Solution of a simple inelastic scattering problem
International Nuclear Information System (INIS)
Knudson, S.K.
1975-01-01
Simple examples of elastic scattering, typically from square wells, serve as important pedagogical tools in discussion of the concepts and processes involved in elastic scattering events. An analytic solution of a model inelastic scattering system is presented here to serve in this role for inelastic events. The model and its solution are simple enough to be of pedagogical utility, but also retain enough of the important physical features to include most of the special characteristics of inelastic systems. The specific model chosen is the collision of an atom with a harmonic oscillator, interacting via a repulsive square well potential. Pedagogically important features of inelastic scattering, including its multistate character, convergence behavior, and dependence on an ''inelastic potential'' are emphasized as the solution is determined. Results are presented for various energies and strengths of inelastic scattering, which show that the model is capable of providing an elementary representation of vibrationally inelastic scattering
Small angle neutron scattering by polymer solutions
International Nuclear Information System (INIS)
Farnoux, B.; Jannink, G.
1980-08-01
Small angle neutron scattering is an experimental technique introduced since about 10 years for the observation of the polymer conformation in all the concentration range from dilute solution to the melt. After a brief recall of the elementary relations between scattering amplitude, index of refraction and scattered intensity, two concepts related to this last quantity (the contrast and the pair correlation function) are discussed in details
On exact solutions of scattering problems
International Nuclear Information System (INIS)
Nikishov, P.Yu.; Plekhanov, E.B.; Zakhariev, B.N.
1982-01-01
Examples illustrating the quality of the reconstruction of potentials from single-channel scattering data by using exactly solvable models are given. Simple exact solutions for multi-channel systems with non-degenerated resonance singularities of the scattering matrix are derived
Formal solutions of inverse scattering problems. III
International Nuclear Information System (INIS)
Prosser, R.T.
1980-01-01
The formal solutions of certain three-dimensional inverse scattering problems presented in papers I and II of this series [J. Math. Phys. 10, 1819 (1969); 17 1175 (1976)] are obtained here as fixed points of a certain nonlinear mapping acting on a suitable Banach space of integral kernels. When the scattering data are sufficiently restricted, this mapping is shown to be a contraction, thereby establishing the existence, uniqueness, and continuous dependence on the data of these formal solutions
Neutron scattering study of dilute supercritical solutions
International Nuclear Information System (INIS)
Cochran, H.D.; Wignall, G.D.; Shah, V.M.; Londono, J.D.; Bienkowski, P.R.
1994-01-01
Dilute solutions in supercritical solvents exhibit interesting microstructures that are related to their dramatic macroscopic behavior. In typical attractive solutions, solutes are believed to be surrounded by clusters of solvent molecules, and solute molecules are believed to congregate in the vicinity of one another. Repulsive solutions, on the other hand, exhibit a local region of reduced solvent density around the solute with solute-solute congregation. Such microstructures influence solubility, partial molar volume, reaction kinetics, and many other properties. We have undertaken to observe these interesting microstructures directly by neutron scattering experiments on dilute noble gas systems including Ar. The three partial structure factors for such systems and the corresponding pair correlation functions can be determined by using the isotope substitution technique. The systems studied are uniquely suited for our objectives because of the large coherent neutron scattering length of the isotope 36 Ar and because of the accurate potential energy functions that are available for use in molecular simulations and theoretical calculations to be compared with the scattering results. We will describe our experiment, the unique apparatus we have built for it, and the neutron scattering results from our initial allocations of beam time. We will also describe planned scattering experiments to follow those with noble gases, including study of long-chain molecules in supercritical solvents. Such studies will involve hydrocarbon mixtures with and without deuteration to provide contrast
Semi-analytical solution to arbitrarily shaped beam scattering
Wang, Wenjie; Zhang, Huayong; Sun, Yufa
2017-07-01
Based on the field expansions in terms of appropriate spherical vector wave functions and the method of moments scheme, an exact semi-analytical solution to the scattering of an arbitrarily shaped beam is given. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are presented to a spheroid and a circular cylinder of finite length, and the scattering properties are analyzed concisely.
Iterative numerical solution of scattering problems
Energy Technology Data Exchange (ETDEWEB)
Tomio, L; Adhikari, S K
1995-05-01
An iterative Neumann series method, employing a real auxiliary scattering integral equation, is used to calculate scattering lengths and phase shifts for the atomic Yukawa and exponential potentials. For these potentials the original Neumann series diverges. The present iterative method yields results that are far better, in convergence, stability and precision, than other momentum space methods. Accurate result is obtained in both cases with an estimated error of about 1 in 10{sup 10} after some-8-10 iterations. (author). 31 refs, 2 tabs.
Iterative numerical solution of scattering problems
International Nuclear Information System (INIS)
Tomio, L.; Adhikari, S.K.
1995-05-01
An iterative Neumann series method, employing a real auxiliary scattering integral equation, is used to calculate scattering lengths and phase shifts for the atomic Yukawa and exponential potentials. For these potentials the original Neumann series diverges. The present iterative method yields results that are far better, in convergence, stability and precision, than other momentum space methods. Accurate result is obtained in both cases with an estimated error of about 1 in 10 10 after some-8-10 iterations. (author). 31 refs, 2 tabs
Numerical solution of the multichannel scattering problem
International Nuclear Information System (INIS)
Korobov, V.I.
1992-01-01
A numerical algorithm for solving the multichannel elastic and inelastic scattering problem is proposed. The starting point is the system of radial Schroedinger equations with linear boundary conditions imposed at some point R=R m placed somewhere in asymptotic region. It is discussed how the obtained linear equation can be splitted into a zero-order operator and its pertturbative part. It is shown that Lentini - Pereyra variable order finite-difference method appears to be very suitable for solving that kind of problems. The derived procedure is applied to dμ+t→tμ+d inelastic scattering in the framework of the adiabatic multichannel approach. 19 refs.; 1 fig.; 1 tab
Light scattering from polymer solutions and nanoparticle dispersions
Schärtl, Wolfgang; Janca, Josef
2007-01-01
Light scattering is a very powerful method to characterize the structure of polymers and nanoparticles in solution. Recent technical developments have strongly enhanced the possible applications of this technique, overcoming previous limitations like sample turbidity or insufficient experimental time scales. However, despite their importance, these new developments have not yet been presented in a comprehensive form. In addition, and maybe even more important to the broad audience, there lacks a simple-to-read textbook for students and non-experts interested in the basic principles and fundamental techniques of light scattering. As part of the Springer Laboratory series, this book tries not only to provide such a simple-to-read and illustrative textbook about the seemingly very complicated topic of light scattering from polymers and nanoparticles in dilute solution, but also intends to cover some of the newest technical developments in experimental light scattering.
Markov chain solution of photon multiple scattering through turbid slabs.
Lin, Ying; Northrop, William F; Li, Xuesong
2016-11-14
This work introduces a Markov Chain solution to model photon multiple scattering through turbid slabs via anisotropic scattering process, i.e., Mie scattering. Results show that the proposed Markov Chain model agree with commonly used Monte Carlo simulation for various mediums such as medium with non-uniform phase functions and absorbing medium. The proposed Markov Chain solution method successfully converts the complex multiple scattering problem with practical phase functions into a matrix form and solves transmitted/reflected photon angular distributions by matrix multiplications. Such characteristics would potentially allow practical inversions by matrix manipulation or stochastic algorithms where widely applied stochastic methods such as Monte Carlo simulations usually fail, and thus enable practical diagnostics reconstructions such as medical diagnosis, spray analysis, and atmosphere sciences.
Small-angle X-ray scattering of solutions
International Nuclear Information System (INIS)
Koch, M.H.J.; Stuhrmann, H.B.; Vachette, P.; Tardieu, A.
1982-01-01
The use of synchrotron radiation in small-angle X-ray scattering (SAXS) techniques in biological structural studies is described. The main features of the monochromatic radiation systems and the white radiation systems are considered. The detectors, data acquisition and experimental procedures are briefly described. Experimental results are presented for 1) measurements on dilute solutions and weak scatterers, 2) measurement of conformational transitions, 3) contrast variation experiments, 4) time-resolved measurements and 5) complex contrast variation. (U.K.)
Small angle x-ray scattering from proteins in solution
International Nuclear Information System (INIS)
de Souza, C.F.; Torriani, I.L.; Bonafe, C.F.S.; Merrelles, N.C.; Vachette, P.
1989-01-01
In this work the authors report experiments performed with giant respiratory proteins from annelids (erythrocruorins), known to have a molecular weight in the order of four million Daltons. Preliminary x-ray scattering data was obtained using a conventional rotating anode source. High resolution small angle scattering curves were obtained with synchrotron radiation from the DCI storage ring at LURE. Data from solutions with several protein concentrations were analyzed in order to determine low resolution dimensional parameters, using Guinier plots from the smeared scattering curves and the inverse transformation method
N-body scattering solution in coordinate space
International Nuclear Information System (INIS)
Cheng-Guang, B.
1986-01-01
The Schroedinger equation has been transformed into a set of coupled partial differential equations having hyper-variables as arguments and a procedure for embedding the boundary conditions into the N-body scattering solution by using a set of homogeneous linear algebraic equations is proposed
Approximate solutions of some problems of scattering of surface ...
Indian Academy of Sciences (India)
A Choudhary
Abstract. A class of mixed boundary value problems (bvps), occurring in the study of scattering of surface water waves by thin vertical rigid barriers placed in water of finite depth, is examined for their approximate solutions. Two different placings of vertical barriers are analyzed, namely, (i) a partially immersed barrier and.
Small angle X-ray scattering from protein in solution
International Nuclear Information System (INIS)
Souza, C.F. de; Torriani, I.L.
1988-01-01
In this work we report experiments performed with giant respiratory proteins from annelids. X-ray scattering data were obtained both by the use of conventional rotating anod source and synchotron radiation. Data from solutions with several protein concentrations were analyzed. (A.C.A.S.) [pt
Electron enhanced Raman scattering and its applications in solution chemistry
International Nuclear Information System (INIS)
Yui, Hiroharu
2007-01-01
The present review describes a new enhancement technique for Raman scattering in aqueous solutions. Raman scattering spectroscopy has an inherent ability to distinguish between molecules with great similarity and provides useful information on local physical and chemical environments at their functional groups' level. Since the Raman scattering signals from water molecules are quite weak, Raman spectroscopy has great advantage for detection or discrimination of a trace amount of analytes in aqueous environments. However, Raman scattering cross-sections are inherently small and it generally requires high power excitation and long acquisition times to obtain high-quality Raman spectra. These conditions create disadvantages for the analyses for living cells and real-time monitoring for environmental analyses. Here, I describe a new Raman enhancement technique, namely electron enhanced Raman scattering (EERS)', where artificially generated electrons additionally affect the polarizability of target molecular systems and enhance their inherent Raman cross-section. Principles of the EERS and its applications to aqueous solution are presented. (author)
Light scattering measurements supporting helical structures for chromatin in solution.
Campbell, A M; Cotter, R I; Pardon, J F
1978-05-01
Laser light scattering measurements have been made on a series of polynucleosomes containing from 50 to 150 nucleosomes. Radii of gyration have been determined as a function of polynucleosome length for different ionic strength solutions. The results suggest that at low ionic strength the chromatin adopts a loosely helical structure rather than a random coil. The helix becomes more regular on increasing the ionic strength, the dimension resembling those proposed by Finch and Klug for their solenoid model.
Diffuse neutron scattering study of metallic interstitial solid solutions
International Nuclear Information System (INIS)
Barberis, P.
1991-10-01
We studied two interstitial solid solutions (Ni-C(1at%) and Nb-O(2at%) and two stabilized zirconia (ZrO2-CaO(13.6mol%) and ZrO2-Y2O3(9.6mol%) by elastic diffuse neutron scattering. We used polarized neutron scattering in the case of the ferromagnetic Ni-based sample, in order to determine the magnetic perturbation induced by the C atoms. Measurements were made on single crystals in the Laboratoire Leon Brillouin (CEA-CNRS, Saclay, France). An original algorithm to deconvolve time-of-flight spectra improved the separation between elastically and inelastically scattered intensities. In the case of metallic solutions, we used a simple non-linear model, assuming that interstitials are isolated and located in octahedral sites. Results are: - in both compounds, nearest neighbours are widely displaced away from the interstitial, while next nearest neighbours come slightly closer. - the large magnetic perturbation induced by carbon in Nickel decreases with increasing distance on the three first neighbour shells and is in good agreement with the total magnetization variation. - no chemical order between solute atoms could be evidenced. Stabilized zirconia exhibit a strong correlation between chemical order and the large displacements around vacancies and dopants. (Author). 132 refs., 38 figs., 13 tabs
X-ray small angle scattering of polymer solutions
International Nuclear Information System (INIS)
Koyama, Ryuzo
1975-01-01
In recent papers, the calculated results were reported on the angular dependence of the intensity of scattered light or X-ray by chain polymers, on the basis of a stiff chain model. As the results, the curves of S 2 P (theta) corresponding to Kratky plot, for different molecular expansion, showed a plateau, and the height of the plateau was proportional to the inverse of molecular expansion coefficient α 2 . But as seen later, there is some possibility that the assumption made in the calculation overestimated the expansion of small segments which theoretically determines scattering curves at large scattering angles, such as the plateau. Accordingly, modified calculation was carried out by adopting the stiff chain polymer model as the previous case. When the contour length of a chain segment is very long, it can be treated approximately as a Gaussian coil, thus the equation for a chain segment expansion coefficient α (t) was obtained. Then the mean square distance of chain segments of polymer molecules was able to be determined, and the equation for a particle scattering factor P(theta) was obtained. The numerical calculation of P(theta) showed that this modified assumption considerably decreased the effect of molecular expansion on P(theta), and the curves of S 2 P(theta) increased monotonously without showing the plateau. The result of this calculation was compared with the experimental curves of polystyrene-toluene solution, and the agreement better than before was obtained. (Kako, I.)
Exact scattering solutions in an energy sudden (ES) representation
International Nuclear Information System (INIS)
Chang, B.; Eno, L.; Rabitz, H.
1983-01-01
In this paper, we lay down the theoretical foundations for computing exact scattering wave functions in a reference frame which moves in unison with the system internal coordinates. In this frame the (internal) coordinates appear to be fixed and its adoption leads very naturally (in zeroth order) to the energy sudden (ES) approximation [and the related infinite order sudden (IOS) method]. For this reason we call the new representation for describing the exact dynamics of a many channel scattering problem, the ES representation. Exact scattering solutions are derived in both time dependent and time independent frameworks for the representation and many interesting results in these frames are established. It is shown, e.g., that in a time dependent frame the usual Schroedinger propagator factorizes into internal Hamiltonian, ES, and energy correcting propagators. We also show that in a time independent frame the full Green's functions can be similarly factorized. Another important feature of the new representation is that it forms a firm foundation for seeking corrections to the ES approximation. Thus, for example, the singularity which arises in conventional perturbative expansions of the full Green's functions (with the ES Green's function as the zeroth order solution) is avoided in the ES representation. Finally, a number of both time independent and time dependent ES correction schemes are suggested
[Utilities: a solution of a decision problem?].
Koller, Michael; Ohmann, Christian; Lorenz, Wilfried
2008-01-01
Utility is a concept that originates from utilitarianism, a highly influential philosophical school in the Anglo-American world. The cornerstone of utilitarianism is the principle of maximum happiness or utility. In the medical sciences, this utility approach has been adopted and developed within the field of medical decision making. On an operational level, utility is the evaluation of a health state or an outcome on a one-dimensional scale ranging from 0 (death) to 1 (perfect health). By adding the concept of expectancy, the graphic representation of both concepts in a decision tree results in the specification of expected utilities and helps to resolve complex medical decision problems. Criticism of the utility approach relates to the rational perspective on humans (which is rejected by a considerable fraction of research in psychology) and to the artificial methods used in the evaluation of utility, such as Standard Gamble or Time Trade Off. These may well be the reason why the utility approach has never been accepted in Germany. Nevertheless, innovative concepts for defining goals in health care are urgently required, as the current debate in Germany on "Nutzen" (interestingly translated as 'benefit' instead of as 'utility') and integrated outcome models indicates. It remains to be seen whether this discussion will lead to a re-evaluation of the utility approach.
Multiple solutions to dense systems in radar scattering using a preconditioned block GMRES solver
Energy Technology Data Exchange (ETDEWEB)
Boyse, W.E. [Advanced Software Resources, Inc., Santa Clara, CA (United States)
1996-12-31
Multiple right-hand sides occur in radar scattering calculations in the computation of the simulated radar return from a body at a large number of angles. Each desired angle requires a right-hand side vector to be computed and the solution generated. These right-hand sides are naturally smooth functions of the angle parameters and this property is utilized in a novel way to compute solutions an order of magnitude faster than LINPACK The modeling technique addressed is the Method of Moments (MOM), i.e. a boundary element method for time harmonic Maxwell`s equations. Discretization by this method produces general complex dense systems of rank 100`s to 100,000`s. The usual way to produce the required multiple solutions is via LU factorization and solution routines such as found in LINPACK. Our method uses the block GMRES iterative method to directly iterate a subset of the desired solutions to convergence.
Inverse scattering solution of the Chew-Low equation
International Nuclear Information System (INIS)
Nakano, K.
1985-01-01
Techniques for solving the inverse scattering problem are applied to the Chew-Low equation to obtain the nucleon form factor directly from the experimental phase shifts. A new dispersion relation is derived for the P 11 wave because of its sign-changing phase shift. A self-consistent solution for each channel is obtained, but the universality of form factor is not confirmed. Also, an iterative procedure based on Omnes' method is developed in order to solve coupled-channel, singular integral equations. (orig.)
Time Resolved X-Ray Scattering of molecules in Solution
DEFF Research Database (Denmark)
Brandt van Driel, Tim
The dissertation describes the use of Time-Resolved X-ray Diffuse Scattering (TR-XDS) to study photo-induced structural changes in molecules in solution. The application of the technique is exemplified with experiments on two bimetallic molecules. The main focus is on the data-flow and process......)42+ obtained at European Synchrotron Radiation Facility (ESRF) are presented to exemplify TR-XDS at synchrotrons. Similarly, measurements on Ir2(dimen)42+ are used to show the XFEL data-flow and how it deviates from the prior. A method to identify and account for systematic fluctuations...
Small angle X-ray scattering on concentrated hemoglobin solutions
International Nuclear Information System (INIS)
Zinke, M.; Damaschun, G.; Mueller, J.J.; Ruckpaul, K.
1978-01-01
The small-angle X-ray scattering technique was used to determine the intermolecular structure and interaction potentials in oxi-and deoxi-hemoglobin solutions. The pair correlation function obtained by the ZERNICKE-PRINS equation characterizes the intermolecular structure of the hemoglobin molecules. The intermolecular structure is concentration dependent. The hemoglobin molecules have a 'short range order structure' with a range of about 4 molecule diameters at 324 g/l. The potential functions of the hemoglobin-hemoglobin interaction have been determined on the basis of fluid theories. Except for the deoxi-hemoglobin solution having the concentration 370 g/l, the pair interaction consists in a short repulsion and a weak short-range attraction against kT. The potential minimum is between 1.2 - 1.5 nm above the greatest hemoglobin diameter. (author)
On the solution of the inverse scattering problem on a ray
International Nuclear Information System (INIS)
Egikyan, R.S.; Zhidkov, E.P.
1988-01-01
Quantum inverse scattering problem (ISP) is considered within the framework of two-particle scattering for local interaction case depending only on the scattering between particles. Constructing the solution of secondary integral equation solution of ISP is described in the clear image. Numerical calculations are conducted using a direct method
An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders
DEFF Research Database (Denmark)
Larsen, Niels Vesterdal; Breinbjerg, Olav
2004-01-01
Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...
Simplified solutions of the Cox-Thompson inverse scattering method at fixed energy
International Nuclear Information System (INIS)
Palmai, Tamas; Apagyi, Barnabas; Horvath, Miklos
2008-01-01
Simplified solutions of the Cox-Thompson inverse quantum scattering method at fixed energy are derived if a finite number of partial waves with only even or odd angular momenta contribute to the scattering process. Based on new formulae various approximate methods are introduced which also prove applicable to the generic scattering events
Static and dynamic light scattering studies on dilute polyrotaxane solutions
Kume, Tetsuya; Araki, Jun; Sakai, Yasuhiro; Mayumi, Koichi; Kidowaki, Masatoshi; Yokoyama, Hideaki; Ito, Kohzo
2009-08-01
Static and dynamic light scattering measurements were performed for dilute polyrotaxane solutions in different types of solvent systems, i.e. dimethylacetamide (DMAc) or dimethylformamide (DMF) containing 1-6 wt% lithium chloride (LiCl), 1 M aqueous sodium hydroxide (NaOH) and dimethylsulfoxide (DMSO). No aggregation of the polyrotaxane in DMF/LiCl was confirmed in the present study. Radius of gyration of the dissolved polyrotaxane was largest in NaOHaq., followed by values in amide solvents/LiCl and that in DMSO, and was probably dominated not by Coulombic repulsion but by the mutual affinity between solvent and polyrotaxane. Ratio of radius of gyration to hydrodynamic radius suggested the flexible random-coiled conformation in DMSO and relatively more extended, semi-flexible ones in amide solvents/LiCl and NaOHaq. The obtained values of second virial coefficient and weight average molecular weight seemed to be affected by a potential change in differential refractive index increments, caused by selective macrocationization or ionization.
Static and dynamic light scattering studies on dilute polyrotaxane solutions
International Nuclear Information System (INIS)
Kume, Tetsuya; Sakai, Yasuhiro; Mayumi, Koichi; Kidowaki, Masatoshi; Yokoyama, Hideaki; Ito, Kohzo; Araki, Jun
2009-01-01
Static and dynamic light scattering measurements were performed for dilute polyrotaxane solutions in different types of solvent systems, i.e. dimethylacetamide (DMAc) or dimethylformamide (DMF) containing 1-6 wt% lithium chloride (LiCl), 1 M aqueous sodium hydroxide (NaOH) and dimethylsulfoxide (DMSO). No aggregation of the polyrotaxane in DMF/LiCl was confirmed in the present study. Radius of gyration of the dissolved polyrotaxane was largest in NaOHaq., followed by values in amide solvents/LiCl and that in DMSO, and was probably dominated not by Coulombic repulsion but by the mutual affinity between solvent and polyrotaxane. Ratio of radius of gyration to hydrodynamic radius suggested the flexible random-coiled conformation in DMSO and relatively more extended, semi-flexible ones in amide solvents/LiCl and NaOHaq. The obtained values of second virial coefficient and weight average molecular weight seemed to be affected by a potential change in differential refractive index increments, caused by selective macrocationization or ionization.
Positive energy Weinberg states for the solution of scattering problems
International Nuclear Information System (INIS)
Rawitscher, G.
1982-01-01
Positive energy Weinberg states are defined and numerically calculated in the presence of a general complex Woods-Saxon potential. The numerical procedure is checked for the limit of a square well potential for which the Weinberg states and the corresponding eigenvalues are known. A finite number M of these (auxiliary) positive energy Weinberg states are then use as a set of basis functions in order to provide a separable approximation of rank M, V/sub M/, to a potential V, and also to the scattering matrix element S which obtains as a result of the presence of V, S/sub M/. Both V/sub M/ and S/sub M/ are obtained by means of algebraic manipulations which involve the matrix elements of V calculated in terms of the auxiliary postive energy Weinberg states Next, expressions are derived which enable one to iteratively correct for the error in V--V/sub M/. These expressions are a modified version of the quasi-particle method of Weinberg. The convergence of S/sub M/ to S, as well as the first order interation of the error in S/sub M/ is examined as a function M for a numerical example which uses a complex Woods-Saxon potential for V and assumes zero angular momentum. With M = 5 and one iteration an error of less than 10% in S is achieved; for M = 8 the error is less than 1%. The method is expected to be useful for the solution of large systems of coupled equations by matrix techniques or when a part of the potential is non-local
Contraceptive Promotion And Utilization: Solution To Problem Of ...
African Journals Online (AJOL)
This study examined the contraceptive utilisation among patients treated in a University Teaching Hospital for complications of illegal abortion aimed at utilizing such information to proffer solution to the problems of unwanted pregnancy and induced abortion. In this study, 93.3% of patients had never used contraceptive and ...
Solution of the nonlinear inverse scattering problem by T-matrix completion. I. Theory.
Levinson, Howard W; Markel, Vadim A
2016-10-01
We propose a conceptually different method for solving nonlinear inverse scattering problems (ISPs) such as are commonly encountered in tomographic ultrasound imaging, seismology, and other applications. The method is inspired by the theory of nonlocality of physical interactions and utilizes the relevant formalism. We formulate the ISP as a problem whose goal is to determine an unknown interaction potential V from external scattering data. Although we seek a local (diagonally dominated) V as the solution to the posed problem, we allow V to be nonlocal at the intermediate stages of iterations. This allows us to utilize the one-to-one correspondence between V and the T matrix of the problem. Here it is important to realize that not every T corresponds to a diagonal V and we, therefore, relax the usual condition of strict diagonality (locality) of V. An iterative algorithm is proposed in which we seek T that is (i) compatible with the measured scattering data and (ii) corresponds to an interaction potential V that is as diagonally dominated as possible. We refer to this algorithm as to the data-compatible T-matrix completion. This paper is Part I in a two-part series and contains theory only. Numerical examples of image reconstruction in a strongly nonlinear regime are given in Part II [H. W. Levinson and V. A. Markel, Phys. Rev. E 94, 043318 (2016)10.1103/PhysRevE.94.043318]. The method described in this paper is particularly well suited for very large data sets that become increasingly available with the use of modern measurement techniques and instrumentation.
Simulated x-ray scattering of protein solutions using explicit-solvent models
International Nuclear Information System (INIS)
Park, Sanghyun; Bardhan, Jaydeep P.; Makowski, Lee; Roux, Benoit
2009-01-01
X-ray solution scattering shows new promise for the study of protein structures, complementing crystallography and nuclear magnetic resonance. In order to realize the full potential of solution scattering, it is necessary to not only improve experimental techniques but also develop accurate and efficient computational schemes to relate atomistic models to measurements. Previous computational methods, based on continuum models of water, have been unable to calculate scattering patterns accurately, especially in the wide-angle regime which contains most of the information on the secondary, tertiary, and quaternary structures. Here we present a novel formulation based on the atomistic description of water, in which scattering patterns are calculated from atomic coordinates of protein and water. Without any empirical adjustments, this method produces scattering patterns of unprecedented accuracy in the length scale between 5 and 100 A, as we demonstrate by comparing simulated and observed scattering patterns for myoglobin and lysozyme.
Inverse Scattering Method and Soliton Solution Family for String Effective Action
International Nuclear Information System (INIS)
Ya-Jun, Gao
2009-01-01
A modified Hauser–Ernst-type linear system is established and used to develop an inverse scattering method for solving the motion equations of the string effective action describing the coupled gravity, dilaton and Kalb–Ramond fields. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the proposed inverse scattering method applied fine and effective. As an application, a concrete family of soliton solutions for the considered theory is obtained
Solution of neutron slowing down equation including multiple inelastic scattering
International Nuclear Information System (INIS)
El-Wakil, S.A.; Saad, A.E.
1977-01-01
The present work is devoted the presentation of an analytical method for the calculation of elastically and inelastically slowed down neutrons in an infinite non absorbing homogeneous medium. On the basis of the Central limit theory (CLT) and the integral transform technique the slowing down equation including inelastic scattering in terms of the Green function of elastic scattering is solved. The Green function is decomposed according to the number of collisions. A formula for the flux at any lethargy O (u) after any number of collisions is derived. An equation for the asymptotic flux is also obtained
Insulin association in neutral solutions studied by light scattering
DEFF Research Database (Denmark)
Hvidt, S.
1991-01-01
Molecular weights and weight distributions of sulfated, Zn-free, and 2Zn insulins have been measured at pH 7.3 as a function of concentration from 0.1 to 2 mg/ml by use of a combination of light scattering, refractometry, and size-exclusion chromatography. Results show that sulfated insulin...
The algebraic method of the scattering inverse problem solution under untraditional statements
Popushnoj, M N
2001-01-01
The algebraic method of the scattering inverse problem solution under untraditional statements is proposed consistently in this review, in the framework of which some quantum theory od scattering charged particles problem were researched afterwards. The inverse problem of scattering theory of charged particles on the complex plane of the Coulomb coupling constant (CCC) is considered. A procedure of interaction potential restoration is established for the case when the energy, orbital moment quadrate and CCC are linearly dependent. The relation between one-parametric problems of the potential scattering of charged particles is investigated
Addressing professional resource challenges facing modern utilities with technological solutions
Energy Technology Data Exchange (ETDEWEB)
Goldie, T. [Hydro One Networks Inc., Toronto, ON (Canada); Hodder, S. [GE Digital Energy, Toronto, ON (Canada)
2008-07-01
The challenges facing electric utilities regarding a shortage of highly qualified labour to maintain, refurbish and expand electrical infrastructure can be attributed to a wave of retirements in skilled employees, a shortage of entry-level workers and a rapidly increasing workload caused by investment in electricity infrastructure. Two solutions were presented for finding and sustaining an adequate personnel base. The first involved developing local talent, both entry-level and mid-career staff to ensure that work continuity and workplace safety are maintained. The second involved the implementation of technological solutions to help optimize the use of existing and future labour resources. This paper presented the human resource programs developed by Hydro One, the largest electrical transmission and distribution utility in the province of Ontario. Their initiatives include raising the profile of the utility work environment through strategic partnerships with educational institutions and developing in house offerings to supplement existing academic programs. This paper also presented a technical solution to address the resources challenges specifically associated with power system protection and control. The solution targets professional and skilled trades involved in the design, installation and maintenance of automated substations and protection and control systems. It is based on the premise that resource optimization can be achieved by reducing inconsistent design and construction practices and replacing these designs with highly standardized materials with digital communications using IEC 61850. This new technology should attract young professionals to the power engineering field while still maintaining a high comfort level with the established professional workforce. 5 refs., 4 figs.
Utility enterprise solutions - the benefits of an open, integrated approach
Energy Technology Data Exchange (ETDEWEB)
Manos, P. [Mincom Inc., Denver, CO (United States)
2000-12-31
An integrated data handling system, specifically designed to assist utilities to have the needed flexibility and integration capabilities in their systems that supports their front and back office functions, optimize operations, and deepen collaborative relationships with suppliers as well as customers during the transition phase from public utilities to a free market environment, are discussed. The proposed system provides asset management, materials management, human resources management and finance management modules, integrated to key utility functions such as customer information, geographic information, outage management, switching management, mobile computing, safety/lockout -tag and SCADA. Through the linkage of these systems, all data is available to utility decision-makers on a real-time basis, in the office, in the field or telecommuting from the 'virtual' office. The integrated solution described here will provide higher system reliability, increased responsiveness to customer service requests, optimized engineering analysis work by designers and technical experts, more streamlined job planning, optimization of personnel-related processes and reduction of inventory expenses. By shifting the focus from chasing paper or worrying about interface performance and by making asset management the core element of the management information system, utility professionals can concentrate on focusing on bottom-line performance and on managing, rather than performing critical activities.
Static light scattering to characterize membrane proteins in detergent solution
Slotboom, Dirk Jan; Duurkens, Ria H.; Olieman, Kees; Erkens, Guus B.
2008-01-01
Determination of the oligomeric state or the subunit stoichiometry of integral membrane proteins in detergent solution is notoriously difficult, because the amount of detergent (and lipid) associated with the proteins is usually not known. Only two classical methods (sedimentation equilibrium
International Nuclear Information System (INIS)
Kılıç, Emre; Eibert, Thomas F.
2015-01-01
An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained
Energy Technology Data Exchange (ETDEWEB)
Kılıç, Emre, E-mail: emre.kilic@tum.de; Eibert, Thomas F.
2015-05-01
An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.
Energy Technology Data Exchange (ETDEWEB)
Sun Wenbo E-mail: w.sun@larc.nasa.gov; Loeb, Norman G.; Fu Qiang
2004-02-01
A recently developed finite-difference time domain scheme is examined using the exact analytic solutions for light scattering by a coated sphere immersed in an absorbing medium. The relative differences are less than 1% in the extinction, scattering, and absorption efficiencies and less than 5% in the scattering phase functions. The definition of apparent single-scattering properties is also discussed.
International Nuclear Information System (INIS)
Rosen, S.P.; Gelb, J.M.
1987-01-01
We consider the scattering of solar neutrinos by electrons as a means for distinguishing between MSW solutions of the solar neutrino problem. In terms of the ratio R between the observed cross-section and that for pure electron-type neutrinos, we find that some correlation between the value R and the appropriate solution. 9 refs., 3 figs
Inverse scattering transform method and soliton solutions for Davey-Stewartson II equation
International Nuclear Information System (INIS)
Arkadiev, V.A.; Pogrebkov, A.K.; Polivanov, M.C.
1989-01-01
The inverse scattering method for Davey-Stewartson II (DS-II) equation including both soliton and continuous spectrum solutions is developed. The explicit formulae for N-soliton solutions are given. Note that our solitons decrease as |z| -2 with z tending to infinity. (author). 8 refs
Structure of fullerene aggregates in pyridine/water solutions by small-angle neutron scattering
International Nuclear Information System (INIS)
Aksenov, V.L.; Belushkin, A.V.; Avdeev, M.V.; Rosta, L.; Mihailovic, D.; Mrzel, A.; Serdyuk, I.N.; Timchenko, A.A.
2001-01-01
Results of small-angle neutron scattering experiments on fullerenes (C 60 ) in pyridine/water solutions are reported. They confirm conclusions of the previous studies, in particular, dynamic light scattering experiments. Aggregates with characteristic radius of about 20 nm are formed in the solutions. The contrast variation using different combinations of protonated/deuterated components (water and pyridine) of the solutions points to the small pyridine content inside the aggregates. This fact testifies that the aggregates consist of a massive fullerene core covered by a thin pyridine shell
Performance of a micro-strip gas chamber in solution X-ray scattering
Toyokawa, H; Inoko, Y; Nagayoshi, T; Nishi, Y; Nishikawa, Y; Ochi, A; Suzuki, M; Tanimori, T
2001-01-01
The performance of a Micro-Strip Gas Chamber in solution X-ray scattering was studied at the RIKEN structural biology beamline I of the SPring-8 facility. The practical dynamic range was confirmed to be approx 1,000,000 : 1 by measuring S sup - sup 4 decay from a polystyrene latex solution. Steep troughs of scattering profile from an apoferritin solution were clearly obtained without smearing. An unfolding process of a pH jump of cytochrome c was measured. A time resolution of 500 mu s was achieved.
Custom power - the utility solution to distribution power quality
Energy Technology Data Exchange (ETDEWEB)
Woodley, N H [Westinghouse Electric Corp., Pittsburgh, PA (United States)
1997-04-01
The design of custom power products for electric power distribution system was discussed. Problems with power quality that result in loss of production to critical processes are costly and create a problem for the customer as well as the electric utility. Westinghouse has developed power quality improvement equipment for customers and utilities, using new technologies based on power electronics concepts. The Distribution Static Compensator (DSTATCOM) is a fast response, solid-state power controller that provides flexible voltage control for improving power quality at the point of connection to the utility`s 4.16 to 69 kV distribution feeder. STATCOM is a larger version of the DSTATCOM that can be used to solve voltage flicker problems caused by electric arc furnaces. Westinghouse has also developed a Dynamic Voltage Restorer (DVR) which protects a critical customer plant load from power system voltage disturbances. Solid-State Breakers (SSB) have also been developed which offer a solution to many of the distribution system problems that result in voltage sags, swells, and power outages. 6 refs., 8 figs.
Directory of Open Access Journals (Sweden)
V. N. Manoharan
2011-09-01
Full Text Available Digital holographic microscopy (DHM can measure the 3D positions as well as the scattering properties of colloidal particles in a single 2D image. We describe DHM and our analysis of recorded holograms with exact scattering solutions, which permit the measurement of 3D particle positions with ∼10 nm precision and millisecond time resolution, and discuss studies of the Brownian dynamics of clusters of spheres with DHM.
Moussaid , A.; Schosseler , F.; Munch , J.; Candau , S.
1993-01-01
The intensity scattered from polyacrylic acid and polymethacrylic acid solutions has been measured by small angle neutron scattering experiemnts. The influence of polymer concentration, ionization degree, temperature and salt content has been investigated. Results are in qualitative agreement with a model which predicts the existence of microphases in the unstable region of the phase diagram. Quantitative comparison with the theory is performed by fitting the theoretical structure factor to t...
International Nuclear Information System (INIS)
Papiez, L.; Moskvin, V.; Tulovsky, V.
2001-01-01
The process of angular-spatial evolution of multiple scattering of charged particles can be described by a special case of Boltzmann integro-differential equation called Lewis equation. The underlying stochastic process for this evolution is the compound Poisson process on the surface of the unit sphere. The significant portion of events that constitute compound Poisson process that describes multiple scattering have diffusional character. This property allows to analyze the process of angular-spatial evolution of multiple scattering of charged particles as combination of soft and hard collision processes and compute appropriately its transition densities. These computations provide a method of the approximate solution to the Lewis equation. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Abdallah, A M; Elsherbiny, E M; Sobhy, M [Reactor departement, nuclear research centre, Inshaas, (Egypt)
1995-10-01
The P{sub n}-spatial expansion method has been used for calculating the one speed transport utilization factor in heterogenous slab cells in which neutrons may scatter anisotropically; by considering the P{sup 1-} approximation with a two-term scattering kernel in both the fuel and moderator regions, an analytical expression for the disadvantage factor has been derived. The numerical results obtained have been shown to be much better than those calculated by the usual P{sup 1-} and P{sup 3-} approximations and comparable with those obtained by some exact methods. 3 tabs.
Mixed waste: An alternative solution. The utility perspective
International Nuclear Information System (INIS)
Seizert, R.D.
1988-01-01
The issue of mixed waste is one of significant interest to the utility industry. The interest is focused on the current regulatory scheme of dual regulation. A fundamental concern of the commercial nuclear utilities resulting from dual regulation is that there are currently no facilities in the US to dispose of mixed low-level radioactive and hazardous waste. The lack of available sites renders mixed waste an orphan, requiring generators of such material to store the waste on-site. This in turn causes commercial nuclear power plants to be subjected to the full gamut of Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) regulation in addition to the existing Nuclear Regulatory Commission (NRC) regulations. Superimposing dual regulatory schemes will have impacts which extend far beyond the mere management of mixed waste. Certainly the burdens, complexities and costs of complying with the overlapping regulatory schemes will not have a commensurate increase in protection from the real risks being addressed. For these reasons, the commercial nuclear utility industry is working toward an alternative solution which will protect the public health and the environment from all hazards of mixed waste and will minimize the impacts on both the regulators and the regulated community
Interpretation and Utility of the Moments of Small-Angle X-Ray Scattering Distributions.
Modregger, Peter; Kagias, Matias; Irvine, Sarah C; Brönnimann, Rolf; Jefimovs, Konstantins; Endrizzi, Marco; Olivo, Alessandro
2017-06-30
Small angle x-ray scattering has been proven to be a valuable method for accessing structural information below the spatial resolution limit implied by direct imaging. Here, we theoretically derive the relation that links the subpixel differential phase signal provided by the sample to the moments of scattering distributions accessible by refraction sensitive x-ray imaging techniques. As an important special case we explain the scatter or dark-field contrast in terms of the sample's phase signal. Further, we establish that, for binary phase objects, the nth moment scales with the difference of the refractive index decrement to the power of n. Finally, we experimentally demonstrate the utility of the moments by quantitatively determining the particle sizes of a range of powders with a laboratory-based setup.
Approximate solution to neutron transport equation with linear anisotropic scattering
International Nuclear Information System (INIS)
Coppa, G.; Ravetto, P.; Sumini, M.
1983-01-01
A method to obtain an approximate solution to the transport equation, when both sources and collisions show a linearly anisotropic behavior, is outlined and the possible implications for numerical calculations in applied neutronics as well as shielding evaluations are investigated. The form of the differential system of equations taken by the method is quite handy and looks simpler and more manageable than any other today available technique. To go deeper into the efficiency of the method, some typical calculations concerning critical dimension of multiplying systems are then performed and the results are compared with the ones coming from the classical Ssub(N) approximations. The outcome of such calculations leads us to think of interesting developments of the method which could be quite useful in alternative to other today widespread approximate procedures, for any geometry, but especially for curved ones. (author)
Small angle neutron scattering (SANS) study of gastric mucin solutions
Hong, Z.; Bansil, R.; Waigh, T.; Turner, B.; Bhaskar, K. R.; Afdhal, N.; Lal, J.
2002-03-01
We report the first results from a SANS study of purified porcine gastric mucin solutions in D2O. The ability of this glycoprotein to protect the stomach epithelium from acid damage, may be due to a pH dependent conformational transition which leads to gelation at low pH Cao et. al. (Biophysical. J. 76, 1250, 1999). SANS measurements were made over the concentration range of 1 -15 mg/ml at pH 7, 4 and 2. The data indicate that at pH 7 the excluded volume exponent is 1.7, characteristic of swollen chains whereas at pH 2 this exponent increases to 2, indicating theta or poor solvent conditions, consistent with the hydrophobic interactions increasing at lower pH. From a Guinier analysis of the 1mg/ml data at low q's (0.003- 0.007 Å-1) we estimate the cross section radius of the effective cylinder to be 23nm and its length as 96nm in an unbuffered sample, i.e. close to pH 7. In the intermediate q-range (0.01 -0.1Å-1) at pH 7 a fit to the Debye chain gives radius of gyration Rg of 16nm. Mucin is best modelled as an elongated micelle with a cylindrical or worm-like chain to represent the protein core and the sugar chains forming the corona. Results of such calculations will be presented.
Tavagnacco, Letizia; Mason, Philip E; Neilson, George W; Saboungi, Marie-Louise; Cesàro, Attilio; Brady, John W
2018-05-31
Insight into the molecular interactions of homotactic and heterotactic association of caffeine and pyridine in aqueous solution is given on the basis of both experimental and simulation studies. Caffeine is about 5 times more soluble in a 3 m aqueous pyridine solution than it is in pure water (an increase from ∼0.1 m to 0.5 m). At this elevated concentration the system becomes suitable for neutron scattering study. Caffeine-pyridine interactions were studied by neutron scattering and molecular dynamics simulations, allowing a detailed characterization of the spatial and orientational structure of the solution. It was found that while pyridine-caffeine interactions are not as strong as caffeine-caffeine interactions, the pyridine-caffeine interactions still significantly disrupted caffeine-caffeine stacking. The alteration of the caffeine-caffeine stacking, occasioned by the presence of pyridine molecules in solution and the consequent formation of heterotactic interactions, leads to the experimentally detected increase in caffeine solubility.
General solution of superconvergent sum rules for scattering of I=1 reggeons on baryons
International Nuclear Information System (INIS)
Grigoryan, A.A.; Khachatryan, G.N.
1986-01-01
Superconvergent sum rules for reggeon-particle scattering are applied to scattering of reggeons α i (i=π, ρ, A 2 ) with isospin I=1 on baryons with strangeness S=-1. The saturation scheme of these sum rules is determined on the basis of experimental data. Two series of baryon resonances with arbitrary isospins I and spins J=I+1/2 and J=I-1/2 are predicted. A general solution for vertices of interaction of these resonances with α i is found. Predictions for coupling vertices B α i B'(B, B'=Λ, Σ, Σ * ) agree well with the experiment. It is shown that the condition of sum rules saturation by minimal number of resonances brings to saturation schemes resulting from experimental data. A general solution of sum rules for scattering of α i reggeons on Ξ and Ω hyperons is analyzed
The scattering problem in X-ray adsorptiometry using an MWPC; and its solution
International Nuclear Information System (INIS)
Bateman, J.E.
1978-03-01
It is shown that a large aperture imaging X-ray absorptiometric system (in this case a xenon filled MWPC) suffers very badly from scattering in the water bath and soft tissue components of the imaged system in the bone mass measuring case. Applications of a fine focused collimator provides a satisfactory solution to the problem. (author)
Data Analysis Of Small Angle X-Ray Solution Scattering And Its ...
African Journals Online (AJOL)
Small Angle X-ray Scattering analysis was used for the study of the protein, Human Tumour Necrosis Factor (TNF) homogeneously dispersed in solution. The experiment consisted in sending a well collimated beam of synchrotron radiation of wavelength, λ through the sample and measuring the variation of the intensity as a ...
International Nuclear Information System (INIS)
Zabadal, Jorge; Borges, Volnei; Van der Laan, Flavio T.; Santos, Marcio G.
2015-01-01
This work presents a new analytical method for solving the Boltzmann equation. In this formulation, a linear differential operator is applied over the Boltzmann model, in order to produce a partial differential equation in which the scattering term is absent. This auxiliary equation is solved via reduction of order. The exact solution obtained is employed to define a precursor for the buildup factor. (author)
Energy Technology Data Exchange (ETDEWEB)
Zabadal, Jorge; Borges, Volnei; Van der Laan, Flavio T., E-mail: jorge.zabadal@ufrgs.br, E-mail: borges@ufrgs.br, E-mail: ftvdl@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Departamento de Engenharia Mecanica. Grupo de Pesquisas Radiologicas; Ribeiro, Vinicius G., E-mail: vinicius_ribeiro@uniritter.edu.br [Centro Universitario Ritter dos Reis (UNIRITTER), Porto Alegre, RS (Brazil); Santos, Marcio G., E-mail: phd.marcio@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Tramandai, RS (Brazil). Departamento Interdisciplinar do Campus Litoral Norte
2015-07-01
This work presents a new analytical method for solving the Boltzmann equation. In this formulation, a linear differential operator is applied over the Boltzmann model, in order to produce a partial differential equation in which the scattering term is absent. This auxiliary equation is solved via reduction of order. The exact solution obtained is employed to define a precursor for the buildup factor. (author)
Solution scattering studies on a virus capsid protein as a building block for nanoscale assemblies
Comellas Aragones, M.; Comellas-Aragones, Marta; Sikkema, Friso D.; Delaittre, Guillaume; Terry, Ann E.; King, Stephen M.; Visser, Dirk; Heenan, Richard K.; Nolte, Roeland J.M.; Cornelissen, Jeroen Johannes Lambertus Maria; Feiters, Martin C.
2011-01-01
Self-assembled protein cages are versatile building blocks in the construction of biomolecular nanostructures. Because of the defined assembly behaviour the cowpea chlorotic mottle virus (CCMV) protein is often used for such applications. Here we report a detailed solution scattering study of the
Evaluation of back scatter interferometry, a method for detecting protein binding in solution
DEFF Research Database (Denmark)
Jepsen, S. T.; Jørgensen, Thomas Martini; Zong, Weiyong
2015-01-01
Back Scatter Interferometry (BSI) has been proposed to be a highly sensitive and versatile refractive index sensor usable for analytical detection of biomarker and protein interactions in solution. However the existing literature on BSI lacks a physical explanation of why protein interactions in ...
A fully algebraic solution for multichannel scattering of neutrons from nuclei
International Nuclear Information System (INIS)
Amos, K.
2001-01-01
In this report I give the prescription by which an algebraic solution can be found for multichannel scattering of neutrons from nuclei. The theory, developed by the Padova group, is built upon the work of Rawitscher and Delic. The approach is predicated upon finite rank representations of realistic interaction potentials and the properties of scattering matrices for separable Schrodinger interactions. The Padova approach starts with a solvable auxiliary Sturmian function (Weinberg state) problem from which a first generation set of Sturmians are defined. That basis set is formed by choosing a solvable problem at a fixed negative energy, and thereby those Sturmians can be specified in closed analytic form. Second generation Sturmians built upon the interaction potential matrices for a multichannel scattering problem of interest then can be found as linear combinations of the first generation set. The expansion coefficients result from a matrix diagonalization process. The scheme enables an expansion (usually truncated to finite rank for convenience) of the interaction potential in terms of those second generation Sturmians and in the form of a sum of separable interactions. The analytic properties of the scattering matrix from a separable Schroedinger potential gives the means by which a full algebraic solution of the multichannel scattering problem can be realized. (author)
International Nuclear Information System (INIS)
Glavata, D.; Pleshtil, I.; Kunchenko, A.B.; Ostanevich, Yu.M.
1982-01-01
Neutron experiments performed by the contrast (background) variation method allows to understand better the role that hydration plays in the study of macromolecules and to draw the connection between the excess scattering amplitude of hydrated molecule with its partial volume. The observed dependence of the compensation point on the degree of neutralization apparently plays an important role in the investigation of polyelectrolytes of biological origin
International Nuclear Information System (INIS)
Huddleston, A.L.; Weaver, J.
1980-01-01
Several methods important in the clinical diagnosis of skeletal diseases have been proposed for the determination of bone mass, such as photon absorptiometry, computed tomography, and neutron activation. None of these present methods provides for the determination of the physical density of bone. In the Radiological Physics Research Laboratory at the University of Virginia, the principles of Compton scattering are being investigated with the intent of determining the electron density and the physical density of human bone. A Compton-scatter densitometer has been constructed for the in vivo density determination of the femoral head. This technique utilizes of collimated low energy gamma source and detector system. The method has been tested in cadavers and in known density samples and has an accuracy of 2 %. A second densitometer has been designed for the in vivo determination of electron density of the vertebrae based upon a new technique which employs dual energy Compton scattering in the spinal column. These systems will be discussed; and the principles of dual energy Compton scatter densitometry will be presented. The importance of these isotope techniques and the feasibility of in vivo density determination in the vertebrae and femoral head will be discussed as they relate to clinical diagnosis and research. (author)
Semiclassical series solution of the generalized phase shift atom--diatom scattering equations
International Nuclear Information System (INIS)
Squire, K.R.; Curtiss, C.F.
1980-01-01
A semiclassical series solution of the previously developed operator form of the generalized phase shift equations describing atom--diatom scattering is presented. This development is based on earlier work which led to a double series in powers of Planck's constant and a scaling parameter of the anisotropic portion of the intermolecular potential. The present solution is similar in that it is a double power series in Planck's constant and in the difference between the spherical radial momentum and a first order approximation. The present series solution avoids difficulties of the previous series associated with the classical turning point
International Nuclear Information System (INIS)
Goncalves, G.A.; Bogado Leite, S.Q.; Vilhena, M.T. de
2009-01-01
An analytical solution has been obtained for the one-speed stationary neutron transport problem, in an infinitely long cylinder with anisotropic scattering by the decomposition method. Series expansions of the angular flux distribution are proposed in terms of suitably constructed functions, recursively obtainable from the isotropic solution, to take into account anisotropy. As for the isotropic problem, an accurate closed-form solution was chosen for the problem with internal source and constant incident radiation, obtained from an integral transformation technique and the F N method
Small-angle x-ray scattering investigation of the solution structure of troponin C
International Nuclear Information System (INIS)
Hubbard, S.R.; Hodgson, K.O.; Doniach, S.
1988-01-01
X-ray crystallographic studies of troponin C have revealed a novel protein structure consisting of two globular domains, each containing two Ca 2+ -binding sites, connected via a nine-turn alpha-helix, three turns of which are fully exposed to solvent. Since the crystals were grown at pH approximately 5, it is of interest to determine whether this structure is applicable to the protein in solution under physiological conditions. We have used small-angle x-ray scattering to examine the solution structure of troponin C at pH 6.8 and the effect of Ca 2+ on the structure. The scattering data are consistent with an elongated structure in solution with a radius of gyration of approximately 23.0 A, which is quite comparable to that computed for the crystal structure. The experimental scattering profile and the scattering profile computed from the crystal structure coordinates do, however, exhibit differences at the 40-A level. A weak Ca 2+ -facilitated dimerization of troponin C was observed. The data rule out large Ca 2+ -induced structural changes, indicating rather that the molecule with Ca 2+ bound is only slightly more compact than the Ca 2+ -free molecule
Dynamic proton polarisation on polymers in solution: creating contrast in neutron scattering
International Nuclear Information System (INIS)
Grinten, M.G.D. van der
1995-01-01
Dynamic nuclear polarisation (DNP) as an alternative or additional method to create contrast in neutron small angle scattering has been investigated with emphasis on the study of polymers in solution. The need for high polarisations imposes specific requirements on the sample and its environment. Vitreous beads have been used as samples. Nuclear relaxation times show that they contain dissolved air. Parasitic scattering from the solvent is observed, probably arising from nanometer air bubbles. DNP is shown to be useful, in particular for samples that consist of mixtures of hydrogen-free and hydrogen-rich molecules, where the different molecules can be highlighted by changing the polarisation. ((orig.))
International Nuclear Information System (INIS)
Houfek, Karel
2008-01-01
Numerical solution of coupled radial differential equations which are encountered in multichannel scattering problems is presented. Numerical approach is based on the combination of the exterior complex scaling method and the finite-elements method with the discrete variable representation. This method can be used not only to solve multichannel scattering problem but also to find bound states and resonance positions and widths directly by diagonalization of the corresponding complex scaled Hamiltonian. Efficiency and accuracy of this method is demonstrated on an analytically solvable two-channel problem.
Evaluation of solution stability for two-component polydisperse systems by small-angle scattering
Kryukova, A. E.; Konarev, P. V.; Volkov, V. V.
2017-12-01
The article is devoted to the modelling of small-angle scattering data using the program MIXTURE designed for the study of polydisperse multicomponent mixtures. In this work we present the results of solution stability studies for theoretical small-angle scattering data sets from two-component models. It was demonstrated that the addition of the noise to the data influences the stability range of the restored structural parameters. The recommendations for the optimal minimization schemes that permit to restore the volume size distributions for polydisperse systems are suggested.
Energy Technology Data Exchange (ETDEWEB)
Moussaid, A. (Lab. d' Ultrasons et de Dynamique des Fluides Complexes, Univ. Louis Pasteur, 67 - Strasbourg (France)); Schosseler, F. (Lab. d' Ultrasons et de Dynamique des Fluides Complexes, Univ. Louis Pasteur, 67 - Strasbourg (France)); Munch, J.P. (Lab. d' Ultrasons et de Dynamique des Fluides Complexes, Univ. Louis Pasteur, 67 - Strasbourg (France)); Candau, S.J. (Lab. d' Ultrasons et de Dynamique des Fluides Complexes, Univ. Louis Pasteur, 67 - Strasbourg (France))
1993-04-01
The intensity scattered from polyacrylic acid and polymethacrylic acid solutions has been measured by small angle neutron scattering experiments. The influence of polymer concentration, ionization degree, temperature and salt content has been investigated. Results are in qualitative agreement with a model which predicts the existence of microphases in the unstable region of the phase diagram. Quantitative comparison with the theory is performed by fitting the theoretical structure factor to the experimental data. For a narrow range of ionization degrees nearly quantitative agreement with the theory is found for the polyacrylic acid system. (orig.).
Moussaid, A.; Schosseler, F.; Munch, J. P.; Candau, S. J.
1993-04-01
The intensity scattered from polyacrylic acid and polymethacrylic acid solutions has been measured by small angle neutron scattering experiemnts. The influence of polymer concentration, ionization degree, temperature and salt content has been investigated. Results are in qualitative agreement with a model which predicts the existence of microphases in the unstable region of the phase diagram. Quantitative comparison with the theory is performed by fitting the theoretical structure factor to the experimental data. For a narrow range of ionizaiton degrees nearly quantitative agreement with the theory is found for the polyacrylic acide system.
International Nuclear Information System (INIS)
Duo, J. I.; Azmy, Y. Y.
2007-01-01
A new method, the Singular Characteristics Tracking algorithm, is developed to account for potential non-smoothness across the singular characteristics in the exact solution of the discrete ordinates approximation of the transport equation. Numerical results show improved rate of convergence of the solution to the discrete ordinates equations in two spatial dimensions with isotropic scattering using the proposed methodology. Unlike the standard Weighted Diamond Difference methods, the new algorithm achieves local convergence in the case of discontinuous angular flux along the singular characteristics. The method also significantly reduces the error for problems where the angular flux presents discontinuous spatial derivatives across these lines. For purposes of verifying the results, the Method of Manufactured Solutions is used to generate analytical reference solutions that permit estimating the local error in the numerical solution. (authors)
International Nuclear Information System (INIS)
Rosen, S.P.; Gelb, J.M.
1989-01-01
This paper considers the scattering of solar neutrinos by electrons as a means for distinguishing between different MSW solutions of the solar neutrino problem. In terms of the ratio R between the observed cross-section and that for pure electron-type neutrinos, some correlation between the value of R and each solution is found. A value of R ≤ 1/3 implies that the adiabatic solution is correct, while values between 1/3 and 3/5 are consistent with the large angle solution. A value close to 1/2 is also consistent with the non-adiabatic solution, and a value less than (1/6 - 1/7) implies oscillations into sterile neutrinos
Structural study of concentrated micelle-solutions of sodium octanoate by light scattering
International Nuclear Information System (INIS)
Hayoun, Marc
1982-05-01
Structural investigation of sodium octanoate (CH 3 -(CH 2 ) 6 -COONa) by light scattering has been made to study properties of concentrated aqueous micelle-solutions. From static light scattering data, the micellar weight and shape have been determined. The monomer aggregation number and the apparent micellar charge have been confirmed. Quasi-elastic light scattering, has been used to measure the effective diffusion coefficient as a function of the volume fraction. Extrapolation to the c.m.c. give the hydrodynamic radius of the micelles. At low micelle-concentration, strong exchange reaction between monomers and micelles affects the Brownian motion and resulting is an increase in the diffusion coefficient. The experimental data show a strong hydrodynamic contribution to S(q) (factor structure) and D(q) (effective diffusion coefficient) arising from hard spheres interactions with a large repulsive potential. (author) [fr
Fiber break location technique utilizing stimulated Brillouin scattering effects in optical fiber
International Nuclear Information System (INIS)
Bakar, A A A; Al-Mansoori, M H; Mahdi, M A; Mohd Azau, M A; Zainal Abidin, M S
2009-01-01
A new technique of fiber break detection system in optical communication networks is proposed and experimentally demonstrated in this paper. This technique is based-on continuous wave light source rather than pulsed source that is commonly deployed in existing techniques. The nonlinear effect of stimulated Brillouin scattering is manipulated to locate the fiber-break position in optical communication networks. This technique enables the utilization of a less-sensitive photodetector to detect the Brillouin Stokes line since its intensity increases with the fiber length in the detectable region. The fiber break location can be determined with accuracy of more than 98% for fiber length less than 50 km using this technique
Zhou, Yajun
This thesis employs the topological concept of compactness to deduce robust solutions to two integral equations arising from chemistry and physics: the inverse Laplace problem in chemical kinetics and the vector wave scattering problem in dielectric optics. The inverse Laplace problem occurs in the quantitative understanding of biological processes that exhibit complex kinetic behavior: different subpopulations of transition events from the "reactant" state to the "product" state follow distinct reaction rate constants, which results in a weighted superposition of exponential decay modes. Reconstruction of the rate constant distribution from kinetic data is often critical for mechanistic understandings of chemical reactions related to biological macromolecules. We devise a "phase function approach" to recover the probability distribution of rate constants from decay data in the time domain. The robustness (numerical stability) of this reconstruction algorithm builds upon the continuity of the transformations connecting the relevant function spaces that are compact metric spaces. The robust "phase function approach" not only is useful for the analysis of heterogeneous subpopulations of exponential decays within a single transition step, but also is generalizable to the kinetic analysis of complex chemical reactions that involve multiple intermediate steps. A quantitative characterization of the light scattering is central to many meteoro-logical, optical, and medical applications. We give a rigorous treatment to electromagnetic scattering on arbitrarily shaped dielectric media via the Born equation: an integral equation with a strongly singular convolution kernel that corresponds to a non-compact Green operator. By constructing a quadratic polynomial of the Green operator that cancels out the kernel singularity and satisfies the compactness criterion, we reveal the universality of a real resonance mode in dielectric optics. Meanwhile, exploiting the properties of
Solution of the scattering T matrix equation in discrete complex momentum space
International Nuclear Information System (INIS)
Rawitscher, G.H.; Delic, G.
1984-01-01
The scattering solution to the Lippmann-Schwinger equation is expanded into a set of spherical Bessel functions of complex wave numbers, K/sub j/, with j = 1,2 , . . . , M. The value of each K/sub j/ is determined from the condition that the spherical Bessel function smoothly matches onto an asymptotically outgoing spherical Hankel (or Coulomb) function of the correct physical wave number at a matching point R. The spherical Bessel functions thus determined are Sturmian functions, and they form a complete set in the interval 0 to R. The coefficients of the expansion of the scattering function are determined by matrix inversion of a linear set of algebraic equations, which are equivalent to the solution of the T-matrix equation in complex momentum space. In view of the presence of a matching radius, no singularities are encountered for the Green's functions, and the inclusion of Coulomb potentials offers no computational difficulties. Three numerical examples are performed in order to illustrate the convergence of the elastic scattering matrix S with M. One of these consists of a set of coupled equations which describe the breakup of a deuteron as it scatters from the nucleus on 58 Ni. A value of M of 15 or less is found sufficient to reproduce the exact S matrix element to an accuracy of four figures after the decimal point
International Nuclear Information System (INIS)
Hutchinson, S.; Costillo, S.; Dalton, K.; Hensel, E.
1990-01-01
A study is conducted of the finite element solution of the partial differential equations governing two-dimensional electromagnetic field scattering problems on a SIMD computer. A nodal assembly technique is introduced which maps a single node to a single processor. The physical domain is first discretized in parallel to yield the node locations of an O-grid mesh. Next, the system of equations is assembled and then solved in parallel using a conjugate gradient algorithm for complex-valued, non-symmetric, non-positive definite systems. Using this technique and Thinking Machines Corporation's Connection Machine-2 (CM-2), problems with more than 250k nodes are solved. Results of electromagnetic scattering, governed by the 2-d scalar Hemoholtz wave equations are presented in this paper. Solutions are demonstrated for a wide range of objects. A summary of performance data is given for the set of test problems
Czech Academy of Sciences Publication Activity Database
Pluhařová, Eva; Fischer, H. E.; Mason, Philip E.; Jungwirth, Pavel
2014-01-01
Roč. 112, 9/10 (2014), s. 1230-1240 ISSN 0026-8976 R&D Projects: GA ČR GBP208/12/G016; GA MŠk LH12001 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : lithium * solution * molecular dynamics * chloride * neutron scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.720, year: 2014
Factorization properties and spurious solutions in N-body scattering theories
International Nuclear Information System (INIS)
Vanzani, V.
1979-01-01
The origin of spurious solutions in N-body scattering equations is discussed. It is shown that spurious solutions are expected because of specific factorization properties of the homogeneous equations. The equations proposed by Rosenberg, by Mitra, Gillespie, Sugar and Panchapakesan, by Takahashi and Mishima, by Alessandrini, by Sasakawa, by Sloan, Bencze and Redish, by Weinberg and van Winter and by Avishai are considered. It is explicitly shown that spurious multipliers arise from repeated employment of resolvent equations or, equiValently, from generalized iteration procedure
International Nuclear Information System (INIS)
Alvarez-Estrada, R.F.
1979-01-01
A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly
Nuclear inelastic scattering of synchrotron radiation on solutions of 57Fe complexes
International Nuclear Information System (INIS)
Vanko, Gy.; Vertes, A.; Bottyan, L.; Nagy, D.L.; Szilagyi, E.
2000-01-01
Nuclear inelastic resonant scattering of synchrotron radiation was applied to the study solutions of 57 Fe complexes. In order to reveal different inelastic contributions solutions of two different 57 Fe complexes of different molecular dimensions with solvents of substantially different viscosities were studied. We argue that the only former experiment available in the literature overestimates the role of the diffusivity in affecting the spectrum. The first direct observation of an intramolecular vibrational transition assisting the nuclear resonance absorption in a liquid is reported. (author)
Energy Technology Data Exchange (ETDEWEB)
Kafka, P; Meszaros, P [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (Germany, F.R.)
1976-11-01
Stationary spherically symmetric solutions of the equations for accretion of large mass flows onto a black hole, including the interaction of matter and radiation due to Thomson scattering in diffusion approximation are constructed. The relevance of these solutions is discussed with respect to the question of whether the limitation of the luminosity (Eddington limit) also implies an upper bound to the possible rate of mass flow. The question remains open until all instabilities have been studied. At the moment a negative answer is favoured.
Hong, Xinguo; Hao, Quan
2009-01-01
In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 °C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.
International Nuclear Information System (INIS)
Hong Xinguo; Hao Quan
2009-01-01
In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 deg. C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.
International Nuclear Information System (INIS)
Broome, J.
1965-11-01
The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)
Small-angle neutron scattering study of D2O-alcohol solutions
International Nuclear Information System (INIS)
D'Arrigo, G.
1990-01-01
Small-angle neutron scattering (SANS) measurements have been carried out on heavy water solutions of ethanol, isopropyl alcohol, n-propyl alcohol, t-butyl alcohol and butoxyethanol between 5 and 37 0 C at the concentrations where ultrasonic attenuation exhibits peak values. The wavevector dependence and the absolute intensity of the scattered intensities were analysed according to a microscopic model of the solutions in terms of aggregated complexes. The results indicate that at 25 0 C there exist either alcohol 'micelle-like' structures or alcohol-heavy water complexes which increase on going from the lower to higher alcohol solutions. As temperature increases from 25 to 37 0 C a higher aggregation is observed in butyl alcohol and butoxyethanol solutions. This behaviour is attributed to the demixing tendency of these systems at high temperatures. On going from 25 to 5 0 C the aggregation increases again. This trend is associated with the anomalous behaviour of the specific heat and ultrasonic attenuation of these systems. The occurrence of a low-temperature phase transition suggested by these anomalies is supported by our results. (author)
Structural model of the 50S subunit of E.Coli ribosomes from solution scattering
Energy Technology Data Exchange (ETDEWEB)
Svergun, D.I.; Koch, M.H.J. [Hamburg Outstation (Germany); Pedersen, J.S. [Riso National Laboratory, Roskilde (Denmark); Serdyuk, I.N. [Inst. of Protein Research, Moscow (Russian Federation)
1994-12-31
The application of new methods of small-angle scattering data interpretation to a contrast variation study of the 50S ribosomal subunit of Escherichia coli in solution is described. The X-ray data from contrast variation with sucrose are analyzed in terms of the basic scattering curves from the volume inaccessible to sucrose and from the regions inside this volume occupied mainly by RNA and by proteins. From these curves models of the shape of the 50S and its RNA-rich core are evaluated and positioned so that their difference produces a scattering curve which is in good agreement with the scattering from the protein moiety. Basing on this preliminary model, the X-ray and neutron contrast variation data of the 50S subunit in aqueous solutions are interpreted in the frame of the advanced two-phase model described by the shapes of the 50S subunit and its RNA-rich core taking into account density fluctuations inside the RNA and the protein moiety. The shape of the envelope of the 50S subunit and of the RNA-rich core are evaluated with a resolution of about 40A. The shape of the envelope is in good agreement with the models of the 50S subunit obtained from electron microscopy on isolated particles. The shape of the RNA-rich core correlates well with the model of the entire particle determined by the image reconstruction from ordered sheets indicating that the latter model which is based on the subjective contouring of density maps is heavily biased towards the RNA.
Structural model of the 50S subunit of E.Coli ribosomes from solution scattering
International Nuclear Information System (INIS)
Svergun, D.I.; Koch, M.H.J.; Pedersen, J.S.; Serdyuk, I.N.
1994-01-01
The application of new methods of small-angle scattering data interpretation to a contrast variation study of the 50S ribosomal subunit of Escherichia coli in solution is described. The X-ray data from contrast variation with sucrose are analyzed in terms of the basic scattering curves from the volume inaccessible to sucrose and from the regions inside this volume occupied mainly by RNA and by proteins. From these curves models of the shape of the 50S and its RNA-rich core are evaluated and positioned so that their difference produces a scattering curve which is in good agreement with the scattering from the protein moiety. Basing on this preliminary model, the X-ray and neutron contrast variation data of the 50S subunit in aqueous solutions are interpreted in the frame of the advanced two-phase model described by the shapes of the 50S subunit and its RNA-rich core taking into account density fluctuations inside the RNA and the protein moiety. The shape of the envelope of the 50S subunit and of the RNA-rich core are evaluated with a resolution of about 40A. The shape of the envelope is in good agreement with the models of the 50S subunit obtained from electron microscopy on isolated particles. The shape of the RNA-rich core correlates well with the model of the entire particle determined by the image reconstruction from ordered sheets indicating that the latter model which is based on the subjective contouring of density maps is heavily biased towards the RNA
International Nuclear Information System (INIS)
Zinke, M.
1979-01-01
Exemplified by hemoglobin, the thermodynamic equilibrium properties of the dissolved macromolecular system could be determined solely from the small angle X-ray scattering of concentrated macromolecular solutions via the intermolecular structure of the dissolved macromolecules and their intermolecular potentials. From the scattering experiment on concentrated Hb solutions the concentration dependence of the following properties of the dissolved Hb system were determined: fluctuation, isothermic compressibility, internal energy, surface tension, and osmotic pressure. (author)
Franke, D; Petoukhov, M V; Konarev, P V; Panjkovich, A; Tuukkanen, A; Mertens, H D T; Kikhney, A G; Hajizadeh, N R; Franklin, J M; Jeffries, C M; Svergun, D I
2017-08-01
ATSAS is a comprehensive software suite for the analysis of small-angle scattering data from dilute solutions of biological macromolecules or nanoparticles. It contains applications for primary data processing and assessment, ab initio bead modelling, and model validation, as well as methods for the analysis of flexibility and mixtures. In addition, approaches are supported that utilize information from X-ray crystallography, nuclear magnetic resonance spectroscopy or atomistic homology modelling to construct hybrid models based on the scattering data. This article summarizes the progress made during the 2.5-2.8 ATSAS release series and highlights the latest developments. These include AMBIMETER , an assessment of the reconstruction ambiguity of experimental data; DATCLASS , a multiclass shape classification based on experimental data; SASRES , for estimating the resolution of ab initio model reconstructions; CHROMIXS , a convenient interface to analyse in-line size exclusion chromatography data; SHANUM , to evaluate the useful angular range in measured data; SREFLEX , to refine available high-resolution models using normal mode analysis; SUPALM for a rapid superposition of low- and high-resolution models; and SASPy , the ATSAS plugin for interactive modelling in PyMOL . All these features and other improvements are included in the ATSAS release 2.8, freely available for academic users from https://www.embl-hamburg.de/biosaxs/software.html.
Approximation solutions for indifference pricing under general utility functions
Chen, An; Pelsser, Antoon; Vellekoop, M.H.
2008-01-01
With the aid of Taylor-based approximations, this paper presents results for pricing insurance contracts by using indifference pricing under general utility functions. We discuss the connection between the resulting "theoretical" indifference prices and the pricing rule-of-thumb that practitioners
Approximate Solutions for Indifference Pricing under General Utility Functions
Chen, A.; Pelsser, A.; Vellekoop, M.
2007-01-01
With the aid of Taylor-based approximations, this paper presents results for pricing insurance contracts by using indifference pricing under general utility functions. We discuss the connection between the resulting "theoretical" indifference prices and the pricing rule-of-thumb that practitioners
Free-solution, label-free molecular interactions studied by back-scattering interferometry
DEFF Research Database (Denmark)
Bornhop, D.J.; Latham, J.C.; Kussrow, A.
2007-01-01
Free-solution, label-free molecular interactions were investigated with back-scattering interferometry in a simple optical train composed of a helium-neon laser, a microfluidic channel, and a position sensor. Molecular binding interactions between proteins, ions and protein, and small molecules...... and protein, were determined with high dynamic range dissociation constants (K-d spanning six decades) and unmatched sensitivity (picomolar K-d's and detection limits of 10,000s of molecules). With this technique, equilibrium dissociation constants were quantified for protein A and immunoglobulin G...
Castellanos, Maria Monica
Aggregation of therapeutic proteins is currently one of the major challenges in the bio-pharmaceutical industry, because aggregates could induce immunogenic responses and compromise the quality of the product. Current scientific efforts, both in industry and academia, are focused on developing rational approaches to screen different drug candidates and predict their stability under different conditions. Moreover, aggregation is promoted in highly concentrated protein solutions, which are typically required for subcutaneous injection. In order to gain further understanding about the mechanisms that lead to aggregation, an approach that combined rheology, neutron scattering, and molecular simulations was undertaken. Two model systems were studied in this work: Bovine Serum Albumin in surfactant-free Phosphate Buffered Saline at pH = 7.4 at concentrations from 11 mg/mL up to ˜519 mg/mL, and a monoclonal antibody in 20 mM Histidine/Histidine Hydrochloride at pH = 6.0 with 60 mg/mL trehalose and 0.2 mg/mL polysorbate-80 at concentrations from 53 mg/mL up to ˜220 mg/mL. The antibody used here has three mutations in the CH2 domain, which result in lower stability upon incubation at 40 °C with respect to the wild-type protein, based on size-exclusion chromatography assays. This temperature is below 49 °C, where unfolding of the least stable, CH2 domain occurs, according to differential scanning calorimetry. This dissertation focuses on identifying the role of aggregation on the viscosity of protein solutions. The protein solutions of this work show an increase in the low shear viscosity in the absence of surfactants, because proteins adsorb at the air/water interface forming a viscoelastic film that affects the measured rheology. Stable surfactant-laden protein solutions behave as simple Newtonian fluids. However, the surfactant-laden antibody solution also shows an increase in the low shear viscosity from bulk aggregation, after prolonged incubation at 40 °C. Small
Hesford, Andrew J.; Waag, Robert C.
2010-10-01
The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.
Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)
Energy Technology Data Exchange (ETDEWEB)
Hura, Greg L.; Menon, Angeli L.; Hammel, Michal; Rambo, Robert P.; Poole II, Farris L.; Tsutakawa, Susan E.; Jenney Jr, Francis E.; Classen, Scott; Frankel, Kenneth A.; Hopkins, Robert C.; Yang, Sungjae; Scott, Joseph W.; Dillard, Bret D.; Adams, Michael W. W.; Tainer, John A.
2009-07-20
We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.
Finite difference time domain solution of electromagnetic scattering on the hypercube
International Nuclear Information System (INIS)
Calalo, R.H.; Lyons, J.R.; Imbriale, W.A.
1988-01-01
Electromagnetic fields interacting with a dielectric or conducting structure produce scattered electromagnetic fields. To model the fields produced by complicated, volumetric structures, the finite difference time domain (FDTD) method employs an iterative solution to Maxwell's time dependent curl equations. Implementations of the FDTD method intensively use memory and perform numerous calculations per time step iteration. The authors have implemented an FDTD code on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. This code allows to solve problems requiring as many as 2,048,000 unit cells on a 32 node Hypercube. For smaller problems, the code produces solutions in a fraction of the time to solve the same problems on sequential computers
Manifestation of hydrogen bonds of aqueous ethanol solutions in the Raman scattering spectra
International Nuclear Information System (INIS)
Dolenko, T A; Burikov, S A; Patsaeva, S V; Yuzhakov, V I
2011-01-01
Spectra of Raman scattering of light by aqueous ethanol solutions in the range of concentrations from pure water to 96% alcohol are studied. For water, 25%, and 40% solutions of ethanol in water, as well as for 96% alcohol the Raman spectra are measured at temperatures from the freezing point to nearly the boiling point. The changes in the shape of the stretching OH band are interpreted in terms of strengthening or weakening of hydrogen bonds between the molecules in the solution. The strongest hydrogen bonding of hydroxyl groups is observed at the ethanol content from 20 to 25 volume percent, which is explained by formation of ethanol hydrates of a definite type at the mentioned concentrations of alcohol. This is confirmed by means of the method of multivariate curve resolution, used to analyse the Raman spectra of aqueous ethanol solutions. With growing temperature the weakening of hydrogen bonding occurs in all studied systems, which consists in reducing the number of OH groups, linked by strong hydrogen bonds. (laser applications and other problems in quantum electronics)
Computer utilization for the solution of gas supply problems
Energy Technology Data Exchange (ETDEWEB)
Raleigh, J T; Brady, J R
1968-01-01
The computer programs in this paper have proven to be useful tools in the solution of gas supply problems. Some of the management type of applications are: (1) long range planning projects; (2) comparison of various proposed gas purchase contracts; (3) to assist with budget and operational planning; (4) to assist in making cost-of-servic and rate predictions; (5) to investigate the feasibility of processing plants at any point on the system; and (6) to assist dispatching in its daily operation for cost and quality control. Competition, not only from the gas industry, but also from other forms of energy, makes it imperative that quantitative and economic information with regard to that marketable resource be available under a variety of assumptions and alternatives. This information can best be made available in a timely manner by the use of the computer.
International Nuclear Information System (INIS)
Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar
2017-01-01
particles is studied. • The 3D CPML FDTD technique is applied in the solution of OAM laser beam scattering. • Forward-scattering peak disappears when laser beam has orbital angular momentum. • This feature of OAM beam scattering may result in an accurate profiling of particle layers.
Small angle neutron scattering study of the gemini nonionic surfactant in heavy water solutions
International Nuclear Information System (INIS)
Rajewska, A
2012-01-01
The nonionic gemini surfactant α α'-[2,4,7,9-tetramethyl-5-decyne-4,7diyl]bis[ω hydroxyl-polyoxyethylene] (S-10) was investigated in heavy water solutions only for concentrations: 2.3%, 2.5%,3%, 3.4%, 4% and 5% at temperature 25 C with small angle neutron scattering (SANS) method. All of surfactants solutions were prepared using D 2 O (99.9% deuterated, Prikladnaia Chimia, St. Petersburg, Russia) as a solvent. The nonionic gemini surfactant S-10 was obtained from Air Products and Chemicals, Inc., and used without further purification. All SANS measurements were performed on V-4 SANS spectrometer at BENSC, Berlin (Germany). Neutrons were used in wavelength range of 0.02 - 4 nm - 1. For the measurements quartz cells of were used during experiment. Up to 14 such cells were placed in a holder. Results from experiment was calculated and evaluated with PCG 2.0 program from Graz University (Austria). In the investigated solutions two axis ellipsoidal micelles was observed.
Quasielastic scattering of slow-neutron in water-alcohol solutions
Directory of Open Access Journals (Sweden)
N. O. Atamas
2010-06-01
Full Text Available Research of molecules dynamics of solutions “water - propyl alcohol” of different concentration at the temperature 281 K is conducted by the method of slow-neutron quasi-elastic scattering. There were experimentally exposed the feature of effective self-diffusion coefficient of molecules of the indicated solutions. Based on the time- scale hierarchy the division of selfdiffusion coefficient to one-particle and collective contributions was conducted, and the time of the molecules settled life in position of equilibrium was calculated. There were also exposed the feature of self-diffusion concentration dependence of coefficient of self-diffusion and his selfpart contribution, namely: presence of two minimums is in the areas of concentrations (0,04 ÷ 0,05 of mass fraction and (0,18 ÷ 0,22 m.c. of the alcohol and continuous character of diffusion at concentrations higher then 0,4 m.c. of the alcohol. It is shown that the indicated concentration areas correspond the certain local structures of investigational solution.
Wang, R T; van de Hulst, H C
1995-05-20
A new algorithm for cylindrical Bessel functions that is similar to the one for spherical Bessel functions allows us to compute scattering functions for infinitely long cylinders covering sizes ka = 2πa/λ up to 8000 through the use of only an eight-digit single-precision machine computation. The scattering function and complex extinction coefficient of a finite cylinder that is seen near perpendicular incidence are derived from those of an infinitely long cylinder by the use of Huygens's principle. The result, which contains no arbitrary normalization factor, agrees quite well with analog microwave measurements of both extinction and scattering for such cylinders, even for an aspect ratio p = l/(2a) as low as 2. Rainbows produced by cylinders are similar to those for spherical drops but are brighter and have a lower contrast.
New beamline dedicated to solution scattering from biological macromolecules at the ESRF
International Nuclear Information System (INIS)
Pernot, P; Theveneau, P; Giraud, T; Fernandes, R Nogueira; Nurizzo, D; Spruce, D; Surr, J; McSweeney, S; Round, A; Felisaz, F; Foedinger, L; Gobbo, A; Huet, J; Villard, C; Cipriani, F
2010-01-01
The new bio-SAXS beamline (ID14-3 at the ESRF, Grenoble, France) is dedicated exclusively to small-angle scattering experiments of biological macromolecules in solution and has been in user operation since November 2008. Originally a protein crystallography beamline, ID14-3 was refurbished, still as a part of the ESRF Structural Biology group, with the main aim to provide a facility with 'quick and easy' access to satisfy rapidly growing demands from crystallographers, biochemists and structural biologists. The beamline allows manual and automatic sample loading/unloading, data collection, processing (conversion of a 2D image to a normalized 1D X-ray scattering profile) and analysis. The users obtain on-line standard data concerning the size (radius of gyration, maximum dimension and volume) and molecular weight of samples which allow on-the fly ab-inito shape reconstruction in order to provide feedback enabling the data collection strategies to be optimized. Automation of sample loading is incorporated on the beamline using a device constructed in collaboration between the EMBL (Grenoble and Hamburg outstations) and the ESRF. Semi/automated data analysis is implemented following the model of the SAXS facility at X33, EMBL Hamburg. This paper describes the bio-SAXS beamline and set-up characteristics together with the examples of user data obtained.
Solution of the Cox-Thompson inverse scattering problem using finite set of phase shifts
Apagyi, B; Scheid, W
2003-01-01
A system of nonlinear equations is presented for the solution of the Cox-Thompson inverse scattering problem (1970 J. Math. Phys. 11 805) at fixed energy. From a given finite set of phase shifts for physical angular momenta, the nonlinear equations determine related sets of asymptotic normalization constants and nonphysical (shifted) angular momenta from which all quantities of interest, including the inversion potential itself, can be calculated. As a first application of the method we use input data consisting of a finite set of phase shifts calculated from Woods-Saxon and box potentials representing interactions with diffuse or sharp surfaces, respectively. The results for the inversion potentials, their first moments and asymptotic properties are compared with those provided by the Newton-Sabatier quantum inversion procedure. It is found that in order to achieve inversion potentials of similar quality, the Cox-Thompson method requires a smaller set of phase shifts than the Newton-Sabatier procedure.
Solution of the Cox-Thompson inverse scattering problem using finite set of phase shifts
International Nuclear Information System (INIS)
Apagyi, Barnabas; Harman, Zoltan; Scheid, Werner
2003-01-01
A system of nonlinear equations is presented for the solution of the Cox-Thompson inverse scattering problem (1970 J. Math. Phys. 11 805) at fixed energy. From a given finite set of phase shifts for physical angular momenta, the nonlinear equations determine related sets of asymptotic normalization constants and nonphysical (shifted) angular momenta from which all quantities of interest, including the inversion potential itself, can be calculated. As a first application of the method we use input data consisting of a finite set of phase shifts calculated from Woods-Saxon and box potentials representing interactions with diffuse or sharp surfaces, respectively. The results for the inversion potentials, their first moments and asymptotic properties are compared with those provided by the Newton-Sabatier quantum inversion procedure. It is found that in order to achieve inversion potentials of similar quality, the Cox-Thompson method requires a smaller set of phase shifts than the Newton-Sabatier procedure
Box, M. A.; Deepak, A.
1981-01-01
The propagation of photons in a medium with strongly anisotropic scattering is a problem with a considerable history. Like the propagation of electrons in metal foils, it may be solved in the small-angle scattering approximation by the use of Fourier-transform techniques. In certain limiting cases, one may even obtain analytic expressions. This paper presents some of these results in a model-independent form and also illustrates them by the use of four different phase-function models. Sample calculations are provided for comparison purposes
ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments
International Nuclear Information System (INIS)
De Maria Antolinos, Alejandro; Pernot, Petra; Brennich, Martha E.; Kieffer, Jérôme; Bowler, Matthew W.; Delageniere, Solange; Ohlsson, Staffan; Malbet Monaco, Stephanie; Ashton, Alun; Franke, Daniel; Svergun, Dmitri; McSweeney, Sean; Gordon, Elspeth; Round, Adam
2015-01-01
The ISPyB information-management system for crystallography has been adapted to include data from small-angle X-ray scattering of macromolecules in solution experiments. Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21
ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments
Energy Technology Data Exchange (ETDEWEB)
De Maria Antolinos, Alejandro; Pernot, Petra; Brennich, Martha E.; Kieffer, Jérôme [European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France); Bowler, Matthew W. [European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); Delageniere, Solange; Ohlsson, Staffan; Malbet Monaco, Stephanie [European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France); Ashton, Alun [DLS, Diamond House, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0QX (United Kingdom); Franke, Daniel; Svergun, Dmitri [European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Building 25A, Notkestrasse 85, 22603 Hamburg (Germany); McSweeney, Sean; Gordon, Elspeth [European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France); Round, Adam, E-mail: around@embl.fr [European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France)
2015-01-01
The ISPyB information-management system for crystallography has been adapted to include data from small-angle X-ray scattering of macromolecules in solution experiments. Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21.
Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel
2018-06-01
We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.
Wyatt, Philip
2009-03-01
The electromagnetic inverse scattering problem suggests that if a homogeneous and non-absorbing object be illuminated with a monochromatic light source and if the far field scattered light intensity is known at sufficient scattering angles, then, in principle, one could derive the dielectric structure of the scattering object. In general, this is an ill-posed problem and methods must be developed to regularize the search for unique solutions. An iterative procedure often begins with a model of the scattering object, solves the forward scattering problem using this model, and then compares these calculated results with the measured values. Key to any such solution is instrumentation capable of providing adequate data. To this end, the development of the first laser based absolute light scattering photometers is described together with their continuing evolution and some of the remarkable discoveries made with them. For particles much smaller than the wavelength of the incident light (e.g. macromolecules), the inverse scattering problems are easily solved. Among the many solutions derived with this instrumentation are the in situ structure of bacterial cells, new drug delivery mechanisms, the development of new vaccines and other biologicals, characterization of wines, the possibility of custom chemotherapy, development of new polymeric materials, identification of protein crystallization conditions, and a variety discoveries concerning protein interactions. A new form of the problem is described to address bioterrorist threats. Over the many years of development and refinement, one element stands out as essential for the successes that followed: the R and D teams were always directed and executed by physics trained theorists and experimentalists. 14 Ph. D. physicists each made his/her unique contribution to the development of these evolving instruments and the interpretation of their results.
Study of particles in solution by small angle x-ray scattering
International Nuclear Information System (INIS)
Itri, R.
1986-01-01
The implantation of SAXS technique is presented, and mycellas in solution of the dodecyl sodium sulfate SLS/water system are studied. A synthesis of SAXS theory to study parameters such as, volume, radii of gyration and specific surface and distribution function of the distance of homogenous and inhomogeneous particles is also presented. The technique was implanted by the study of a vitreous coal sample with voids in amorphous matrix. Computer programs were used for data treatment. It was concluded that the void configuration must be an oblate ellipsoid with rippled external surface and radii of gyration of ∼20A . The study of mycellas in solution of the SLL/H 2 O binary system showed spherical mycellas with paraffinic radii of 16A and total radii of 25.5 A. Interaction effects start to appear in 15% SLS concentrations. The change in the scattering curve occurs due to the interactions between mycellas. The isotropic-nematic transition in the ternary system by decanol addition was also investigated. (M.C.K.) [pt
Influence of multiple well defined conformations on small-angle scattering of proteins in solution.
Heller, William T
2005-01-01
A common structural motif for many proteins comprises rigid domains connected by a flexible hinge or linker. The flexibility afforded by these domains is important for proper function and such proteins may be able to adopt more than one conformation in solution under equilibrium conditions. Small-angle scattering of proteins in solution samples all conformations that exist in the sampled volume during the time of the measurement, providing an ensemble-averaged intensity. In this paper, the influence of sampling an ensemble of well defined protein structures on the small-angle solution scattering intensity profile is examined through common analysis methods. Two tests were performed using simulated data: one with the extended and collapsed states of the bilobal calcium-binding protein calmodulin and the second with the catalytic subunit of protein kinase A, which has two globular domains connected by a glycine hinge. In addition to analyzing the simulated data for the radii of gyration Rg, distance distribution function P(r) and particle volume, shape restoration was applied to the simulated data. Rg and P(r) of the ensemble profiles could be easily mistaken for a single intermediate state. The particle volumes and models of the ensemble intensity profiles show that some indication of multiple conformations exists in the case of calmodulin, which manifests an enlarged volume and shapes that are clear superpositions of the conformations used. The effect on the structural parameters and models is much more subtle in the case of the catalytic subunit of protein kinase A. Examples of how noise influences the data and analyses are also presented. These examples demonstrate the loss of the indications of multiple conformations in cases where even broad distributions of structures exist. While the tests using calmodulin show that the ensemble states remain discernible from the other ensembles tested or a single partially collapsed state, the tests performed using the
International Nuclear Information System (INIS)
Rozanov, Vladimir V.; Vountas, Marco
2014-01-01
Rotational Raman scattering of solar light in Earth's atmosphere leads to the filling-in of Fraunhofer and telluric lines observed in the reflected spectrum. The phenomenological derivation of the inelastic radiative transfer equation including rotational Raman scattering is presented. The different forms of the approximate radiative transfer equation with first-order rotational Raman scattering terms are obtained employing the Cabannes, Rayleigh, and Cabannes–Rayleigh scattering models. The solution of these equations is considered in the framework of the discrete-ordinates method using rigorous and approximate approaches to derive particular integrals. An alternative forward-adjoint technique is suggested as well. A detailed description of the model including the exact spectral matching and a binning scheme that significantly speeds up the calculations is given. The considered solution techniques are implemented in the radiative transfer software package SCIATRAN and a specified benchmark setup is presented to enable readers to compare with own results transparently. -- Highlights: • We derived the radiative transfer equation accounting for rotational Raman scattering. • Different approximate radiative transfer approaches with first order scattering were used. • Rigorous and approximate approaches are shown to derive particular integrals. • An alternative forward-adjoint technique is suggested as well. • An additional spectral binning scheme which speeds up the calculations is presented
DEFF Research Database (Denmark)
Khan, Sanaullah; Birch, Johnny; Van Calsteren, Marie-Rose
2018-01-01
Despite a very large number of bacterial exopolysaccharides have been reported, detailed knowledge on their molecular structures and associative interactions with proteins is lacking. Small-angle X-ray scattering, dynamic light scattering and analytical ultracentrifugation (AUC) were used...
Abramo, M C; Caccamo, C; Costa, D; Pellicane, G; Ruberto, R; Wanderlingh, U
2012-01-21
We report protein-protein structure factors of aqueous lysozyme solutions at different pH and ionic strengths, as determined by small-angle neutron scattering experiments. The observed upturn of the structure factor at small wavevectors, as the pH increases, marks a crossover between two different regimes, one dominated by repulsive forces, and another one where attractive interactions become prominent, with the ensuing development of enhanced density fluctuations. In order to rationalize such experimental outcome from a microscopic viewpoint, we have carried out extensive simulations of different coarse-grained models. We have first studied a model in which macromolecules are described as soft spheres interacting through an attractive r(-6) potential, plus embedded pH-dependent discrete charges; we show that the uprise undergone by the structure factor is qualitatively predicted. We have then studied a Derjaguin-Landau-Verwey-Overbeek (DLVO) model, in which only central interactions are advocated; we demonstrate that this model leads to a protein-rich/protein-poor coexistence curve that agrees quite well with the experimental counterpart; experimental correlations are instead reproduced only at low pH and ionic strengths. We have finally investigated a third, "mixed" model in which the central attractive term of the DLVO potential is imported within the distributed-charge approach; it turns out that the different balance of interactions, with a much shorter-range attractive contribution, leads in this latter case to an improved agreement with the experimental crossover. We discuss the relationship between experimental correlations, phase coexistence, and features of effective interactions, as well as possible paths toward a quantitative prediction of structural properties of real lysozyme solutions. © 2012 American Institute of Physics
ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments.
De Maria Antolinos, Alejandro; Pernot, Petra; Brennich, Martha E; Kieffer, Jérôme; Bowler, Matthew W; Delageniere, Solange; Ohlsson, Staffan; Malbet Monaco, Stephanie; Ashton, Alun; Franke, Daniel; Svergun, Dmitri; McSweeney, Sean; Gordon, Elspeth; Round, Adam
2015-01-01
Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21.
Energy Technology Data Exchange (ETDEWEB)
Ganapol, B.D., E-mail: ganapol@cowboy.ame.arizona.edu [Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ (United States); Mostacci, D.; Previti, A. [Montecuccolino Laboratory, University of Bologna, Via dei Colli, 16, I-40136 Bologna (Italy)
2016-07-01
We present highly accurate solutions to the neutral particle transport equation in a half-space. While our initial motivation was in response to a recently published solution based on Chandrasekhar's H-function, the presentation to follow has taken on a more comprehensive tone. The solution by H-functions certainly did achieved high accuracy but was limited to isotropic scattering and emission from spatially uniform and linear sources. Moreover, the overly complicated nature of the H-function approach strongly suggests that its extension to anisotropic scattering and general sources is not at all practical. For this reason, an all encompassing theory for the determination of highly precise benchmarks, including anisotropic scattering for a variety of spatial source distributions, is presented for particle transport in a half-space. We illustrate the approach via a collection of cases including tables of 7-place flux benchmarks to guide transport methods developers. The solution presented can be applied to a considerable number of one and two half-space transport problems with variable sources and represents a state-of-the-art benchmark solution.
Siderius, Daniel W.; Krekelberg, William P.; Roberts, Christopher J.; Shen, Vincent K.
2012-05-01
Protein-protein interactions in solution may be quantified by the osmotic second virial coefficient (OSVC), which can be measured by various experimental techniques including light scattering. Analysis of Rayleigh light scattering measurements from such experiments requires identification of a scattering volume and the thermodynamic constraints imposed on that volume, i.e., the statistical mechanical ensemble in which light scattering occurs. Depending on the set of constraints imposed on the scattering volume, one can obtain either an apparent OSVC, A2,app, or the true thermodynamic OSVC, {B_{22}^{osm}}, that is rigorously defined in solution theory [M. A. Blanco, E. Sahin, Y. Li, and C. J. Roberts, J. Chem. Phys. 134, 225103 (2011), 10.1063/1.3596726]. However, it is unclear to what extent A2,app and {B_{22}^{osm}} differ, which may have implications on the physical interpretation of OSVC measurements from light scattering experiments. In this paper, we use the multicomponent hard-sphere model and a well-known equation of state to directly compare A2,app and {B_{22}^{osm}}. Our results from the hard-sphere equation of state indicate that A2,app underestimates {B_{22}^{osm}}, but in a systematic manner that may be explained using fundamental thermodynamic expressions for the two OSVCs. The difference between A2,app and {B_{22}^{osm}} may be quantitatively significant, but may also be obscured in experimental application by statistical uncertainty or non-steric interactions. Consequently, the two OSVCs that arise in the analysis of light scattering measurements do formally differ, but in a manner that may not be detectable in actual application.
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Yamaya, Taiga
2014-11-01
In a conventional PET scanner, coincidence events are measured with a limited energy window for detection of photoelectric events in order to reject Compton scatter events that occur in a patient, but Compton scatter events caused in detector crystals are also rejected. Scatter events within the patient causes scatter coincidences, but inter crystal scattering (ICS) events have useful information for determining an activity distribution. Some researchers have reported the feasibility of PET scanners based on a Compton camera for tracing ICS into the detector. However, these scanners require expensive semiconductor detectors for high-energy resolution. In the Anger-type block detector, single photons interacting with multiple detectors can be obtained for each interacting position and complete information can be gotten just as for photoelectric events in the single detector. ICS events in the single detector have been used to get coincidence, but single photons interacting with multiple detectors have not been used to get coincidence. In this work, we evaluated effect of sensitivity improvement using Compton kinetics in several types of DOI-PET scanners. The proposed method promises to improve the sensitivity using coincidence events of single photons interacting with multiple detectors, which are identified as the first interaction (FI). FI estimation accuracy can be improved to determine FI validity from the correlation between Compton scatter angles calculated on the coincidence line-of-response. We simulated an animal PET scanner consisting of 42 detectors. Each detector block consists of three types of scintillator crystals (LSO, GSO and GAGG). After the simulation, coincidence events are added as information for several depth-of-interaction (DOI) resolutions. From the simulation results, we concluded the proposed method promises to improve the sensitivity considerably when effective atomic number of a scintillator is low. Also, we showed that FI estimate
International Nuclear Information System (INIS)
Kunz, W.; Turq, P.
1990-01-01
The study of electrolyte solutions by small angle neutron scattering (static) of quasi-elastic neutron scattering (dynamics) gives new perspectives to the primitive model of electrolytes, for both static and dynamic properties of those systems. Whereas all properties can be interpreted by brownian dynamics, integral equations cannot be used at the present time to get transport coefficients in all cases. As regards the choice of the potentials at the McMillan Mayer level, specific Gurney terms for solvation are not needed for tetraalkylammonium salts. (orig.)
International Nuclear Information System (INIS)
Maksudov, F.G.; Gusejnov, G.Sh.
1986-01-01
Inverse scattering problem for the quadratic bundle of the Schroedinger one-dimensional operators in the whole axis is solved. The problem solution is given on the assumption of the discrete spectrum absence. In the discrete spectrum presence the inverse scattering problem solution is known for the Shroedinger differential equation considered
Scattering state solutions of the Duffin-Kemmer-Petiau equation with the Varshni potential model
Energy Technology Data Exchange (ETDEWEB)
Oluwadare, O.J. [Federal University Oye-Ekiti, Department of Physics, Oye-Ekiti, Ekiti State (Nigeria); Oyewumi, K.J. [Federal University of Technology, Department of Physics, Minna, Niger State (Nigeria)
2017-02-15
The scattering state of the Duffin-Kemmer-Petiau equation with the Varshni potential was studied. The asymptotic wave function, the scattering phase shift and normalization constant were obtained for any J states by dealing with the centrifugal term using a suitable approximation. The analytical properties of the scattering amplitude and the bound state energy were obtained and discussed. Our numerical and graphical results indicate that the scattering phase shift depends largely on total angular momentum J, screening parameter β and potential strengths a and b. (orig.)
DEFF Research Database (Denmark)
Tanev, Stoyan; Sun, Wenbo
2012-01-01
for particle and surface scattering calculations and the uniaxial perfectly matched layer (UPML) absorbing boundary conditions for truncation of the FDTD grid. We show that the FDTD approach has a significant potential for studying the light scattering by cloud, dust, and biological particles. The applications...
Solution structure of a short dna fragment studied by neutron scattering
DEFF Research Database (Denmark)
Lederer, H.; May, R. P.; Kjems, Jørgen
1986-01-01
-DNA. The neutron scattering curve is well fitted by that of a rigid rod with a length of 44 nm and a diameter of 2 nm. The result were confirmed by quasi-elastic light scattering and analytical centrifugation. The neutron measurements in H2O and D2O buffer reveal a cross-sectional in homogeneity not detected by X...
The problem of scattering in fibre-fed VPH spectrographs and possible solutions
Ellis, S. C.; Saunders, Will; Betters, Chris; Croom, Scott
2014-07-01
All spectrographs unavoidably scatter light. Scattering in the spectral direction is problematic for sky subtraction, since atmospheric spectral lines are blurred. Scattering in the spatial direction is problematic for fibre fed spectrographs, since it limits how closely fibres can be packed together. We investigate the nature of this scattering and show that the scattering wings have both a Lorentzian component, and a shallower (1/r) component. We investigate the causes of this from a theoretical perspective, and argue that for the spectral PSF the Lorentzian wings are in part due to the profile of the illumination of the pupil of the spectrograph onto the diffraction grating, whereas the shallower component is from bulk scattering. We then investigate ways to mitigate the diffractive scattering by apodising the pupil. In the ideal case of a Gaussian apodised pupil, the scattering can be significantly improved. Finally we look at realistic models of the spectrograph pupils of fibre fed spectrographs with a centrally obstructed telescope, and show that it is possible to apodise the pupil through non-telecentric injection into the fibre.
X-ray small-angle scattering of polytetrahydrofuran solution, 3
International Nuclear Information System (INIS)
Izumi, Yoshinobu; Fuji, Masayuki; Shinbo, Kazuyuki; Miyake, Yasuhiro
1975-01-01
In a previous report, the conformation of polytetrahydrofuran (PTHF) in isopropyl alcohol as a theta solvent and in n-butyl alcohol as an intermediate solvent was examined by the small angle scattering of X-ray. As the result, the experimental scattering curve at theta temperature was explained well with the calculated curve obtained by superposing, while it was impossible to apply the similar method to the analysis of the scattering curve in the intermediate solvent. Recently, as the results of the calculation by Koyama on the angular distribution of light intensity scattered by stiff chain polymers and of the studies by Edwards and de Gennes on the asymptotic behavior of scattering curves in good solvents, the direct comparison of experimental and calculated scattering curves became possible. In this report, the comparison of the scattering curves of PTHF-alcohol systems is described. The systems employed were PTHF-n-propyl alcohol, PTHF-isobutyl alcohol, PTHF-sec-butyl alcohol, and PTHF-tert-butyl alcohol in addition to the previous two systems. The Guinier plots of the cross section factors of the PTHF-alcohol systems showed that the Guinier approximation on cross sections was not satisfied in cases of PTHF-isobutyl alcohol and PTHF-sec-butyl alcohol. The light scattering data at 44.6 0 C, the theta temperature of PTHF-isopropyl alcohol, are given. From the figures comparing experimental and calculated scattering curves, it was shown that there was appreciable solvent effect on the scattering curves of PTHF-alcohol systems. The relation predicted by Edwards and de Gennes was satisfied well in case of the systems in good solvents. (Kako, I.)
Pienpinijtham, Prompong; Vantasin, Sanpon; Kitahama, Yasutaka; Ekgasit, Sanong; Ozaki, Yukihiro
2017-08-01
This review shows updated experimental cases of tip-enhanced Raman scattering (TERS) operated in solution/liquid systems. TERS in solution/liquid is still infancy, but very essential and challenging because crucial and complicated biological processes such as photosynthesis, biological electron transfer, and cellular respiration take place and undergo in water, electrolytes, or buffers. The measurements of dry samples do not reflect real activities in those kinds of systems. To deeply understand them, TERS in solution/liquid is needed to be developed. The first TERS experiment in solution/liquid is successfully performed in 2009. After that time, TERS in solution/liquid has gradually been developed. It shows a potential to study structural changes of biomembranes, opening the world of dynamic living cells. TERS is combined with electrochemical techniques, establishing electrochemical TERS (EC-TERS) in 2015. EC-TERS creates an interesting path to fulfil the knowledge about electrochemical-related reactions or processes. TERS tip can be functionalized with sensitive molecules to act as a "surface-enhanced Raman scattering (SERS) at tip" for investigating distinct properties of systems in solution/liquid e.g., pH and electron transfer mechanism. TERS setup is continuously under developing. Versatile geometry of the setup and a guideline of a systematic implementation for a setup of TERS in solution/liquid are proposed. New style of setup is also reported for TERS imaging in solution/liquid. From all of these, TERS in solution/liquid will expand a nano-scaled exploration into solution/liquid systems of various fields e.g., energy storages, catalysts, electronic devices, medicines, alternative energy sources, and build a next step of nanoscience and nanotechnology.
International Nuclear Information System (INIS)
Sasaki, S; Masunaga, H; Takata, M; Itou, K; Tashiro, K; Okuda, H; Takahara, A
2009-01-01
Crystallization behavior of polyethylene (PE) on silicon wafers in solution casting processes has been successfully traced by time-resolved grazing-incidence small-angle and wide-angle X-ray scattering (GISWAXS) measurements utilizing synchrotron radiation. A p-xylene solution of PE kept at ca. 343 K was dropped on a silicon wafer at ca. 298 K. While the p-xylene evaporated naturally from the dropped solution sample, PE chains crystallized to be a thin film. Raman spectral measurements were performed simultaneously with the GISWAXS measurements to evaluate quantitatively the p-xylene the dropped solution contained. Grazing-incidence wide-angle X-ray scattering (GIWAXS) patterns indicated nucleation and crystal growth in the dropped solution and the following as-cast film. GIWAXS and Raman spectral data revealed that crystallization of PE was enhanced after complete evaporation of the p-xylene from the dropped solution. The [110] and [200] directions of the orthorhombic PE crystal became relatively parallel to the wafer surface with time, which implied that the flat-on lamellae with respect to the wafer surface were mainly formed in the as-cast film. On the other hand, grazing-incidence small-angle X-ray scattering (GISAXS) patterns implied formation of isolated lamellae in the dropped solution. The lamellae and amorphous might alternatively be stacked in the preferred direction perpendicular to the wafer surface. The synchrotron GISWAXS experimental method could be applied for kinetic study on hierarchical structure of polymer thin films.
International Nuclear Information System (INIS)
Fedotov, V.K.; Antonov, V.E.; Kolesnikov, A.I.; Kornell, K.; Vipf, G.; Grosse, G.; Vagner, F.Eh.; Sikolenko, V.V.; Sumin, V.V.; )
1997-01-01
The FCC-lattice of the solid solution α-MnH 0.073 with the mass of 8.45 g is investigated by the neutron diffraction method and the inelastic neutron scattering technique. The neutron diffraction measurements are made by the diffractometer D1B with pyrographite monochromator and the high-resolution Fourier diffractometer HRFD at 300 K. The study of the inelastic incoherent neutron scattering is carried out by means of the inverse geometry spectrometer KDSOG-M at 90 K. The comparative analysis of α-MnH 0.073 and α-Mn spectra is fulfilled for the more correct separation of effects of hydrogen introduction. It is found out that the structure of the solid solution α-MnH 0.073 belongs to the same spatial group I-43m as the structure of α-Mn [ru
International Nuclear Information System (INIS)
Li Qi; Duan Qiuyuan; Zhang Jianbing
2012-01-01
The mixed discrete modified Korteweg-de Vries (mKdV) hierarchy and the Lax pair are derived. The hierarchy related to the Ablowitz-Ladik spectral problem is reduced to the isospectral discrete mKdV hierarchy and to the non-isospectral discrete mKdV hierarchy. N-soliton solutions of the hierarchies are obtained through inverse scattering transform.
International Nuclear Information System (INIS)
Arbuzov, B.A.; D'yakonov, V.Yu.; Rochev, V.E.
1975-01-01
Solution of equations for imaginary part of forward scattering amplitude in ladder approximation for theories with lambdaphisup(n),n(>=)4 interaction have been obtained. Two types of diagrams have been considered for lambdaphisup(n) renormalizable theory. It is shown, that the leading singularity is the branch point, which gives the power asymptotics with accuracy up to logarithms. The unrenormalizable theory with n(>=)5 lead to exponentially rising asymptotics
Rong Li Xia; Wang Jun; Wei Liu He; Li Fu Mian; Li Zi Chen
2002-01-01
The aggregation structure of polystyrene-p vinyl benzoic amphiphilic block copolymers which were prepared in different conditions was investigated by synchrotron radiation small-angle x-ray scattering (SAXS). The micelle was self-assembled in selective solvents of the block copolymers. Authors' results demonstrate that the structure of the micelle depends on the factors, such as the composition of the copolymers, the nature of the solvent and the concentration of the solution
International Nuclear Information System (INIS)
Lee, Jaesun; Cho, Younho; Achenbach, Jan D.
2016-01-01
Guided waves can be used for the inspection of long range pipelines. Surface corrosion is often found as a major defect type in pipelines. The reciprocity relation is a well-established theorem by which one can simplify complicated mathematical expressions. The approach has been already applied to plate and half-space structures to obtain the closed-form solutions of scattered amplitude. However, results for the case of cylindrical structures have not been reported yet. In this paper, the scattering of torsional waves, which is widely used in commercial applications, is explored by the reciprocity theorem approach. Obtaining closed-form solutions of the amplitudes of propagating waves is much simplified by using the reciprocal relation. The scattered amplitudes for elliptical and rectangular defect shapes are calculated with respect to defect depth and width, at frequencies between 0 and 500 kHz. The amplitude shows the periodic result as a function of frequency. The derived closed-form solutions can play a significant role in quantitative signal interpretation
Energy Technology Data Exchange (ETDEWEB)
Lee, Jaesun; Cho, Younho [Pusan National Univ., Pusan (Korea, Republic of); Achenbach, Jan D. [Northwestern Univ., Everston (United States)
2016-07-15
Guided waves can be used for the inspection of long range pipelines. Surface corrosion is often found as a major defect type in pipelines. The reciprocity relation is a well-established theorem by which one can simplify complicated mathematical expressions. The approach has been already applied to plate and half-space structures to obtain the closed-form solutions of scattered amplitude. However, results for the case of cylindrical structures have not been reported yet. In this paper, the scattering of torsional waves, which is widely used in commercial applications, is explored by the reciprocity theorem approach. Obtaining closed-form solutions of the amplitudes of propagating waves is much simplified by using the reciprocal relation. The scattered amplitudes for elliptical and rectangular defect shapes are calculated with respect to defect depth and width, at frequencies between 0 and 500 kHz. The amplitude shows the periodic result as a function of frequency. The derived closed-form solutions can play a significant role in quantitative signal interpretation.
International Nuclear Information System (INIS)
Otero, F A; Frontini, G L; Elicabe, G E
2011-01-01
An analytic model for the scattering of a spherical particle with spherical inclusions has been proposed under the RG approximation. The model can be used without limitations to describe an X-ray scattering experiment. However, for light scattering several conditions must be fulfilled. Based on this model an inverse methodology is proposed to estimate the radii of host particle and inclusions, the number of inclusions and the Distance Distribution Functions (DDF's) of the distances between inclusions and the distances between inclusions and the origin of coordinates. The methodology is numerically tested in a light scattering example in which the host particle is eliminated by matching the refractive indices of host particle and medium. The results obtained for this cluster particle are very satisfactory.
Energy Technology Data Exchange (ETDEWEB)
Stepinski, Dominique C. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-09-30
Argonne is assisting SHINE Medical Technologies (SHINE) in their efforts to develop SHINE, an accelerator-driven process that will utilize a uranyl-sulfate solution for the production of fission product Mo-99. An integral part of the process is the development of a column for the separation and recovery of Mo-99, followed by a concentration column to reduce the product volume from 15-25 L to <1 L. Argonne has collected data from batch studies and breakthrough column experiments to utilize the VERSE (Versatile Reaction Separation) simulation program (Purdue University) to design plant-scale product recovery and concentration processes.
Solution and scope of utilization of the cross-stream cooling towers
International Nuclear Information System (INIS)
Zembaty, W.
1995-01-01
Technical solutions and operational properties of the cross-stream cooling towers as well as the scope of their utilization are presented. The differences within thermodynamic calculations of the cross-stream and counter-stream cooling towers due to the direction of the air flow as well as water flow in sprinkling system are discussed. The assessment of the capital and operational costs of the cross-stream cooling towers is given and compared with the cost of counter-stream cooling towers (utilizing as an example a calculation conducted for the cooling towers of the 720, 1100 and 1400 MW units). (author). 6 refs, 9 figs
International Nuclear Information System (INIS)
Revesz, Peter; Temnykh, Alexander B.; Pauling, Alan K.
2011-01-01
At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.
Energy Technology Data Exchange (ETDEWEB)
Revesz, Peter, E-mail: pr20@cornell.edu [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States); Temnykh, Alexander B. [Cornell University, Laboratory for Elem-Particle Physics, Ithaca 14850, NY (United States); Pauling, Alan K. [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States)
2011-09-01
At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.
Application of Information Technology Solution for Early Warning Systems at Water Utilities
Bałut, Alicja
2018-02-01
Deployment of IT solutions in water utilities in Poland concerns nowadays lots beyond GIS implementation projects [1]. The scope of modern IT platforms is truly advanced software for complete management of water treatment processes and involved objects, including ranges of various types of equipment. There are multiply factors that disrupt required volumes of supplied water. They are normally classified as natural, accidental and intentional. This paper addresses potential residing in already deployed IT solutions of water utilities in and also in new ones being now developed. Primarily- from the perspective of intentional, terrorist threats. This document depicts operating procedures that are called in case of spotted contamination in a water supply (damage of key elements of the network infrastructure) or in case of an introduction factors. This paper also discusses relevant IT tools with access provided to network operators or water plant owners that are extremely useful in accurate pinpointing the treat and in following relevant operating procedures and related actions.
Zuffada, Cinzia; Crisp, David
1997-01-01
Reliable descriptions of the optical properties of clouds and aerosols are essential for studies of radiative transfer in planetary atmospheres. The scattering algorithms provide accurate estimates of these properties for spherical particles with a wide range of sizes and refractive indices, but these methods are not valid for non-spherical particles (e.g., ice crystals, mineral dust, and smoke). Even though a host of methods exist for deriving the optical properties of nonspherical particles that are very small or very large compared with the wavelength, only a few methods are valid in the resonance regime, where the particle dimensions are comparable with the wavelength. Most such methods are not ideal for particles with sharp edges or large axial ratios. We explore the utility of an integral equation approach for deriving the single-scattering optical properties of axisymmetric particles with large axial ratios. The accuracy of this technique is shown for spheres of increasing size parameters and an ensemble of randomly oriented prolate spheroids of size parameter equal to 10.079368. In this last case our results are compared with published results obtained with the T-matrix approach. Next we derive cross sections, single-scattering albedos, and phase functions for cylinders, disks, and spheroids of ice with dimensions extending from the Rayleigh to the geometric optics regime. Compared with those for a standard surface integral equation method, the storage requirement and the computer time needed by this method are reduced, thus making it attractive for generating databases to be used in multiple-scattering calculations. Our results show that water ice disks and cylinders are more strongly absorbing than equivalent volume spheres at most infrared wavelengths. The geometry of these particles also affects the angular dependence of the scattering. Disks and columns with maximum linear dimensions larger than the wavelength scatter much more radiation in the forward
Fulcher, Paul H; Granese, Marsha; Chun, Yoon; Welch, Christine A; Seybold, Dara J; Randall, Gary; DePond, R Todd
2014-01-01
Adequately controlling pain is a key component of postoperative care after a hysterectomy. The purpose of this study was to evaluate the effects of two intraperitoneal (IP) administered solutions during Laparoscopic Assisted Vaginal Hysterectomy (LAVH), on the amount of postoperative self-administered morphine. In this prospective, randomized, double blinded study, twenty women undergoing LAVH randomly distributed to two treatment groups: (1) 100 ml dexamethasone/ bupivacaine/ gentamicin (DMG) solution: 60 cc injected vaginally at cuff and 40 cc placed topically via laparoscopy over intra-peritoneal postoperative surfaces (IP) and 5 ml bupivacaine or 5 ml saline injected at the laparoscopic incision sites, (2) 100 ml saline solution: 60 cc injected vaginally at cuff and 40 cc placed topically via laparoscopy over intra-peritoneal postoperative surfaces (IP) and 5 ml bupivacaine or 5 ml saline injected at the laparoscopic incision sites. The amount of morphine utilized by the patients was documented from their patient controlled anesthesia (PCA) pump. Patient parameters recorded included perceived pain score, height, weight, age, race, reason for surgery, pre-surgery medications, American Society of Anesthesiologist (ASA) classification, length of the surgery and estimated blood loss (EBL). Age, EBL, length of surgery, and ASA classification were not significantly different between the groups. The postoperative amount of morphine utilized was higher at 4 (p=.02) and 16 hours (p = .04) and tended to be higher at 8, 12 hours (p=.06), and 24 hours (p=.09) in the saline IP group. Overall the saline IP group (n=10) used (median; range) 21.5; 8-82 mg of morphine while the DMG IP group (n=10) used 10.5; 1-23 mg. No participants reported a postoperative infection. This study demonstrates that intraoperative utilization of DMG solution during LAVH enables patients clinically to have less perceived pain and subsequently tend to utilize about half the amount of morphine
International Nuclear Information System (INIS)
Andrews, P.L.; Perkins, F.W.
1983-01-01
The investigation of the scattering of lower-hybrid waves by density fluctuations arising from drift waves in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. The propagation of the lower-hybrid waves is well represented by a radiative transfer equation when the scale size of the density fluctuations is small compared to the overall plasma size. The radiative transfer equation is solved in two limits: first, the forward scattering limit, where the scale size of density fluctuations is large compared to the lower-hybrid perpendicular wavelength, and second, the large-angle scattering limit, where this inequality is reversed. The most important features of these solutions are well represented by analytical formulas derived by simple arguments. Based on conventional estimates for density fluctuations arising from drift waves and a parabolic density profile, the optical depth tau for scattering through a significant angle, is given by tauroughly-equal(2/N 2 /sub parallel/) (#betta#/sub p/i0/#betta#) 2 (m/sub e/c 2 /2T/sub i/)/sup 1/2/ [c/α(Ω/sub i/Ω/sub e/)/sup 1/2/ ], where #betta#/sub p/i0 is the central ion plasma frequency and T/sub i/ denotes the ion temperature near the edge of the plasma. Most of the scattering occurs near the surface. The transmission through the scattering region scales as tau - 1 and the emerging intensity has an angular spectrum proportional to cos theta, where sin theta = k/sub perpendicular/xB/sub p//(k/sub perpendicular/B/sub p/), and B/sub p/ is the poloidal field
DEFF Research Database (Denmark)
Haldrup, Kristoffer; Dohn, Asmus Ougaard; Shelby, Megan L.
2016-01-01
the monochromatic X-ray pulses at Beamline 11IDD of the Advanced Photon Source. The excited-state structural analysis of 1 was performed based on the results from both transient WAXS measurements and density functional theory calculations to shed light on the primary structural changes in its triplet metal-metal...... excited state has remained scarce. Using time-resolved wide-angle X-ray scattering (WAXS), the excited triplet state molecular structure of [Pt(ppy)(μ-t-Bu2pz)]2 (ppy = 2-phenylpyridine; t-Bu2pz = 3,5-di-tert-butylpyrazolate), complex 1, was obtained in a dilute (0.5 mM) toluene solution utilizing...
Compact structure of ribosomal protein S4 in solution as revealed by small-angle X-ray scattering
International Nuclear Information System (INIS)
Serdyuk, I.N.; Sarkisyan, M.A.; Gogia, Z.V.
1981-01-01
The authors report the results of a small-angle X-ray scattering study of ribosomal protein preparations obtained by neutron scattering method. The theoretical resolution of the diffractometer (Kratky camera, the entrance slit 80 μm, the receiving slit 190 μm, the sample-detector distance 20.4 cm) was the same as the resolution of X-ray diffractometers, on which high rsub(g) values for ribosomal proteins were obtained. They used protein S4 adjusted to 20 mg/ml without any essential loss of solubility. The scattering indicatrix obtained in a wide range of angles has demonstrated that the X-ray rsub(g) obtained here coincides with the earlier obtained neutron rsub(g) and the outer part of the scattering curve is similar to that of slightly elongated compact bodies. They conclude that all discrepancies between their data on the study of ribosomal protein structure in solution and other data are not connected with the characteristics of the instruments used but only with the quality of the protein preparations. (Auth.)
Two comments to utilization of structure function approach in deep inelastic scattering experiments
International Nuclear Information System (INIS)
Kuraev, E.; Galynskij, M.; Il'ichev, A.
2002-01-01
The 'returning to resonance' mechanism can be used to obtain the simple procedure of taking radiative corrections (RC) to deep inelastic scattering (DIS) cross sections into account in the framework of the Drell-Yan picture. Iteration procedure is proposed. Kinematical region y→1 can be described in the framework of the Drell-Yan picture using the structure function approach. The large RC in the lowest order reflect the Sudakov form factor suppression, which can be taken into account in all orders of the perturbation theory. Based on explicit calculation in two lowest orders of the perturbation theory, we construct the cross section in the y→1 region obeying renormalization group equations and including the Sudakov-like form factor suppression
International Nuclear Information System (INIS)
Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.
1978-01-01
An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector and an inelastic scattering gamma ray detector is moved through a borehole. The detection of inelastic gamma rays provides a measure of the fast neutron population in the vicinity of the detector. repetitive bursts of neutrons irradiate the earth formation and, during the busts, inelastic gamma rays representative of the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. the fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity
MOT solution of the PMCHWT equation for analyzing transient scattering from conductive dielectrics
Uysal, Ismail Enes
2015-01-01
Transient electromagnetic interactions on conductive dielectric scatterers are analyzed by solving the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) surface integral equation with a marching on-in-time (MOT) scheme. The proposed scheme, unlike the previously developed ones, permits the analysis on scatterers with multiple volumes of different conductivity. This is achieved by maintaining an extra temporal convolution that only depends on permittivity and conductivity of these volumes. Its discretization and computation come at almost no additional cost and do not change the computational complexity of the resulting MOT solver. Accuracy and applicability of the MOT-PMCHWT solver are demonstrated by numerical examples.
Li, Mu; Zhang, Mingxin; Wang, Weiyu; Cheng, Stephen Z. D.; Yin, Panchao
2018-05-01
Nano-scaled polyoxometalates (POMs) clusters with sizes ranging from 1 to 10 nm attract tremendous attention and have been extensively studied due to POMs' fascinating structural characteristics and prospects for wide-ranging applications. As a unique class of nanoparticles with well-defined structural topologies and monodispersed masses, the structures and properties of POMs in both bulk state and solutions have been explored with several well-developed protocols. Small-angle X-ray scattering (SAXS) technique, as a powerful tool for studying polymers and nanoparticles, has been recently extended to the investigating of solution behaviors of POMs. In this mini-review, the general principle and typical experimental procedures of SAXS are illustrated first. The applications of SAXS in characterizing POMs' morphology, counterion distribution around POMs, and short-range interactions among POMs in solutions are highlighted. [Figure not available: see fulltext.
Fukasawa, Toshiko; Sato, Takaaki
2011-02-28
We highlight versatile applicability of a structure-factor indirect Fourier transformation (IFT) technique, hereafter called SQ-IFT. The original IFT aims at the pair distance distribution function, p(r), of colloidal particles from small angle scattering of X-rays (SAXS) and neutrons (SANS), allowing the conversion of the experimental form factor, P(q), into a more intuitive real-space spatial autocorrelation function. Instead, SQ-IFT is an interaction potential model-free approach to the 'effective' or 'experimental' structure factor to yield the pair correlation functions (PCFs), g(r), of colloidal dispersions like globular protein solutions for small-angle scattering data as well as the radial distribution functions (RDFs) of molecular liquids in liquid diffraction (LD) experiments. We show that SQ-IFT yields accurate RDFs of liquid H(2)O and monohydric alcohol reflecting their local intermolecular structures, in which q-weighted structure function, qH(q), conventionally utilized in many LD studies out of necessity of performing direct Fourier transformation, is no longer required. We also show that SQ-IFT applied to theoretically calculated structure factors for uncharged and charged colloidal dispersions almost perfectly reproduces g(r) obtained as a solution of the Ornstein-Zernike (OZ) equation. We further demonstrate the relevance of SQ-IFT in its practical applications, using SANS effective structure factors of lysozyme solutions reported in recent literatures which revealed the equilibrium cluster formation due to coexisting long range electrostatic repulsion and short range attraction between the proteins. Finally, we present SAXS experiments on human serum albumin (HSA) at different ionic strength and protein concentration, in which we discuss the real space picture of spatial distributions of the proteins via the interaction potential model-free route.
Biçer, M.; Kaşkaş, A.
2018-03-01
The infinite medium Green's function is used to solve the half-space albedo, slab albedo and Milne problems for the unpolarized Rayleigh scattering case; these problems are the most classical problems of radiative transfer theory. The numerical results are obtained and are compared with previous ones.
Energy Technology Data Exchange (ETDEWEB)
Lindenau, D; Beavan, S W; Beck, G; Schnabel, W [Hahn-Meitner-Institut fuer Kernforschung Berlin G.m.b.H. (Germany, F.R.)
1977-01-01
Polymethylvinylketone (PMVK) was irradiated in solution with 2 ..mu..s pulses of 15 MeV electrons or with 15 ns flashes of 262 nm light. The change of the intensity of the light scattered by the solution (LSI) after the irradiation was measured. For the radiolysis experiments, a main chain scission process tausub(1/2) (decr) approximately 20 ..mu..s) and a subsequent crosslinking process (tausub(1/2) (incr) approximately 0.4 sec) could be discriminated. The LSI change pertaining to the main chain degradation was found to be due to disentanglement diffusion, whereas the LSI change pertaining to the crosslinking process could be correlated to a chemical reaction. The rate constant for combination of lateral macroradicals in acetone solution was estimated as 2 k/sub 2/ - (4.5 +- 1.5)10/sup 6/ M/sup -1/ sec/sup -1/. Stationary irradiation with /sup 60/Co-..gamma..-rays showed that PMVK is predominantly crosslinked to form a macrogel when irradiated in the solid state or in solution at concentrations greater than 100 g/l. At lower concentrations, microgel formation occurred. Photolysis of PMVK in solution yielded only main chain degradation. The LSI change was found to be due to disentanglement diffusion as during radiolysis. It was concluded that the same mechanism for main chain rupture is operative as in radiolysis. Stationary irradiations with uv light (lambda > 260 nm ) resulted in main chain degradation; no indication of crosslinking was obtained.
International Nuclear Information System (INIS)
Mueller, J.J.; Friedrichowicz, E.; Nothnagel, A.; Wunderlich, T.; Ziehlsdorf, E.; Damaschun, G.
1983-01-01
The wide angle X-ray scattering curve, the electron distance distribution function and the solvent excluded volume of a macromolecule in solution are calculated from the atomic coordinates contained in the PROTEIN DATA BANK. The structures and the projections of the excluded volumes are depicted using molecule graphic routines. The described computer programs are used to determine the three-dimensional structure of macromolecules in solution from wide angle X-ray scattering data. (author)
SoftWAXS: a computational tool for modeling wide-angle X-ray solution scattering from biomolecules.
Bardhan, Jaydeep; Park, Sanghyun; Makowski, Lee
2009-10-01
This paper describes a computational approach to estimating wide-angle X-ray solution scattering (WAXS) from proteins, which has been implemented in a computer program called SoftWAXS. The accuracy and efficiency of SoftWAXS are analyzed for analytically solvable model problems as well as for proteins. Key features of the approach include a numerical procedure for performing the required spherical averaging and explicit representation of the solute-solvent boundary and the surface of the hydration layer. These features allow the Fourier transform of the excluded volume and hydration layer to be computed directly and with high accuracy. This approach will allow future investigation of different treatments of the electron density in the hydration shell. Numerical results illustrate the differences between this approach to modeling the excluded volume and a widely used model that treats the excluded-volume function as a sum of Gaussians representing the individual atomic excluded volumes. Comparison of the results obtained here with those from explicit-solvent molecular dynamics clarifies shortcomings inherent to the representation of solvent as a time-averaged electron-density profile. In addition, an assessment is made of how the calculated scattering patterns depend on input parameters such as the solute-atom radii, the width of the hydration shell and the hydration-layer contrast. These results suggest that obtaining predictive calculations of high-resolution WAXS patterns may require sophisticated treatments of solvent.
International Nuclear Information System (INIS)
Williams, Dennis K.; Ranson, William F.
2003-01-01
One of the paradigmatic classes of problems that frequently arise in piping stress analysis discipline is the effect of local stresses created by supports and restraints attachments. Over the past 20 years, concerns have been identified by both regulatory agencies in the nuclear power industry and others in the process and chemicals industries concerning the effect of various stiff clamping arrangements on the expected life of the pipe and its various piping components. In many of the commonly utilized geometries and arrangements of pipe clamps, the elasticity problem becomes the axisymmetric stress and deformation determination in a hollow cylinder (pipe) subjected to the appropriate boundary conditions and respective loads per se. One of the geometries that serve as a pipe anchor is comprised of two pipe clamps that are bolted tightly to the pipe and affixed to a modified shoe-type arrangement. The shoe is employed for the purpose of providing an immovable base that can be easily attached either by bolting or welding to a structural steel pipe rack. Over the past 50 years, the computational tools available to the piping analyst have changed dramatically and thereby have caused the implementation of solutions to the basic problems of elasticity to change likewise. The need to obtain closed form elasticity solutions, however, has always been a driving force in engineering. The employment of symbolic calculus that is currently available through numerous software packages makes closed form solutions very economical. This paper briefly traces the solutions over the past 50 years to a variety of axisymmetric stress problems involving hollow circular cylinders employing a Fourier series representation. In the present example, a properly chosen Fourier series represent the mathematical simulation of the imposed axial displacements on the outside diametrical surface. A general solution technique is introduced for the axisymmetric discontinuity stresses resulting from an
Quantification of RNA in bacteriophage MS2-like viruses in solution by small-angle X-ray scattering
International Nuclear Information System (INIS)
Kuzmanovic, Deborah A.; Elashvili, Ilya; Wick, Charles; O'Connell, Catherine; Krueger, Susan
2006-01-01
Recombinant forms of bacteriophage MS2 virus particles, wild-type MS2 and MS2 capsids have been examined in solution using small-angle X-ray scattering (SAXS). SAXS was used to determine the overall size of the virus particles and to quantify the amount of encapsulated viral RNA. These studies show that analysis of natural and recombinant forms of MS2 virus by SAXS can be used as both a quantitative measure of nucleic acid content in situ and diagnostic indicator of sample integrity
Energy Technology Data Exchange (ETDEWEB)
Takahashi, Hiroshi [Department of Physics, Gunma University, Maebashi, Gunma (Japan)
2001-03-01
Trehalose protects cells and proteins against various stresses due to low temperatures or dryness. In order to clarify the molecular mechanism of cryoprotective function of trehalose, we have studied the interaction between trehalose and phosphatidylcholine (PC) which is a main lipid component of cell membranes. In this study, the structural change of a binary PC mixture by the presence of trehalose was investigated by means of small angle neutron scattering. The PC binary mixture studied contains dihexanoyl-PC (diC{sub 6}PC) and dihexadecy-PC (DHPC). The former has short hydrocarbon chains and the latter has long hydrocarbon chains. The scattering profiles from the DHPC/diC{sub 6}PC mixture were changed, depending on trehalose concentrations. This change can be interpreted as suggesting that the presence of trehalose reduces the interfacial area between water and PCs. (author)
Effects of Pressure on Stability of Biomolecules in Solutions Studied by Neutron Scattering
Bellissent-Funel, Marie-Claire-; Appavou, Marie-Sousai; Gibrat, Gabriel
Studies of the pressure dependence on protein structure and dynamics contribute not only to the basic knowledge of biological molecules but have also a considerable relevance in full technology, like in food sterilization and pharmacy. Conformational changes induced by pressure as well as the effects on the protein stability have been mostly studied by optical techniques (optical absorption, fluorescence, phosphorescence), and by NMR. Most optical techniques used so far give information related to the local nature of the used probe (fluorescent or phosphorescent tryptophan). Small angle neutron scattering and quasi-elastic neutron scattering provide essential complementary information to the optical data, giving quantitative data on change of conformation of soluble globular proteins such as bovine pancreatic trypsin inhibitor (BPTI) and on the mobility of protons belonging to the protein surface residues.
Solution of the inverse scattering problem at fixed energy with non-physical S matrix elements
International Nuclear Information System (INIS)
Eberspaecher, M.; Amos, K.; Apagyi, B.
1999-12-01
The quantum mechanical inverse elastic scattering problem is solved with the modified Newton-Sabatier method. A set of S matrix elements calculated from a realistic analytic optical model potential serves as input data. It is demonstrated that the quality of the inversion potential can be improved by including non-physical S matrix elements to half, quarter and eighth valued partial waves if the original set does not contain enough information to determine the interaction potential. We demonstrate that results can be very sensitive to the choice of those non-physical S matrix values both with the analytic potential model and in a real application in which the experimental cross section for the symmetrical scattering system of 12 C+ 12 C at E=7.998 MeV is analyzed
Quantum theory of atom-surface scattering: exact solutions and evaluation of approximations
International Nuclear Information System (INIS)
Chiroli, C.; Levi, A.C.
1976-01-01
In a recent article a hard corrugated surface was proposed as a simple model for atom-surface scattering. The problem was not solved exactly, however, but several alternative approximations were considered. Since these three similar, but inequivalent, approximations were proposed, the problem arose to evaluate these approximations in order to choose between them. In the present letter some exact calculations are presented which make this choice rationally possible. (Auth.)
On the solution of a few problems of multiple scattering by Monte Carlo method
International Nuclear Information System (INIS)
Bluet, J.C.
1966-02-01
Three problems of multiple scattering arising from neutron cross sections experiments, are reported here. The common hypothesis are: - Elastic scattering is the only possible process - Angular distributions are isotropic - Losses of particle energy are negligible in successive collisions. In the three cases practical results, corresponding to actual experiments are given. Moreover the results are shown in more general way, using dimensionless variable such as the ratio of geometrical dimensions to neutron mean free path. The FORTRAN codes are given together with to the corresponding flow charts, and lexicons of symbols. First problem: Measurement of sodium capture cross-section. A sodium sample of given geometry is submitted to a neutron flux. Induced activity is then measured by means of a sodium iodide cristal. The distribution of active nuclei in the sample, and the counter efficiency are calculated by Monte-Carlo method taking multiple scattering into account. Second problem: absolute measurement of a neutron flux using a glass scintillator. The scintillator is a use of lithium 6 loaded glass, submitted to neutron flux perpendicular to its plane faces. If the glass thickness is not negligible compared with scattering mean free path λ, the mean path e' of neutrons in the glass is different from the thickness. Monte-Carlo calculation are made to compute this path and a relative correction to efficiency equal to (e' - e)/e. Third problem: study of a neutron collimator. A neutron detector is placed at the bottom of a cylinder surrounded with water. A neutron source is placed on the cylinder axis, in front of the water shield. The number of neutron tracks going directly and indirectly through the water from the source to the detector are counted. (author) [fr
A Two-Dimensional Helmholtz Equation Solution for the Multiple Cavity Scattering Problem
2013-02-01
obtained by using the block Gauss – Seidel iterative meth- od. To show the convergence of the iterative method, we define the error between two...models to the general multiple cavity setting. Numerical examples indicate that the convergence of the Gauss – Seidel iterative method depends on the...variational approach. A block Gauss – Seidel iterative method is introduced to solve the cou- pled system of the multiple cavity scattering problem, where
Jacques, David A; Guss, Jules Mitchell; Trewhella, Jill
2012-05-17
Small-angle scattering is becoming an increasingly popular tool for the study of bio-molecular structures in solution. The large number of publications with 3D-structural models generated from small-angle solution scattering data has led to a growing consensus for the need to establish a standard reporting framework for their publication. The International Union of Crystallography recently established a set of guidelines for the necessary information required for the publication of such structural models. Here we describe the rationale for these guidelines and the importance of standardising the way in which small-angle scattering data from bio-molecules and associated structural interpretations are reported.
International Nuclear Information System (INIS)
Fujiwara, Satoru
2001-03-01
182nd advanced science seminar (the workshop on neutron structural biology) was held in February 9-10, 2000 at Tokai. Thirty-six participants from universities, research institutes, and private companies took part in the workshop, and total of 24 lectures were given. This proceedings collects abstracts, the figures and tables, which the speakers used in their lectures. The proceedings contains two reviews from the point of view of x-ray and neutron scatterings, and six subjects (21 papers) including neutron and x-ray scattering in the era of structure genomics, structural changes detected with solution scattering, a new way in structural biology opened by neutron crystallography and neutron scattering, x-ray sources and detectors, simulation and solution scattering, and neutron sources and detectors. (Kazumata, Y.)
Energy Technology Data Exchange (ETDEWEB)
Fujiwara, Satoru (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2001-03-01
182nd advanced science seminar (the workshop on neutron structural biology) was held in February 9-10, 2000 at Tokai. Thirty-six participants from universities, research institutes, and private companies took part in the workshop, and total of 24 lectures were given. This proceedings collects abstracts, the figures and tables, which the speakers used in their lectures. The proceedings contains two reviews from the point of view of x-ray and neutron scatterings, and six subjects (21 papers) including neutron and x-ray scattering in the era of structure genomics, structural changes detected with solution scattering, a new way in structural biology opened by neutron crystallography and neutron scattering, x-ray sources and detectors, simulation and solution scattering, and neutron sources and detectors. (Kazumata, Y.)
International Nuclear Information System (INIS)
Wood, Kathleen; Jeffries, Cy M.; Knott, Robert B.; Sokolova, Anna; Jacques, David A.; Duff, Anthony P.
2015-01-01
Small angle neutron scattering (SANS) is widely used to extract structural parameters, shape and other types of information from a vast array of materials. The technique is applied to biological macromolecules and their complexes in solution to reveal information often not accessible by other techniques. SANS measurements on biomolecules present some particular challenges however, one of which is suitable instrumentation. This review details SANS experiments performed on two well-characterised globular proteins (lysozyme and glucose isomerase) using Quokka, the recently commissioned SANS instrument at the Australian Nuclear Science and Technology Organisation (ANSTO). The instrument configuration as well as data collection and reduction strategies for biological investigations are discussed and act as a general reference for structural biologists who use the instrument. Both model independent analysis of the two proteins and ab initio modelling illustrate that Quokka-SANS data can be used to successfully model the overall shapes of proteins in solution, providing a benchmark for users
Shimizu, S; Furusaka, M
2002-01-01
Small-angle neutron and X-ray scattering from semidilute solutions of poly(N-isopropylacrylamide) in D sub 2 O, methanol and methanol-water mixtures has been measured in the poor solvent regime. The binary and the ternary cluster integrals of polymer segments were determined from the concentration dependence of the correlation length at several temperatures just below the lower critical solution temperature. Then, contributions of segment-segment interactions to the entropy and the enthalpy have been calculated from the temperature dependence of interaction parameters and it has been found that both values are positive in the D sub 2 O and the methanol-water systems at a small content of methanol, while both values are negative in the other system. (orig.)
International Nuclear Information System (INIS)
Shimizu, S.; Kurita, K.; Furusaka, M.
2002-01-01
Small-angle neutron and X-ray scattering from semidilute solutions of poly(N-isopropylacrylamide) in D 2 O, methanol and methanol-water mixtures has been measured in the poor solvent regime. The binary and the ternary cluster integrals of polymer segments were determined from the concentration dependence of the correlation length at several temperatures just below the lower critical solution temperature. Then, contributions of segment-segment interactions to the entropy and the enthalpy have been calculated from the temperature dependence of interaction parameters and it has been found that both values are positive in the D 2 O and the methanol-water systems at a small content of methanol, while both values are negative in the other system. (orig.)
Roy, Susmita; Yashonath, Subramanian; Bagchi, Biman
2015-03-28
A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times-the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies.
Application of Information Technology Solution for Early Warning Systems at Water Utilities
Directory of Open Access Journals (Sweden)
Bałut Alicja
2018-01-01
Full Text Available Deployment of IT solutions in water utilities in Poland concerns nowadays lots beyond GIS implementation projects [1]. The scope of modern IT platforms is truly advanced software for complete management of water treatment processes and involved objects, including ranges of various types of equipment. There are multiply factors that disrupt required volumes of supplied water. They are normally classified as natural, accidental and intentional. This paper addresses potential residing in already deployed IT solutions of water utilities in and also in new ones being now developed. Primarily- from the perspective of intentional, terrorist threats. This document depicts operating procedures that are called in case of spotted contamination in a water supply (damage of key elements of the network infrastructure or in case of an introduction factors. This paper also discusses relevant IT tools with access provided to network operators or water plant owners that are extremely useful in accurate pinpointing the treat and in following relevant operating procedures and related actions.
Shew, Chwen-Yang; Do, Changwoo; Hong, Kunlun; Liu, Yun; Porcar, Lionel; Smith, Gregory S; Chen, Wei-Ren
2012-07-14
We present small angle neutron scattering (SANS) measurements of deuterium oxide (D(2)O) solutions of linear and star sodium poly(styrene sulfonate) (NaPSS) as a function of polyelectrolyte concentration. Emphasis is on understanding the dependence of their SANS coherent scattering cross section I(Q) on the molecular architecture of single polyelectrolyte. The key finding is that for a given concentration, star polyelectrolytes exhibit more pronounced characteristic peaks in I(Q), and the position of the first peak occurs at a smaller Q compared to their linear counterparts. Based on a model of integral equation theory, we first compare the SANS experimental I(Q) of salt-free polyelectrolyte solutions with that predicted theoretically. Having seen their satisfactory qualitative agreement, the dependence of counterion association behavior on polyelectrolyte geometry and concentration is further explored. Our predictions reveal that the ionic environment of polyelectrolyte exhibits a strong dependence on polyelectrolyte geometry at lower polyelectrolyte concentration. However, when both linear and star polyelectrolytes exceed their overlap concentrations, the spatial distribution of counterion is found to be essentially insensitive to polyelectrolyte geometry due to the steric effect.
Branca, C; Galli, G; Magazù, S; Maisano, G; Migliardo, F
2002-01-01
Neutron-scattering measurements have been performed on trehalose/H sub 2 O and sucrose/H sub 2 O mixtures by using the spectrometer MIBEMOL at the Laboratoire Leon Brillouin (LLB, Saclay) as a function of temperature and concentration. In order to characterize the different rigidities of both the disaccharide/H sub 2 O mixtures, we have evaluated the R sub 1 (T sub g) parameter connected to the 'strong-fragile' classification of the systems according to Angell's nomenclature. (orig.)
Clinical utility of 3% diquafosol ophthalmic solution in the treatment of dry eyes
Koh, Shizuka
2015-01-01
Diquafosol is a drug used for dry eye treatment with a novel mechanism of action. It stimulates the secretion of tear fluid and mucin on the ocular surface, thus enabling us to selectively treat the tear film layer, playing an important role in the establishment of the concept of “Tear Film Oriented Therapy (TFOT)”, an effective therapeutic approach to dry eye in Japan. The 3% diquafosol ophthalmic solution has been widely used for the treatment of dry eye in clinical practice, and it is currently available in Japan and South Korea. This review provides an overview of the clinical utility of 3% diquafosol ophthalmic solution, focusing on the results of clinical studies on various types of dry eye, including aqueous-deficient dry eye, short tear film breakup time-type dry eye, and post dry eye after laser in situ keratomileusis. It also introduces the additive effect of diquafosol on sodium hyaluronate monotherapy for dry eye, and the effect of 3% diquafosol ophthalmic solution for dry eye-related conditions. Additionally, it summarizes the ocular effects of diquafosol in healthy human eyes. Lastly, the importance of improving tear film stability in dry eye treatment, as well as general advances in dry eye treatments, are described. PMID:26028958
Clinical utility of 3% diquafosol ophthalmic solution in the treatment of dry eyes
Directory of Open Access Journals (Sweden)
Koh S
2015-05-01
Full Text Available Shizuka Koh Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan Abstract: Diquafosol is a drug used for dry eye treatment with a novel mechanism of action. It stimulates the secretion of tear fluid and mucin on the ocular surface, thus enabling us to selectively treat the tear film layer, playing an important role in the establishment of the concept of “Tear Film Oriented Therapy (TFOT”, an effective therapeutic approach to dry eye in Japan. The 3% diquafosol ophthalmic solution has been widely used for the treatment of dry eye in clinical practice, and it is currently available in Japan and South Korea. This review provides an overview of the clinical utility of 3% diquafosol ophthalmic solution, focusing on the results of clinical studies on various types of dry eye, including aqueous-deficient dry eye, short tear film breakup time-type dry eye, and post dry eye after laser in situ keratomileusis. It also introduces the additive effect of diquafosol on sodium hyaluronate monotherapy for dry eye, and the effect of 3% diquafosol ophthalmic solution for dry eye-related conditions. Additionally, it summarizes the ocular effects of diquafosol in healthy human eyes. Lastly, the importance of improving tear film stability in dry eye treatment, as well as general advances in dry eye treatments, are described. Keywords: diquafosol, dry eye, mucin secretion, fluid secretion, ocular surface, vision
Clinical utility of 3% diquafosol ophthalmic solution in the treatment of dry eyes.
Koh, Shizuka
2015-01-01
Diquafosol is a drug used for dry eye treatment with a novel mechanism of action. It stimulates the secretion of tear fluid and mucin on the ocular surface, thus enabling us to selectively treat the tear film layer, playing an important role in the establishment of the concept of "Tear Film Oriented Therapy (TFOT)", an effective therapeutic approach to dry eye in Japan. The 3% diquafosol ophthalmic solution has been widely used for the treatment of dry eye in clinical practice, and it is currently available in Japan and South Korea. This review provides an overview of the clinical utility of 3% diquafosol ophthalmic solution, focusing on the results of clinical studies on various types of dry eye, including aqueous-deficient dry eye, short tear film breakup time-type dry eye, and post dry eye after laser in situ keratomileusis. It also introduces the additive effect of diquafosol on sodium hyaluronate monotherapy for dry eye, and the effect of 3% diquafosol ophthalmic solution for dry eye-related conditions. Additionally, it summarizes the ocular effects of diquafosol in healthy human eyes. Lastly, the importance of improving tear film stability in dry eye treatment, as well as general advances in dry eye treatments, are described.
Accardo, Angelo; Gentile, Francesco; Mecarini, Federico; De Angelis, Francesco; Burghammer, Manfred; Di Fabrizio, Enzo; Riekel, Christian
2010-09-21
Superhydrophobic poly(methyl methacrylate) surfaces with contact angles of ∼170° and high optical and X-ray transparencies have been fabricated through the use of optical lithography and plasma etching. The surfaces contain either a microscale pattern of micropillars or a random nanofibrillar pattern. Nanoscale asperities on top of the micropillars closely resemble Nelumbo nucifera lotus leaves. The evolution of the contact angle of water and lysozyme solution droplets during evaporation was studied on the micro- and nanopatterned surfaces, showing in particular contact-line pinning for the protein solution droplet on the nanopatterned surface. The microstructural evolution of lysozyme solution droplets was studied on both types of surfaces in situ under nearly contact-free conditions by synchrotron radiation microbeam wide-angle and small-angle X-ray scattering revealing the increasing protein concentration and the onset of precipitation. The solid residuals show hollow sphere morphologies. Rastermicrodiffraction of the detached residuals suggests about a 1/3 volume fraction of ≥17 nm lysozyme nanocrystalline domains and about a 2/3 short-range-order volume fraction. About 5-fold larger nanocrystalline domains were observed at the attachment points of the sphere to the substrates, which is attributed to particle growth in a shear flow. Such surfaces represent nearly contact-free sample supports for studies of inorganic and organic solution droplets, which find applications in biochips.
Krueger, Susan; Khodadadi, Sheila; Clark, Nicholas; McAuley, Arnold; Cristiglio, Viviana; Theyencheri, Narayanan; Curtis, Joseph; Shalaev, Evgenyi
2015-03-01
For effective preservation, proteins are often stored as frozen solutions or in glassy states using a freeze-drying process. However, aggregation is often observed after freeze-thaw or reconstitution of freeze-dried powder and the stability of the protein is no longer assured. In this study, small-angle neutron and X-ray scattering (SANS and SAXS) have been used to investigate changes in protein-protein interaction distances of a model protein/cryoprotectant system of lysozyme/sorbitol/water, under representative pharmaceutical processing conditions. The results demonstrate the utility of SAXS and SANS methods to monitor protein crowding at different stages of freezing and drying. The SANS measurements of solution samples showed at least one protein interaction peak corresponding to an interaction distance of ~ 90 Å. In the frozen state, two protein interaction peaks were observed by SANS with corresponding interaction distances at 40 Å as well as 90 Å. On the other hand, both SAXS and SANS data for freeze-dried samples showed three peaks, suggesting interaction distances ranging from ~ 15 Å to 170 Å. Possible interpretations of these interaction peaks will be discussed, as well as the role of sorbitol as a cryoprotectant during the freezing and drying process.
Lee, Jaesun; Achenbach, Jan D; Cho, Younho
2018-03-01
Guided waves can effectively be used for inspection of large scale structures. Surface corrosion is often found as major defect type in large scale structures such as pipelines. Guided wave interaction with surface corrosion can provide useful information for sizing and classification. In this paper, the elastodynamic reciprocity theorem is used to formulate and solve complicated scattering problems in a simple manner. The approach has already been applied to scattering of Rayleigh and Lamb waves by defects to produce closed form solutions of amplitude of scattered waves. In this paper, the scattering of the lowest axially symmetric torsional mode, which is widely used in commercial applications, is analyzed by the reciprocity theorem. In the present paper, the theorem is used to determine the scattering of the lowest torsional mode by a tapered defect that was earlier considered experimentally and numerically by the finite element method. It is shown that by the presented method it is simple to obtain the ratio of amplitudes of scattered torsional modes for a tapered notch. The results show a good agreement with earlier numerical results. The wave field superposition technique in conjunction with the reciprocity theorem simplifies the solution of the scattering problem to yield a closed form solution which can play a significant role in quantitative signal interpretation. Copyright © 2017 Elsevier B.V. All rights reserved.
Analysis of alloys and salt solutions by 'beta'-ray back-scattering
Energy Technology Data Exchange (ETDEWEB)
Bahadur, A; Maji, K D; Kumar, R [National Metallurgical Lab., Jamshedpur (India)
1975-07-01
This investigation reports the results of a study undertaken to assess the suitability of using the GM counter for measuring the intensity of ..beta..-backscattered radiation to determine the chemical composition of binary solid alloys, and aqueous salt solutions containing a metallic radical. The results indicate that the technique is not suitable for the determination of the composition of binary alloys since the error is in the range of 1.2 to 2.3 wt-% metal. The technique can be conveniently adapted for aqueous salt solutions where the maximum error is approximately 0.2 wt-% metal for metallic elements with atomic number greater than 20.
Group-decoupled multi-group pin power reconstruction utilizing nodal solution 1D flux profiles
International Nuclear Information System (INIS)
Yu, Lulin; Lu, Dong; Zhang, Shaohong; Wang, Dezhong
2014-01-01
Highlights: • A direct fitting multi-group pin power reconstruction method is developed. • The 1D nodal solution flux profiles are used as the condition. • The least square fit problem is analytically solved. • A slowing down source improvement method is applied. • The method shows good accuracy for even challenging problems. - Abstract: A group-decoupled direct fitting method is developed for multi-group pin power reconstruction, which avoids both the complication of obtaining 2D analytic multi-group flux solution and any group-coupled iteration. A unique feature of the method is that in addition to nodal volume and surface average fluxes and corner fluxes, transversely-integrated 1D nodal solution flux profiles are also used as the condition to determine the 2D intra-nodal flux distribution. For each energy group, a two-dimensional expansion with a nine-term polynomial and eight hyperbolic functions is used to perform a constrained least square fit to the 1D intra-nodal flux solution profiles. The constraints are on the conservation of nodal volume and surface average fluxes and corner fluxes. Instead of solving the constrained least square fit problem numerically, we solve it analytically by fully utilizing the symmetry property of the expansion functions. Each of the 17 unknown expansion coefficients is expressed in terms of nodal volume and surface average fluxes, corner fluxes and transversely-integrated flux values. To determine the unknown corner fluxes, a set of linear algebraic equations involving corner fluxes is established via using the current conservation condition on all corners. Moreover, an optional slowing down source improvement method is also developed to further enhance the accuracy of the reconstructed flux distribution if needed. Two test examples are shown with very good results. One is a four-group BWR mini-core problem with all control blades inserted and the other is the seven-group OECD NEA MOX benchmark, C5G7
Resonance scattering and low-temperature electron mobility in HgTe-based gapless solid solutions
International Nuclear Information System (INIS)
Raikh, M.Eh.; Ehfros, A.L.
1986-01-01
Low-temperature electron mobility in a gapless semiconductor conditioned by electron resonance scattering on neutral acceptors, the levels of which are located in narrow vicinity near the Fermi level, is calculated. Mobility turns to be inverse proportional to density of acceptor states at the Fermi level. If donor concentration is rather high, then presence of a Coulomb gap at the Fermi level in the density of acceptor states conditioned by long-range character of Coulomb interaction should be taken into account for calculation of mobility. The Fermi level is placed in the tail of the acceptor state density at rather low donor concentration, and the Coulomb gap is absent at the Fermi level. A case of high acceptor concentration, when the acceptor states are delocalized at the Fermi level, is also considered
Dynamic Conformations of Nucleosome Arrays in Solution from Small-Angle X-ray Scattering
Energy Technology Data Exchange (ETDEWEB)
Howell, Steven C. [George Washington Univ., Washington, DC (United States)
2016-01-31
We set out to determine quantitative information regarding the dynamic conformation of nucleosome arrays in solution using experimental SAXS. Toward this end, we developed a CG simulation algorithm for dsDNA which rapidly generates ensembles of structures through Metropolis MC sampling of a Markov chain.
Energy Technology Data Exchange (ETDEWEB)
Malhotra, M. [Stanford Univ., CA (United States)
1996-12-31
Finite-element discretizations of time-harmonic acoustic wave problems in exterior domains result in large sparse systems of linear equations with complex symmetric coefficient matrices. In many situations, these matrix problems need to be solved repeatedly for different right-hand sides, but with the same coefficient matrix. For instance, multiple right-hand sides arise in radiation problems due to multiple load cases, and also in scattering problems when multiple angles of incidence of an incoming plane wave need to be considered. In this talk, we discuss the iterative solution of multiple linear systems arising in radiation and scattering problems in structural acoustics by means of a complex symmetric variant of the BL-QMR method. First, we summarize the governing partial differential equations for time-harmonic structural acoustics, the finite-element discretization of these equations, and the resulting complex symmetric matrix problem. Next, we sketch the special version of BL-QMR method that exploits complex symmetry, and we describe the preconditioners we have used in conjunction with BL-QMR. Finally, we report some typical results of our extensive numerical tests to illustrate the typical convergence behavior of BL-QMR method for multiple radiation and scattering problems in structural acoustics, to identify appropriate preconditioners for these problems, and to demonstrate the importance of deflation in block Krylov-subspace methods. Our numerical results show that the multiple systems arising in structural acoustics can be solved very efficiently with the preconditioned BL-QMR method. In fact, for multiple systems with up to 40 and more different right-hand sides we get consistent and significant speed-ups over solving the systems individually.
Barnett, Alex H.; Nelson, Bradley J.; Mahoney, J. Matthew
2015-09-01
We apply boundary integral equations for the first time to the two-dimensional scattering of time-harmonic waves from a smooth obstacle embedded in a continuously-graded unbounded medium. In the case we solve, the square of the wavenumber (refractive index) varies linearly in one coordinate, i.e. (Δ + E +x2) u (x1 ,x2) = 0 where E is a constant; this models quantum particles of fixed energy in a uniform gravitational field, and has broader applications to stratified media in acoustics, optics and seismology. We evaluate the fundamental solution efficiently with exponential accuracy via numerical saddle-point integration, using the truncated trapezoid rule with typically 102 nodes, with an effort that is independent of the frequency parameter E. By combining with a high-order Nyström quadrature, we are able to solve the scattering from obstacles 50 wavelengths across to 11 digits of accuracy in under a minute on a desktop or laptop.
International Nuclear Information System (INIS)
Calmettes, P.
1987-01-01
The structure and solvent interactions of malate dehydrogenase from Halobacterium marismortui in multimolar KCl solvents are found to be similar to those in multimolar NaCl solvents reported previously (G. Zaccai, E. Wachtel and H. Eisenberg, J. Mol. Biol. 190 (1986) 97). KCl rather than NaCl is predominant in physiological medium. At salt concentrations up to about 3.0 M, the protein (a dimer of M 87000 g/mol) can be considered to occupy an invariant volume in which it is associated with about 4100 molecules of water and about 520 molecules of salt. At very low resolution, the enzyme particle appears to have a compact protein core and protruding protein parts in interaction with the water and salt components, structural features that are not observed in non-halophilic mitochondrial malate dehydrogenase. The above conclusions were drawn from the analysis of neutron scattering and ultracentrifugation data, and the complementarity of these approaches is discussed extensively. 24 refs.; 7 figs.; 4 tabs
The small angle x-ray scattering of globular proteins in solution during heat denaturation
Banuelos, Jose; Urquidi, Jacob
2008-10-01
The ability of proteins to change their conformation in response to changes in their environment has consequences in biological processes like metabolism, chemical regulation in cells, and is believed to play a role in the onset of several neurodegenerative diseases. Factors such as a change in temperature, pressure, and the introduction of ions into the aqueous environment of a protein can give rise to the folding/unfolding of a protein. As a protein unfolds, the ratio of nonpolar to polar groups exposed to water changes, affecting a protein's thermodynamic properties. Using small angle x-ray scattering (SAXS), we are currently studying the intermediate protein conformations that arise during the folding/unfolding process as a function of temperature for five globular proteins. Trends in the observed intermediate structures of these globular proteins, along with correlations with data on protein thermodynamics may help elucidate shared characteristics between all proteins in the folding/unfolding process. Experimental design considerations will be discussed and preliminary results for some of these systems will be presented.
2003-01-01
Dr. Phil Segre, a physicist by training, is a recent addition to the Biotech group, SD46, having joined NASA in August of 2000. Over the past two years he has been developing a laboratory for the study of macromolecular and protein crystal growth. The main apparatus for this work is a Dynamic Light Scattering apparatus, DLS, which is capable of making highly precise measurements of size distributions of both protein solutions and protein crystals. With Drs. Chernov and Thomas (USRA), he has begun a collaboration studying the affects of protein impurities on protein crystal growth and subsequent crystal quality. One of the hypotheses behind the differences between Earth and space grown protein crystals is that the absorption of harmful impurities is reduced in space due to the absence of convective flows. Using DLS measurements we are examining crystal growth with varying amounts of impurities and testing whether there is a strong physical basis behind this hypothesis. With Dr. Joe Ng of UAH he has been collaborating on a project to examine the folding/unfolding dynamics of large RNA complexes. A detailed understanding of this process is necessary for the handling of RNA in biotech applications, and the DLS instrument gives details and results beyond that of other instruments. With Prof. Jim McClymer of the University of Maine (summer faculty visitor to NASA in 2001, 2002), we have been studying the crystallization process in model colloidal suspensions whose behavior in some cases can mimic that of much smaller protein solutions. An understanding of the self-assembly of colloids is the first step in the process of engineering novel materials for photonic and light switching applications. Finally, he has begun an investigation into the physics of particle sedimentation. In addition to the DLS instrument he also has an instrument (called PIV) that can measure flow fields of fluids. The applications are to the dynamics of protein crystal motions both on earth and in
International Nuclear Information System (INIS)
Konovalov, N.V.
The accuracy of the calculation of the characteristics of a radiation field in a plane layer is investigated by solving the transfer equation in dependence on the error in the specification of the scattering indicatrix. It is shown that a small error in the specification of the indicatrix can lead to a large error in the solution at large optical depths. An estimate is given for the region of optical thicknesses for which the emission field can be determined with sufficient degree of accuracy from the transfer equation with a known error in the specification of the indicatrix. For an estimation of the error involved in various numerical methods, and also for a determination of the region of their applicability, the results of calculations of problems with strongly anisotropic indicatrix are given
International Nuclear Information System (INIS)
Chen, Wei-Ren
2009-01-01
Our previous study of the structure change of poly(amidoamine) starburst dendrimers (PAMAM) dendrimer of generation 5 (G5) have demonstrated that although the overall molecular size is practically unaffected by increasing DCl concentration, a configurational transformation, from a diffusive density profile to a more uniform density distribution, is clearly observed. In the current paper, the focus is placed on understanding the effect of counterion identity on the inter-molecular structure and the conformational properties by studying the effect due to DBr using small angle neutron scattering (SANS) and integral equation theory. While the overall molecular size is found to be essentially unaffected by the change in the pD of solutions, it is surprising that the intra-molecular configurational transformation is not observed when DBr is used. The overall effective charge of a dendrimer is nearly the same for 1, the effect of counterion identity becomes significant, the effective charge carried by a charged G5 PAPAM protonated by DBr becomes smaller than that of solutions with DCl. As a consequence, a counterion identity dependence of counterion association is revealed: Under the same level of molecular protonation, the specific counterion association, which is defined as the ratio of bound chloride anions to positively charged amines per molecule, is larger for the G5 PAMAM dendrimer charged by DBr than the one by DCl.
Energy Technology Data Exchange (ETDEWEB)
Meyer, Arne [University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg (Germany); Dierks, Karsten [University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg (Germany); XtalConcepts, Marlowring 19, 22525 Hamburg (Germany); Hussein, Rana [University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg (Germany); Brillet, Karl [ESBS, Pôle API, 300 Boulevard Sébastien Brant, CS10413, 67412 Illkirch CEDEX (France); Brognaro, Hevila [São Paulo State University, UNESP/IBILCE, Caixa Postal 136, São José do Rio Preto-SP, 15054 (Brazil); Betzel, Christian, E-mail: christian.betzel@uni-hamburg.de [University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg (Germany)
2015-01-01
Application of in situ dynamic light scattering to solutions of protein–detergent complexes permits characterization of these complexes in samples as small as 2 µl in volume. Detergents are widely used for the isolation and solubilization of membrane proteins to support crystallization and structure determination. Detergents are amphiphilic molecules that form micelles once the characteristic critical micelle concentration (CMC) is achieved and can solubilize membrane proteins by the formation of micelles around them. The results are presented of a study of micelle formation observed by in situ dynamic light-scattering (DLS) analyses performed on selected detergent solutions using a newly designed advanced hardware device. DLS was initially applied in situ to detergent samples with a total volume of approximately 2 µl. When measured with DLS, pure detergents show a monodisperse radial distribution in water at concentrations exceeding the CMC. A series of all-transn-alkyl-β-d-maltopyranosides, from n-hexyl to n-tetradecyl, were used in the investigations. The results obtained verify that the application of DLS in situ is capable of distinguishing differences in the hydrodynamic radii of micelles formed by detergents differing in length by only a single CH{sub 2} group in their aliphatic tails. Subsequently, DLS was applied to investigate the distribution of hydrodynamic radii of membrane proteins and selected water-insoluble proteins in presence of detergent micelles. The results confirm that stable protein–detergent complexes were prepared for (i) bacteriorhodopsin and (ii) FetA in complex with a ligand as examples of transmembrane proteins. A fusion of maltose-binding protein and the Duck hepatitis B virus X protein was added to this investigation as an example of a non-membrane-associated protein with low water solubility. The increased solubility of this protein in the presence of detergent could be monitored, as well as the progress of proteolytic
Directory of Open Access Journals (Sweden)
Jacques David A
2012-05-01
Full Text Available Abstract Small-angle scattering is becoming an increasingly popular tool for the study of bio-molecular structures in solution. The large number of publications with 3D-structural models generated from small-angle solution scattering data has led to a growing consensus for the need to establish a standard reporting framework for their publication. The International Union of Crystallography recently established a set of guidelines for the necessary information required for the publication of such structural models. Here we describe the rationale for these guidelines and the importance of standardising the way in which small-angle scattering data from bio-molecules and associated structural interpretations are reported.
Illien, Bertrand; Ying, Ruifeng
2009-05-11
New static light scattering (SLS) equations for dilute binary solutions are derived. Contrarily to the usual SLS equations [Carr-Zimm (CZ)], the new equations have no need for the experimental absolute Rayleigh ratio of a reference liquid and solely rely on the ratio of scattered intensities of solutions and solvent. The new equations, which are based on polarizability equations, take into account the usual refractive index increment partial differential n/partial differential rho(2) complemented by the solvent specific polarizability and a term proportional to the slope of the solution density rho versus the solute mass concentration rho(2) (density increment). Then all the equations are applied to 21 (macro)molecules with a wide range of molar mass (0.2equations clearly achieve a better agreement with supplier M values. For macromolecules (M>500 kg mol(-1)), for which the scattered intensity is no longer independent of the scattering angle, the new equations give the same value of the radius of gyration as the CZ equation and consistent values of the second virial coefficient.
Dahani, Mohamed; Barret, Laurie-Anne; Raynal, Simon; Jungas, Colette; Pernot, Pétra; Polidori, Ange; Bonneté, Françoise
2015-01-01
The structural and interactive properties of two novel hemifluorinated surfactants, F2H9-β-M and F4H5-β-M, the syntheses of which were based on the structure and hydrophobicity of the well known dodecyl-β-maltoside (DD-β-M), are described. The shape of their micellar assemblies was characterized by small-angle X-ray scattering and their intermicellar interactions in crystallizing conditions were measured by dynamic light scattering. Such information is essential for surfactant phase-diagram determination and membrane-protein crystallization. PMID:26144228
Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar
2017-02-01
Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre-Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of 15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles.
Thach, Trung Thanh; Shin, Donghyuk; Han, Seungsu; Lee, Sangho
2016-04-01
The conformational flexibility of linkage-specific polyubiquitin chains enables ubiquitylated proteins and their receptors to be involved in a variety of cellular processes. Linear or Met1-linked polyubiquitin chains, associated with nondegradational cellular signalling pathways, have been known to adopt multiple conformations from compact to extended conformations. However, the extent of such conformational flexibility remains open. Here, the crystal structure of linear Ub2 was determined in a more compact conformation than that of the previously known structure (PDB entry 3axc). The two structures differ significantly from each other, as shown by an r.m.s.d. between C(α) atoms of 3.1 Å. The compactness of the linear Ub2 structure in comparison with PDB entry 3axc is supported by smaller values of the radius of gyration (Rg; 18 versus 18.9 Å) and the maximum interatomic distance (Dmax; 55.5 versus 57.8 Å). Extra intramolecular hydrogen bonds formed among polar residues between the distal and proximal ubiquitin moieties seem to contribute to stabilization of the compact conformation of linear Ub2. An ensemble of three semi-extended and extended conformations of linear Ub2 was also observed by small-angle X-ray scattering (SAXS) analysis in solution. In addition, the conformational heterogeneity in linear polyubiquitin chains is clearly manifested by SAXS analyses of linear Ub3 and Ub4: at least three distinct solution conformations are observed in each chain, with the linear Ub3 conformations being compact. The results expand the extent of conformational space of linear polyubiquitin chains and suggest that changes in the conformational ensemble may be pivotal in mediating multiple signalling pathways.
Vasiukov, D. M.; Ismailova, L.; Kupenko, I.; Cerantola, V.; Sinmyo, R.; Glazyrin, K.; McCammon, C.; Chumakov, A. I.; Dubrovinsky, L.; Dubrovinskaia, N.
2018-05-01
High-pressure experimental data on sound velocities of garnets are used for interpretation of seismological data related to the Earth's upper mantle and the mantle transition zone. We have carried out a Nuclear Inelastic Scattering study of iron-silicate garnet with skiagite (77 mol%)-iron-majorite composition in a diamond anvil cell up to 56 GPa at room temperature. The determined sound velocities are considerably lower than sound velocities of a number of silicate garnet end-members, such as grossular, pyrope, Mg-majorite, andradite, and almandine. The obtained sound velocities have the following pressure dependencies: V p [km/s] = 7.43(9) + 0.039(4) × P [GPa] and V s [km/s] = 3.56(12) + 0.012(6) × P [GPa]. We estimated sound velocities of pure skiagite and khoharite, and conclude that the presence of the iron-majorite component in skiagite strongly decreases V s . We analysed the influence of Fe3+ on sound velocities of garnet solid solution relevant to the mantle transition zone and consider that it may reduce sound velocities up to 1% relative to compositions with only Fe2+ in the cubic site.
Deshmukh, Lalit; Schwieters, Charles D; Grishaev, Alexander; Clore, G Marius
2016-06-03
Nucleic-acid-related events in the HIV-1 replication cycle are mediated by nucleocapsid, a small protein comprising two zinc knuckles connected by a short flexible linker and flanked by disordered termini. Combining experimental NMR residual dipolar couplings, solution X-ray scattering and protein engineering with ensemble simulated annealing, we obtain a quantitative description of the configurational space sampled by the two zinc knuckles, the linker and disordered termini in the absence of nucleic acids. We first compute the conformational ensemble (with an optimal size of three members) of an engineered nucleocapsid construct lacking the N- and C-termini that satisfies the experimental restraints, and then validate this ensemble, as well as characterize the disordered termini, using the experimental data from the full-length nucleocapsid construct. The experimental and computational strategy is generally applicable to multidomain proteins. Differential flexibility within the linker results in asymmetric motion of the zinc knuckles which may explain their functionally distinct roles despite high sequence identity. One of the configurations (populated at a level of ≈40 %) closely resembles that observed in various ligand-bound forms, providing evidence for conformational selection and a mechanistic link between protein dynamics and function. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Luyao; Shi, Lingyan; Secor, Jeff; Alfano, Robert
2018-02-01
This study aimed to use self-absorption correction to determine the Raman enhancement of β-carotene. The Raman spectra of β-carotene solutions were measured using 488nm, 514nm, 532nm and 633nm laser beams, which exhibited significant resonance Raman (RR) enhancement when the laser energy approaches the electronic transition energy from S 0 to S 2 state. The Raman intensity and the actual resonance Raman gain without self-absorption from S 2 state by β-carotene were also obtained to evaluate the effect of self-absorption on RR scattering. Moreover, we observed the Raman intensity strength followed the absorption spectra. Our study found that, although 488nm and 514nm pumps seemed better for stronger RR enhancement, 532nm would be the optimum Raman pump laser with moderate RR enhancement due to reduced fluorescence and self-absorption. The 532nm excitation will be helpful for applying resonance Raman spectroscopy to investigate biological molecules in tissues. Copyright © 2017 Elsevier B.V. All rights reserved.
Kreitler, Jason R.; Stoms, David M.; Davis, Frank W.
2014-01-01
Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management.
Collins, Jeffery D.; Volakis, John L.; Jin, Jian-Ming
1990-01-01
A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary-integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principal advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.
International Nuclear Information System (INIS)
Hjelm, R.P. Jr.; Seeger, P.A.
1992-01-01
The implementation of small-angle (Low-momentum transfer) neutron scattering at pulsed spallation sources, using time of flight methods, has meant the introduction of some new ideas in instrument design, data acquisition, data reduction and computer management of the experiment and the data. Here we recount some of the salient aspects of solutions for implementing time of fight small-angle neutron scattering instruments at pulsed sources, as realized on the Low-Q Diffractometer, LQD, at Los Alamos. We consider, fortlier, some of the problems that are yet to be solved, and take a short excursion into the future of SANS instrumentation at pulsed sources
International Nuclear Information System (INIS)
Carlin, W.W.; Darlington, W.B.
1975-01-01
Fission products, e.g., palladium, rhodium and technetium, are recovered from aqueous waste solutions thereof, e.g., aged Purex alkaline waste solutions. The metal values from the waste solutions are extracted by ion exchange techniques. The metals adsorbed by the ion exchange resin are eluted and selectively recovered by controlled cathodic potential electrolysis. The metal values deposited on the cathode are recovered and, if desired, further purified
Energy Technology Data Exchange (ETDEWEB)
Eremin, Roman A., E-mail: era@jinr.ru [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Kholmurodov, Kholmirzo T. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); International University “Dubna”, Dubna 141980 (Russian Federation); Petrenko, Viktor I. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Taras Shevchenko National University of Kyiv, Kyiv 03022 (Ukraine); Rosta, László [Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest H-1525 (Hungary); Grigoryeva, Natalia A. [Faculty of Physics, Saint-Petersburg State University, 198504 Saint-Petersburg (Russian Federation); Avdeev, Mikhail V. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)
2015-11-05
Highlights: • The model of the scattering particle for a reliable SANS analysis is proposed. • The structural parameters of saturated mono-carboxylic acids in solutions are obtained. • The differences in nematic transitions correlate to solvation peculiarities. - Abstract: The data of infrared spectroscopy (IR), molecular dynamics (MD) simulations and small-angle neutron scattering (SANS) have been combined to conclude about the nanoscale structural organization of organic non-polar solutions of saturated mono-carboxylic acids with different alkyl chain lengths for diluted solutions of saturated myristic (C14) and stearic (C18) acids in benzene and decalin. In particular, the degree of dimerization was found from the IR spectra. The structural anisotropy of the acids and their dimers was used in the treatment of the data of MD simulations to describe the solute–solvent interface in a cylindrical approximation and show its rather strong influence on SANS. The corresponding scattering length density profiles were used to fit the experimental SANS data comprising the information about the acid molecule isomerization. The SANS data from concentrated solutions showed a partial self-assembling of the acids within the nematic transition is different for two solvents due to lyophobic peculiarities.
Dorin, Rachel Mika; Marques, Debora S.; Sai, Hiroaki; Vainio, Ulla; Phillip, William A.; Peinemann, Klaus; Nunes, Suzana Pereira; Wiesner, Ulrich B.
2012-01-01
Small-angle X-ray scattering (SAXS) analysis of the diblock copolymer poly(styrene-b-(4-vinyl)pyridine) in a ternary solvent system of 1,4-dioxane, tetrahydrofuran, and N,N-dimethylformamide, and the triblock terpolymer poly(isoprene-b-styrene-b-(4-vinyl)-pyridine) in a binary solvent system of 1,4-dioxane and tetrahydrofuran, reveals a concentration-dependent onset of ordered structure formation. Asymmetric membranes fabricated from casting solutions with polymer concentrations at or slightly below this ordering concentration possess selective layers with the desired nanostructure. In addition to rapidly screening possible polymer solution concentrations, solution SAXS analysis also predicts hexagonal and square pore lattices of the final membrane surface structure. These results suggest solution SAXS as a powerful tool for screening casting solution concentrations and predicting surface structure in the fabrication of asymmetric ultrafiltration membranes from self-assembled block copolymers. (Figure presented) © 2012 American Chemical Society.
Dorin, Rachel Mika
2012-05-15
Small-angle X-ray scattering (SAXS) analysis of the diblock copolymer poly(styrene-b-(4-vinyl)pyridine) in a ternary solvent system of 1,4-dioxane, tetrahydrofuran, and N,N-dimethylformamide, and the triblock terpolymer poly(isoprene-b-styrene-b-(4-vinyl)-pyridine) in a binary solvent system of 1,4-dioxane and tetrahydrofuran, reveals a concentration-dependent onset of ordered structure formation. Asymmetric membranes fabricated from casting solutions with polymer concentrations at or slightly below this ordering concentration possess selective layers with the desired nanostructure. In addition to rapidly screening possible polymer solution concentrations, solution SAXS analysis also predicts hexagonal and square pore lattices of the final membrane surface structure. These results suggest solution SAXS as a powerful tool for screening casting solution concentrations and predicting surface structure in the fabrication of asymmetric ultrafiltration membranes from self-assembled block copolymers. (Figure presented) © 2012 American Chemical Society.
International Nuclear Information System (INIS)
Tanizawa, Y; Tashiro, T; Sandhu, A; Ko, P J
2013-01-01
Optical monitoring the behaviour of magnetically induced self-assembled chains of superparamagnetic beads (SPBs) are of interest for biomedical applications such as biosensors. However, it is difficult to directly monitor magnetically induced self-assembly of sub-micron nano-beads with conventional optical microscopes. Here, we describe the optical observation of the dynamics of magnetically induced self-assembled rotating chains of 130 nm SPBs in aqueous solutions by laser light scattering. Magnetic fields of ∼1 kOe were applied to control the self-assembly chains of SPBs and their behaviour analyzed by monitoring the intensity of laser light scattered from the chain structures. We compared the light scattering from chains that were formed only by the application of external fields with chains formed by beads functionalized by EDC, where chemical reactions lead to the bonding of individual beads to form chains. The EDC experiments are a precursor to experiments on molecular recognition applications for biomedical diagnostics.
Time-resolved X-ray scattering by electronic wave packets: analytic solutions to the hydrogen atom
DEFF Research Database (Denmark)
Simmermacher, Mats; Henriksen, Niels Engholm; Møller, Klaus Braagaard
2017-01-01
Modern pulsed X-ray sources permit time-dependent measurements of dynamical changes in atoms and molecules via non-resonant scattering. The planning, analysis, and interpretation of such experiments, however, require a firm and elaborated theoretical framework. This paper provides a detailed...... description of time-resolved X-ray scattering by non-stationary electronic wave packets in atomic systems. A consistent application of the Waller-Hartree approximation is discussed and different contributions to the total differential scattering signal are identified and interpreted. Moreover......, it is demonstrated how the scattering signal of wave packets in the hydrogen atom can be expressed analytically. This permits simulations without numerical integration and establishes a benchmark for both efficiency and accuracy. Based on that, scattering patterns of an exemplary wave packet in the hydrogen atom...
Prinari, Barbara; Demontis, Francesco; Li, Sitai; Horikis, Theodoros P.
2018-04-01
The inverse scattering transform (IST) with non-zero boundary conditions at infinity is developed for an m × m matrix nonlinear Schrödinger-type equation which, in the case m = 2, has been proposed as a model to describe hyperfine spin F = 1 spinor Bose-Einstein condensates with either repulsive interatomic interactions and anti-ferromagnetic spin-exchange interactions (self-defocusing case), or attractive interatomic interactions and ferromagnetic spin-exchange interactions (self-focusing case). The IST for this system was first presented by Ieda et al. (2007) , using a different approach. In our formulation, both the direct and the inverse problems are posed in terms of a suitable uniformization variable which allows to develop the IST on the standard complex plane, instead of a two-sheeted Riemann surface or the cut plane with discontinuities along the cuts. Analyticity of the scattering eigenfunctions and scattering data, symmetries, properties of the discrete spectrum, and asymptotics are derived. The inverse problem is posed as a Riemann-Hilbert problem for the eigenfunctions, and the reconstruction formula of the potential in terms of eigenfunctions and scattering data is provided. In addition, the general behavior of the soliton solutions is analyzed in detail in the 2 × 2 self-focusing case, including some special solutions not previously discussed in the literature.
Mehra, Saahil
2013-01-01
Metal nanowire transparent networks are promising replacements to indium tin oxide (ITO) transparent electrodes for optoelectronic devices. While the transparency and sheet resistance are key metrics for transparent electrode performance, independent control of the film light scattering properties is important to developing multifunctional electrodes for improved photovoltaic absorption. Here we show that controlled incorporation of ZnO nanopyramids into a metal nanowire network film affords independent, highly tunable control of the scattering properties (haze) with minimal effects on the transparency and sheet resistance. Varying the zinc oxide/silver nanostructure ratios prior to spray deposition results in sheet resistances, transmission (600 nm), and haze (600 nm) of 6-30 Ω □^{-1}, 68-86%, and 34-66%, respectively. Incorporation of zinc oxide nanopyramid scattering agents into the conducting nanowire mesh has a negligible effect on mesh connectivity, providing a straightforward method of controlling electrode scattering properties. The decoupling of the film scattering power and electrical characteristics makes these films promising candidates for highly scattering transparent electrodes in optoelectronic devices and can be generalized to other metal nanowire films as well as carbon nanotube transparent electrodes. © 2013 The Royal Society of Chemistry.
Directory of Open Access Journals (Sweden)
Petráš Ivo
2011-01-01
Full Text Available This paper deals with the fractional-order linear and nonlinear models used in bioengineering applications and an effective method for their numerical solution. The proposed method is based on the power series expansion of a generating function. Numerical solution is in the form of the difference equation, which can be simply applied in the Matlab/Simulink to simulate the dynamics of system. Several illustrative examples are presented, which can be widely used in bioengineering as well as in the other disciplines, where the fractional calculus is often used.
DEFF Research Database (Denmark)
Jalkanen, Karl J.; Nieminen, R. M.; Bohr, Jakob
2000-01-01
The Raman and Raman optical activity (ROA) spectra of amino acids and small peptides in aqueous solution have been simulated by density functional theory and restricted Hartree/Fock methods. The treatment of the aqueous environment in treated in two ways. The water molecules in the first hydratio...
COMPOSER: A Probabilistic Solution to the Utility Problem in Speed-up Learning.
Gratch, Jonathan; DeJong, Gerald
In machine learning there is considerable interest in techniques which improve planning ability. Initial investigations have identified a wide variety of techniques to address this issue. Progress has been hampered by the utility problem, a basic tradeoff between the benefit of learned knowledge and the cost to locate and apply relevant knowledge.…
International Nuclear Information System (INIS)
Wise, D.S.; Karlin, A.; Schoenborn, B.P.
1979-01-01
The acetylcholine receptor from the electric tissue of Torpedo californica is a large, integral membrane protein containing four different types of polypeptide chains. In this paper the results of the use of low-angle neutron scattering to investigate the shape of the receptor-detergent complex and separately of its protein and detergent moieties are reported. By adjustment of the neutron-scattering density of the solvent with D 2 O to match that of one or the other of the moieties, its contribution to the scattering can be nearly, if not completely, eliminated. Neutron scattering from Triton X-100 micelles established that this detergent is contrast matched in 18% D 2 O. Scattering measurements on the receptor-detergent complex in this solvent yielded a radius of gyration of the acetylcholine receptor monomer of 46 +- 1 A. The radius of gyration and molecular volume (305,000 A 3 ) of the receptor is inconsistent with a compact spherical shape. These parameters are consistent with, for example, a prolate cylinder of dimensions (length x diameter) 150 x 50 A or an oblate cylinder, 25 x 130 A. More complex shapes are possible and in fact seem to be required to reconcile the present results with previous electron microscopic and x-ray analyses of receptor in membrane and with considerations of the function of the receptor in controlling ion permeability. The neutron-scattering data yield, in addition, an independent determination of the molecular weight of the receptor protein (240,000 +- 40,000), the extent of Triton X-100 binding in the complex (0.4 g/g protein), and from the extended scattering curve, an approximation to the shape of the receptor-Triton X-100 complex, namely an oblate ellipsoid of axial ratio 1:4
Yura, H T; Thrane, L; Andersen, P E
2000-12-01
Within the paraxial approximation, a closed-form solution for the Wigner phase-space distribution function is derived for diffuse reflection and small-angle scattering in a random medium. This solution is based on the extended Huygens-Fresnel principle for the optical field, which is widely used in studies of wave propagation through random media. The results are general in that they apply to both an arbitrary small-angle volume scattering function, and arbitrary (real) ABCD optical systems. Furthermore, they are valid in both the single- and multiple-scattering regimes. Some general features of the Wigner phase-space distribution function are discussed, and analytic results are obtained for various types of scattering functions in the asymptotic limit s > 1, where s is the optical depth. In particular, explicit results are presented for optical coherence tomography (OCT) systems. On this basis, a novel way of creating OCT images based on measurements of the momentum width of the Wigner phase-space distribution is suggested, and the advantage over conventional OCT images is discussed. Because all previous published studies regarding the Wigner function are carried out in the transmission geometry, it is important to note that the extended Huygens-Fresnel principle and the ABCD matrix formalism may be used successfully to describe this geometry (within the paraxial approximation). Therefore for completeness we present in an appendix the general closed-form solution for the Wigner phase-space distribution function in ABCD paraxial optical systems for direct propagation through random media, and in a second appendix absorption effects are included.
Koenhen, D.M.; Smolders, C.A.; Gordon, M.
1977-01-01
For the polymer-solvent system poly(phenylene oxide) in toluene the mechanism and kinetics of crystallization have been studied with the Pulse Induced Critical Scattering technique. It was found that after a delay-time the growth mechanism was diffusion controlled. The delay-time is thought to be
Radiolysis ob benzene, toluene and phenol aqueous solutions utilizing high energy electron beam
International Nuclear Information System (INIS)
Gonzalez Vanderhaghen, D.E.
1998-01-01
In a search for solutions to environmental pollution problems, radiolysis has proved to be an innovative technique for the removal of organic chemical pollutants in aqueous solution. Radiolysis has shown many advantages over many other techniques, as highly reactive species formed in water by ionizing radiation oxidize organic pollutants breaking down organic molecules to final simple products by oxidation to carbon dioxide and water in a complete oxidation. Our work consisted in doing some experiments in radiolysis with simulated polluted water to help us understand this technique and also develop, in a near future, a project for large scale water treatment. Our project includes the application of a Pelletron type Mexican made Electron Accelerator, which will affirm its capability and usefulness in performing investigation in this field of study. Experiments consisted in treating benzene, toluene and phenol aqueous solutions with an Electron Beam (0.48-0.55 MeV; 24 μA). Two concentrations were used for each compound: 5 and 20 ppm (mg/l) for benzene and toluene; 10 and 50 ppm for phenol. Solutions were prepared with pure, mineral free water and two different p H (5.9), in order to study the effect of concentration and p H on removal efficiency, but avoiding the interference of radical scavengers. Results obtained coincide with the ones reported by Cooper, Nickelsen and Kurucz; highly efficient removal was achieved for benzene (>99.8%), toluene (>98.0%) and phenol (>88%). There was no visible important effect of p H on radiolysis efficiency for benzene nor toluene, phenol however, showed lower removal efficiency in acidic conditions. Concentration of aqueous solutions, nevertheless, did show an important effect at low doses for phenol. Results obtained reveal the importance of this technique in water pollution control and water remedial as expressed by Cooper, Nickelsen and Kurucz, who have studied radiolysis of organic compounds and apply this technique in water
Co-operative planning by utilities and local authorities. A solution to solve climate change?
International Nuclear Information System (INIS)
Schlenzing, C.; Steidle, T.
2001-01-01
Since the deregulation of German energy markets 1998 we can observe diverging planning interests and priorities of the local communities on one side and the local energy utilities on the other side. This seriously endangers the consensus in local energy planning achieved in the past which will be crucial in order to identify and implement effective greenhouse gas (GHG) mitigation strategies. This paper presents a co-operative planning approach which embeds systems analysis into a well structured communication, mediation and learning process for decision making. This process is supported by the cooperative modeling system MESAP, a software for energy and environmental planning, which integrates different energy models with an energy information system. This allows to combine traditional local energy planning with the more business oriented view of the utilities. The specific design of MESAP allows for a continuous 'sustainable' planning and monitoring similar to business tools for accounting and controlling in companies. (author)
A packaging solution utilizing adhesive-filled TSVs and flip–chip methods
International Nuclear Information System (INIS)
Benfield, David; Moussa, Walied A; Lou, Edmond
2012-01-01
A compact packaging solution for microelectromechanical systems (MEMS) devices is presented. The 3D-integrated packaging solution was designed for the instrumentation of a spinal screw with a wireless sensor array, but may be adapted for a variety of applications. To achieve the compact package size, an unobtrusive through-silicon via (TSV) design was added to the microfabrication process flow for the MEMS sensor. These TSVs allowed vertical integration of the MEMS devices onto flexible printed circuit boards (FPCBs) using a flip–chip system. Ohmic connections with resistance values below 1 Ω have been achieved for 100 µm TSVs in 300 and 500 µm substrates. This paper describes the design and microfabrication process flow for the TSVs, and provides details on the flip–chip techniques used to electrically and structurally connect the MEMS devices to the FPCBs. (paper)
Utilization of poplar wood sawdust for heavy metals removal from model solutions
Directory of Open Access Journals (Sweden)
Demcak Stefan
2017-06-01
Full Text Available Some kinds of natural organic materials have a potential for removal of heavy metal ions from wastewater. It is well known that cellulosic waste materials or by-products can be used as cheap adsorbents in chemical treatment process. In this paper, poplar wood sawdust were used for removal of Cu(II, Zn(II and Fe(II ions from model solutions with using the static and dynamic adsorption experiments. Infrared spectrometry of poplar wood sawdust confirmed the presence of the functional groups which correspond with hemicelluloses, cellulose and lignin. At static adsorption was achieved approximately of 80 % efficiency for all treated model solutions. Similar efficiency of the adsorption processes was reached after 5 min at dynamic condition. The highest efficiency of Cu(II removal (98 % was observed after 30 min of dynamic adsorption. Changes of pH values confirmed a mechanism of ion exchange on the beginning of the adsorption process.
Energy Technology Data Exchange (ETDEWEB)
Frantti, Johannes; Fujioka, Yukari [Finnish Research and Engineering, Helsinki (Finland)
2015-04-01
Defects and frequently used defect models of solids are reviewed. Signatures for identifying the disorder from x-ray and neutron scattering data are given. To give illustrative examples how technologically important defects contribute to x-ray and neutron scattering numerical method able to treat non-periodical solids possessing several simultaneous defect types is given for simulating scattering in nanosize disordered clusters. The approach takes particle size, shape, and defects into account and isolates element specific signals. As a case study a statistical approximation model for lead-zirconate titanate [Pb(Zr{sub x}Ti{sub 1-x})O{sub 3}, PZT] is introduced. PZT is a material possessing several defect types, including substitutional, displacement and surface defects. Spatial composition variation is taken into account by introducing a model in which the edge lengths of each cell depend on the distribution of Zr and Ti ions in the cluster. Spatially varying edge lengths and angles is referred to as microstrain. The model is applied to compute the scattering from ellipsoid shaped PZT clusters and to simulate the structural changes as a function of average composition. Two-phase co-existence range, the so called morphotropic phase boundary composition is given correctly. The composition at which the rhombohedral and tetragonal cells are equally abundant was x ∼ 0.51. Selected x-ray and neutron Bragg reflection intensities and line shapes were simulated. Examples of the effect of size and shape of the scattering clusters on diffraction patterns are given and the particle dimensions, computed through Scherrer equation, are compared with the exact cluster dimensions. Scattering from two types of 180 domains in spherical particles, one type assigned to Ti-rich PZT and the second to the MPB and Zr-rich PZT, is computed. We show how the method can be used for modelling polarization reversal. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Study on the utilization of a sodium-sulfuric acid solution for the uranium minerals' leaching
International Nuclear Information System (INIS)
Echenique, Patricia; Fruchtenicht, Fernando; Gil, Daniel; Vigo, Daniel; Bouza, Angel; Vert, Gabriela; Becquart, Elena
1988-01-01
Argentine uranium minerals have been leached at bench scale with a different agent trying to reduce sulfuric acid consumption. The leaching agent was a sodium sulfate-sulfuric acid solution and the ore was from Sierra Pintada (San Rafael - Mendoza). The work was performed in stirred vessel at atmospheric pressure. The influence of different variables, pH, temperature, oxidant agent, sodium sulfate concentration and time, in the sulfuric acid consumption and the uranium yield was studied. (Author) [es
Smilgies, Detlef Matthias; Li, Ruipeng; Giri, Gaurav; Chou, Kang Wei; Diao, Ying; Bao, Zhenan; Amassian, Aram
2012-01-01
High-speed solution shearing, in which a drop of dissolved material is spread by a coating knife onto the substrate, has emerged as a versatile, yet simple coating technique to prepare high-mobility organic thin film transistors. Solution shearing and subsequent drying and crystallization of a thin film of conjugated molecules is probed in situ using microbeam grazing incidence wide-angle X-ray scattering (μGIWAXS). We demonstrate the advantages of this approach to study solution based crystal nucleation and growth, and identify casting parameter combinations to cast highly ordered and laterally aligned molecular thin films. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Smilgies, Detlef Matthias
2012-12-20
High-speed solution shearing, in which a drop of dissolved material is spread by a coating knife onto the substrate, has emerged as a versatile, yet simple coating technique to prepare high-mobility organic thin film transistors. Solution shearing and subsequent drying and crystallization of a thin film of conjugated molecules is probed in situ using microbeam grazing incidence wide-angle X-ray scattering (μGIWAXS). We demonstrate the advantages of this approach to study solution based crystal nucleation and growth, and identify casting parameter combinations to cast highly ordered and laterally aligned molecular thin films. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Dong Shuqiang; Chen Ximeng; Li Liqin; Liu Peng; Dong Yuhui
2008-01-01
This paper reports that at a newly constructed small-angle x-ray scattering station of Beijing Synchrotron Radiation Facility, the topological shape of ligand-free bovine serum albumin in solution has been investigated. An appropriate scattering curve is obtained and the calculated value of the gyration radius is 31.2Å±0.25A (1Å=0.1 nm) which is coincident with other ones' results. It finds that the low-resolution structure models obtained by making use of ab initio reconstruction methods are fitting the crystal structure of human serum albumin very well. All of these results perform the potential of the beamline to apply to structural biology studies. The characteristics, the defects, and the improving measures of the station in future are also discussed. (condensed matter: structure, thermal and mechanical properties)
Trewhella, Jill; Duff, Anthony P; Durand, Dominique; Gabel, Frank; Guss, J Mitchell; Hendrickson, Wayne A; Hura, Greg L; Jacques, David A; Kirby, Nigel M; Kwan, Ann H; Pérez, Javier; Pollack, Lois; Ryan, Timothy M; Sali, Andrej; Schneidman-Duhovny, Dina; Schwede, Torsten; Svergun, Dmitri I; Sugiyama, Masaaki; Tainer, John A; Vachette, Patrice; Westbrook, John; Whitten, Andrew E
2017-09-01
In 2012, preliminary guidelines were published addressing sample quality, data acquisition and reduction, presentation of scattering data and validation, and modelling for biomolecular small-angle scattering (SAS) experiments. Biomolecular SAS has since continued to grow and authors have increasingly adopted the preliminary guidelines. In parallel, integrative/hybrid determination of biomolecular structures is a rapidly growing field that is expanding the scope of structural biology. For SAS to contribute maximally to this field, it is essential to ensure open access to the information required for evaluation of the quality of SAS samples and data, as well as the validity of SAS-based structural models. To this end, the preliminary guidelines for data presentation in a publication are reviewed and updated, and the deposition of data and associated models in a public archive is recommended. These guidelines and recommendations have been prepared in consultation with the members of the International Union of Crystallography (IUCr) Small-Angle Scattering and Journals Commissions, the Worldwide Protein Data Bank (wwPDB) Small-Angle Scattering Validation Task Force and additional experts in the field.
Energy Technology Data Exchange (ETDEWEB)
Chen, Lingling [Stanford Univ., CA (United States)
1996-04-01
Synchrotron small angle x-ray scattering (SAXS) has been applied to the structural study of several biological systems, including the nitrogenase complex, the heat shock cognate protein (hsc70), and lysozyme folding. The structural information revealed from the SAXS experiments is complementary to information obtained by other physical and biochemical methods, and adds to our knowledge and understanding of these systems.
International Nuclear Information System (INIS)
Vijayaraghavan, K.; Yun, Yeoung-Sang
2007-01-01
A fermentation waste, Corynebacterium glutamicum, was successfully employed as a biosorbent for Reactive Black 5 (RB5) from aqueous solution. This paper initially studied the effect of pretreatment on the biosorption capacity of C. glutamicum toward RB5, using several chemical agents, such as HCl, H 2 SO 4 , HNO 3 , NaOH, Na 2 CO 3 , CaCl 2 and NaCl. Among these reagents, 0.1 M HNO 3 gave the maximum enhancement of the RB5 uptake, exhibiting 195 mg/g at pH 1 with an initial RB5 concentration of 500 mg/l. The solution pH and temperature were found to affect the biosorption capacity, and the biosorption isotherms derived at different pHs and temperatures revealed that a low pH (pH 1) and high temperature (35 deg. C) favored biosorption. The biosorption isotherm was well represented using three-parameter models (Redlich-Peterson and Sips) compared to two-parameter models (Langmuir and Freundlich models). As a result, high correlation coefficients and low average percentage error values were observed for three-parameter models. A maximum RB5 uptake of 419 mg/g was obtained at pH 1 and a temperature of 35 deg. C, according to the Langmuir model. The kinetics of the biosorption process with different initial concentrations (500-2000 mg/l) was also monitored, and the data were analyzed using pseudo-first and pseudo-second order models, with the latter describing the data well. Various thermodynamic parameters, such as ΔG o , ΔH o and ΔS o , were calculated, indicating that the present system was a spontaneous and endothermic process. The use of a 0.1 M NaOH solution successfully desorbed almost all the dye molecules from dye-loaded C. glutamicum biomass at different solid-to-liquid ratios examined
Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.
Narnaware, Sunil L; Srivastava, Nsl; Vahora, Samir
2017-03-01
Vegetables waste is generally utilized through a bioconversion process or disposed of at municipal landfills, dumping sites or dumped on open land, emitting a foul odor and causing health hazards. The presents study deals with an alternative way to utilize solid vegetable waste through a thermochemical route such as briquetting and gasification for its energy recovery and subsequent power generation. Briquettes of 50 mm diameter were produced from four different types of vegetable waste. The bulk density of briquettes produced was increased 10 to 15 times higher than the density of the dried vegetable waste in loose form. The lower heating value (LHV) of the briquettes ranged from 10.26 MJ kg -1 to 16.60 MJ kg -1 depending on the type of vegetable waste. The gasification of the briquettes was carried out in an open core downdraft gasifier, which resulted in syngas with a calorific value of 4.71 MJ Nm -3 at the gasification temperature between 889°C and 1011°C. A spark ignition, internal combustion engine was run on syngas and could generate a maximum load up to 10 kW e . The cold gas efficiency and the hot gas efficiency of the gasifier were measured at 74.11% and 79.87%, respectively. Energy recovery from the organic vegetable waste was possible through a thermochemical conversion route such as briquetting and subsequent gasification and recovery of the fuel for small-scale power generation.
Paing, Htoo W; Marcus, R Kenneth
2018-03-12
A practical method for preparation of solution residue samples for analysis utilizing the ambient desorption liquid sampling-atmospheric pressure glow discharge optical emission spectroscopy (AD-LS-APGD-OES) microplasma is described. Initial efforts involving placement of solution aliquots in wells drilled into copper substrates, proved unsuccessful. A design-of-experiment (DOE) approach was carried out to determine influential factors during sample deposition including solution volume, solute concentration, number of droplets deposited, and the solution matrix. These various aspects are manifested in the mass of analyte deposited as well as the size/shape of the product residue. Statistical analysis demonstrated that only those initial attributes were significant factors towards the emission response of the analyte. Various approaches were investigated to better control the location/uniformity of the deposited sample. Three alternative substrates, a glass slide, a poly(tetrafluoro)ethylene (PTFE) sheet, and a polydimethylsiloxane (PDMS)-coated glass slide, were evaluated towards the microplasma analytical performance. Co-deposition with simple organic dyes provided an accurate means of determining the location of the analyte with only minor influence on emission responses. The PDMS-coated glass provided the best performance by virtue of its providing a uniform spatial distribution of the residue material. This uniformity yielded an improved limits of detection by approximately 22× for 20 μL and 4 x for 2 μL over the other two substrates. While they operate by fundamentally different processes, this choice of substrate is not restricted to the LS-APGD, but may also be applicable to other AD methods such as DESI, DART, or LIBS. Further developments will be directed towards a field-deployable ambient desorption OES source for quantitative analysis of microvolume solution residues of nuclear forensics importance.
Alloying of Yb-Cu and Yb-Ag utilizing liquid ammonia metal solutions of ytterbium
International Nuclear Information System (INIS)
Imamura, H.; Yoshimura, T.; Sakata, Y.
2003-01-01
In the course of the studies on preparation of novel compounds using the dissolution of Eu or Yb metals in liquid ammonia, the formation of Yb-Cu and Yb-Ag intermetallic films has been found. When Cu or Ag metal powders were placed in a reactor containing a solution of Yb metal in liquid ammonia, the dissolved Yb readily react with the Cu or Ag metal particles to form surface alloy compounds. X-ray diffraction of Yb-Cu showed that upon thermal treatment above 673 K, the Yb metal deposited on the Cu particles reacted together to be transformed into the YbCu 6.5 intermetallic compound. A characteristic endothermic peak at 749 K, due to alloying of Yb-Cu, was observed by the differential scanning calorimeter measurements. By use of the high reactivity of liquid ammonia metal solutions of ytterbium, it was found that the ytterbium intermetallic films were readily formed under mild conditions. Yb-Cu and Yb-Ag exhibited enhanced catalytic activity for the hydrogenation of ethene as a result of alloying
International Nuclear Information System (INIS)
Diallo, Mamadou S.; Glinka, Charles J.; Goddard, William A.; Johnson, James H.
2005-01-01
Fulvic acids (FA) and humic acids (HA) constitute 30-50% of dissolved organic matter in natural aquatic systems. In aqueous solutions, a commonly accepted view is that FA and HA exist as soluble macroligands at low concentration and as supramolecular aggregates at higher concentration. The size, shape and structure of these aggregates are still the subject of ongoing debate in the environmental chemistry literature. In this article, we use small angle neutron scattering (SANS) to assess the effects of solute concentration, solution pH and background electrolyte (NaCl) concentration on the structures of Suwannee River FA (SRFA) aggregates in D 2 O. The qualitative features of the SANS curves and data analysis are not consistent with the view point that SRFA forms micelle-like aggregates as its concentration in aqueous solution increases. We find that SRFA forms fractal aggregates in D 2 0 with size greater than 242 nm. The SRFA aggregates undergo a significant degree of restructuring in compactness as solution pH, solute concentration and NaCl concentration increase
MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.
2007-01-01
A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.
International Nuclear Information System (INIS)
Dhenaut, Christophe
1995-01-01
Conception of new organic materials for nonlinear optics is generally driven by a molecular engineering approach. The usual technique for determining the quadratic hyper polarizability of designed molecules is the electric field induced second harmonic (EFISH) experiment. However this technique is limited to neutral molecules with a permanent dipole moment. We have realized an harmonic light scattering (HLS) experiment which allow the measurement of any kind of molecules, polar or non polar, neutral or ionic. Using this technique we have been able to demonstrate experimentally the validity of the octupole concept (molecules without dipole moment) which has been proposed recently. We have studied molecules corresponding to various octupolar geometries. Nonlinearities are found to be comparable to those of the best dipolar compounds. We have also investigated other molecular families with different symmetry such as polyenes, sub-phthalocyanines and phthalocyanines by EFISH and HLS techniques. We have confronted results obtained by the two experiments. It appears that these results are not easy to compare, the tensorial components accessible by each experiment being different. The two experiments seems complementary. HLS experiments allow the observation of a quadratic hyper polarizability for centrosymmetric molecules. This surprising observation could be explained by the contribution of a vibration al part to the hyper polarizability measured by HLS (but not present in EFISH). Interpretation of this dynamic process is still in progress. (author) [fr
Czech Academy of Sciences Publication Activity Database
Kohagen, Miriam; Pluhařová, E.; Mason, Philip E.; Jungwirth, Pavel
2015-01-01
Roč. 6, č. 9 (2015), s. 1563-1567 ISSN 1948-7185 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : ion pairing * molecular dynamics * neutron scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.539, year: 2015 http://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5b00060
An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space
Liu, Zhongxian; Liu, Lei
2015-02-01
The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface. The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces. The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space. Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and efficiently. The wave motion feature strongly depends on the wedge angle, the angle of incidence, incident frequency, the location of lined tunnel, and material parameters. The waves interference and amplification effect around the tunnel in wedge space is more significant, causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0, respectively, more than double that of the case of half-space. Hence, considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.
International Nuclear Information System (INIS)
Bi Lei; Yang Ping; Kattawar, George W.; Hu Yongxiang; Baum, Bryan A.
2011-01-01
A new physical-geometric optics hybrid (PGOH) method is developed to compute the scattering and absorption properties of ice particles. This method is suitable for studying the optical properties of ice particles with arbitrary orientations, complex refractive indices (i.e., particles with significant absorption), and size parameters (proportional to the ratio of particle size to incident wavelength) larger than ∼20, and includes consideration of the edge effects necessary for accurate determination of the extinction and absorption efficiencies. Light beams with polygon-shaped cross sections propagate within a particle and are traced by using a beam-splitting technique. The electric field associated with a beam is calculated using a beam-tracing process in which the amplitude and phase variations over the wavefront of the localized wave associated with the beam are considered analytically. The geometric-optics near field for each ray is obtained, and the single-scattering properties of particles are calculated from electromagnetic integral equations. The present method does not assume additional physical simplifications and approximations, except for geometric optics principles, and may be regarded as a 'benchmark' within the framework of the geometric optics approach. The computational time is on the order of seconds for a single-orientation simulation and is essentially independent of the size parameter. The single-scattering properties of oriented hexagonal ice particles (ice plates and hexagons) are presented. The numerical results are compared with those computed from the discrete-dipole-approximation (DDA) method.
International Nuclear Information System (INIS)
Olivieri, Johnny Rizzieri.
1992-01-01
It is reported a Small Angle X-Ray Scattering (SAXS) study of BSA (Bovine Serum Albumin) and HSA (Human Serum Albumin) on pH between 2.5 and 7.0. The measured scattering intensities, normalized in relation to incident beam, exposition time and scattering due to solvent and capillary, and corrected due to concentration and beam shape effects, have shown a strong dependence of the protein shape with pH for both albumins. It was found that the radius of gyration varies between 26.7 and 35 A, and the analyses of the distance distribution function. P(r), indicated that these proteins undergoes conformational changes with pH. Different theoretical shapes have been proposed and analysed comparing the computed P(r) function generated from the models with the experimental P(r). A large variety of shapes were found in both proteins, indicating that BSA and HSA are very flexibility macromolecules. (author). 60 refs., 49 figs., 7 tabs
Energy Technology Data Exchange (ETDEWEB)
Dusicka, M [Slovenske elektrarne, a.s., Vodne elektrarne Trencin, o.z. (Slovakia)
1997-12-01
The aim of this paper is to clarify basic inputs into economic calculations of hydro power projects which then can drastically affect efficiency of these projects in different ways as there are no distinct economic and legal regulations in the Slovak Republic as the hydroelectric potential (HEP utilization is concerned. In 1995, the share of individual resources of electrical system (ES) in production in the Slovak Republic was as follows: nuclear plants - 41.86%, steam power plants - 24,93%, hydroelectrical power plants (HPP) - 18.93%, factory power plants - 9.09%, and import - 5.19%. However, in the same year, the individual resources of ES in the Slovak Republic shared in a balance of installed capacity - 7.114 MW as follows: nuclear power plants - 24.7%, steam power plants - 32.0%, HPP -33.4%, and factory power plants - 10.9%. Financing of the building of HPP -power engineering and water management ones (the Ministry of National Economy and the Ministry of Agriculture at present) is discussed. 1 ref.
International Nuclear Information System (INIS)
Dusicka, M.
1997-01-01
The aim of this paper is to clarify basic inputs into economic calculations of hydro power projects which then can drastically affect efficiency of these projects in different ways as there are no distinct economic and legal regulations in the Slovak Republic as the hydroelectric potential (HEP utilization is concerned. In 1995, the share of individual resources of electrical system (ES) in production in the Slovak Republic was as follows: nuclear plants - 41.86%, steam power plants - 24,93%, hydroelectrical power plants (HPP) - 18.93%, factory power plants - 9.09%, and import - 5.19%. However, in the same year, the individual resources of ES in the Slovak Republic shared in a balance of installed capacity - 7.114 MW as follows: nuclear power plants - 24.7%, steam power plants - 32.0%, HPP -33.4%, and factory power plants - 10.9%. Financing of the building of HPP -power engineering and water management ones (the Ministry of National Economy and the Ministry of Agriculture at present) is discussed. 1 ref
CSIR Research Space (South Africa)
Shatalov, MY
2006-01-01
Full Text Available -scale structure to guarantee the numerical accuracy of solution. In the present paper the authors propose to use a novel method of solution of the Helmholtz integral equation, which is based on expansion of the integrands in double Fourier series. The main...
International Nuclear Information System (INIS)
Budak, Vladimir P.; Korkin, Sergey V.
2008-01-01
The authors developed a numerical method of the boundary-value problem solution in the vectorial radiative transfer theory applicable to the turbid media with an arbitrary three-dimensional geometry. The method is based on the solution representation as the sum of an anisotropic part that contains all the singularities of the exact solution and a smooth regular part. The regular part of the solution could be found numerically by the finite element method that enables to extend the approach to the arbitrary medium geometry. The anisotropic part of the solution is determined analytically by the special form of the small-angle approximation. The method development is performed by the examples of the boundary-value problems for the plane unidirectional and point isotropic sources in a turbid medium slab
Directory of Open Access Journals (Sweden)
Florian Schumacher
2016-01-01
Full Text Available Due to increasing computational resources, the development of new numerically demanding methods and software for imaging Earth’s interior remains of high interest in Earth sciences. Here, we give a description from a user’s and programmer’s perspective of the highly modular, flexible and extendable software package ASKI–Analysis of Sensitivity and Kernel Inversion–recently developed for iterative scattering-integral-based seismic full waveform inversion. In ASKI, the three fundamental steps of solving the seismic forward problem, computing waveform sensitivity kernels and deriving a model update are solved by independent software programs that interact via file output/input only. Furthermore, the spatial discretizations of the model space used for solving the seismic forward problem and for deriving model updates, respectively, are kept completely independent. For this reason, ASKI does not contain a specific forward solver but instead provides a general interface to established community wave propagation codes. Moreover, the third fundamental step of deriving a model update can be repeated at relatively low costs applying different kinds of model regularization or re-selecting/weighting the inverted dataset without need to re-solve the forward problem or re-compute the kernels. Additionally, ASKI offers the user sensitivity and resolution analysis tools based on the full sensitivity matrix and allows to compose customized workflows in a consistent computational environment. ASKI is written in modern Fortran and Python, it is well documented and freely available under terms of the GNU General Public License (http://www.rub.de/aski.
Directory of Open Access Journals (Sweden)
A. M. RIAD
2009-10-01
Full Text Available To help universities achieve their goals, it is important to align managerial functionalities side by side with educational aspects. Universities consume University Management Information Systems (UMIS to handle managerial aspects as they do with Learning Management Systems (LMS to achieve learning objectives. UMIS advances LMS by decades and has reached stable and mature consistency level. LMS is the newly acquired solution in Universities; compared to UMIS, and so adopting LMSs in universities can be achieved via three different deployment approaches. First approach believes in LMS ability to replace UMIS and performing its functionalities. Second approach presents the idea of extending UMIS to include LMS functionalities. Third approach arises from the shortages of the two proposed approaches and present integration between both as the appropriate deployment approach. Service Oriented Architecture (SOA is a design pattern that can be used as a suitable architectural solution to align UMIS and LMS. SOA can be utilized in universities to overcome some of information systems’ challenges like the integration between UMIS and LMS. This paper presents the current situation at Mansoura University; Egypt, presents integration as the most suitable solution, and evaluates three different implementation techniques: Dynamic Query, Stored Procedure, and Web services. Evaluation concludes that though SOA enhanced many different aspects of both UMIS and LMS; and consequently university overall. It is not recommended to adopt SOA via Web services as the building unit of the system, but as the interdisciplinary interface between systems.
Jackson, Ashley; Rigo, Maria; Seo, Jaetae; HU Team
2011-05-01
Raman spectroscopy has received a great deal of interest for its applications in biological sensing and cell imaging due to the ease with which it can be used to extract significant data from tissue and cells. This study has focused on the application of SERS for nicotine detection. Liquid nicotine was diluted and combined with Au nanoparticles (NPs). The nicotine-gold solution was analyzed by acquiring Raman spectra data using a Delta Nu Spectrometer. Absorption data shows the characteristic peak of Au NPs at ~528 nm while showing successful aggregation of the nicotine particles. Data taken from Raman spectra shows characteristic Raman shifts of nicotine at ~1030 cm-1 and ~1590 cm-1. Currently work is being done to optimize the SERS signal for nicotine in the 1590-1600 region using higher concentrations of nicotine and various sizes of Au NPs. This work at Hampton University was supported by the National Science Foundation (HRD-0734635 and HRD-063037).
Energy Technology Data Exchange (ETDEWEB)
Branca, C.; Faraone, A.; Galli, G.; Magazu' , S.; Maisano, G.; Migliardo, F. [Dipartimento di Fisica and INFM, Universita' di Messina, PO Box 55, 98166 Messina (Italy)
2002-07-01
Neutron-scattering measurements have been performed on trehalose/H{sub 2}O and sucrose/H{sub 2}O mixtures by using the spectrometer MIBEMOL at the Laboratoire Leon Brillouin (LLB, Saclay) as a function of temperature and concentration. In order to characterize the different rigidities of both the disaccharide/H{sub 2}O mixtures, we have evaluated the R{sub 1}(T{sub g}) parameter connected to the 'strong-fragile' classification of the systems according to Angell's nomenclature. (orig.)
International Nuclear Information System (INIS)
Ferru, G.; Gomes Rodrigues, D.; Berthon, L.; Guilbaud, P.; Diat, O.; Bauduin, P.
2014-01-01
Knowledge of the supramolecular structure of the organic phase containing amphiphilic ligand molecules is mandatory for full comprehension of ionic separation during solvent extraction. Existing structural models are based on simple geometric aggregates, but no consensus exists on the interaction potentials. Herein, we show that molecular dynamics crossed with scattering techniques offers key insight into the complex fluid involving weak interactions without any long range ordering. Two systems containing mono- or diamide extractants in heptane and contacted with an aqueous phase were selected as examples to demonstrate the advantages of coupling the two approaches for furthering fundamental studies on solvent extraction. (authors)
Chudnovsky, D V
1978-09-01
For systems of nonlinear equations having the form [L(n) - ( partial differential/ partial differentialt), L(m) - ( partial differential/ partial differentialy)] = 0 the class of meromorphic solutions obtained from the linear equations [Formula: see text] is presented.
Pecina, P.
2016-12-01
The integro-differential equation for the polarization vector P inside the meteor trail, representing the analytical solution of the set of Maxwell equations, is solved for the case of backscattering of radio waves on meteoric ionization. The transversal and longitudinal dimensions of a typical meteor trail are small in comparison to the distances to both transmitter and receiver and so the phase factor appearing in the kernel of the integral equation is large and rapidly changing. This allows us to use the method of stationary phase to obtain an approximate solution of the integral equation for the scattered field and for the corresponding generalized radar equation. The final solution is obtained by expanding it into the complete set of Bessel functions, which results in solving a system of linear algebraic equations for the coefficients of the expansion. The time behaviour of the meteor echoes is then obtained using the generalized radar equation. Examples are given for values of the electron density spanning a range from underdense meteor echoes to overdense meteor echoes. We show that the time behaviour of overdense meteor echoes using this method is very different from the one obtained using purely numerical solutions of the Maxwell equations. Our results are in much better agreement with the observations performed e.g. by the Ondřejov radar.
Energy Technology Data Exchange (ETDEWEB)
Putra, Edy Giri Rachman [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Patriati, Arum [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia giri@batan.go.id (Indonesia)
2015-04-16
Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.
International Nuclear Information System (INIS)
Putra, Edy Giri Rachman; Patriati, Arum
2015-01-01
Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations
Advantages of neutron scattering for biological structure analysis
International Nuclear Information System (INIS)
Schoenborn, B.P.
1975-01-01
The advantages and disadvantages of neutron scattering for protein crystallography, scattering from oriented systems, and solution scattering are summarized. Techniques for minimizing the disadvantages are indicated
Cristiglio, Viviana; Grillo, Isabelle; Fomina, Margarita; Wien, Frank; Shalaev, Evgenyi; Novikov, Alexey; Brassamin, Séverine; Réfrégiers, Matthieu; Pérez, Javier; Hennet, Louis
2017-01-01
The acoustic levitation technique is a useful sample handling method for small solid and liquids samples, suspended in air by means of an ultrasonic field. This method was previously used at synchrotron sources for studying pharmaceutical liquids and protein solutions using x-ray diffraction and small angle x-ray scattering (SAXS). In this work we combined for the first time this containerless method with small angle neutron scattering (SANS) and synchrotron radiation circular dichroism (SRCD) to study the structural behavior of proteins in solutions during the water evaporation. SANS results are also compared with SAXS experiments. The aggregation behavior of 45μl droplets of lysozyme protein diluted in water was followed during the continuous increase of the sample concentration by evaporating the solvent. The evaporation kinetics was followed at different drying stage by SANS and SAXS with a good data quality. In a prospective work using SRCD, we also studied the evolution of the secondary structure of the myoglobin protein in water solution in the same evaporation conditions. Acoustic levitation was applied for the first time with SANS and the high performances of the used neutron instruments made it possible to monitor fast container-less reactions in situ. A preliminary work using SRCD shows the potentiality of its combination with acoustic levitation for studying the evolution of the protein structure with time. This multi-techniques approach could give novel insights into crystallization and self-assembly phenomena of biological compound with promising potential applications in pharmaceutical, food and cosmetics industry. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Round, Adam, E-mail: around@embl.fr; Felisaz, Franck [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Fodinger, Lukas; Gobbo, Alexandre [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Huet, Julien [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Villard, Cyril [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Blanchet, Clement E., E-mail: around@embl.fr [EMBL c/o DESY, Notkestrasse 85, 22603 Hamburg (Germany); Pernot, Petra; McSweeney, Sean [ESRF, 6 Rue Jules Horowitz, 38000 Grenoble (France); Roessle, Manfred; Svergun, Dmitri I. [EMBL c/o DESY, Notkestrasse 85, 22603 Hamburg (Germany); Cipriani, Florent, E-mail: around@embl.fr [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France)
2015-01-01
A robotic sample changer for solution X-ray scattering experiments optimized for speed and to use the minimum amount of material has been developed. This system is now in routine use at three high-brilliance European synchrotron sites, each capable of several hundred measurements per day. Small-angle X-ray scattering (SAXS) of macromolecules in solution is in increasing demand by an ever more diverse research community, both academic and industrial. To better serve user needs, and to allow automated and high-throughput operation, a sample changer (BioSAXS Sample Changer) that is able to perform unattended measurements of up to several hundred samples per day has been developed. The Sample Changer is able to handle and expose sample volumes of down to 5 µl with a measurement/cleaning cycle of under 1 min. The samples are stored in standard 96-well plates and the data are collected in a vacuum-mounted capillary with automated positioning of the solution in the X-ray beam. Fast and efficient capillary cleaning avoids cross-contamination and ensures reproducibility of the measurements. Independent temperature control for the well storage and for the measurement capillary allows the samples to be kept cool while still collecting data at physiological temperatures. The Sample Changer has been installed at three major third-generation synchrotrons: on the BM29 beamline at the European Synchrotron Radiation Facility (ESRF), the P12 beamline at the PETRA-III synchrotron (EMBL@PETRA-III) and the I22/B21 beamlines at Diamond Light Source, with the latter being the first commercial unit supplied by Bruker ASC.
International Nuclear Information System (INIS)
Lee, Hwasung; Lee, Y J
2007-01-01
We derive analytic expressions of the recursive solutions to Schroedinger's equation by means of a cutoff-potential technique for one-dimensional piecewise-constant potentials. These solutions provide a method for accurately determining the transmission probabilities as well as the wavefunction in both classically accessible regions and inaccessible regions for any barrier potentials. It is also shown that the energy eigenvalues and the wavefunctions of bound states can be obtained for potential-well structures by exploiting this method. Calculational results of illustrative examples are shown in order to verify this method for treating barrier and potential-well problems
International Nuclear Information System (INIS)
Pontedeiro, E.M.B.D.; Maiorino, J.R.
1982-01-01
The linear equation transport, monoenergetic, with anysotropic scattering, in multiregions, by F sub(N) method, is resolved. The mathematical analysis used for this method consists in to use parcially the expansion method in singular autofunctions, or Case's method, aiming to derive a set of integral equations coupled to the angular distribution in the boundaries and interfaces, and then to approximate these distributions by polynomics of N order, aiming to derive, with the use of these boundary and continuity conditions in the interfaces, a set of algebric equations for the coef. of polynomical approximation. With the goal to obtain numerical results, a computer code (FNAM-1) with options for the number of regions, boundary conditions, F sub(N) approx order, were developed. Numerical results were then obtained for various sample problems and compared with the results published in the literature with the objective to demonstrate the precision and applicability of the F sub(N) method. (E.G.) [pt
Energy Technology Data Exchange (ETDEWEB)
Spiteri, M N
1997-03-25
Polyelectrolytes have particular physical and chemical properties and can thus be used for instance for petroleum production. Some of their microscopic properties have been studied in this work. With the particular zero average contrast technique, the small angle neutron scattering allows to directly know the form factors in semi-diluted solutions of polyelectrolytes where the chains are mixed. Another measure leads to the crystal structure. The electrostatic screen effects when salt is added in aqueous solutions of completely charged PSSNa solutions (f=1) (sodium polystyrene sulfonate) are studied. It seems that the chains take a vermiform conformation. Their persistence length varies as I{sup -1/3} (I is the ionic force). The hydrophobicity effects in partially charged PSSNa solutions (f<1) are given too. They lead to a progressive collapse of the chains when their charge rates decrease. The screen and condensation effects when the charge rate f of the PSSNa (f>f(Manning)) varies in a polar solvent (DMSO) are studied. The vermiform chains have the same persistence length (for each f) which varies as I{sup -1/4}. Lastly, the f variation effects in the case of a weakly charged hydrophilic poly-ion (f
DEFF Research Database (Denmark)
Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan
2013-01-01
In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order...... response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We...... is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore...
International Nuclear Information System (INIS)
Correa, Eduardo L.; Bosch-Santos, Brianna; Veneziani, Glauco R.; Vivolo, Vitor; Carbonari, Artur W.; Potiens, Maria da Penha A.
2015-01-01
In the past years nanotechnology has been distinguishing as a quick growing field, with many medical applications including drug delivery and medical images. For medical procedures gold nanoparticles (AuNPs) have been widely studied. The characteristics that make this material a good option to improve radiosensitivity in a specific tissue are their stability in a biological ambient and affinity to polyethylene glycol, which reduces its toxicity in mammals. A good method to produce AuNPs for medical applications is thermal decomposition, which is known for providing homogenous nanostructures and narrow size distribution. This production process consists in mixing gold acetate in an organic solution containing diphenyl ether, oleylamine, oleic acid and 1,2 octanediol, which is kept in a temperature of 300 deg C for about two hours. After cooled the mixture must be centrifuged and washed in order to obtain the nanostructured grains. In this study a behavior comparison between water and the organic solution was made. The goal is to verify the viability of using this solution, instead of water, with a 3D printed phantom, as a dosimetric reference, since the removal process of nanoparticles from this solution to take them to water may cause a huge material loss. The comparison procedure was made in an industrial X-ray system operating in a voltage range from 10 kV to 50 kV. The results presented a variation up to 42.2 % between water and the organic solution radiation attenuation and up to 30 % for radiation scattering. (author)
Duboué-Dijon, Elise; Mason, Philip E; Fischer, Henry E; Jungwirth, Pavel
2018-04-05
Magnesium and zinc dications possess the same charge and have an almost identical size, yet they behave very differently in aqueous solutions and play distinct biological roles. It is thus crucial to identify the origins of such different behaviors and to assess to what extent they can be captured by force-field molecular dynamics simulations. In this work, we combine neutron scattering experiments in a specific mixture of H 2 O and D 2 O (the so-called null water) with ab initio molecular dynamics simulations to probe the difference in the hydration structure and ion-pairing properties of chloride solutions of the two cations. The obtained data are used as a benchmark to develop a scaled-charge force field for Mg 2+ that includes electronic polarization in a mean field way. We show that using this electronic continuum correction we can describe aqueous magnesium chloride solutions well. However, in aqueous zinc chloride specific interaction terms between the ions need to be introduced to capture ion pairing quantitatively.
Taube, Michał; Pieńkowska, Joanna R.; Jarmołowski, Artur; Kozak, Maciej
2014-01-01
SGT1 is an evolutionarily conserved eukaryotic protein involved in many important cellular processes. In plants, SGT1 is involved in resistance to disease. In a low ionic strength environment, the SGT1 protein tends to form dimers. The protein consists of three structurally independent domains (the tetratricopeptide repeats domain (TPR), the CHORD- and SGT1-containing domain (CS), and the SGT1-specific domain (SGS)), and two less conserved variable regions (VR1 and VR2). In the present study, we provide the low-resolution structure of the barley (Hordeum vulgare) SGT1 protein in solution and its dimer/monomer equilibrium using small-angle scattering of synchrotron radiation, ab-initio modeling and circular dichroism spectroscopy. The multivariate curve resolution least-square method (MCR-ALS) was applied to separate the scattering data of the monomeric and dimeric species from a complex mixture. The models of the barley SGT1 dimer and monomer were formulated using rigid body modeling with ab-initio structure prediction. Both oligomeric forms of barley SGT1 have elongated shapes with unfolded inter-domain regions. Circular dichroism spectroscopy confirmed that the barley SGT1 protein had a modular architecture, with an α-helical TPR domain, a β-sheet sandwich CS domain, and a disordered SGS domain separated by VR1 and VR2 regions. Using molecular docking and ab-initio protein structure prediction, a model of dimerization of the TPR domains was proposed. PMID:24714665
Turcksin, Bruno; Ragusa, Jean C.; Morel, Jim E.
2012-01-01
It is well known that the diffusion synthetic acceleration (DSA) methods for the Sn equations become ineffective in the Fokker-Planck forward-peaked scattering limit. In response to this deficiency, Morel and Manteuffel (1991) developed an angular multigrid method for the 1-D Sn equations. This method is very effective, costing roughly twice as much as DSA per source iteration, and yielding a maximum spectral radius of approximately 0.6 in the Fokker-Planck limit. Pautz, Adams, and Morel (PAM) (1999) later generalized the angular multigrid to 2-D, but it was found that the method was unstable with sufficiently forward-peaked mappings between the angular grids. The method was stabilized via a filtering technique based on diffusion operators, but this filtering also degraded the effectiveness of the overall scheme. The spectral radius was not bounded away from unity in the Fokker-Planck limit, although the method remained more effective than DSA. The purpose of this article is to recast the multidimensional PAM angular multigrid method without the filtering as an Sn preconditioner and use it in conjunction with the Generalized Minimal RESidual (GMRES) Krylov method. The approach ensures stability and our computational results demonstrate that it is also significantly more efficient than an analogous DSA-preconditioned Krylov method.
DEFF Research Database (Denmark)
Garamus, V.M.; Pedersen, J.S.
1998-01-01
concentration to a lower value. The CB aggregates have a fractal structure and the apparent fractal dimension is lower near the match point (75% heavy water). The scattering data are modelled using fractal-like aggregates (CB+surfactant), and voids in the CB particles and micelles. The data are fitted...... simultaneously for three different contrasts. The fractal dimension is found to be larger than 3 with the maximum size of the fractal aggregate being around 150-200 Angstrom. The primary CB particles have a broad size distribution with an average size of about 30-80 Angstrom. The surfactant coverage of the CB...... particles is 8% and is constant with varying CB and surfactant concentration. The volume fraction of the voids does not exceed 1% of the CB; The micelle structure is found to be the same as in surfactant/water solutions. (C) 1998 Elsevier Science B.V....
International Nuclear Information System (INIS)
Chen, Wei-Ren
2007-01-01
The structural properties of generation 4 (G4) poly(amidoamine) starburst dendrimers (PAMAM) with an ethylenediamine ne (EDA) central core in D O 2 solutions have been studied by small angle neutron scattering. Upon the addition of DCl , SANS patterns show a pronounced inter-particle 2 correlation peaks due to the strong repulsion introduced by the protonation of the amino groups of the dendrimers. By solving the Ornstein-Zernike integral equation (OZ) with hypernetted chain closure (HNC), the dendrimer-dendrimer er structure factor S(Q) is determined and used to fit the experimental data. Quantitative information such as the effective charge per dendrimer and its conformational change at different conditions can be obtained. The results obtained show clear evidence that significant counterion association occurs, strongly mediating the inter-dendrimer interaction. The influence of interplay between counterions and molecular protonation of dendrimers has strong effect on the dendrimer conformation and effective interaction.
International Nuclear Information System (INIS)
Ganbold, Erdene Ochir; Park, Jin Ho; Ock, Kwang Su; Joo, Sang Woo
2011-01-01
We studied the detection of the Hg(II) concentration in an aqueous solution using rhodamine dyes on citrate-reduced Au nanoparticles (NPs). The quenching effect from Au NPs was found to decrease as the Hg(II) concentration increased under our experimental conditions. As the fluorescence signals intensified, the surface-enhanced Raman scattering (SERS) intensities reduced on the contrary due to less rhodamine dyes on Au NPs as the Hg(II) concentration increased. The rhodamine 6G (Rh6G) and rhodamine 123 (Rh123) dyes were examined via fluorescence and SERS measurements depending on Hg(II) concentrations. Fast and easy fluorescence detection of an Hg (II) concentration as low as a few ppm could be achieved by naked eye using citrate-reduced Au NPs
Yang, Ke R; Matula, Adam J; Kwon, Gihan; Hong, Jiyun; Sheehan, Stafford W; Thomsen, Julianne M; Brudvig, Gary W; Crabtree, Robert H; Tiede, David M; Chen, Lin X; Batista, Victor S
2016-05-04
The solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-μ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc. Our findings are particularly valuable to understand the mechanism of water oxidation by highly reactive Ir catalysts. Importantly, our DFT-EXAFS-HEXS methodology provides a new in situ technique for characterization of active species in catalytic systems.
International Nuclear Information System (INIS)
Sanchez, Richard.
1975-04-01
For the one-dimensional geometries, the transport equation with linearly anisotropic scattering can be reduced to a single integral equation; this is a singular-kernel FREDHOLM equation of the second kind. When applying a conventional projective method that of GALERKIN, to the solution of this equation the well-known collision probability algorithm is obtained. Piecewise polynomial expansions are used to represent the flux. In the ANILINE code, the flux is supposed to be linear in plane geometry and parabolic in both cylindrical and spherical geometries. An integral relationship was found between the one-dimensional isotropic and anisotropic kernels; this allows to reduce the new matrix elements (issuing from the anisotropic kernel) to classic collision probabilities of the isotropic scattering equation. For cylindrical and spherical geometries used an approximate representation of the current was used to avoid an additional numerical integration. Reflective boundary conditions were considered; in plane geometry the reflection is supposed specular, for the other geometries the isotropic reflection hypothesis has been adopted. Further, the ANILINE code enables to deal with an incoming isotropic current. Numerous checks were performed in monokinetic theory. Critical radii and albedos were calculated for homogeneous slabs, cylinders and spheres. For heterogeneous media, the thermal utilization factor obtained by this method was compared with the theoretical result based upon a formula by BENOIST. Finally, ANILINE was incorporated into the multigroup APOLLO code, which enabled to analyse the MINERVA experimental reactor in transport theory with 99 groups. The ANILINE method is particularly suited to the treatment of strongly anisotropic media with considerable flux gradients. It is also well adapted to the calculation of reflectors, and in general, to the exact analysis of anisotropic effects in large-sized media [fr
DEFF Research Database (Denmark)
Sjöberg, B.; Mortensen, K.
1994-01-01
of human serum albumin (HSA) up to a concentration of 0.26 g/cm(3) in 1.08 M NaCl. In order to obtain a model for the interactions we have combined the SANS data with results obtained by Monte Carlo simulations where we calculate the structure factor S(Q) and the pair correlation function g......Moderately or highly concentrated nonideal solutions of macromolecules are very important systems e.g. in biology and in many technical processes. In this work we have used the small-angle neutron scattering technique (SANS) to study the interactions and interparticle structure in solutions......(r). The advantage of using the Monte Carlo method is that completely general models for the particle shape and the interactions can be considered. It is found that the SANS data can be explained by a model where the shape of the HSA molecule is approximated by an ellipsoid of revolution with semiaxes a = 6.8 nm...
Round, Adam; Felisaz, Franck; Fodinger, Lukas; Gobbo, Alexandre; Huet, Julien; Villard, Cyril; Blanchet, Clement E; Pernot, Petra; McSweeney, Sean; Roessle, Manfred; Svergun, Dmitri I; Cipriani, Florent
2015-01-01
Small-angle X-ray scattering (SAXS) of macromolecules in solution is in increasing demand by an ever more diverse research community, both academic and industrial. To better serve user needs, and to allow automated and high-throughput operation, a sample changer (BioSAXS Sample Changer) that is able to perform unattended measurements of up to several hundred samples per day has been developed. The Sample Changer is able to handle and expose sample volumes of down to 5 µl with a measurement/cleaning cycle of under 1 min. The samples are stored in standard 96-well plates and the data are collected in a vacuum-mounted capillary with automated positioning of the solution in the X-ray beam. Fast and efficient capillary cleaning avoids cross-contamination and ensures reproducibility of the measurements. Independent temperature control for the well storage and for the measurement capillary allows the samples to be kept cool while still collecting data at physiological temperatures. The Sample Changer has been installed at three major third-generation synchrotrons: on the BM29 beamline at the European Synchrotron Radiation Facility (ESRF), the P12 beamline at the PETRA-III synchrotron (EMBL@PETRA-III) and the I22/B21 beamlines at Diamond Light Source, with the latter being the first commercial unit supplied by Bruker ASC.
Chen, Yixing; Dupertuis, Nathan; Okur, Halil I.; Roke, Sylvie
2018-06-01
The temperature dependence of the femtosecond elastic second harmonic scattering (fs-ESHS) response of bulk light and heavy water and their electrolyte solutions is presented. We observe clear temperature dependent changes in the hydrogen (H)-bond network of water that show a decrease in the orientational order of water with increasing temperature. Although D2O has a more structured H-bond network (giving rise to more fs-ESHS intensity), the relative temperature dependence is larger in H2O. The changes are interpreted in terms of the symmetry of H-bonds and are indicators of nuclear quantum effects. Increasing the temperature in electrolyte solutions decreases the influence of the total electrostatic field from ions on the water-water correlations, as expected from Debye-Hückel theory, since the Debye length becomes longer. The effects are, however, 1.9 times (6.3 times) larger than those predicted for H2O (D2O). Since fs-ESHS responses can be computed from known molecular coordinates, our observations provide a unique opportunity to refine quantum mechanical models of water.
Directory of Open Access Journals (Sweden)
Jong Goo Kim
2016-03-01
Full Text Available Homodimeric hemoglobin (HbI consisting of two subunits is a good model system for investigating the allosteric structural transition as it exhibits cooperativity in ligand binding. In this work, as an effort to extend our previous study on wild-type and F97Y mutant HbI, we investigate structural dynamics of a mutant HbI in solution to examine the role of well-organized interfacial water cluster, which has been known to mediate intersubunit communication in HbI. In the T72V mutant of HbI, the interfacial water cluster in the T state is perturbed due to the lack of Thr72, resulting in two less interfacial water molecules than in wild-type HbI. By performing picosecond time-resolved X-ray solution scattering experiment and kinetic analysis on the T72V mutant, we identify three structurally distinct intermediates (I1, I2, and I3 and show that the kinetics of the T72V mutant are well described by the same kinetic model used for wild-type and F97Y HbI, which involves biphasic kinetics, geminate recombination, and bimolecular CO recombination. The optimized kinetic model shows that the R-T transition and bimolecular CO recombination are faster in the T72V mutant than in the wild type. From structural analysis using species-associated difference scattering curves for the intermediates, we find that the T-like deoxy I3 intermediate in solution has a different structure from deoxy HbI in crystal. In addition, we extract detailed structural parameters of the intermediates such as E-F distance, intersubunit rotation angle, and heme-heme distance. By comparing the structures of protein intermediates in wild-type HbI and the T72V mutant, we reveal how the perturbation in the interfacial water cluster affects the kinetics and structures of reaction intermediates of HbI.
DEFF Research Database (Denmark)
Khan, Sanaullah; Birch, Johnny; Harris, Pernille
strongly with these HePSs. β-lactoglobulin exists as a dimer at pH 4 in the absence of HePSs. When mixed with HePSs, SAXS analysis showed that β-lactoglobulin formed large aggregates. DLS also showed formation of large aggregates of β-lactoglobulin with HePSs, thus validating SAXS data. Turbidity and AUC...... heteroexopolysaccharides (HePS-1–HePS-4) from lactic acid bacteria (LAB) and their interactions with β-lactoglobulin. We have previously shown that these HePSs exhibited a compact conformation in solution. Here, SAXS data for HePSs (HePS-1–HePS-4) complexes with β-lactoglobulin showed that β-lactoglobulin aggregated...... data indicated that both soluble and insoluble BLG–HePSs complexes were formed. This study provides new insights into the role of molecular structures in associative interactions between HePSs and BLG which has relevance for various industrial applications....
International Nuclear Information System (INIS)
Chen Weiren; Chen Sowhsin; Mallamace, Francesco; Glinka, Charles J.; Fratini, Emiliano
2003-01-01
Recent mode coupling theory (MCT) calculations show that if a short-range attractive interaction is added to the pure hard sphere system, one may observe a new type of glass originating from the clustering effect (the attractive glass) as a result of the attractive interaction. This is in addition to the known glass-forming mechanism due to the cage effect in the hard sphere system (the repulsive glass). The calculations also indicate that if the range of attraction is sufficiently short compared to the diameter of the particle, within a certain interval of volume fractions where the two glass-forming mechanisms nearly balance each other, varying the external control parameter, the effective temperature, makes the glass-to-liquid-to-glass reentrance and the glass-to-glass transitions possible. Here we present experimental evidence of both transitions, obtained from small-angle neutron-scattering and photon correlation measurements taken from dense L64 copolymer micellar solutions in heavy water. Varying the temperature in certain predicted volume fraction range triggers a sharp transition between these two different types of glass. In particular, according to MCT, there is an end point (called A 3 singularity) of this glass-to-glass transition line, beyond which the long-time dynamics of the two glasses become identical. Our findings confirm this theoretical prediction. Surprisingly, although the Debye-Waller factors, the long-time limit of the coherent intermediate scattering functions, of these two glasses obtained from photon correlation measurements indeed become identical at the predicted volume fraction, they exhibit distinctly different intermediate time relaxation. Furthermore, our experimental results obtained from volume fractions beyond the end point are characterized by the same features as the repulsive glass obtained before the end point. A complete phase diagram giving the boundaries of the structural arrest transitions for L64 micellar system is
International Nuclear Information System (INIS)
Sivashanmugan, Kundan; Liao, Jiunn-Der; Liu, Bernard Haochih; Yao, Chih-Kai
2013-01-01
Graphical abstract: -- Highlights: •Well-ordered Au-nanorod array with a controlled tip ring diameter (Au N Rs d ) is made by focused ion beam. •Au N Rs d coupled with Ag nanoparticles (Ag NPs/Au N Rs d ) is competent to sense target molecules in a solution. •Ag NPs/Au N Rs d SERS active substrate can detect a single molecule of crystal violet. •Ag NPs/Au N Rs d as a SERS-active substrate can distinguish melamine contaminants at low concentrations (e.g., 10 −12 M). -- Abstract: A well-ordered Au-nanorod array with a controlled tip ring diameter (Au N Rs d ) was fabricated using the focused ion beam method. Au N Rs d was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on Au N Rs d and Ag NPs/Au N Rs d was particularly verified using crystal violet (CV) as the molecular probe. Raman intensity obtained from a characteristic peak of CV on Au N Rs d was estimated by an enhancement factor of ≈10 7 in magnitude, which increased ≈10 12 in magnitude for that on Ag NPs/Au N Rs d . A highly SERS-active Ag NPs/Au N Rs d was furthermore applied for the detection of melamine (MEL) at very low concentrations. Raman-active peaks of MEL (10 −3 to 10 −12 M) in water or milk solution upon Au N Rs d or Ag NPs/Au N Rs d were well distinguished. The peaks at 680 and 702 cm −1 for MEL molecules were found suitable to be used as the index for sensing low-concentration MEL in a varied solution, while that at 1051 cm −1 was practical to interpret MEL molecules in water or milk solution bonded with Au (i.e., Au N Rs d ) or Ag (i.e., Ag NPs/Au N Rs d ) surface. At the interface of Ag NPs/Au N Rs d and MEL molecules in milk solution, a laser-induced electromagnetic field or hotspot effect was produced and competent to sense low-concentration MEL molecules interacting with Ag and Au surfaces. Accordingly, Ag NPs/Au N Rs d is very promising to be used as a fast and sensitive tool for
Evanescent wave scattering at off-axis incidence on multiple cylinders located near a surface
International Nuclear Information System (INIS)
Lee, Siu-Chun
2015-01-01
The scattering characteristics of an infinite cylinder are strongly influenced by the incidence angle relative to its axis. If the incident wave propagates in the plane normal to the axis of the cylinder, the polarization of the scattered wave remains unchanged and the scattered wave propagates in the same plan as the incident wave. At off-axis incidence such that the incident direction makes an oblique angle with the cylinder axis, the scattered wave is depolarized, and its spatial distribution becomes three-dimensional. This paper presents the scattering solution for oblique incidence on multiple parallel cylinders located near a planar interface by an evanescent wave that is generated by total internal reflection of the source wave propagating in the higher refractive index substrate. Hertz potentials are utilized to formulate the interaction of inhomogeneous waves with the cylinders, scattering at the substrate interface, and near field scattering between the cylinders. Analytic formulas are derived for the electromagnetic fields and Poynting vector of scattered radiation in the near-field and their asymptotic forms in the far-field. Numerical examples are shown to illustrate scattering of evanescent wave by multiple cylinders at off-axis incidence. - Highlights: • Developed an exact solution for off-axis incidence on multiple cylinders. • Included depolarization, near-field scattering, and Fresnel effect in theory. • Derived analytic formulas for scattered radiation in the far field. • Illustrated evanescent scattering at off-axis incidence by numerical data
International Nuclear Information System (INIS)
Kuehnelt, H.
1975-01-01
We discuss a few properties of scattering amplitudes proved within the framework of the field theory and their significance in the derivation of quantitative statements. The state of the boundaries for the scattering lengths is to be especially discussed as well as the question as to how far it is possible to exclude various solutions from phase displacement analyses. (orig./LH) [de
Neutron scattering applications in structural biology: now and the future
Energy Technology Data Exchange (ETDEWEB)
Trewhella, J [Los Alamos National Lab., NM (United States)
1996-05-01
Neutrons have an important role to play in structural biology. Neutron crystallography, small-angle neutron scattering and inelastic neutron scattering techniques all contribute unique information on biomolecular structures. In particular, solution scattering techniques give critical information on the conformations and dispositions of the components of complex assemblies under a wide variety of relevant conditions. The power of these methods is demonstrated here by studies of protein/DNA complexes, and Ca{sup 2+}-binding proteins complexed with their regulatory targets. In addition, we demonstrate the utility of a new structural approach using neutron resonance scattering. The impact of biological neutron scattering to date has been constrained principally by the available fluxes at neutron sources and the true potential of these approaches will only be realized with the development of new more powerful neutron sources. (author)
Dias, José; Renault, Louis; Pérez, Javier; Mirande, Marc
2013-01-01
In animal cells, nine aminoacyl-tRNA synthetases are associated with the three auxiliary proteins p18, p38, and p43 to form a stable and conserved large multi-aminoacyl-tRNA synthetase complex (MARS), whose molecular mass has been proposed to be between 1.0 and 1.5 MDa. The complex acts as a molecular hub for coordinating protein synthesis and diverse regulatory signal pathways. Electron microscopy studies defined its low resolution molecular envelope as an overall rather compact, asymmetric triangular shape. Here, we have analyzed the composition and homogeneity of the native mammalian MARS isolated from rabbit liver and characterized its overall internal structure, size, and shape at low resolution by hydrodynamic methods and small-angle x-ray scattering in solution. Our data reveal that the MARS exhibits a much more elongated and multi-armed shape than expected from previous reports. The hydrodynamic and structural features of the MARS are large compared with other supramolecular assemblies involved in translation, including ribosome. The large dimensions and non-compact structural organization of MARS favor a large protein surface accessibility for all its components. This may be essential to allow structural rearrangements between the catalytic and cis-acting tRNA binding domains of the synthetases required for binding the bulky tRNA substrates. This non-compact architecture may also contribute to the spatiotemporal controlled release of some of its components, which participate in non-canonical functions after dissociation from the complex. PMID:23836901
International Nuclear Information System (INIS)
Rodriguez, Barbara A.; Borges, Volnei; Vilhena, Marco Tullio
2005-01-01
In this work we would like to obtain a formulation of an analytic method for the solution of the three dimensional transport equation considering Compton scattering and an expression for total doses due to gamma radiation, where the deposited energy by the free electron will be considered. For that, we will work with two equations: the first one for the photon transport, considering the Klein-Nishina kernel and energy multigroup model, and the second one considering the free electron with the screened Rutherford scattering. (author)
International Nuclear Information System (INIS)
Mihalas, D.; Kunasz, P.B.; Hummer, D.G.
1976-01-01
A numerical method is presented of solving the radiative transfer equation in the comoving frame of a spherically symmetric expanding atmosphere in which both the line and the electron-scattering source function can depend on frequency (i.e., when there is partial frequency redistribution in the scattering process). This method is used to assess the adequacy of various assumptions regarding frequency redistribution in the comoving frame and to discuss the effects of electron scattering more accurately than previously possible. The methods developed here can be used in realistic model atmospheres to account for the (major) effects of electron scattering upon emergent flux profiles
Energy Technology Data Exchange (ETDEWEB)
Sivashanmugan, Kundan [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liao, Jiunn-Der, E-mail: jdliao@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liu, Bernard Haochih; Yao, Chih-Kai [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)
2013-10-24
Graphical abstract: -- Highlights: •Well-ordered Au-nanorod array with a controlled tip ring diameter (Au{sub N}Rs{sub d}) is made by focused ion beam. •Au{sub N}Rs{sub d} coupled with Ag nanoparticles (Ag NPs/Au{sub N}Rs{sub d}) is competent to sense target molecules in a solution. •Ag NPs/Au{sub N}Rs{sub d} SERS active substrate can detect a single molecule of crystal violet. •Ag NPs/Au{sub N}Rs{sub d} as a SERS-active substrate can distinguish melamine contaminants at low concentrations (e.g., 10{sup −12} M). -- Abstract: A well-ordered Au-nanorod array with a controlled tip ring diameter (Au{sub N}Rs{sub d}) was fabricated using the focused ion beam method. Au{sub N}Rs{sub d} was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on Au{sub N}Rs{sub d} and Ag NPs/Au{sub N}Rs{sub d} was particularly verified using crystal violet (CV) as the molecular probe. Raman intensity obtained from a characteristic peak of CV on Au{sub N}Rs{sub d} was estimated by an enhancement factor of ≈10{sup 7} in magnitude, which increased ≈10{sup 12} in magnitude for that on Ag NPs/Au{sub N}Rs{sub d}. A highly SERS-active Ag NPs/Au{sub N}Rs{sub d} was furthermore applied for the detection of melamine (MEL) at very low concentrations. Raman-active peaks of MEL (10{sup −3} to 10{sup −12} M) in water or milk solution upon Au{sub N}Rs{sub d} or Ag NPs/Au{sub N}Rs{sub d} were well distinguished. The peaks at 680 and 702 cm{sup −1} for MEL molecules were found suitable to be used as the index for sensing low-concentration MEL in a varied solution, while that at 1051 cm{sup −1} was practical to interpret MEL molecules in water or milk solution bonded with Au (i.e., Au{sub N}Rs{sub d}) or Ag (i.e., Ag NPs/Au{sub N}Rs{sub d}) surface. At the interface of Ag NPs/Au{sub N}Rs{sub d} and MEL molecules in milk solution, a laser-induced electromagnetic field or hotspot effect was produced and
International Nuclear Information System (INIS)
Litvinenko, V.G.; Savva, P.P.
1993-01-01
Consideration is given to the complex of measures taken in Priargunsky industrial mine-chemical association and directed to environment protection, complex utilization of raw materials during mining and processing of uranium ores. These measures include: 1) reduction of toxic chemical agent effluents into atmosphere due to introduction of new methods and gas cleaning systems; 2) rational use of water resources owing to application of circulating water supply systems, waste waters treatment and effective control of the state of water consumption by industrial enterprises; 3) utilization of gangue and industrial solid wastes
Czech Academy of Sciences Publication Activity Database
Pecina, Petr
2016-01-01
Roč. 463, č. 2 (2016), s. 1185-1198 ISSN 0035-8711 Institutional support: RVO:67985815 Keywords : scattering * radar astronomy * meteorites * meteors * meteoroids Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016
Virtual neutron scattering experiments
DEFF Research Database (Denmark)
Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael
2017-01-01
. In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus......We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering...
Directory of Open Access Journals (Sweden)
Michal Lovás
2004-12-01
Full Text Available Ion-exchange properties of cations from lattice and ions from solutions are characteristic for zeolites. Zeolites as sorbents are used in many branches of industry. Ion-exchange reactions of cations on zeolites have been a theme of many works. With the exception of using natural zeolites as the sorbent, a modification of surface of zeolites and preparation of synthetic zeolites has received interest lately. One of the common modification of zeolites is modification by iron oxides, which increases capacity of adsorption. In this work, we prepared a modified zeolite by the precipitation of magnetite on the surface of zeolite. This new adsorbent was used to remove of Pb(II from waste water. The maximum adsorption capacity was 73,25 mg/g from the solution of Pb with the concentration of 400 mg/l.
Cai, Chun-Xiang; Xu, Jian; Deng, Nian-Fang; Dong, Xue-Wei; Tang, Hao; Liang, Yu; Fan, Xian-Wei; Li, You-Zhi
2016-11-01
The biomass of filamentous fungi is an important cost-effective biomass for heavy metal biosorption. However, use of free fungal cells can cause difficulties in the separation of biomass from the effluent. In this study, we immobilized the living conidia of the heavy metal-resistant Penicillium janthinillum strain GXCR by polyvinyl alcohol (PVA)-sodium alginate (SA) beads to remove heavy metals from an aqueous solution containing a low concentration (70 mg/L) of Cu, Pb, and Cd. The PVA-SA-conidia beads showed perfect characters of appropriate mechanical strength suitable for metal removal from the dynamic wastewater environment, an ideal settleability, easy separation from the solution, and a high metal biosorption and removal rate even after four cycles of successive sorption-desorption of the beads, overcoming disadvantages when fungal biomasses alone are used for heavy metal removal from wastewater. We also discuss the major biosorption-affecting factors, biosorption models, and biosorption mechanisms.
Directory of Open Access Journals (Sweden)
Agung Prabowo
2007-06-01
Full Text Available Cellulose is a compound of plant cell walls which is difficult to be degraded because it composed of glucose monomers linked by β-(1.4-bound. It will be hydrolysed by cellulase enzyme secreted by cellulolytic microbes. The effective digestion of cellulose needs high activity of cellulase enzyme. This research aims to increase in vitro king grass digestibility utilizing mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid. Twelve syringes contained gas test media were randomly divided into four treatments based on sources of microbe (SM, namely: S (SM: cattle ruminal fluid [S], RGK (SM: mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid [RGK], with composition 1 : 1 : 1, S-RGK (SM: S + RGK, with composition 1:1, and TM (without given treatment microbe. Digestibility was measured using gas test method. Average of gas production treatment of S-RGK (70.2 + 0.6 ml was higher and significantly different (P<0.01 compared to treatment of S (60.3 + 0.8 ml, RGK (40.8 + 2.3 ml, and TM (13.3 + 2.0 ml. Utilization of mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid (RGK that combined with microbes of cattle ruminal fluid (S could increase in vitro digestibility of king grass.
Directory of Open Access Journals (Sweden)
C. Bandaragoda
2011-05-01
Full Text Available To support the goal of distributed hydrologic and instream model predictions based on physical processes, we explore multi-dimensional parameterization determined by a broad set of observations. We present a systematic approach to using various data types at spatially distributed locations to decrease parameter bounds sampled within calibration algorithms that ultimately provide information regarding the extent of individual processes represented within the model structure. Through the use of a simulation matrix, parameter sets are first locally optimized by fitting the respective data at one or two locations and then the best results are selected to resolve which parameter sets perform best at all locations, or globally. This approach is illustrated using the Two-Zone Temperature and Solute (TZTS model for a case study in the Virgin River, Utah, USA, where temperature and solute tracer data were collected at multiple locations and zones within the river that represent the fate and transport of both heat and solute through the study reach. The result was a narrowed parameter space and increased parameter certainty which, based on our results, would not have been as successful if only single objective algorithms were used. We also found that the global optimum is best defined by multiple spatially distributed local optima, which supports the hypothesis that there is a discrete and narrowly bounded parameter range that represents the processes controlling the dominant hydrologic responses. Further, we illustrate that the optimization process itself can be used to determine which observed responses and locations are most useful for estimating the parameters that result in a global fit to guide future data collection efforts.
Najim, Tariq S.; Zainal, Israa G.; Ali, Dina A.
2010-01-01
m-Phenylenediamine was condensed with furfural in absence of catalyst at room temperature. The produced m-phenylenediamine-furfural resin was used for the removal of Cu(II) from aqueous solution. The pH for the optimum removal of Cu(II) was 6. The negative values of Gibbs free energy at low concentration of Cu(II) (20, 30 ppm) indicative of the spontaneous adsorption process, while, at higher Cu(II) concentration (40,50 ppm) the positive and weak values of ∆G° indicate that the process is fea...
International Nuclear Information System (INIS)
Rouse, S.; Dittburner, D.
2006-01-01
Energy prices can vary significantly over the course of a single day in response to changing levels in energy demand and availability of supply. The impacts of varying energy prices on business and industry means that hourly electricity costs can fluctuate widely over the course of a day even though energy use remains stable. This presentation gave details of an energy efficiency initiative at Unilever's Rexdale site which has resulted in $4 million saved through reductions in energy consumption and equipment retrofits. The Rexdale plant won an energy efficiency award in 2005, and the success of the initiative was attributed to the use of Utility 3 + , an energy management software tool. A turn key system with integrated software and hardware, Utility 3 + is capable of measuring how much energy is being used and can provide details of costs using a combination of historical and forecast prices. The tool is equipped with alarms with pre-set thresholds to match real-time rises in energy prices. Real-time prices are relayed from the Internet along with a 2 way data communication system. It was concluded that use of the tool has resulted in improved cash flow management and greater control of energy costs. A system description of the tool was provided, as well as details of various equipment retrofits. refs.., tabs., figs
Energy Technology Data Exchange (ETDEWEB)
Rouse, S. [Energy at Work, Toronto, ON (Canada); Dittburner, D. [Unilever Canada, Toronto, ON (Canada)
2006-07-01
Energy prices can vary significantly over the course of a single day in response to changing levels in energy demand and availability of supply. The impacts of varying energy prices on business and industry means that hourly electricity costs can fluctuate widely over the course of a day even though energy use remains stable. This presentation gave details of an energy efficiency initiative at Unilever's Rexdale site which has resulted in $4 million saved through reductions in energy consumption and equipment retrofits. The Rexdale plant won an energy efficiency award in 2005, and the success of the initiative was attributed to the use of Utility 3{sup +}, an energy management software tool. A turn key system with integrated software and hardware, Utility 3{sup +} is capable of measuring how much energy is being used and can provide details of costs using a combination of historical and forecast prices. The tool is equipped with alarms with pre-set thresholds to match real-time rises in energy prices. Real-time prices are relayed from the Internet along with a 2 way data communication system. It was concluded that use of the tool has resulted in improved cash flow management and greater control of energy costs. A system description of the tool was provided, as well as details of various equipment retrofits. refs.., tabs., figs.
Angin, Dilek
2014-09-01
The use of activated carbon obtained from sour cherry (Prunus cerasus L.) stones for the removal of a basic textile dye, which is Yellow 18, from aqueous solutions at different contact times, pH values and solution temperatures was investigated. The surface area and micropore volume of chemically modified activated carbon were 1704 m(2) g(-1) and 0.984 cm(3) g(-1), respectively. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 75.76 mg g(-1) at 318 K. The adsorption kinetic of Yellow 18 obeys the pseudo-second-order kinetic model. The thermodynamic parameters were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 0.71-2.36 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal of Yellow 18 from wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.
Selvasembian, Rangabhashiyam; P, Balasubramanian
2018-05-12
Biosorption potential of novel lignocellulosic biosorbents Musa sp. peel (MSP) and Aegle marmelos shell (AMS) was investigated for the removal of toxic triphenylmethane dye malachite green (MG), from aqueous solution. Batch experiments were performed to study the biosorption characteristics of malachite green onto lignocellulosic biosorbents as a function of initial solution pH, initial malachite green concentration, biosorbents dosage, and temperature. Biosorption equilibrium data were fitted to two and three parameters isotherm models. Three-parameter isotherm models better described the equilibrium data. The maximum monolayer biosorption capacities obtained using the Langmuir model for MG removal using MSP and AMS was 47.61 and 18.86 mg/g, respectively. The biosorption kinetic data were analyzed using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The pseudo-second-order kinetic model best fitted the experimental data, indicated the MG biosorption using MSP and AMS as chemisorption process. The removal of MG using AMS was found as highly dependent on the process temperature. The removal efficiency of MG showed declined effect at the higher concentrations of NaCl and CaCl 2 . The regeneration test of the biosorbents toward MG removal was successful up to three cycles.
Suryanti, Venty; Hastuti, Sri; Andriani, Dewi
2016-02-01
Biosurfactant production by Rhodococcus rhodochrous in soybean oil was developed, where the effect of medium composition and fermentation time were evaluated. The optimum condition for biosurfactant production was achieved when a medium containing 30 g/L TSB (tryptic soy broth) and 20% v/v soybean oil was used as media with 7 days of fermentation. Biosurfactant was identified as glycolipids type biosurfactant which had critical micelle concentration (CMC) value of 896 mg/L. The biosurfactant had oil in water emulsion type and was able to reduce the surface tension of palm oil about 52% which could stabilize the emulsion up to 12 days. The batch removal of cadmium metal ion by crude and partially purified biosurfactants have been examined from synthetic aqueous solution at pH 6. The results exhibited that the crude biosurfactant had a much better adsorption ability of Cd(II) than that of partially purified biosurfactant. However, it was found that there was no significant difference in the adsorption of Cd(II) with 5 and 10 minutes of contact time. The results indicated that the biosurfactant could be used in remediation of heavy metals from contaminated aqueous solution.
International Nuclear Information System (INIS)
Kakurai, Kazuhisa
2013-01-01
My first encounter with neutron scattering research on low-dimensional magnetism at the Hahn-Meitner Institut under the supervision of Prof. H. Dachs and Prof. M. Steiner, were it all began, is accounted for. The polarized neutron analysis research on low-dimensional magnetism at the Institut Laue Langevin under the supervision of Dr. R. Pynn is also reported. I would like to dedicate this article to late Prof. H. Dachs expressing may deepest gratitude for his warm guidance during the early period of my neutron science carrier. (author)
International Nuclear Information System (INIS)
Beeuwsaert, D.
2000-01-01
The weakening of the link between generation, transmission and distribution; the market internationalization; new activities; customer freedom; competition; and short payback investments are few of the new challenges facing the European electricity sector. What will tomorrow's equipment look like? What will the sources of energy be? How will the new technologies evolve? What is the future of proven technologies like nuclear power? Should we be anxious about or confident in our capability to cope with a future which today seems uncertain? All these questions lead to reactions from the actors. One thing is certain: all the respective actors have a joint responsibility to come up with specific solutions while complying with fundamental and ethical rules in areas as diverse as safety or environmental protection. (author)
DEFF Research Database (Denmark)
Maggi, Claudio; Di Leonardo, Ricardo; ruocco, giancarlo
2012-01-01
The spatial fluctuations of the dynamics of a colloidal system composed of nanoparticles are probed by a novel experimental setup, which combines homodyne and heterodyne dynamic light scattering focused onto a micron-sized volume via a microscope objective. The technique is used to measure the four-point...
Directory of Open Access Journals (Sweden)
P. S. Syed Shabudeen
2006-01-01
Full Text Available A carbonaceous sorbent prepared from the indegeneous agricultural waste (which is facing solid waste disposal problem Kapok Hull, by acid treatment was tested for its efficiency in removing basic dyes. Batch kinetic and isotherm experiments were conducted to determine the sorption and desorption of the Rhodamine-B from aqueous solution with activated carbon. The factors affecting the rate processes involved in the removal of dye for initial dye concentration, agitation time, and carbon dose and particle size have been studied at ambient temperature. The adsorption process followed first order rate kinetics. The first-order rate equation by Lagergren was tested on the kinetic data, and isotherm data was analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherm equations. The intraparticle diffusion rate equation from which adsorption rate constants, diffusion rate constants and diffusion coefficients were determined. Intraparticle diffusion was found to be the rate-limiting step. The structural and morphological of activated carbon were characterized by XRD and SEM studies respectively.
Directory of Open Access Journals (Sweden)
Tariq S. Najim
2010-01-01
Full Text Available m-Phenylenediamine was condensed with furfural in absence of catalyst at room temperature. The produced m-phenylenediamine-furfural resin was used for the removal of Cu(II from aqueous solution. The pH for the optimum removal of Cu(II was 6. The negative values of Gibbs free energy at low concentration of Cu(II (20, 30 ppm indicative of the spontaneous adsorption process, while, at higher Cu(II concentration (40,50 ppm the positive and weak values of ∆G° indicate that the process is feasible but non spontaneous. The values of ∆H° were positive indicating that the sorption process is endothermic. On the other hand, the values of activation energy (Ea were inconsistent with the values of ∆H° both are positive and lie in the range of physisorption. The entropy ∆S° of the process was positive indicative of the randomness of the Cu(II ions at the solid / liquid interface. The values of sticking probability S* were less than one which indicate a preferable adsorption process and the mechanism is physisorption.
Applied electromagnetic scattering theory
Osipov, Andrey A
2017-01-01
Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...
Directory of Open Access Journals (Sweden)
Chigbu DI
2015-07-01
Full Text Available DeGaulle I Chigbu, Alissa M Coyne Pennsylvania College of Optometry Salus University, Elkins Park, PA, USA Abstract: Allergic disorders of the ocular surface are primarily characterized as IgE- and/or T-lymphocyte-mediated disorders that affect the cornea, conjunctiva, and eyelid. Approximately 40% of individuals in the developed countries have allergic conjunctivitis, and as such, it is the most common form of ocular allergy. Seasonal allergic conjunctivitis is the most prevalent type of allergic conjunctivitis that impacts the quality of life of patients. This article reviews the pharmacology, pharmacodynamics, pharmacokinetics, clinical trials, clinical efficacy, and safety of alcaftadine. Histamine and the pathological mechanism of ocular allergy will be briefly reviewed with the intent of providing a background for the detailed discussion on the clinical utility of alcaftadine in allergic conjunctivitis. The Medline PubMed, Elsevier Science Direct, and Google Scholar databases were used to search for evidence-based literature on histamine and immunopathological mechanism of allergic conjunctivitis, as well as on pharmacology, pharmacodynamics, pharmacokinetics, clinical trials, and clinical efficacy of alcaftadine. The treatment and management goals of allergic conjunctivitis are to prevent or minimize the inflammatory cascade associated with allergic response in the early stages of the pathological mechanism. It is of note that activation of histamine receptors on immune and nonimmune cells are associated with allergen-induced inflammation of the conjunctiva and its associated ocular allergic manifestations, including itching, edema, hyperemia, and tearing. Alcaftadine is an efficacious multiple action antiallergic therapeutic agent with inverse agonist activity on H1, H2, and H4 receptors, as well as anti-inflammatory and mast cell stabilizing effects that could provide therapeutic benefits to patients with allergic conjunctivitis
Energy Technology Data Exchange (ETDEWEB)
Liu, Wei; Jiang, Xinyu [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Chen, Xiaoqing, E-mail: xqchen@csu.edu.cn [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization (China)
2015-09-15
Using multiwalled carbon nanotubes(MWCNTs) as mechanical support and glucose as carbon resource, a hydrothermal carbonization route was designed for the synthesis of MWCNTs@carbon nanocables with tunable diameter and length. MWCNTs are firstly used as templates for the formation of carbon-rich composite nanocables, and the diameter of the nanocables could be tailored through adjusting the hydrothermal time or the ratio of MWCNTs and glucose. Owing to abundant superficial oxygen-containing functional groups, porous surface and remarkable reactivity, the as-synthesized nanocables are capable of efficiently adsorbing cationic dye methylene blue (MB) and crystal violet (CV). Furthermore, the optimum adsorption conditions, kinetics, adsorption isotherms and adsorption thermodynamics of dyes were studied systematically. Additionally, the maximum adsorption capacities calculated from data analysis (298.5 mg/g for MB and 228.3 mg/g for CV) are significant higher than those of raw MWCNTs and some other adsorbents reported previously, which provides strong evidence for using MWCNTs@carbon nanocables as adsorbent to remove dyes from aqueous solutions. - Graphical abstract: MWCNTs@carbon nanocables has been successfully fabricated by a hydrothermal carbonization method. The as-synthesized novel samples were used as adsorbents and exhibited high adsorption capacity on MB and CV. - Highlights: • A simple, cost-effective and “green” method for the synthesis of the material. • The diameter and length of the material are relatively easy to control. • The surface has large oxygen-containing groups and preferable chemical reactivity. • Compared with raw MWCNTs and some other adsorbents, the adsorption capacity is much high.
Energy Technology Data Exchange (ETDEWEB)
Sharipov, A U; Yangirov, I Z
1982-01-01
A clay-powder, cement, and water-base plugging solution is proposed having reduced solution viscosity characteristics while maintaining tensile strength in cement stone. This solution utilizes silver graphite and its ingredients, by mass weight, are as follows: cement 51.2-54.3%; claypowder 6.06-9.1%; silver graphite 0.24-0.33%; with water making up the remainder.
International Nuclear Information System (INIS)
Shuh, D.K.; Butorin, S.M.; Guo, J.-H.; Nordgren, J.
2004-01-01
Synchrotron radiation (SR) methods have been utilized with increasing frequency over the past several years to study topics in actinide science, ranging from those of a fundamental nature to those that address a specifically-targeted technical need. In particular, the emergence of microspectroscopic and fluorescence-based techniques have permitted investigations of actinide materials at sources of soft x-ray SR. Spectroscopic techniques with fluorescence-based detection are useful for actinide investigations since they are sensitive to small amounts of material and the information sampling depth may be varied. These characteristics also serve to simplify both sample preparation and safety considerations. Examples of investigations using these fluorescence techniques will be described along with their results, as well as the prospects for future investigations utilizing these methodologies
International Nuclear Information System (INIS)
Berr, S.S.
1986-12-01
We have determined the structure of micelles formed in water by several classes of ionic surfactants under a variety of experimental conditions using small-angle neutron scattering (SANS) techniques. Contrast between the micelles and the solvent was achieved through either selective deuteration or fluorination of the surfactant, or through the use of D 2 O. Interpretation of SANS data was facilitated by the use of Hayter, Penfold, and Hansen's rescaled Mean Spherical Approximation theory to calculate the scattering due to interparticle interactions. We have devised a number of micelle models, both spherical and ellipsoidal, to account for the scattering due to single micelles. It was found that changing the solvent from H 2 O to D 2 O results in the formation of larger micelles due to changes in the solvent-surfactant hydrocarbon interactions. This solvent isotope effect increased as the length of the alkyl chain increased. The fractional micellar charge did not change with respect to isotopic composition of solvent. We found that alkyltrimethylammonium bromide surfactants form drier micelles than do the sodium alkyl sulfate surfactants of equal chain length. Also, all micelles studied were found to be dry near the critical micelle concentration (cmc) and to become increasingly wetter as the concentration increased. The increase in aggregation number with respect to the square root of surfactant concentration was found to be linear for all systems studied. 80 figs
Energy Technology Data Exchange (ETDEWEB)
Schoenborn, B P [ed.
1976-01-01
Sessions were included on neutron scattering and biological structure analysis, protein crystallography, neutron scattering from oriented systems, solution scattering, preparation of deuterated specimens, inelastic scattering, data analysis, experimental techniques, and instrumentation. Separate entries were made for the individual papers.
Directory of Open Access Journals (Sweden)
J. Watermann
Full Text Available Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from the Earth-orbiting Viking and DMSP-F7 satellites, electric field measurements from Viking, interplanetary magnetic field and plasma data from IMP-8, and Sondrestrom incoherent scatter radar observations of the ionospheric plasma density, temperature, and convection. Viking detected cusp precipitation poleward of 75.5° invariant latitude. The ionospheric response to the observed electron precipitation was simulated using an auroral model. It predicts enhanced plasma density and elevated electron temperature in the upper E- and F-regions. Sondrestrom radar observations are in agreement with the predictions. The radar detected a cusp signature on each of five consecutive antenna elevation scans covering 1.2 h local time. The cusp appeared to be about 2° invariant latitude wide, and its ionospheric footprint shifted equatorward by nearly 2° during this time, possibly influenced by an overall decrease in the IMF B_{z} component. The radar plasma drift data and the Viking magnetic and electric field data suggest that the cusp was associated with a continuous, rather than a patchy, merging between the IMF and the geomagnetic field.
International Nuclear Information System (INIS)
Safronov, A.N.
2007-01-01
Full text: The pion-nucleon dynamics is one of the most fundamental problems in nuclear and particle physics. It is now widely believed that QCD is fundamental theory of strong interactions. On this basis all hadron-hadron interactions are completely determined by the underlying quark-gluon dynamics. However, due to the formidable mathematical problems raised by the non-perturbative character of QCD at low and intermediate energies, we are still far from a quantitative understanding hadron-hadron interactions from this point of view. Recently the relativistic approaches to constructing effective interaction operators between strongly interacting composite particles has been proposed on the basis of analytic S-matrix theory and methods for solving the inverse quantum scattering problem. The kernel of Marchenko equation in theory of inverse scattering problem can be expressed in terms of the discontinuity of the partial wave amplitude on dynamic cut in the complex s=k 2 plane, k being the relative momentum of colliding particles. The discontinuities of partial-wave amplitudes are determined by model-independent quantities (renormalized vertex constants and amplitudes of sub-processes involving on-mass-shell particles off physical region) and can be calculated by methods of relativistic quantum field theory within various dynamical approaches. In particular, effective field theory can be used to calculate the discontinuities across dynamical cuts closest to physical region. In present work a new manifestly Poincare-invariant approach to solving the inverse scattering problem is developed with allowance for inelasticity effects. The equations of the N/D method are used as dynamical equations in this approach. With the help of N/D-equations it was earlier shown that solution of a scattering problem in case of nonzero angular momentum does not exist for arbitrary discontinuity of partial-wave amplitude. The method is elaborated allowing to determine contributions of
DEFF Research Database (Denmark)
Midtgaard, Søren Roi; Darwish, Tamim A.; Pedersen, Martin Cramer
2018-01-01
A novel and generally applicable method for determining structures of membrane proteins in solution via small-angle neutron scattering (SANS) is presented. Common detergents for solubilizing membrane proteins were synthesized in isotope-substituted versions for utilizing the intrinsic neutron sca...... solution structure determination of membrane proteins by SANS and subsequent data analysis available to non-specialists. This article is protected by copyright. All rights reserved....
International Nuclear Information System (INIS)
Hategan, Cornel; Comisel, Horia; Ionescu, Remus A.
2004-01-01
The quasiresonant scattering consists from a single channel resonance coupled by direct interaction transitions to some competing reaction channels. A description of quasiresonant Scattering, in terms of generalized reduced K-, R- and S- Matrix, is developed in this work. The quasiresonance's decay width is, due to channels coupling, smaller than the width of the ancestral single channel resonance (resonance's direct compression). (author)
Donne, A. J. H.
1994-01-01
Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is
Benedetto, Antonio; Ballone, Pietro
2018-05-01
Increasing attention is being devoted to the interaction of a new class of organic ionic liquids known as room-temperature ionic liquids (RTILs) with biomolecules, partly because of health and environment concerns, and, even more, for the prospect of exciting new applications in biomedicine, sensing and energy technologies. Here we focus on the interaction between RTILs and phospholipid bilayers that are well-accepted models for bio-membranes. We discuss how neutron scattering has been used to probe both the structure and the dynamics of these systems, and how its integration with molecular dynamics simulation has allowed the determination of the microscopic details of their interaction.
International Nuclear Information System (INIS)
Liedl, G.L.
1987-10-01
MATRIX is a group of scientists who have common interests in utilizing x-ray synchrotron radiation for materials research. This group has developed a specialized beam line (X-18A) for x-ray scattering studies at the National Synchrotron Light Source (NSLS). The beam line was designed to optimize experimental conditions for diffuse scattering and surface/interface studies. An extension of diffuse scattering to provide better quantitative data has been shown as well as a unique application to the solution of the phase problem. In the x-ray surface scattering area the first reported experiment to illustrate the capabilities for studying monolayers on water was performed. Current beam line upgrade projects are also described. In addition to a change to a UHV system and improvements dictated by operational experience, two new systems are described, a unique small angle scattering chamber (SAXS) for dynamic studies of nucleation and growth and a surface scattering chamber. 5 figs
International Nuclear Information System (INIS)
Schwenk-Ferrero, A.
1986-11-01
GANTRAS is a system of codes for neutron transport calculations in which the anisotropy of elastic and inelastic (including (n,n'x)-reactions) scattering is fully taken into account. This is achieved by employing a rigorous method, so-called I * -method, to represent the scattering term of the transport equation and with the use of double-differential cross-sections for the description of the emission of secondary neutrons. The I * -method was incorporated into the conventional transport code ONETRAN. The ONETRAN subroutines were modified for the new purpose. An implementation of the updated version ANTRA1 was accomplished for plane and spherical geometry. ANTRA1 was included in GANTRAS and linked to another modules which prepare angle-dependent transfer matrices. The GANTRAS code consists of three modules: 1. The CROMIX code which calculates the macroscopic transfer matrices for mixtures on the base of microscopic nuclide-dependent data. 2. The ATP code which generates discretized angular transfer probabilities (i.e. discretizes the I * -function). 3. The ANTRA1 code to perform S N transport calculations in one-dimensional plane and spherical geometries. This structure of GANTRAS allows to accommodate the system to various transport problems. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Monsefi, Farid [Division of Applied Mathematics, The School of Education, Culture and Communication, Mälardalen University, MDH, Västerås, Sweden and School of Innovation, Design and Engineering, IDT, Mälardalen University, MDH Väs (Sweden); Carlsson, Linus; Silvestrov, Sergei [Division of Applied Mathematics, The School of Education, Culture and Communication, Mälardalen University, MDH, Västerås (Sweden); Rančić, Milica [Division of Applied Mathematics, The School of Education, Culture and Communication, Mälardalen University, MDH, Västerås, Sweden and Department of Theoretical Electrical Engineering, Faculty of Electronic Engineering, University (Serbia); Otterskog, Magnus [School of Innovation, Design and Engineering, IDT, Mälardalen University, MDH Västerås (Sweden)
2014-12-10
To solve the electromagnetic scattering problem in two dimensions, the Finite Difference Time Domain (FDTD) method is used. The order of convergence of the FDTD algorithm, solving the two-dimensional Maxwell’s curl equations, is estimated in two different computer implementations: with and without an obstacle in the numerical domain of the FDTD scheme. This constitutes an electromagnetic scattering problem where a lumped sinusoidal current source, as a source of electromagnetic radiation, is included inside the boundary. Confined within the boundary, a specific kind of Absorbing Boundary Condition (ABC) is chosen and the outside of the boundary is in form of a Perfect Electric Conducting (PEC) surface. Inserted in the computer implementation, a semi-norm has been applied to compare different step sizes in the FDTD scheme. First, the domain of the problem is chosen to be the free-space without any obstacles. In the second part of the computer implementations, a PEC surface is included as the obstacle. The numerical instability of the algorithms can be rather easily avoided with respect to the Courant stability condition, which is frequently used in applying the general FDTD algorithm.
International Nuclear Information System (INIS)
Monsefi, Farid; Carlsson, Linus; Silvestrov, Sergei; Rančić, Milica; Otterskog, Magnus
2014-01-01
To solve the electromagnetic scattering problem in two dimensions, the Finite Difference Time Domain (FDTD) method is used. The order of convergence of the FDTD algorithm, solving the two-dimensional Maxwell’s curl equations, is estimated in two different computer implementations: with and without an obstacle in the numerical domain of the FDTD scheme. This constitutes an electromagnetic scattering problem where a lumped sinusoidal current source, as a source of electromagnetic radiation, is included inside the boundary. Confined within the boundary, a specific kind of Absorbing Boundary Condition (ABC) is chosen and the outside of the boundary is in form of a Perfect Electric Conducting (PEC) surface. Inserted in the computer implementation, a semi-norm has been applied to compare different step sizes in the FDTD scheme. First, the domain of the problem is chosen to be the free-space without any obstacles. In the second part of the computer implementations, a PEC surface is included as the obstacle. The numerical instability of the algorithms can be rather easily avoided with respect to the Courant stability condition, which is frequently used in applying the general FDTD algorithm
International Nuclear Information System (INIS)
Sitenko, A.
1991-01-01
This book emerged out of graduate lectures given by the author at the University of Kiev and is intended as a graduate text. The fundamentals of non-relativistic quantum scattering theory are covered, including some topics, such as the phase-function formalism, separable potentials, and inverse scattering, which are not always coverded in textbooks on scattering theory. Criticisms of the text are minor, but the reviewer feels an inadequate index is provided and the citing of references in the Russian language is a hindrance in a graduate text
Energy Technology Data Exchange (ETDEWEB)
Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)
2014-05-28
We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.
Virtual neutron scattering experiments
DEFF Research Database (Denmark)
Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael
2016-01-01
We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...
Electron scattering off nuclei
International Nuclear Information System (INIS)
Gattone, A.O.
1989-01-01
Two recently developed aspects related to the scattering of electrons off nuclei are presented. On the one hand, a model is introduced which emphasizes the relativistic aspects of the problem in the impulse approximation, by demanding strict maintenance of the algebra of the Poincare group. On the other hand, the second model aims at a more sophisticated description of the nuclear response in the case of collective excitations. Basically, it utilizes the RPA formalism with a new development which enables a more careful treatment of the states in the continuum as is the case for the giant resonances. Applications of both models to the description of elastic scattering, inelastic scattering to discrete levels, giant resonances and the quasi-elastic region are discussed. (Author) [es
International Nuclear Information System (INIS)
Stirling, W.G.; Perry, S.C.
1996-01-01
We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO 3 is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs
Wang, Yan; Tominaga, Yasunori
1994-02-01
Low-frequency depolarized Raman spectra of aqueous solutions of D-glucose and D-galactose have been investigated in the frequency region from -250 cm-1 to 250 cm-1 at 30.0 °C as a function of concentration up to 0.04 molar ratio. The dynamical structure of water in aqueous solution is analyzed by using the reduced Raman spectrum χ`(ν¯), which corresponds to the imaginary part of the dynamical susceptibility. The reduced spectrum is fitted with the superposition of one Cole-Cole type relaxation mode and two damped harmonic oscillator modes by a nonlinear least-squares fitting. The effects of D-glucose and D-galactose on the dynamical structure of water in aqueous solution are similar. The relaxation time of hydrogen bond among water molecules becomes slower with increasing sugar concentration. The characteristic frequencies of stretching-like and bending-like vibrations among water molecules do not change in both D-glucose and D-galactose aqueous solutions.
Volakis, John L.
1991-01-01
There are two tasks described in this report. First, an extension of a two dimensional formulation is presented for a three dimensional body of revolution. A Fourier series expansion of the vector electric and magnetic fields is employed to reduce the dimensionality of the system, and an exact boundary condition is employed to terminate the mesh. The mesh termination boundary is chosen such that it leads to convolutional boundary operators for low O(n) memory demand. Second, rigorous uniform geometrical theory of diffraction (UTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. Ray solutions are obtained which remain valid in the transition region and reduce uniformly those in the deep lit and shadow regions. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder.
Semiclassical scattering theory
International Nuclear Information System (INIS)
Di Salvo, A.
1985-01-01
It is intended to write the semiclassical scattering amplitude as a sum of terms, each of them being associated to trajectory. First of all the classical equations of motion are studied, considering both the analytical (real and complex) solutions and a certain type of singular solutions, which behave similary to the difracted rays in optics; in particular, in the case of a central nuclear potential, classical effects like rainbow and orbiting and also wave effects like diffraction and direct reflection are singled out. Successively, considering the Debye expansion of the scattering amplitude relative to a central nuclear potential, and evaluating asymptotically each term by means of the saddle point technique, the decay exponents and difraction coefficients relative to such a potential are determined
International Nuclear Information System (INIS)
Perreur, Christelle; Habas, Jean-Pierre; Francois, Jeanne; Peyrelasse, Jean; Lapp, Alain
2002-01-01
The organization of Tetronic 908 registered (T908), a star copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) blocks, has been examined. Above critical conditions of temperature and concentration, the micelles formed by the aggregation of PPO units self-organize into particular structures. While small-angle neutron scattering (SANS) characterizations performed with static conditions demonstrate the organization of the medium, the experimental results do not allow us to make a distinction between simple cubic and body-centered-cubic structures. However, SANS measurements realized under shear produce characteristic diffraction diagrams. In this paper, an accurate methodology is proposed to identify, without ambiguity, the exact nature of the organized phase. Applied to our system, indexing of the diffraction pattern spots reveals that the organization of T908 is of bcc type oriented with the [111] direction parallel to the direction of flow, but the crystals can present any orientation about this direction. The lattice size has been estimated and compared to previous published results
Li, Na; Li, Xiuhong; Wang, Yuzhu; Liu, Guangfeng; Zhou, Ping; Wu, Hongjin; Hong, Chunxia; Bian, Fenggang; Zhang, Rongguang
2016-10-01
The beamline BL19U2 is located in the Shanghai Synchrotron Radiation Facility (SSRF) and is its first beamline dedicated to biological material small-angle X-ray scattering (BioSAXS). The electrons come from an undulator which can provide high brilliance for the BL19U2 end stations. A double flat silicon crystal (111) monochromator is used in BL19U2, with a tunable monochromatic photon energy ranging from 7 to 15 keV. To meet the rapidly growing demands of crystallographers, biochemists and structural biologists, the BioSAXS beamline allows manual and automatic sample loading/unloading. A Pilatus 1M detector (Dectris) is employed for data collection, characterized by a high dynamic range and a short readout time. The highly automated data processing pipeline SASFLOW was integrated into BL19U2, with help from the BioSAXS group of the European Molecular Biology Laboratory (EMBL, Hamburg), which provides a user-friendly interface for data processing. The BL19U2 beamline was officially opened to users in March 2015. To date, feedback from users has been positive and the number of experimental proposals at BL19U2 is increasing. A description of the new BioSAXS beamline and the setup characteristics is given, together with examples of data obtained.
Paolantoni, Marco; Sassi, Paola; Morresi, Assunta; Santini, Sergio
2007-07-01
The effect of glucose on the relaxation process of water at picosecond time scales has been investigated by depolarized Rayleigh scattering (DRS) experiments. The process is assigned to the fast hydrogen bonding dynamics of the water network. In DRS spectra this contribution can be safely separated from the slower relaxation process due to the sugar. The detected relaxation time is studied at different glucose concentrations and modeled considering bulk and hydrating water contributions. As a result, it is found that in diluted conditions the hydrogen bond lifetime of proximal water molecules becomes about three times slower than that of the bulk. The effect of the sugar on the hydrogen bond water structure is investigated by analyzing the low-frequency Raman (LFR) spectrum sensitive to intermolecular modes. The addition of glucose strongly reduces the intensity of the band at 170cm-1 assigned to a collective stretching mode of water molecules arranged in cooperative tetrahedral domains. These findings indicate that proximal water molecules partially lose the tetrahedral ordering typical of the bulk leading to the formation of high density environments around the sugar. Thus the glucose imposes a new local order among water molecules localized in its hydration shell in which the hydrogen bond breaking dynamics is sensitively retarded. This work provides new experimental evidences that support recent molecular dynamics simulation and thermodynamics results.
Energy Technology Data Exchange (ETDEWEB)
Bluet, J C [Commissariat a l' Energie Atomique, Cadarache (France)
1966-02-01
Three problems of multiple scattering arising from neutron cross sections experiments, are reported here. The common hypothesis are: - Elastic scattering is the only possible process - Angular distributions are isotropic - Losses of particle energy are negligible in successive collisions. In the three cases practical results, corresponding to actual experiments are given. Moreover the results are shown in more general way, using dimensionless variable such as the ratio of geometrical dimensions to neutron mean free path. The FORTRAN codes are given together with to the corresponding flow charts, and lexicons of symbols. First problem: Measurement of sodium capture cross-section. A sodium sample of given geometry is submitted to a neutron flux. Induced activity is then measured by means of a sodium iodide cristal. The distribution of active nuclei in the sample, and the counter efficiency are calculated by Monte-Carlo method taking multiple scattering into account. Second problem: absolute measurement of a neutron flux using a glass scintillator. The scintillator is a use of lithium 6 loaded glass, submitted to neutron flux perpendicular to its plane faces. If the glass thickness is not negligible compared with scattering mean free path {lambda}, the mean path e' of neutrons in the glass is different from the thickness. Monte-Carlo calculation are made to compute this path and a relative correction to efficiency equal to (e' - e)/e. Third problem: study of a neutron collimator. A neutron detector is placed at the bottom of a cylinder surrounded with water. A neutron source is placed on the cylinder axis, in front of the water shield. The number of neutron tracks going directly and indirectly through the water from the source to the detector are counted. (author) [French] On traite dans ce rapport de trois problemes avec les hypotheses communes suivantes: 1.- Le seul processus de collision possible est la diffusion electrique. 2.- La distribution angulaire est
International Nuclear Information System (INIS)
Dimitrievska, Mirjana; Xie, Haibing; Fairbrother, Andrew; Fontané, Xavier; Saucedo, Edgardo; Izquierdo-Roca, Victor; Gurieva, Galina; 2UB, Departament d'Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona (Spain))" data-affiliation=" (Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); IN2UB, Departament d'Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona (Spain))" >Pérez-Rodríguez, Alejandro; Schorr, Susan
2014-01-01
In this work, Raman spectroscopy and X-ray diffraction were applied together to evaluate the crystal structure and the phonon modes of photovoltaic grade Cu 2 ZnSn(S x Se 1−x ) 4 thin films, leading to a complete characterization of their structural and vibrational properties. Vibrational characterization has been based on Raman scattering measurements performed with different excitation wavelengths and polarization configurations. Analysis of the experimental spectra has permitted identification of 19 peaks, which positions are in good accord with theoretical predictions. Besides, the observation of Cu 2 ZnSnS 4 -like A symmetry peaks related to S vibrations and Cu 2 ZnSnSe 4 -like A symmetry peaks related to Se vibrations, additional Raman peaks, characteristic of the solid solution and previously not reported, are observed, and are attributed to vibrations involving both S and Se anions.
Energy Technology Data Exchange (ETDEWEB)
Wang, Peng [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Hudak, Michael R.; Lerner, Allan [Earth and Environmental Sciences Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Grubbs, Robert K. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); Wang, Shanmin [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Zhang, Zhan; Karapetrova, Evguenia [Advance Photon Source, Argonne National Laboratory, 9700S Cass Ave, Argonne, IL 60439 (United States); Hickmott, Donald [Earth and Environmental Sciences Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Majewski, Jaroslaw, E-mail: jarek@lanl.gov [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)
2014-08-28
Carbonates are one of the most abundant groups of minerals in earth systems and are important in many geological settings and industrial processes. Calcite (CaCO{sub 3}) thin films produced by atomic layer deposition offer a method to evaluate the surficial properties of carbonates as well as interactions at the carbonate–fluid interface. Using synchrotron X-ray reflectivity and X-ray diffraction, these films are observed to be porous, polycrystalline, and have crystallites oriented with the major (104) calcite cleavage plane parallel to the surface of the z-cut single crystal quartz substrate. An Al{sub 2}O{sub 3} buffer layer, present between quartz and the calcite film, does not affect the as-deposited film, but does influence how the films reorganize in contact with fluid. Without a buffer layer, calcite reorients its crystallites to have populations of (006) and (030) parallel to the substrate, while those with an Al{sub 2}O{sub 3} buffer layer become more amorphous. Amorphous films may represent an analog to amorphous calcium carbonate and provide insights into that material's thermophysical behavior. Due to a higher percentage of pore spaces available for fluid infiltration, films deposited at higher temperature make the calcite thin films more susceptible to amorphization. These films are chemically similar, but structurally dissimilar to bulk natural calcite. Nevertheless, they can be a complementary system to traditional single crystal X-ray surface scattering studies on carbonates, particularly for important but less common minerals, to evaluate mineral–fluid interfacial interactions. - Highlights: • Atomic layer deposition (ALD) used to produce calcite films. • Calcite film orientation and crystallinity depend on ALD parameters. • ALD calcite films can be both crystalline and amorphous. • Interaction of water with films can re-orient or amorphize the films. • ALD calcite films may be useful to study carbonate–fluid interfacial
International Nuclear Information System (INIS)
Wang, Peng; Hudak, Michael R.; Lerner, Allan; Grubbs, Robert K.; Wang, Shanmin; Zhang, Zhan; Karapetrova, Evguenia; Hickmott, Donald; Majewski, Jaroslaw
2014-01-01
Carbonates are one of the most abundant groups of minerals in earth systems and are important in many geological settings and industrial processes. Calcite (CaCO 3 ) thin films produced by atomic layer deposition offer a method to evaluate the surficial properties of carbonates as well as interactions at the carbonate–fluid interface. Using synchrotron X-ray reflectivity and X-ray diffraction, these films are observed to be porous, polycrystalline, and have crystallites oriented with the major (104) calcite cleavage plane parallel to the surface of the z-cut single crystal quartz substrate. An Al 2 O 3 buffer layer, present between quartz and the calcite film, does not affect the as-deposited film, but does influence how the films reorganize in contact with fluid. Without a buffer layer, calcite reorients its crystallites to have populations of (006) and (030) parallel to the substrate, while those with an Al 2 O 3 buffer layer become more amorphous. Amorphous films may represent an analog to amorphous calcium carbonate and provide insights into that material's thermophysical behavior. Due to a higher percentage of pore spaces available for fluid infiltration, films deposited at higher temperature make the calcite thin films more susceptible to amorphization. These films are chemically similar, but structurally dissimilar to bulk natural calcite. Nevertheless, they can be a complementary system to traditional single crystal X-ray surface scattering studies on carbonates, particularly for important but less common minerals, to evaluate mineral–fluid interfacial interactions. - Highlights: • Atomic layer deposition (ALD) used to produce calcite films. • Calcite film orientation and crystallinity depend on ALD parameters. • ALD calcite films can be both crystalline and amorphous. • Interaction of water with films can re-orient or amorphize the films. • ALD calcite films may be useful to study carbonate–fluid interfacial interactions
International Nuclear Information System (INIS)
Botto, D.J.; Pratt, R.H.
1979-05-01
The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A -2 based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required
Energy Technology Data Exchange (ETDEWEB)
Botto, D.J.; Pratt, R.H.
1979-05-01
The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A/sup -2/ based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required.
Integration rules for scattering equations
International Nuclear Information System (INIS)
Baadsgaard, Christian; Bjerrum-Bohr, N.E.J.; Bourjaily, Jacob L.; Damgaard, Poul H.
2015-01-01
As described by Cachazo, He and Yuan, scattering amplitudes in many quantum field theories can be represented as integrals that are fully localized on solutions to the so-called scattering equations. Because the number of solutions to the scattering equations grows quite rapidly, the contour of integration involves contributions from many isolated components. In this paper, we provide a simple, combinatorial rule that immediately provides the result of integration against the scattering equation constraints for any Möbius-invariant integrand involving only simple poles. These rules have a simple diagrammatic interpretation that makes the evaluation of any such integrand immediate. Finally, we explain how these rules are related to the computation of amplitudes in the field theory limit of string theory.
International Nuclear Information System (INIS)
Dimitrievska, Mirjana; Gurieva, Galina; Xie, Haibing; Carrete, Alex; Cabot, Andreu; Saucedo, Edgardo; 2UB, Departament d’Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona (Spain))" data-affiliation=" (Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); IN2UB, Departament d’Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona (Spain))" >Pérez-Rodríguez, Alejandro
2015-01-01
Highlights: • An optical method for the quantitative measurement of [S]/([S] + [Se]) in CZTSSe is presented. • It is based on Raman spectroscopy and covers whole S–Se range of compositions. • The proposed method is independent of crystal quality, experimental conditions and type of material. • The validity of the technique is proven by comparison with independent composition measurements (XRD and EQE). • Test of the method on the data published in the literature has given satisfactory results. - Abstract: A simple and non destructive optical methodology for the quantitative measurement of [S]/([S] + [Se]) anion composition in kesterite Cu 2 ZnSn(S x Se 1−x ) 4 (CZTSSe) solid solutions by means of Raman spectroscopy in the whole S–Se range of compositions has been developed. This methodology is based on the dependence of the integral intensity ratio of Raman bands sensitive to anion vibrations with the [S]/([S] + [Se]) composition of the kesterite solid solutions. The calibration of the parameters used in this analysis involved the synthesis of a set of CZTSSe powders by solid state reaction method, spanning the range from pure Cu 2 ZnSnS 4 to pure Cu 2 ZnSnSe 4 . The validity of the methodology has been tested on different sets of independent samples, including also non-stoichiometric device grade CZTSSe layers with different compositions and films that were synthesized by solution based processes with different crystalline quality. In all cases, the comparison of the results obtained from the analysis of the intensity of the Raman bands with independent composition measurements performed by different techniques as X-ray diffraction and external quantum efficiency has confirmed the satisfactory performance of the developed methodology for the quantitative analysis of these compounds, independently on the crystal quality or the method of synthesis. Further strong support on the methodology performance has been obtained from the analysis of a wider
DEFF Research Database (Denmark)
Weissbuch, I.; Buller, R.; Kjær, K.
2002-01-01
The advent of intense X-rays from synchrotron sources made possible to probe, at the molecular level, the structural aspects of self-assemblies generated at interfaces. Here we present the two-dimensional (2-D) packing arrangements of two-, three- and multi-component organo-metallic self......-assemblies formed via interfacial reaction at the air-aqueous solution interface, as determined by grazing incidence X-ray diffraction (GIRD) and X-ray specular reflectivity techniques. GIXD yields structural information on the crystalline part of the Langmuir film, including the ions and counterions lateral order...... of metal ions bound to the polar head groups of amphipilic molecules; use of bolaamphiphiles to generate oriented thin films with metal ions arranged in periodic layers; delineation of differences in the lateral organization of metal ions at interfaces as induced by racemates and enantiomerically pure...
DEFF Research Database (Denmark)
Sjøberg, B.; Mortensen, K.
1997-01-01
Carlo simulation, to study salt-free solutions of human serum albumin (HSA) in the concentration range up to 0.26 g ml(-1). The model calculations of the theoretical SANS intensities are quite general, thus avoiding the approximation that the relative positions and orientations of the particles......-shaped potential which is spherically oriented around the particles. The combination of SANS and statistical thermodynamics also allows a determination of the nonideal part of the chemical potential and the activity coefficient of HSA. As expected the activity coefficient deviates strongly from the value one...
Support for cold neutron utilization
International Nuclear Information System (INIS)
Lee, Kye Hong; Han, Young Soo; Choi, Sungmin; Choi, Yong; Kwon, Hoon; Lee, Kwang Hee
2012-06-01
- Support for experiments by users of cold neutron scattering instrument - Short-term training of current and potential users of cold neutron scattering instrument for their effective use of the instrument - International collaboration for advanced utilization of cold neutron scattering instruments - Selection and training of qualified instrument scientists for vigorous research endeavors and outstanding achievements in experiments with cold neutron - Research on nano/bio materials using cold neutron scattering instruments - Bulk nano structure measurement using small angle neutron scattering and development of analysis technique
Directory of Open Access Journals (Sweden)
Robert de Mello Koch
2017-05-01
Full Text Available We study the worldsheet S-matrix of a string attached to a D-brane in AdS5×S5. The D-brane is either a giant graviton or a dual giant graviton. In the gauge theory, the operators we consider belong to the su(2|3 sector of the theory. Magnon excitations of open strings can exhibit both elastic (when magnons in the bulk of the string scatter and inelastic (when magnons at the endpoint of an open string participate scattering. Both of these S-matrices are determined (up to an overall phase by the su(2|22 global symmetry of the theory. In this note we study the S-matrix for inelastic scattering. We show that it exhibits poles corresponding to boundstates of bulk and boundary magnons. A crossing equation is derived for the overall phase. It reproduces the crossing equation for maximal giant gravitons, in the appropriate limit. Finally, scattering in the su(2 sector is computed to two loops. This two loop result, which determines the overall phase to two loops, will be useful when a unique solution to the crossing equation is to be selected.
International Nuclear Information System (INIS)
Leader, Elliot
1991-01-01
With very few unexplained results to challenge conventional ideas, physicists have to look hard to search for gaps in understanding. An area of physics which offers a lot more than meets the eye is elastic and diffractive scattering where particles either 'bounce' off each other, emerging unscathed, or just graze past, emerging relatively unscathed. The 'Blois' workshops provide a regular focus for this unspectacular, but compelling physics, attracting highly motivated devotees
International Nuclear Information System (INIS)
1991-02-01
The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research
Friedrich, Harald
2016-01-01
This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...
Geometric Design of Scalable Forward Scatterers for Optimally Efficient Solar Transformers.
Kim, Hye-Na; Vahidinia, Sanaz; Holt, Amanda L; Sweeney, Alison M; Yang, Shu
2017-11-01
It will be ideal to deliver equal, optimally efficient "doses" of sunlight to all cells in a photobioreactor system, while simultaneously utilizing the entire solar resource. Backed by the numerical scattering simulation and optimization, here, the design, synthesis, and characterization of the synthetic iridocytes that recapitulated the salient forward-scattering behavior of the Tridacnid clam system are reported, which presents the first geometric solution to allow narrow, precise forward redistribution of flux, utilizing the solar resource at the maximum quantum efficiency possible in living cells. The synthetic iridocytes are composed of silica nanoparticles in microspheres embedded in gelatin, both are low refractive index materials and inexpensive. They show wavelength selectivity, have little loss (the back-scattering intensity is reduced to less than ≈0.01% of the forward-scattered intensity), and narrow forward scattering cone similar to giant clams. Moreover, by comparing experiments and theoretical calculation, it is confirmed that the nonuniformity of the scatter sizes is a "feature not a bug" of the design, allowing for efficient, forward redistribution of solar flux in a micrometer-scaled paradigm. This method is environmentally benign, inexpensive, and scalable to produce optical components that will find uses in efficiency-limited solar conversion technologies, heat sinks, and biofuel production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dynamic light scattering. Observation of polymer dynamics
International Nuclear Information System (INIS)
Hiroi, Takashi
2015-01-01
Dynamic light scattering is a technique to measure properties of polymer solutions such as size distribution. Principle of dynamic light scattering is briefly explained. Sometime dynamic light scattering is regarded as the observation of Doppler shift of scattered light. First, the difficulty for the direct observation of this Doppler shift is mentioned. Then the measurement by using a time correlation function is introduced. Measuring techniques for dynamic light scattering are also introduced. In addition to homodyne and heterodyne detection techniques, the technique called partial heterodyne method is also introduced. This technique is useful for the analysis of nonergodic medium such as polymer gels. Then the application of this technique to condensed suspension is briefly reviewed. As one of the examples, a dynamic light scattering microscope is introduced. By using this apparatus, we can measure the concentration dependence of the size distribution of polymer solutions. (author)
De Wolf, E.A.
2002-01-01
We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken-x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wusthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed.
International Nuclear Information System (INIS)
Wolf, E.A. de
2002-01-01
We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken - x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wuesthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed. (author)
Controlled light scattering in transparent polycrystalline ferroelectrics
International Nuclear Information System (INIS)
Vasilevskaya, A.S.; Grodnenskij, I.M.; Sonin, A.S.
1977-01-01
Scattering indicatrices, birefringence, attenuation factor and time characteristics of the light scattering effect have been investigated in a polycrystal solid solution of Pbsub(0.92)Lasub(0.08)(Zrsub(0.65)Tisub(0.35))Osub(3) with the crystallite dimension 4-5 μm. The measurements have been taken for longitudinal and transverse scattering effects in the visible range of spectrum in the temperature range 20-200 deg C. The time characteristics of the scattering effect have been found to be significantly different when a sample transfers from a thermally depolarized state to an electrically polarized one and from an electrically polarized state to an electrically depolarized one. The shape of the scattering indicatrices depends on the polarization state of a sample. The distribution of the scattered light intensity in the part of the indicatrix characterizing the fundamental scattering is satisfactorily described by the Rayleigh-Hans theory. The diameter of scattering centres responsible for the scattering has been determined to be 6-7 μm. The experimental data show that there are different types of scattering centres, in the material. The fundamental scattering is caused by centres arising irreversibly during initial polarization of the sample. The second type of centres is responsible for the controlled part of scattering during repolarization
Expected utility without utility
Castagnoli, E.; Licalzi, M.
1996-01-01
This paper advances an interpretation of Von Neumann–Morgenstern’s expected utility model for preferences over lotteries which does not require the notion of a cardinal utility over prizes and can be phrased entirely in the language of probability. According to it, the expected utility of a lottery can be read as the probability that this lottery outperforms another given independent lottery. The implications of this interpretation for some topics and models in decision theory are considered....
Induced Compton scattering effects in radiation transport approximations
International Nuclear Information System (INIS)
Gibson, D.R. Jr.
1982-01-01
In this thesis the method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions
Induced Compton-scattering effects in radiation-transport approximations
International Nuclear Information System (INIS)
Gibson, D.R. Jr.
1982-02-01
The method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions
Raut, Ashlesha S; Kalonia, Devendra S
2015-04-01
Opalescence indicates physical instability of a formulation because of the presence of aggregates or liquid-liquid phase separation in solution and has been reported for monoclonal antibody (mAb) formulations. Increased solution opalescence can be attributed to attractive protein-protein interactions (PPIs). Techniques including light scattering, AUC, or membrane osmometry are routinely employed to measure PPIs in dilute solutions, whereas opalescence is seen at relatively higher concentrations, where both long- and short-range forces contribute to overall PPIs. The mAb molecule studied here shows a unique property of high opalescence because of liquid-liquid phase separation. In this study, opalescence measurements are correlated to PPIs measured in diluted and concentrated solutions using light scattering (kD ) and high-frequency rheology (G'), respectively. Charges on the molecules were calculated using zeta potential measurements. Results indicate that high opalescence and phase separation are a result of the attractive interactions in solution; however, the presence of attractive interactions do not always imply phase separation. Temperature dependence of opalescence suggests that thermodynamic contribution to opalescence is significant and Tcloud can be utilized as a potential tool to assess attractive interactions in solution. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Using phase for radar scatterer classification
Moore, Linda J.; Rigling, Brian D.; Penno, Robert P.; Zelnio, Edmund G.
2017-04-01
Traditional synthetic aperture radar (SAR) systems tend to discard phase information of formed complex radar imagery prior to automatic target recognition (ATR). This practice has historically been driven by available hardware storage, processing capabilities, and data link capacity. Recent advances in high performance computing (HPC) have enabled extremely dense storage and processing solutions. Therefore, previous motives for discarding radar phase information in ATR applications have been mitigated. First, we characterize the value of phase in one-dimensional (1-D) radar range profiles with respect to the ability to correctly estimate target features, which are currently employed in ATR algorithms for target discrimination. These features correspond to physical characteristics of targets through radio frequency (RF) scattering phenomenology. Physics-based electromagnetic scattering models developed from the geometrical theory of diffraction are utilized for the information analysis presented here. Information is quantified by the error of target parameter estimates from noisy radar signals when phase is either retained or discarded. Operating conditions (OCs) of signal-tonoise ratio (SNR) and bandwidth are considered. Second, we investigate the value of phase in 1-D radar returns with respect to the ability to correctly classify canonical targets. Classification performance is evaluated via logistic regression for three targets (sphere, plate, tophat). Phase information is demonstrated to improve radar target classification rates, particularly at low SNRs and low bandwidths.
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2012-01-01
The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
DEFF Research Database (Denmark)
Haldrup, Martin Kristoffer; Harlang, Tobias; Christensen, Morten
2011-01-01
Ground- and excited-state structures of the bimetallic, ligand-bridged compound Ir2(dimen)42+ are investigated in acetonitrile by means of time-resolved X-ray scattering. Following excitation by 2 ps laser pulses at 390 nm, analysis of difference scattering patterns obtained at eight different ti...
Mark A. Dietenberger; Charles R. Boardman
2014-01-01
Several years ago the Laplace transform solutions of Luikovâs differential equations were presented for one-dimensional heat and moisture transfer in porous hydroscopic orthotropic materials for the boundary condition of a gradual heat pulse applied to both surfaces of a flat slab. This paper presents calibration methods and data for the K-tester 637 (Lasercomp),...
Directory of Open Access Journals (Sweden)
Zurriyatun Solihah
2017-02-01
Full Text Available ABSTRACT The purpose of this research is to know whether the use of Biomol and Tea Compost solution fermented by Trichoderma spp. can increase the growth and development of soybean plants in dry land. The experiment was conducted in the field and was arranged according to a Split Plot Design with the main plot is Tea Compost Solution with 4 levels of treatment, i.e. at the rate of 0, 5, 10, or 15 liters/plot and the subplot is Biomol solution with 4 levels of treatment, i.e. 0, 5, 10, or 15 liters/plot. The treatments were repeated three times. The results showed that the use of the Biomol at the rate of 15 liters/plot and Tea Compost at the of 15 liters/plot can increase the growth and development of soybean plants mainly on plant height. In addition, Biomol and Tea Compost solution applied to soybean can increase the weight of the wet and the dry berangkasan Keywords: Biomol, Tea Compost, Soybean, Trichoderma spp.
Quantum scattering theory on the momentum lattice
International Nuclear Information System (INIS)
Rubtsova, O. A.; Pomerantsev, V. N.; Kukulin, V. I.
2009-01-01
A new approach based on the wave-packet continuum discretization method recently developed by the present authors for solving quantum-mechanical scattering problems for atomic and nuclear scattering processes and few-body physics is described. The formalism uses the complete continuum discretization scheme in terms of the momentum stationary wave-packet basis, which leads to formulation of the scattering problem on a lattice in the momentum space. The solution of the few-body scattering problem can be found in the approach from linear matrix equations with nonsingular matrix elements, averaged on energy over lattice cells. The developed approach is illustrated by the solution of numerous two- and three-body scattering problems with local and nonlocal potentials below and well above the three-body breakup threshold.
Energy Technology Data Exchange (ETDEWEB)
Gonzalez Vanderhaghen, D E
1999-12-31
In a search for solutions to environmental pollution problems, radiolysis has proved to be an innovative technique for the removal of organic chemical pollutants in aqueous solution. Radiolysis has shown many advantages over many other techniques, as highly reactive species formed in water by ionizing radiation oxidize organic pollutants breaking down organic molecules to final simple products by oxidation to carbon dioxide and water in a complete oxidation. Our work consisted in doing some experiments in radiolysis with simulated polluted water to help us understand this technique and also develop, in a near future, a project for large scale water treatment. Our project includes the application of a Pelletron type Mexican made Electron Accelerator, which will affirm its capability and usefulness in performing investigation in this field of study. Experiments consisted in treating benzene, toluene and phenol aqueous solutions with an Electron Beam (0.48-0.55 MeV; 24 {mu}A). Two concentrations were used for each compound: 5 and 20 ppm (mg/l) for benzene and toluene; 10 and 50 ppm for phenol. Solutions were prepared with pure, mineral free water and two different p H (5.9), in order to study the effect of concentration and p H on removal efficiency, but avoiding the interference of radical scavengers. Results obtained coincide with the ones reported by Cooper, Nickelsen and Kurucz; highly efficient removal was achieved for benzene (>99.8%), toluene (>98.0%) and phenol (>88%). There was no visible important effect of p H on radiolysis efficiency for benzene nor toluene, phenol however, showed lower removal efficiency in acidic conditions. Concentration of aqueous solutions, nevertheless, did show an important effect at low doses for phenol. Results obtained reveal the importance of this technique in water pollution control and water remedial as expressed by Cooper, Nickelsen and Kurucz, who have studied radiolysis of organic compounds and apply this technique in water
Energy Technology Data Exchange (ETDEWEB)
Gonzalez Vanderhaghen, D.E
1998-12-31
In a search for solutions to environmental pollution problems, radiolysis has proved to be an innovative technique for the removal of organic chemical pollutants in aqueous solution. Radiolysis has shown many advantages over many other techniques, as highly reactive species formed in water by ionizing radiation oxidize organic pollutants breaking down organic molecules to final simple products by oxidation to carbon dioxide and water in a complete oxidation. Our work consisted in doing some experiments in radiolysis with simulated polluted water to help us understand this technique and also develop, in a near future, a project for large scale water treatment. Our project includes the application of a Pelletron type Mexican made Electron Accelerator, which will affirm its capability and usefulness in performing investigation in this field of study. Experiments consisted in treating benzene, toluene and phenol aqueous solutions with an Electron Beam (0.48-0.55 MeV; 24 {mu}A). Two concentrations were used for each compound: 5 and 20 ppm (mg/l) for benzene and toluene; 10 and 50 ppm for phenol. Solutions were prepared with pure, mineral free water and two different p H (5.9), in order to study the effect of concentration and p H on removal efficiency, but avoiding the interference of radical scavengers. Results obtained coincide with the ones reported by Cooper, Nickelsen and Kurucz; highly efficient removal was achieved for benzene (>99.8%), toluene (>98.0%) and phenol (>88%). There was no visible important effect of p H on radiolysis efficiency for benzene nor toluene, phenol however, showed lower removal efficiency in acidic conditions. Concentration of aqueous solutions, nevertheless, did show an important effect at low doses for phenol. Results obtained reveal the importance of this technique in water pollution control and water remedial as expressed by Cooper, Nickelsen and Kurucz, who have studied radiolysis of organic compounds and apply this technique in water
Scattering angle-based filtering via extension in velocity
Kazei, Vladimir; Tessmer, Ekkehart; Alkhalifah, Tariq
2016-01-01
The scattering angle between the source and receiver wavefields can be utilized in full-waveform inversion (FWI) and in reverse-time migration (RTM) for regularization and quality control or to remove low frequency artifacts. The access to the scattering angle information is costly as the relation between local image features and scattering angles has non-stationary nature. For the purpose of a more efficient scattering angle information extraction, we develop techniques that utilize the simplicity of the scattering angle based filters for constantvelocity background models. We split the background velocity model into several domains with different velocity ranges, generating an
Scattering angle-based filtering via extension in velocity
Kazei, Vladimir
2016-09-06
The scattering angle between the source and receiver wavefields can be utilized in full-waveform inversion (FWI) and in reverse-time migration (RTM) for regularization and quality control or to remove low frequency artifacts. The access to the scattering angle information is costly as the relation between local image features and scattering angles has non-stationary nature. For the purpose of a more efficient scattering angle information extraction, we develop techniques that utilize the simplicity of the scattering angle based filters for constantvelocity background models. We split the background velocity model into several domains with different velocity ranges, generating an
Bidirectional optical scattering facility
Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...
International Nuclear Information System (INIS)
Pabby, Anil K.; Sonawane, J.V.; Rathore, N.S.; Gupta, S.K.; Roy, S.C.; Venugopalan, A.K.; Chagrani, R.D.; Dey, P.K.; Prabhakar, S.; Tiwari, P.K.
2004-01-01
Reverse osmosis is a well-developed technology. The systems have been used in industrial settings for many years with applications to separation, concentration of product streams and waste water treatment. The technology has been used for removal of the radionuclides from low-level liquid wastes, such as waste streams at nuclear power plants. Because reverse osmosis rejects nearly all contaminants from a solution the high purity product water may be recycled within the power plant, or is usually of such low activity that it is suitable for discharge to the environment. This technology will help in achieving ALARA concept which will be beneficial for the environment. In the present study, the removal of alpha and beta activities from delay tank solution is planned
SCATTERING FROM RAMIFIED POLYMERIC SYSTEMS
Directory of Open Access Journals (Sweden)
M.Benhamou
2004-01-01
Full Text Available Here, of great interest to us is a quantitative study of the scattering properties from ramified polymeric systems of arbitrary topology. We consider three types of systems, namely ramified polymers in solution, ramified polymer blends, or ternary mixtures made of two ramified polymers of different chemical nature immersed in a good solvent. To achieve the goal of the study, use is made of the Random Phase Approximation. First we determine the exact expression of the form factor of an ideal ramified polymer of any topology, from which we extract the exact expression of its gyration radius. Using the classical Zimm's formulae and the exact form factor, we determine all scattering properties of these three types of ramified polymeric systems. The main conclusion is that ramification of the chains induces drastic changes of the scattering properties.
Energy Technology Data Exchange (ETDEWEB)
Koch, M.; Baier, D. [Lehrstuhl fuer Marketing und Innovationsmanagement und BTU Cottbus (Germany)
2003-04-07
E-Business-applications for internal and external business processes are an often dealt subject. In opposition to that the implementation of E-Business-Systems at the interface to the many private customers are taken only few notice. Even though the implementation requires additional investments utilities could save considerable costs. (orig.) [German] Die Unterstuetzung der internen und externen Geschaeftsprozesse durch E-Business-Systeme ist eine aufgrund ihrer Bedeutung oft behandelte Thematik. Weitgehend unbeachtet blieb bisher der Einsatz von E-Business-Systemen an der Schnittstelle zu den vielen Privatkunden. Trotz zusaetzlich notwendiger Investitionen lassen sich gerade an dieser Stelle hohe Kosten sparen. (orig.)
Ambiguity assessment of small-angle scattering curves from monodisperse systems.
Petoukhov, Maxim V; Svergun, Dmitri I
2015-05-01
A novel approach is presented for an a priori assessment of the ambiguity associated with spherically averaged single-particle scattering. The approach is of broad interest to the structural biology community, allowing the rapid and model-independent assessment of the inherent non-uniqueness of three-dimensional shape reconstruction from scattering experiments on solutions of biological macromolecules. One-dimensional scattering curves recorded from monodisperse systems are nowadays routinely utilized to generate low-resolution particle shapes, but the potential ambiguity of such reconstructions remains a major issue. At present, the (non)uniqueness can only be assessed by a posteriori comparison and averaging of repetitive Monte Carlo-based shape-determination runs. The new a priori ambiguity measure is based on the number of distinct shape categories compatible with a given data set. For this purpose, a comprehensive library of over 14,000 shape topologies has been generated containing up to seven beads closely packed on a hexagonal grid. The computed scattering curves rescaled to keep only the shape topology rather than the overall size information provide a `scattering map' of this set of shapes. For a given scattering data set, one rapidly obtains the number of neighbours in the map and the associated shape topologies such that in addition to providing a quantitative ambiguity measure the algorithm may also serve as an alternative shape-analysis tool. The approach has been validated in model calculations on geometrical bodies and its usefulness is further demonstrated on a number of experimental X-ray scattering data sets from proteins in solution. A quantitative ambiguity score (a-score) is introduced to provide immediate and convenient guidance to the user on the uniqueness of the ab initio shape reconstruction from the given data set.
Aguiar, Julio C; Galiano, Eduardo; Arenillas, Pablo
2005-08-01
The activity concentration of a (238)Pu solution was measured by the determined solid angle method employing a novel dual diaphragm-detector assembly, which has been previously described. Due to the special requirements of the detector, a new type of source holder was developed, which consisted of sandwiching the radioisotope between two organic films called VYNS. It was experimentally demonstrated that the VYNS films do not absorb alpha particles, but reduce their energy by an average of 22 keV.A mean activity concentration for (238)Pu of 359.10+/-0.8 kBq/g was measured.
Energy Technology Data Exchange (ETDEWEB)
Aguiar, Julio C. [Departamento de Postgrado, Universidad Tecnologica Nacional, Buenos Aires (Argentina); Galiano, Eduardo [Departament of Physics, Laurentian University, Sudbury, Ont. P3E 2C6 (Canada)]. E-mail: egalianoriveros@laurentian.ca; Arenillas, Pablo [Comision Nacional de Energia Atomica, CAE, Laboratorio de Metrologia de Radioisotopos, Buenos Aires (Argentina)
2005-08-01
The activity concentration of a {sup 238}Pu solution was measured by the determined solid angle method employing a novel dual diaphragm-detector assembly, which has been previously described. Due to the special requirements of the detector, a new type of source holder was developed, which consisted of sandwiching the radioisotope between two organic films called VYNS. It was experimentally demonstrated that the VYNS films do not absorb {alpha} particles, but reduce their energy by an average of 22keV.A mean activity concentration for {sup 238}Pu of 359.10+/-0.8kBq/g was measured.
International Nuclear Information System (INIS)
Aguiar, Julio C.; Galiano, Eduardo; Arenillas, Pablo
2005-01-01
The activity concentration of a 238 Pu solution was measured by the determined solid angle method employing a novel dual diaphragm-detector assembly, which has been previously described. Due to the special requirements of the detector, a new type of source holder was developed, which consisted of sandwiching the radioisotope between two organic films called VYNS. It was experimentally demonstrated that the VYNS films do not absorb α particles, but reduce their energy by an average of 22keV.A mean activity concentration for 238 Pu of 359.10+/-0.8kBq/g was measured
Sakata, Yoshihisa; Hayashi, Takuya; Yasunaga, Ryō; Yanaga, Nobuyuki; Imamura, Hayao
2015-08-21
Remarkably high photocatalytic activity for the overall H2O splitting, where the activity was 32 mmol h(-1) for H2 production and 16 mmol h(-1) for O2 production under irradiation from a 450 W high-pressure Hg lamp and the apparent quantum yield (AQY) was 71% under irradiation at 254 nm, was achieved by utilizing a Rh(0.5)Cr(1.5)O3(Rh; 0.5 wt%)/Zn(3 mol%)-Ga2O3 photocatalyst when Ga2O3 was prepared using dilute CaCl2 aqueous solution having a concentration of 0.001 mol l(-1).
International Nuclear Information System (INIS)
Shimizu, Hiroshi; Mizuuchi, Noboru; Yokoyama, Fumio.
1967-01-01
Alkyl iodides and mixtures of iodine and alkyl iodides are removed from a gas phase and an aquous solution phase by using solely an anion exchange resin containing a tertiary amine or together with an anion exchange resin containing quarternary ammonium compound. The resin containing the quarternary ammonium compound is employed mainly to remove iodine, and the resin containing the tertiary amine serves mainly to remove alkyl iodides. The method can be applied to collecting a majority of the methyl iodide as well as the radioactive iodine produced in the atmosphere of a reactor in case of a fuel accident. In embodiments, it is desirable to maintain the sufficient moisture content of the anion exchange resins at a sufficient moisture level so as not to reduce the migration speed of the iodine and alkyl iodides. The iodine and alkyl iodide can be produced with high efficiency and stability independently of the relative humidity of the gas phase. In examples, a solution which consists of 20.5 mg/l of iodine and 42.2mg/l of methyl iodide flew through a column of Amberite IRA-93 alone or blended with IRA-900 at a speed of 15 /hr. respectively. The resins were able to treat 400 times their equivalent in water. (Iwakiri, K.)
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner [eds.
2010-07-01
The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2013-01-01
The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
Scattering Correction For Image Reconstruction In Flash Radiography
International Nuclear Information System (INIS)
Cao, Liangzhi; Wang, Mengqi; Wu, Hongchun; Liu, Zhouyu; Cheng, Yuxiong; Zhang, Hongbo
2013-01-01
Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency
Scattering Correction For Image Reconstruction In Flash Radiography
Energy Technology Data Exchange (ETDEWEB)
Cao, Liangzhi; Wang, Mengqi; Wu, Hongchun; Liu, Zhouyu; Cheng, Yuxiong; Zhang, Hongbo [Xi' an Jiaotong Univ., Xi' an (China)
2013-08-15
Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency.
Proteins in solution: Fractal surfaces in solutions
Directory of Open Access Journals (Sweden)
R. Tscheliessnig
2016-02-01
Full Text Available The concept of the surface of a protein in solution, as well of the interface between protein and 'bulk solution', is introduced. The experimental technique of small angle X-ray and neutron scattering is introduced and described briefly. Molecular dynamics simulation, as an appropriate computational tool for studying the hydration shell of proteins, is also discussed. The concept of protein surfaces with fractal dimensions is elaborated. We finish by exposing an experimental (using small angle X-ray scattering and a computer simulation case study, which are meant as demonstrations of the possibilities we have at hand for investigating the delicate interfaces that connect (and divide protein molecules and the neighboring electrolyte solution.
International Nuclear Information System (INIS)
Pan, X.F.; Yan, G.; Qi, M.; Cui, L.J.; Chen, Y.L.; Zhao, Y.; Li, C.S.; Liu, X.H.; Feng, Y.; Zhang, P.X.; Liu, H.J.
2014-01-01
Highlights: • This paper reported superconducting properties of the powder-in-tube Nb 3 Al wires. • The Nb 3 Al wires were made by using Nb(Al) ss supersaturated solid solution powders. • The Cu-matrix Nb 3 Al superconducting wires have been successfully fabricated. • The transport J c of Nb 3 Al wires at 4.2 K, 10 T is up to 12,700 A/cm 2 . - Abstract: High-performance Nb 3 Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb 3 Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb 3 Al superconducting wires, which were made by using the mechanically alloyed Nb(Al) ss supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb 3 Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb 2 Al and Nb impurities still keep being existence at present work. At the Nb 3 Al with a nominal 26 at.% Al content, the onset T c reaches 15.8 K. Furthermore, a series of Nb 3 Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J c at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm 2 , respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb 3 Al superconducting wires by directly using the Nb(Al) ss supersaturated solid-solution without the complex RHQT heat-treatment process
Energy Technology Data Exchange (ETDEWEB)
Pan, X.F. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Yan, G., E-mail: gyan@c-nin.com [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Qi, M. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Cui, L.J. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Chen, Y.L.; Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Li, C.S. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Liu, X.H. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Feng, Y.; Zhang, P.X. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Liu, H.J. [Institute of Plasma Physics, Chinese Academy of Sciences (CAS), Hefei 230031 (China); and others
2014-07-15
Highlights: • This paper reported superconducting properties of the powder-in-tube Nb{sub 3}Al wires. • The Nb{sub 3}Al wires were made by using Nb(Al){sub ss} supersaturated solid solution powders. • The Cu-matrix Nb{sub 3}Al superconducting wires have been successfully fabricated. • The transport J{sub c} of Nb{sub 3}Al wires at 4.2 K, 10 T is up to 12,700 A/cm{sup 2}. - Abstract: High-performance Nb{sub 3}Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb{sub 3}Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb{sub 3}Al superconducting wires, which were made by using the mechanically alloyed Nb(Al){sub ss} supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb{sub 3}Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb{sub 2}Al and Nb impurities still keep being existence at present work. At the Nb{sub 3}Al with a nominal 26 at.% Al content, the onset T{sub c} reaches 15.8 K. Furthermore, a series of Nb{sub 3}Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J{sub c} at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm{sup 2}, respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb{sub 3}Al superconducting wires by directly using the Nb(Al){sub ss} supersaturated solid-solution without the complex RHQT heat-treatment process.
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
Determination of the scattering amplitude
International Nuclear Information System (INIS)
Gangal, A.D.; Kupsch, J.
1984-01-01
The problem to determine the elastic scattering amplitude from the differential cross-section by the unitarity equation is reexamined. We prove that the solution is unique and can be determined by a convergent iteration if the parameter lambda=sin μ of Newton and Martin is bounded by lambda 2 approx.=0.86. The method is based on a fixed point theorem for holomorphic mappings in a complex Banach space. (orig.)
Resonant Impulsive Stimulated Raman Scattering
Energy Technology Data Exchange (ETDEWEB)
Mokhtari, A; Chesnoy, J
1988-03-15
Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution.
Resonant Impulsive Stimulated Raman Scattering
International Nuclear Information System (INIS)
Mokhtari, A.; Chesnoy, J.
1988-01-01
Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution
International Nuclear Information System (INIS)
M'Malla
1976-01-01
Within the frame of a study of ion preferential solvation in hydro-organic media, the author reports some measurements of ionic conductivities of the Na + ion in mixtures of different proportions of water and THF (tetrahydrofuran), and more specifically the use of a recently developed method of transport number measurement. The author explains the general definition of the transport number, recalls usual measurement methods (Hittorf method, moving boundary method), describes the method principle, the measurement process, reports the assessment of corrective terms in the calculation of the transport number, and presents and comments the obtained results. A second part addresses the influence of activity coefficient gradient on the couple scattering and self-scattering phenomenon: self-scattering measurement with a tracer, theoretical aspects of coupled scattering, experimental results and discussion
Haltrin, V I
1998-06-20
A self-consistent variant of the two-flow approximation that takes into account strong anisotropy of light scattering in seawater of finite depth and arbitrary turbidity is presented. To achieve an appropriate accuracy, this approach uses experimental dependencies between downward and total mean cosines. It calculates irradiances, diffuse attenuation coefficients, and diffuse reflectances in waters with arbitrary values of scattering, backscattering, and attenuation coefficients. It also takes into account arbitrary conditions of illumination and reflection from the bottom with the Lambertian albedo. This theory can be used for the calculation of apparent optical properties in both open and coastal oceanic waters, lakes, and rivers. It can also be applied to other types of absorbing and scattering medium such as paints, photographic emulsions, and biological tissues.
Merged Real Time GNSS Solutions for the READI System
Santillan, V. M.; Geng, J.
2014-12-01
Real-time measurements from increasingly dense Global Navigational Satellite Systems (GNSS) networks located throughout the western US offer a substantial, albeit largely untapped, contribution towards the mitigation of seismic and other natural hazards. Analyzed continuously in real-time, currently over 600 instruments blanket the San Andreas and Cascadia fault systems of the North American plate boundary and can provide on-the-fly characterization of transient ground displacements highly complementary to traditional seismic strong-motion monitoring. However, the utility of GNSS systems depends on their resolution, and merged solutions of two or more independent estimation strategies have been shown to offer lower scatter and higher resolution. Towards this end, independent real time GNSS solutions produced by Scripps Inst. of Oceanography and Central Washington University (PANGA) are now being formally combined in pursuit of NASA's Real-Time Earthquake Analysis for Disaster Mitigation (READI) positioning goals. CWU produces precise point positioning (PPP) solutions while SIO produces ambiguity resolved PPP solutions (PPP-AR). The PPP-AR solutions have a ~5 mm RMS scatter in the horizontal and ~10mm in the vertical, however PPP-AR solutions can take tens of minutes to re-converge in case of data gaps. The PPP solutions produced by CWU use pre-cleaned data in which biases are estimated as non-integer ambiguities prior to formal positioning with GIPSY 6.2 using a real time stream editor developed at CWU. These solutions show ~20mm RMS scatter in the horizontal and ~50mm RMS scatter in the vertical but re-converge within 2 min. or less following cycle-slips or data outages. We have implemented the formal combination of the CWU and SCRIPPS ENU displacements using the independent solutions as input measurements to a simple 3-element state Kalman filter plus white noise. We are now merging solutions from 90 stations, including 30 in Cascadia, 39 in the Bay Area, and 21
Lé tourneau, Pierre-David; Wu, Ying; Papanicolaou, George; Garnier, Josselin; Darve, Eric
2016-01-01
We present a wideband fast algorithm capable of accurately computing the full numerical solution of the problem of acoustic scattering of waves by multiple finite-sized bodies such as spherical scatterers in three dimensions. By full solution, we
Double hard scattering without double counting
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gaunt, Jonathan R. [VU Univ. Amsterdam (Netherlands). NIKHEF Theory Group; Schoenwald, Kay [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2017-02-15
Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.
Diffraction scattering of strongly bound system
International Nuclear Information System (INIS)
Kuzmichev, V.E.
1982-04-01
The scattering of a hadron on a strongly bound system of two hadrons (dihadron) is considered in the high-energy limit for the relative hadron-dihadron motion. The dihadron scatterer motion and the internal interaction are included in our consideration. It is shown that only small values of the internal transfer momentum of dihadron particles bring the principal contribution to the three-particle propagator in eikonal approximation. On the basis of the exact analytical solution of the integral equation for the total Green function the scattering amplitude is derived. It is shown that the scattering amplitude contains only single, double, and triple scattering terms. The three new terms to the Glauber formula for the total cross section are obtained. These terms decrease both the true total hadron-hadron cross section and the screening correction. (orig.)
Double hard scattering without double counting
International Nuclear Information System (INIS)
Diehl, Markus; Gaunt, Jonathan R.
2017-02-01
Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.
Ikefuji, M.; Laeven, R.J.A.; Magnus, J.R.; Muris, C.H.M.
2013-01-01
In searching for an appropriate utility function in the expected utility framework, we formulate four properties that we want the utility function to satisfy. We conduct a search for such a function, and we identify Pareto utility as a function satisfying all four desired properties. Pareto utility
Roles of scattered radiation in SRIXE
International Nuclear Information System (INIS)
Hanson, A.L.
1988-01-01
The scattering of x-rays is the major source of background and hence is a limiting factor in the minimum detectable limits available with SRIXE measurements. The scattering can be utilized for normalizing the net peak areas to fluctuations in sample thickness or mass on a relative basis or on a comparative basis. Even then measurement of the scattered x-rays should be made at backward angles. Measurement at forward angles should be avoided because of diffraction problems. The uncertainties in the measurement of an absolute intensity of the x-rays can be extremely large
Scattering and multiple scattering in disordered materials
International Nuclear Information System (INIS)
Weaver, R.L.; Butler, W.H.
1992-01-01
The papers in this section were presented at a joint session of symposium V on Applications of Multiple Scattering Theory and of Symposium P on Disordered Systems. They show that the ideas of scattering theory can help us to understand a very broad class of phenomena
Techniques in high pressure neutron scattering
Klotz, Stefan
2013-01-01
Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea
Scattering phase functions of horizontally oriented hexagonal ice crystals
International Nuclear Information System (INIS)
Chen Guang; Yang Ping; Kattawar, George W.; Mishchenko, Michael I.
2006-01-01
Finite-difference time domain (FDTD) solutions are first compared with the corresponding T-matrix results for light scattering by circular cylinders with specific orientations. The FDTD method is then utilized to study the scattering properties of horizontally oriented hexagonal ice plates at two wavelengths, 0.55 and 12 μm. The phase functions of horizontally oriented ice plates deviate substantially from their counterparts obtained for randomly oriented particles. Furthermore, we compute the phase functions of horizontally oriented ice crystal columns by using the FDTD method along with two schemes for averaging over the particle orientations. It is shown that the phase functions of hexagonal ice columns with horizontal orientations are not sensitive to the rotation about the principal axes of the particles. Moreover, hexagonal ice crystals and circular cylindrical ice particles have similar optical properties, particularly, at a strongly absorbing wavelength, if the two particle geometries have the same length and aspect ratio defined as the ratio of the radius or semi-width of the cross section of a particle to its length. The phase functions for the two particle geometries are slightly different in the case of weakly absorbing plates with large aspect ratios. However, the solutions for circular cylinders agree well with their counterparts for hexagonal columns
Wave scattering by an axisymmetric ice floe of varying thickness
Bennetts, Luke G.; Biggs, Nicholas R. T.; Porter, David
2009-04-01
The problem of water wave scattering by a circular ice floe, floating in fluid of finite depth, is formulated and solved numerically. Unlike previous investigations of such situations, here we allow the thickness of the floe (and the fluid depth) to vary axisymmetrically and also incorporate a realistic non-zero draught. A numerical approximation to the solution of this problem is obtained to an arbitrary degree of accuracy by combining a Rayleigh-Ritz approximation of the vertical motion with an appropriate variational principle. This numerical solution procedure builds upon the work of Bennets et al. (2007, J. Fluid Mech., 579, 413-443). As part of the numerical formulation, we utilize a Fourier cosine expansion of the azimuthal motion, resulting in a system of ordinary differential equations to solve in the radial coordinate for each azimuthal mode. The displayed results concentrate on the response of the floe rather than the scattered wave field and show that the effects of introducing the new features of varying floe thickness and a realistic draught are significant.
Neutron scattering from fractals
DEFF Research Database (Denmark)
Kjems, Jørgen; Freltoft, T.; Richter, D.
1986-01-01
The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent small...
Scatter from optical components
International Nuclear Information System (INIS)
Stover, J.C.
1989-01-01
This book is covered under the following topics: measurement and analysis techniques; BRDF standards, comparisons, and anomalies; scatter measurement of several materials; scatter from contaminations; and optical system contamination: effects, measurement, and control
International Nuclear Information System (INIS)
Aftanas, B.L.
1996-01-01
This Functional Design Criteria (FDC) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage
International Nuclear Information System (INIS)
Niebaum, A.; Jaeger, P.
2005-01-01
With the examples of biogas system concepts from practical agriculture, farmers, consultants, representatives of authorities and all those interested in biogas are shown successful and proved solutions concepts of generating energy from biogas. The project included agricultural enterprises with biogas systems who have implemented a biologically and technically efficient biomass utilization, who have optimized their operations by means of the biogas system, who have integrated their biogas system in their operational concept and who were able to harmonize the objectives of using a biogas system with the environment and the regional specificities
Applications of thermal neutron scattering in biology, biochemistry and biophysics
International Nuclear Information System (INIS)
Worcester, D.L.
1977-01-01
Biological applications of thermal neutron scattering have increased rapidly in recent years. The following categories of biological research with thermal neutron scattering are presently identified: crystallography of biological molecules; neutron small-angle scattering of biological molecules in solution (these studies have already included numerous measurements of proteins, lippoproteins, viruses, ribosomal subunits and chromatin subunit particles); neutron small-angle diffraction and scattering from biological membranes and membrane components; and neutron quasielastic and inelastic scattering studies of the dynamic properties of biological molecules and materials. (author)
Electron scattering from tetrahydrofuran
International Nuclear Information System (INIS)
Fuss, M C; Sanz, A G; García, G; Muñoz, A; Oller, J C; Blanco, F; Do, T P T; Brunger, M J; Almeida, D; Limão-Vieira, P
2012-01-01
Electron scattering from Tetrahydrofuran (C 4 H 8 O) was investigated over a wide range of energies. Following a mixed experimental and theoretical approach, total scattering, elastic scattering and ionization cross sections as well as electron energy loss distributions were obtained.
International Nuclear Information System (INIS)
Doll, P.
1990-02-01
Neutron-proton scattering as fundamental interaction process below and above hundred MeV is discussed. Quark model inspired interactions and phenomenological potential models are described. The seminar also indicates the experimental improvements for achieving new precise scattering data. Concluding remarks indicate the relevance of nucleon-nucleon scattering results to finite nuclei. (orig.) [de
Home Page | Facilities | Reference | Software | Conferences | Announcements | Mailing Lists Neutron Scattering Banner Neutron Scattering Software A new portal for neutron scattering has just been established sets KUPLOT: data plotting and fitting software ILL/TAS: Matlab probrams for analyzing triple axis data
International Nuclear Information System (INIS)
Lovesey, S.W.
1987-05-01
The report reviews, at an introductory level, the theory of photon scattering from condensed matter. Magnetic scattering, which arises from first-order relativistic corrections to the Thomson scattering amplitude, is treated in detail and related to the corresponding interaction in the magnetic neutron diffraction amplitude. (author)
Roessli, B.; Böni, P.
2000-01-01
The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.
DISCUS, Neutron Single to Double Scattering Ratio in Inelastic Scattering Experiment by Monte-Carlo
International Nuclear Information System (INIS)
Johnson, M.W.
1993-01-01
1 - Description of problem or function: DISCUS calculates the ratio of once-scattered to twice-scattered neutrons detected in an inelastic neutron scattering experiment. DISCUS also calculates the flux of once-scattered neutrons that would have been observed if there were no absorption in the sample and if, once scattered, the neutron would emerge without further re-scattering or absorption. Three types of sample geometry are used: an infinite flat plate, a finite flat plate or a finite length cylinder. (The infinite flat plate is included for comparison with other multiple scattering programs.) The program may be used for any sample for which the scattering law is of the form S(/Q/, omega). 2 - Method of solution: Monte Carlo with importance sampling is used. Neutrons are 'forced' both into useful angular trajectories, and useful energy bins. Biasing of the collision point according to the point of entry of the neutron into the sample is also utilised. The first and second order scattered neutron fluxes are calculated in independent histories. For twice-scattered neutron histories a square distribution in Q-omega space is used to sample the neutron coming from the first scattering event, whilst biasing is used for the second scattering event. (A square distribution is used so as to obtain reasonable inelastic-inelastic statistics.) 3 - Restrictions on the complexity of the problem: Unlimited number of detectors. Max. size of (Q, omega) matrix is 39*149. Max. number of points in momentum space for the scattering cross section is 199
Laser light scattering in Brownian medium
International Nuclear Information System (INIS)
Suwono; Santoso, Budi; Baiquni, A.
1983-01-01
The principle of laser light scattering in Brownian medium and photon correlation spectroscopy are described in detail. Their application to the study of the behaviour of a polystyrene latex solution are discussed. The auto-correlation function of light scattered by the polystyrene latex solution in various angle, various temperature and in various sample times, have been measured. Information on the translation diffusion coefficient and size on the particle can be obtained from the auto-correlation function. Good agreement between the available data and experiment is shown. (author)
Czech Academy of Sciences Publication Activity Database
Matějíček, P.; Štěpánek, M.; Uchman, M.; Procházka, K.; Špírková, Milena
2006-01-01
Roč. 71, č. 5 (2006), s. 723-738 ISSN 0010-0765 R&D Projects: GA ČR GA203/04/0490; GA AV ČR IAA400500505 Grant - others:Marie Curie Research and Training Network(XE) 505 027 POLYAMPHI Institutional research plan: CEZ:AV0Z40500505 Keywords : atomic force microscopy * light scattering * polymer micelles Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.881, year: 2006
Direct numerical reconstruction of conductivities in three dimensions using scattering transforms
DEFF Research Database (Denmark)
Bikowski, Jutta; Knudsen, Kim; Mueller, Jennifer L
2011-01-01
A direct three-dimensional EIT reconstruction algorithm based on complex geometrical optics solutions and a nonlinear scattering transform is presented and implemented for spherically symmetric conductivity distributions. The scattering transform is computed both with a Born approximation and from...
Periodic instantons and scattering amplitudes
International Nuclear Information System (INIS)
Khlebnikov, S.Yu.; Rubakov, V.A.; Tinyakov, P.G.
1991-04-01
We discuss the role of periodic euclidean solutions with two turning points and zero winding number (periodic instantons) in instanton induced processes below the sphaleron energy E sph . We find that the periodic instantons describe certain multiparticle scattering events leading to the transitions between topologically distinct vacua. Both the semiclassical amplitudes and inital and final states of these transitions are determined by the periodic instantons. Furthermore, the corresponding probabilities are maximal among all states of given energy. We show that at E ≤ E sph , the periodic instantons can be approximated by infinite chains of ordinary instantons and anti-instantons, and they naturally emerge as deformations of the zero energy instanton. In the framework of 2d abelian Higgs model and 4d electroweak theory we show, however, that there is not obvious relation between periodic instantons and two-particle scattering amplitudes. (orig.)
Laser propagation and compton scattering in parabolic plasma channel
Dongguo, L; Yokoya, K; Hirose, T
2003-01-01
A Gaussian laser beam propagating in a parabolic plasma channel is discussed in this paper. For a weak laser, plasma density perturbation induced by interaction between the laser field and plasma is very small, the refractive index can be assumed to be constant with respect to time variable. For a parabolic plasma channel, through the static propagation equation, we obtain an analytical solution of the profile function of the Gaussian laser beam for an unmatched case and give the general condition for the matched case. As the laser intensity increases, an effect due to strong laser fields is included. We discuss how to design and select the distribution of plasma density for a certain experiment in which a plasma channel is utilized to guide a laser beam. The number of scattered photons (X-rays) generated through Compton backscattering in a plasma channel is discussed. (author)
A direct sampling method for inverse electromagnetic medium scattering
Ito, Kazufumi
2013-09-01
In this paper, we study the inverse electromagnetic medium scattering problem of estimating the support and shape of medium scatterers from scattered electric/magnetic near-field data. We shall develop a novel direct sampling method based on an analysis of electromagnetic scattering and the behavior of the fundamental solution. It is applicable to a few incident fields and needs only to compute inner products of the measured scattered field with the fundamental solutions located at sampling points. Hence, it is strictly direct, computationally very efficient and highly robust to the presence of data noise. Two- and three-dimensional numerical experiments indicate that it can provide reliable support estimates for multiple scatterers in the case of both exact and highly noisy data. © 2013 IOP Publishing Ltd.
Absorption in multiple scattering systems of coated spheres: design applications
International Nuclear Information System (INIS)
Stout, Brian; Andraud, Christine; Stout, Sophie; Lafait, Jacques
2003-01-01
We illustrate the utility of some recently derived transfer matrix methods for electromagnetic scattering calculations in systems composed of coated spherical scatterers. Any of the spherical coatings, cores, or host media may be composed of absorbing materials. Our formulae permit the calculation of local absorption in either orientation fixed or orientation averaged situations. We introduce methods for estimating the macroscopic transport properties of such media, and show how our scattering calculations can permit 'design' optimization of macroscopic properties
Excess noise in Lidar Thomson scattering methods
International Nuclear Information System (INIS)
Smith, R J; Drake, L A P; Lestz, J B
2012-01-01
Fundamental detection limits for the Lidar Thomson scattering technique and in particular pulsed polarimetry are presented for the first time for the long wavelength limit of incoherent Thomson scattering. Pulsed polarimetry generalizes Lidar Thomson scattering to include local magnetic field sensing. The implication for these techniques is explored for two experimental regimes where shot limited detection no longer applies: tokamaks of ITER size and cm-size wire Z pinch plasmas of High Energy Density (HED) science. The utility and importance of developing Lidar Thomson scattering at longer wavelengths for the magnetic fusion program is illustrated by a study of sightline (local) polarimetry measurements on a 15MA ITER scenario. Polarimetric measurements in the far infrared regime are shown to reach sensitivities that are instructive and useful but with a complex behaviour that make spatially resolved measurements all but mandatory.
Rayleigh scattering from ions near threshold
International Nuclear Information System (INIS)
Roy, S.C.; Gupta, S.K.S.; Kissel, L.; Pratt, R.H.
1988-01-01
Theoretical studies of Rayleigh scattering of photons from neon atoms with different degrees of ionization, for energies both below and above the K-edges of the ions, are presented. Some unexpected structures both in Rayleigh scattering and in photoionization from neutral and weakly ionized atoms, very close to threshold, have been reported. It has recently been realized that some of the predicted structures may have a nonphysical origin and are due to the limitation of the independent-particle model and also to the use of a Coulombic Latter tail. Use of a K-shell vacancy potential - in which an electron is assumed to be removed from the K-shell - in calculating K-shell Rayleigh scattering amplitudes removes some of the structure effects near threshold. We present in this work a discussion of scattering angular distributions and total cross sections, obtained utilizing vacancy potentials, and compare these predictions with those previously obtained in other potential model. (author) [pt
Do Cloaked Objects Really Scatter Less?
Directory of Open Access Journals (Sweden)
Francesco Monticone
2013-10-01
Full Text Available We discuss the global scattering response of invisibility cloaks over the entire electromagnetic spectrum, from static to very high frequencies. Based on linearity, causality, and energy conservation, we show that the total extinction and scattering, integrated over all wavelengths, of any linear, passive, causal, and nondiamagnetic cloak, necessarily increase compared to the uncloaked case. In light of this general principle, we provide a quantitative measure to compare the global performance of different cloaking techniques and we discuss solutions to minimize the global scattering signature of an object using thin, superconducting shells. Our results provide important physical insights on how invisibility cloaks operate and affect the global scattering of an object, suggesting ways to defeat countermeasures aimed at detecting cloaked objects using short impinging pulses.
Regularization of the Coulomb scattering problem
International Nuclear Information System (INIS)
Baryshevskii, V.G.; Feranchuk, I.D.; Kats, P.B.
2004-01-01
The exact solution of the Schroedinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the 'optical' theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers
Rutkevich, Sergei B; Diehl, H W
2015-06-01
The O(n) ϕ(4) model on a strip bounded by a pair of planar free surfaces at separation L can be solved exactly in the large-n limit in terms of the eigenvalues and eigenfunctions of a self-consistent one-dimensional Schrödinger equation. The scaling limit of a continuum version of this model is considered. It is shown that the self-consistent potential can be eliminated in favor of scattering data by means of appropriately extended methods of inverse scattering theory. The scattering data (Jost function) associated with the self-consistent potential are determined for the L=∞ semi-infinite case in the scaling regime for all values of the temperature scaling field t=(T-T(c))/T(c) above and below the bulk critical temperature T(c). These results are used in conjunction with semiclassical and boundary-operator expansions and a trace formula to derive exact analytical results for a number of quantities such as two-point functions, universal amplitudes of two excess surface quantities, the universal amplitude difference associated with the thermal singularity of the surface free energy, and potential coefficients. The asymptotic behaviors of the scaled eigenenergies and eigenfunctions of the self-consistent Schrödinger equation as function of x=t(L/ξ(+))(1/ν) are determined for x→-∞. In addition, the asymptotic x→-∞ forms of the universal finite-size scaling functions Θ(x) and ϑ(x) of the residual free energy and the Casimir force are computed exactly to order 1/x, including their x(-1)ln|x| anomalies.
Interference scattering effects on intermediate resonance absorption at operating temperatures
International Nuclear Information System (INIS)
Goldstein, R.
1975-01-01
Resonance integrals may be accurately calculated using the intermediate resonance (IR) approximation. Results are summarized for the case of an absorber with given potential scattering cross sections and interference scattering parameter admixed with a non absorbing moderator of given cross section and located in a narrow resonance moderating medium. From the form of the IR solutions, it is possible to make some general observations about effects of interference scattering on resonance absorption. 2 figures
Ten year's activity in the field of neutron scattering workshop
International Nuclear Information System (INIS)
Hamaguchi, Yoshikazu
2003-01-01
'Neutron scattering' is in the frame of the 'Utilization of Research Reactor's of the FNCA (Forum for Nuclear Cooperation in Asia) project, which held the workshops from FY 1992. This report is a summary of the results and activities of neutron scattering workshops and sub-workshops since the start in FY 1992. (author)
Progress in small angle neutron scattering activities in Malaysia
Energy Technology Data Exchange (ETDEWEB)
Mohamed, Abudl Aziz Bin [Industrial Technology Division, Malaysian Institute for Nuclear Technology Research (MINT) (Indonesia)
2000-10-01
Research activities by use of small angle neutron scattering in Malaysia are briefly reported. Scattered neutron data are displayed in two or three-dimensional isometric view by the data acquisition system. Visual Basic is utilized for data acquisition and MathCad for data processing and analyses. (Y. Kazumata)
Progress in small angle neutron scattering activities in Malaysia
International Nuclear Information System (INIS)
Mohamed, Abudl Aziz Bin
2000-01-01
Research activities by use of small angle neutron scattering in Malaysia are briefly reported. Scattered neutron data are displayed in two or three-dimensional isometric view by the data acquisition system. Visual Basic is utilized for data acquisition and MathCad for data processing and analyses. (Y. Kazumata)
Polarized neutron inelastic scattering experiments on spin dynamics
International Nuclear Information System (INIS)
Kakurai, Kazuhisa
2016-01-01
The principles of polarized neutron scattering are introduced and examples of polarized neutron inelastic scattering experiments on spin dynamics investigation are presented. These examples should demonstrate the importance of the polarized neutron utilization for the investigation of non-trivial magnetic ground and excited states in frustrated and low dimensional quantum spin systems. (author)
Acoustic scattering by multiple elliptical cylinders using collocation multipole method
International Nuclear Information System (INIS)
Lee, Wei-Ming
2012-01-01
This paper presents the collocation multipole method for the acoustic scattering induced by multiple elliptical cylinders subjected to an incident plane sound wave. To satisfy the Helmholtz equation in the elliptical coordinate system, the scattered acoustic field is formulated in terms of angular and radial Mathieu functions which also satisfy the radiation condition at infinity. The sound-soft or sound-hard boundary condition is satisfied by uniformly collocating points on the boundaries. For the sound-hard or Neumann conditions, the normal derivative of the acoustic pressure is determined by using the appropriate directional derivative without requiring the addition theorem of Mathieu functions. By truncating the multipole expansion, a finite linear algebraic system is derived and the scattered field can then be determined according to the given incident acoustic wave. Once the total field is calculated as the sum of the incident field and the scattered field, the near field acoustic pressure along the scatterers and the far field scattering pattern can be determined. For the acoustic scattering of one elliptical cylinder, the proposed results match well with the analytical solutions. The proposed scattered fields induced by two and three elliptical–cylindrical scatterers are critically compared with those provided by the boundary element method to validate the present method. Finally, the effects of the convexity of an elliptical scatterer, the separation between scatterers and the incident wave number and angle on the acoustic scattering are investigated.
Introduction to the theory of thermal neutron scattering
Squires, G L
2012-01-01
Since the advent of the nuclear reactor, thermal neutron scattering has proved a valuable tool for studying many properties of solids and liquids, and research workers are active in the field at reactor centres and universities throughout the world. This classic text provides the basic quantum theory of thermal neutron scattering and applies the concepts to scattering by crystals, liquids and magnetic systems. Other topics discussed are the relation of the scattering to correlation functions in the scattering system, the dynamical theory of scattering and polarisation analysis. No previous knowledge of the theory of thermal neutron scattering is assumed, but basic knowledge of quantum mechanics and solid state physics is required. The book is intended for experimenters rather than theoreticians, and the discussion is kept as informal as possible. A number of examples, with worked solutions, are included as an aid to the understanding of the text.
Scattering with polarized neutrons
International Nuclear Information System (INIS)
Schweizer, J.
2007-01-01
In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)
Finite-difference modelling of anisotropic wave scattering in discrete ...
Indian Academy of Sciences (India)
A M Ekanem
2018-04-05
Apr 5, 2018 ... scattering characteristics in fractured media and thus, validate the practical utility of using anisotropic .... to fluid flow. ... account the porosity of the host rock and assumes .... The free surface boundary conditions generally.
Chetia, Tridip Ranjan; Barpuzary, Dipankar; Qureshi, Mohammad
2014-05-28
A combination of 3-dimensional (3D) hollow mesoporous ZnO microspheres (ZnO HMSP) and vertically grown one-dimensional ZnO nanowires (1D ZnO NWs) on a fluorine doped tin oxide (FTO) coated glass substrate has been investigated as a photoanode for a CdS quantum dot-sensitized solar cell (QSSC). A comparative study of the photovoltaic performance of the solar cell with devices fabricated with pristine ZnO HMSPs and ZnO NWs was carried out. The proposed photovoltaic device exhibits an enhancement in power conversion efficiency (PCE) upto ∼74% and ∼35%, as compared to the 1D ZnO NW and ZnO HMSP based solar cells. The maximum incident photon-to-current conversion efficiency (IPCE) for the solar cell was observed to be ∼40%, whereas for the devices fabricated with bare ZnO HMSP and ZnO NW the IPCE were only ∼32% and ∼19%, respectively. The enhanced photovoltaic performance of the solar cell is attributed to the high Brunauer-Emmett-Teller (BET) surface area, efficient light-scattering effects and facilitated diffusion of the electrolyte for better functioning of the redox couple (S(2-)/Sn(2-)) in the hybrid photoanode. Moreover, a faster electron transport through 1D ZnO NWs provides better charge collection from the photoactive layer, which leads to an increase in the short circuit current density of the device. The present study highlights the design and development of a new hybrid photoanode for solar harvesting.
Neutron scattering and magnetism
International Nuclear Information System (INIS)
Mackintosh, A.R.
1983-01-01
Those properties of the neutron which make it a unique tool for the study of magnetism are described. The scattering of neutrons by magnetic solids is briefly reviewed, with emphasis on the information on the magnetic structure and dynamics which is inherent in the scattering cross-section. The contribution of neutron scattering to our understanding of magnetic ordering, excitations and phase transitions is illustrated by experimental results on a variety of magnetic crystals. (author)
Stationary theory of scattering
International Nuclear Information System (INIS)
Kato, T.
1977-01-01
A variant of the stationary methods is described, and it is shown that it is useful in a wide range of problems, including scattering, by long-range potentials, two-space scattering, and multichannel scattering. The method is based on the notion of spectral forms. The paper is restricted to the simplest case of continuous spectral forms defined on a Banach space embedded in the basic Hilbert space. (P.D.)
Introduction to neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Fischer, W E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1996-11-01
We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.
Quantum scattering from classical field theory
International Nuclear Information System (INIS)
Gould, T.M.; Poppitz, E.R.
1995-01-01
We show that scattering amplitudes between initial wave packet states and certain coherent final states can be computed in a systematic weak coupling expansion about classical solutions satisfying initial-value conditions. The initial-value conditions are such as to make the solution of the classical field equations amenable to numerical methods. We propose a practical procedure for computing classical solutions which contribute to high energy two-particle scattering amplitudes. We consider in this regard the implications of a recent numerical simulation in classical SU(2) Yang-Mills theory for multiparticle scattering in quantum gauge theories and speculate on its generalization to electroweak theory. We also generalize our results to the case of complex trajectories and discuss the prospects for finding a solution to the resulting complex boundary value problem, which would allow the application of our method to any wave packet to coherent state transition. Finally, we discuss the relevance of these results to the issues of baryon number violation and multiparticle scattering at high energies. ((orig.))
Fermion-boson scattering in ladder approximation
International Nuclear Information System (INIS)
Jafarov, R.G.; Hadjiev, S.A.
1992-10-01
A method of calculation of forward scattering amplitude for fermions and scalar bosons with exchanging of scalar particle is suggested. The Bethe-Salpeter ladder equation for the imaginary part of the amplitude is constructed and a solution in Regge asymptotical form is found and the corrections to the amplitude due to the exit from mass shell are calculated. (author). 8 refs
Nonelastic electron scattering in mercury telluride
Malik, O P
2002-01-01
By exact solution of the Boltzmann equation, the nonequilibrium charge carrier distribution function is obtained. In the temperature range 4.2 - 300 K, main electron scattering mechanisms are considered by taking into account the nonelastic electron interaction with optical vibrations of the crystal lattice.
Constraints on low energy Compton scattering amplitudes
International Nuclear Information System (INIS)
Raszillier, I.
1979-04-01
We derive the constraints and correlations of fairly general type for Compton scattering amplitudes at energies below photoproduction threshold and fixed momentum transfer, following from (an upper bound on) the corresponding differential cross section above photoproduction threshold. The derivation involves the solution of an extremal problem in a certain space of vector - valued analytic functions. (author)
THE SIMULATION OF SCATTERING OF ELECTROMAGNETIC WAVES ON ANGULAR STRUCTURES.
Directory of Open Access Journals (Sweden)
P. A. Preobrazhensky
2017-02-01
Full Text Available The paper discusses the characteristics of scattering of electromagnetic waves on the angular diffraction structures. The solution of the problem is based on the method of integral equations. A comparative analysis of the scattering characteristics of structures with different shape is carried out.
The Nonrelativistic Scattering States of the Deng-Fan Potential
Directory of Open Access Journals (Sweden)
Bentol Hoda Yazarloo
2013-01-01
Full Text Available The approximately analytical scattering state solution of the Schrodinger equation is obtained for the Deng-Fan potential by using an approximation scheme to the centrifugal term. Energy eigenvalues, normalized wave functions, and scattering phase shifts are calculated. We consider and verify two special cases: the l=0 and the s-wave Hulthén potential.
Hard wall - soft wall - vorticity scattering in shear flow
Rienstra, S.W.; Singh, D.K.
2014-01-01
An analytically exact solution, for the problem of lowMach number incident vorticity scattering at a hard-soft wall transition, is obtained in the form of Fourier integrals by using theWiener-Hopf method. Harmonic vortical perturbations of inviscid linear shear flow are scattered at the wall
Hard wall - soft wall - vorticity scattering in shear flow
Rienstra, S.W.; Singh, D.K.
2014-01-01
An analytically exact solution, for the problem of low Mach number incident vorticity scattering at a hard-soft wall transition, is obtained in the form of Fourier integrals by using the Wiener-Hopf method. Harmonic vortical perturbations of inviscid linear shear flow are scattered at the wall
International Nuclear Information System (INIS)
Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.
1987-01-01
This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging
Wu Ta You
1962-01-01
This volume addresses the broad formal aspects and applications of the quantum theory of scattering in atomic and nuclear collisions. An encyclopedic source of pioneering work, it serves as a text for students and a reference for professionals in the fields of chemistry, physics, and astrophysics. The self-contained treatment begins with the general theory of scattering of a particle by a central field. Subsequent chapters explore particle scattering by a non-central field, collisions between composite particles, the time-dependent theory of scattering, and nuclear reactions. An examinati
Cross plane scattering correction
International Nuclear Information System (INIS)
Shao, L.; Karp, J.S.
1990-01-01
Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution
SCT: a suite of programs for comparing atomistic models with small-angle scattering data.
Wright, David W; Perkins, Stephen J
2015-06-01
Small-angle X-ray and neutron scattering techniques characterize proteins in solution and complement high-resolution structural studies. They are of particular utility when large proteins cannot be crystallized or when the structure is altered by solution conditions. Atomistic models of the averaged structure can be generated through constrained modelling, a technique in which known domain or subunit structures are combined with linker models to produce candidate global conformations. By randomizing the configuration adopted by the different elements of the model, thousands of candidate structures are produced. Next, theoretical scattering curves are generated for each model for trial-and-error fits to the experimental data. From these, a small family of best-fit models is identified. In order to facilitate both the computation of theoretical scattering curves from atomistic models and their comparison with experiment, the SCT suite of tools was developed. SCT also includes programs that provide sequence-based estimates of protein volume (either incorporating hydration or not) and add a hydration layer to models for X-ray scattering modelling. The original SCT software, written in Fortran, resulted in the first atomistic scattering structures to be deposited in the Protein Data Bank, and 77 structures for antibodies, complement proteins and anionic oligosaccharides were determined between 1998 and 2014. For the first time, this software is publicly available, alongside an easier-to-use reimplementation of the same algorithms in Python. Both versions of SCT have been released as open-source software under the Apache 2 license and are available for download from https://github.com/dww100/sct.
Consler, T G; Uberbacher, E C; Bunick, G J; Liebman, M N; Lee, J C
1988-02-25
The effects of ligands on the structure of rabbit muscle pyruvate kinase were studied by small angle neutron scattering. The radius of gyration, RG, decreases by about 1 A in the presence of the substrate phosphoenolpyruvate, but increases by about the same magnitude in the presence of the allosteric inhibitor phenylalanine. With increasing pH or in the absence of Mg2+ and K+, the RG of pyruvate kinase increases. Hence, there is a 2-A difference in RG between two alternative conformations. Length distribution analysis indicates that, under all experimental conditions which increase the radius of gyration, there is a pronounced increase observed in the probability for interatomic distance between 80 and 110 A. These small angle neutron scattering results indicate a "contraction" and "expansion" of the enzyme when it transforms between its active and inactive forms. Using the alpha-carbon coordinates of crystalline cat muscle pyruvate kinase, a length distribution profile was calculated, and it matches the scattering profile of the inactive form. These observations are expected since the crystals were grown in the absence of divalent cations (Stuart, D. I., Levine, M., Muirhead, H., and Stammers, D. K. (1979) J. Mol. Biol. 134, 109-142). Hence, results from neutron scattering, x-ray crystallographic, and sedimentation studies (Oberfelder, R. W., Lee, L. L.-Y., and Lee, J.C. (1984) Biochemistry 23, 3813-3821) are totally consistent with each other. With the aid of computer modeling, the crystal structure has been manipulated in order to effect changes that are consistent with the conformational change described by the solution scattering data. The structural manipulation involves the rotation of the B domain relative to the A domain, leading to the closure of the cleft between these domains. These manipulations resulted in the generation of new sets of atomic (C-alpha) coordinates, which were utilized in calculations, the result of which compared favorably with the
Small-angle neutron scattering studies of sodium butyl benzene
Indian Academy of Sciences (India)
Na-NBBS), in aqueous solutions is investigated by small-angle neutron scattering (SANS). Nearly ellipsoidal aggregates of Na-NBBS at concentrations well above its minimum hydrotrope concentration were detected by SANS. The hydrotrope ...
Spectrum of ferromagnetic transition metal magnetic excitations and neutron scattering
International Nuclear Information System (INIS)
Kuzemskij, A.L.
1979-01-01
Quantum statistical models of ferromagnetic transition metals as well as methods of their solutions are reviewed. The correspondence of results on solving these models and the data on scattering thermal neutrons in ferromagnetic is discussed
Variational, projection methods and Pade approximants in scattering theory
International Nuclear Information System (INIS)
Turchetti, G.
1980-12-01
Several aspects on the scattering theory are discussed in a perturbative scheme. The Pade approximant method plays an important role in such a scheme. Solitons solutions are also discussed in this same scheme. (L.C.) [pt
Axisymmetric scattering of an acoustical Bessel beam by a rigid fixed spheroid.
Mitri, Farid G
2015-10-01
Based on the partial-wave series expansion (PWSE) method in spherical coordinates, a formal analytical solution for the acoustic scattering of a zeroth-order Bessel acoustic beam centered on a rigid fixed (oblate or prolate) spheroid is provided. The unknown scattering coefficients of the spheroid are determined by solving a system of linear equations derived for the Neumann boundary condition. Numerical results for the modulus of the backscattered pressure (θ = π) in the near field and the backscattering form function in the far field for both prolate and oblate spheroids are presented and discussed, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle of the Bessel beam, and the dimensionless frequency. The plots display periodic oscillations (versus the dimensionless frequency) because of the interference of specularly reflected waves in the backscattering direction with circumferential Franz' waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3-D directivity patterns illustrate the near- and far-field axisymmetric scattering. Investigations in underwater acoustics, particle levitation, scattering, and the detection of submerged elongated objects and other related applications utilizing Bessel waves would benefit from the results of the present study.
Advanced electromagnetics and scattering theory
2015-01-01
This book present the lecture notes used in two courses that the late Professor Kasra Barkeshli had offered at Sharif University of Technology, namely, Advanced Electromagnetics and Scattering Theory. The prerequisite for the sequence is vector calculus and electromagnetic fields and waves. Some familiarity with Green's functions and integral equations is desirable but not necessary. The book provides a brief but concise introduction to classical topics in the field. It is divided into three parts including annexes. Part I covers principle of electromagnetic theory. The discussion starts with a review of the Maxwell's equations in differential and integral forms and basic boundary conditions. The solution of inhomogeneous wave equation and various field representations including Lorentz's potential functions and the Green's function method are discussed next. The solution of Helmholtz equation and wave harmonics follow. Next, the book presents plane wave propagation in dielectric and lossy media and various...
Energy Technology Data Exchange (ETDEWEB)
Lillie, R.A.; Robinson, J.C.
1976-05-01
The discrete ordinates method is the most powerful and generally used deterministic method to obtain approximate solutions of the Boltzmann transport equation. A finite element formulation, utilizing a canonical form of the transport equation, is here developed to obtain both integral and pointwise solutions to neutron transport problems. The formulation is based on the use of linear triangles. A general treatment of anisotropic scattering is included by employing discrete ordinates-like approximations. In addition, multigroup source outer iteration techniques are employed to perform group-dependent calculations. The ability of the formulation to reduce substantially ray effects and its ability to perform streaming calculations are demonstrated by analyzing a series of test problems. The anisotropic scattering and multigroup treatments used in the development of the formulation are verified by a number of one-dimensional comparisons. These comparisons also demonstrate the relative accuracy of the formulation in predicting integral parameters. The applicability of the formulation to nonorthogonal planar geometries is demonstrated by analyzing a hexagonal-type lattice. A small, high-leakage reactor model is analyzed to investigate the effects of varying both the spatial mesh and order of angular quadrature. This analysis reveals that these effects are more pronounced in the present formulation than in other conventional formulations. However, the insignificance of these effects is demonstrated by analyzing a realistic reactor configuration. In addition, this final analysis illustrates the importance of incorporating anisotropic scattering into the finite element formulation. 8 tables, 29 figures.
International Nuclear Information System (INIS)
Lillie, R.A.; Robinson, J.C.
1976-05-01
The discrete ordinates method is the most powerful and generally used deterministic method to obtain approximate solutions of the Boltzmann transport equation. A finite element formulation, utilizing a canonical form of the transport equation, is here developed to obtain both integral and pointwise solutions to neutron transport problems. The formulation is based on the use of linear triangles. A general treatment of anisotropic scattering is included by employing discrete ordinates-like approximations. In addition, multigroup source outer iteration techniques are employed to perform group-dependent calculations. The ability of the formulation to reduce substantially ray effects and its ability to perform streaming calculations are demonstrated by analyzing a series of test problems. The anisotropic scattering and multigroup treatments used in the development of the formulation are verified by a number of one-dimensional comparisons. These comparisons also demonstrate the relative accuracy of the formulation in predicting integral parameters. The applicability of the formulation to nonorthogonal planar geometries is demonstrated by analyzing a hexagonal-type lattice. A small, high-leakage reactor model is analyzed to investigate the effects of varying both the spatial mesh and order of angular quadrature. This analysis reveals that these effects are more pronounced in the present formulation than in other conventional formulations. However, the insignificance of these effects is demonstrated by analyzing a realistic reactor configuration. In addition, this final analysis illustrates the importance of incorporating anisotropic scattering into the finite element formulation. 8 tables, 29 figures
Scattering amplitudes in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2014-03-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Scattering amplitudes in gauge theories
International Nuclear Information System (INIS)
Henn, Johannes M.; Plefka, Jan C.
2014-01-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Modelling Hyperboloid Sound Scattering
DEFF Research Database (Denmark)
Burry, Jane; Davis, Daniel; Peters, Brady
2011-01-01
The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...... both physical and digital models at three distinct scales. The results suggest hyperboloid geometry, while difficult to fabricate, facilitates sound scattering....
Donne, A. J. H.
1996-01-01
Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is
Concentric layered Hermite scatterers
Astheimer, Jeffrey P.; Parker, Kevin J.
2018-05-01
The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.
Problems and solutions in quantum chemistry and physics
Johnson, Charles S
1988-01-01
Unusually varied problems, with detailed solutions, cover quantum mechanics, wave mechanics, angular momentum, molecular spectroscopy, scattering theory, more. 280 problems, plus 139 supplementary exercises.
Introductory theory of neutron scattering
International Nuclear Information System (INIS)
Gunn, J.M.F.
1986-12-01
The paper comprises a set of six lecture notes which were delivered to the summer school on 'Neutron Scattering at a pulsed source', Rutherford Laboratory, United Kingdom, 1986. The lectures concern the physical principles of neutron scattering. The topics of the lectures include: diffraction, incoherent inelastic scattering, connection with the Schroedinger equation, magnetic scattering, coherent inelastic scattering, and surfaces and neutron optics. (UK)
Diffuse scattering of neutrons
International Nuclear Information System (INIS)
Novion, C.H. de.
1981-02-01
The use of neutron scattering to study atomic disorder in metals and alloys is described. The diffuse elastic scattering of neutrons by a perfect crystal lattice leads to a diffraction spectrum with only Bragg spreads. the existence of disorder in the crystal results in intensity and position modifications to these spreads, and above all, to the appearance of a low intensity scatter between Bragg peaks. The elastic scattering of neutrons is treated in this text, i.e. by measuring the number of scattered neutrons having the same energy as the incident neutrons. Such measurements yield information on the static disorder in the crystal and time average fluctuations in composition and atomic displacements [fr
Inelastic Light Scattering Processes
Fouche, Daniel G.; Chang, Richard K.
1973-01-01
Five different inelastic light scattering processes will be denoted by, ordinary Raman scattering (ORS), resonance Raman scattering (RRS), off-resonance fluorescence (ORF), resonance fluorescence (RF), and broad fluorescence (BF). A distinction between fluorescence (including ORF and RF) and Raman scattering (including ORS and RRS) will be made in terms of the number of intermediate molecular states which contribute significantly to the scattered amplitude, and not in terms of excited state lifetimes or virtual versus real processes. The theory of these processes will be reviewed, including the effects of pressure, laser wavelength, and laser spectral distribution on the scattered intensity. The application of these processes to the remote sensing of atmospheric pollutants will be discussed briefly. It will be pointed out that the poor sensitivity of the ORS technique cannot be increased by going toward resonance without also compromising the advantages it has over the RF technique. Experimental results on inelastic light scattering from I(sub 2) vapor will be presented. As a single longitudinal mode 5145 A argon-ion laser line was tuned away from an I(sub 2) absorption line, the scattering was observed to change from RF to ORF. The basis, of the distinction is the different pressure dependence of the scattered intensity. Nearly three orders of magnitude enhancement of the scattered intensity was measured in going from ORF to RF. Forty-seven overtones were observed and their relative intensities measured. The ORF cross section of I(sub 2) compared to the ORS cross section of N2 was found to be 3 x 10(exp 6), with I(sub 2) at its room temperature vapor pressure.
On low energy scattering theory with Coulomb potentials
International Nuclear Information System (INIS)
Gibson, A.G.
1985-09-01
The scattering length is a very useful characteristic of the scattering phenomena. But in the presence of a combined potential (e.g. in nuclear physics, when Coulomb, the polarization and the strong potentials are to be added), the analytical definition of the scattering length in not unambigous and strictly defined. This problem is discussed in detail, the various alternatives are examined and compared. A practical suggestion is given for the proper choice of the definition and for the calculation of scattering length. Numerical solutions of the Schroedinger equation are compared with the results of different definitions. Some questions of application to nuclear physics are discussed. (D.Gy.)
Modal Ring Method for the Scattering of Electromagnetic Waves
Baumeister, Kenneth J.; Kreider, Kevin L.
1993-01-01
The modal ring method for electromagnetic scattering from perfectly electric conducting (PEC) symmetrical bodies is presented. The scattering body is represented by a line of finite elements (triangular) on its outer surface. The infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The modal ring method effectively reduces the two dimensional scattering problem to a one-dimensional problem similar to the method of moments. The modal element method is capable of handling very high frequency scattering because it has a highly banded solution matrix.
Gaussian basis functions for highly oscillatory scattering wavefunctions
Mant, B. P.; Law, M. M.
2018-04-01
We have applied a basis set of distributed Gaussian functions within the S-matrix version of the Kohn variational method to scattering problems involving deep potential energy wells. The Gaussian positions and widths are tailored to the potential using the procedure of Bačić and Light (1986 J. Chem. Phys. 85 4594) which has previously been applied to bound-state problems. The placement procedure is shown to be very efficient and gives scattering wavefunctions and observables in agreement with direct numerical solutions. We demonstrate the basis function placement method with applications to hydrogen atom–hydrogen atom scattering and antihydrogen atom–hydrogen atom scattering.
Current status of neutron scattering in Thailand
International Nuclear Information System (INIS)
Kornduangkaeo, Areeratt; Pongkasem, Somchai; Putchar, Suriya; Ampornrat, Pantip; Kajornrith, Varavuth; Chamchang, Jipawat
2006-01-01
The current neutron powder diffractometer at the Thai Research Reactor-1/Modification 1 (TRR-1/M1) has been modified from the obsolete neutron diffractometer which had been used during 1968-1975. The upgraded diffractometer has medium resolution and is appropriate for studying samples with small unit cell dimensions and training university students in the field of neutron scattering. This paper describes the current activities of neutron scattering research in Thailand, the current status of a new research reactor project at Ongkarak for enlarging the perspectives of its utilization in the future as well as the organizational reformation of the Office of Atomic Energy for Peace (OAEP). (author)
Current status of neutron scattering in Thailand
International Nuclear Information System (INIS)
Kornduangkaeo, Areeratt; Pongkasem, Somchai; Putchar, Suriya; Ampornrat, Pantip; Kajornrith, Varavuth; Sangariyavanich, Archara
2003-01-01
The current neutron powder diffractometer at the Thai Research Reactor-1/M1 (TRR-1/M1) has been modified from the obsolete neutron diffractometer which had been used during 1968-1975. The upgraded diffractometer has medium resolution and is appropriate for studying samples with small unit cell dimensions and training university students in the field of neutron scattering. This paper describes the current activities of neutron scattering research in Thailand as well as a new research reactor for enlarging the perspectives of its utilization in the future. (author)
Neutron Scattering in Biology Techniques and Applications
Fitter, Jörg; Katsaras, John
2006-01-01
The advent of new neutron facilities and the improvement of existing sources and instruments world wide supply the biological community with many new opportunities in the areas of structural biology and biological physics. The present volume offers a clear description of the various neutron-scattering techniques currently being used to answer biologically relevant questions. Their utility is illustrated through examples by some of the leading researchers in the field of neutron scattering. This volume will be a reference for researchers and a step-by-step guide for young scientists entering the field and the advanced graduate student.
Anomalous and resonance small-angle scattering
International Nuclear Information System (INIS)
Epperson, J.E.; Thiyagarajan, P.
1988-01-01
Significant changes in the small-angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous-dispersion terms for the scattering factor (X-rays) or scattering length (neutrons). The physics inherent in these anomalous-dispersion terms is first discussed before consideration of how they enter the relevant scattering theory. Two major areas of anomalous-scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with X-rays. However, it is pointed out that the formalism is the same for the analog experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scattering are discussed. (orig.)
ELASTIC SCATTERING: How goes the Odderon?
International Nuclear Information System (INIS)
Fried, H.M.; Kang, Kyungsik; Tan, C-I
1994-01-01
Spurred by new measurements of total reaction rates and associated parameters by groups at CERN, DESY, and Fermilab, and with the scent of possible solutions to past controversies in the air, some 110 experimental and theoretical highenergy physicists gathered at Brown University (Providence, Rhode Island) for the fifth traditional 'Blois' Workshop on High-Energy Elastic and Diffractive Scattering. Very much alive is the 'Odderon' - the extra effect to explain the difference between proton-proton and proton-antiproton scattering.
Neutron scattering from polarised proton domains
Van den Brandt, B; Kohbrecher, J; Konter, J A; Mango, S; Glattli, H; Leymarie, E; Grillo, I; May, R P; Jouve, H; Stuhrmann, H B; Stuhrmann, H B; Zimmer, O
2002-01-01
Time-dependent small-angle polarised neutron scattering from domains of polarised protons has been observed at the onset of dynamic nuclear polarisation in a frozen solution of 98% deuterated glycerol-water at 1 K containing a small concentration of paramagnetic centres (EHBA-Cr sup V). Simultaneous NMR measurements show that the observed scattering arises from protons around the Cr sup V -ions which are polarised to approx 10% in a few seconds, much faster than the protons in the bulk. (authors)
Light scattering studies at UNICAMP
International Nuclear Information System (INIS)
Luzzi, R.; Cerdeira, H.A.; Salzberg, J.; Vasconcellos, A.R.; Frota Pessoa, S.; Reis, F.G. dos; Ferrari, C.A.; Algarte, C.A.S.; Tenan, M.A.
1975-01-01
Current theoretical studies on light scattering spectroscopy at UNICAMP is presented briefly, such as: inelastic scattering of radiation from a solid state plasma; resonant Ramman scattering; high excitation effects; saturated semiconductors and glasses
Study of liquids and solutions
International Nuclear Information System (INIS)
Bellissent-Funel, M.C.
1994-01-01
A critical review of what has been achieved on the structure of liquids and solutions and the capabilities and developments of neutron scattering in this domain, are presented. A great variety of simple to complex systems has been investigated with the aim of obtaining a full microscopic description of the structure. Selected examples demonstrate the neutron scattering determination of interaction potentials, intermolecular structures and partial structure factors of complex systems. The isotopic substitution method is illustrated by the application to the study of the solvation of ions in aqueous and non aqueous solutions. (author). 9 figs., 32 refs
DEFF Research Database (Denmark)
Kong, Qingyu; Kjær, Kasper S.; Haldrup, Martin Kristoffer
2012-01-01
The [Pt2(H2P2O5)4]4− ions in the ground and excited states and the excited-state complexes M-[Pt2(H2P2O5)4]3− and M2-[Pt2(H2P2O5)4]2− (M = Ag, Tl) were studied in solution with various density functional theory (DFT) functionals from Gaussian 09 and Amsterdam Density Functional (ADF) programs. Ca...
PERVASIVE BUSINESS INTELLIGENCE SOLUTIONS
Directory of Open Access Journals (Sweden)
Rocsana Tonis (Bucea-Manea
2011-03-01
Full Text Available The utility of BI solutions is accepted all over the world in the modern organizations. However, the BI solutions do not offer a constant feedback in line with the organizational activities. In this context, there have been developed pervasive BI solutions which are present at different levels of the organization, so that employees can observe only what is most relevant to their day-to-day tasks. They are organized in vertical silos, with clearly identified performance and expectations. The paper emphasizes the role of pervasive BI solutions in reaching the key performance indicators of the modern organizations, more important in the context of crisis.
An empirical correction for moderate multiple scattering in super-heterodyne light scattering.
Botin, Denis; Mapa, Ludmila Marotta; Schweinfurth, Holger; Sieber, Bastian; Wittenberg, Christopher; Palberg, Thomas
2017-05-28
Frequency domain super-heterodyne laser light scattering is utilized in a low angle integral measurement configuration to determine flow and diffusion in charged sphere suspensions showing moderate to strong multiple scattering. We introduce an empirical correction to subtract the multiple scattering background and isolate the singly scattered light. We demonstrate the excellent feasibility of this simple approach for turbid suspensions of transmittance T ≥ 0.4. We study the particle concentration dependence of the electro-kinetic mobility in low salt aqueous suspension over an extended concentration regime and observe a maximum at intermediate concentrations. We further use our scheme for measurements of the self-diffusion coefficients in the fluid samples in the absence or presence of shear, as well as in polycrystalline samples during crystallization and coarsening. We discuss the scope and limits of our approach as well as possible future applications.
DEFF Research Database (Denmark)
Kristensen, Philip Trøst; Lodahl, Peter; Mørk, Jesper
2010-01-01
We present an accurate, stable, and efficient solution to the Lippmann–Schwinger equation for electromagnetic scattering in two dimensions. The method is well suited for multiple scattering problems and may be applied to problems with scatterers of arbitrary shape or non-homogenous background mat...
Scattering on magnetic monopoles
International Nuclear Information System (INIS)
Petry, H.R.
1980-01-01
The time-dependent scattering theory of charged particles on magnetic monopoles is investigated within a mathematical frame-work, which duely pays attention to the fact that the wavefunctions of the scattered particles are sections in a non-trivial complex line-bundle. It is found that Moeller operators have to be defined in a way which takes into account the peculiar long-range behaviour of the monopole field. Formulas for the scattering matrix and the differential cross-section are derived, and, as a by-product, a momentum space picture for particles, which are described by sections in the underlying complex line-bundle, is presented. (orig.)
Deep inelastic neutron scattering
International Nuclear Information System (INIS)
Mayers, J.
1989-03-01
The report is based on an invited talk given at a conference on ''Neutron Scattering at ISIS: Recent Highlights in Condensed Matter Research'', which was held in Rome, 1988, and is intended as an introduction to the techniques of Deep Inelastic Neutron Scattering. The subject is discussed under the following topic headings:- the impulse approximation I.A., scaling behaviour, kinematical consequences of energy and momentum conservation, examples of measurements, derivation of the I.A., the I.A. in a harmonic system, and validity of the I.A. in neutron scattering. (U.K.)
Energy Technology Data Exchange (ETDEWEB)
Dimitrievska, Mirjana; Xie, Haibing; Fairbrother, Andrew; Fontané, Xavier; Saucedo, Edgardo; Izquierdo-Roca, Victor, E-mail: vizquierdo@irec.cat [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); Gurieva, Galina [Helmholtz Centre Berlin for Materials and Energy, Department Crystallography, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Pérez-Rodríguez, Alejandro [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); IN" 2UB, Departament d' Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona (Spain); Schorr, Susan [Helmholtz Centre Berlin for Materials and Energy, Department Crystallography, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Institute of Geological Sciences, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin (Germany)
2014-07-21
In this work, Raman spectroscopy and X-ray diffraction were applied together to evaluate the crystal structure and the phonon modes of photovoltaic grade Cu{sub 2}ZnSn(S{sub x}Se{sub 1−x}){sub 4} thin films, leading to a complete characterization of their structural and vibrational properties. Vibrational characterization has been based on Raman scattering measurements performed with different excitation wavelengths and polarization configurations. Analysis of the experimental spectra has permitted identification of 19 peaks, which positions are in good accord with theoretical predictions. Besides, the observation of Cu{sub 2}ZnSnS{sub 4}-like A symmetry peaks related to S vibrations and Cu{sub 2}ZnSnSe{sub 4}-like A symmetry peaks related to Se vibrations, additional Raman peaks, characteristic of the solid solution and previously not reported, are observed, and are attributed to vibrations involving both S and Se anions.
Numerical modelling of multiple scattering between two elastical particles
DEFF Research Database (Denmark)
Bjørnø, Irina; Jensen, Leif Bjørnø
1998-01-01
in suspension have been studied extensively since Foldy's formulation of his theory for isotropic scattering by randomly distributed scatterers. However, a number of important problems related to multiple scattering are still far from finding their solutions. A particular, but still unsolved, problem......Multiple acoustical signal interactions with sediment particles in the vicinity of the seabed may significantly change the course of sediment concentration profiles determined by inversion from acoustical backscattering measurements. The scattering properties of high concentrations of sediments...... is the question of proximity thresholds for influence of multiple scattering in terms of particle properties like volume fraction, average distance between particles or other related parameters. A few available experimental data indicate a significance of multiple scattering in suspensions where the concentration...
Exclusive compton scattering on the proton
International Nuclear Information System (INIS)
Chen, J.P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M.
1999-01-01
An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range, and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together, these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same non-forward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged Bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer, currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supersedes E97 - 108 which was approved by PAC13. (author)
Effective string theory and QCD scattering amplitudes
International Nuclear Information System (INIS)
Makeenko, Yuri
2011-01-01
QCD string is formed at distances larger than the confinement scale and can be described by the Polchinski-Strominger effective string theory with a nonpolynomial action, which has nevertheless a well-defined semiclassical expansion around a long-string ground state. We utilize modern ideas about the Wilson-loop/scattering-amplitude duality to calculate scattering amplitudes and show that the expansion parameter in the effective string theory is small in the Regge kinematical regime. For the amplitudes we obtain the Regge behavior with a linear trajectory of the intercept (d-2)/24 in d dimensions, which is computed semiclassically as a momentum-space Luescher term, and discuss an application to meson scattering amplitudes in QCD.
Exclusive compton scattering on the proton
Energy Technology Data Exchange (ETDEWEB)
Chen, J.P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)] [and others
1999-07-01
An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range, and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together, these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same non-forward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged Bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer, currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supersedes E97 - 108 which was approved by PAC13. (author)
Exclusive Compton Scattering on the Proton
International Nuclear Information System (INIS)
Chen, J. P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M.; LeRose, J.; Liang, M.; Michaels, R.; Mitchell, J.; Liyanage, N.; Rutt, P.; Saha, A.; Wojtsekhowski, B.; Bouwhuis, M.; Chang, T.H.; Holt, R. J.; Nathan, A. M.; Roedelbronn, M.; Wijesooriya, K.; Williamson, S. E.; Dodge, G.; Hyde-Wright, C.; Radyushkin, A.; Sabatie, F.; Weinstein, L. B.; Ulmer, P.; Bosted, P.; Finn, J. M.; Jones, M.; Churchwell, S.; Howell, C.; Gilman, R.; Glashausser, C.; Jiang, X.; Ransome, R.; Strauch, S.; Berthot, J.; Bertin, P.; Fonvielle, H.; Roblin, Y.; Bertozzi, W.; Gilad, S.; Rowntree, D.; Zu, Z.; Brown, D.; Chang, G.; Afanasev, A.; Egiyan, K.; Hoohauneysan, E.; Ketikyan, A.; Mailyan, S.; Petrosyan, A.; Shahinyan, A.; Voskanyan, H.; Boeglin, W.; Markowitz, P.; Hines, J.; Strobel, G.; Templon, J.; Feldman, G.; Morris, C. L.; Gladyshev, V.; Lindgren, R. A.; Calarco, J.; Hersman, W.; Leuschner, M.; Gasparian, A.
1999-01-01
An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range; and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together; these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same nonforward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer; currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supercedes E97-108 which was approved by PAC13
Neutron Scattering and High Magnetic Fields
Energy Technology Data Exchange (ETDEWEB)
Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stone, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2014-11-01
The workshop “Neutron Scattering and High Magnetic Fields” was held September 4-5, 2014 at the Oak Ridge National Laboratory (ORNL). The workshop was held in response to a recent report by the National Research Council of the National Academy of Sciences entitled “High Magnetic Field Science and Its Application in the United States: Current Status and Future Directions.”1 This report highlights the fact that neutron scattering measurements carried out in high magnetic fields provide important opportunities for new science. The workshop explored the range of the scientific discoveries that could be enabled with neutron scattering measurements at high fields (25 Tesla or larger), the various technologies that might be utilized to build specialized instruments and sample environment equipment to enable this research at ORNL, and possible routes to funding and constructing these facilities and portable high field sample environments.
DEFF Research Database (Denmark)
Arndt, Channing; Simler, Kenneth R.
2010-01-01
A fundamental premise of absolute poverty lines is that they represent the same level of utility through time and space. Disturbingly, a series of recent studies in middle- and low-income economies show that even carefully derived poverty lines rarely satisfy this premise. This article proposes a......, with the current approach tending to systematically overestimate (underestimate) poverty in urban (rural) zones.......A fundamental premise of absolute poverty lines is that they represent the same level of utility through time and space. Disturbingly, a series of recent studies in middle- and low-income economies show that even carefully derived poverty lines rarely satisfy this premise. This article proposes...... an information-theoretic approach to estimating cost-of-basic-needs (CBN) poverty lines that are utility consistent. Applications to date illustrate that utility-consistent poverty measurements derived from the proposed approach and those derived from current CBN best practices often differ substantially...
Electron scattering from pyrimidine
International Nuclear Information System (INIS)
Colmenares, Rafael; Fuss, Martina C; García, Gustavo; Oller, Juan C; Muñoz, Antonio; Blanco, Francisco; Almeida, Diogo; Limão-Vieira, Paulo
2014-01-01
Electron scattering from pyrimidine (C 4 H 4 N 2 ) was investigated over a wide range of energies. Following different experimental and theoretical approaches, total, elastic and ionization cross sections as well as electron energy loss distributions were obtained.
Gravitational Bhabha scattering
International Nuclear Information System (INIS)
Santos, A F; Khanna, Faqir C
2017-01-01
Gravitoelectromagnetism (GEM) as a theory for gravity has been developed similar to the electromagnetic field theory. A weak field approximation of Einstein theory of relativity is similar to GEM. This theory has been quantized. Traditional Bhabha scattering, electron–positron scattering, is based on quantized electrodynamics theory. Usually the amplitude is written in terms of one photon exchange process. With the development of quantized GEM theory, the scattering amplitude will have an additional component based on an exchange of one graviton at the lowest order of perturbation theory. An analysis will provide the relative importance of the two amplitudes for Bhabha scattering. This will allow an analysis of the relative importance of the two amplitudes as the energy of the exchanged particles increases. (paper)
International Nuclear Information System (INIS)
Tezuka, Hirokazu.
1984-10-01
Scattering of a particle by bound nucleons is discussed. Effects of nucleons that are bound in a nucleus are taken as a structure function. The way how to calculate the structure function is given. (author)
International Nuclear Information System (INIS)
1991-07-01
This collection contains 21 papers on the application and development of LIDAR (Light Detection and Ranging) Thomson scattering techniques for the determination of spatially resolved electron temperature and density in magnetic confinement experiments, particularly tokamaks. Refs, figs and tabs
International Nuclear Information System (INIS)
Peterson, G.A.
1989-01-01
We briefly review some of the motivations, early results, and techniques of magnetic elastic and inelastic electron-nucleus scattering. We then discuss recent results, especially those acquired at high momentum transfers. 50 refs., 19 figs
Deep inelastic lepton scattering
International Nuclear Information System (INIS)
Nachtmann, O.
1977-01-01
Deep inelastic electron (muon) nucleon and neutrino nucleon scattering as well as electron positron annihilation into hadrons are reviewed from a theoretical point of view. The emphasis is placed on comparisons of quantum chromodynamics with the data. (orig.) [de