

    1988-01-01

    The oxidation state of iodine dissolved in an aqueous solution is easily changed in the presence of radiation field. Hence, it is essential to take the radiolytic effect into account when one is to estimate chemical forms of iodine after being released into the containment under an LOCA condition. This paper summarizes results of γ-radiolysis experiments on aqueous solutions containing iodine species, which have been carried out to extend the previously reported study on the same system. Variation in iodine product distribution with time has been examined as before, utilizing a flow system under irradiation. Attention has been paid to the effect of oxygen, to that of an initial oxidation state of iodine, and to the influence of temperature. Some kinetic analysis on the system was also undertaken

  9. Bitopic Ligands and Metastable Binding Sites

    DEFF Research Database (Denmark)

    Fronik, Philipp; Gaiser, Birgit I; Sejer Pedersen, Daniel

    2017-01-01

    of orthosteric binding sites. Bitopic ligands have been employed to address the selectivity problem by combining (linking) an orthosteric ligand with an allosteric modulator, theoretically leading to high-affinity subtype selective ligands. However, it remains a challenge to identify suitable allosteric binding...... that have been reported to date, this type of bitopic ligands would be composed of two identical pharmacophores. Herein, we outline the concept of bitopic ligands, review metastable binding sites, and discuss their potential as a new source of allosteric binding sites....

  10. The interactions between lipase and pyridinium ligands investigated by electrochemical and spectrophotometric methods

    Directory of Open Access Journals (Sweden)

    Simona Patriche

    2016-04-01

    Full Text Available The interaction between pyridinium ligands derived from 4,4’-bipyridine (N,N’-bis(p-bromophenacyl-4,4’-bipyridinium dibromide – Lr and (N,N’-bis(p-bromophenacyl-1,2-bis (4-pyridyl ethane dibromide – Lm with lipase enzyme was evaluated. The stability of the pyridinium ligands, having an essential role in biological systems, in 0.1 M KNO3 as supporting electrolyte is influenced by the lipase concentration added. The pH and conductometry measurements in aqueous solution suggest a rapid ionic exchange process. The behavior of pyridinium ligands in the presence of lipase is investigated by cyclic voltammetry and UV/Vis spectroscopy, which indicated bindings and changes from the interaction between them. The voltammograms recorded on the glassy carbon electrode showed a more intense electronic transfer for the Lr interaction with lipase compared to Lm, which is due to the absence of mobile ethylene groups from Lr structure.

  11. Reactivity and effectiveness of traditional and novel ligands for multi-micronutrient fertilization in a calcareous soil.

    Science.gov (United States)

    López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J

    2015-01-01

    This study compares the effectiveness of multi-micronutrient formulations containing iron (Fe), manganese (Mn), and zinc (Zn) with traditional (EDTA, DTPA, HEEDTA, and EDDHAm) or novel chelates (o,p-EDDHA, S,S-EDDS, and IDHA) and natural complexing agents (gluconate and lignosulfonate). The stability and reactivity of the formulations were studied on batch experiments with calcareous soil and by speciation modeling. Formulations containing traditional ligands maintained higher Mn but lower Zn concentration in soil solution than the novel ligands. The gluconate and lignosulfonate maintained low concentrations of both Mn and Zn in soil solution. Selected formulations were applied into calcareous soil and their efficacy was evaluated in a pot experiment with soybean. The formulation containing DTPA led to the highest Zn concentration in plants, as well as the formulation containing S,S-EDDS in the short-term, which correlated with its biodegradability. The application of traditional or novel ligands in formulations did not result in sufficient plant Mn concentrations, which was related to the low Mn stability observed for all formulations under moderate oxidation conditions. The results highlight the need to consider the effect of metals and ligands interactions in multi-nutrient fertilization and the potential of S,S-EDDS to be used for Zn fertilization. Furthermore, it is necessary to explore new sources of Mn fertilization for calcareous soils that have greater stability and efficiency, or instead to use foliar fertilization.

  12. Reactivity and effectiveness of traditional and novel ligands for multi-micronutrient fertilization in a calcareous soil

    Science.gov (United States)

    López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J.

    2015-01-01

    This study compares the effectiveness of multi-micronutrient formulations containing iron (Fe), manganese (Mn), and zinc (Zn) with traditional (EDTA, DTPA, HEEDTA, and EDDHAm) or novel chelates (o,p-EDDHA, S,S-EDDS, and IDHA) and natural complexing agents (gluconate and lignosulfonate). The stability and reactivity of the formulations were studied on batch experiments with calcareous soil and by speciation modeling. Formulations containing traditional ligands maintained higher Mn but lower Zn concentration in soil solution than the novel ligands. The gluconate and lignosulfonate maintained low concentrations of both Mn and Zn in soil solution. Selected formulations were applied into calcareous soil and their efficacy was evaluated in a pot experiment with soybean. The formulation containing DTPA led to the highest Zn concentration in plants, as well as the formulation containing S,S-EDDS in the short-term, which correlated with its biodegradability. The application of traditional or novel ligands in formulations did not result in sufficient plant Mn concentrations, which was related to the low Mn stability observed for all formulations under moderate oxidation conditions. The results highlight the need to consider the effect of metals and ligands interactions in multi-nutrient fertilization and the potential of S,S-EDDS to be used for Zn fertilization. Furthermore, it is necessary to explore new sources of Mn fertilization for calcareous soils that have greater stability and efficiency, or instead to use foliar fertilization. PMID:26442065

  13. Multiple solutions of steady-state Poisson–Nernst–Planck equations with steric effects

    International Nuclear Information System (INIS)

    Lin, Tai-Chia; Eisenberg, Bob

    2015-01-01

    Experiments measuring currents through single protein channels show unstable currents. Channels switch between ‘open’ or ‘closed’ states in a spontaneous stochastic process called gating. Currents are either (nearly) zero or at a definite level, characteristic of each type of protein, independent of time, once the channel is open. The steady state Poisson–Nernst–Planck equations with steric effects (PNP-steric equations) describe steady current through the open channel quite well, in a wide variety of conditions. Here we study the existence of multiple solutions of steady state PNP-steric equations to see if they themselves, without modification or augmentation, can describe two levels of current. We prove that there are two steady state solutions of PNP-steric equations for (a) three types of ion species (two types of cations and one type of anion) with a positive constant permanent charge, and (b) four types of ion species (two types of cations and their counter-ions) with a constant permanent charge but no sign condition. The excess currents (due to steric effects) associated with these two steady state solutions are derived and expressed as two distinct formulas. Our results indicate that PNP-steric equations may become a useful model to study spontaneous gating of ion channels. Spontaneous gating is thought to involve small structural changes in the channel protein that perhaps produce large changes in the profiles of free energy that determine ion flow. Gating is known to be modulated by external structures. Both can be included in future extensions of our present analysis. (paper)

  14. Investigation of hyperfine interactions in hafnium compounds with F{sup 1-}, OH{sup 1-}, and EDTA ligands by perturbed {gamma}-{gamma} angular correlation

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Antonio A.; Silva, Andreia dos S.; Lapolli, Andre L.; Carbonari, Artur W.; Saxena, Rajendra N., E-mail: alapolli@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    In this study the hyperfine parameters, including the dynamical nature, Perturbed Angular Correlation (PAC) spectroscopy was used to measure the hyperfine parameters in molecules of ligand compounds in solutions. The measurements were carried out at 295 K and 77 K using {sup 181}Hf {yields}{sup 181}Ta, as probe nuclei. Samples were prepared by adding a small volume of radioactive solution containing the probe nuclei in aqueous solution, buffer solution and ethylenediaminetetraacetic acid (EDTA) used as a ligand with pH between 4 and 5 which correspond to the pH of the saturated EDTA solution and in buffer solution with pH between 9 and 10. The results made possible to understand the impact of each method for PAC measurements. Finally a comparative analysis for the several methods of inserting of the probe nuclei in the sample was made, considering chemical and nuclear aspects. The lack of measurements in this kind of samples justifies the importance of the obtained results. (author)

  15. State of bivalent cobalt in solution at microconcentration

    International Nuclear Information System (INIS)

    Vdovina, E.D.; Davydov, Yu.P.; Radyuk, R.I.

    1983-01-01

    The first stage of investigations of the state of microamounts of radioactive Co(2) in the 1.0-11.0 pH range by adsorption methods on glass and silica gel, centrifuging, Co (2) migration in the electric field, is performed. 57 Co is used in experiments. It is shown that in the investigated pH range the possibility of formation of pseudocallories is small, Co (2) is in solution in the form of dissolved forms with the positive charge

  16. Photo-Induced Spin-State Conversion in Solvated Transition Metal Complexes Probed via Time-Resolved Soft X-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Huse, Nils; Kim, Tae Kyu; Jamula, Lindsey; McCusker, James K.; de Groot, Frank M. F.; Schoenlein, Robert W.

    2010-04-30

    Solution-phase photoinduced low-spin to high-spin conversion in the FeII polypyridyl complex [Fe(tren(py)3)]2+ (where tren(py)3 is tris(2-pyridylmethyliminoethyl)amine) has been studied via picosecond soft X-ray spectroscopy. Following 1A1 --> 1MLCT (metal-to-ligand charge transfer) excitation at 560 nm, changes in the iron L2- and L3-edges were observed concomitant with formation of the transient high-spin 5T2 state. Charge-transfer multiplet calculations coupled with data acquired on low-spin and high-spin model complexes revealed a reduction in ligand field splitting of 1 eV in the high-spin state relative to the singlet ground state. A significant reduction in orbital overlap between the central Fe-3d and the ligand N-2p orbitals was directly observed, consistent with the expected ca. 0.2 Angstrom increase in Fe-N bond length upon formation of the high-spin state. The overall occupancy of the Fe-3d orbitals remains constant upon spin crossover, suggesting that the reduction in sigma-donation is compensated by significant attenuation of pi-back-bonding in the metal-ligand interactions. These results demonstrate the feasibility and unique potential of time-resolved soft X-ray absorption spectroscopy to study ultrafast reactions in the liquid phase by directly probing the valence orbitals of first-row metals as well as lighter elements during the course of photochemical transformations.

  17. NMR determination of chemically related metals in solution as a new method of inorganic analysis

    International Nuclear Information System (INIS)

    Fedorov, L.A.

    1989-01-01

    An NMR spectroscopic method for the determination of chemically related metals in solution is suggested. The metals are determined in complexes with specially selected polydentate ligands. Structural requirements to ligands, analytical properties and general limits of the application of the method are discussed. (orig.)

  18. istar: a web platform for large-scale protein-ligand docking.

    Directory of Open Access Journals (Sweden)

    Hongjian Li

    Full Text Available Protein-ligand docking is a key computational method in the design of starting points for the drug discovery process. We are motivated by the desire to automate large-scale docking using our popular docking engine idock and thus have developed a publicly-accessible web platform called istar. Without tedious software installation, users can submit jobs using our website. Our istar website supports 1 filtering ligands by desired molecular properties and previewing the number of ligands to dock, 2 monitoring job progress in real time, and 3 visualizing ligand conformations and outputting free energy and ligand efficiency predicted by idock, binding affinity predicted by RF-Score, putative hydrogen bonds, and supplier information for easy purchase, three useful features commonly lacked on other online docking platforms like DOCK Blaster or iScreen. We have collected 17,224,424 ligands from the All Clean subset of the ZINC database, and revamped our docking engine idock to version 2.0, further improving docking speed and accuracy, and integrating RF-Score as an alternative rescoring function. To compare idock 2.0 with the state-of-the-art AutoDock Vina 1.1.2, we have carried out a rescoring benchmark and a redocking benchmark on the 2,897 and 343 protein-ligand complexes of PDBbind v2012 refined set and CSAR NRC HiQ Set 24Sept2010 respectively, and an execution time benchmark on 12 diverse proteins and 3,000 ligands of different molecular weight. Results show that, under various scenarios, idock achieves comparable success rates while outperforming AutoDock Vina in terms of docking speed by at least 8.69 times and at most 37.51 times. When evaluated on the PDBbind v2012 core set, our istar platform combining with RF-Score manages to reproduce Pearson's correlation coefficient and Spearman's correlation coefficient of as high as 0.855 and 0.859 respectively between the experimental binding affinity and the predicted binding affinity of the docked

  19. istar: a web platform for large-scale protein-ligand docking.

    Science.gov (United States)

    Li, Hongjian; Leung, Kwong-Sak; Ballester, Pedro J; Wong, Man-Hon

    2014-01-01

    Protein-ligand docking is a key computational method in the design of starting points for the drug discovery process. We are motivated by the desire to automate large-scale docking using our popular docking engine idock and thus have developed a publicly-accessible web platform called istar. Without tedious software installation, users can submit jobs using our website. Our istar website supports 1) filtering ligands by desired molecular properties and previewing the number of ligands to dock, 2) monitoring job progress in real time, and 3) visualizing ligand conformations and outputting free energy and ligand efficiency predicted by idock, binding affinity predicted by RF-Score, putative hydrogen bonds, and supplier information for easy purchase, three useful features commonly lacked on other online docking platforms like DOCK Blaster or iScreen. We have collected 17,224,424 ligands from the All Clean subset of the ZINC database, and revamped our docking engine idock to version 2.0, further improving docking speed and accuracy, and integrating RF-Score as an alternative rescoring function. To compare idock 2.0 with the state-of-the-art AutoDock Vina 1.1.2, we have carried out a rescoring benchmark and a redocking benchmark on the 2,897 and 343 protein-ligand complexes of PDBbind v2012 refined set and CSAR NRC HiQ Set 24Sept2010 respectively, and an execution time benchmark on 12 diverse proteins and 3,000 ligands of different molecular weight. Results show that, under various scenarios, idock achieves comparable success rates while outperforming AutoDock Vina in terms of docking speed by at least 8.69 times and at most 37.51 times. When evaluated on the PDBbind v2012 core set, our istar platform combining with RF-Score manages to reproduce Pearson's correlation coefficient and Spearman's correlation coefficient of as high as 0.855 and 0.859 respectively between the experimental binding affinity and the predicted binding affinity of the docked conformation. istar

  20. Ground state solutions for diffusion system with superlinear nonlinearity

    Directory of Open Access Journals (Sweden)

    Zhiming Luo

    2015-03-01

    where $z=(u,v\\colon\\mathbb{R}\\times\\mathbb{R}^{N}\\rightarrow\\mathbb{R}^{2}$, $b\\in C^{1}(\\mathbb{R}\\times\\mathbb{R}^{N}, \\mathbb{R}^{N}$ and $V(x\\in C(\\mathbb{R}^{N},\\mathbb{R}$. Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.

  1. Some studies on the formation of excited states of aromatic solutes in hydrocarbons and other solvents

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, G A [Leeds Univ. (UK). Cookridge High Energy Radiation Research Centre

    1976-01-01

    This paper reviews the work of the author and his co-workers on the radiation-induced formation of excited states of aromatic compounds in solution. The experimental methods used are surveyed and in particular the method of measuring the yields of triplet and singlet excited states of the solute are described. The problems discussed are: (1) the effect of solvent on the yields of excited states, (2) formation of excited states in cyclohexane and other alicyclic hydrocarbons, (3) the formation of excited states in benzene and (4) the identification of T-T absorption spectra.

  2. Hydroxyquinoline-calix[4]arene-conjugates as ligands for lanthanide complexes. Preparation, characterization, and extraction properties

    Energy Technology Data Exchange (ETDEWEB)

    Mansel, Alexander [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactive Transport; Jaeschke, A.; Kischel, M.; Kersting, B. [Leipzig Univ. (Germany). Inst. fuer Anorganische Chemie

    2017-06-01

    The synthesis of a calixarene-based N{sub 4}O{sub 4} donor ligand H{sub 6}L, in which two 8-hydroxyquinoline-2-carbaldehyde units are appended via hydrazone-carbonylmethoxy linkages in a 1,3-arrangement to the lower rim of tert-butyl-calix[4]arene and its coordination properties towards Eu{sup 3+} are described. Moreover, the ligand H{sub 6}L was found to extract Eu{sup 3+} and Tb{sup 3+} at pH 7-8 from aqueous solution, as established by radiotracing using the radionuclides {sup 160}Tb and {sup 152} Eu.

  3. A finite state projection algorithm for the stationary solution of the chemical master equation

    Science.gov (United States)

    Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa

    2017-10-01

    The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 106 states can be efficiently solved.

  4. A finite state projection algorithm for the stationary solution of the chemical master equation.

    Science.gov (United States)

    Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa

    2017-10-21

    The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 10 6 states can be efficiently solved.

  5. Dynamical pairwise entanglement and two-point correlations in the three-ligand spin-star structure

    Science.gov (United States)

    Motamedifar, M.

    2017-10-01

    We consider the three-ligand spin-star structure through homogeneous Heisenberg interactions (XXX-3LSSS) in the framework of dynamical pairwise entanglement. It is shown that the time evolution of the central qubit ;one-particle; state (COPS) brings about the generation of quantum W states at periodical time instants. On the contrary, W states cannot be generated from the time evolution of a ligand ;one-particle; state (LOPS). We also investigate the dynamical behavior of two-point quantum correlations as well as the expectation values of the different spin-components for each element in the XXX-3LSSS. It is found that when a W state is generated, the same value of the concurrence between any two arbitrary qubits arises from the xx and yy two-point quantum correlations. On the opposite, zz quantum correlation between any two qubits vanishes at these time instants.

  6. Oil-soluble and water-soluble BTPhens and their europium complexes in octanol/water solutions: interface crossing studied by MD and PMF simulations.

    Science.gov (United States)

    Benay, G; Wipff, G

    2013-01-31

    Bistriazinyl-phenantroline "BTPhen" ligands L display the remarkable feature to complex trivalent lanthanide and actinide ions, with a marked selectivity for the latter. We report on molecular dynamics studies of tetrasubstituted X(4)BTPhens: L(4+) (X = (+)Et(3)NCH(2)-), L(4-) (X = (-)SO(3)Ph-), and L(0) (X = CyMe(4)) and their complexes with Eu(III) in binary octanol/water solutions. Changes in free energies upon interface crossing are also calculated for typical solutes by potential of mean force PMF simulations. The ligands and their complexes partition, as expected, to either the aqueous or the oil phase, depending on the "solubilizing" group X. Furthermore, most of them are found to be surface active. The water-soluble L(4+) and L(4-) ligands and their (L)Eu(NO(3))(3) complexes adsorb at the aqueous side of the interface, more with L(4-) than with L(4+). The oil soluble ligand L(0) is not surface active in its endo-endo form but adsorbs on the oil side of the interface in its most polar endo-exo form, as well as in its protonated L(0)H(+) and complexed (L(0))Eu(NO(3))(3) states. Furthermore, comparing PMFs of the Eu(III) complexes with and without nitric acid shows that acidifying the aqueous phase has different effects, depending on the ligand charge. In particular, acid promotes the Eu(III) extraction by L(0) via the (L(0))(2)Eu(NO(3))(2+) complex, as observed experimentally. Overall, the results point to the importance of interfacial adsorption for the liquid-liquid extraction of trivalent lanthanide and actinide cations by BTPhens and analogues.

  7. Consensus of sample-balanced classifiers for identifying ligand-binding residue by co-evolutionary physicochemical characteristics of amino acids

    KAUST Repository

    Chen, Peng

    2013-01-01

    Protein-ligand binding is an important mechanism for some proteins to perform their functions, and those binding sites are the residues of proteins that physically bind to ligands. So far, the state-of-the-art methods search for similar, known

  8. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  9. Spectrophotometric method for determination of bifunctional macrocyclic ligands in macrocyclic ligand-protein conjugates

    International Nuclear Information System (INIS)

    Dadachova, E.; Chappell, L.L.; Brechbiel, M.W.

    1999-01-01

    A simple spectrophotometric assay for determination of bifunctional polyazacarboxylate-macrocyclic ligands of different sizes that are conjugated to proteins has been developed for: 12-membered macrocycle DOTA (2-[4-nitrobenzyl]-1, 4, 7, 10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) and analogs, the 15-membered PEPA macrocycle (2-[4-nitrobenzyl]-1,4,7,10,13-pentaazacyclopentadecane-N,N',N'',N''',N'''' -pentaacetic acid), and the large 18-membered macrocycle HEHA (1,4,7,10,13,16-hexaazacyclooctadecane-N,N',N'',N''',N''''-hexaacetic acid). The method is based on titration of the blue-colored 1:1 Pb(II)-Arsenazo III (AAIII) complex with the polyazacarboxylate macrocyclic ligand in the concentration range of 0-2.5 μM, wherein color change occurring upon transchelation of the Pb(II) from the AAIII to the polyazamacrocyclic ligand is monitored at 656 nm. The assay is performed at ambient temperature within 20 min without any interfering interaction between the protein and Pb(II)-AA(III) complex. Thus, this method also provides a ligand-to-protein ratio (L/P ratio) that reflects the effective number of ligands per protein molecule available to radiolabeling. The method is not suitable for 14-membered TETA macrocycle (2-[4-nitrobenzyl]-1, 4, 8, 11-tetraazacyclotetradecane N,N',N'',N'''-tetraacetic acid) because of low stability constant of Pb(II)-TETA complex. The method is rapid, simple and may be customized for other polyazacarboxylate macrocyclic ligands

  10. High-resolution solution-state NMR of unfractionated plant cell walls

    Science.gov (United States)

    John Ralph; Fachuang Lu; Hoon Kim; Dino Ress; Daniel J. Yelle; Kenneth E. Hammel; Sally A. Ralph; Bernadette Nanayakkara; Armin Wagner; Takuya Akiyama; Paul F. Schatz; Shawn D. Mansfield; Noritsugu Terashima; Wout Boerjan; Bjorn Sundberg; Mattias Hedenstrom

    2009-01-01

    Detailed structural studies on the plant cell wall have traditionally been difficult. NMR is one of the preeminent structural tools, but obtaining high-resolution solution-state spectra has typically required fractionation and isolation of components of interest. With recent methods for dissolution of, admittedly, finely divided plant cell wall material, the wall can...

  11. Rosetta Ligand docking with flexible XML protocols.

    Science.gov (United States)

    Lemmon, Gordon; Meiler, Jens

    2012-01-01

    RosettaLigand is premiere software for predicting how a protein and a small molecule interact. Benchmark studies demonstrate that 70% of the top scoring RosettaLigand predicted interfaces are within 2Å RMSD from the crystal structure [1]. The latest release of Rosetta ligand software includes many new features, such as (1) docking of multiple ligands simultaneously, (2) representing ligands as fragments for greater flexibility, (3) redesign of the interface during docking, and (4) an XML script based interface that gives the user full control of the ligand docking protocol.

  12. Spectroscopic investigation of complexation of Cm(III) und Eu(III) with partitioning-relevant N-donor ligands

    International Nuclear Information System (INIS)

    Bremer, Antje

    2014-01-01

    The separation of trivalent actinides and lanthanides is an essential part of the development of improved nuclear fuel cycles. Liquid-liquid extraction is an applicable technique to achieve this separation. Due to the chemical similarity and the almost identical ionic radii of trivalent actinides and lanthanides this separation is, however, only feasible with highly selective extracting agents. It has been proven that molecules with soft sulphur or nitrogen donor atoms have a higher affinity for trivalent actinides. In the present work, the complexation of Cm(III) and Eu(III) with N-donor ligands relevant for partitioning has been studied by time-resolved laser fluorescence spectroscopy (TRLFS). This work aims at a better understanding of the molecular reason of the selectivity of these ligands. In this context, enormous effort has been and is still put into detailed investigations on BTP and BTBP ligands, which are the most successful N-donor ligands for the selective extraction of trivalent actinides, to date. Additionally, the complexation and extraction behavior of molecules which are structurally related to these ligands is studied. The ligand C5-BPP (2,6-bis(5-(2,2-dimethylpropyl)-1H-pyrazol-3-yl)pyridine) where the triazine rings of the aromatic backbone of the BTP ligands have been replaced by pyrazole rings is one of these molecules. Laser fluorescence spectroscopic investigation of the complexation of Cm(III) with this ligand revealed stepwise formation of three (Cm(C5-BPP) n ) 3+ complexes (n = 1 - 3). The stability constant of the 1:3 complex was determined (log β 3 = 14.8 ± 0.4). Extraction experiments have shown that, in contrast to BTP and BTBP ligands, C5-BPP needs an additional lipophilic anion source such as a 2-bromocarboxylic acid to selectively extract trivalent actinides from nitric acid solutions. The comparison of the stability constant of the (Cm(C5-BPP) 3 ) 3+ complex with the stability constant of the (Cm(nPr-BTP) 3 ) 3+ complex

  13. Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution.

    Science.gov (United States)

    Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2016-01-01

    Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K  Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand).

  14. Speciation of Zinc Mixed Ligand Complexes in Salt Water Systems ...

    African Journals Online (AJOL)

    Speciation of Zinc Mixed Ligand Complexes in Salt Water Systems. ... method has been used to study heavy metal interaction in model lake water in KNO3 ... is of no consequential effect because in its normal state, the [OH-] of the lake water is ...

  15. Solution and solid-state electrochemiluminescence of a fac-tris(2-phenylpyridyl)iridium(III)-cored dendrimer

    International Nuclear Information System (INIS)

    Reid, Ellen F.; Burn, Paul L.; Lo, Shih-Chun; Hogan, Conor F.

    2013-01-01

    The solution phase and solid-state electrochemistry and electrochemiluminescence (ECL) of an iridium(III) complex-cored dendrimeric analogue of Ir(ppy) 3 , (G1pIr), are reported. The solid-state electrochemistry and solid-state ECL of Ir(ppy) 3 itself is also described for the first time. In solution phase, the dendrimer displays greater immunity to oxygen quenching in photoluminescence (PL) experiments and exhibits greater ECL efficiency compared to the parent Ir(ppy) 3 core under the same conditions, despite a lower photoluminescence quantum yield. It is proposed that the dendrons which effectively shield the core from PL quenching interactions in the solid-state counteract the effects of parasitic side-reactions during the solution ECL experiments. Electroactive and ECL-active solid-state films of both Ir(ppy) 3 and G1pIr were produced by drop-coating on boron doped diamond electrodes. Films of Ir(ppy) 3 produced stable co-reactant ECL. However, films of G1pIr produced lower than expected ECL intensity. This was attributed to poorer charge transport and the lipophilicity of the film limiting the rate of interaction with the co-reactant required for formation of the excited state

  16. Dissipative dark matter halos: The steady state solution

    Science.gov (United States)

    Foot, R.

    2018-02-01

    Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.

  17. Ligand-receptor Interactions by NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  18. Evaluation of several novel diamide based ligands for selective extraction of tetravalent plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Sivaramakrishna, Mallampalli; Nayak, Shashikant K. [Heavy Water Board, V.S. Bhavan, Mumbai (India); Raut, Dhaval R.; Mohapatra, Prasanta K. [Bhabha Atomic Research Center, Mumbai (India). Radiochemistry Division; Nayak, Sandip K. [Bhabha Atomic Research Center, Mumbai (India). Bioorganic Division

    2017-06-01

    The present paper describes the selective extraction of tetravalent plutonium employing several diamide ligands containing aromatic spacer groups. The ligands containing two amide functional groups attached to a 2,4,6-tri-phenyl pyridine moiety with different substituents viz.; L{sub I} (iso-butyl), L{sub II}(n-butyl), L{sub III}(n-octyl), L{sub IV} (2-ethylhexyl) at the amidic nitrogen atom were evaluated for the extraction of Pu(IV) using their nitrobenzene solutions. The distribution ratio values of Pu(IV) with the diamide ligands followed the order: L{sub II}>L{sub I}>L{sub III}>L{sub IV} and were significantly higher than those of metal ions such as Cs(I), Sr(II), Am(III) and Eu(III). The distribution ratio values of U(VI) were about 2-3 orders magnitude lower than those of Pu(IV). The extraction and stripping kinetics were found to be moderately fast and it took less than 30 min (less than 5 min for L{sub I} and L{sub IV}) to obtain equilibrium D values. The extraction was found to be increasing with the aqueous phase nitric acid concentration conforming to a solvation mechanism of extraction. The extracted species contained two ligand molecules for L{sub I} and L{sub II} while monosolvates were observed for the other two extractants. The ligands showed good radiation stability up to an absorbed dose of 630 kGy.

  19. Studies of the Tc oxidation states in humic acid solutions

    International Nuclear Information System (INIS)

    Wang Bo; Liu Dejun; Yao Jun

    2010-01-01

    The oxidation state is an important aspect of the speciation of Tc in groundwater that contained organic substances due to it control the precipitation, complexation, sorption and colloid formation behavior of the Tc under HWL geological disposal conditions. In present work, the oxidation states of Tc were investigated using the LaCl 3 coagulation method and solution extraction method in aqueous solutions in which the humic acid concentration range is from 0 to 20 mg L -1 and the Tc (Ⅶ) concentration range is about 10 -8 mol l -1 . The radiocounting of 99 Tc was determined using liquid scintillation spectrometry. The humic acid will influence the radiocounting ratio of 99 Tc apparently, however, the quenching effect can be restrained once keep the volume of the cocktail to about twenty times of the sample volume. The LaCl 3 coagulation methods were carried out for the investigation of Tc oxidation states in humic acid aqueous systems at about pH 8. The tetraphenylarsonium chloride (IPA)-chloroform extraction method was used also simultaneously to investigation the concentrations of Tc (Ⅳ) and Tc (Ⅶ) for the availability of the LaCl 3 precipitation method, and the experimental results demonstrate that tetravalent technetium and pertechnetate concentrations are well agreement with the LaCl 3 precipitation method. These two experimental results demonstrated that Tc (Ⅶ) is very stable in the Tc (Ⅶ)-humic acid system during a 350 days experimental period, and the Tc (Ⅳ) concentrations are very lower, that is indicate that there didn't oxidizing reactions between the Fluka humic acid and Tc (Ⅶ) in aqueous solutions under anaerobic conditions. That is means the presence of humic acids even in anaerobic groundwater is disadvantage for the retardance of radionuclides. (authors)

  20. Four Thermochromic o-Hydroxy Schiff Bases of α-Aminodiphenylmethane: Solution and Solid State Study

    Directory of Open Access Journals (Sweden)

    Marija Zbačnik

    2017-01-01

    Full Text Available More than a hundred years after the first studies of the photo- and thermochromism of o-hydroxy Schiff bases (imines, it is still an intriguing topic that fascinates several research groups around the world. The reasons for such behavior are still under investigation, and this work is a part of it. We report the solution-based and mechanochemical synthesis of four o-hydroxy imines derived from α-aminodiphenylmethane. The thermochromic properties were studied for the single crystal and polycrystalline samples of the imines. The supramolecular impact on the keto-enol tautomerism in the solid state was studied using SCXRD and NMR, while NMR spectroscopy was used for the solution state. All four imines are thermochromic, although the color changes of the single crystals are not as strong as of the polycrystalline samples. One of the imines shows negative thermochromism, and that one is in keto-amine tautomeric form, both in the solid state as in solution.

  1. Analysis of protein stability and ligand interactions by thermal shift assay.

    Science.gov (United States)

    Huynh, Kathy; Partch, Carrie L

    2015-02-02

    Purification of recombinant proteins for biochemical assays and structural studies is time-consuming and presents inherent difficulties that depend on the optimization of protein stability. The use of dyes to monitor thermal denaturation of proteins with sensitive fluorescence detection enables rapid and inexpensive determination of protein stability using real-time PCR instruments. By screening a wide range of solution conditions and additives in a 96-well format, the thermal shift assay easily identifies conditions that significantly enhance the stability of recombinant proteins. The same approach can be used as an initial low-cost screen to discover new protein-ligand interactions by capitalizing on increases in protein stability that typically occur upon ligand binding. This unit presents a methodological workflow for small-scale, high-throughput thermal denaturation of recombinant proteins in the presence of SYPRO Orange dye. Copyright © 2015 John Wiley & Sons, Inc.

  2. A Ferrocene-Based Catecholamide Ligand: the Consequences of Ligand Swivel for Directed Supramolecular Self-Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Mugridge, Jeffrey; Fiedler, Dorothea; Raymond, Kenneth

    2010-02-04

    A ferrocene-based biscatecholamide ligand was prepared and investigated for the formation of metal-ligand supramolecular assemblies with different metals. Reaction with Ge(IV) resulted in the formation of a variety of Ge{sub n}L{sub m} coordination complexes, including [Ge{sub 2}L{sub 3}]{sup 4-} and [Ge{sub 2}L{sub 2}({mu}-OMe){sub 2}]{sup 2-}. The ligand's ability to swivel about the ferrocenyl linker and adopt different conformations accounts for formation of many different Ge{sub n}L{sub m} species. This study demonstrates why conformational ligand rigidity is essential in the rational design and directed self-assembly of supramolecular complexes.

  3. Metal complexes with 1,5- and 1,8-dihydroxy-9,10-anthraquinones: electronic absorption spectra and structure of ligands

    International Nuclear Information System (INIS)

    Fajn, V.Ya.; Zajtsev, B.E.; Ryabov, M.A.

    2004-01-01

    By spectrophotometric, quantum-chemical, and correlation methods it is determined that in complexes of metals (Nd, Pr, Sm, Th, UO 2 2+ , V) with 1,5-dihydroxy-9,10-anthraquinone ligand could be in 7 excited states differing not only by ionization degree but primary contribution of tautomeric 9,10-, 1,10-, and 1,5-anthraquinoid structures. On all known complexes with 1,8-dihydroxy-9,10-anthraquinone containing once ionized ligand the last has 1,10-anthraquinoid structure; for complexes containing twofold ionized ligand 9,10-anthraquinoid structure of ligand is the most characteristic. Known complexes are classified in accordance with structure of ligands [ru

  4. Macrocyclic G-quadruplex ligands

    DEFF Research Database (Denmark)

    Nielsen, M C; Ulven, Trond

    2010-01-01

    are macrocyclic structures which have been modeled after the natural product telomestatin or from porphyrin-based ligands discovered in the late 1990s. These two structural classes of G-quadruplex ligands are reviewed here with special attention to selectivity and structure-activity relationships, and with focus...

  5. Condensed, solution and gas phase behaviour of mono- and dinuclear 2,6-diacetylpyridine (dap) hydrazone copper complexes probed by X-ray, mass spectrometry and theoretical calculations.

    Science.gov (United States)

    Neto, Brenno A D; Viana, Barbara F L; Rodrigues, Thyago S; Lalli, Priscila M; Eberlin, Marcos N; da Silva, Wender A; de Oliveira, Heibbe C B; Gatto, Claudia C

    2013-08-28

    We describe the synthesis of novel mononuclear and dinuclear copper complexes and an investigation of their behaviour in solution using mass spectrometry (ESI-MS and ESI-MS/MS) and in the solid state using X-ray crystallography. The complexes were synthesized from two widely used diacetylpryridine (dap) ligands, i.e. 2,6-diacetylpyridinebis(benzoic acid hydrazone) and 2,6-diacetylpyridinebis(2-aminobenzoic acid hydrazone). Theoretical calculations (DFT) were used to predict the complex geometries of these new structures, their equilibrium in solution and energies associated with the transformations.

  6. Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands

    International Nuclear Information System (INIS)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi; Yu, Lei; Xie, Yi-Xin; Han, Lei

    2015-01-01

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H_2ndc) or 4,4′-(hydroxymethylene)dibenzoic acid (H_2hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd_2(2,6-ndc)_2(bpp)(DMF)]·2DMF (1) and [Cd_3(hmdb)_3(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations in 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process. - Graphical abstract: Compound 1 exhibits a 3D self-penetrating 6-connected framework based on dinuclear cluster, and 2 displays an infinite 3D ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster. The flexible 1,3-bis(4-pyridyl)propane ligand displays different conformations in 1 and 2, which successfully controlled by size-matching mixed ligands during the self-assembly process.

  7. Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi; Yu, Lei; Xie, Yi-Xin; Han, Lei, E-mail: hanlei@nbu.edu.cn

    2015-12-15

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H{sub 2}ndc) or 4,4′-(hydroxymethylene)dibenzoic acid (H{sub 2}hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd{sub 2}(2,6-ndc){sub 2}(bpp)(DMF)]·2DMF (1) and [Cd{sub 3}(hmdb){sub 3}(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations in 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process. - Graphical abstract: Compound 1 exhibits a 3D self-penetrating 6-connected framework based on dinuclear cluster, and 2 displays an infinite 3D ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster. The flexible 1,3-bis(4-pyridyl)propane ligand displays different conformations in 1 and 2, which successfully controlled by size-matching mixed ligands during the self-assembly process.

  8. Gas-phase complexes formed between amidoxime ligands and vanadium or iron investigated using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mustapha, Adetayo M; Pasilis, Sofie P

    2016-08-15

    Amidoxime-functionalized sorbents can be used to extract uranium from seawater. Iron(III) and vanadium(V) may compete with uranium for adsorption sites. We use 2,6-dihydroxyiminopiperidine (DHIP) and N(1) ,N(5) -dihydroxypentanediimidamide (DHPD) to model amidoxime functional groups and characterize the vanadium(V) and iron(III) complexes with these ligands. We also examine the effect of iron(III) and vanadium(V) on uranyl(VI) complexation by DHIP and DHPD. The experiments were carried out in positive ion mode using a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. The effect on the mass spectra of changes in ligand, metal:ligand mole ratio, and pH was examined. Iron(III) formed a 1:2 metal:ligand complex with DHIP at all metal:ligand mole ratios and pH values investigated; it formed both 1:2 and 1:3 metal:ligand complexes with DHPD. Vanadium(V) formed 1:1 and 1:2 metal:ligand complexes with DHIP. A 1:2 metal:ligand complex was formed with DHPD at all vanadium(V):DHPD mole ratios investigated. Changes in solution pH did not affect the ions observed. The relative binding affinities of the metal ions towards DHIP followed the order iron(III) > vanadium(V) > uranyl(VI). This study presents a first look at the gas-phase vanadium(V)- and iron(III)-DHIP and -DHPD complexes using electrospray ionization mass spectrometry. These metals form stronger complexes with amidoxime ligands than uranyl(VI), and will affect uranyl(VI) adsorption to amidoxime-based sorbents. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. A General Ligand Design for Gold Catalysis allowing Ligand-Directed Anti Nucleophilic Attack of Alkynes

    Science.gov (United States)

    Wang, Yanzhao; Wang, Zhixun; Li, Yuxue; Wu, Gongde; Cao, Zheng; Zhang, Liming

    2014-01-01

    Most homogenous gold catalyses demand ≥0.5 mol % catalyst loading. Due to the high cost of gold, these reactions are unlikely to be applicable in medium or large scale applications. Here we disclose a novel ligand design based on the privileged biphenyl-2-phosphine framework that offers a potentially general approach to dramatically lowering catalyst loading. In this design, an amide group at the 3’ position of the ligand framework directs and promotes nucleophilic attack at the ligand gold complex-activated alkyne, which is unprecedented in homogeneous gold catalysis considering the spatial challenge of using ligand to reach antiapproaching nucleophile in a linear P-Au-alkyne centroid structure. With such a ligand, the gold(I) complex becomes highly efficient in catalyzing acid addition to alkynes, with a turnover number up to 99,000. Density functional theory calculations support the role of the amide moiety in directing the attack of carboxylic acid via hydrogen bonding. PMID:24704803

  10. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    International Nuclear Information System (INIS)

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long

    2014-01-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL 2 (H 2 O) 2 ] n ·2nH 2 O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H 2 adbc), terephthalic acid (H 2 tpa), thiophene-2,5-dicarboxylic acid (H 2 tdc) and 1,4-benzenedithioacetic acid (H 2 bdtc), four 3D structures [Co 2 L 2 (adbc)] n ·nH 2 O (2), [Co 2 L 2 (tpa)] n (3), [Co 2 L 2 (tdc)] n (4), [Co 2 L 2 (bdtc)(H 2 O)] n (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions

  11. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, John [Univ. of California, Berkeley, CA (United States)

    2015-01-21

    The uranyl cation (UO₂²⁺) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  12. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    International Nuclear Information System (INIS)

    Arnold, John

    2015-01-01

    The uranyl cation (UO 2 2+ ) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  13. Reversible optical sensor for the analysis of actinides in solution

    International Nuclear Information System (INIS)

    Lesage, B.; Picard, S.; Serein-Spirau, F.; Lereporte, J.P.

    2007-01-01

    In this work is presented a concept of reversible optical sensor for actinides. It is composed of a p doped conducing polymer support and of an anion complexing the actinides. The chosen conducing polymer is the thiophene-2,5-di-alkoxy-benzene whose solubility and conductivity are perfectly known. The actinides selective ligand is a lacunar poly-oxo-metallate such as P 2 W 17 O 61 10- or SiW 11 O 39 8- which are strong anionic complexing agents of actinides at the oxidation state (IV) even in a very acid medium. The sensor is prepared by spin coating of the composite mixture 'polymer + ligand' on a conducing glass electrode and then tested towards its optical and electrochemical answer in presence of uranium (IV). The absorption change due to the formation of cations complexes by poly-oxo-metallate reveals the presence of uranium (IV). After the measurement, the sensor is regenerated by anodic polarization of the support and oxidation of the uranium (IV) into uranium (VI) which weakly interacts with the poly-oxo-metallate and is then released in solution. (O.M.)

  14. Investigation into kinetics of redox interaction in the system Ce(4). beta. -diketonate-additional ligand

    Energy Technology Data Exchange (ETDEWEB)

    Anufrieva, S.I.; Snezhko, N.I.; Pechurova, N.I.; Martynenko, L.N.; Spitsyn, V.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1981-07-01

    The rate of reduction of ..beta..-diketonate complexes of Ce(4) to Ce(3) ..beta..-diketonates in benzene solution in the presence and in the absence of additional ligands is studied using spectrophotometry. The rate of reduction of Ce(4) ..beta..-diketonates increases in the series Ce(TTFA)/sub 4/ligands as to their effect on the rate of Ce (4) reduction can be arranged in the following order: trioctylphosphine oxide>triphenylphosphine oxide>tributyl phosphate.

  15. Ligand exchange chromatography of free amino acids and proteins on porous microparticulate zirconium oxide

    International Nuclear Information System (INIS)

    Blackwell, J.A.; Carr, P.W.

    1992-01-01

    The Lewis acid sites present on the underlying zirconium oxide particles are responsible for the unusual elution sequence for amino acids on copper loaded, phosphated zirconium oxide supports reported in an earlier study. To more thoroughly examine the effect of these strong Lewis acid sites in this paper. The authors have studied ligand exchange chromatography on copper loaded zirconium oxide particles. It is shown here that carboxylate functional groups on amino acid solutes strongly interact with surface Lewis acid sites. Addition of competing hard Lewis bases to the eluent attenuates these specific interactions. The result is a chromatographic system with high selectivity which is also suitable for ligand exchange chromatography of proteins

  16. Mechanistic pathways of recognition of a solvent-inaccessible cavity of protein by a ligand

    Science.gov (United States)

    Mondal, Jagannath; Pandit, Subhendu; Dandekar, Bhupendra; Vallurupalli, Pramodh

    One of the puzzling questions in the realm of protein-ligand recognition is how a solvent-inaccessible hydrophobic cavity of a protein gets recognized by a ligand. We address the topic by simulating, for the first time, the complete binding process of benzene from aqueous media to the well-known buried cavity of L99A T4 Lysozyme at an atomistic resolution. Our multiple unbiased microsecond-long trajectories, which were completely blind to the location of target binding site, are able to unequivocally identify the kinetic pathways along which benzene molecule meanders across the solvent and protein and ultimately spontaneously recognizes the deeply buried cavity of L99A T4 Lysozyme at an accurate precision. Our simulation, combined with analysis based on markov state model and free energy calculation, reveals that there are more than one distinct ligand binding pathways. Intriguingly, each of the identified pathways involves the transient opening of a channel of the protein prior to ligand binding. The work will also decipher rich mechanistic details on unbinding kinetics of the ligand as obtained from enhanced sampling techniques.

  17. Retinal Ligand Mobility Explains Internal Hydration and Reconciles Active Rhodopsin Structures

    Science.gov (United States)

    Leioatts, Nicholas; Mertz, Blake; Martínez-Mayorga, Karina; Romo, Tod D.; Pitman, Michael C.; Feller, Scott E.; Grossfield, Alan; Brown, Michael F.

    2014-01-01

    Rhodopsin, the mammalian dim-light receptor, is one of the best-characterized G-protein-coupled receptors, a pharmaceutically important class of membrane proteins that has garnered a great deal of attention because of the recent availability of structural information. Yet the mechanism of rhodopsin activation is not fully understood. Here, we use microsecond-scale all-atom molecular dynamics simulations, validated by solid-state 2H nuclear magnetic resonance spectroscopy, to understand the transition between the dark and metarhodopsin I (Meta I) states. Our analysis of these simulations reveals striking differences in ligand flexibility between the two states. Retinal is much more dynamic in Meta I, adopting an elongated conformation similar to that seen in the recent activelike crystal structures. Surprisingly, this elongation corresponds to both a dramatic influx of bulk water into the hydrophobic core of the protein and a concerted transition in the highly conserved Trp2656.48 residue. In addition, enhanced ligand flexibility upon light activation provides an explanation for the different retinal orientations observed in X-ray crystal structures of active rhodopsin. PMID:24328554

  18. Structural stability of Riemann solutions for strictly hyperbolic systems with three piecewise constant states

    Directory of Open Access Journals (Sweden)

    Xuefeng Wei

    2016-12-01

    Full Text Available This article concerns the wave interaction problem for a strictly hyperbolic system of conservation laws whose Riemann solutions involve delta shock waves. To cover all situations, the global solutions are constructed when the initial data are taken as three piecewise constant states. It is shown that the Riemann solutions are stable with respect to a specific small perturbation of the Riemann initial data. In addition, some interesting nonlinear phenomena are captured during the process of constructing the solutions, such as the generation and decomposition of delta shock waves.

  19. Analytical solution and simplified analysis of coupled parent-daughter steady-state transport with multirate mass transfer

    Science.gov (United States)

    R. Haggerty

    2013-01-01

    In this technical note, a steady-state analytical solution of concentrations of a parent solute reacting to a daughter solute, both of which are undergoing transport and multirate mass transfer, is presented. Although the governing equations are complicated, the resulting solution can be expressed in simple terms. A function of the ratio of concentrations, In (daughter...

  20. Engineering cofactor and ligand binding in an artificial neuroglobin

    Science.gov (United States)

    Zhang, Lei

    HP-7 is one artificial mutated oxygen transport protein, which operates via a mechanism akin to human neuroglobin and cytoglobin. This protein destabilizes one of two heme-ligating histidine residues by coupling histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Replacement of these glutamate residues with alanine, which has a neutral hydrophobicity, slows gaseous ligand binding 22-fold, increases the affinity of the distal histidine ligand by a factor of thirteen, and decreases the binding affinity of carbon monoxide, a nonreactive oxygen analogue, three-fold. Paradoxically, it also decreases heme binding affinity by a factor of three in the reduced state and six in the oxidized state. Application of a two-state binding model, in which an initial pentacoordinate binding event is followed by a protein conformational change to hexacoordinate, provides insight into the mechanism of this seemingly counterintuitive result: the initial pentacoordinate encounter complex is significantly destabilized by the loss of the glutamate side chains, and the increased affinity for the distal histidine only partially compensates. These results point to the importance of considering each oxidation and conformational state in the design of functional artificial proteins. We have also examined the effects these mutations have on function. The K d of the nonnreactive oxygen analogue carbon monoxide (CO) is only decreased three-fold, despite the large increase in distal histidine affinity engendered by the 22-fold decrease in the histidine ligand off-rate. This is a result of the four-fold increase in affinity for CO binding to the pentacoordinate state. Oxygen binds to HP7 with a Kd of 117 µM, while the mutant rapidly oxidizes when exposed to oxygen. EPR analysis of both ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation causes a

  1. Ultrafast excited-state deactivation of 9-methylhypoxanthine in aqueous solution: A QM/MM MD study.

    Science.gov (United States)

    Guo, Xugeng; Yuan, Huijuan; An, Beibei; Zhu, Qiuling; Zhang, Jinglai

    2016-04-21

    Photoinduced ultrafast non-adiabatic decay of 9-methylhypoxanthine (9MHPX) in aqueous solution was investigated by ab initio surface-hopping dynamics calculations using a combined quantum mechanical/molecular mechanical approach. The absorption spectra of 9MHPX in aqueous solution were also explored by the hybrid cluster-continuum model at the level of time-dependent density functional theory along with the polarizable continuum model (PCM). The static electronic-structure calculations indicate that the absorption spectra of 9MHPX simulated by TD-B3LYP/PCM and TD-X3LYP/PCM can reproduce very well the experimental findings, with the accuracy of about 0.20 eV. According to dynamics simulations, irradiation of 9MHPX populates the bright excited singlet S1 state, which may undergo an ultrafast non-radiative deactivation to the S0 state. The lifetime of the S1 state of 9MHPX in aqueous solution is predicted to be 115.6 fs, slightly longer than that in the gas phase (88.8 fs), suggesting that the solventwater has no significant influence on the excited-state lifetime of 9MHPX. Such a behavior in 9MHPX is distinctly different from its parent hypoxanthine keto-N9H tautomer in which the excited-state lifetime of the latter in watersolution was remarkably enhanced as compared to the gas phase. The significant difference of the photodynamical behaviors between 9MHPX and keto-N9H can be ascribed to their different hydrogen bond environment in aqueous solution.

  2. Histamine H3 receptor ligands in the group of (homo)piperazine derivatives.

    Science.gov (United States)

    Szczepanska, Katarzyna; Kuder, Kamil; Kiec-Kononowicz, Katarzyna

    2017-11-23

    Since its' discovery in 1983, followed by gene cloning in 1999, the histamine H3 receptor served as an outstanding target for drug discovery. The wide spectrum of possible therapeutic implications make H3R's one of the most researched areas in the vast GPCR ligands field - started from imidazole containing ligands, through various successful imidazole replacements, with recent introduction of Wakix® to pharmaceutical market. One of such replacements is piperazine moiety, a significant versatile scaffold in rational drug design for most of the GPCR ligands. Therefore, herein we review ligands built on piperazine, as well as its seven membered analogue azepine, that target H3R's and their potential therapeutical applications, in order to elucidate the current state of the art in this vast field. Due to a high level of structural divergence among compounds described herein, we decided to divide them into groups, where the key division element was the position of nitrogen basicity decreasing moieties in (homo)piperazine ring. Paying attention to a number of published structures and their overall high biological activity, one can realize that the (homo)piperazine scaffold bids a versatile template also for histamine H3 receptor ligands. With two possible substitution sites and therefore a number of possible structural combinations, piperazine derivatives stand as one of the largest group of high importance among H3R ligands. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Speciation of platinum(IV) in nitric acid solutions.

    Science.gov (United States)

    Vasilchenko, Danila; Tkachev, Sergey; Baidina, Iraida; Korenev, Sergey

    2013-09-16

    The speciation of platinum(IV) ions in nitric acid (6-15.8 M) solutions of H2[Pt(OH)6] has been studied by (195)Pt NMR and Raman spectroscopy. Series of aqua-hydroxo-nitrato complexes [Pt(L)(x)(NO3)(6-x)] (L = H2O or OH(-); x = 0, ..., 6) were found to exist in such solutions. The pair additivity model of chemical shifts and statistical theory were used to assign signals in NMR spectra to particular [Pt(L)(x)(NO3)(6-x)] species. Mononuclear hexanitratoplatinates(IV) have been isolated in solid state in substantial yield as pyridinium salt (PyH)2[Pt(NO3)6] and characterized by single-crystal X-ray diffraction. Aging of the platinum nitric acid solutions for more than 5-6 h results in oligomerization of [Pt(L)(x)(NO3)(6-x)] species and the formation of oligonuclear aqua-hydroxo-nitrato complexes with OH(-) and NO3(-) bridging ligands. Oligomeric platinum(IV) complexes with two and four nuclei were unambiguously detected by NMR on (195)Pt -enriched samples. Oligomers with even higher nuclearity were also detected. Dimeric anions [Pt2(μ-OH)2(NO3)8](2-) have been isolated as single crystals of tetramethylammonium salt and characterized by X-ray diffraction.

  4. The theory and experiment of solute migration caused by excited state absorptions

    International Nuclear Information System (INIS)

    Xiao, Jin; Ying-Lin, Song; Yu-Xiao, Wang; Min, Shui; Chang-Wei, Li; Jun-Yi, Yang; Xue-Ru, Zhang; Kun, Yang

    2010-01-01

    Nonsymmetrical transition from reverse-saturable absorption (RSA) to saturable absorption (SA) caused by excited state absorption induced mass transport of the CuPcTs dissolved in dimethyl sulfoxide is observed in an open aperture Z-scan experiment with a 21-ps laser pulse. The nonsymmetrical transition from RSA to SA is ascribed neither to saturation of excited state absorption nor to thermal induced mass transport, the so-called Soret effect. In our consideration, strong nonlinear absorption causes the rapid accumulation of the non-uniform kinetic energy of the solute molecules. The non-uniform kinetic field in turn causes the migration of the solute molecules. Additionally, an energy-gradient-induced mass transport theory is presented to interpret the experimental results, and the theoretical calculations are also taken to fit our experimental results. (classical areas of phenomenology)

  5. Specific ability of sulfur-ligands on removal of 203Hg-labeled organomercury from hemoglobin in comparison with nitrogen-ligands

    International Nuclear Information System (INIS)

    Hojo, Yasuji; Sugiura, Yukio; Tanaka, Hisashi

    1975-01-01

    Removal of 203 Hg-labeled organomercurials, bound to sulfhydryl groups of hemoglobin, by various chelating agents was investigated by the use of equilibrium dialysis. Organomercurials employed were chlormerodrin, methylmercury, ethylmercury and phenylmercury compounds. Higher and more specific effects of the sulfur-ligands, such as penicillamine and glutathione, on removal of organomercurial were found as compared with those of the nitrogen-ligands such as EDTA, glycine and polymethylenediamines. Linear correlation was observed between the degree of organomercury elimination from hemoglobin and the stability constant (log K 1 ) of 1:1 organomercury complex in both the sulfur- and nitrogen-ligand systems and at the same value of log K 1 , the elimination-effect of sulfur-ligands was extremely greater than that of the nitrogen-ligands. The relationship between the average percentage of removal and the Taft's polar substituent constant of organic moiety of the metal was also linear among the organomercury compounds other than chlormerodrin. The average removal percentage by sulfur-ligands increased in the order, ethylmercury>methylmercury>phenylmercury, while that of the nitrogen-ligands was not different among the organomercurials investigated. In addition, direct ligand-exchange reaction between hemoglobin-SH and the ligand coordinating-atom (S or N) against organomercurials rather than Ssub(N2) reaction via the ternary complex, hemoglobin-S-RHg-ligand, is postulated. (auth.)

  6. Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Jerome R.; Gordon, Zachary; Booth, Corwin H.; Carroll, Patrick J.; Walsh, Patrick J.; Schelter, Eric J.

    2014-06-24

    Cerium compounds have played vital roles in organic, inorganic, and materials chemistry due to their reversible redox chemistry between trivalent and tetravalent oxidation states. However, attempts to rationally access molecular cerium complexes in both oxidation states have been frustrated by unpredictable reactivity in cerium(III) oxidation chemistry. Such oxidation reactions are limited by steric saturation at the metal ion, which can result in high energy activation barriers for electron transfer. An alternative approach has been realized using a rare earth/alkali metal/1,1'-BINOLate (REMB) heterobimetallic framework, which uses redox-inactive metals within the secondary coordination sphere to control ligand reorganization. The rational syntheses of functionalized cerium(IV) products and a mechanistic examination of the role of ligand reorganization in cerium(III) oxidation are presented.

  7. Ab initio calculation of transport properties between PbSe quantum dots facets with iodide ligands

    Science.gov (United States)

    Wang, B.; Patterson, R.; Chen, W.; Zhang, Z.; Yang, J.; Huang, S.; Shrestha, S.; Conibeer, G.

    2018-01-01

    The transport properties between Lead Selenide (PbSe) quantum dots decorated with iodide ligands has been studied using density functional theory (DFT). Quantum conductance at each selected energy levels has been calculated along with total density of states and projected density of states. The DFT calculation is carried on using a grid-based planar augmented wave (GPAW) code incorporated with the linear combination of atomic orbital (LCAO) mode and Perdew Burke Ernzerhof (PBE) exchange-correlation functional. Three iodide ligand attached low index facets including (001), (011), (111) are investigated in this work. P-orbital of iodide ligand majorly contributes to density of state (DOS) at near top valence band resulting a significant quantum conductance, whereas DOS of Pb p-orbital shows minor influence. Various values of quantum conductance observed along different planes are possibly reasoned from a combined effect electrical field over topmost surface and total distance between adjacent facets. Ligands attached to (001) and (011) planes possess similar bond length whereas it is significantly shortened in (111) plane, whereas transport between (011) has an overall low value due to newly formed electric field. On the other hand, (111) plane with a net surface dipole perpendicular to surface layers leading to stronger electron coupling suggests an apparent increase of transport probability. Apart from previously mentioned, the maximum transport energy levels located several eVs (1 2 eVs) from the edge of valence band top.

  8. Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches.

    Science.gov (United States)

    Jain, Niyati; Zhao, Liang; Liu, John D; Xia, Tianbing

    2010-05-04

    High-resolution crystal structures and biophysical analyses of purine-sensing riboswitches have revealed that a network of hydrogen bonding interactions appear to be largey responsible for discrimination of cognate ligands against structurally related compounds. Here we report that by using femtosecond time-resolved fluorescence spectroscopy to capture the ultrafast decay dynamics of the 2-aminopurine base as the ligand, we have detected the presence of multiple conformations of the ligand within the binding pockets of one guanine-sensing and two adenine-sensing riboswitches. All three riboswitches have similar conformational distributions of the ligand-bound state. The known crystal structures represent the global minimum that accounts for 50-60% of the population, where there is no significant stacking interaction between the ligand and bases of the binding pocket, but the hydrogen-bonding cage collectively provides an electronic environment that promotes an ultrafast ( approximately 1 ps) charge transfer pathway. The ligand also samples multiple conformations in which it significantly stacks with either the adenine or the uracil bases of the A21-U75 and A52-U22 base pairs that form the ceiling and floor of the binding pocket, respectively, but favors the larger adenine bases. These alternative conformations with well-defined base stacking interactions are approximately 1-1.5 kcal/mol higher in DeltaG degrees than the global minimum and have distinct charge transfer dynamics within the picosecond to nanosecond time regime. Inside the pocket, the purine ligand undergoes dynamic motion on the low nanosecond time scale, sampling the multiple conformations based on time-resolved anisotropy decay dynamics. These results allowed a description of the energy landscape of the bound ligand with intricate details and demonstrated the elastic nature of the ligand recognition mode by the purine-sensing riboswitches, where there is a dynamic balance between hydrogen bonding

  9. Ligand cluster-based protein network and ePlatton, a multi-target ligand finder.

    Science.gov (United States)

    Du, Yu; Shi, Tieliu

    2016-01-01

    Small molecules are information carriers that make cells aware of external changes and couple internal metabolic and signalling pathway systems with each other. In some specific physiological status, natural or artificial molecules are used to interact with selective biological targets to activate or inhibit their functions to achieve expected biological and physiological output. Millions of years of evolution have optimized biological processes and pathways and now the endocrine and immune system cannot work properly without some key small molecules. In the past thousands of years, the human race has managed to find many medicines against diseases by trail-and-error experience. In the recent decades, with the deepening understanding of life and the progress of molecular biology, researchers spare no effort to design molecules targeting one or two key enzymes and receptors related to corresponding diseases. But recent studies in pharmacogenomics have shown that polypharmacology may be necessary for the effects of drugs, which challenge the paradigm, 'one drug, one target, one disease'. Nowadays, cheminformatics and structural biology can help us reasonably take advantage of the polypharmacology to design next-generation promiscuous drugs and drug combination therapies. 234,591 protein-ligand interactions were extracted from ChEMBL. By the 2D structure similarity, 13,769 ligand emerged from 156,151 distinct ligands which were recognized by 1477 proteins. Ligand cluster- and sequence-based protein networks (LCBN, SBN) were constructed, compared and analysed. For assisting compound designing, exploring polypharmacology and finding possible drug combination, we integrated the pathway, disease, drug adverse reaction and the relationship of targets and ligand clusters into the web platform, ePlatton, which is available at http://www.megabionet.org/eplatton. Although there were some disagreements between the LCBN and SBN, communities in both networks were largely the same

  10. Room-temperature sol–gel synthesis of organic ligand-capped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zobel, Mirijam, E-mail: mirijam.zobel@fau.de; Chatterjee, Haimantee [Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Physics, Lehrstuhl für Kristallographie und Strukturphysik (Germany); Matveeva, Galina; Kolb, Ute [Johannes Gutenberg-Universität, Institut für Physikalische Chemie (Germany); Neder, Reinhard B., E-mail: reinhard.neder@fau.de [Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Physics, Lehrstuhl für Kristallographie und Strukturphysik (Germany)

    2015-05-15

    Powders of zinc oxide nanoparticles with individual particle sizes below 10 nm in diameter are readily produced in base-induced sol–gel processes from ethanolic solutions of zinc acetate dihydrate. These particles are covered with acetate molecules and without further stabilization, they grow when stored as a powder. Here, we present three organic ligands, which reproducibly stabilize individual particle sizes <5 nm within the agglomerated powders for extended periods of time, up to months. Citric acid and 1,5-diphenyl-1,3,5-pentanetrione result in average diameters of 3 nm, whereas dimethyl-L-tartrate stabilizes 2.1 nm. X-ray diffraction and pair distribution function analysis were used to investigate the structural properties of the particles. TEM data confirm the individual particle size and crystallinity and show that the particles are agglomerated without structural coherence. Besides the introduction of these novel ligands for ZnO nanoparticles, we investigated, in particular, the influence of each synthesis step onto the final nanoparticle size in the powder. Previous studies often reported the employed synthesis parameters, but did not motivate the reasoning for their choice based on detailed experimental observations. Herein, we regard separately the steps of (i) the synthesis of the colloids, (ii) their precipitation, and (iii) the drying of the resulting gel to understand the role of the ligands therein. ZnO particles only covered with acetate grow to 5 nm during the drying process, whereas particles with any of the additional ligands retain their colloidal size of 2–3 nm. This clearly shows the efficient binding and effect of the presented ligands.

  11. Immobilisation of ligands by radio-derivatized polymers; Immobilisering av ligander med radioderiverte polymerer

    Energy Technology Data Exchange (ETDEWEB)

    Varga, J.M.; Fritsch, P.

    1995-01-30

    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs.

  12. Electronic states of graphene nanoribbons and analytical solutions

    Directory of Open Access Journals (Sweden)

    Katsunori Wakabayashi, Ken-ichi Sasaki, Takeshi Nakanishi and Toshiaki Enoki

    2010-01-01

    Full Text Available Graphene is a one-atom-thick layer of graphite, where low-energy electronic states are described by the massless Dirac fermion. The orientation of the graphene edge determines the energy spectrum of π-electrons. For example, zigzag edges possess localized edge states with energies close to the Fermi level. In this review, we investigate nanoscale effects on the physical properties of graphene nanoribbons and clarify the role of edge boundaries. We also provide analytical solutions for electronic dispersion and the corresponding wavefunction in graphene nanoribbons with their detailed derivation using wave mechanics based on the tight-binding model. The energy band structures of armchair nanoribbons can be obtained by making the transverse wavenumber discrete, in accordance with the edge boundary condition, as in the case of carbon nanotubes. However, zigzag nanoribbons are not analogous to carbon nanotubes, because in zigzag nanoribbons the transverse wavenumber depends not only on the ribbon width but also on the longitudinal wavenumber. The quantization rule of electronic conductance as well as the magnetic instability of edge states due to the electron–electron interaction are briefly discussed.

  13. Existence of periodic solutions for Rayleigh equations with state-dependent delay

    Directory of Open Access Journals (Sweden)

    Jehad O. Alzabut

    2012-05-01

    Full Text Available We establish sufficient conditions for the existence of periodic solutions for a Rayleigh-type equation with state-dependent delay. Our approach is based on the continuation theorem in degree theory, and some analysis techniques. An example illustrates that our approach to this problem is new.

  14. Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays.

    Science.gov (United States)

    Şaylı, Mustafa; Yılmaz, Enes

    2015-08-01

    In this paper, we consider existence and global exponential stability of periodic solution for state-dependent impulsive shunting inhibitory cellular neural networks with time-varying delays. By means of B-equivalence method, we reduce these state-dependent impulsive neural networks system to an equivalent fix time impulsive neural networks system. Further, by using Mawhin's continuation theorem of coincide degree theory and employing a suitable Lyapunov function some new sufficient conditions for existence and global exponential stability of periodic solution are obtained. Previous results are improved and extended. Finally, we give an illustrative example with numerical simulations to demonstrate the effectiveness of our theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Reactivity of halide and pseudohalide ligands

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    Reactivity of halide and pseudohalide (cyanide, azide, thiocyanate, cyanate) ligands tending to form bridge bonds in transition metal (Re, Mo, W) complexes is considered. Complexes where transition metal salts are ligands of other, complex-forming ion, are described. Transformation of innerspheric pseudohalide ligands is an important way of directed synthesis of these metal coordination compounds

  16. Water-soluble tetrapodal N, O ligands incorporating soft N-heterocycles for the selective complexation of Am(III) over Ln(III)

    Energy Technology Data Exchange (ETDEWEB)

    Heitzmann, M.; Gateau, Ch.; Delangle, P. [CEA Grenoble, Inac, Service de Chimie Inorganique et Biologique, UMR E 3 CEA UJF, FRE CNRS 3200, F-38054 Grenoble (France); Chareyre, L.; Miguirditchian, M.; Charbonnel, M.Ch. [CEA Marcoule, DEN, DRCP, SCPS, F-30207, Bagnols-sur-Ceze (France)

    2010-07-01

    A series of four water-soluble N, O-tetrapodal ligands derived from ethylenediamine, bearing hard acetate groups and soft N-heterocycles, either pyridine or pyrazine, was developed to study the impact of the softness of N-donors on the complexation properties with trivalent f ions. Two novel ligands of enhanced soft character, bearing three pyridines (L{sup 3py}) or three pyrazines (L{sup 3pz}), were synthesized and the related lanthanide complexes were studied in solution. The ligand containing three pyridyl-methyl moieties L{sup 3py} gives complexes with a coordination similar to EDTA, i.e. a hexa-dentate coordination mode as indicated by NMR and luminescence decays (q = 3) and stability constants in the range log {beta}{sub 110} = 6.99-9.3 (La-Lu). On the other hand, the softest molecule L{sup 3pz} forms much less stable complexes with log {beta}{sub 110} = 4.0-4.4 (La-Eu). The selective back-extraction of Am(III) from organic solutions containing 4f and 5f elements was tested with the four water-soluble complexing agents. The ligand L{sup 3pz} demonstrates poor stripping ability and selectivity. In contrast, the three ligands L{sup py}, L{sup pz} and L{sup 3py} give interesting back-extraction results with Eu/Am separation factors ranging from 36 to 46, which are significantly higher than with HEDTA. This exemplifies the role of the N-hetero-cycle softness in enhancing the separation between Am(III) and Eu(III). Interestingly, the pyrazine-based ligand, L{sup pz}, demonstrates the best stripping properties, with a distribution factor that approaches that of HEDTA in the same conditions (D{sub Am{approx}}0.3). This molecule is a good compromise between softness and hardness and forms complexes still stable at pH 3 due to its low basicity. (authors)

  17. On the accuracy of DFT methods in reproducing ligand substitution energies for transition metal complexes in solution: The role of dispersive interactions

    KAUST Repository

    Jacobsen, Heiko

    2011-12-23

    The performance of a series of density functionals when tested on the prediction of the phosphane substitution energy of transition metal complexes is evaluated. The complexes Fe-BDA and Ru-COD (BDA=benzylideneacetone, COD=cyclooctadiene) serve as reference systems, and calculated values are compared with the experimental values in THF as obtained from calorimetry. Results clearly indicate that functionals specifically developed to include dispersion interactions usually outperform other functionals when BDA or COD substitution is considered. However, when phosphanes of different sizes are compared, functionals including dispersion interactions, at odd with experimental evidence, predict that larger phosphanes bind more strongly than smaller phosphanes, while functionals not including dispersion interaction reproduce the experimental trends with reasonable accuracy. In case of the DFT-D functionals, inclusion of a cut-off distance on the dispersive term resolves this issue, and results in a rather robust behavior whatever ligand substitution reaction is considered. Ne quid nimis: Describing chemical reactions in solution by computational techniques developed for gas-phase scenarios might produce erroneous results (see histogram). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ab Initio Ligand Field Molecular Mechanics and the Nature of Metal-Ligand π-Bonding in Fe(II) 2,6-di(pyrazol-1-yl)pyridine Spin Crossover Complexes.

    Science.gov (United States)

    Deeth, Robert J; Halcrow, Malcolm A; Kershaw Cook, Laurence J; Raithby, Paul R

    2018-04-06

    A ligand field molecular mechanics (LFMM) force field has been constructed for the spin states of [Fe(bpp) 2 ] 2+ (bpp=2,6-di(pyrazol-1-yl)pyridine) and related complexes. A new charge scheme is employed which interpolates between partial charges for neutral bpp and protonated [H 3 bpp] 3+ to achieve a target metal charge. The LFMM angular overlap model (AOM) parameters are fitted to fully ab initio d orbital energies. However, several AOM parameter sets are possible. The ambiguity is resolved by calculating the Jahn-Teller distortion mode for high spin, which indicates that in [Fe(bpp) 2 ] 2+ pyridine is a π-acceptor and pyrazole a weak π-donor. The alternative fit, assumed previously, where both ligands act as π-donors leads to an inconsistent distortion. LFMM optimisations in the presence of [BF 4 ] - or [PF 6 ] - anions are in good agreement with experiment and the model also correctly predicts the spin state energetics for 3-pyrazolyl substituents where the interactions are mainly steric. However, for 4-pyridyl or 4-pyrazolyl substituents, LFMM only treats the electrostatic contribution which, for the pyridyl substituents, generates a fair correlation with the spin crossover transition temperatures, T 1/2 , but in the reverse sense to the dominant electronic effect. Thus, LFMM generates its smallest spin state energy difference for the substituent with the highest T 1/2 . One parameter set for all substituted bpp ligands is insufficient and further LFMM development will be required. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Metal-ligand cooperative activation of nitriles by a ruthenium complex with a de-aromatized PNN pincer ligand

    NARCIS (Netherlands)

    Eijsink, Linda E; Perdriau, Sébastien C P; de Vries, Johannes G; Otten, Edwin

    2016-01-01

    The pincer complex (PNN)RuH(CO), with a de-aromatized pyridine in the ligand backbone, is shown to react with nitriles in a metal-ligand cooperative manner. This leads to the formation of a series of complexes with new Ru-N(nitrile) and C(ligand)-C(nitrile) bonds. The initial nitrile cycloaddition

  20. Synthesis, characterization, crystal structure and HSA binding of two new N,O,O-donor Schiff-base ligands derived from dihydroxybenzaldehyde and tert-butylamine

    Science.gov (United States)

    Khosravi, Iman; Hosseini, Farnaz; Khorshidifard, Mahsa; Sahihi, Mehdi; Rudbari, Hadi Amiri

    2016-09-01

    Two new o-hydroxy Schiff-bases compounds, L1 and L2, were derived from the 1:1 M condensation of 2,3-dihydroxybenzaldehyde and 2,4-dihydroxybenzaldehyde with tert-butylamine and were characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopies. The crystal structure of L2 was also determined by single crystal X-ray analysis. The crystal structure of L2 showed that the compound exists as a zwitterionic form in the solid state, with the H atom of the phenol group being transferred to the imine N atom. It adopts an E configuration about the central Cdbnd N double bond. Furthermore, binding of these Schiff base ligands to Human Serum Albumin (HSA) was investigated by fluorescence quenching, absorption spectroscopy, molecular docking and molecular dynamics (MD) simulation methods. The fluorescence emission of HSA was quenched by ligands. Also, suitable models were used to analyze the UV-vis absorption spectroscopy data for titration of HSA solution by various amounts of Schiff bases. The spectroscopic studies revealed that these Schiff bases formed 1:1 complex with HSA. Energy transfer mechanism of quenching was discussed and the values of 3.35 and 1.57 nm as the mean distances between the bound ligands and the HSA were calculated for L1 and L2, respectively. Molecular docking results indicated that the main active binding site for these Schiff bases ligands is in subdomain IB. Moreover, MD simulation results suggested that this Schiff base complex can interact with HSA, with a slight modification of its tertiary structure.

  1. Aspects of the structure and solution chemistry of some technetium-tripolyphosphate complexes

    International Nuclear Information System (INIS)

    Miller, G.G.

    1983-01-01

    Several distinctly different complexes of Tc(III) and Tc(IV) with the ligand tripolyphosphate were prepared and studied electrochemically. In acidic solution, a transient Tc(III) species was observed, the electrochemical behavior of which proves that it is not monomeric in Tc and strongly suggests that it is a dimer. This material is radically different in its polarographic behavior from the Tc(III) complex resulting from the controlled potential electrolysis of TcO 4 - at a mercury pool cathode in the same electrolyte. The latter, air sensitive, complex can be reversibly oxidized to a Tc(IV) complex which is stable towards further oxidation but which undergoes hydrolysis in both acidic and alkaline media. The rate law for the hydrolysis in basic solution is: rate = 582 I mol -1 min -1 [Tc(IV)][OH - ]. The hydrolytic reaction in acidic solution is accelerated by hydrogen ion, indicating that a mechanism different from that in basic media is involved. Tc(IV) tripolyphosphate complexes prepared by ligand exchange reactions of TcBr 6 2- were shown by polarography to be different from the complexes prepared electrochemically. The gel permeation chromatographic behavior of one ligand substitution product showed it to be polymeric with a limiting tripolyphosphate to technetium ratio of 1:1

  2. Mass spectrometric studies of the complexing behaviour of actinide ions in solution

    International Nuclear Information System (INIS)

    Steppert, Michael

    2012-01-01

    As the long-term radiotoxicity of spent nuclear fuel is governed by Plutonium and the Minor Actinides, these elements are focussed on for investigations in the framework of safety assessment for nuclear waste repositories. To shed more light on the selectivity of the partitioning ligands BTP and BTBP towards the extraction of trivalent actinides, the complexes these ligands form with lanthanides in octanolic solution were characterized. The differences in the extraction efficiencies among the different lanthanides were traced back to the varying preferential formation of Ln(BTP)3 complexes, depending on the ionic radius of the lanthanides. Additionally it was shown that depending on the sterical demand of BTBP ligands nitrate anions coordinate in the first coordination shell of Eu(BTBP)2-complexes. As the behavior of Plutonium under geochemical conditions is of particular interest for the safety assessment of potential nuclear waste repositories, the second part of the thesis focuses on the hydrolysis and colloid formation behavior of aqueous Plutonium solutions. The solution species of Zirconium(IV) as analogue for Plutonium(IV) as well as of Uranium(VI) and Plutonium(VI) were characterized and quantified by means of electrospray ionization mass spectrometry. Moreover the colloid-induced reduction of Pu(V) to Pu(IV) and the subsequent formation of colloidal species was investigated. [de

  3. Reversibly Switchable, pH-Dependent Peptide Ligand Binding via 3,5-Diiodotyrosine Substitutions.

    Science.gov (United States)

    Ngambenjawong, Chayanon; Sylvestre, Meilyn; Gustafson, Heather H; Pineda, Julio Marco B; Pun, Suzie H

    2018-04-20

    Cell type-specific targeting ligands utilized in drug delivery applications typically recognize receptors that are overexpressed on the cells of interest. Nonetheless, these receptors may also be expressed, to varying extents, on off-target cells, contributing to unintended side effects. For the selectivity profile of targeting ligands in cancer therapy to be improved, stimuli-responsive masking of these ligands with acid-, redox-, or enzyme-cleavable molecules has been reported, whereby the targeting ligands are exposed in specific environments, e.g., acidic tumor hypoxia. One possible drawback of these systems lies in their one-time, permanent trigger, which enables the "demasked" ligands to bind off-target cells if released back into the systemic circulation. A promising strategy to address the aforementioned problem is to design ligands that show selective binding based on ionization state, which may be microenvironment-dependent. In this study, we report a systematic strategy to engineer low pH-selective targeting peptides using an M2 macrophage-targeting peptide (M2pep) as an example. 3,5-Diiodotyrosine mutagenesis into native tyrosine residues of M2pep confers pH-dependent binding behavior specific to acidic environment (pH 6) when the amino acid is protonated into the native tyrosine-like state. At physiological pH of 7.4, the hydroxyl group of 3,5-diiodotyrosine on the peptide is deprotonated leading to interruption of the peptide native binding property. Our engineered pH-responsive M2pep (Ac-Y-Î-Î) binds target M2 macrophages more selectively at pH 6 than at pH 7.4. In addition, 3,5-diiodotyrosine substitutions also improve serum stability of the peptide. Finally, we demonstrate pH-dependent reversibility in target binding via a postbinding peptide elution study. The strategy presented here should be applicable for engineering pH-dependent functionality of other targeting peptides with potential applications in physiology-dependent in vivo targeting

  4. Homoleptic Ce(III) and Ce(IV) Nitroxide Complexes: Significant Stabilization of the 4+ Oxidation State

    Energy Technology Data Exchange (ETDEWEB)

    Bogart, Justin A.; Lewis, Andrew J.; Medling, Scott A.; Piro, Nicholas A.; Carroll, Patrick J.; Booth, Corwin H.; Schelter, Eric J.

    2014-06-25

    Electrochemical experiments performed on the complex Ce-IV[2-((BuNO)-Bu-t)py](4), where [2-((BuNO)-Bu-t)py](-) = N-tert-butyl-N-2-pyridylnitroxide, indicate a 2.51 V stabilization of the 4+ oxidation state of Ce compared to [(Bu4N)-Bu-n](2)[Ce(NO3)(6)] in acetonitrile and a 2.95 V stabilization compared to the standard potential for the ion under aqueous conditions. Density functional theory calculations suggest that this preference for the higher oxidation state is a result of the tetrakis(nitroxide) ligand framework at the Ce cation, which allows for effective electron donation into, and partial covalent overlap with, vacant 4f orbitals with delta symmetry. The results speak to the behavior of CeO2 and related solid solutions in oxygen uptake and transport applications, in particular an inherent local character of bonding that stabilizes the 4+ oxidation state. The results indicate a cerium(IV) complex that has been stabilized to an unprecedented degree through tuning of its ligand-field environment.

  5. Model studies of the Cu(B) site of cytochrome c oxidase utilizing a Zn(II) complex containing an imidazole-phenol cross-linked ligand.

    Science.gov (United States)

    Pesavento, Russell P; Pratt, Derek A; Jeffers, Jerry; van der Donk, Wilfred A

    2006-07-21

    Cytochrome c oxidase, the enzyme complex responsible for the four-electron reduction of O2 to H2O, contains an unusual histidine-tyrosine cross-link in its bimetallic heme a3-CuB active site. We have synthesised an unhindered, tripodal chelating ligand, BPAIP, containing the unusual ortho-imidazole-phenol linkage, which mimics the coordination environment of the CuB center. The ligand was used to investigate the physicochemical (pKa, oxidation potential) and coordination properties of the imidazole-phenol linkage when bound to a dication. Zn(II) coordination lowers the pKa of the phenol by 0.6 log units, and increases the potential of the phenolate/phenoxyl radical couple by approximately 50 mV. These results are consistent with inductive withdrawal of electron density from the phenolic ring. Spectroscopic data and theoretical calculations (DFT) were used to establish that the cationic complex [Zn(BPAIP)Br]+ has an axially distorted trigonal bipyramidal structure, with three coordinating nitrogen ligands (two pyridine and one imidazole) occupying the equatorial plane and the bromide and the tertiary amine nitrogen of the tripod in the axial positions. Interestingly, the Zn-Namine bonding interaction is weak or absent in [Zn(BPAIP)Br]+ and the complex gains stability in basic solutions, as indicated by 1H NMR spectroscopy. These observations are supported by theoretical calculations (DFT), which suggest that the electron-donating capacity of the equatorial imidazole ligand can be varied by modulation of the protonation and/or redox state of the cross-linked phenol. Deprotonation of the phenol makes the equatorial imidazole a stronger sigma-donor, resulting in an increased Zn-Nimd interaction and thereby leading to distortion of the axial ligand axis toward a more tetrahedral geometry.

  6. Towards ligand docking including explicit interface water molecules.

    Directory of Open Access Journals (Sweden)

    Gordon Lemmon

    Full Text Available Small molecule docking predicts the interaction of a small molecule ligand with a protein at atomic-detail accuracy including position and conformation the ligand but also conformational changes of the protein upon ligand binding. While successful in the majority of cases, docking algorithms including RosettaLigand fail in some cases to predict the correct protein/ligand complex structure. In this study we show that simultaneous docking of explicit interface water molecules greatly improves Rosetta's ability to distinguish correct from incorrect ligand poses. This result holds true for both protein-centric water docking wherein waters are located relative to the protein binding site and ligand-centric water docking wherein waters move with the ligand during docking. Protein-centric docking is used to model 99 HIV-1 protease/protease inhibitor structures. We find protease inhibitor placement improving at a ratio of 9:1 when one critical interface water molecule is included in the docking simulation. Ligand-centric docking is applied to 341 structures from the CSAR benchmark of diverse protein/ligand complexes [1]. Across this diverse dataset we see up to 56% recovery of failed docking studies, when waters are included in the docking simulation.

  7. Solution for state constrained optimal control problems applied to power split control for hybrid vehicles

    NARCIS (Netherlands)

    Keulen, van T.A.C.; Gillot, J.; Jager, de A.G.; Steinbuch, M.

    2014-01-01

    This paper presents a numerical solution for scalar state constrained optimal control problems. The algorithm rewrites the constrained optimal control problem as a sequence of unconstrained optimal control problems which can be solved recursively as a two point boundary value problem. The solution

  8. Synthesis of a Bis(thiophenolate)pyridine Ligand and Its Titanium, Zirconium, and Tantalum Complexes

    KAUST Repository

    Lenton, Taylor N.

    2012-11-12

    A precursor to a new tridentate LX 2 type ligand, bis(thiophenol)pyridine ((SNS)H 2 = (2-C 6H 4SH) 2-2,6-C 5H 3N), was prepared. Bis(thiophenolate)pyridine complexes of Ti, Zr, and Ta having dialkylamido coligands were synthesized and structurally characterized. The zirconium complex (SNS)Zr(NMe 2) 2 (4) displays C 2 symmetry in the solid state, unlike a related bis(phenolate)pyridine compound, C s-symmetric (ONO)Ti(NMe 2) 2. This change is likely the result of strain about the sulfur atom in the six-membered chelate with longer metal-sulfur and carbon-sulfur bonds. Solid-state structures of tantalum complexes (SNS)Ta(NMe 2) 3 (5) and (SNS)TaCl(NEt 2) 2 (6) also display pronounced C 2 twisting of the SNS ligand. 1D and 2D NMR experiments show that 5 is fluxional, with rotation about the Ta-N(amide) bonds occurring on the NMR time scale that interchange the equatorial amide methyl groups (ΔG ‡ 393 = 25.0(3) kcal/mol). The fluxional behavior of 6 in solution was also studied by variable-temperature 1H NMR. Observation of separate signals for the diastereotopic protons of the methylene unit of the diethylamide indicates that the complex remains locked on the NMR time scale in one diastereomeric conformation at temperatures below -50 °C, fast rotation about the equatorial amide Ta-N bonds occurs at higher temperature (ΔG ‡ 393 = 13.4(3) kcal/mol), and exchange of diastereomeric methylene protons occurs via inversion at Ta that interconverts antipodes (ΔG ‡ 393 ≈ 14(1) kcal/mol). © 2012 American Chemical Society.

  9. Singlet versus Triplet Excited State Mediated Photoinduced Dehalogenation Reactions of Itraconazole in Acetonitrile and Aqueous Solutions.

    Science.gov (United States)

    Zhu, Ruixue; Li, Ming-de; Du, Lili; Phillips, David Lee

    2017-04-06

    Photoinduced dehalogenation of the antifungal drug itraconazole (ITR) in acetonitrile (ACN) and ACN/water mixed solutions was investigated using femtosecond and nanosecond time-resolved transient absorption (fs-TA and ns-TA, respectively) and nanosecond time-resolved resonance Raman spectroscopy (ns-TR 3 ) experiments. An excited resonance energy transfer is found to take place from the 4-phenyl-4,5-dihydro-3H-1,2,4-triazol-3-one part of the molecule to the 1,3-dichlorobenzene part of the molecule when ITR is excited by ultraviolet light. This photoexcitation is followed by a fast carbon-halogen bond cleavage that leads to the generation of radical intermediates via either triplet and/or singlet excited states. It is found that the singlet excited state-mediated carbon-halogen cleavage is the predominant dehalogenation process in ACN solvent, whereas a triplet state-mediated carbon-halogen cleavage prefers to occur in the ACN/water mixed solutions. The singlet-to-triplet energy gap is decreased in the ACN/water mixed solvents and this helps facilitate an intersystem crossing process, and thus, the carbon-halogen bond cleavage happens mostly through an excited triplet state in the aqueous solutions examined. The ns-TA and ns-TR 3 results also provide some evidence that radical intermediates are generated through a homolytic carbon-halogen bond cleavage via predominantly the singlet excited state pathway in ACN but via mainly the triplet state pathway in the aqueous solutions. In strong acidic solutions, protonation at the oxygen and/or nitrogen atoms of the 1,2,4-triazole-3-one group appears to hinder the dehalogenation reactions. This may offer the possibility that the phototoxicity of ITR due to the generation of aryl or halogen radicals can be reduced by protonation of certain moieties in suitably designed ITR halogen-containing derivatives.

  10. Complexation studies of actinides (U, Pu, Am) with linear polyamino-carboxylate ligands and sidero-chelates; Etudes de la chelation d'actinides (U, Pu, Am) par des ligands polyaminocarboxylate lineaires et des siderochelates d'interet environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, L.V.

    2010-11-25

    As part of our research endeavour aimed at developing and improving decontamination processes of wastewater containing alpha emitters, physico-chemical complexation studies of actinides (U, Pu, Am) with organic open-chain ligands such as poly-aminocarboxylic acids (H{sub 4}EDTA) and sidero-chelates (di-hydroxamic acids and desferrioxamine B) have been carried out. Gaining a clear understanding of the coordination properties of the targeted actinides is an essential step towards the selection of the most appropriate chelating agents that will exhibit high uptake efficiencies. EXAFS (Extended X-ray Absorption Fine Structure) measurements at the ESRF synchrotron enabled to elucidate the coordination scheme of uranium and plutonium complexes. Solution thermodynamic investigations were intended to provide valuable information about the nature and the stability of the uranium(VI) and americium(III) complexes prevailing at a given pH in solution. The set of stability constants determined from potentiometric and UV-visible spectrophotometric titrations, allowed to predict the speciation of the selected actinides in presence of the aforementioned ligands and to determine the pH range required for achieving 'ultimate' decontamination. (author) [French] Dans le cadre du developpement et de l'amelioration des procedes de decontamination d'effluents aqueux contamines par des radioelements emetteurs alpha, des etudes physico-chimiques sur la complexation des actinides (U, Pu, Am) avec des ligands organiques tels que des acides polyaminocarboxyliques lineaires (H{sub 4}EDTA) et des siderochelates (acides dihydroxamiques et desferrioxamine B) ont ete effectuees. La comprehension des proprietes de coordination est une etape essentielle pour selectionner les meilleurs agents chelatants qui se montreront efficaces dans le traitement des effluents. Les schemas de coordination des complexes d'uranium et de plutonium avec ces ligands ont ete determines a l

  11. Precipitation kinetics of Mg-carbonates, influence of organic ligands and consequences for CO2 mineral sequestration

    International Nuclear Information System (INIS)

    Gautier, Q.

    2012-01-01

    Forming magnesium carbonate minerals through carbonation of magnesium silicates has been proposed as a safe and durable way to store carbon dioxide, with a possibly high potential to offset anthropogenic CO 2 emissions. To date however, chemical reactions involved in this process are facing strong kinetic limitations, which originate in the low reactivity of both Mg-silicates and Mg-carbonates. Numerous studies have focused on the dissolution of Mg-silicates, under the questionable hypothesis that this step limits the whole process. This thesis work focuses instead on the mechanisms and rates of formation of magnesium carbonates, which are the final products of carbonation reactions. The first part of the work is dedicated to studying the influence on magnesite precipitation kinetics of three organic ligands known to accelerate Mg-silicates dissolution rates: oxalate, citrate and EDTA. With help of mixed-flow reactor experiments performed between 100 and 150 C, we show that these ligands significantly reduce magnesite growth rates, through two combined mechanisms: (1) complexation of Mg 2+ cations in aqueous solution, which was rigorously estimated from a thermodynamic database established through a critical review of the literature, and (2) adsorption of ligands to a limited number of surface sites, leading to a decrease of the precipitation rate constant. The observed growth inhibition is maximal with citrate. We then used hydrothermal atomic force microscopy to probe the origin of the documented growth inhibition. Our observations show that citrate and oxalate interact with the crystal growth process on magnesite surface, modifying the shape of growth hillocks as well as the step generation frequency through spiral growth. We also show that the ligands adsorb preferentially on different kink-sites, which is probably related to their different structures and chemical properties. We propose that the stronger magnesite growth inhibition caused by citrate is related

  12. Sensitive Constrained Optimal PMU Allocation with Complete Observability for State Estimation Solution

    Directory of Open Access Journals (Sweden)

    R. Manam

    2017-12-01

    Full Text Available In this paper, a sensitive constrained integer linear programming approach is formulated for the optimal allocation of Phasor Measurement Units (PMUs in a power system network to obtain state estimation. In this approach, sensitive buses along with zero injection buses (ZIB are considered for optimal allocation of PMUs in the network to generate state estimation solutions. Sensitive buses are evolved from the mean of bus voltages subjected to increase of load consistently up to 50%. Sensitive buses are ranked in order to place PMUs. Sensitive constrained optimal PMU allocation in case of single line and no line contingency are considered in observability analysis to ensure protection and control of power system from abnormal conditions. Modeling of ZIB constraints is included to minimize the number of PMU network allocations. This paper presents optimal allocation of PMU at sensitive buses with zero injection modeling, considering cost criteria and redundancy to increase the accuracy of state estimation solution without losing observability of the whole system. Simulations are carried out on IEEE 14, 30 and 57 bus systems and results obtained are compared with traditional and other state estimation methods available in the literature, to demonstrate the effectiveness of the proposed method.

  13. New functionalized β-diketiminate ligands and f elements

    International Nuclear Information System (INIS)

    Dulong, Florian

    2013-01-01

    β-diketiminate ligands have received increased interest in coordination chemistry, especially for homogeneous catalysis. Their successful applications arise from an easy and fine tuning of the ligand electronic and geometric properties. However, these modifications are limited to the introduction of neutral donors (ethers or amines), on the nitrogen substituents of the β-diketiminate skeleton. The main focus of this research project is to overcome this limitation by synthesizing new β-diketiminate ligands functionalized by one or two anionic aryl-oxide groups, and to study their coordination chemistry with lanthanide and actinide ions. Access to these species relies on a fine understanding of the mechanism underlying their formation, and the sensitivity of the β-di-iminium skeleton towards nucleophiles (phenols) has been identified as the limiting side reaction in the synthetic route. Addition of reactants in well defined order allowed the formation of two new N-aryl-oxy-β-diketiminate dianions on a multi-gram scale. The two ligands differ by their steric bulk and exhibit different coordination behaviors towards lanthanides and actinide ions, which were rationalized on geometric considerations. The reactivity of three of these new complexes has been investigated. A Ce(III) N-aryl-oxy-β-diketiminate complex exhibits interesting reduction properties, due to the shift of its oxidation potential to negative values by its coordination environment. A Th(IV) complex presents a vacant coordination site, which has been probed with different Lewis bases, emphasizing two spatial arrangements ruled by inter-ligand repulsion. It has been compared to its U(IV) analogue, which can be oxidized to a rare terminal mono-oxo uranium(VI) species. The latter was reversibly reduced to its U(V) and U(IV) derivatives, creating the first series of terminal mono-oxo uranium complexes with three successive oxidation states. These compounds represent an opportunity to better understand

  14. The steady state solutions of radiatively driven stellar winds for a non-Sobolev, pure absorption model

    International Nuclear Information System (INIS)

    Poe, C.H.; Owocki, S.P.; Castor, J.I.

    1990-01-01

    The steady state solution topology for absorption line-driven flows is investigated for the condition that the Sobolev approximation is not used to compute the line force. The solution topology near the sonic point is of the nodal type with two positive slope solutions. The shallower of these slopes applies to reasonable lower boundary conditions and realistic ion thermal speed v(th) and to the Sobolev limit of zero of the usual Castor, Abbott, and Klein model. At finite v(th), this solution consists of a family of very similar solutions converging on the sonic point. It is concluded that a non-Sobolev, absorption line-driven flow with a realistic values of v(th) has no uniquely defined steady state. To the extent that a pure absorption model of the outflow of stellar winds is applicable, radiatively driven winds should be intrinsically variable. 34 refs

  15. Uniform thin film electrode made of low-temperature-sinterable silver nanoparticles: optimized extent of ligand exchange from oleylamine to acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yung Jong; Kim, Na Rae; Lee, Changsoo; Lee, Hyuck Mo, E-mail: hmlee@kaist.ac.kr [Department of Materials Science and Engineering (Korea, Republic of)

    2017-02-15

    Lowering the sintering temperature of nanoparticles in the electrode deposition process holds both academic and industrial interest because of the potential applications of such electrodes in polymer devices and flexible electronics. In addition, achieving uniform electrode formation after ligand exchange is equally important as lowering the sintering temperature. Here, we report a simple chemical treatment by the addition of ligand-exchanging interfaces to lower the sintering temperature; we also determine the optimum extent of ligand exchange for crack-free electrode formation. First, we investigated the structural change of Ag thin films with respect to the concentration of acrylic acid (AA) solutions. Second, we used thermal analysis to evaluate the effects of changes in the sintering temperature. We observed that the resulting conductivity of the Ag patterns was only one order of magnitude lower than that of bulk Ag when the patterns were sintered at 150 °C. The simple chemical treatment developed in this work for solution-processed Ag electrode formation can be adopted for flexible electronics, which would eliminate the need for vacuum and high-temperature processes.

  16. Pyridine-2,6-diyl dinitroxides as room-temperature triplet ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hinako; Tonegawa, Asato; Ishida, Takayuki, E-mail: takayuki.ishida@uec.ac.jp [Department of Engineering Science, The University of Electro-Communications, Tokyo (Japan)

    2016-02-01

    We have proposed tert-butyl 2-pyridyl nitroxide radicals as a promising paramagnetic chelating ligand, where the direct radical-metal bond leads to strong magnetic interaction. We successfully synthesized and isolated PyBN derivatives (pyridine-2,6-diyl bis(tert-butyl nitroxides)). The molecular and crystal structures of the target biradicals, MesPyBN, AntPyBN and tBuOPyBN were determined from the X-ray crystal structure analysis, which possess mesityl, 9-anthryl and tert-butoxy groups at the 5-position of the pyridine ring, respectively. The ground triplet state was characterized by means of SQUID susceptometry for each compound. On heating, the χ{sub m}T values of all the PyBN derivatives increased and reached a plateau at ca. 1.0 cm{sup 3} K mol{sup −1} at 300 K. It implies that biradicals behaved as triplet molecules even at room temperature, or 2J/k{sub B} >> 300 K. From the decay monitored in solution electron-spin resonance spectroscopy, MesPyBN was the most persistent, while tBuOPyBN was the most reactive, of the three.

  17. Syntheses, X-ray structures, solid state high-field electron paramagnetic resonance, and density-functional theory investigations on chloro and aqua Mn(II) mononuclear complexes with amino-pyridine pentadentate ligands.

    Science.gov (United States)

    Hureau, Christelle; Groni, Sihem; Guillot, Régis; Blondin, Geneviève; Duboc, Carole; Anxolabéhère-Mallart, Elodie

    2008-10-20

    The two pentadentate amino-pyridine ligands L5(2) and L5(3) (L5(2) and L5(3) stand for the N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine and the N-methyl-N,N',N'-tris(2-pyridylmethyl)propane-1,3-diamine, respectively) were used to synthesize four mononuclear Mn(II) complexes, namely [(L5(2))MnCl](PF6) (1(PF6)), [(L5(3))MnCl](PF6) (2(PF6)), [(L5(2))Mn(OH2)](BPh4)2 (3(BPh4)2), and [(L5(3))Mn(OH2)](BPh4)2 (4(BPh4)2). The X-ray diffraction studies revealed different configurations for the ligand L5(n) (n = 2, 3) depending on the sixth exogenous ligand and/or the counterion. Solid state high-field electron paramagnetic resonance spectra were recorded on complexes 1-4 as on previously described mononuclear Mn(II) systems with tetra- or hexadentate amino-pyridine ligands. Positive and negative axial zero-field splitting (ZFS) parameters D were determined whose absolute values ranged from 0.090 to 0.180 cm(-1). Density-functional theory calculations were performed unraveling that, in contrast with chloro systems, the spin-spin and spin-orbit coupling contributions to the D-parameter are comparable for mixed N,O-coordination sphere complexes.

  18. Studies on mixed ligand complexes of adenine and xanthine with some rare earth ions

    International Nuclear Information System (INIS)

    Rastogi, P.R.; Singh, Mamta; Nayan, Ram

    1993-01-01

    Interactions of 6-aminopurine (adenine, HA) and 2,6-dihydroxypurine (xanthine, HB) with trivalent rare earth ions Y, Tb, Dy, Ho, Er and Tm, have been studied by pH-titration methods in aqueous solution at 20 o (μ = 0.1 M KNO 3 ). The ligands in their mixtures with tripositive rare earth ions (M 3+ ) form a number of mixed ligand complexes, M 3+ -adenine-xanthine, M 3+ -(adenine) 2 -xanthine, M 3+ -adenine-(xanthine) 2 in addition to the binary complexes, M 3+ -(adenine), M 3+ -(adenine) 2 , M 3+ -(adenine) 3 , M 3+ -(xanthine), M 3+ -(xanthine) 2 and M 3+ -(xanthine) 3 . The stability constants of these complexes have been evaluated and the results discussed. (author). 13 refs., 1 fig., 1 tab

  19. Crystallization of bi-functional ligand protein complexes.

    Science.gov (United States)

    Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano

    2013-06-01

    Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Autocrine signal transmission with extracellular ligand degradation

    Science.gov (United States)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-03-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand-receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers.

  1. Cell-specific targeting by heterobivalent ligands.

    Science.gov (United States)

    Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J

    2011-07-20

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

  2. Complexation studies of actinides (U, Pu, Am) with linear polyamino-carboxylate ligands and sidero-chelates

    International Nuclear Information System (INIS)

    Nguyen, L.V.

    2010-01-01

    As part of our research endeavour aimed at developing and improving decontamination processes of wastewater containing alpha emitters, physico-chemical complexation studies of actinides (U, Pu, Am) with organic open-chain ligands such as poly-aminocarboxylic acids (H 4 EDTA) and sidero-chelates (di-hydroxamic acids and desferrioxamine B) have been carried out. Gaining a clear understanding of the coordination properties of the targeted actinides is an essential step towards the selection of the most appropriate chelating agents that will exhibit high uptake efficiencies. EXAFS (Extended X-ray Absorption Fine Structure) measurements at the ESRF synchrotron enabled to elucidate the coordination scheme of uranium and plutonium complexes. Solution thermodynamic investigations were intended to provide valuable information about the nature and the stability of the uranium(VI) and americium(III) complexes prevailing at a given pH in solution. The set of stability constants determined from potentiometric and UV-visible spectrophotometric titrations, allowed to predict the speciation of the selected actinides in presence of the aforementioned ligands and to determine the pH range required for achieving 'ultimate' decontamination. (author) [fr

  3. Crystal Structures and Physical Properties of Ag(I) Coordination Polymers with Unsymmetrical Dipyridyl Ligand

    International Nuclear Information System (INIS)

    Lee, Eunji; Ryu, Hyunsoo; Park, Kimin

    2013-01-01

    Three Ag(I) coordination polymers with the formula [Ag(L)]·(X)·(DMSO) n (X = ClO 4 (1), BF 4 (2), and PF 6 (3), and L = dipyridyl ligand) were prepared and characterized fully their structures. All three compounds are isostructures and stable 2-D honeycomb type coordination polymers, in which 1-D zigzag chains with -(Ag-L)- motif are linked by the argentophilic interactions and the π···π stacking interactions between pyridine rings. The investigation on photophysical properties of all compounds shows that the nature of emission can be attributed to the metal-to-ligand charge transfer as well as the formation of the polymeric structures with restriction of the flexibility of the free ligand. Based on the present solid state results, further investigation on the development and characterization of new coordination polymers using flexible unsymmetrical ligand is in progress. During last two decades, silver coordination polymers based on dipyridyl type ligands have attracted particular interest because of the various intriguing architectures caused by a variety of coordination geometry of Ag(I) ion as well as their potential applications as functional materials

  4. Simple Ligand-Receptor Interaction Descriptor (SILIRID) for alignment-free binding site comparison.

    Science.gov (United States)

    Chupakhin, Vladimir; Marcou, Gilles; Gaspar, Helena; Varnek, Alexandre

    2014-06-01

    We describe SILIRID (Simple Ligand-Receptor Interaction Descriptor), a novel fixed size descriptor characterizing protein-ligand interactions. SILIRID can be obtained from the binary interaction fingerprints (IFPs) by summing up the bits corresponding to identical amino acids. This results in a vector of 168 integer numbers corresponding to the product of the number of entries (20 amino acids and one cofactor) and 8 interaction types per amino acid (hydrophobic, aromatic face to face, aromatic edge to face, H-bond donated by the protein, H-bond donated by the ligand, ionic bond with protein cation and protein anion, and interaction with metal ion). Efficiency of SILIRID to distinguish different protein binding sites has been examined in similarity search in sc-PDB database, a druggable portion of the Protein Data Bank, using various protein-ligand complexes as queries. The performance of retrieval of structurally and evolutionary related classes of proteins was comparable to that of state-of-the-art approaches (ROC AUC ≈ 0.91). SILIRID can efficiently be used to visualize chemogenomic space covered by sc-PDB using Generative Topographic Mapping (GTM): sc-PDB SILIRID data form clusters corresponding to different protein types.

  5. Mixed-ligand Pt(II) dithione-dithiolato complexes: influence of the dicyanobenzodithiolato ligand on the second-order NLO properties.

    Science.gov (United States)

    Espa, Davide; Pilia, Luca; Marchiò, Luciano; Artizzu, Flavia; Serpe, Angela; Mercuri, Maria Laura; Simão, Dulce; Almeida, Manuel; Pizzotti, Maddalena; Tessore, Francesca; Deplano, Paola

    2012-03-28

    The mixed-ligand dithiolene complex [Pt(Bz(2)pipdt)(dcbdt)] (1) bearing the two ligands Bz(2)pipdt = 1,4-dibenzyl-piperazine-3,2-dithione and dcbdt = dicyanobenzodithiolato, has been synthesized, characterized and studied to evaluate its second-order optical nonlinearity. The dithione/dithiolato character of the two ligands gives rise to an asymmetric distribution of the charge in the molecule. This is reflected by structural data showing that in the C(2)S(2)PtS(2)C(2) dithiolene core the four sulfur atoms define a square-planar coordination environment of the metal where the Pt-S bond distances involving the two ligands are similar, while the C-S bond distances in the C(2)S(2) units exhibit a significant difference in Bz(2)pipdt (dithione) and dcbdt (dithiolato). 1 shows a moderately strong absorption peak in the visible region, which can be related to a HOMO-LUMO transition, where the dcbdt ligand (dithiolato) contributes mostly to the HOMO, and the Bz(2)pipdt one (dithione) mostly to the LUMO. Thus this transition has ligand-to-ligand charge transfer (CT) character with some contribution of the metal and undergoes negative solvatochromism and molecular quadratic optical nonlinearity (μβ(0) = -1296 × 10(-48) esu), which was determined by the EFISH (electric-field-induced second-harmonic generation) technique and compared with the values of similar complexes on varying the dithiolato ligand (mnt = maleonitriledithiolato, dmit = 2-thioxo-1,3-dithiole-4,5-dithiolato). Theoretical calculations help to elucidate the role of the dithiolato ligands in affecting the molecular quadratic optical nonlinearity of these complexes.

  6. Using solution- and solid-state S K-edge X-ray absorption spectroscopy with density functional theory to evaluate M-S bonding for MS4(2-) (M = Cr, Mo, W) dianions.

    Science.gov (United States)

    Olson, Angela C; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Daly, Scott R; Kozimor, Stosh A; MacInnes, Molly M; Martin, Richard L; Scott, Brian L

    2014-12-14

    Herein, we have evaluated relative changes in M-S electronic structure and orbital mixing in Group 6 MS4(2-) dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as (1)A1 → (1)T2 transitions. For MoS4(2-), both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS4(2-), solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO4(2-) dianions, which allowed M-S and M-O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M-E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M-S bonds, but increased appreciably for M-O interactions. For the t orbitals (σ* + π*), mixing decreased slightly for M-S bonding and increased only slightly for the M-O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME4(2-) (E = O, S) dianions.

  7. Flt3 ligand-receptor interaction is important for maintenance of early thymic progenitor numbers in steady-state thymopoiesis.

    Science.gov (United States)

    Kenins, Linda; Gill, Jason W; Holländer, Georg A; Wodnar-Filipowicz, Aleksandra

    2010-01-01

    T-cell production throughout life depends on efficient colonization and intrathymic expansion of BM-derived hematopoietic precursors. After irradiation-induced thymic damage, thymic recovery is facilitated by Flt3 ligand (FL), expressed by perivascular fibroblasts surrounding the thymic entry site of Flt3 receptor-positive progenitor cells. Whether intrathymic FL-Flt3 interactions play a role in steady-state replenishment of T cells remains unknown. Here, using competitive BM transplantation studies and fetal thymic organ cultures we demonstrated the continued numerical advantage of Flt3+ intrathymic T-cell precursors. Sub-kidney capsule thymic transplantation experiments, in which WT and FL-/- thymic lobes were grafted into FL-/- recipients, revealed that FL expression by the thymic microenvironment plays a role in steady-state thymopoiesis. The deficiency of the most immature thymic T-cell precursors correlated to upregulation of FL by thymic MTS15+ fibroblasts, suggesting that the number of Flt3+ progenitor cells may regulate the thymic expression of this cytokine. Together, these results show that FL expression by thymic stromal fibroblasts interacting with Flt3+ T-cell progenitors is important for the physiological maintenance of early T-cell development.

  8. Parallel shooting methods for finding steady state solutions to engine simulation models

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik

    2007-01-01

    Parallel single- and multiple shooting methods were tested for finding periodic steady state solutions to a Stirling engine model. The model was used to illustrate features of the methods and possibilities for optimisations. Performance was measured using simulation of an experimental data set...

  9. Potential New Ligand Systems for Binding Uranyl Ions in Seawater Environments

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-12-13

    Work began this quarter on a new project involving a combined computational and biosynthetic approach to selective recognition of uranyl ion in aqueous solution. This project exploits the results of computational studies to discover new ligand classes. Synthetic studies will follow to generate target systems for uranyl binding and determination of binding constants. The process will be iterative, with results from computation informing synthesis, and vice versa. The theme of the ligand classes to be examined initially will be biologically based. New phosphonate-containing α-amino acid N-carboxyanhydride (NCA) monomers were used recently to prepare well-defined phosphonate-containing poly-peptides and block copolypeptides. Our first approach is to utilize these phosphate- and phosphonate-containing NCAs for the coordination of uranyl. The work includes the laboratory-scale preparation of a series of NCAs and the full thermodynamic and spectroscopic characterization of the resulting uranyl complexes. We are also evaluating the sequestering activity in different physiological and environmental conditions of these copolymers as well as their biodegradability.

  10. Role of ligands in permanganate oxidation of organics.

    Science.gov (United States)

    Jiang, Jin; Pang, Su-Yan; Ma, Jun

    2010-06-01

    We previously demonstrated that several ligands such as phosphate, pyrophosphate, EDTA, and humic acid could significantly enhance permanganate oxidation of triclosan (one phenolic biocide), which was explained by the contribution of ligand-stabilized reactive manganese intermediates in situ formed upon permanganate reduction. To further understand the underlying mechanism, we comparatively investigated the influence of ligands on permanganate oxidation of bisphenol A (BPA, one phenolic endocrine-disrupting chemical), carbamazepine (CBZ, a pharmaceutical containing the olefinic group), and methyl p-tolyl sulfoxide (TMSO, a typical oxygen-atom acceptor). Selected ligands exerted oxidation enhancement for BPA but had negligible influence for CBZ and TMSO. This was mainly attributed to the effects of identified Mn(III) complexes, which would otherwise disproportionate spontaneously in the absence of ligands. The one-electron oxidant Mn(III) species exhibited no reactivity toward CBZ and TMSO for which the two-electron oxygen donation may be the primary oxidation mechanism but readily oxidized BPA. The latter case was a function of pH, the complexing ligand, and the molar [Mn(III)]:[ligand] ratio, generally consistent with the patterns of ligand-affected permanganate oxidation. Moreover, the combination of the one-electron reduction of Mn(III) (Mn(III) + e(-) -->Mn(II)) and the Mn(VII)/Mn(II) reaction in excess ligands (Mn(VII) + 4Mn(II) ----> (ligands) 5Mn(III)) suggested a catalytic role of the Mn(III)/Mn(II) pair in permanganate oxidation of some phenolics in the presence of ligands.

  11. The core spline method for solution of quantum-mechanical systems of differential equations for bound states

    International Nuclear Information System (INIS)

    Aleksandrov, L.; Drenska, M.; Karadzhov, D.

    1986-01-01

    A generalization of the core spline method is given in the case of solution of the general bound state problem for a system of M linear differential equations with coefficients depending on the spectral parameter. The recursion scheme for construction of basic splines is described. The wave functions are expressed as linear combinations of basic splines, which are approximate partial solutions of the system. The spectral parameter (the eigenvalue) is determined from the condition for existence of a nontrivial solution of a (MxM) linear algebraic system at the last collocation point. The nontrivial solutions of this system determine (M - 1) coefficients of the linear spans, expressing the wave functions. The last unknown coefficient is determined from a boundary (or normalization) condition for the system. The computational aspects of the method are discussed, in particular, its concrete algorithmic realization used in the RODSOL program. The numerical solution of the Dirac system for the bound states of a hydrogen atom is given is an example

  12. Application of the van der Waals equation of state to polymers .4. Correlation and prediction of lower critical solution temperatures for polymer solutions

    DEFF Research Database (Denmark)

    Goncalves, Ana Saraiva; Kontogeorgis, Georgios; Harismiadis, Vassilis I.

    1996-01-01

    The van der Waals equation of state is used for the correlation and the prediction of the lower critical solution behavior or mixtures including a solvent and a polymer. The equation of state parameters for the polymer are estimated from experimental volumetric data at low pressures. The equation...

  13. Determination of ligand binding modes in weak protein–ligand complexes using sparse NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Biswaranjan; Williams, Martin L.; Doak, Bradley C.; Vazirani, Mansha; Ilyichova, Olga [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia); Wang, Geqing [La Trobe University, La Trobe Institute for Molecular Bioscience (Australia); Bermel, Wolfgang [Bruker Biospin GmbH (Germany); Simpson, Jamie S.; Chalmers, David K. [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia); King, Glenn F. [The University of Queensland, Institute for Molecular Bioscience (Australia); Mobli, Mehdi, E-mail: m.mobli@uq.edu.au [The University of Queensland, Centre for Advanced Imaging (Australia); Scanlon, Martin J., E-mail: martin.scanlon@monash.edu [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia)

    2016-11-15

    We describe a general approach to determine the binding pose of small molecules in weakly bound protein–ligand complexes by deriving distance constraints between the ligand and methyl groups from all methyl-containing residues of the protein. We demonstrate that using a single sample, which can be prepared without the use of expensive precursors, it is possible to generate high-resolution data rapidly and obtain the resonance assignments of Ile, Leu, Val, Ala and Thr methyl groups using triple resonance scalar correlation data. The same sample may be used to obtain Met {sup ε}CH{sub 3} assignments using NOESY-based methods, although the superior sensitivity of NOESY using [U-{sup 13}C,{sup 15}N]-labeled protein makes the use of this second sample more efficient. We describe a structural model for a weakly binding ligand bound to its target protein, DsbA, derived from intermolecular methyl-to-ligand nuclear Overhauser enhancements, and demonstrate that the ability to assign all methyl resonances in the spectrum is essential to derive an accurate model of the structure. Once the methyl assignments have been obtained, this approach provides a rapid means to generate structural models for weakly bound protein–ligand complexes. Such weak complexes are often found at the beginning of programs of fragment based drug design and can be challenging to characterize using X-ray crystallography.

  14. Radiation induced ligand loss from cobalt complexes

    International Nuclear Information System (INIS)

    Funston, A. M.; McFadyen, W.D.; Tregloan, P.A.

    2000-01-01

    Full text: Due to the rapid nature of ligand dissociation from cobalt(II) complexes the study of the rate of ligand dissociation necessitates the use of a technique such as pulse radiolysis. This allows the rapid reduction of the corresponding cobalt(III) complex by a reducing radical, such as the aquated electron, to form the cobalt(II) complex. However, to date, no systematic study of either the mechanism of reduction or the influence of the electronic structure on the rate of ligand dissociation has been carried out. In order to understand these processes more fully the mechanism of reduction of a range of related cobalt(III) complexes by the aquated electron and the subsequent rate of ligand dissociation from the resulting cobalt(II) complexes is being investigated. It has been found that a number of processes are observed following the initial rapid reaction of the cobalt(III) complex with the aquated electron. Ultimately ligand loss is observed. Depending upon the complex, the initial processes observed may include the formation of coordinated radicals and electron transfer within the complex. For complexes containing aromatic ligands such as 2,2'-bipyridine, 1,10-phenanthroline and dipyrido[3,2-a:2',3'-c]phenazine the formation of a coordinated radical is observed as the initial reduction step. The kinetics of ligand dissociation of these complexes has been determined. The loss of monodentate ligands is fast and has been indistinguishable from the reduction processes when aromatic ligands are also present in the complex. However, for diamine chelates and diimine chelates spectra of the transient species can be resolved

  15. Investigation of Uranyl Nitrate Ion Pairs Complexed with Amide Ligands using Electrospray Ionization Ion Trap Mass Spectrometry and Density Functional Theory

    International Nuclear Information System (INIS)

    Groenewold, Gary S.; Dinescu, Adriana; Benson, Michael T.; Gresham, Garold L.; van Stipdonk, Michael J.

    2011-01-01

    Ion populations formed from electrospray of uranyl nitrate solutions containing different amides vary depending on ligand nucleophilicity and steric crowding at the metal center. The most abundant species were ion pair complexes having the general formula (UO2(NO3)(amide)n=2,3)+, and complexes containing the amide conjugate base, reduced uranyl UO2+, and a 2+ charge were also formed. The formamide experiment produced the greatest diversity of species that stems from weaker amide binding leading to dissociation and subsequent solvent coordination or metal reduction. Experiments using methyl formamide, dimethyl formamide, acetamide, and methyl acetamide produced ion pair and doubly charged complexes that were more abundant, and less abundant complexes containing solvent or reduced uranyl. This pattern is reversed in the dimethylacetamide experiment, which displayed reduced doubly charged complexes and augmented reduced uranyl complexes. DFT investigations of the tris-amide ion pair complexes showed that inter-ligand repulsion distorts the amide ligands out of the uranyl equatorial plane, and that complex stabilities do not increase with increasing amide nucleophilicity. Elimination of an amide ligand largely relieves the interligand repulsion, and the remaining amide ligands become closely aligned with the equatorial plane in the structures of the bis-amide ligands. The studies show that the phenomenological distribution of coordination complexes in a metal-ligand electrospray experiment is a function of both ligand nucleophilicity and interligand repulsion, and that the latter factor begins exerting influence even in the case of relatively small ligands like the substituted methyl-formamide and methyl-acetamide ligands.

  16. Ligand and Metal Based Multielectron Redox Chemistry of Cobalt Supported by Tetradentate Schiff Bases.

    Science.gov (United States)

    Andrez, Julie; Guidal, Valentin; Scopelliti, Rosario; Pécaut, Jacques; Gambarelli, Serge; Mazzanti, Marinella

    2017-06-28

    We have investigated the influence of bound cations on the reduction of cobalt complexes of redox active ligands and explored the reactivity of reduced species with CO 2 . The one electron reduction of [Co II ( R salophen)] with alkali metals (M = Li, Na, K) leads to either ligand-centered or metal-centered reduction depending on the alkali ion. It affords either the [Co I ( R salophen)K] complexes or the [Co II 2 (bis-salophen)M 2 ] (M = Li, Na) dimers that are present in solution in equilibrium with the respective [Co I (salophen)M] complexes. The two electron reduction of [Co II ( OMe salophen)] results in both ligand centered and metal centered reduction affording the Co(I)-Co(II)-Co(I) [Co 3 (tris- OMe salophen)Na 6 (THF) 6 ], 6 complex supported by a bridging deca-anionic tris- OMe salophen 10- ligand where three OMe salophen units are connected by two C-C bonds. Removal of the Na ion from 6 leads to a redistribution of the electrons affording the complex [(Co( OMe salophen)) 2 Na][Na(cryptand)] 3 , 7. The EPR spectrum of 7 suggests the presence of a Co(I) bound to a radical anionic ligand. Dissolution of 7 in pyridine leads to the isolation of [Co I 2 (bis- OMe salophen)Na 2 Py 4 ][Na(cryptand)] 2 , 8. Complex 6 reacts with ambient CO 2 leading to multiple CO 2 reduction products. The product of CO 2 addition to the OMe salophen ligand, [Co( OMe salophen-CO 2 )Na] 2 [Na(cryptand)] 2 , 9, was isolated but CO 3 2- formation in 53% yield was also detected. Thus, the electrons stored in the reversible C-C bonds may be used for the transformation of carbon dioxide.

  17. Regulation mechanisms of the FLT3-ligand after irradiation; Mecanismes de regulation du FLT3-ligand apres irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Prat-Lepesant, M

    2005-06-15

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis

  18. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.; Ustbas, Burcin; Harkness, Kellen M.; Coskun, Hikmet; Joshi, Chakra Prasad; Besong, Tabot M.D.; Stellacci, Francesco; Bakr, Osman; Akbulut, Ozge

    2016-01-01

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  19. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.

    2016-06-22

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  20. Identifying Marine Copper-Binding Ligands in Seawater

    Science.gov (United States)

    Whitby, H.; Hollibaugh, J. T.; Maldonado, M. T.; Ouchi, S.; van den Berg, S. M.

    2016-02-01

    Complexation reactions are important because they affect the bioavailability of trace metals such as copper and iron. For example, organic complexation can determine whether copper is a limiting or a toxic micronutrient at natural levels. Copper competes with iron for complexing ligands, and when iron is limiting, copper can also substitute for iron in some metabolic pathways. The speciation of copper can be measured using complexing capacity titrations, which provide the concentration of individual ligand classes (L1, L2 etc.) and the complex stabilities (log K). Using methods recently developed in our laboratory, we show that the ligands within these classes can be measured independently of titrations, thus confirming the titration method and simultaneously identifying the ligands within each class. Thiols were identified as the L1 ligand class and humic compounds as the weaker L2 class in samples from coastal Georgia, USA, collected monthly from April to December. Log K values of the ligand complexes were consistent with values expected for thiols and humic substances. Recent results from culture studies and from samples collected along Line P, a coastal - oceanic transect in the HNLC region of the NE subarctic Pacific, will be presented in comparison to the estuarine results. This comparison will help to broaden our perspective on copper complexation and the ligands responsible, furthering our understanding of ligand sources and life cycles.

  1. Synthesis, characterization and electrochemical investigations of mixed-ligand copper(II)-organic supramolecular frameworks

    Science.gov (United States)

    Singh, Sandeep K.; Srivastava, Ashish Kumar; Srivastava, Krishna; Banerjee, Rahul; Prasad, Jagdish

    2017-11-01

    Two mixed-ligand copper(II)-organic coordination compounds with 5,5‧-dimethyl-2,2‧-bipyridine (5,5‧-Me2bpy) as a primary ligand while aliphatic malonate (Hmal) and aromatic 2-hydroxynicotinate (2-OHNA) as secondary ligands, were synthesized. These complexes are formulated as: [Cu(Hmal)(5,5‧-Me2bpy)(H2O)](ClO4) 1 and [Cu2(2-OHNA)2(5,5‧-Me2bpy)2(NO3)](NO3) 2. These two complexes were structurally characterized by single crystal X-ray diffraction analysis. Characterization was further supported by powder X-ray diffraction analysis, elemental analyses, FT-IR, FAB-MASS and TGA, DSC studies. Cyclic voltammetric and UV-visible spectral studies of these two complexes have also been done. The electrochemical studies of complex 1 in DMSO and DMF have shown that this complex undergoes quasi-reversible diffusion-controlled one-electron transfer reaction without any chemical complication while complex 2 in DMSO undergoes quasi-reversible diffusion-controlled one electron transfer reaction, following EC mechanism. The electrochemical behaviour of complex 2 in DMF is complicated probably due to presence of more than one species in solution phase.

  2. Dextran as a Generally Applicable Multivalent Scaffold for Improving Immunoglobulin-Binding Affinities of Peptide and Peptidomimetic Ligands

    Science.gov (United States)

    2015-01-01

    Molecules able to bind the antigen-binding sites of antibodies are of interest in medicine and immunology. Since most antibodies are bivalent, higher affinity recognition can be achieved through avidity effects in which a construct containing two or more copies of the ligand engages both arms of the immunoglobulin simultaneously. This can be achieved routinely by immobilizing antibody ligands at high density on solid surfaces, such as ELISA plates, but there is surprisingly little literature on scaffolds that routinely support bivalent binding of antibody ligands in solution, particularly for the important case of human IgG antibodies. Here we show that the simple strategy of linking two antigens with a polyethylene glycol (PEG) spacer long enough to span the two arms of an antibody results in higher affinity binding in some, but not all, cases. However, we found that the creation of multimeric constructs in which several antibody ligands are displayed on a dextran polymer reliably provides much higher affinity binding than is observed with the monomer in all cases tested. Since these dextran conjugates are simple to construct, they provide a general and convenient strategy to transform modest affinity antibody ligands into high affinity probes. An additional advantage is that the antibody ligands occupy only a small number of the reactive sites on the dextran, so that molecular cargo can be attached easily, creating molecules capable of delivering this cargo to cells displaying antigen-specific receptors. PMID:25073654

  3. Complexation of some trivalent lanthanides, scandium(III) and thorium(IV) by benzylidenepyruvates in aqueous solution

    International Nuclear Information System (INIS)

    Marques, R.N.; Moraes, M. de; Ionashiro, M.

    1997-01-01

    The protonation constants of 4-methylbenzylidenepyruvate (4Me-BP) and 4-isopropylbenzylidenepyruvate (4IP-BP) as well as the stability constants of their binary 1:1 complexes with Cu(II), La(III), Pr(III), Sm(III), Eu(III), Yb(III), Sc(III) and Th(IV) have been determined spectrophotometrically in aqueous solution at 25 C and ionic strength 0.500 M, maintained with sodium perchlorate. For all metal ions considered, the stability changes move in the same direction as the pK a of the ligands. Linear free energy relationships, as applied to oxygen donor substances, suggest the -COCOO - moiety as the metal binding site of the ligands. The results are discussed mainly taking into account that benzylidenepyruvates, besides the α-keto canonical form, may display other forms in aqueous solution with changing pH and the possible occurrence of extra intra-ligand charge polarization, induced by metal ions. (orig.)

  4. Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Sandip [Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States; Schmandt, Nicolaus [Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, United States; Gicheru, Yvonne [Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States; Chakrapani, Sudha [Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States

    2017-03-06

    Desensitization in pentameric ligand-gated ion channels plays an important role in regulating neuronal excitability. Here, we show that docosahexaenoic acid (DHA), a key ω-3 polyunsaturated fatty acid in synaptic membranes, enhances the agonist-induced transition to the desensitized state in the prokaryotic channel GLIC. We determined a 3.25 Å crystal structure of the GLIC-DHA complex in a potentially desensitized conformation. The DHA molecule is bound at the channel-periphery near the M4 helix and exerts a long-range allosteric effect on the pore across domain-interfaces. In this previously unobserved conformation, the extracellular-half of the pore-lining M2 is splayed open, reminiscent of the open conformation, while the intracellular-half is constricted, leading to a loss of both water and permeant ions. These findings, in combination with spin-labeling/EPR spectroscopic measurements in reconstituted-membranes, provide novel mechanistic details of desensitization in pentameric channels.

  5. Substrate coated with receptor and labelled ligand for assays

    International Nuclear Information System (INIS)

    1980-01-01

    Improvements in the procedures for assaying ligands are described. The assay consists of a polystyrene tube on which receptors are present for both the ligand to be assayed and a radioactively labelled form of the ligand. The receptors on the bottom portion of the tube are also coated with labelled ligands, thus eliminating the necessity for separate addition of the labelled ligand and sample during an assay. Examples of ligands to which this method is applicable include polypeptides, nucleotides, nucleosides and proteins. Specific examples are given in which the ligand to be assayed is digoxin, the labelled form of the ligand is 3-0-succinyl digoxyigenin tyrosine ( 125 I) and the receptor is digoxin antibody. (U.K.)

  6. Tris-(hydroxyamino)triazines: high-affinity chelating tridentate O,N,O-hydroxylamine ligand for the cis-V(V)O2(+) cation.

    Science.gov (United States)

    Nikolakis, Vladimiros A; Exarchou, Vassiliki; Jakusch, Tamás; Woolins, J Derek; Slawin, Alexandra M Z; Kiss, Tamás; Kabanos, Themistoklis A

    2010-10-14

    The treatment of the trichloro-1,3,5-triazine with N-methylhydroxylamine hydrochloride results in the replacement of the three chlorine atoms of the triazine ring with the function -N(OH)CH(3) yielding the symmetrical tris-(hydroxyamino)triazine ligand H(3)trihyat. Reaction of the ligand H(3)trihyat with NaV(V)O(3) in aqueous solution followed by addition of Ph(4)PCl gave the mononuclear vanadium(V) compound Ph(4)P[V(V)O(2)(Htrihyat)] (1). The structure of compound 1 was determined by X-ray crystallography and indicates that this compound has a distorted square-pyramidal arrangement around vanadium. The ligand Htrihyat(2-) is bonded to vanadium atom in a tridentate fashion at the triazine ring nitrogen atom and the two deprotonated hydroxylamido oxygen atoms. The high electron density of the triazine ring nitrogen atoms, which results from the resonative contribution of electrons of exocyclic nitrogen atoms, leads to a very strong V-N bond. The cis-[V(V)O(2)(Htrihyat)](-) species exhibits high hydrolytic stability in aqueous solution over a wide pH range, 2.5-11.5, as was evidenced by potentiometry.

  7. Ligand isotopic exchange of tris(acetylacetonato)germanium(IV) perchlorate in organic solvents

    International Nuclear Information System (INIS)

    Nagasawa, Akira; Saito, Kazuo

    1978-01-01

    The ligand isotopic exchange between tris(acetylacetonato)germanium(IV) perchlorate and acetylacetone[ 14 C] has been studied in 1,1,2,2-tetrachloroethane (TCE), nitromethane (NM), and acetonitrile (AN), at 100 - 120 0 C. In these solvents, the rate formula was R = k[H 2 O][complex]; the concentrations of the complex, free ligand, and water in solution were in the ranges from 0.01 to 0.1 mol dm -3 . The activation enthalpies and entropies for the k's are 105, 98, and 90 kJ mol -1 ; and -25, -53, and -69 JK -1 mol -1 , in TCE, NM, and AN, respectively. Influence of acid and base concentrations, and deuterium isotope effect on the rate in AN suggest that the rate controlling step of the exchange is governed by the ease of the proton transfer between the leaving and the incoming acac - in an intermediate. (auth.)

  8. Effect of stochastic gating on channel-facilitated transport of non-interacting and strongly repelling solutes

    Science.gov (United States)

    Berezhkovskii, Alexander M.; Bezrukov, Sergey M.

    2017-08-01

    Ligand- or voltage-driven stochastic gating—the structural rearrangements by which the channel switches between its open and closed states—is a fundamental property of biological membrane channels. Gating underlies the channel's ability to respond to different stimuli and, therefore, to be functionally regulated by the changing environment. The accepted understanding of the gating effect on the solute flux through the channel is that the mean flux is the product of the flux through the open channel and the probability of finding the channel in the open state. Here, using a diffusion model of channel-facilitated transport, we show that this is true only when the gating is much slower than the dynamics of solute translocation through the channel. If this condition breaks, the mean flux could differ from this simple estimate by orders of magnitude.

  9. Evaluation of LexisNexis Batch Solutions in the New York State Cancer Registry

    OpenAIRE

    Pradhan, Eva; Boscoe, Francis P.

    2014-01-01

    Using Lexis Nexis Batch Solutions, the New York State Cancer Registry was able to identify substantial numbers of missing addresses, birth dates, and social security numbers, for persons diagnosed as far back as 1976.

  10. Crystal structure of a mixed-ligand terbium(III coordination polymer containing oxalate and formate ligands, having a three-dimensional fcu topology

    Directory of Open Access Journals (Sweden)

    Chainok Kittipong

    2016-01-01

    Full Text Available The title compound, poly[(μ3-formato(μ4-oxalatoterbium(III], [Tb(CHO2(C2O4]n, is a three-dimensional coordination polymer, and is isotypic with the LaIII, CeIII and SmIII analogues. The asymmetric unit contains one TbIII ion, one formate anion (CHO2− and half of an oxalate anion (C2O42−, the latter being completed by application of inversion symmetry. The TbIII ion is nine-coordinated in a distorted tricapped trigonal–prismatic manner by two chelating carboxylate groups from two C2O42− ligands, two carboxylate oxygen atoms from another two C2O42− ligands and three oxygen atoms from three CHO2− ligands, with the Tb—O bond lengths and the O—Tb—O bond angles ranging from 2.4165 (19 to 2.478 (3 Å and 64.53 (6 to 144.49 (4°, respectively. The CHO2− and C2O42− anions adopt μ3-bridging and μ4-chelating-bridging coordination modes, respectively, linking adjacent TbIII ions into a three-dimensional 12-connected fcu topology with point symbol (324.436.56. The title compound exhibits thermal stability up to 623 K, and also displays strong green photoluminescence in the solid state at room temperature.

  11. Local Properties of Solutions to Non-Autonomous Parabolic PDEs with State-Dependent Delays

    Czech Academy of Sciences Publication Activity Database

    Rezunenko, Oleksandr

    2012-01-01

    Roč. 2, č. 2 (2012), s. 56-71 ISSN 2158-611X R&D Projects: GA ČR(CZ) GAP103/12/2431 Institutional support: RVO:67985556 Keywords : partial differential equations * state-dependent delay * invariance principle Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/rezunenko- local properties of solutions to non-autonomous parabolic PDEs with state-dependent delay s.pdf

  12. Correcting binding parameters for interacting ligand-lattice systems

    Science.gov (United States)

    Hervy, Jordan; Bicout, Dominique J.

    2017-07-01

    Binding of ligands to macromolecules is central to many functional and regulatory biological processes. Key parameters characterizing ligand-macromolecule interactions are the stoichiometry, inducing the number of ligands per macromolecule binding site, and the dissociation constant, quantifying the ligand-binding site affinity. Both these parameters can be obtained from analyses of classical saturation experiments using the standard binding equation that offers the great advantage of mathematical simplicity but becomes an approximation for situations of interest when a ligand binds and covers more than one single binding site on the macromolecule. Using the framework of car-parking problem with latticelike macromolecules where each ligand can cover simultaneously several consecutive binding sites, we showed that employing the standard analysis leads to underestimation of binding parameters, i.e., ligands appear larger than they actually are and their affinity is also greater than it is. Therefore, we have derived expressions allowing to determine the ligand size and true binding parameters (stoichiometry and dissociation constant) as a function of apparent binding parameters retrieved from standard saturation experiments.

  13. THERMODYNAMICS OF PROTEIN-LIGAND INTERACTIONS AND THEIR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Rummi Devi Saini

    2017-11-01

    Full Text Available Physiological processes are controlled mainly by intermolecular recognition mechanisms which involve protein–protein and protein–ligand interactions with a high specificity and affinity to form a specific complex. Proteins being an important class of macromolecules in biological systems, it is important to understand their actions through binding to other molecules of proteins or ligands. In fact, the binding of low molecular weight ligands to proteins plays a significant role in regulating biological processes such as cellular metabolism and signal transmission. Therefore knowledge of the protein–ligand interactions and the knowledge of the mechanisms involved in the protein-ligand recognition and binding are key in understanding biology at molecular level which will facilitate the discovery, design, and development of drugs. In this review, the mechanisms involved in protein–ligand binding, the binding kinetics, thermodynamic concepts and binding driving forces are discussed. Thermodynamic mechanisms involved in a few important protein-ligand binding are described. Various spectroscopic, non-spectroscopic and computational method for analysis of protein–ligand binding are also discussed.

  14. Development of immobilized ligands for actinide separations

    International Nuclear Information System (INIS)

    Paine, R.T.

    1994-01-01

    Primary goals during this grant period were to (1) synthesize new bifunctional chelating ligands, (2) characterize the structural features of the Ln and An coordination complexes formed by these ligands, (3) use structural data to iteratively design new classes of multifunctional ligands, and (4) explore additional routes for attachment of key ligands to solid supports that could be useful for chromatographic separations. Some highlights of recently published work as well as a summary of submitted, unpublished and/or still in progress research are outlined

  15. Spectroscopic and electrochemical correlations in triangular ruthenium clusters containing N-heterocyclic ligands

    International Nuclear Information System (INIS)

    Cunha, C.J. da.

    1989-01-01

    A series of clusters of general formula [Ru sub(3) O (OOCCH sub(3)) sub(6) L sub(3)] sup(+), where L = N-heterocyclic ligands, were synthesized and characterized based on elemental analysis. UV-VIS and IR spectra. Voltametric studies revealed the existence of up to six acessible oxidation states, with a high degree of electronic delocalization. The Ru sub(3) O trigonal center possesses many delocalized electrons and can be visualized as a source of electrons. The ligands coordinated to the clusters tune their redox potentials, determine the differences in their electronic spectra, and are responsible for the special conditions required for their synthesis. (author)

  16. Energy transfer processes in Tb(III)-dibenzoylmethanate complexes with phosphine oxide ligands

    International Nuclear Information System (INIS)

    Silva Junior, Francisco A.; Nascimento, Helenise A.; Pereira, Dariston K.S.; Teotonio, Ercules E.S.; Espinola, Jose Geraldo P.; Faustino, Wagner M.; Sa, Gilberto F.

    2013-01-01

    The Tb 3+ -β-diketonate complexes [Tb(DBM) 3 L], [Tb(DBM) 2 (NO 3 )L 2 ] and [Tb(DBM)(NO 3 ) 2 (HMPA) 2 ] (DBM = dibenzoylmethanate; L: TPPO triphenylphosphine oxide or HMPA=hexamethylphosphine oxide) were prepared and characterized by elemental analysis (CHN), complexometric titration with EDTA and Fourier transform infrared (FTIR) spectroscopy, and the photoluminescence properties evaluated. The triplet state energies of the coordinated DBM ligands were determined using time-resolved phosphorescence spectra of analogous Gd 3+ complexes. The results show that the energies increase along with the number of coordinated nitrate anions replacing the DBM ligand in the complexes. The luminescence spectra and emission lifetime measurements revealed that the ligand-to-metal energy transfer efficiency follows the same tendency. Unlike the tris-DBM complexes, bis- and mono-DBM presented high luminescence, and may act as promising candidates for preparation of the emitting layer of light converting molecular devices (LCMDs). (author)

  17. Energy transfer processes in Tb(III)-dibenzoylmethanate complexes with phosphine oxide ligands

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, Francisco A.; Nascimento, Helenise A.; Pereira, Dariston K.S.; Teotonio, Ercules E.S.; Espinola, Jose Geraldo P.; Faustino, Wagner M., E-mail: teotonioees@quimica.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Departamento de Quimica; Brito, Hermi F. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Fundamental; Felinto, Maria Claudia F.C. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), SP (Brazil); Sa, Gilberto F. [Universidade Federal de Pernambuco (UFPE/CCEN), Recife, PE (Brazil). Centro de Ciencias Exatas e da Natureza. Departamento de Quimica Fundamental

    2013-04-15

    The Tb{sup 3+}-{beta}-diketonate complexes [Tb(DBM){sub 3}L], [Tb(DBM){sub 2}(NO{sub 3})L{sub 2}] and [Tb(DBM)(NO{sub 3}){sub 2} (HMPA){sub 2}] (DBM = dibenzoylmethanate; L: TPPO triphenylphosphine oxide or HMPA=hexamethylphosphine oxide) were prepared and characterized by elemental analysis (CHN), complexometric titration with EDTA and Fourier transform infrared (FTIR) spectroscopy, and the photoluminescence properties evaluated. The triplet state energies of the coordinated DBM ligands were determined using time-resolved phosphorescence spectra of analogous Gd{sup 3+} complexes. The results show that the energies increase along with the number of coordinated nitrate anions replacing the DBM ligand in the complexes. The luminescence spectra and emission lifetime measurements revealed that the ligand-to-metal energy transfer efficiency follows the same tendency. Unlike the tris-DBM complexes, bis- and mono-DBM presented high luminescence, and may act as promising candidates for preparation of the emitting layer of light converting molecular devices (LCMDs). (author)

  18. Elucidation of Ligand-Dependent Modulation of Disorder-Order Transitions in the Oncoprotein MDM2.

    Directory of Open Access Journals (Sweden)

    Juan A Bueren-Calabuig

    2015-06-01

    Full Text Available Numerous biomolecular interactions involve unstructured protein regions, but how to exploit such interactions to enhance the affinity of a lead molecule in the context of rational drug design remains uncertain. Here clarification was sought for cases where interactions of different ligands with the same disordered protein region yield qualitatively different results. Specifically, conformational ensembles for the disordered lid region of the N-terminal domain of the oncoprotein MDM2 in the presence of different ligands were computed by means of a novel combination of accelerated molecular dynamics, umbrella sampling, and variational free energy profile methodologies. The resulting conformational ensembles for MDM2, free and bound to p53 TAD (17-29 peptide identify lid states compatible with previous NMR measurements. Remarkably, the MDM2 lid region is shown to adopt distinct conformational states in the presence of different small-molecule ligands. Detailed analyses of small-molecule bound ensembles reveal that the ca. 25-fold affinity improvement of the piperidinone family of inhibitors for MDM2 constructs that include the full lid correlates with interactions between ligand hydrophobic groups and the C-terminal lid region that is already partially ordered in apo MDM2. By contrast, Nutlin or benzodiazepinedione inhibitors, that bind with similar affinity to full lid and lid-truncated MDM2 constructs, interact additionally through their solubilizing groups with N-terminal lid residues that are more disordered in apo MDM2.

  19. Ligand-protected gold clusters: the structure, synthesis and applications

    Science.gov (United States)

    Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.

    2015-11-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.

  20. Entangled zinc-ditetrazolate frameworks involving in situ ligand synthesis and topological modulation by various secondary N-donor ligands

    International Nuclear Information System (INIS)

    Li Yunwu; Chen Weilin; Wang Yonghui; Li Yangguang; Wang Enbo

    2009-01-01

    The introduction of various secondary N-donor ligands into an in situ ditetrazolate-ligand synthesis system of terephthalonitrile, NaN 3 and ZnCl 2 led to the formation of three new entangled frameworks Zn(pdtz)(4,4'-bipy).3H 2 O (1), [Zn(pdtz)(bpp)] 2 .3H 2 O (2) and Zn(pdtz) 0.5 (N 3 )(2,2'-bipy) (3) (4,4'-bipy=4,4'-bipyridine; bpp=1,3-bis(4-pyridyl)propane; 2,2'-bipy=2,2'-bipyridine; H 2 pdtz=5,5'-1,4-phenylene-ditetrazole). The formation of pdtz 2- ligand involves the Sharpless [2+3] cycloaddition reaction between terephthalonitrile and NaN 3 in the presence of Zn 2+ ion as a Lewis-acid catalyst under hydrothermal conditions. Compound 1 exhibits a fivefold interpenetrating 3D framework based on the diamondoid topology. Compound 2 displays a twofold parallel interpenetrating framework based on the wavelike individual network. Compound 3 possesses a 2D puckered network. These new Zn-ditetrazolate frameworks are highly dependent on the modulation of different secondary N-donor ligands. Their luminescent properties were investigated. - Graphical abstract: Three new entangled frameworks were prepared by an in situ ditetrazolate-ligand synthesis system assisted with various auxiliary N-donor ligands. The entangled structures can be modulated by different secondary ligands.

  1. Selective extraction of trivalent actinides with hard-soft mixed donor ligands: role of intra-ligand synergism

    International Nuclear Information System (INIS)

    Ghanty, Tapan K.

    2016-01-01

    In recent years, considerable attention has been given to understand the coordination chemistry of trivalent lanthanide (Ln) and actinide (An) with various ligands because of its close link with the nuclear waste management processes. It is well known that lanthanide-actinide separation is a challenging and difficult task because of very similar chemical properties of these two series of ions, which are associated with similar ionic radii and coordination numbers. Recently, we have introduced a new concept, 'intra-ligand synergism', where hard donor atom, such as, oxygen preferentially binds to trivalent actinides (An(III)) as compared to the valence iso-electronic trivalent lanthanides (Ln(III)) in presence of another soft donor centre. In the present work, the conventional concept of selective complexation of actinides with soft donor ligands (either S or N donor) has been modified through exploiting this concept, and thereby the higher selectivity of 1,10-phenanthroline-2,9-dicarboxylamide (PDAM) based ligands, namely PDAM and its isobutyl and decyl derivatives towards Am(III) ion has been predicted theoretically through density functional calculations. Subsequently, several such amide derivatives have been synthesized to optimize the solubility of the ligands in organic phase. Finally, solvent extraction experiments have been carried out to validate the theoretical prediction on the selectivity of oxygen donor ligands towards Am(III) as compared to Eu(III), and a maximum separation factor of about 51 has been achieved experimentally using 2,9-bis(N-decylaminocarbonyl)-1,10-phenanthroline ligand. The separation factor is increased with the decrease in pH, which is very interesting since extraction of the Am 3+ ion is considered to be important under highly acidic conditions from the nuclear waste management point of view. (author)

  2. Synthesis, spectral, thermal and biological studies of mixed ligand complexes with newly prepared Schiff base and 1,10-phenanthroline ligands

    Science.gov (United States)

    Abd El-Halim, Hanan F.; Mohamed, Gehad G.; Khalil, Eman A. M.

    2017-10-01

    A series of mixed ligand complexes were prepared from the Schiff base (L1) as a primary ligand, prepared by condensation of oxamide and furan-2-carbaldehyde, and 1,10-phenanthroline (1,10-phen) as a secondary ligand. The Schiff base ligand and its mixed ligand chelates were characterized based on elemental analysis, IR, 1H NMR, thermal analysis, UV-Visible, mass, molar conductance, magnetic moment. X-ray diffraction, solid reflectance and ESR also have been studied. The mixed ligand complexes were found to have the formulae of [M(L1) (1,10-phen)]Clm.nH2O (M = Cr(III) and Fe(III) (m = 3) (n = 0); M = Mn(II), Cu(II) and Cd(II) (m = 2) (n = 0); and M = Co(II) (m = 2) (n = 1), Ni(II) (m = 2) (n = 2) and Zn(II) (m = 2) (n = 3)) and that the geometrical structure of the complexes were octahedral. The parameters of thermodynamic using Coats-Redfern and Horowitz-Metzger equations were calculated. The synthesized Schiff base ligand, 1,10-phenanthroline ligand and Their mixed ligand complexes were also investigated for their antibacterial and antifungal activity against bacterial species (Gram-Ve bacteria: Pseudomonas aeruginosa and Escherichia coli) and (Gram + Ve bacteria: Bacillus subtilis and Streptococcus pneumonia) and fungi (Aspergillus fumigates and Candida albicans). The anticancer activity of the new compounds had been tested against breast (MFC7) and colon (HCT-116) cell lines. The results showed high activity for the synthesized compounds.

  3. Autocrine signal transmission with extracellular ligand degradation

    International Nuclear Information System (INIS)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-01-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand–receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers

  4. Ligand-Receptor Interaction-Mediated Transmembrane Transport of Dendrimer-like Soft Nanoparticles: Mechanisms and Complicated Diffusive Dynamics.

    Science.gov (United States)

    Liang, Junshi; Chen, Pengyu; Dong, Bojun; Huang, Zihan; Zhao, Kongyin; Yan, Li-Tang

    2016-05-09

    Nearly all nanomedical applications of dendrimer-like soft nanoparticles rely on the functionality of attached ligands. Understanding how the ligands interact with the receptors in cell membrane and its further effect on the cellular uptake of dendrimer-like soft nanoparticles is thereby a key issue for their better application in nanomedicine. However, the essential mechanism and detailed kinetics for the ligand-receptor interaction-mediated transmembrane transport of such unconventional nanoparticles remain poorly elucidated. Here, using coarse-grained simulations, we present the very first study of molecular mechanism and kinetics behaviors for the transmembrane transport of dendrimer-like soft nanoparticles conjugated with ligands. A phase diagram of interaction states is constructed through examining ligand densities and membrane tensions that allows us to identify novel endocytosis mechanisms featured by the direct wrapping and the penetration-extraction vesiculation. The results provide an in-depth insight into the diffusivity of receptors and dendrimer in the membrane plane and demonstrate how the ligand density influences receptor diffusion and uptake kinetics. It is interesting to find that the ligand-conjugated dendrimers present superdiffusive behaviors on a membrane, which is revealed to be driven by the random fluctuation dynamics of the membrane. The findings facilitate our understanding of some recent experimental observations and could establish fundamental principles for the future development of such important nanomaterials for widespread nanomedical applications.

  5. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics

    Science.gov (United States)

    Goswami, Sreetosh; Matula, Adam J.; Rath, Santi P.; Hedström, Svante; Saha, Surajit; Annamalai, Meenakshi; Sengupta, Debabrata; Patra, Abhijeet; Ghosh, Siddhartha; Jani, Hariom; Sarkar, Soumya; Motapothula, Mallikarjuna Rao; Nijhuis, Christian A.; Martin, Jens; Goswami, Sreebrata; Batista, Victor S.; Venkatesan, T.

    2017-12-01

    Non-volatile memories will play a decisive role in the next generation of digital technology. Flash memories are currently the key player in the field, yet they fail to meet the commercial demands of scalability and endurance. Resistive memory devices, and in particular memories based on low-cost, solution-processable and chemically tunable organic materials, are promising alternatives explored by the industry. However, to date, they have been lacking the performance and mechanistic understanding required for commercial translation. Here we report a resistive memory device based on a spin-coated active layer of a transition-metal complex, which shows high reproducibility (~350 devices), fast switching (106 s) and scalability (down to ~60 nm2). In situ Raman and ultraviolet-visible spectroscopy alongside spectroelectrochemistry and quantum chemical calculations demonstrate that the redox state of the ligands determines the switching states of the device whereas the counterions control the hysteresis. This insight may accelerate the technological deployment of organic resistive memories.

  6. Dockomatic - automated ligand creation and docking.

    Science.gov (United States)

    Bullock, Casey W; Jacob, Reed B; McDougal, Owen M; Hampikian, Greg; Andersen, Tim

    2010-11-08

    The application of computational modeling to rationally design drugs and characterize macro biomolecular receptors has proven increasingly useful due to the accessibility of computing clusters and clouds. AutoDock is a well-known and powerful software program used to model ligand to receptor binding interactions. In its current version, AutoDock requires significant amounts of user time to setup and run jobs, and collect results. This paper presents DockoMatic, a user friendly Graphical User Interface (GUI) application that eases and automates the creation and management of AutoDock jobs for high throughput screening of ligand to receptor interactions. DockoMatic allows the user to invoke and manage AutoDock jobs on a single computer or cluster, including jobs for evaluating secondary ligand interactions. It also automates the process of collecting, summarizing, and viewing results. In addition, DockoMatic automates creation of peptide ligand .pdb files from strings of single-letter amino acid abbreviations. DockoMatic significantly reduces the complexity of managing multiple AutoDock jobs by facilitating ligand and AutoDock job creation and management.

  7. Dockomatic - automated ligand creation and docking

    Directory of Open Access Journals (Sweden)

    Hampikian Greg

    2010-11-01

    Full Text Available Abstract Background The application of computational modeling to rationally design drugs and characterize macro biomolecular receptors has proven increasingly useful due to the accessibility of computing clusters and clouds. AutoDock is a well-known and powerful software program used to model ligand to receptor binding interactions. In its current version, AutoDock requires significant amounts of user time to setup and run jobs, and collect results. This paper presents DockoMatic, a user friendly Graphical User Interface (GUI application that eases and automates the creation and management of AutoDock jobs for high throughput screening of ligand to receptor interactions. Results DockoMatic allows the user to invoke and manage AutoDock jobs on a single computer or cluster, including jobs for evaluating secondary ligand interactions. It also automates the process of collecting, summarizing, and viewing results. In addition, DockoMatic automates creation of peptide ligand .pdb files from strings of single-letter amino acid abbreviations. Conclusions DockoMatic significantly reduces the complexity of managing multiple AutoDock jobs by facilitating ligand and AutoDock job creation and management.

  8. Steady-state solution growth of microcrystalline silicon on nanocrystalline seed layers on glass

    Science.gov (United States)

    Bansen, R.; Ehlers, C.; Teubner, Th.; Boeck, T.

    2016-09-01

    The growth of polycrystalline silicon layers on glass from tin solutions at low temperatures is presented. This approach is based on the steady-state solution growth of Si crystallites on nanocrystalline seed layers, which are prepared in a preceding process step. Scanning electron microscopy and atomic force microscopy investigations reveal details about the seed layer surfaces, which consist of small hillocks, as well as about Sn inclusions and gaps along the glass substrate after solution growth. The successful growth of continuous microcrystalline Si layers with grain sizes up to several ten micrometers shows the feasibility of the process and makes it interesting for photovoltaics. Project supported by the German Research Foundation (DFG) (No. BO 1129/5-1).

  9. Spectroscopic characterization of ligands on the surface of water dispersible NaGdF4:Ln3+ nanocrystals

    International Nuclear Information System (INIS)

    Cichos, J.; Karbowiak, M.

    2012-01-01

    For electronic or biomedical applications it is desirable to have ligand-free water-dispersible nanocrystals (NCs). The commonly used FTIR spectroscopy often provides a direct evidence for molecules on the surface. In some cases, however, the strong bands of solvent molecules may obscure the peaks of surface bounded ligands. We show that in this regard the emission spectroscopy may be used as a more reliable probing tool. The relevant information can be obtained from emission and excitation spectra, emission decay times as well as from analysis of relative efficiency of excitation energy transfer from Gd 3+ to Eu 3+ ions. Using these methods we tested samples obtained by various synthetic routes and indicated that only nitrosonium tetrafluoroborate (NOBF 4 ) removes successfully the organic ligands from the nanocrystals surface, yielding organic ligand-free NCs dispersible in aqueous solutions. The conclusions drawn from emission spectroscopy are useful for interpretation of results of FTIR, Raman and NMR studies. The detailed assignment of FTIR peaks for oleate-capped and oleate-free NCs is also provided. Finally, we point to the risk of drawing erroneous conclusions about colloidal stability of nanocrystals if refractive indexes of NCs and medium are similar.

  10. Spectroscopic characterization of ligands on the surface of water dispersible NaGdF4:Ln3+ nanocrystals

    Science.gov (United States)

    Cichos, J.; Karbowiak, M.

    2012-05-01

    For electronic or biomedical applications it is desirable to have ligand-free water-dispersible nanocrystals (NCs). The commonly used FTIR spectroscopy often provides a direct evidence for molecules on the surface. In some cases, however, the strong bands of solvent molecules may obscure the peaks of surface bounded ligands. We show that in this regard the emission spectroscopy may be used as a more reliable probing tool. The relevant information can be obtained from emission and excitation spectra, emission decay times as well as from analysis of relative efficiency of excitation energy transfer from Gd3+ to Eu3+ ions. Using these methods we tested samples obtained by various synthetic routes and indicated that only nitrosonium tetrafluoroborate (NOBF4) removes successfully the organic ligands from the nanocrystals surface, yielding organic ligand-free NCs dispersible in aqueous solutions. The conclusions drawn from emission spectroscopy are useful for interpretation of results of FTIR, Raman and NMR studies. The detailed assignment of FTIR peaks for oleate-capped and oleate-free NCs is also provided. Finally, we point to the risk of drawing erroneous conclusions about colloidal stability of nanocrystals if refractive indexes of NCs and medium are similar.

  11. Ligand influences on properties of uranium coordination complexes. Structure, reactivity, and spectroscopy

    International Nuclear Information System (INIS)

    Kosog, Boris

    2012-01-01

    In this thesis several different aspects of uranium chemistry are presented. It was shown that terminal uranium(V) oxo and imido complexes [(( R ArO) 3 tacn)U V (O)] and [(( R ArO) 3 tacn)U V (NSiMe 3 )] (R = t Bu, Ad) can be oxidized by silver(I) hexafluoro-antimonate to the uranium(VI) oxo and imido complexes [(( R ArO) 3 tacn)U VI (O)]SbF 6 and [(( R ArO) 3 tacn)U VI (NSiMe 3 )]SbF 6 . While for the t Bu-derivative of the oxo complex an equatorial coordination is observed due to stabilization by the inverse trans-influence, normal axial coordination is observed for the Ad-derivative and both imido complexes. The inverse trans-influence was thus proven to be a key factor for the coordination mode of a terminal ligand on high valent uranium complexes. L III XANES was shown to be a great tool for the determination of oxidation states of uranium complexes. Therefore, a series of uranium complexes in all stable oxidation states for uranium, +III to +VI was prepared, and their spectra analyzed. All compounds bear only O-donor ligands in addition to the chlating trisaryloxide-tacn-ligand. A separation of 1.5 to 3 eV in the white line energy is observed between the different oxidation states. This series can be used as reference for compounds, where oxidation state assignment is not obvious, such as a ketyl radical complex [(( t-Bu Ar)O 3 tacn)U(O-C( t-Bu Ph) 2 .- )]. For this complex, the oxidation state of +IV could be assigned. Moreover, a series of isostructural uranium(IV) complexes was prepared. The influence of different ligands according to the spectrochemical series on the electronic and magnetic properties could be shown using UV/vis/NIR spectroscopy and variable temperature SQUID measurements. Calculations of uranium L III XANES spectra show a variation in the shape of the spectra and thus high resolution PFY-XANES would be a great tool to determine the electronic influence of these different axial ligands. Using the single N-anchored ligand system, the first

  12. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking

    Science.gov (United States)

    Baek, Minkyung; Shin, Woong-Hee; Chung, Hwan Won; Seok, Chaok

    2017-07-01

    Protein-ligand docking is a useful tool for providing atomic-level understanding of protein functions in nature and design principles for artificial ligands or proteins with desired properties. The ability to identify the true binding pose of a ligand to a target protein among numerous possible candidate poses is an essential requirement for successful protein-ligand docking. Many previously developed docking scoring functions were trained to reproduce experimental binding affinities and were also used for scoring binding poses. However, in this study, we developed a new docking scoring function, called GalaxyDock BP2 Score, by directly training the scoring power of binding poses. This function is a hybrid of physics-based, empirical, and knowledge-based score terms that are balanced to strengthen the advantages of each component. The performance of the new scoring function exhibits significant improvement over existing scoring functions in decoy pose discrimination tests. In addition, when the score is used with the GalaxyDock2 protein-ligand docking program, it outperformed other state-of-the-art docking programs in docking tests on the Astex diverse set, the Cross2009 benchmark set, and the Astex non-native set. GalaxyDock BP2 Score and GalaxyDock2 with this score are freely available at http://galaxy.seoklab.org/softwares/galaxydock.html.

  13. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  14. Application of the perturbed angular correlation in the investigation of hyperfine interactions in compounds of hafnium, indium and cadmium with F1-, OH1- and EDTA ligands

    International Nuclear Information System (INIS)

    Amaral, Antonio Acleto

    2011-01-01

    In this study the hyperfine parameters, including the dynamical nature, Perturbed Angular Correlation (PAC) spectroscopy was used to measure the hyperfine parameters in molecules of ligand compounds in solutions. The measurements were carried out at 295 K and 77 K using 111 In → 111 Cd, 181 Hf → 181 Ta and 111m Cd → 111 Cd, as probe nuclei. Samples were prepared by adding a small volume of radioactive solution containing the probe nuclei in aqueous solution, buffer solution and ethylenediaminetetraacetic acid (EDTA) used as a ligand with pH 4.3 which correspond to the pH of the saturated EDTA solution and in buffer solution with pH between 9 and 10. The results made possible to understand the impact of each method for PAC measurements. Finally a comparative analysis for the several methods of inserting of the probe nuclei in the sample was made, considering chemical and nuclear aspects. The lack of measurements in this kind of samples justifies the importance of the obtained results. (author)

  15. Chapter 6. Scaling Up Solutions to State, National and Global Levels

    Directory of Open Access Journals (Sweden)

    Daniel Kammen

    2016-12-01

    Full Text Available Scaling-up solutions require learning and adapting lessons between locations and at different scales. To accomplish this, common metrics are vital to building a shared language. For California, this has meant careful financial, cradle-to-grave life-cycle assessment methods leading to carbon accounting in many avenues of government (via the Low Carbon Fuel Standard or the Cap and Trade program. These methods themselves interact, such as the use of carbon accounting for the resources needed to manage water and other key resources; the use of criteria air pollution monitoring to identify environmental injustices; and the use of carbon market revenues to address these inequalities, through investment in best available abatement technologies (BACT and in job creation in disadvantaged communities anticipated in the emerging clean energy sector.  Creating interdisciplinary partnerships across the UC Campuses and the National Laboratories to innovate science and technology is critical to scalable carbon neutrality solutions. As an example, we can build coordinated research and development programs across UC and California, with strong partnerships with the Federal government to coordinate and “multiply” resources that accelerate development and deployment. These partnerships should be strongly goal-focused, i.e., they are created to solve specific, large problems, to enable quantitatively measurable outcomes within energy generation, efficiency and CO2 abatement categories. Intersectoral partnerships should be fostered across campuses, laboratories, with state, federal and multi-lateral organizations funding to develop technologies and deploy solutions at scale. Integrated partnerships with industry are required to influence markets, deploy solutions, and create new industries and jobs.  Beyond California, we need to establish consortia with industry and foundations to deploy solutions at the regional, state, national, and international scale to

  16. Synthesis of novel '4+1' Tc(III)/Re(III) mixed-ligand complexes with dendritically modified ligands

    International Nuclear Information System (INIS)

    Gniazdowska, E.; Kuenstler, J.U.; Stephan, H.; Pietzsch, H.J.

    2006-01-01

    Coordination chemistry of technetium and rhenium attracts a considerable interest due to the nuclear medicine applications of their radionuclides. Inert, so-called '3+1' or '4+1' technetium/rhenium mixed-ligand complexes open a new way to application of 99 mTc/ 188 Re labeled compounds in tumor diagnosis and therapy. In the presented paper, authors describe the synthesis and study of novel 99 mTc/ 188 Re complexes with dendritically functionalized tetradentate (tripodal chelator 2,2',2''-nitrilotris(ethanethiol), NS 3 and carboxyl group-bearing ligand, NS 3 (COOH) 3 ) and monodentate (dendritically modified isocyanide, CN-R(COOMe) 3 and isocyanide-modified peptide, CN-GGY) ligands. To verify the identity of the prepared n.c.a. complexes, non-radioactive analogous '4+1' Re compounds were synthesized. The experimental data show that a dendritic modification of the tetradentate/monodentate ligands changes the complex lipophilicity and does not influence its stability

  17. Use of Electro-spray Ionization Mass Spectrometry (ESI-MS) for the characterization of complexes 'ligand - metallic cations' in solution

    Energy Technology Data Exchange (ETDEWEB)

    Berthon, Laurence; Zorz, Nicole; Lagrave, Stephanie; Gannaz, Benoit; Hill, Clement [CEA-Marcoule DEN-DRCP-SCPS-LCSE, BP 17171, 30207 Bagnols sur Ceze cedex (France)

    2008-07-01

    In the framework of nuclear waste reprocessing, separation processes of minor actinides from fission products are developed by Cea. In order to understand the mechanisms involved in the extraction processes, the 'ligand/metallic cation' complexes, formed in the organic phases are characterized by electro-spray-mass-spectrometry (ESI-MS). This paper deals with the extraction of lanthanides (III) and americium (III) cations by an organic phase composed of a malonamide or / and a dialkyl phosphoric acid, diluted in an aliphatic diluent. For the dialkyl phosphoric acid, Ln(DEHP){sub 3}(HDEHP){sub 3} complexes are observed and in the presence of a large excess of Ln(NO{sub 3}){sub 3}, dinuclear species are also observed. For the malonamide extractant, it appears that the complexes formed in the organic phase are of the Nd(NO{sub 3}){sub 3}D{sub x} type, with 2 {<=} x {<=} 4: their distributions depend on the ratio [Ln]/[DMDOHEMA]. When the two extractants are present in the organic phase, mixed 'Ln-malonamide-dialkyl phosphoric acid' species are observed. The influence of several parameters, such as extractant concentration, solute concentration, aqueous acidity and the nature of the cations (lanthanides or americium) are studied. (authors)

  18. The optimal solution of a non-convex state-dependent LQR problem and its applications.

    Directory of Open Access Journals (Sweden)

    Xudan Xu

    Full Text Available This paper studies a Non-convex State-dependent Linear Quadratic Regulator (NSLQR problem, in which the control penalty weighting matrix [Formula: see text] in the performance index is state-dependent. A necessary and sufficient condition for the optimal solution is established with a rigorous proof by Euler-Lagrange Equation. It is found that the optimal solution of the NSLQR problem can be obtained by solving a Pseudo-Differential-Riccati-Equation (PDRE simultaneously with the closed-loop system equation. A Comparison Theorem for the PDRE is given to facilitate solution methods for the PDRE. A linear time-variant system is employed as an example in simulation to verify the proposed optimal solution. As a non-trivial application, a goal pursuit process in psychology is modeled as a NSLQR problem and two typical goal pursuit behaviors found in human and animals are reproduced using different control weighting [Formula: see text]. It is found that these two behaviors save control energy and cause less stress over Conventional Control Behavior typified by the LQR control with a constant control weighting [Formula: see text], in situations where only the goal discrepancy at the terminal time is of concern, such as in Marathon races and target hitting missions.

  19. What a difference a 5f element makes: trivalent and tetravalent uranium halide complexes supported by one and two bis[2-(diisopropylphosphino)-4-methylphenyl]amido (PNP) ligands.

    Science.gov (United States)

    Cantat, Thibault; Scott, Brian L; Morris, David E; Kiplinger, Jaqueline L

    2009-03-02

    The coordination behavior of the bis[2-(diisopropylphosphino)-4-methylphenyl]amido ligand (PNP) toward UI3(THF)4 and UCl4 has been investigated to access new uranium(III) and uranium(IV) halide complexes supported by one and two PNP ligands. The reaction between (PNP)K (6) and 1 equiv of UI3(THF)4 afforded the trivalent halide complex (PNP)UI2(4-tBu-pyridine)2 (7) in the presence of 4-tert-butylpyridine. The same reaction carried out with UCl4 and no donor ligand gave [(PNP)UCl3]2 (8), in which the uranium coordination sphere in the (PNP)UCl3 unit is completed by a bridging chloride ligand. When UCl4 is reacted with 1 equiv (PNP)K (6) in the presence of THF, trimethylphosphine oxide (TMPO), or triphenylphosphineoxide (TPPO), the tetravalent halide complexes (PNP)UCl3(THF) (9), (PNP)UCl3(TMPO)2 (10), and (PNP)UCl3(TPPO) (11), respectively, are formed in excellent yields. The bis(PNP) complexes of uranium(III), (PNP)2UI (12), and uranium(IV), (PNP)2UCl2 (13), were easily isolated from the analogous reactions between 2 equiv of 6 and UI3(THF)4 or UCl4, respectively. Complexes 12 and 13 represent the first examples of complexes featuring two PNP ligands coordinated to a single metal center. Complexes 7-13 have been characterized by single-crystal X-ray diffraction and 1H and 31P NMR spectroscopy. The X-ray structures demonstrate the ability of the PNP ligand to adopt new coordination modes upon coordination to uranium. The PNP ligand can adopt both pseudo-meridional and pseudo-facial geometries when it is kappa3-(P,N,P) coordinated, depending on the steric demand at the uranium metal center. Additionally, its hemilabile character was demonstrated with an unusual kappa2-(P,N) coordination mode that is maintained in both the solid-state and in solution. Comparison of the structures of the mono(PNP) and bis(PNP) complexes 7, 9, 11-13 with their respective C5Me5 analogues 1-4 undoubtedly show that a more sterically congested environment is provided by the PNP ligand. The

  20. Room temperature synthesis of PbSe quantum dots in aqueous solution: Stabilization by interactions with ligands

    Science.gov (United States)

    Primera-Pedrozo, Oliva M.; Arslan, Zikri; Rasulev, Bakhtiyor; Leszczynski, Jerzy

    2011-01-01

    An aqueous route of synthesis is described for rapid synthesis of lead selenide quantum dots (PbSe QDs) at room temperature in an attempt to produce water-soluble and stable nanocrystals. Several thiol-ligands, including thioglycolic acid (TGA), thioglycerol (TGC), 3-mercaptopropionic acid (MPA), 2-mercaptoethyleamine hydrochloride (MEA), 6-mercaptohexanoic acid (MHA), and L-cysteine (L-cys), were used for capping/stabilization of PbSe QDs. The effects of the ligands on the stability of PbSe QDs were evaluated for a period of two months at room temperature under normal light conditions and at 4 °C in dark. The TGA- and MEA-capped QDs exhibited the highest stability prior to purification, almost two months when kept in dark at 4 °C. However, the stability of TGA-capped QDs was reduced substantially after purification to about 5 days under same conditions, while MEA-capped QDs did not show any significant instability. The stabilization energies of Pb-thiolate complexes determined by theoretical DFT simulations supported the experimental results. The PbSe QDs capped with TGA, MPA and MEA were successfully purified and re-dispersed in water, while those stabilized with TGC, MHA and L-cys aggregated during purification attempts. The purified PbSe QDs possess very susceptible surface resulting in poor stability for about 30 – 45 min after re-dispersion in water. In the presence of an excess of free ligand, the stability increased up to 5 days for TGA-capped QDs at pH 7.19, 9 –12 days for MPA-capped QDs at pH 7.3–7.5 and 45–47 days for MEA-capped QDs at pH 7.35. X-Ray Diffraction (XRD) results showed that the QDs possess a cubic rock salt structure with the most intense peaks located at 2θ = 25.3° (200) and 2θ = 29.2° (100). TEM images showed that the size of the QDs ranges between 5 and 10 nm. ICP-MS results revealed that Pb:Se ratio was 1.26, 1.28, 3.85, 1.18, and 1.31 for the QDs capped with TGA, MPA, MEA, L-Cys, and TGC, respectively. The proposed method

  1. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.

    Science.gov (United States)

    Duan, Lele; Wang, Lei; Li, Fusheng; Li, Fei; Sun, Licheng

    2015-07-21

    The oxygen evolving complex (OEC) of the natural photosynthesis system II (PSII) oxidizes water to produce oxygen and reducing equivalents (protons and electrons). The oxygen released from PSII provides the oxygen source of our atmosphere; the reducing equivalents are used to reduce carbon dioxide to organic products, which support almost all organisms on the Earth planet. The first photosynthetic organisms able to split water were proposed to be cyanobacteria-like ones appearing ca. 2.5 billion years ago. Since then, nature has chosen a sustainable way by using solar energy to develop itself. Inspired by nature, human beings started to mimic the functions of the natural photosynthesis system and proposed the concept of artificial photosynthesis (AP) with the view to creating energy-sustainable societies and reducing the impact on the Earth environments. Water oxidation is a highly energy demanding reaction and essential to produce reducing equivalents for fuel production, and thereby effective water oxidation catalysts (WOCs) are required to catalyze water oxidation and reduce the energy loss. X-ray crystallographic studies on PSII have revealed that the OEC consists of a Mn4CaO5 cluster surrounded by oxygen rich ligands, such as oxyl, oxo, and carboxylate ligands. These negatively charged, oxygen rich ligands strongly stabilize the high valent states of the Mn cluster and play vital roles in effective water oxidation catalysis with low overpotential. This Account describes our endeavors to design effective Ru WOCs with low overpotential, large turnover number, and high turnover frequency by introducing negatively charged ligands, such as carboxylate. Negatively charged ligands stabilized the high valent states of Ru catalysts, as evidenced by the low oxidation potentials. Meanwhile, the oxygen production rates of our Ru catalysts were improved dramatically as well. Thanks to the strong electron donation ability of carboxylate containing ligands, a seven

  2. Bexarotene ligand pharmaceuticals.

    Science.gov (United States)

    Hurst, R E

    2000-12-01

    Bexarotene (LGD-1069), from Ligand, was the first retinoid X receptor (RXR)-selective, antitumor retinoid to enter clinical trials. The company launched the drug for the treatment of cutaneous T-cell lymphoma (CTCL), as Targretin capsules, in the US in January 2000 [359023]. The company filed an NDA for Targretin capsules in June 1999, and for topical gel in December 1999 [329011], [349982] specifically for once-daily oral administration for the treatment of patients with early-stage CTCL who have not tolerated other therapies, patients with refractory or persistent early stage CTCL and patients with refractory advanced stage CTCL. The FDA approved Targretin capsules at the end of December 1999 for once-daily oral treatment of all stages of CTCL in patients refractory to at least one prior systemic therapy, at an initial dose of 300 mg/m2/day. After an NDA was submitted in December 1999 for Targretin gel, the drug received Priority Review status for use as a treatment of cutaneous lesions in patients with stage IA, IB or IIA CTCL [354836]. The FDA issued an approvable letter in June 2000, and granted marketing clearance for CTCL in the same month [370687], [372768], [372769], [373279]. Ligand had received Orphan Drug designation for this indication [329011]. At the request of the FDA, Ligand agreed to carry out certain post-approval phase IV and pharmacokinetic studies [351604]. The company filed an MAA with the EMEA for Targretin Capsules to treat lymphoma in November 1999 [348944]. The NDA for Targretin gel is based on a multicenter phase III trial that was conducted in the US, Canada, Europe and Australia involving 50 patients and a multicenter phase I/II clinical program involving 67 patients. Targretin gel was evaluated for the treatment of patients with early stage CTCL (IA-IIA) who were refractory to, intolerant to, or reached a response plateau for at least 6 months on at least two prior therapies. Efficacy results exceeded the protocol-defined response

  3. Zinc(II) halide complexes with 2-methoxyaniline ligand: Synthesis, characterization, thermal analyses, crystal structure determination and luminescent properties

    Science.gov (United States)

    Amani, Vahid

    2018-03-01

    Three new mononuclear zinc(II) complexes, [Zn(2-MeO-C6H4NH2)2X2] (X is Cl in 1, Br in 2 and I in 3), were prepared from the reactions of ZnX2 with 2-methoxyaniline (2-MeO-C6H4NH2) ligand in methanol. Suitable crystals of these complexes were obtained for X-ray diffraction measurements by slow evaporation of methanol solution at room temperature. The three complexes were thoroughly characterized by thermogravimetric analysis, elemental analysis (CHNO), spectral methods (IR, UV-Vis, 13C{1H}NMR, 1H NMR and luminescence), and single crystal X-ray diffraction. The X-ray structural analysis indicated that in the structures of these complexes, the zinc(II) cation is four-coordinated in a distorted tetrahedral configuration by two N atoms from two 2-methoxyanyline ligands and two halide anions. Also, in these complexes intermolecular interactions, for example Nsbnd H⋯X hydrogen bonds (in 1-3), Csbnd H⋯X hydrogen bonds (in 3), Csbnd H⋯π interactions (in 1 and 2) and π⋯π interactions (in 3), are effective in the stabilization of the crystal structures. In addition, the luminescence spectra of all complexes in methanolic solution show that the intensity of their emission bands is stronger than that for free 2-methoxyaniline ligand.

  4. LASSO-ligand activity by surface similarity order: a new tool for ligand based virtual screening.

    Science.gov (United States)

    Reid, Darryl; Sadjad, Bashir S; Zsoldos, Zsolt; Simon, Aniko

    2008-01-01

    Virtual Ligand Screening (VLS) has become an integral part of the drug discovery process for many pharmaceutical companies. Ligand similarity searches provide a very powerful method of screening large databases of ligands to identify possible hits. If these hits belong to new chemotypes the method is deemed even more successful. eHiTS LASSO uses a new interacting surface point types (ISPT) molecular descriptor that is generated from the 3D structure of the ligand, but unlike most 3D descriptors it is conformation independent. Combined with a neural network machine learning technique, LASSO screens molecular databases at an ultra fast speed of 1 million structures in under 1 min on a standard PC. The results obtained from eHiTS LASSO trained on relatively small training sets of just 2, 4 or 8 actives are presented using the diverse directory of useful decoys (DUD) dataset. It is shown that over a wide range of receptor families, eHiTS LASSO is consistently able to enrich screened databases and provides scaffold hopping ability.

  5. LASSO—ligand activity by surface similarity order: a new tool for ligand based virtual screening

    Science.gov (United States)

    Reid, Darryl; Sadjad, Bashir S.; Zsoldos, Zsolt; Simon, Aniko

    2008-06-01

    Virtual Ligand Screening (VLS) has become an integral part of the drug discovery process for many pharmaceutical companies. Ligand similarity searches provide a very powerful method of screening large databases of ligands to identify possible hits. If these hits belong to new chemotypes the method is deemed even more successful. eHiTS LASSO uses a new interacting surface point types (ISPT) molecular descriptor that is generated from the 3D structure of the ligand, but unlike most 3D descriptors it is conformation independent. Combined with a neural network machine learning technique, LASSO screens molecular databases at an ultra fast speed of 1 million structures in under 1 min on a standard PC. The results obtained from eHiTS LASSO trained on relatively small training sets of just 2, 4 or 8 actives are presented using the diverse directory of useful decoys (DUD) dataset. It is shown that over a wide range of receptor families, eHiTS LASSO is consistently able to enrich screened databases and provides scaffold hopping ability.

  6. Synthesis and characterization β-ketoamine ligands

    Science.gov (United States)

    Zaid, Nurzati Amani Mohamed; Hassan, Nur Hasyareeda; Karim, Nurul Huda Abd

    2018-04-01

    β-ketoamine ligands are important members of heterodonor ligand because of their ease of preparation and modification of both steric and/or electronic effects. Complexes with β-ketoamine has received much less attention and there has been no study about this complex with β-ketoamine in ionic liquid reported. Two type of β-ketoamine ligands which are 4-amino-3-pentene-2-onato (A) and 3-amino-2-butenoic acid methyl ester (B) have been synthesized in this work. The resulting compound formed was characterized using standard spectroscopic and structural techniques which includes 1H and 13C, NMR spectroscopy and FTIR spectroscopy. The 1H and 13C NMR spectrum displayed all the expected signals with correct integration and multiplicity. And it is proved that there are some differences between two ligands as observed in NMR and FTIR spectrum.

  7. Designer TGFβ superfamily ligands with diversified functionality.

    Directory of Open Access Journals (Sweden)

    George P Allendorph

    Full Text Available Transforming Growth Factor--beta (TGFβ superfamily ligands, including Activins, Growth and Differentiation Factors (GDFs, and Bone Morphogenetic Proteins (BMPs, are excellent targets for protein-based therapeutics because of their pervasiveness in numerous developmental and cellular processes. We developed a strategy termed RASCH (Random Assembly of Segmental Chimera and Heteromer, to engineer chemically-refoldable TGFβ superfamily ligands with unique signaling properties. One of these engineered ligands, AB208, created from Activin-βA and BMP-2 sequences, exhibits the refolding characteristics of BMP-2 while possessing Activin-like signaling attributes. Further, we find several additional ligands, AB204, AB211, and AB215, which initiate the intracellular Smad1-mediated signaling pathways more strongly than BMP-2 but show no sensitivity to the natural BMP antagonist Noggin unlike natural BMP-2. In another design, incorporation of a short N-terminal segment from BMP-2 was sufficient to enable chemical refolding of BMP-9, without which was never produced nor refolded. Our studies show that the RASCH strategy enables us to expand the functional repertoire of TGFβ superfamily ligands through development of novel chimeric TGFβ ligands with diverse biological and clinical values.

  8. Insight into partial agonism by observing multiple equilibria for ligand-bound and Gs-mimetic nanobody-bound β1-adrenergic receptor.

    Science.gov (United States)

    Solt, Andras S; Bostock, Mark J; Shrestha, Binesh; Kumar, Prashant; Warne, Tony; Tate, Christopher G; Nietlispach, Daniel

    2017-11-27

    A complex conformational energy landscape determines G-protein-coupled receptor (GPCR) signalling via intracellular binding partners (IBPs), e.g., G s and β-arrestin. Using 13 C methyl methionine NMR for the β 1 -adrenergic receptor, we identify ligand efficacy-dependent equilibria between an inactive and pre-active state and, in complex with G s -mimetic nanobody, between more and less active ternary complexes. Formation of a basal activity complex through ligand-free nanobody-receptor interaction reveals structural differences on the cytoplasmic receptor side compared to the full agonist-bound nanobody-coupled form, suggesting that ligand-induced variations in G-protein interaction underpin partial agonism. Significant differences in receptor dynamics are observed ranging from rigid nanobody-coupled states to extensive μs-to-ms timescale dynamics when bound to a full agonist. We suggest that the mobility of the full agonist-bound form primes the GPCR to couple to IBPs. On formation of the ternary complex, ligand efficacy determines the quality of the interaction between the rigidified receptor and an IBP and consequently the signalling level.

  9. Use of evidence-based interventions in state health departments: a qualitative assessment of barriers and solutions.

    Science.gov (United States)

    Dodson, Elizabeth A; Baker, Elizabeth A; Brownson, Ross C

    2010-01-01

    Existing knowledge on chronic disease prevention is not systematically disseminated and applied. State-level public health practitioners are in positions to implement programs and services related to chronic disease control. To advance dissemination science, this study sought to evaluate how and why evidence-based decision making (EBDM) is occurring. Specifically, it identified barriers to using EBDM commonly faced by state-level chronic disease practitioners and solutions for increasing the use of EBDM. Descriptive research using online survey methods. State health departments. Members of the National Association of Chronic Disease Directors. Barriers to using EBDM and solutions to increase the use of EBDM. In total, 469 people completed the survey (64% response rate). More than 60% of respondents described their position as project managers or coordinators. Nearly 80% of respondents were women, and 39% reported at least a master's degree as their highest degree. The survey elicited responses from every US state and the District of Columbia. Commonly-cited barriers to using EBDM included lack of time, resources, funding, and data. Participants noted that promising solutions to increase the use of EBDM include improved leadership, training, and collaboration. These results identify several modifiable barriers to EBDM among state-level public health practitioners. This information may improve state health departments' abilities to facilitate and encourage EBDM. In turn, this may assist chronic disease practitioners in implementing chronic disease interventions that have been proven effective. The use of such interventions will improve public health through the prevention of chronic diseases.

  10. Ligand-induced changes in the structure and dynamics of Escherichia coli peptide deformylase.

    Science.gov (United States)

    Amero, Carlos D; Byerly, Douglas W; McElroy, Craig A; Simmons, Amber; Foster, Mark P

    2009-08-18

    Peptide deformylase (PDF) is an enzyme that is responsible for removing the formyl group from nascently synthesized polypeptides in bacteria, attracting much attention as a potential target for novel antibacterial agents. Efforts to develop potent inhibitors of the enzyme have progressed on the basis of classical medicinal chemistry, combinatorial chemistry, and structural approaches, yet the validity of PDF as an antibacterial target hangs, in part, on the ability of inhibitors to selectively target this enzyme in favor of structurally related metallohydrolases. We have used (15)N NMR spectroscopy and isothermal titration calorimetry to investigate the high-affinity interaction of EcPDF with actinonin, a naturally occurring potent EcPDF inhibitor. Backbone amide chemical shifts, residual dipolar couplings, hydrogen-deuterium exchange, and (15)N relaxation reveal structural and dynamic effects of ligand binding in the immediate vicinity of the ligand-binding site as well as at remote sites. A comparison of the crystal structures of free and actinonin-bound EcPDF with the solution data suggests that most of the consequences of the ligand binding to the protein are lost or obscured during crystallization. The results of these studies improve our understanding of the thermodynamic global minimum and have important implications for structure-based drug design.

  11. Relating dynamic brain states to dynamic machine states: Human and machine solutions to the speech recognition problem.

    Directory of Open Access Journals (Sweden)

    Cai Wingfield

    2017-09-01

    Full Text Available There is widespread interest in the relationship between the neurobiological systems supporting human cognition and emerging computational systems capable of emulating these capacities. Human speech comprehension, poorly understood as a neurobiological process, is an important case in point. Automatic Speech Recognition (ASR systems with near-human levels of performance are now available, which provide a computationally explicit solution for the recognition of words in continuous speech. This research aims to bridge the gap between speech recognition processes in humans and machines, using novel multivariate techniques to compare incremental 'machine states', generated as the ASR analysis progresses over time, to the incremental 'brain states', measured using combined electro- and magneto-encephalography (EMEG, generated as the same inputs are heard by human listeners. This direct comparison of dynamic human and machine internal states, as they respond to the same incrementally delivered sensory input, revealed a significant correspondence between neural response patterns in human superior temporal cortex and the structural properties of ASR-derived phonetic models. Spatially coherent patches in human temporal cortex responded selectively to individual phonetic features defined on the basis of machine-extracted regularities in the speech to lexicon mapping process. These results demonstrate the feasibility of relating human and ASR solutions to the problem of speech recognition, and suggest the potential for further studies relating complex neural computations in human speech comprehension to the rapidly evolving ASR systems that address the same problem domain.

  12. Prediction of GPCR-Ligand Binding Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Sangmin Seo

    2018-01-01

    Full Text Available We propose a novel method that predicts binding of G-protein coupled receptors (GPCRs and ligands. The proposed method uses hub and cycle structures of ligands and amino acid motif sequences of GPCRs, rather than the 3D structure of a receptor or similarity of receptors or ligands. The experimental results show that these new features can be effective in predicting GPCR-ligand binding (average area under the curve [AUC] of 0.944, because they are thought to include hidden properties of good ligand-receptor binding. Using the proposed method, we were able to identify novel ligand-GPCR bindings, some of which are supported by several studies.

  13. New pinene-derived pyridines as bidentate chiral ligands

    Czech Academy of Sciences Publication Activity Database

    Malkov, A. V.; Stewart-Liddon, A.; Teplý, Filip; Kobr, L.; Muir, K. W.; Haigh, D.; Kočovský, P.

    2008-01-01

    Roč. 64, č. 18 (2008), s. 4011-4025 ISSN 0040-4020 Institutional research plan: CEZ:AV0Z40550506 Keywords : chiral ligands * transition metal catalysis * asymmetric catalysis * pyridine ligands * oxazoline ligands Subject RIV: CC - Organic Chemistry Impact factor: 2.897, year: 2008

  14. Accuracy and precision of protein–ligand interaction kinetics determined from chemical shift titrations

    International Nuclear Information System (INIS)

    Markin, Craig J.; Spyracopoulos, Leo

    2012-01-01

    NMR-monitored chemical shift titrations for the study of weak protein–ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K D ) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K D value of a 1:1 protein–ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125–138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of 1 H– 15 N 2D HSQC NMR spectra acquired using precise protein–ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k off ). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k off ∼ 3,000 s −1 in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k off from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k off values over a wide range, from 100 to 15,000 s −1 . The validity of line shape analysis for k off values approaching intermediate exchange (∼100 s −1 ), may be facilitated by more accurate K D measurements from NMR

  15. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations.

    Science.gov (United States)

    Markin, Craig J; Spyracopoulos, Leo

    2012-12-01

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K ( D )) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K ( D ) value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of (1)H-(15)N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k ( off )). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k ( off ) ~ 3,000 s(-1) in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k ( off ) from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k ( off ) values over a wide range, from 100 to 15,000 s(-1). The validity of line shape analysis for k ( off ) values approaching intermediate exchange (~100 s(-1)), may be facilitated by more accurate K ( D ) measurements

  16. Macrocyclic ligands for uranium complexation. Final report, August 1, 1986--March 31, 1993

    International Nuclear Information System (INIS)

    Potts, K.T.

    1993-01-01

    Macrocycles, designed for complexation of the uranyl ion by computer modeling studies and utilizing six ligating atoms in the equatorial plane of the uranyl ions, have been prepared and their complexation of the uranyl ions evaluated. The ligating atoms, either oxygen or sulfur, were part of acylurea, biuret or thiobiuret subunits with alkane chains or pyridine units completing the macrocyclic periphery. These macrocycles with only partial preorganization formed uranyl complexes in solution but no crystalline complexes were isolated. Refinement of the cavity diameter by variation of the peripheral functional groups is currently studied to achieve an optimized cavity diameter of 4.7--5.2 angstrom. Acyclic ligands containing the same ligating atoms in equivalent functional entities were found to form a crystalline 1:1 uranyl-ligand complex (stability constant log K = 10.7) whose structure was established by X-ray data. This complex underwent a facile, DMSO-induced rearrangement to a 2:1 uranyl-ligand complex whose structure was also established by X-ray data. The intermediates to the macrocycles all behaved as excellent ligands for the complexation of transition metals. Acylthiourea complexes of copper and nickel as well as intermolecular, binuclear copper and nickel complexes of bidentate carbonyl thioureas formed readily and their structures were established in several representative instances by X-ray structural determinations. Tetradentate bis(carbonylthioureas) were found to be very efficient selective reagents for the complexation of copper in the presence of nickel ions. Several preorganized macrocycles were also prepared but in most instances these macrocycles underwent ring-opening under complexation conditions

  17. Two-particle correlations in the one-dimensional Hubbard model: a ground-state analytical solution

    CERN Document Server

    Vallejo, E; Espinosa, J E

    2003-01-01

    A solution to the extended Hubbard Hamiltonian for the case of two-particles in an infinite one-dimensional lattice is presented, using a real-space mapping method and the Green function technique. This Hamiltonian considers the on-site (U) and the nearest-neighbor (V) interactions. The method is based on mapping the correlated many-body problem onto an equivalent site-impurity tight-binding one in a higher dimensional space. In this new space we obtained the analytical solution for the ground state binding energy. Results are in agreement with the numerical solution obtained previously [1], and with those obtained in the reciprocal space [2]. (Author)

  18. A high pressure study of calmodulin-ligand interactions using small-angle X-ray and elastic incoherent neutron scattering.

    Science.gov (United States)

    Cinar, Süleyman; Al-Ayoubi, Samy; Sternemann, Christian; Peters, Judith; Winter, Roland; Czeslik, Claus

    2018-01-31

    Calmodulin (CaM) is a Ca 2+ sensor and mediates Ca 2+ signaling through binding of numerous target ligands. The binding of ligands by Ca 2+ -saturated CaM (holo-CaM) is governed by attractive hydrophobic and electrostatic interactions that are weakened under high pressure in aqueous solutions. Moreover, the potential formation of void volumes upon ligand binding creates a further source of pressure sensitivity. Hence, high pressure is a suitable thermodynamic variable to probe protein-ligand interactions. In this study, we compare the binding of two different ligands to holo-CaM as a function of pressure by using X-ray and neutron scattering techniques. The two ligands are the farnesylated hypervariable region (HVR) of the K-Ras4B protein, which is a natural binding partner of holo-CaM, and the antagonist trifluoperazine (TFP), which is known to inhibit holo-CaM activity. From small-angle X-ray scattering experiments performed up to 3000 bar, we observe a pressure-induced partial unfolding of the free holo-CaM in the absence of ligands, where the two lobes of the dumbbell-shaped protein are slightly swelled. In contrast, upon binding TFP, holo-CaM forms a closed globular conformation, which is pressure stable at least up to 3000 bar. The HVR of K-Ras4B shows a different binding behavior, and the data suggest the dissociation of the holo-CaM/HVR complex under high pressure, probably due to a less dense protein contact of the HVR as compared to TFP. The elastic incoherent neutron scattering experiments corroborate these findings. Below 2000 bar, pressure induces enhanced atomic fluctuations in both holo-CaM/ligand complexes, but those of the holo-CaM/HVR complex seem to be larger. Thus, the inhibition of holo-CaM by TFP is supported by a low-volume ligand binding, albeit this is not associated with a rigidification of the complex structure on the sub-ns Å-scale.

  19. Glucagon-like peptide-1 receptor ligand interactions: structural cross talk between ligands and the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Graham M West

    Full Text Available Activation of the glucagon-like peptide-1 receptor (GLP-1R in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM. Like other class B G protein-coupled receptors (GPCRs, the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R. In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands.

  20. EXAFS Studies of Some Copper(II) Mixed-Ligand Complexes

    International Nuclear Information System (INIS)

    Joshi, S. K.; Katare, R. K.; Shrivastava, B. D.

    2007-01-01

    X-ray K-absorption spectroscopic studies have been carried out on copper (II) mixed-ligand complexes with glutamic acid and aspartic acid as the primary ligands, where as water, pyridine, imidazole and benz-imidazole have been used as secondary ligands. Chemical shifts obtained from the X-ray absorption data have indicated that the glutamic acid complexes are more ionic as compared to their corresponding aspartic acid complexes having similar secondary ligands. Further, we have estimated the average metal-ligand bond distances from the from structure data. For the different complexes studied under the present investigation, the studies reveal that the bonding parameter α1 decreases with the increase in the percentage covalency of the metal-ligand bond. Thus, the bonding parameter α1 may be used for the estimation of percentage covalency of the metal-ligand bond in other similar complexes

  1. Rates and equilibrium constants of the ligand-induced conformational transition of an HCN ion channel protein domain determined by DEER spectroscopy.

    Science.gov (United States)

    Collauto, Alberto; DeBerg, Hannah A; Kaufmann, Royi; Zagotta, William N; Stoll, Stefan; Goldfarb, Daniella

    2017-06-14

    Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.

  2. Synthesis, characterization, and reactivity of nickel hydride complexes containing 2,6-C6H3(CH2PR2)2 (R = tBu, cHex, and iPr) pincer ligands.

    Science.gov (United States)

    Boro, Brian J; Duesler, Eileen N; Goldberg, Karen I; Kemp, Richard A

    2009-06-15

    The syntheses and full characterization of nickel hydrides containing the PCP "pincer"-type ligand, where PCP = 2,6-C(6)H(3)(CH(2)PR(2))(2) (R = tBu, cHex, and iPr), are reported. These Ni-H complexes are prepared by the conversion of ((R)PCP)NiCl precursors into the corresponding nickel hydrides by use of appropriate hydride donors. Surprisingly, although the ((R)PCP)NiCl precursors are quite similar chemically, the conversions to the hydrides were not straightforward and required different hydride reagents to provide analytically pure products. While NaBH(4) was effective in the preparation of pure ((tBu)PCP)NiH, Super-Hydride solution (LiEt(3)BH in THF) was required to prepare either ((cHex)PCP)NiH or ((iPr)PCP)NiH. Attempts to prepare a Ni-H from ((Ph)PCP)NiCl with a variety of hydride reagents yielded only the free ligand as an identifiable product. Two of the derivatives, tBu and cHex, have also been subjected to single crystal X-ray analysis. The solid-state structures each showed a classic, near-square planar arrangement for Ni in which the PCP ligand occupied three meridional ligand points with the Ni-H trans to the Ni-C bond. The resulting Ni-H bond lengths were 1.42(3) and 1.55(2) A for the tBu and cHex derivatives, respectively.

  3. Detection of site-specific binding and co-binding of ligands to macromolecules using 19F NMR

    International Nuclear Information System (INIS)

    Jenkins, B.G.

    1991-01-01

    Study of ligand-macromolecular interactions by 19 F nuclear magnetic resonance (NMR) spectroscopy affords many opportunities for obtaining molecular biochemical and pharmaceutical information. This is due to the absence of a background fluorine signal, as well as the relatively high sensitivity of 19 F NMR. Use of fluorine-labeled ligands enables one to probe not only binding and co-binding phenomena to macromolecules, but also can provide data on binding constants, stoichiometries, kinetics, and conformational properties of these complexes. Under conditions of slow exchange and macromolecule-induced chemical shifts, multiple 19 F NMR resonances can be observed for free and bound ligands. These shifted resonances are a direct correlate of the concentration of ligand bound in a specific state rather than the global concentrations of bound or free ligand which are usually determined using other techniques such as absorption spectroscopy or equilibrium dialysis. Examples of these interactions are demonstrated both from the literature and from interactions of 5-fluorotryptophan, 5-fluorosalicylic acid, flurbiprofen, and sulindac sulfide with human serum albumin. Other applications of 19 F NMR to study of these interactions in vivo, as well for receptor binding and metabolic tracing of fluorinated drugs and proteins are discussed

  4. Interactions between alkaline earth cations and oxo ligands. DFT study of the affinity of the Mg²+ cation for phosphoryl ligands.

    Science.gov (United States)

    da Costa, Leonardo Moreira; de Mesquita Carneiro, José Walkimar; Paes, Lilian Weitzel Coelho

    2011-08-01

    DFT (B3LYP/6-31+G(d)) calculations of Mg(2+) affinities for a set of phosphoryl ligands were performed. Two types of ligands were studied: a set of trivalent [O = P(R)] and a set of pentavalent phosphoryl ligands [O = P(R)(3)] (R = H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either bound directly to the phosphorus atom or to the para position of a phenyl ring. The affinity of the Mg(2+) cation for the ligands was quantified by means of the enthalpy for the substitution of one water molecule in the [Mg(H(2)O)(6)](2+) complex for a ligand. The enthalpy of substitution was correlated with electronic and geometric parameters. Electron-donor groups increase the interaction between the cation and the ligand, while electron-acceptor groups decrease the interaction enthalpy.

  5. The concept of mixed organic ligands in metal-organic frameworks: design, tuning and functions.

    Science.gov (United States)

    Yin, Zheng; Zhou, Yan-Ling; Zeng, Ming-Hua; Kurmoo, Mohamedally

    2015-03-28

    The research on metal-organic frameworks (MOFs) has been developing at an extraordinary pace in its two decades of existence, as judged by the exponential growth of novel structures and the constant expansion of its applicability and research scope. A major part of the research and its success are due to the vital role of the concept of mixed organic ligands in the design, tuning and functions. This perspective, therefore, reviews the recent advances in MOFs based on this concept, which is generally based on employing a small polydentate ligand (here labelled as "nodal ligand") to form either clusters, rods or layers, which are then connected by a second ditopic linker ligand to form the framework. The structures of the materials can be grouped into the following three categories: layer-spacer (usually known as pillared-layer), rod-spacer, and cluster-spacer based MOFs. Depending on the size and geometry of the spacer ligands, interpenetrations of frameworks are occasionally found. These MOFs show a wide range of properties such as (a) crystal-to-crystal transformations upon solvent modifications, post-synthetic metal exchange or ligand reactions, (b) gas sorption, solvent selectivity and purification, (c) specific catalysis, (d) optical properties including colour change, luminescence, non-linear optic, (e) short- and long range magnetic ordering, metamagnetism and reversible ground-state modifications and (f) drug and iodine carriers with controlled release. In the following, we will highlight the importance of the above concept in the design, tuning, and functions of a selection of existing MOFs having mixed organic ligands and their associated structures and properties. The results obtained so far using this concept look very promising for fine-tuning the pore size and shape for selective adsorption and specificity in catalytic reactions, which appears to be one way to propel the advances in the application and commercialization of MOFs.

  6. Discovering protein-ligand chalcogen bonding in the protein data bank using endocyclic sulfur-containing heterocycles as ligand search subsets.

    Science.gov (United States)

    Mitchell, Miguel O

    2017-09-24

    The chalcogen bond, the noncovalent, electrostatic attraction between covalently bonded atoms in group 16 and Lewis bases, is present in protein-ligand interactions based on X-ray structures deposited in the Protein Data Bank (PDB). Discovering protein-ligand chalcogen bonding in the PDB employed a strategy that focused on searching the database for protein complexes of five-membered, heterocyclic ligands containing endocyclic sulfur with endo electron-withdrawing groups (isothiazoles; thiazoles; 1,2,3-, 1,2.4-, 1,2,5-, 1,3,4-thiadiazoles) and thiophenes with exo electron-withdrawing groups, e.g., 2-chloro, 2-bromo, 2-amino, 2-alkylthio. Out of 930 ligands investigated, 33 or 3.5% have protein-ligand S---O interactions of which 31 are chalcogen bonds and two appear to be S---HO hydrogen bonds. The bond angles for some of the chalcogen bonds found in the PDB are less than 90°, and an electrostatic model is proposed to explain this phenomenon.

  7. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach.

    Science.gov (United States)

    Estrada, T; Zhang, B; Cicotti, P; Armen, R S; Taufer, M

    2012-07-01

    We present a scalable and accurate method for classifying protein-ligand binding geometries in molecular docking. Our method is a three-step process: the first step encodes the geometry of a three-dimensional (3D) ligand conformation into a single 3D point in the space; the second step builds an octree by assigning an octant identifier to every single point in the space under consideration; and the third step performs an octree-based clustering on the reduced conformation space and identifies the most dense octant. We adapt our method for MapReduce and implement it in Hadoop. The load-balancing, fault-tolerance, and scalability in MapReduce allow screening of very large conformation spaces not approachable with traditional clustering methods. We analyze results for docking trials for 23 protein-ligand complexes for HIV protease, 21 protein-ligand complexes for Trypsin, and 12 protein-ligand complexes for P38alpha kinase. We also analyze cross docking trials for 24 ligands, each docking into 24 protein conformations of the HIV protease, and receptor ensemble docking trials for 24 ligands, each docking in a pool of HIV protease receptors. Our method demonstrates significant improvement over energy-only scoring for the accurate identification of native ligand geometries in all these docking assessments. The advantages of our clustering approach make it attractive for complex applications in real-world drug design efforts. We demonstrate that our method is particularly useful for clustering docking results using a minimal ensemble of representative protein conformational states (receptor ensemble docking), which is now a common strategy to address protein flexibility in molecular docking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Crystal structures and Moessbauer spectra of spin-crossover iron(III) complexes of quinquedentate ligands

    International Nuclear Information System (INIS)

    Maeda, Yonezo; Noda, Yosuke; Oshio, Hiroki; Takashima, Yoshimasa; Matsumoto, Naohide

    1994-01-01

    Magnetic properties, Moessbauer spectra and crystal structures of spin-crossover iron(III) complexes with a quinquedentate ligand [FeLX]BPh 4 are reported. X and L denote a unidentate ligand and a quinquedentate ligand, respectively. [Fe(mbpN)(im)]BPh 4 shows spin-crossover behavior in an appropriate organic solvent, and [Fe(mbpN)(lut)]BPh 4 , [Fe(bpN)(py)]BPh 4 and [Fe(salten)X]BPh 4 (X = 4me-py or 2me-im) show spin-crossover behavior in a solid and in an organic solvent. It was found that the ligand field strength of salten was stronger than that of mbpN. The rates of spin-state interexchange in the complexes are as fast as the inverse of the lifetime (1 x 10 -7 s) of the Moessbauer nuclear level. The Moessbauer spectroscopic behavior of [Fe(mbpN)(lut)]BPh 4 and [Fe(bpN)(py)]BPh 4 is different to that of [Fe(salten)X]BPh 4 (X = 4me-py or 2me-im). The difference was ascribed to the different geometrical positions of the corresponding anions. (orig.)

  9. A two-dimensional layered Cd(II) coordination polymer with a three-dimensional supramolecular architecture incorporating mixed multidentate N- and O-donor ligands.

    Science.gov (United States)

    Huang, Qiu-Ying; Su, Ming-Yang; Meng, Xiang-Ru

    2015-06-01

    The combination of N-heterocyclic and multicarboxylate ligands is a good choice for the construction of metal-organic frameworks. In the title coordination polymer, poly[bis{μ2-1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole-κ(2)N(3):N(4)}(μ4-butanedioato-κ(4)O(1):O(1'):O(4):O(4'))(μ2-butanedioato-κ(2)O(1):O(4))dicadmium], [Cd(C4H4O4)(C9H8N6)]n, each Cd(II) ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from three carboxylate groups of three succinate (butanedioate) ligands and two N atoms from two 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole (bimt) ligands. Cd(II) ions are connected by two kinds of crystallographically independent succinate ligands to generate a two-dimensional layered structure with bimt ligands located on each side of the layer. Adjacent layers are further connected by hydrogen bonding, leading to a three-dimensional supramolecular architecture in the solid state. Thermogravimetric analysis of the title polymer shows that it is stable up to 529 K and then loses weight from 529 to 918 K, corresponding to the decomposition of the bimt ligands and succinate groups. The polymer exhibits a strong fluorescence emission in the solid state at room temperature.

  10. Reciprocal Estimation of Pedestrian Location and Motion State toward a Smartphone Geo-Context Computing Solution

    Directory of Open Access Journals (Sweden)

    Jingbin Liu

    2015-06-01

    Full Text Available The rapid advance in mobile communications has made information and services ubiquitously accessible. Location and context information have become essential for the effectiveness of services in the era of mobility. This paper proposes the concept of geo-context that is defined as an integral synthesis of geographical location, human motion state and mobility context. A geo-context computing solution consists of a positioning engine, a motion state recognition engine, and a context inference component. In the geo-context concept, the human motion states and mobility context are associated with the geographical location where they occur. A hybrid geo-context computing solution is implemented that runs on a smartphone, and it utilizes measurements of multiple sensors and signals of opportunity that are available within a smartphone. Pedestrian location and motion states are estimated jointly under the framework of hidden Markov models, and they are used in a reciprocal manner to improve their estimation performance of one another. It is demonstrated that pedestrian location estimation has better accuracy when its motion state is known, and in turn, the performance of motion state recognition can be improved with increasing reliability when the location is given. The geo-context inference is implemented simply with the expert system principle, and more sophisticated approaches will be developed.

  11. Links between soil properties and steady-state solute transport through cultivated topsoil at the field scale

    DEFF Research Database (Denmark)

    Koestel, J. K.; Nørgaard, Trine; Loung, N. M.

    2013-01-01

    It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables......, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field...... to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column...

  12. A tandem regression-outlier analysis of a ligand cellular system for key structural modifications around ligand binding.

    Science.gov (United States)

    Lin, Ying-Ting

    2013-04-30

    A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis.

  13. Eco-friendly luminescent solar concentrators with low reabsorption losses and resistance to concentration quenching based on aqueous-solution-processed thiolate-gold nanoclusters

    Science.gov (United States)

    Huang, H. Y.; Cai, K. B.; Chang, L. Y.; Chen, P. W.; Lin, T. N.; Lin, C. A. J.; Shen, J. L.; Talite, M. J.; Chou, W. C.; Yuan, C. T.

    2017-09-01

    Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in ‘green photonics’. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing ‘green’ LSCs. We found that such GSH-AuNCs exhibit a large Stokes