WorldWideScience

Sample records for solution involves iteration

  1. Potential for Australian involvement in ITER

    International Nuclear Information System (INIS)

    O'Connor, D. J.; Collins, G. A.; Hole, M. J.

    2006-01-01

    Full text: Full text: Fusion, the process that powers the sun and stars, offers a solution to the world's long-term energy needs: providing large scale energy production with zero greenhouse gas emissions, short-lived radio-active waste compared to conventional nuclear fission cycles, and a virtually limitless supply of fuel. Almost three decades of fusion research has produced spectacular progress. Present-day experiments have a power gain ratio of approximately 1 (ratio of power out to power in), with a power output in the 10's of megawatts. The world's next major fusion experiment, the International Thermonuclear Experimental Reactor (ITER), will be a pre-prototype power plant. Since announcement of the ITER site in June 2005, the ITER project, has gained momentum and political support. Despite Australia's foundation role in the field of fusion science, through the pioneering work of Sir Mark Oliphant, and significant contributions to the international fusion program over the succeeding years, Australia is not involved in the ITER project. In this talk, the activities of a recently formed consortium of scientists and engineers, the Australian ITER Forum will be outlined. The Forum is drawn from five Universities, ANSTO (the Australian Nuclear Science and Technology Organisation) and AINSE (the Australian Institute for Nuclear Science and Engineering), and seeks to promote fusion energy in the Australian community and negotiate a role for Australia in the ITER project. As part of this activity, the Australian government recently funded a workshop that discussed the ways and means of engaging Australia in ITER. The workshop brought the research, industrial, government and general public communities, together with the ITER partners, and forged an opportunity for ITER engagement; with scientific, industrial, and energy security rewards for Australia. We will report on the emerging scope for Australian involvement

  2. Iterative solutions of finite difference diffusion equations

    International Nuclear Information System (INIS)

    Menon, S.V.G.; Khandekar, D.C.; Trasi, M.S.

    1981-01-01

    The heterogeneous arrangement of materials and the three-dimensional character of the reactor physics problems encountered in the design and operation of nuclear reactors makes it necessary to use numerical methods for solution of the neutron diffusion equations which are based on the linear Boltzmann equation. The commonly used numerical method for this purpose is the finite difference method. It converts the diffusion equations to a system of algebraic equations. In practice, the size of this resulting algebraic system is so large that the iterative methods have to be used. Most frequently used iterative methods are discussed. They include : (1) basic iterative methods for one-group problems, (2) iterative methods for eigenvalue problems, and (3) iterative methods which use variable acceleration parameters. Application of Chebyshev theorem to iterative methods is discussed. The extension of the above iterative methods to multigroup neutron diffusion equations is also considered. These methods are applicable to elliptic boundary value problems in reactor design studies in particular, and to elliptic partial differential equations in general. Solution of sample problems is included to illustrate their applications. The subject matter is presented in as simple a manner as possible. However, a working knowledge of matrix theory is presupposed. (M.G.B.)

  3. Iterative solution of the Helmholtz equation

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, E.; Otto, K. [Uppsala Univ. (Sweden)

    1996-12-31

    We have shown that the numerical solution of the two-dimensional Helmholtz equation can be obtained in a very efficient way by using a preconditioned iterative method. We discretize the equation with second-order accurate finite difference operators and take special care to obtain non-reflecting boundary conditions. We solve the large, sparse system of equations that arises with the preconditioned restarted GMRES iteration. The preconditioner is of {open_quotes}fast Poisson type{close_quotes}, and is derived as a direct solver for a modified PDE problem.The arithmetic complexity for the preconditioner is O(n log{sub 2} n), where n is the number of grid points. As a test problem we use the propagation of sound waves in water in a duct with curved bottom. Numerical experiments show that the preconditioned iterative method is very efficient for this type of problem. The convergence rate does not decrease dramatically when the frequency increases. Compared to banded Gaussian elimination, which is a standard solution method for this type of problems, the iterative method shows significant gain in both storage requirement and arithmetic complexity. Furthermore, the relative gain increases when the frequency increases.

  4. Milestones in the Development of Iterative Solution Methods

    Directory of Open Access Journals (Sweden)

    Owe Axelsson

    2010-01-01

    Full Text Available Iterative solution methods to solve linear systems of equations were originally formulated as basic iteration methods of defect-correction type, commonly referred to as Richardson's iteration method. These methods developed further into various versions of splitting methods, including the successive overrelaxation (SOR method. Later, immensely important developments included convergence acceleration methods, such as the Chebyshev and conjugate gradient iteration methods and preconditioning methods of various forms. A major strive has been to find methods with a total computational complexity of optimal order, that is, proportional to the degrees of freedom involved in the equation. Methods that have turned out to have been particularly important for the further developments of linear equation solvers are surveyed. Some of them are presented in greater detail.

  5. Iterative solution of the semiconductor device equations

    Energy Technology Data Exchange (ETDEWEB)

    Bova, S.W.; Carey, G.F. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    Most semiconductor device models can be described by a nonlinear Poisson equation for the electrostatic potential coupled to a system of convection-reaction-diffusion equations for the transport of charge and energy. These equations are typically solved in a decoupled fashion and e.g. Newton`s method is used to obtain the resulting sequences of linear systems. The Poisson problem leads to a symmetric, positive definite system which we solve iteratively using conjugate gradient. The transport equations lead to nonsymmetric, indefinite systems, thereby complicating the selection of an appropriate iterative method. Moreover, their solutions exhibit steep layers and are subject to numerical oscillations and instabilities if standard Galerkin-type discretization strategies are used. In the present study, we use an upwind finite element technique for the transport equations. We also evaluate the performance of different iterative methods for the transport equations and investigate various preconditioners for a few generalized gradient methods. Numerical examples are given for a representative two-dimensional depletion MOSFET.

  6. ITER diagnostics: Design choices and solutions

    International Nuclear Information System (INIS)

    Costley, A.E.; Sugie, T.; Vayakis, G.; Malaquias, A.; Walker, C.

    2003-01-01

    An extensive diagnostic system will be installed on ITER to provide the measurements necessary to control, evaluate and optimise the plasma performance and to study burning plasma physics. Because of the harsh environment, diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic implementation. In this paper, we describe the key problems encountered and give examples of the solutions that have been developed. A brief description of the scheme developed for integrating multiple systems into individual ports is also included. We conclude with an assessment of overall system performance. (author)

  7. Iterative solution of linear equations in ODE codes. [Krylov subspaces

    Energy Technology Data Exchange (ETDEWEB)

    Gear, C. W.; Saad, Y.

    1981-01-01

    Each integration step of a stiff equation involves the solution of a nonlinear equation, usually by a quasi-Newton method that leads to a set of linear problems. Iterative methods for these linear equations are studied. Of particular interest are methods that do not require an explicit Jacobian, but can work directly with differences of function values using J congruent to f(x + delta) - f(x). Some numerical experiments using a modification of LSODE are reported. 1 figure, 2 tables.

  8. Iterated Hardy-type inequalities involving suprema

    Czech Academy of Sciences Publication Activity Database

    Gogatishvili, Amiran; Mustafayev, R.Ch.

    2017-01-01

    Roč. 20, č. 4 (2017), s. 901-927 ISSN 1331-4343 R&D Projects: GA ČR GA13-14743S Institutional support: RVO:67985840 Keywords : quasilinear operators * iterated Hardy inequalities * weights Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.603, year: 2016 http://files.ele-math.com/preprints/mia-20-57.pdf

  9. A Gradient Based Iterative Solutions for Sylvester Tensor Equations

    Directory of Open Access Journals (Sweden)

    Zhen Chen

    2013-01-01

    proposed by Ding and Chen, 2005, and by using tensor arithmetic concepts, an iterative algorithm and its modification are established to solve the Sylvester tensor equation. Convergence analysis indicates that the iterative solutions always converge to the exact solution for arbitrary initial value. Finally, some examples are provided to show that the proposed algorithms are effective.

  10. Iterative numerical solution of scattering problems

    Energy Technology Data Exchange (ETDEWEB)

    Tomio, L; Adhikari, S K

    1995-05-01

    An iterative Neumann series method, employing a real auxiliary scattering integral equation, is used to calculate scattering lengths and phase shifts for the atomic Yukawa and exponential potentials. For these potentials the original Neumann series diverges. The present iterative method yields results that are far better, in convergence, stability and precision, than other momentum space methods. Accurate result is obtained in both cases with an estimated error of about 1 in 10{sup 10} after some-8-10 iterations. (author). 31 refs, 2 tabs.

  11. Iterative numerical solution of scattering problems

    International Nuclear Information System (INIS)

    Tomio, L.; Adhikari, S.K.

    1995-05-01

    An iterative Neumann series method, employing a real auxiliary scattering integral equation, is used to calculate scattering lengths and phase shifts for the atomic Yukawa and exponential potentials. For these potentials the original Neumann series diverges. The present iterative method yields results that are far better, in convergence, stability and precision, than other momentum space methods. Accurate result is obtained in both cases with an estimated error of about 1 in 10 10 after some-8-10 iterations. (author). 31 refs, 2 tabs

  12. Iterative solution of large linear systems

    CERN Document Server

    Young, David Matheson

    1971-01-01

    This self-contained treatment offers a systematic development of the theory of iterative methods. Its focal point resides in an analysis of the convergence properties of the successive overrelaxation (SOR) method, as applied to a linear system with a consistently ordered matrix. The text explores the convergence properties of the SOR method and related techniques in terms of the spectral radii of the associated matrices as well as in terms of certain matrix norms. Contents include a review of matrix theory and general properties of iterative methods; SOR method and stationary modified SOR meth

  13. Iterative solution of high order compact systems

    Energy Technology Data Exchange (ETDEWEB)

    Spotz, W.F.; Carey, G.F. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    We have recently developed a class of finite difference methods which provide higher accuracy and greater stability than standard central or upwind difference methods, but still reside on a compact patch of grid cells. In the present study we investigate the performance of several gradient-type iterative methods for solving the associated sparse systems. Both serial and parallel performance studies have been made. Representative examples are taken from elliptic PDE`s for diffusion, convection-diffusion, and viscous flow applications.

  14. Involvement of the EU industry in ITER EDA

    International Nuclear Information System (INIS)

    Bogusch, E.

    2001-01-01

    Since the fifties, European industry has been involved in research and development in the field of nuclear fusion as a potential future source of energy. Early contributions mainly included deliveries of plant components and services to experimental facilities. In the Engineering Design Activities (EDA) phase of the planned multinational International Thermonuclear Experimental Reactor (ITER) in 1993 to 2001 this commitment of industry was intensified. Industries from seven European countries participated in the project with various contributions, e.g., in the development, design, and manufacture of components, and in the development of methods of planning and executing the complex ITER project. These activities were accompanied by an extensive R and D program. e.g., about materials and methods of manufacturing ITER components. In this way, European industry made an important contribution to the further development of nuclear fusion within the framework of ITER EDA activities, and will be able to continue this work intensively in the expected ITER construction phase to follow. (orig.) [de

  15. Variation Iteration Method for The Approximate Solution of Nonlinear ...

    African Journals Online (AJOL)

    In this study, we considered the numerical solution of the nonlinear Burgers equation using the Variational Iteration Method (VIM). The method seeks to examine the convergence of solutions of the Burgers equation at the expense of the parameters x and t of which the amount of errors depends. Numerical experimentation ...

  16. Iterative and iterative-noniterative integral solutions in 3-loop massive QCD calculations

    International Nuclear Information System (INIS)

    Ablinger, J.; Radu, C.S.; Schneider, C.; Behring, A.; Imamoglu, E.; Van Hoeij, M.; Von Manteuffel, A.; Raab, C.G.

    2017-11-01

    Various of the single scale quantities in massless and massive QCD up to 3-loop order can be expressed by iterative integrals over certain classes of alphabets, from the harmonic polylogarithms to root-valued alphabets. Examples are the anomalous dimensions to 3-loop order, the massless Wilson coefficients and also different massive operator matrix elements. Starting at 3-loop order, however, also other letters appear in the case of massive operator matrix elements, the so called iterative non-iterative integrals, which are related to solutions based on complete elliptic integrals or any other special function with an integral representation that is definite but not a Volterra-type integral. After outlining the formalism leading to iterative non-iterative integrals,we present examples for both of these cases with the 3-loop anomalous dimension γ (2) qg and the structure of the principle solution in the iterative non-interative case of the 3-loop QCD corrections to the ρ-parameter.

  17. Iterative and iterative-noniterative integral solutions in 3-loop massive QCD calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Radu, C.S.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Behring, A. [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Imamoglu, E.; Van Hoeij, M. [Florida State Univ., Tallahassee, FL (United States). Dept. of Mathematics; Von Manteuffel, A. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Raab, C.G. [Johannes Kepler Univ., Linz (Austria). Inst. for Algebra

    2017-11-15

    Various of the single scale quantities in massless and massive QCD up to 3-loop order can be expressed by iterative integrals over certain classes of alphabets, from the harmonic polylogarithms to root-valued alphabets. Examples are the anomalous dimensions to 3-loop order, the massless Wilson coefficients and also different massive operator matrix elements. Starting at 3-loop order, however, also other letters appear in the case of massive operator matrix elements, the so called iterative non-iterative integrals, which are related to solutions based on complete elliptic integrals or any other special function with an integral representation that is definite but not a Volterra-type integral. After outlining the formalism leading to iterative non-iterative integrals,we present examples for both of these cases with the 3-loop anomalous dimension γ{sup (2)}{sub qg} and the structure of the principle solution in the iterative non-interative case of the 3-loop QCD corrections to the ρ-parameter.

  18. Iterative solutions of nonlinear equations with strongly accretive or strongly pseudocontractive maps

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1994-03-01

    Let E be a real q-uniformly smooth Banach space. Suppose T is a strongly pseudo-contractive map with open domain D(T) in E. Suppose further that T has a fixed point in D(T). Under various continuity assumptions on T it is proved that each of the Mann iteration process or the Ishikawa iteration method converges strongly to the unique fixed point of T. Related results deal with iterative solutions of nonlinear operator equations involving strongly accretive maps. Explicit error estimates are also provided. (author). 38 refs

  19. Iterative solution of a nonlinear operator equation

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1988-01-01

    Suppose X=L p , p ≥ 2, and K is a non-empty closed convex subset of X. Suppose T:K → X is a monotonic Lipschitzian mapping with Lipschitz constant L ≥ 1 such that, for x in K and fixed f in X, the equation x+Tx=f has a solution in K. Define the sequence (x n ) ∞ n=0 by x 0 is an element of K, x n+1 =x n +λr n , for n ≥ 1, where λ=((p-1)L 2 ) -1 and r n =f-x n -Tx n . Then, (x n ) ∞ n=0 converges strongly to a solution of x+Tx=f in K. Convergence is at least as fast as a geometric progression with ratio (1-λ) 1/2 . A related result deals with convergence of the sequence (x n ) ∞ n=0 when T is monotone and locally Lipschitzian. (author). 19 refs

  20. Milestones in the Development of Iterative Solution Methods

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe

    2010-01-01

    Roč. 2010, - (2010), s. 1-33 ISSN 2090-0147 Institutional research plan: CEZ:AV0Z30860518 Keywords : iterative solution methods * convergence acceleration methods * linear systems Subject RIV: JC - Computer Hardware ; Software http://www.hindawi.com/journals/jece/2010/972794.html

  1. Iterative solution of the inverse Cauchy problem for an elliptic equation by the conjugate gradient method

    Science.gov (United States)

    Vasil'ev, V. I.; Kardashevsky, A. M.; Popov, V. V.; Prokopev, G. A.

    2017-10-01

    This article presents results of computational experiment carried out using a finite-difference method for solving the inverse Cauchy problem for a two-dimensional elliptic equation. The computational algorithm involves an iterative determination of the missing boundary condition from the override condition using the conjugate gradient method. The results of calculations are carried out on the examples with exact solutions as well as at specifying an additional condition with random errors are presented. Results showed a high efficiency of the iterative method of conjugate gradients for numerical solution

  2. Iterative solution of nonlinear equations with strongly accretive operators

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1991-10-01

    Let E be a real Banach space with a uniformly convex dual, and let K be a nonempty closed convex and bounded subset of E. Suppose T:K→K is a strongly accretive map such that for each f is an element of K the equation Tx=f has a solution in K. It is proved that each of the two well known fixed point iteration methods (the Mann and Ishikawa iteration methods) converges strongly to a solution of the equation Tx=f. Furthermore, our method shows that such a solution is necessarily unique. Explicit error estimates are given. Our results resolve in the affirmative two open problems (J. Math. Anal. Appl. Vol 151(2) (1990), p. 460) and generalize important known results. (author). 32 refs

  3. Implementing the Gaia Astrometric Global Iterative Solution (AGIS) in Java

    OpenAIRE

    O'Mullane, William; Lammers, Uwe; Lindegren, Lennart; Hernandez, Jose; Hobbs, David

    2011-01-01

    This paper provides a description of the Java software framework which has been constructed to run the Astrometric Global Iterative Solution for the Gaia mission. This is the mathematical framework to provide the rigid reference frame for Gaia observations from the Gaia data itself. This process makes Gaia a self calibrated, and input catalogue independent, mission. The framework is highly distributed typically running on a cluster of machines with a database back end. All code is written in ...

  4. Robustness of radiative mantle plasma power exhaust solutions for ITER

    International Nuclear Information System (INIS)

    Mandrekas, J.; Stacey, W.M.; Kelly, F.A.

    1997-01-01

    The robustness of impurity-seeded radiative mantle solutions for ITER to uncertainties in several physics and operating parameters is examined. The results indicate that ∼ 50--90% of the input power can be radiated from inside the separatrix with Ne, Ar and Kr injection, without significant detriment to the core power balance or collapse of the edge temperature profile, for a wide range of conditions on the impurity pinch velocity, edge temperature pedestal, and plasma density

  5. Iterative Solutions of Nonlinear Integral Equations of Hammerstein Type

    Directory of Open Access Journals (Sweden)

    Abebe R. Tufa

    2015-11-01

    Full Text Available Let H be a real Hilbert space. Let F,K : H → H be Lipschitz monotone mappings with Lipschtiz constants L1and L2, respectively. Suppose that the Hammerstein type equation u + KFu = 0 has a solution in H. It is our purpose in this paper to construct a new explicit iterative sequence and prove strong convergence of the sequence to a solution of the generalized Hammerstein type equation. The results obtained in this paper improve and extend known results in the literature.

  6. Solution of the fully fuzzy linear systems using iterative techniques

    International Nuclear Information System (INIS)

    Dehghan, Mehdi; Hashemi, Behnam; Ghatee, Mehdi

    2007-01-01

    This paper mainly intends to discuss the iterative solution of fully fuzzy linear systems which we call FFLS. We employ Dubois and Prade's approximate arithmetic operators on LR fuzzy numbers for finding a positive fuzzy vector x-tilde which satisfies A-tildex-tilde=b, where A-tilde and b-tilde are a fuzzy matrix and a fuzzy vector, respectively. Please note that the positivity assumption is not so restrictive in applied problems. We transform FFLS and propose iterative techniques such as Richardson, Jacobi, Jacobi overrelaxation (JOR), Gauss-Seidel, successive overrelaxation (SOR), accelerated overrelaxation (AOR), symmetric and unsymmetric SOR (SSOR and USSOR) and extrapolated modified Aitken (EMA) for solving FFLS. In addition, the methods of Newton, quasi-Newton and conjugate gradient are proposed from nonlinear programming for solving a fully fuzzy linear system. Various numerical examples are also given to show the efficiency of the proposed schemes

  7. Implementing the Gaia Astrometric Global Iterative Solution (AGIS) in Java

    Science.gov (United States)

    O'Mullane, William; Lammers, Uwe; Lindegren, Lennart; Hernandez, Jose; Hobbs, David

    2011-10-01

    This paper provides a description of the Java software framework which has been constructed to run the Astrometric Global Iterative Solution for the Gaia mission. This is the mathematical framework to provide the rigid reference frame for Gaia observations from the Gaia data itself. This process makes Gaia a self calibrated, and input catalogue independent, mission. The framework is highly distributed typically running on a cluster of machines with a database back end. All code is written in the Java language. We describe the overall architecture and some of the details of the implementation.

  8. Iterative solution for nonlinear integral equations of Hammerstein type

    International Nuclear Information System (INIS)

    Chidume, C.E.; Osilike, M.O.

    1990-12-01

    Let E be a real Banach space with a uniformly convex dual, E*. Suppose N is a nonlinear set-valued accretive map of E into itself with open domain D; K is a linear single-valued accretive map with domain D(K) in E such that Im(N) is contained in D(K); K -1 exists and satisfies -1 x-K -1 y,j(x-y)>≥β||x-y|| 2 for each x, y is an element of Im(K) and some constant β > 0, where j denotes the single-valued normalized duality map on E. Suppose also that for each h is an element Im(K) the equation h is an element x+KNx has a solution x* in D. An iteration method is constructed which converges strongly to x*. Explicit error estimates are also computed. (author). 25 refs

  9. The Semianalytical Solutions for Stiff Systems of Ordinary Differential Equations by Using Variational Iteration Method and Modified Variational Iteration Method with Comparison to Exact Solutions

    Directory of Open Access Journals (Sweden)

    Mehmet Tarik Atay

    2013-01-01

    Full Text Available The Variational Iteration Method (VIM and Modified Variational Iteration Method (MVIM are used to find solutions of systems of stiff ordinary differential equations for both linear and nonlinear problems. Some examples are given to illustrate the accuracy and effectiveness of these methods. We compare our results with exact results. In some studies related to stiff ordinary differential equations, problems were solved by Adomian Decomposition Method and VIM and Homotopy Perturbation Method. Comparisons with exact solutions reveal that the Variational Iteration Method (VIM and the Modified Variational Iteration Method (MVIM are easier to implement. In fact, these methods are promising methods for various systems of linear and nonlinear stiff ordinary differential equations. Furthermore, VIM, or in some cases MVIM, is giving exact solutions in linear cases and very satisfactory solutions when compared to exact solutions for nonlinear cases depending on the stiffness ratio of the stiff system to be solved.

  10. Robust Adaptive LCMV Beamformer Based On An Iterative Suboptimal Solution

    Directory of Open Access Journals (Sweden)

    Xiansheng Guo

    2015-06-01

    Full Text Available The main drawback of closed-form solution of linearly constrained minimum variance (CF-LCMV beamformer is the dilemma of acquiring long observation time for stable covariance matrix estimates and short observation time to track dynamic behavior of targets, leading to poor performance including low signal-noise-ratio (SNR, low jammer-to-noise ratios (JNRs and small number of snapshots. Additionally, CF-LCMV suffers from heavy computational burden which mainly comes from two matrix inverse operations for computing the optimal weight vector. In this paper, we derive a low-complexity Robust Adaptive LCMV beamformer based on an Iterative Suboptimal solution (RAIS-LCMV using conjugate gradient (CG optimization method. The merit of our proposed method is threefold. Firstly, RAIS-LCMV beamformer can reduce the complexity of CF-LCMV remarkably. Secondly, RAIS-LCMV beamformer can adjust output adaptively based on measurement and its convergence speed is comparable. Finally, RAIS-LCMV algorithm has robust performance against low SNR, JNRs, and small number of snapshots. Simulation results demonstrate the superiority of our proposed algorithms.

  11. Accelerated solution of non-linear flow problems using Chebyshev iteration polynomial based RK recursions

    Energy Technology Data Exchange (ETDEWEB)

    Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.

  12. Iter

    Science.gov (United States)

    Iotti, Robert

    2015-04-01

    ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as ``Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success

  13. Diagnostic integration solutions in the ITER first wall

    International Nuclear Information System (INIS)

    Martínez, Gonzalo; Martin, Alex; Watts, Christopher; Veshchev, Evgeny; Reichle, Roger; Shigin, Pavel; Sabourin, Flavien; Gicquel, Stefan; Mitteau, Raphael; González, Jorge

    2015-01-01

    Highlights: • This paper describes the current status of the integration efforts to implement diagnostics in the ITER first wall (FW). • Some diagnostics require a plasma facing element attached to the FW, commonly known as a FW diagnostic. Their design must comply not only with their functional requirements but also with the design of the blankets. • An integrated design concept has been developed. It provides a design that respects the requirements of each system. Thermo-mechanical analyses are on-going to confirm that this configuration respects the heat loads limits on the blanket FW. - Abstract: ITER will have about 50 diagnostic systems for machine protection, plasma control and optimization, and understanding the physics of burning plasma. The implementation in the ITER machine is challenging, particularly for the in-vessel diagnostics, region defined between the vacuum vessel and first wall (FW) contours, where space is constrained by the high number of systems. This paper describes the current status of design integration efforts to implement diagnostics in the ITER first wall. These approaches are the basis for detailed optimization and improvement of conceptual interfaces designs between systems.

  14. Diagnostic integration solutions in the ITER first wall

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Gonzalo, E-mail: gonzalo.martinez@iter.org [Technical University of Catalonia (UPC), Barcelona-Tech, Barcelona (Spain); Martin, Alex; Watts, Christopher; Veshchev, Evgeny; Reichle, Roger [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Shigin, Pavel [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); National Research Nuclear University (MEPhI), Kashirskoe shosse, 115409 Moscow (Russian Federation); Sabourin, Flavien [ABMI-Groupe, Parc du Relais BatD 201 Route de SEDS, 13127 Vitrolles (France); Gicquel, Stefan; Mitteau, Raphael [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); González, Jorge [RÜECKER LYPSA, Carretera del Prat, 65, Cornellá de Llobregat (Spain)

    2015-10-15

    Highlights: • This paper describes the current status of the integration efforts to implement diagnostics in the ITER first wall (FW). • Some diagnostics require a plasma facing element attached to the FW, commonly known as a FW diagnostic. Their design must comply not only with their functional requirements but also with the design of the blankets. • An integrated design concept has been developed. It provides a design that respects the requirements of each system. Thermo-mechanical analyses are on-going to confirm that this configuration respects the heat loads limits on the blanket FW. - Abstract: ITER will have about 50 diagnostic systems for machine protection, plasma control and optimization, and understanding the physics of burning plasma. The implementation in the ITER machine is challenging, particularly for the in-vessel diagnostics, region defined between the vacuum vessel and first wall (FW) contours, where space is constrained by the high number of systems. This paper describes the current status of design integration efforts to implement diagnostics in the ITER first wall. These approaches are the basis for detailed optimization and improvement of conceptual interfaces designs between systems.

  15. IWR-solution for the ITER vacuum vessel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H., E-mail: huapeng@lut.fi [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Handroos, H. [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Pela, P. [Tekes (Finland); Wang, Y. [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland)

    2011-10-15

    The assembly of ITER vacuum vessel (VV) is still a very big challenge as the process can only be done from inside the VV. The welding of the VV assembly is carried out using the dedicated robotic systems. The main functions of the robots are: (i) measuring the actual space between every two sectors, (ii) positioning of the 150 kg splice plates between the sector shells, (iii) welding the splice plates to the sector shells, (iv) NDT of the welds, (v) repairing, including machining of the welds, (vi) He-leak tests of the welds, and (vii) the non-planned functions that may turn out. This paper presents a reasonable method to assemble the ITER VV. In this article, one parallel mobile robot, running on the track rail fixed on the wall inside the VV, is designed and tested. The assembling process, carried out by the mobile robot together with the welding robot, is presented.

  16. P-SPARSLIB: A parallel sparse iterative solution package

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Y. [Univ. of Minnesota, Minneapolis, MN (United States)

    1994-12-31

    Iterative methods are gaining popularity in engineering and sciences at a time where the computational environment is changing rapidly. P-SPARSLIB is a project to build a software library for sparse matrix computations on parallel computers. The emphasis is on iterative methods and the use of distributed sparse matrices, an extension of the domain decomposition approach to general sparse matrices. One of the goals of this project is to develop a software package geared towards specific applications. For example, the author will test the performance and usefulness of P-SPARSLIB modules on linear systems arising from CFD applications. Equally important is the goal of portability. In the long run, the author wishes to ensure that this package is portable on a variety of platforms, including SIMD environments and shared memory environments.

  17. Iterative solutions of nonlinear equations in smooth Banach spaces

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1994-05-01

    Let E be a smooth Banach space over the real field, φ not= K is contained in E closed convex and bounded, T:K → K uniformly continuous and strongly pseudo-contractive. It is proved that the Ishikawa iteration process converges strongly to the unique fixed point of T. Applications of this result to the operator equations Au=f or u+Au=f where A is a strongly accretive mapping of E into itself and under various continuity assumptions on A are also given. (author). 41 refs

  18. Iterative solution of fluid flow in finned tubes

    International Nuclear Information System (INIS)

    Syed, S.K.; Tuphome, E.G.; Wood, S.A.

    2004-01-01

    A difference-based numerical algorithm is developed to efficiently solve a class of elliptic boundary value problems up to any desired order of accuracy. Through multi-level discretization the algorithm uses the multigrid concept of nested iterations to accelerate the convergence rate at higher discretization levels and exploits the advantages of extrapolation methods to achieve higher order accuracy with less computational work. The algorithm employs the SOR method to solve the discrete problem at each discretization level by using an estimated optimum value of the relaxation parameter. The advantages of the algorithm are shown through comparison with the simple discrete method for simulations of fluid flows in finned circular ducts. (author)

  19. Iterative solution of large sparse systems of equations

    CERN Document Server

    Hackbusch, Wolfgang

    2016-01-01

    In the second edition of this classic monograph, complete with four new chapters and updated references, readers will now have access to content describing and analysing classical and modern methods with emphasis on the algebraic structure of linear iteration, which is usually ignored in other literature. The necessary amount of work increases dramatically with the size of systems, so one has to search for algorithms that most efficiently and accurately solve systems of, e.g., several million equations. The choice of algorithms depends on the special properties the matrices in practice have. An important class of large systems arises from the discretization of partial differential equations. In this case, the matrices are sparse (i.e., they contain mostly zeroes) and well-suited to iterative algorithms. The first edition of this book grew out of a series of lectures given by the author at the Christian-Albrecht University of Kiel to students of mathematics. The second edition includes quite novel approaches.

  20. Full Dynamic Analysis of Mooring Solution Candidates - First Iteration

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco

    This report covers an initial full dynamic analysis of the mooring solutions for the four wave energy converters in the project “Mooring Solutions for Large Wave Energy Converters”. The analysis tends to provide the first understanding of the layouts and provide discussion on what parameters that...

  1. A comparative study of iterative solutions to linear systems arising in quantum mechanics

    International Nuclear Information System (INIS)

    Jing Yanfei; Huang Tingzhu; Duan Yong; Carpentieri, Bruno

    2010-01-01

    This study is mainly focused on iterative solutions with simple diagonal preconditioning to two complex-valued nonsymmetric systems of linear equations arising from a computational chemistry model problem proposed by Sherry Li of NERSC. Numerical experiments show the feasibility of iterative methods to some extent when applied to the problems and reveal the competitiveness of our recently proposed Lanczos biconjugate A-orthonormalization methods to other classic and popular iterative methods. By the way, experiment results also indicate that application specific preconditioners may be mandatory and required for accelerating convergence.

  2. The Iterative Solution to Discrete-Time H∞ Control Problems for Periodic Systems

    Directory of Open Access Journals (Sweden)

    Ivan G. Ivanov

    2016-03-01

    Full Text Available This paper addresses the problem of solving discrete-time H ∞ control problems for periodic systems. The approach for solving such a type of equations is well known in the literature. However, the focus of our research is set on the numerical computation of the stabilizing solution. In particular, two effective methods for practical realization of the known iterative processes are described. Furthermore, a new iterative approach is investigated and applied. On the basis of numerical experiments, we compare the presented methods. A major conclusion is that the new iterative approach is faster than rest of the methods and it uses less RAM memory than other methods.

  3. Multiple Revolution Solutions for the Perturbed Lambert Problem using the Method of Particular Solutions and Picard Iteration

    Science.gov (United States)

    Woollands, Robyn M.; Read, Julie L.; Probe, Austin B.; Junkins, John L.

    2017-12-01

    We present a new method for solving the multiple revolution perturbed Lambert problem using the method of particular solutions and modified Chebyshev-Picard iteration. The method of particular solutions differs from the well-known Newton-shooting method in that integration of the state transition matrix (36 additional differential equations) is not required, and instead it makes use of a reference trajectory and a set of n particular solutions. Any numerical integrator can be used for solving two-point boundary problems with the method of particular solutions, however we show that using modified Chebyshev-Picard iteration affords an avenue for increased efficiency that is not available with other step-by-step integrators. We take advantage of the path approximation nature of modified Chebyshev-Picard iteration (nodes iteratively converge to fixed points in space) and utilize a variable fidelity force model for propagating the reference trajectory. Remarkably, we demonstrate that computing the particular solutions with only low fidelity function evaluations greatly increases the efficiency of the algorithm while maintaining machine precision accuracy. Our study reveals that solving the perturbed Lambert's problem using the method of particular solutions with modified Chebyshev-Picard iteration is about an order of magnitude faster compared with the classical shooting method and a tenth-twelfth order Runge-Kutta integrator. It is well known that the solution to Lambert's problem over multiple revolutions is not unique and to ensure that all possible solutions are considered we make use of a reliable preexisting Keplerian Lambert solver to warm start our perturbed algorithm.

  4. Iterative and non-iterative solutions of engine flows using ASM and k-ε turbulence models

    International Nuclear Information System (INIS)

    Khaleghi, H.; Fallah, E.

    2003-01-01

    Various turbulent models are widely developed in order to make a good prediction of turbulence phenomena in different applications. The standard k-ε model shows a poor prediction for some applications. The Reynolds Stress Model (RSM) is expected to give a better prediction of turbulent characteristics, because a separate differential equation for each Reynolds stress component is solved in this model. In order to save both time and memory in this calculation a new Algebraic Stress Model (ASM) which was developed by Lumly et al in 1995 is used for calculations of flow characteristics in the internal combustion engine chamber. With using turbulent realizability principles, this model becomes a powerful and reliable turbulence model. In this paper the abilities of the model is examined in internal combustion engine flows. The results of ASM and k-ε models are compared with the experimental data. It is shown that the poor predictions of k-ε model are modified by ASM model. Also in this paper non-iterative PISO and iterative SIMPLE solution algorithms are compared. The results show that the PISO solution algorithm is the preferred and more efficient procedure in the calculation of internal combustion engine. (author)

  5. On the spectral analysis of iterative solutions of the discretized one-group transport equation

    International Nuclear Information System (INIS)

    Sanchez, Richard

    2004-01-01

    We analyze the Fourier-mode technique used for the spectral analysis of iterative solutions of the one-group discretized transport equation. We introduce a direct spectral analysis for the iterative solution of finite difference approximations for finite slabs composed of identical layers, providing thus a complementary analysis that is more appropriate for reactor applications. Numerical calculations for the method of characteristics and with the diamond difference approximation show the appearance of antisymmetric modes generated by the iteration on boundary data. We have also utilized the discrete Fourier transform to compute the spectrum for a periodic slab containing N identical layers and shown that at the limit N → ∞ one obtains the familiar Fourier-mode solution

  6. Green function iterative solution of ground state wave function for Yukawa potential

    International Nuclear Information System (INIS)

    Zhang Zhao

    2003-01-01

    The newly developed single trajectory quadrature method is applied to solve central potentials. First, based on the series expansion method an exact analytic solution of the ground state for Hulthen potential and an approximate solution for Yukawa potential are obtained respectively. Second, the newly developed iterative method based on Green function defined by quadratures along the single trajectory is applied to solve Yukawa potential using the Coulomb solution and Hulthen solution as the trial functions respectively. The results show that a more proper choice of the trial function will give a better convergence. To further improve the convergence the iterative method is combined with the variational method to solve the ground state wave function for Yukawa potential, using variational solutions of the Coulomb and Hulthen potentials as the trial functions. The results give much better convergence. Finally, the obtained critical screen coefficient is applied to discuss the dissociate temperature of J/ψ in high temperature QGP

  7. Solution of Nonlinear Partial Differential Equations by New Laplace Variational Iteration Method

    Directory of Open Access Journals (Sweden)

    Eman M. A. Hilal

    2014-01-01

    Full Text Available The aim of this study is to give a good strategy for solving some linear and nonlinear partial differential equations in engineering and physics fields, by combining Laplace transform and the modified variational iteration method. This method is based on the variational iteration method, Laplace transforms, and convolution integral, introducing an alternative Laplace correction functional and expressing the integral as a convolution. Some examples in physical engineering are provided to illustrate the simplicity and reliability of this method. The solutions of these examples are contingent only on the initial conditions.

  8. Dynamic tritium inventory of a NET/ITER fuel cycle with lithium salt solution blanket

    International Nuclear Information System (INIS)

    Spannagel, G.; Gierszewski, P.

    1991-01-01

    At the Karlsruhe Nuclear Research Center (KfK) a flexible tool is being developed to simulate the dynamics of tritium inventories. This tool can be applied to any tritium handling system, especially to the fuel cycle components of future nuclear fusion devices. This instrument of simulation will be validated in equipment to be operated at the Karlsruhe Tritium Laboratory. In this study tritium inventories in a NET/ITER type fuel cycle involving a lithium salt solution blanket are investigated. The salt solution blanket serves as an example because it offers technological properties which are attractive in modeling the process; the example does not impair the general validity of the tool. Usually, the operation strategy of complex structures will deteriorate due to failures of the subsystems involved. These failures together with the reduced availability ensuing from them will be simulated. The example of this study is restricted to reduced availabilities of two subsystems, namely the reactor and the tritium recovery system. For these subsystems the influence of statistically varying intervals of operation is considered. Strategies we selected which are representative of expected modes of operation. In the design of a fuel cycle, care will be taken that prescribed availabilities of the subsystems can be achieved; however, the description of reactor operation is a complex task since operation breaks down into several campaigns for which rules have been specified which enable determination of whether a campaign has been successful and can be stopped. Thus, it is difficult to predict the overall behavior prior to a simulation which includes stochastic elements. Using the example mentioned above the capabilities of the tool will be illustrated; besides the presentation of results of inventory simulation, the applicability of these data will be discussed. (orig.)

  9. Solutions to mitigate heat loads due to electrons on sensitive components of ITER HNB beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Emanuele, E-mail: emanuele.sartori@gmail.com [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Veltri, Pierluigi; Dalla Palma, Mauro; Agostinetti, Piero [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Hemsworth, Ronald; Singh, Mahendrajit [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Serianni, Gianluigi [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy)

    2016-11-01

    Highlights: • Energetic electrons leaking out of the ITER HNB accelerator are simulated. • Electrons generated along the ITER HNB beamline are simulated. • Heat loads and heat load maps on cryopumps are calculated for ITER HNB and test facility. • Protection solutions that will be installed are presented and their effect discussed. - Abstract: The operation of neutral beam injectors for plasma heating and current drive in a fusion device provides challenges in the thermal management of beamline components. Sensitive components such as the cryogenic pumps at beamline periphery shall be protected from the heat flux due to stray electrons. These are emitted by the negative ion accelerator or generated along the beamline by interaction of fast electrons, ions or atoms with background gas and surfaces. In this article the case of the ITER Heating Neutral Beam (HNB) and its test facility MITICA is discussed, for which the beam parameters and the required pulse length of one hour is a major leap forward with respect to the present experience with neutral beam systems. The engineering solutions adopted for effective cryopump protection against the heat load from electrons are described. The use of three-dimensional numerical simulations of particle trajectories in the complex geometry of the beamline was needed for the quantitative estimations of the heat loads. The presented solutions were optimized to minimize the impact on gas pumping and on the functionality of other components.

  10. Solution of problems in calculus of variations via He's variational iteration method

    International Nuclear Information System (INIS)

    Tatari, Mehdi; Dehghan, Mehdi

    2007-01-01

    In the modeling of a large class of problems in science and engineering, the minimization of a functional is appeared. Finding the solution of these problems needs to solve the corresponding ordinary differential equations which are generally nonlinear. In recent years He's variational iteration method has been attracted a lot of attention of the researchers for solving nonlinear problems. This method finds the solution of the problem without any discretization of the equation. Since this method gives a closed form solution of the problem and avoids the round off errors, it can be considered as an efficient method for solving various kinds of problems. In this research He's variational iteration method will be employed for solving some problems in calculus of variations. Some examples are presented to show the efficiency of the proposed technique

  11. Engineering challenges and solutions for the ITER magnetic diagnostics flux loops

    International Nuclear Information System (INIS)

    Clough, M.; Casal, N.; Suarez Diaz, A.; Vayakis, G.; Walsh, M.

    2014-01-01

    The Magnetic Diagnostics Flux Loops (MDFL) are a key diagnostic for the ITER tokamak, providing important information about the shape of the plasma boundary, instabilities and magnetic error fields. In total, 237 flux loops will be installed on ITER, on the inside and outside walls of the Vacuum Vessel, and will range in area from 1 m 2 to 250 m 2 . This paper describes the detailed engineering design of the MDFL, explaining the solutions developed to maintain measurement accuracy within their difficult operating environment and other requirements: ultra-high vacuum conditions, strong magnetic fields, high gamma and neutron radiation doses, challenging installation, very high reliability and no maintenance during the 20 year machine lifetime. In addition, the paper discusses testing work undertaken to validate the design and outlines the remaining tasks to be performed. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. (authors)

  12. An iterative method for the solution of nonlinear systems using the Faber polynomials for annular sectors

    Energy Technology Data Exchange (ETDEWEB)

    Myers, N.J. [Univ. of Durham (United Kingdom)

    1994-12-31

    The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Varga`s results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.

  13. A convergent iterative solution of the quantum double-well potential

    International Nuclear Information System (INIS)

    Friedberg, R.; Lee, T.D.; Zhao, W.Q.; Cimenser, A.

    2001-01-01

    We present a new convergent iterative solution for the two lowest quantum wave functions ψ ev and ψ od of the Hamiltonian with a quartic double-well potential V in one dimension. By starting from a trial function, which is by itself the exact lowest even or odd eigenstate of a different Hamiltonian with a modified potential V+δV, we construct the Green's function for the modified potential. The true wave functions, ψ ev or ψ od , then satisfy a linear inhomogeneous integral equation, in which the inhomogeneous term is the trial function, and the kernel is the product of the Green's function times the sum of δV, the potential difference, and the corresponding energy shift. By iterating this equation we obtain successive approximations to the true wave function; furthermore, the approximate energy shift is also adjusted at each iteration so that the approximate wave function is well behaved everywhere. We are able to prove that this iterative procedure converges for both the energy and the wave function at all x. The effectiveness of this iterative process clearly depends on how good the trial function is, or equivalently, how small the potential difference δV is. Although each iteration brings a correction smaller than the previous one by a factor proportional to the parameter that characterizes the smallness of δV, it is not a power series expansion in the parameter. The exact tunneling information of the modified potential is, of course, contained in the Green's function; by adjusting the kernel of the integral equation via the energy shift at each iteration, we bring enough of this information into the calculation so that each approximate wave function is exponentially tuned. This is the underlying reason why the present method converges, while the usual power series expansion does not

  14. Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution

    Directory of Open Access Journals (Sweden)

    Wilson Rodríguez Calderón

    2015-04-01

    Full Text Available When we need to determine the solution of a nonlinear equation there are two options: closed-methods which use intervals that contain the root and during the iterative process reduce the size of natural way, and, open-methods that represent an attractive option as they do not require an initial interval enclosure. In general, we know open-methods are more efficient computationally though they do not always converge. In this paper we are presenting a divergence case analysis when we use the method of fixed point iteration to find the normal height in a rectangular channel using the Manning equation. To solve this problem, we propose applying two strategies (developed by authors that allow to modifying the iteration function making additional formulations of the traditional method and its convergence theorem. Although Manning equation is solved with other methods like Newton when we use the iteration method of fixed-point an interesting divergence situation is presented which can be solved with a convergence higher than quadratic over the initial iterations. The proposed strategies have been tested in two cases; a study of divergence of square root of real numbers was made previously by authors for testing. Results in both cases have been successful. We present comparisons because are important for seeing the advantage of proposed strategies versus the most representative open-methods.

  15. On extension of solutions of a simultaneous system of iterative functional equations

    Directory of Open Access Journals (Sweden)

    Janusz Matkowski

    2009-01-01

    Full Text Available Some sufficient conditions which allow to extend every local solution of a simultaneous system of equations in a single variable of the form \\[ \\varphi(x = h (x, \\varphi[f_1(x],\\ldots,\\varphi[f_m(x],\\] \\[\\varphi(x = H (x, \\varphi[F_1(x],\\ldots,\\varphi[F_m(x],\\] to a global one are presented. Extensions of solutions of functional equations, both in single and in several variables, play important role (cf. for instance [M. Kuczma, Functional equations in a single variable, Monografie Mat. 46, Polish Scientific Publishers, Warsaw, 1968, M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Encyclopedia of Mathematics and Its Applications v. 32, Cambridge, 1990, J. Matkowski, Iteration groups, commuting functions and simultaneous systems of linear functional equations, Opuscula Math. 28 (2008 4, 531-541].

  16. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. [Purdue Univ., West Lafayette, IN (United States)

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  17. Asymptotic iteration method solutions to the d-dimensional Schroedinger equation with position-dependent mass

    International Nuclear Information System (INIS)

    Yasuk, F.; Tekin, S.; Boztosun, I.

    2010-01-01

    In this study, the exact solutions of the d-dimensional Schroedinger equation with a position-dependent mass m(r)=1/(1+ζ 2 r 2 ) is presented for a free particle, V(r)=0, by using the method of point canonical transformations. The energy eigenvalues and corresponding wavefunctions for the effective potential which is to be a generalized Poeschl-Teller potential are obtained within the framework of the asymptotic iteration method.

  18. The Application Strategy of Iterative Solution Methodology to Matrix Equations in Hydraulic Solver Package, SPACE

    International Nuclear Information System (INIS)

    Na, Y. W.; Park, C. E.; Lee, S. Y.

    2009-01-01

    As a part of the Ministry of Knowledge Economy (MKE) project, 'Development of safety analysis codes for nuclear power plants', KOPEC has been developing the hydraulic solver code package applicable to the safety analyses of nuclear power plants (NPP's). The matrices of the hydraulic solver are usually sparse and may be asymmetric. In the earlier stage of this project, typical direct matrix solver packages MA48 and MA28 had been tested as matrix solver for the hydraulic solver code, SPACE. The selection was based on the reasonably reliable performance experience from their former version MA18 in RELAP computer code. In the later stage of this project, the iterative methodologies have been being tested in the SPACE code. Among a few candidate iterative solution methodologies tested so far, the biconjugate gradient stabilization methodology (BICGSTAB) has shown the best performance in the applicability test and in the application to the SPACE code. Regardless of all the merits of using the direct solver packages, there are some other aspects of tackling the iterative solution methodologies. The algorithm is much simpler and easier to handle. The potential problems related to the robustness of the iterative solution methodologies have been resolved by applying pre-conditioning methods adjusted and modified as appropriate to the application in the SPACE code. The application strategy of conjugate gradient method was introduced in detail by Schewchuk, Golub and Saad in the middle of 1990's. The application of his methodology to nuclear engineering in Korea started about the same time and is still going on and there are quite a few examples of application to neutronics. Besides, Yang introduced a conjugate gradient method programmed in C++ language. The purpose of this study is to assess the performance and behavior of the iterative solution methodology compared to those of the direct solution methodology still being preferred due to its robustness and reliability. The

  19. Analytical solution of population balance equation involving ...

    Indian Academy of Sciences (India)

    This paper presents an effective analytical simulation to solve population .... considering spatial dependence and growth, based on the so-called LPA formulation as .... But the particle size distribution is defined so that n(v,t) dx is the number of ..... that was made beforehand in the construction of the analytical solutions ...

  20. Producing Satisfactory Solutions to Scheduling Problems: An Iterative Constraint Relaxation Approach

    Science.gov (United States)

    Chien, S.; Gratch, J.

    1994-01-01

    One drawback to using constraint-propagation in planning and scheduling systems is that when a problem has an unsatisfiable set of constraints such algorithms typically only show that no solution exists. While, technically correct, in practical situations, it is desirable in these cases to produce a satisficing solution that satisfies the most important constraints (typically defined in terms of maximizing a utility function). This paper describes an iterative constraint relaxation approach in which the scheduler uses heuristics to progressively relax problem constraints until the problem becomes satisfiable. We present empirical results of applying these techniques to the problem of scheduling spacecraft communications for JPL/NASA antenna resources.

  1. Determination of Periodic Solution for Tapered Beams with Modified Iteration Perturbation Method

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Mashinchi Joubari

    2015-01-01

    Full Text Available In this paper, we implemented the Modified Iteration Perturbation Method (MIPM for approximating the periodic behavior of a tapered beam. This problem is formulated as a nonlinear ordinary differential equation with linear and nonlinear terms. The solution is quickly convergent and does not need to complicated calculations. Comparing the results of the MIPM with the exact solution shows that this method is effective and convenient. Also, it is predicated that MIPM can be potentially used in the analysis of strongly nonlinear oscillation problems accurately.

  2. Exact solitary wave solution for higher order nonlinear Schrodinger equation using He's variational iteration method

    Science.gov (United States)

    Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet

    2017-11-01

    In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.

  3. Iterative discrete ordinates solution of the equation for surface-reflected radiance

    Science.gov (United States)

    Radkevich, Alexander

    2017-11-01

    This paper presents a new method of numerical solution of the integral equation for the radiance reflected from an anisotropic surface. The equation relates the radiance at the surface level with BRDF and solutions of the standard radiative transfer problems for a slab with no reflection on its surfaces. It is also shown that the kernel of the equation satisfies the condition of the existence of a unique solution and the convergence of the successive approximations to that solution. The developed method features two basic steps: discretization on a 2D quadrature, and solving the resulting system of algebraic equations with successive over-relaxation method based on the Gauss-Seidel iterative process. Presented numerical examples show good coincidence between the surface-reflected radiance obtained with DISORT and the proposed method. Analysis of contributions of the direct and diffuse (but not yet reflected) parts of the downward radiance to the total solution is performed. Together, they represent a very good initial guess for the iterative process. This fact ensures fast convergence. The numerical evidence is given that the fastest convergence occurs with the relaxation parameter of 1 (no relaxation). An integral equation for BRDF is derived as inversion of the original equation. The potential of this new equation for BRDF retrievals is analyzed. The approach is found not viable as the BRDF equation appears to be an ill-posed problem, and it requires knowledge the surface-reflected radiance on the entire domain of both Sun and viewing zenith angles.

  4. Comparison of different iterative schemes for ISPH based on Rankine source solution

    Directory of Open Access Journals (Sweden)

    Xing Zheng

    2017-07-01

    Full Text Available Smoothed Particle Hydrodynamics (SPH method has a good adaptability for the simulation of free surface flow problems. There are two forms of SPH. One is weak compressible SPH and the other one is incompressible SPH (ISPH. Compared with the former one, ISPH method performs better in many cases. ISPH based on Rankine source solution can perform better than traditional ISPH, as it can use larger stepping length by avoiding the second order derivative in pressure Poisson equation. However, ISPH_R method needs to solve the sparse linear matrix for pressure Poisson equation, which is one of the most expensive parts during one time stepping calculation. Iterative methods are normally used for solving Poisson equation with large particle numbers. However, there are many iterative methods available and the question for using which one is still open. In this paper, three iterative methods, CGS, Bi-CGstab and GMRES are compared, which are suitable and typical for large unsymmetrical sparse matrix solutions. According to the numerical tests on different cases, still water test, dam breaking, violent tank sloshing, solitary wave slamming, the GMRES method is more efficient than CGS and Bi-CGstab for ISPH method.

  5. Analytical solution of population balance equation involving ...

    Indian Academy of Sciences (India)

    This paper presents an effective analytical simulation to solve population balance equation (PBE), involving particulate aggregation and breakage, by making use ... The domain part of the email address of all email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various ...

  6. Iterative and multigrid methods in the finite element solution of incompressible and turbulent fluid flow

    Science.gov (United States)

    Lavery, N.; Taylor, C.

    1999-07-01

    Multigrid and iterative methods are used to reduce the solution time of the matrix equations which arise from the finite element (FE) discretisation of the time-independent equations of motion of the incompressible fluid in turbulent motion. Incompressible flow is solved by using the method of reduce interpolation for the pressure to satisfy the Brezzi-Babuska condition. The k-l model is used to complete the turbulence closure problem. The non-symmetric iterative matrix methods examined are the methods of least squares conjugate gradient (LSCG), biconjugate gradient (BCG), conjugate gradient squared (CGS), and the biconjugate gradient squared stabilised (BCGSTAB). The multigrid algorithm applied is based on the FAS algorithm of Brandt, and uses two and three levels of grids with a V-cycling schedule. These methods are all compared to the non-symmetric frontal solver. Copyright

  7. Iterative approximation of the solution of a monotone operator equation in certain Banach spaces

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1988-01-01

    Let X=L p (or l p ), p ≥ 2. The solution of the equation Ax=f, f is an element of X is approximated in X by an iteration process in each of the following two cases: (i) A is a bounded linear mapping of X into itself which is also bounded below; and, (ii) A is a nonlinear Lipschitz mapping of X into itself and satisfies ≥ m |x-y| 2 , for some constant m > 0 and for all x, y in X, where j is the single-valued normalized duality mapping of X into X* (the dual space of X). A related result deals with the iterative approximation of the fixed point of a Lipschitz strictly pseudocontractive mapping in X. (author). 12 refs

  8. He's variational iteration method applied to the solution of the prey and predator problem with variable coefficients

    International Nuclear Information System (INIS)

    Yusufoglu, Elcin; Erbas, Baris

    2008-01-01

    In this Letter, a mathematical model of the problem of prey and predator is presented and He's variational iteration method is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. The results are compared with the results obtained by Adomian decomposition method and homotopy perturbation method. Comparison of the methods show that He's variational iteration method is a powerful method for obtaining approximate solutions to nonlinear equations and their systems

  9. On iterative solution of nonlinear functional equations in a metric space

    Directory of Open Access Journals (Sweden)

    Rabindranath Sen

    1983-01-01

    Full Text Available Given that A and P as nonlinear onto and into self-mappings of a complete metric space R, we offer here a constructive proof of the existence of the unique solution of the operator equation Au=Pu, where u∈R, by considering the iterative sequence Aun+1=Pun (u0 prechosen, n=0,1,2,…. We use Kannan's criterion [1] for the existence of a unique fixed point of an operator instead of the contraction mapping principle as employed in [2]. Operator equations of the form Anu=Pmu, where u∈R, n and m positive integers, are also treated.

  10. Construction of a path of MHD equilibrium solutions by an iterative method

    International Nuclear Information System (INIS)

    Kikuchi, Fumio.

    1979-09-01

    This paper shows a constructive proof of the existence of a path of solutions to a nonlinear eigenvalue problem expressed by -Δu = lambda u + in Ω, and u = -1 on deltaΩ where Ω is a two-dimensional domain with a boundary deltaΩ. This problem arises from the ideal MHD equilibria in tori. The existence proof is based on the principle of contraction mappings, which is widely employed in nonlinear problems such as those associated with bifurcation phenomena. Some comments are also given on the application of the present iteration techniques to numerical method. (author)

  11. Extensive characterisation of advanced manufacturing solutions for the ITER Central Solenoid pre-compression system

    Energy Technology Data Exchange (ETDEWEB)

    Langeslag, S.A.E., E-mail: stefanie.langeslag@cern.ch [CERN, CH-1211 Genève 23 (Switzerland); Sgobba, S. [CERN, CH-1211 Genève 23 (Switzerland); Libeyre, P. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul lez Durance Cedex (France); Marcinek, D.J. [Cracow University of Technology, Warszawska 24, 30-962 Kraków (Poland); Zhang, Z. [CERN, CH-1211 Genève 23 (Switzerland); EPFL, CH-1015 Lausanne (Switzerland)

    2015-10-15

    The ITER Central Solenoid (CS), positioned in the center of the ITER tokamak, will provide a magnetic field, contributing to the confinement of the plasma. The 13 m high CS consists of a vertical stack of 6 independently driven modules, dynamically activated. Resulting opposing currents can lead to high separation forces. A pre-compression structure is implemented to counteract these opposing forces, by realising a continuous 180 MN coil-to-coil contact loading. Preload is applied by mechanical fastening via 9 subunits, positioned along the coil stack, each consisting of 2 outer and 1 inner tie plate. The tie plates therefore need to feature outstanding mechanical behaviour in a large temperature range. High strength, Nitronic®-50 type F XM-19 austenitic stainless steel is selected as candidate material. The linearised stress distribution reaches approximately 250 MPa, leading to a required yield strength of 380 MPa at room temperature. Two different manufacturing methods are being studied for the procurement of these 15 m long tie plates. A welded solution originates from individual head- and slab-forgings, welded together by Gas Metal Arc Welding (GMAW). In parallel, a single piece forged solution is proven feasible, impressively forged in one piece by applying successive open die forging steps, followed by final machining. Maximum internal stress is experienced during cool-down to 4 K as a result of a large difference in thermal contraction between the support system and the coils. Furthermore, the varying magnetic fields in the independently driven coils introduce cyclic loading. Therefore, assessment of the two manufacturing solutions, in terms of both static and dynamic mechanical behaviour, is performed at ambient as well as cryogenic temperature. An extensive characterisation including microstructural and mechanical examination is conducted, evaluating the comparative performance of both solutions, reporting, amongst others, yield strength reaching the

  12. Novel Robot Solutions for Carrying out Field Joint Welding and Machining in the Assembly of the Vacuum Vessel of ITER

    International Nuclear Information System (INIS)

    Pessi, P.

    2009-01-01

    It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were

  13. Novel Robot Solutions for Carrying out Field Joint Welding and Machining in the Assembly of the Vacuum Vessel of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pessi, P.

    2009-07-01

    It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were

  14. DIII-D Integrated plasma control solutions for ITER and next-generation tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Ferron, J.R.; Hyatt, A.W.; La Haye, R.J.; Leuer, J.A.; Penaflor, B.G.; Walker, M.L.; Welander, A.S.; In, Y.

    2008-01-01

    Plasma control design approaches and solutions developed at DIII-D to address its control-intensive advanced tokamak (AT) mission are applicable to many problems facing ITER and other next-generation devices. A systematic approach to algorithm design, termed 'integrated plasma control,' enables new tokamak controllers to be applied operationally with minimal machine time required for tuning. Such high confidence plasma control algorithms are designed using relatively simple ('control-level') models validated against experimental response data and are verified in simulation prior to operational use. A key element of DIII-D integrated plasma control, also required in the ITER baseline control approach, is the ability to verify both controller performance and implementation by running simulations that connect directly to the actual plasma control system (PCS) that is used to operate the tokamak itself. The DIII-D PCS comprises a powerful and flexible C-based realtime code and programming infrastructure, as well as an arbitrarily scalable hardware and realtime network architecture. This software infrastructure provides a general platform for implementation and verification of realtime algorithms with arbitrary complexity, limited only by speed of execution requirements. We present a complete suite of tools (known collectively as TokSys) supporting the integrated plasma control design process, along with recent examples of control algorithms designed for the DIII-D PCS. The use of validated physics-based models and a systematic model-based design and verification process enables these control solutions to be directly applied to ITER and other next-generation tokamaks

  15. Solution of the Stokes system by boundary integral equations and fixed point iterative schemes

    International Nuclear Information System (INIS)

    Chidume, C.E.; Lubuma, M.S.

    1990-01-01

    The solution to the exterior three dimensional Stokes problem is sought in the form of a single layer potential of unknown density. This reduces the problem to a boundary integral equation of the first kind whose operator is the velocity component of the single layer potential. It is shown that this component is an isomorphism between two appropriate Sobolev spaces containing the unknown densities and the data respectively. The isomorphism corresponds to a variational problem with coercive bilinear form. The latter property allows us to consider various fixed point iterative schemes that converge to the unique solution of the integral equation. Explicit error estimates are also obtained. The successive approximations are also considered in a more computable form by using the product integration method of Atkinson. (author). 47 refs

  16. Iterative approximation of a solution of a general variational-like inclusion in Banach spaces

    International Nuclear Information System (INIS)

    Chidume, C.E.; Kazmi, K.R.; Zegeye, H.

    2002-07-01

    In this paper, we introduce a class of η-accretive mappings in a real Banach space, and show that the η-proximal point mapping for η-m-accretive mapping is Lipschitz continuous. Further we develop an iterative algorithm for a class of general variational-like inclusions involving η-accretive mappings in real Banach space, and discuss its convergence criteria. The class of η-accretive mappings includes several important classes of operators that have been studied by various authors. (author)

  17. Parallel iterative solution of the Hermite Collocation equations on GPUs II

    International Nuclear Information System (INIS)

    Vilanakis, N; Mathioudakis, E

    2014-01-01

    Hermite Collocation is a high order finite element method for Boundary Value Problems modelling applications in several fields of science and engineering. Application of this integration free numerical solver for the solution of linear BVPs results in a large and sparse general system of algebraic equations, suggesting the usage of an efficient iterative solver especially for realistic simulations. In part I of this work an efficient parallel algorithm of the Schur complement method coupled with Bi-Conjugate Gradient Stabilized (BiCGSTAB) iterative solver has been designed for multicore computing architectures with a Graphics Processing Unit (GPU). In the present work the proposed algorithm has been extended for high performance computing environments consisting of multiprocessor machines with multiple GPUs. Since this is a distributed GPU and shared CPU memory parallel architecture, a hybrid memory treatment is needed for the development of the parallel algorithm. The realization of the algorithm took place on a multiprocessor machine HP SL390 with Tesla M2070 GPUs using the OpenMP and OpenACC standards. Execution time measurements reveal the efficiency of the parallel implementation

  18. The use of iteration factors in the solution of the NLTE line transfer problem-II. Multilevel atom

    International Nuclear Information System (INIS)

    Kuzmanovska-Barandovska, O.; Atanackovic, O.

    2010-01-01

    The iteration factors method (IFM) developed in Paper I (Atanackovic-Vukmanovic and Simonneau, 1994) to solve the NLTE line transfer problem for a two-level atom model, is extended here to deal with a multilevel atom case. At the beginning of each iteration step, for each line transition, angle and frequency averaged depth-dependent iteration factors are computed from the formal solution of radiative transfer (RT) equation and used to close the system of the RT equation moments, non-linearly coupled with the statistical equilibrium (SE) equations. Non-linear coupling of the atomic level populations and the corresponding line radiation field intensities is tackled in two ways. One is based on the linearization of the equations with respect to the relevant variables, and the other on the use of the old (known from the previous iteration) level populations in the line-opacity-like terms of the SE equations. In both cases the use of quasi-invariant iteration factors provided very fast and accurate solution. The properties of the proposed procedures are investigated in detail by applying them to the solution of the prototype multilevel RT problem of Avrett and Loeser , and compared with the properties of some other methods.

  19. A HIGH ORDER SOLUTION OF THREE DIMENSIONAL TIME DEPENDENT NONLINEAR CONVECTIVE-DIFFUSIVE PROBLEM USING MODIFIED VARIATIONAL ITERATION METHOD

    Directory of Open Access Journals (Sweden)

    Pratibha Joshi

    2014-12-01

    Full Text Available In this paper, we have achieved high order solution of a three dimensional nonlinear diffusive-convective problem using modified variational iteration method. The efficiency of this approach has been shown by solving two examples. All computational work has been performed in MATHEMATICA.

  20. A new proof for the convergent iterative solution of the degenerate quantum double-well potential and its generalization

    International Nuclear Information System (INIS)

    Friedberg, R.; Lee, T.D.

    2003-01-01

    We present a new and simpler proof for the convergent iterative solution of the one-dimensional degenerate double-well potential. This new proof depends on a general theorem, called the hierarchy theorem, that shows the successive stages in the iteration to form a monotonically increasing sequence of approximations to the energy and to the wavefunction at any point x. This important property makes possible a much simpler proof of convergence than the one given before in the literature. The hierarchy theorem proven in this paper is applicable to a much wider class of potentials which includes the quartic potential

  1. Application of Four-Point Newton-EGSOR iteration for the numerical solution of 2D Porous Medium Equations

    Science.gov (United States)

    Chew, J. V. L.; Sulaiman, J.

    2017-09-01

    Partial differential equations that are used in describing the nonlinear heat and mass transfer phenomena are difficult to be solved. For the case where the exact solution is difficult to be obtained, it is necessary to use a numerical procedure such as the finite difference method to solve a particular partial differential equation. In term of numerical procedure, a particular method can be considered as an efficient method if the method can give an approximate solution within the specified error with the least computational complexity. Throughout this paper, the two-dimensional Porous Medium Equation (2D PME) is discretized by using the implicit finite difference scheme to construct the corresponding approximation equation. Then this approximation equation yields a large-sized and sparse nonlinear system. By using the Newton method to linearize the nonlinear system, this paper deals with the application of the Four-Point Newton-EGSOR (4NEGSOR) iterative method for solving the 2D PMEs. In addition to that, the efficiency of the 4NEGSOR iterative method is studied by solving three examples of the problems. Based on the comparative analysis, the Newton-Gauss-Seidel (NGS) and the Newton-SOR (NSOR) iterative methods are also considered. The numerical findings show that the 4NEGSOR method is superior to the NGS and the NSOR methods in terms of the number of iterations to get the converged solutions, the time of computation and the maximum absolute errors produced by the methods.

  2. Simultaneous inversion for hypocenters and lateral velocity variation: An iterative solution with a layered model

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, B.W.; Zandt, G.; Smith, R.B.

    1981-08-10

    An iterative inversion technique has been developed that uses the direct P and S wave arrival times from local earthquakes to compute simultaneously a three-dimensional velocity structure and relocated hypocenters. Crustal structure is modeled by subdiving flat layers into rectangular blocks. An interpolation function is used to smoothly vary velocities between blocks, allowing ray trace calculations of travel times in a three-dimensional medium. Tests using synthetic data from known models show that solutions are reasonably independent of block size and spatial distribution but are sensitive to the choice of layer thicknesses. Application of the technique to observed earthquake data from north-central Utah shown the following: (1) lateral velcoity variations in the crust as large as 7% occur over 30-km distance, (2) earthquake epicenters computed with the three-dimensional velocity structure were shifted an average of 3.0 km from location determined assuming homogeneous flat layered models, and (3) the laterally varying velocity structure correlates with anomalous variations in the local gravity and aeromagnetic fields, suggesting that the new velocity information can be valuable in acquiring a better understanding of crustal structure.

  3. Iterative solution of linear systems in the 20­th century

    NARCIS (Netherlands)

    Saad, Y.; Vorst, H.A. van der

    2000-01-01

    This paper sketches the main research developments in the area of iterative methods for solving linear systems during the 20th century. Although iterative methods for solving linear systems find their origin in the early nineteenth century (work by Gauss), the field has seen an explosion of

  4. Public Community Support and Involvement around Vandellos ITER (EISS-Vandellos 2002/2003). Final Report

    International Nuclear Information System (INIS)

    Sola, R.; Prades, A.; Riba, D.; Doval, E.; Munoz, J.; Garay, A.; Viladrich, C.

    2006-01-01

    The Report summarizes a year and a half research on the social perception and expectations regarding the possible siting of ITER in Vandellos carried out in the framework of the European ITER Site Studies (EISS). The aims were to examine the needs and preferences in terms of public information and communication; to explore the risks and benefits the community links to the Centre; and to analyse the local expectations concerning public participation. A methodological strategy integrating qualitative methodologies [semi-structured interviews to key informants at the local level, and to key research groups in the surrounding area, together with a focus group with local opinion leaders], and quantitative techniques [Computer Assisted Telephone Interview (CATI) applied to a sample of 400 participants] was implemented. The local community has lived with complex and high risk facilities for decades, thus local people has a strong familiarity with technological and energy production systems, but no experience with large research installations. In such a context the global opinion towards the possibility of hosting ITER was clearly favourable, and linked to a strong demand in terms of public information and participation. (Author) 19 refs

  5. Public Community Support and Involvement around Vandellos ITER (EISS-Vandellos 2002/2003). Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sola, R.; Prades, A.; Riba, D.; Doval, E.; Munoz, J.; Garay, A.; Viladrich, C.

    2006-07-01

    The Report summarizes a year and a half research on the social perception and expectations regarding the possible siting of ITER in Vandellos carried out in the framework of the European ITER Site Studies (EISS). The aims were to examine the needs and preferences in terms of public information and communication; to explore the risks and benefits the community links to the Centre; and to analyse the local expectations concerning public participation. A methodological strategy integrating qualitative methodologies [semi-structured interviews to key informants at the local level, and to key research groups in the surrounding area, together with a focus group with local opinion leaders], and quantitative techniques [Computer Assisted Telephone Interview (CATI) applied to a sample of 400 participants] was implemented. The local community has lived with complex and high risk facilities for decades, thus local people has a strong familiarity with technological and energy production systems, but no experience with large research installations. In such a context the global opinion towards the possibility of hosting ITER was clearly favourable, and linked to a strong demand in terms of public information and participation. (Author) 19 refs.

  6. Numerical doubly-periodic solution of the (2+1)-dimensional Boussinesq equation with initial conditions by the variational iteration method

    International Nuclear Information System (INIS)

    Inc, Mustafa

    2007-01-01

    In this Letter, a scheme is developed to study numerical doubly-periodic solutions of the (2+1)-dimensional Boussinesq equation with initial condition by the variational iteration method. As a result, the approximate and exact doubly-periodic solutions are obtained. For different modulus m, comparison between the approximate solution and the exact solution is made graphically, revealing that the variational iteration method is a powerful and effective tool to non-linear problems

  7. Iterative method of the parameter variation for solution of nonlinear functional equations

    International Nuclear Information System (INIS)

    Davidenko, D.F.

    1975-01-01

    The iteration method of parameter variation is used for solving nonlinear functional equations in Banach spaces. The authors consider some methods for numerical integration of ordinary first-order differential equations and construct the relevant iteration methods of parameter variation, both one- and multifactor. They also discuss problems of mathematical substantiation of the method, study the conditions and rate of convergence, estimate the error. The paper considers the application of the method to specific functional equations

  8. Iterating skeletons

    DEFF Research Database (Denmark)

    Dieterle, Mischa; Horstmeyer, Thomas; Berthold, Jost

    2012-01-01

    a particular skeleton ad-hoc for repeated execution turns out to be considerably complicated, and raises general questions about introducing state into a stateless parallel computation. In addition, one would strongly prefer an approach which leaves the original skeleton intact, and only uses it as a building...... block inside a bigger structure. In this work, we present a general framework for skeleton iteration and discuss requirements and variations of iteration control and iteration body. Skeleton iteration is expressed by synchronising a parallel iteration body skeleton with a (likewise parallel) state......Skeleton-based programming is an area of increasing relevance with upcoming highly parallel hardware, since it substantially facilitates parallel programming and separates concerns. When parallel algorithms expressed by skeletons involve iterations – applying the same algorithm repeatedly...

  9. The solution of radiative transfer problems in molecular bands without the LTE assumption by accelerated lambda iteration methods

    Science.gov (United States)

    Kutepov, A. A.; Kunze, D.; Hummer, D. G.; Rybicki, G. B.

    1991-01-01

    An iterative method based on the use of approximate transfer operators, which was designed initially to solve multilevel NLTE line formation problems in stellar atmospheres, is adapted and applied to the solution of the NLTE molecular band radiative transfer in planetary atmospheres. The matrices to be constructed and inverted are much smaller than those used in the traditional Curtis matrix technique, which makes possible the treatment of more realistic problems using relatively small computers. This technique converges much more rapidly than straightforward iteration between the transfer equation and the equations of statistical equilibrium. A test application of this new technique to the solution of NLTE radiative transfer problems for optically thick and thin bands (the 4.3 micron CO2 band in the Venusian atmosphere and the 4.7 and 2.3 micron CO bands in the earth's atmosphere) is described.

  10. An efficient iteration strategy for the solution of the Euler equations

    Science.gov (United States)

    Walters, R. W.; Dwoyer, D. L.

    1985-01-01

    A line Gauss-Seidel (LGS) relaxation algorithm in conjunction with a one-parameter family of upwind discretizations of the Euler equations in two-dimensions is described. The basic algorithm has the property that convergence to the steady-state is quadratic for fully supersonic flows and linear otherwise. This is in contrast to the block ADI methods (either central or upwind differenced) and the upwind biased relaxation schemes, all of which converge linearly, independent of the flow regime. Moreover, the algorithm presented here is easily enhanced to detect regions of subsonic flow embedded in supersonic flow. This allows marching by lines in the supersonic regions, converging each line quadratically, and iterating in the subsonic regions, thus yielding a very efficient iteration strategy. Numerical results are presented for two-dimensional supersonic and transonic flows containing both oblique and normal shock waves which confirm the efficiency of the iteration strategy.

  11. Iterative solution of a nonlinear system arising in phase change problems

    International Nuclear Information System (INIS)

    Williams, M.A.

    1987-01-01

    We consider several iterative methods for solving the nonlinear system arising from an enthalpy formulation of a phase change problem. We present the formulation of the problem. Implicit discretization of the governing equations results in a mildly nonlinear system at each time step. We discuss solving this system using Jacobi, Gauss-Seidel, and SOR iterations and a new modified preconditioned conjugate gradient (MPCG) algorithm. The new MPCG algorithm and its properties are discussed in detail. Numerical results are presented comparing the performance of the SOR algorithm and the MPCG algorithm with 1-step SSOR preconditioning. The MPCG algorithm exhibits a superlinear rate of convergence. The SOR algorithm exhibits a linear rate of convergence. Thus, the MPCG algorithm requires fewer iterations to converge than the SOR algorithm. However in most cases, the SOR algorithm requires less total computation time than the MPCG algorithm. Hence, the SOR algorithm appears to be more appropriate for the class of problems considered. 27 refs., 11 figs

  12. Extensive characterisation of advanced manufacturing solutions for the ITER Central Solenoid pre-compression system

    CERN Document Server

    Langeslag, S.A.E.; Libeyre, P.; Marcinek, D.J.; Zhang, Z.

    2015-01-01

    The ITER Central Solenoid (CS), positioned in the center of the ITER tokamak, will provide a magnetic field, contributing to the confinement of the plasma. The 13 m high CS consists of a vertical stack of 6 independently driven modules, dynamically activated. Resulting opposing currents can lead to high separation forces. A pre-compression structure is implemented to counteract these opposing forces, by realising a continuous 180 MN coil-to-coil contact loading. Preload is applied by mechanical fastening via 9 subunits, positioned along the coil stack, each consisting of 2 outer and 1 inner tie plate. The tie plates therefore need to feature outstanding mechanical behaviour in a large temperature range. High strength, Nitronic®-50 type F XM-19 austenitic stainless steel is selected as candidate material. The linearised stress distribution reaches approximately 250 MPa, leading to a required yield strength of 380 MPa at room temperature. Two different manufacturing methods are being studied for the procuremen...

  13. Convergence of the iterative solution of loop equations in planar QCD2

    International Nuclear Information System (INIS)

    Marchesini, G.; Onofri, E.

    1985-01-01

    A numerical algorithm recently introduced to solve the loop equations in lattice gauge theory is tested on a simple model with a phase transition: the planar limit of QCD in two dimensions. We show that the algorithm reproduces the correct known results in both strong and weak coupling phases, provided that a relaxation parameter a la Gauss-Seidel is introduced in the iteration process. We also give some analytical explanation of the applicability of the method. (orig.)

  14. Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method

    International Nuclear Information System (INIS)

    Arum Sari, Resita; Suparmi, A; Cari, C

    2016-01-01

    The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number n r causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function. (paper)

  15. Efficient parallel iterative solvers for the solution of large dense linear systems arising from the boundary element method in electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Alleon, G. [EADS-CCR, 31 - Blagnac (France); Carpentieri, B.; Du, I.S.; Giraud, L.; Langou, J.; Martin, E. [Cerfacs, 31 - Toulouse (France)

    2003-07-01

    The boundary element method has become a popular tool for the solution of Maxwell's equations in electromagnetism. It discretizes only the surface of the radiating object and gives rise to linear systems that are smaller in size compared to those arising from finite element or finite difference discretizations. However, these systems are prohibitively demanding in terms of memory for direct methods and challenging to solve by iterative methods. In this paper we address the iterative solution via preconditioned Krylov methods of electromagnetic scattering problems expressed in an integral formulation, with main focus on the design of the pre-conditioner. We consider an approximate inverse method based on the Frobenius-norm minimization with a pattern prescribed in advance. The pre-conditioner is constructed from a sparse approximation of the dense coefficient matrix, and the patterns both for the pre-conditioner and for the coefficient matrix are computed a priori using geometric information from the mesh. We describe the implementation of the approximate inverse in an out-of-core parallel code that uses multipole techniques for the matrix-vector products, and show results on the numerical scalability of our method on systems of size up to one million unknowns. We propose an embedded iterative scheme based on the GMRES method and combined with multipole techniques, aimed at improving the robustness of the approximate inverse for large problems. We prove by numerical experiments that the proposed scheme enables the solution of very large and difficult problems efficiently at reduced computational and memory cost. Finally we perform a preliminary study on a spectral two-level pre-conditioner to enhance the robustness of our method. This numerical technique exploits spectral information of the preconditioned systems to build a low rank-update of the pre-conditioner. (authors)

  16. Efficient parallel iterative solvers for the solution of large dense linear systems arising from the boundary element method in electromagnetism

    International Nuclear Information System (INIS)

    Alleon, G.; Carpentieri, B.; Du, I.S.; Giraud, L.; Langou, J.; Martin, E.

    2003-01-01

    The boundary element method has become a popular tool for the solution of Maxwell's equations in electromagnetism. It discretizes only the surface of the radiating object and gives rise to linear systems that are smaller in size compared to those arising from finite element or finite difference discretizations. However, these systems are prohibitively demanding in terms of memory for direct methods and challenging to solve by iterative methods. In this paper we address the iterative solution via preconditioned Krylov methods of electromagnetic scattering problems expressed in an integral formulation, with main focus on the design of the pre-conditioner. We consider an approximate inverse method based on the Frobenius-norm minimization with a pattern prescribed in advance. The pre-conditioner is constructed from a sparse approximation of the dense coefficient matrix, and the patterns both for the pre-conditioner and for the coefficient matrix are computed a priori using geometric information from the mesh. We describe the implementation of the approximate inverse in an out-of-core parallel code that uses multipole techniques for the matrix-vector products, and show results on the numerical scalability of our method on systems of size up to one million unknowns. We propose an embedded iterative scheme based on the GMRES method and combined with multipole techniques, aimed at improving the robustness of the approximate inverse for large problems. We prove by numerical experiments that the proposed scheme enables the solution of very large and difficult problems efficiently at reduced computational and memory cost. Finally we perform a preliminary study on a spectral two-level pre-conditioner to enhance the robustness of our method. This numerical technique exploits spectral information of the preconditioned systems to build a low rank-update of the pre-conditioner. (authors)

  17. A Novel Iterative Scheme for the Very Fast and Accurate Solution of Non-LTE Radiative Transfer Problems

    Science.gov (United States)

    Trujillo Bueno, J.; Fabiani Bendicho, P.

    1995-12-01

    Iterative schemes based on Gauss-Seidel (G-S) and optimal successive over-relaxation (SOR) iteration are shown to provide a dramatic increase in the speed with which non-LTE radiation transfer (RT) problems can be solved. The convergence rates of these new RT methods are identical to those of upper triangular nonlocal approximate operator splitting techniques, but the computing time per iteration and the memory requirements are similar to those of a local operator splitting method. In addition to these properties, both methods are particularly suitable for multidimensional geometry, since they neither require the actual construction of nonlocal approximate operators nor the application of any matrix inversion procedure. Compared with the currently used Jacobi technique, which is based on the optimal local approximate operator (see Olson, Auer, & Buchler 1986), the G-S method presented here is faster by a factor 2. It gives excellent smoothing of the high-frequency error components, which makes it the iterative scheme of choice for multigrid radiative transfer. This G-S method can also be suitably combined with standard acceleration techniques to achieve even higher performance. Although the convergence rate of the optimal SOR scheme developed here for solving non-LTE RT problems is much higher than G-S, the computing time per iteration is also minimal, i.e., virtually identical to that of a local operator splitting method. While the conventional optimal local operator scheme provides the converged solution after a total CPU time (measured in arbitrary units) approximately equal to the number n of points per decade of optical depth, the time needed by this new method based on the optimal SOR iterations is only √n/2√2. This method is competitive with those that result from combining the above-mentioned Jacobi and G-S schemes with the best acceleration techniques. Contrary to what happens with the local operator splitting strategy currently in use, these novel

  18. ITER EDA newsletter. V. 10, no. 1

    International Nuclear Information System (INIS)

    2001-01-01

    This article provides a summary of results of the ITER Physics Committee Meeting, which was held on 14 October 2000 at the ITER Garching Joint Work Site, Germany. The ITER Physics Committee is the body responsible for overseeing, through the seven specialized Expert Groups, the R and D activities contributed voluntarily by the ITER Parties. The Parties' Physics Designated Persons, the Chairs and Co-Chairs of ITER Physics Expert Groups and the JCT members involved attended the Meeting. As usual, the meeting was chaired by the ITER Director, Dr. R. Aymar, who reported on the status of the ITER EDA. Dr. Aymar described the steps being taken in preparing the ITER-FEAT Final Design Report (FDR), and further stated that the Report would be available in time to be of benefit to the Negotiations on the ITER Joint Implementation, expected to start around May 2001. All Parties recognize that the ITER Physics Expert Group structure has been useful in focusing the tokamak physics activity on the ITER-relevant issues and provides an efficient worldwide collaboration on confirming innovative solutions. The concept of an international workshop to be organized as a pre-meeting of each Expert Group meeting, in order to involve U.S. scientists in the discussion of generic tokamak physics issues, was introduced in 2000, with some success, and its goal should be pursued

  19. Use Residual Correction Method and Monotone Iterative Technique to Calculate the Upper and Lower Approximate Solutions of Singularly Perturbed Non-linear Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Chi-Chang Wang

    2013-09-01

    Full Text Available This paper seeks to use the proposed residual correction method in coordination with the monotone iterative technique to obtain upper and lower approximate solutions of singularly perturbed non-linear boundary value problems. First, the monotonicity of a non-linear differential equation is reinforced using the monotone iterative technique, then the cubic-spline method is applied to discretize and convert the differential equation into the mathematical programming problems of an inequation, and finally based on the residual correction concept, complex constraint solution problems are transformed into simpler questions of equational iteration. As verified by the four examples given in this paper, the method proposed hereof can be utilized to fast obtain the upper and lower solutions of questions of this kind, and to easily identify the error range between mean approximate solutions and exact solutions.

  20. A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems

    Science.gov (United States)

    Heinkenschloss, Matthias

    2005-01-01

    We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.

  1. Solution of Fractional Partial Differential Equations in Fluid Mechanics by Extension of Some Iterative Method

    Directory of Open Access Journals (Sweden)

    A. A. Hemeda

    2013-01-01

    Full Text Available An extension of the so-called new iterative method (NIM has been used to handle linear and nonlinear fractional partial differential equations. The main property of the method lies in its flexibility and ability to solve nonlinear equations accurately and conveniently. Therefore, a general framework of the NIM is presented for analytical treatment of fractional partial differential equations in fluid mechanics. The fractional derivatives are described in the Caputo sense. Numerical illustrations that include the fractional wave equation, fractional Burgers equation, fractional KdV equation, fractional Klein-Gordon equation, and fractional Boussinesq-like equation are investigated to show the pertinent features of the technique. Comparison of the results obtained by the NIM with those obtained by both Adomian decomposition method (ADM and the variational iteration method (VIM reveals that the NIM is very effective and convenient. The basic idea described in this paper is expected to be further employed to solve other similar linear and nonlinear problems in fractional calculus.

  2. Direct and iterative algorithms for the parallel solution of the one-dimensional macroscopic Navier-Stokes equations

    International Nuclear Information System (INIS)

    Doster, J.M.; Sills, E.D.

    1986-01-01

    Current efforts are under way to develop and evaluate numerical algorithms for the parallel solution of the large sparse matrix equations associated with the finite difference representation of the macroscopic Navier-Stokes equations. Previous work has shown that these equations can be cast into smaller coupled matrix equations suitable for solution utilizing multiple computer processors operating in parallel. The individual processors themselves may exhibit parallelism through the use of vector pipelines. This wor, has concentrated on the one-dimensional drift flux form of the Navier-Stokes equations. Direct and iterative algorithms that may be suitable for implementation on parallel computer architectures are evaluated in terms of accuracy and overall execution speed. This work has application to engineering and training simulations, on-line process control systems, and engineering workstations where increased computational speeds are required

  3. Use of the iterative solution method for coupled finite element and boundary element modeling

    International Nuclear Information System (INIS)

    Koteras, J.R.

    1993-07-01

    Tunnels buried deep within the earth constitute an important class geomechanics problems. Two numerical techniques used for the analysis of geomechanics problems, the finite element method and the boundary element method, have complementary characteristics for applications to problems of this type. The usefulness of combining these two methods for use as a geomechanics analysis tool has been recognized for some time, and a number of coupling techniques have been proposed. However, not all of them lend themselves to efficient computational implementations for large-scale problems. This report examines a coupling technique that can form the basis for an efficient analysis tool for large scale geomechanics problems through the use of an iterative equation solver

  4. Iterative solution of general sparse linear systems on clusters of workstations

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Gen-Ching; Saad, Y. [Univ. of Minnesota, Minneapolis, MN (United States)

    1996-12-31

    Solving sparse irregularly structured linear systems on parallel platforms poses several challenges. First, sparsity makes it difficult to exploit data locality, whether in a distributed or shared memory environment. A second, perhaps more serious challenge, is to find efficient ways to precondition the system. Preconditioning techniques which have a large degree of parallelism, such as multicolor SSOR, often have a slower rate of convergence than their sequential counterparts. Finally, a number of other computational kernels such as inner products could ruin any gains gained from parallel speed-ups, and this is especially true on workstation clusters where start-up times may be high. In this paper we discuss these issues and report on our experience with PSPARSLIB, an on-going project for building a library of parallel iterative sparse matrix solvers.

  5. Multiple Solutions of Nonlinear Boundary Value Problems of Fractional Order: A New Analytic Iterative Technique

    Directory of Open Access Journals (Sweden)

    Omar Abu Arqub

    2014-01-01

    Full Text Available The purpose of this paper is to present a new kind of analytical method, the so-called residual power series, to predict and represent the multiplicity of solutions to nonlinear boundary value problems of fractional order. The present method is capable of calculating all branches of solutions simultaneously, even if these multiple solutions are very close and thus rather difficult to distinguish even by numerical techniques. To verify the computational efficiency of the designed proposed technique, two nonlinear models are performed, one of them arises in mixed convection flows and the other one arises in heat transfer, which both admit multiple solutions. The results reveal that the method is very effective, straightforward, and powerful for formulating these multiple solutions.

  6. A New Iterative Scheme for the Solution of Tenth Order Boundary ...

    African Journals Online (AJOL)

    Tonistar

    Nigerian Journal of Basic and Applied Science (June, 2016), 24(1): 76-81 ... boundary value problems into a system of ordinary differential equations (ODEs). The trial solution is introduced ... of applied mathematics, sciences and engineering.

  7. Maximal saddle solution of a nonlinear elliptic equation involving the ...

    Indian Academy of Sciences (India)

    College of Mathematics and Econometrics, Hunan University, Changsha 410082, China. E-mail: huahuiyan@163.com; duzr@hnu.edu.cn. MS received 3 September 2012; revised 20 December 2012. Abstract. A saddle solution is called maximal saddle solution if its absolute value is not smaller than those absolute values ...

  8. Experimental proof of a load resilient external matching solution for the ITER ICRH system

    International Nuclear Information System (INIS)

    Vervier, M.; Messiaen, A.; Dumortier, P.; Lamalle, P.

    2005-01-01

    A reliable load resilient external matching scheme for the ITER ICRH system has been successfully tested on the mock-up of the external matching system with variable plasma load simulation. To avoid the deleterious mutual coupling effects the power has been passively distributed among the upper half and the bottom half of the 24 radiating straps of the antenna plug. In this plug the straps are grouped in 8 triplets by 4-ports junctions. The 4 top and 4 bottom triplets are respectively put in parallel outside the antenna plug near a voltage anti-node by means of T junctions. The load resilient matching is then obtained by a 4 parameters single 'conjugate T' (CT) configuration. For an antenna loading variation of about 1 to 8 Ω/m the VSWR at the power source remains below 1.3. The maximum voltage along the line remains equal to the one in the antenna plug and there is a fair power share between the straps. A π0π0 toroidal phasing is easily obtained. The poloidal phasing between the top and bottom triplets is determined by the loading. A straightforward matching procedure is described. Good load resilience is also obtained by replacing the CT by one hybrid

  9. Technical issues and solutions on ITER first wall beryllium application. Industrial viewpoint

    International Nuclear Information System (INIS)

    Iwadachi, T.; Uda, M.; Ito, M.; Miyakawa, M.; Ibuki, M.

    2004-01-01

    Beryllium is selected as reference armor material of ITER primary first wall and is joined to the copper alloy heat sink such as CuCrZr or Dispersion Strengthened Copper (DSCu) Various joining technologies have been successfully developed and the manufacturing possibilities of large size first wall panels with beryllium armor has been demonstrated. Based on such results, further technical improvement is needed to reduce manufacturing cost and ensure the reliability of joining in actual size first wall. The technical issues to optimize the fabrication process of beryllium attachment were shown in this paper from an industrial point of view. Determination of the optimum size and the surface qualities of beryllium tiles are important issues in term of the material specification to ensure joining reliability and to reduce cost. The consolidation method and the finish machining methods of beryllium tiles are also critical in terms of material cost. These items should be determined by paying concern to the accommodation of the joining methods. The selections of slitting methods for attached beryllium have a great influence on fabrication cost. In the actual fabrication of beryllium attachment, safety provisions for exposure to beryllium in working environment and the recycling of the waste from the fabrication processes will be concerned sufficiently. (author)

  10. Iterative methods for the solution of very large complex symmetric linear systems of equations in electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, M.; Weiland, T. [Technische Hochschule Darmstadt (Germany)

    1996-12-31

    In the field of computational electrodynamics the discretization of Maxwell`s equations using the Finite Integration Theory (FIT) yields very large, sparse, complex symmetric linear systems of equations. For this class of complex non-Hermitian systems a number of conjugate gradient-type algorithms is considered. The complex version of the biconjugate gradient (BiCG) method by Jacobs can be extended to a whole class of methods for complex-symmetric algorithms SCBiCG(T, n), which only require one matrix vector multiplication per iteration step. In this class the well-known conjugate orthogonal conjugate gradient (COCG) method for complex-symmetric systems corresponds to the case n = 0. The case n = 1 yields the BiCGCR method which corresponds to the conjugate residual algorithm for the real-valued case. These methods in combination with a minimal residual smoothing process are applied separately to practical 3D electro-quasistatical and eddy-current problems in electrodynamics. The practical performance of the SCBiCG methods is compared with other methods such as QMR and TFQMR.

  11. Iterative solution to the optimal poison management problem in pressurized water reactors

    International Nuclear Information System (INIS)

    Colletti, J.P.; Levine, S.H.; Lewis, J.B.

    1983-01-01

    A new method for solving the optimal poison management problem for a multiregion pressurized water reactor has been developed. The optimization objective is to maximize the end-of-cycle core excess reactivity for any given beginning-of-cycle fuel loading. The problem is treated as an optimal control problem with the region burnup and control absorber concentrations acting as the state and control variables, respectively. Constraints are placed on the power peaking, soluble boron concentration, and control absorber concentrations. The solution method consists of successive relinearizations of the system equations resulting in a sequence of nonlinear programming problems whose solutions converge to the desired optimal control solution. Application of the method to several test problems based on a simplified three-region reactor suggests a bang-bang optimal control strategy with the peak power location switching between the inner and outer regions of the core and the critical soluble boron concentration as low as possible throughout the cycle

  12. Solution of adsorption problems involving steep moving profiles

    DEFF Research Database (Denmark)

    Kiil, Søren; Bhatia, Suresh K.

    1998-01-01

    The moving finite element collocation method proposed by Kiil et al. (1995) for solution of problems with steep gradients is further developed to solve transient problems arising in the field of adsorption. The technique is applied to a model of adsorption in solids with bidisperse pore structures....... Numerical solutions were found to match the analytical solution when it exists (i.e. when the adsorption isotherm is linear). Results of this application study show that the method is simple yet sufficiently accurate for use in adsorption problems with steep moving gradients, where global collocation...

  13. Status of reliability in determining SDDR for manual maintenance activities in ITER: Quality assessment of relevant activation cross sections involved

    International Nuclear Information System (INIS)

    Garcia, R.; Garcia, M.; Pampin, R.; Sanz, J.

    2016-01-01

    Highlights: • Feasibility of manual maintenance activities in ITER port cell and port interspace. • Activation of relevant materials and components placed in the current ITER model. • Dominant radionuclides and pathways for shutdown dose rate in ITER. • Quality analysis of typically used EAF and TENDL activation libraries is performed. • EAF performance found as trustworthy with slight recommended improvements. - Abstract: This paper assesses the quality of the EAF-2007 and 2010 activation cross sections for relevant reactions in the determination of the Shutdown Dose Rate (SDDR) in the Port Cell (PC) and Port Interspace (PI) areas of ITER. For each of relevant ITER materials, dominant radionuclides responsible of SDDR and their production pathways are listed. This information comes from a review of the recent reports/papers about SDDR in ITER and own calculations. A total of 26 relevant pathways are found. The quality of these cross sections pathways is assessed following EAF validation procedure, and for those found as not validated last TENDL library versions have been investigated in order to check possible improvements when compared to EAF. The use of EAF libraries is found as trustworthy and it is recommended for the prediction of SDDR in the ITER PC and PI. However, 3 cross section reactions are considered for further improvement: Co59(n,2n)Co58, Cu63(n,g)Cu64 and Cr50(n,g)Cr51.

  14. Status of reliability in determining SDDR for manual maintenance activities in ITER: Quality assessment of relevant activation cross sections involved

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, R., E-mail: rgarciam@ind.uned.es [UNED, Power Engineering Department, C/Juan del Rosal 12, 28040 Madrid (Spain); Garcia, M. [UNED, Power Engineering Department, C/Juan del Rosal 12, 28040 Madrid (Spain); Pampin, R. [F4E, Torres Diagonal Litoral B3, Barcelona (Spain); Sanz, J. [UNED, Power Engineering Department, C/Juan del Rosal 12, 28040 Madrid (Spain)

    2016-11-15

    Highlights: • Feasibility of manual maintenance activities in ITER port cell and port interspace. • Activation of relevant materials and components placed in the current ITER model. • Dominant radionuclides and pathways for shutdown dose rate in ITER. • Quality analysis of typically used EAF and TENDL activation libraries is performed. • EAF performance found as trustworthy with slight recommended improvements. - Abstract: This paper assesses the quality of the EAF-2007 and 2010 activation cross sections for relevant reactions in the determination of the Shutdown Dose Rate (SDDR) in the Port Cell (PC) and Port Interspace (PI) areas of ITER. For each of relevant ITER materials, dominant radionuclides responsible of SDDR and their production pathways are listed. This information comes from a review of the recent reports/papers about SDDR in ITER and own calculations. A total of 26 relevant pathways are found. The quality of these cross sections pathways is assessed following EAF validation procedure, and for those found as not validated last TENDL library versions have been investigated in order to check possible improvements when compared to EAF. The use of EAF libraries is found as trustworthy and it is recommended for the prediction of SDDR in the ITER PC and PI. However, 3 cross section reactions are considered for further improvement: Co59(n,2n)Co58, Cu63(n,g)Cu64 and Cr50(n,g)Cr51.

  15. ITER Council proceedings: 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Records of the third ITER Council Meeting (IC-3), held on 21-22 April 1993, in Tokyo, Japan, and the fourth ITER Council Meeting (IC-4) held on 29 September - 1 October 1993 in San Diego, USA, are presented, giving essential information on the evolution of the ITER Engineering Design Activities (EDA), such as the text of the draft of Protocol 2 further elaborated in ''ITER EDA Agreement and Protocol 2'' (ITER EDA Documentation Series No. 5), recommendations on future work programmes: a description of technology R and D tasks; the establishment of a trust fund for the ITER EDA activities; arrangements for Visiting Home Team Personnel; the general framework for the involvement of other countries in the ITER EDA; conditions for the involvement of Canada in the Euratom Contribution to the ITER EDA; and other attachments as parts of the Records of Decision of the aforementioned ITER Council Meetings

  16. ITER council proceedings: 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Records of the third ITER Council Meeting (IC-3), held on 21-22 April 1993, in Tokyo, Japan, and the fourth ITER Council Meeting (IC-4) held on 29 September - 1 October 1993 in San Diego, USA, are presented, giving essential information on the evolution of the ITER Engineering Design Activities (EDA), such as the text of the draft of Protocol 2 further elaborated in ``ITER EDA Agreement and Protocol 2`` (ITER EDA Documentation Series No. 5), recommendations on future work programmes: a description of technology R and D tastes; the establishment of a trust fund for the ITER EDA activities; arrangements for Visiting Home Team Personnel; the general framework for the involvement of other countries in the ITER EDA; conditions for the involvement of Canada in the Euratom Contribution to the ITER EDA; and other attachments as parts of the Records of Decision of the aforementioned ITER Council Meetings.

  17. Antarctica, Greenland and Gulf of Alaska Land-Ice Evolution from an Iterated GRACE Global Mascon Solution

    Science.gov (United States)

    Luthcke, Scott B.; Sabaka, T. J.; Loomis, B. D.; Arendt, A. A.; McCarthy, J. J.; Camp, J.

    2013-01-01

    We have determined the ice mass evolution of the Antarctica and Greenland ice sheets (AIS and GIS) and Gulf of Alaska (GOA) glaciers from a new GRACE global solution of equal-area surface mass concentration parcels (mascons) in equivalent height of water. The mascons were estimated directly from the reduction of the inter-satellite K-band range-rate (KBRR) observations, taking into account the full noise covariance, and formally iterating the solution. The new solution increases signal recovery while reducing the GRACE KBRR observation residuals. The mascons were estimated with 10 day and 1 arc degree equal-area sampling, applying anisotropic constraints. An ensemble empirical mode decomposition adaptive filter was applied to the mascon time series to compute annual mass balances. The details and causes of the spatial and temporal variability of the land-ice regions studied are discussed. The estimated mass trend over the total GIS, AIS and GOA glaciers for the time period 1 December 2003 to 1 December 2010 is -380 plus or minus 31 Gt a(exp -1), equivalent to -1.05 plus or minus 0.09 mma(exp -1) sea-level rise. Over the same time period we estimate the mass acceleration to be -41 plus or minus 27 Gt a(exp -2), equivalent to a 0.11 plus or minus 0.08 mm a(exp -2) rate of change in sea level. The trends and accelerations are dependent on significant seasonal and annual balance anomalies.

  18. A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation

    DEFF Research Database (Denmark)

    Our work is concerned with the development of a generic high-performance library for scientific computing. The library is targeted for assembling flexible-order finite-difference solvers for PDEs. Our goal is to enable fast solution of large PDE systems, fully exploiting the massively parallel ar...

  19. A Fast Mixed-Precision Strategy for Iterative Gpu-Based Solution of the Laplace Equation

    DEFF Research Database (Denmark)

    Our work is concerned with the development of a generic high-performance library for scientific computing. The library is targeted for assembling flexible-order finite-difference solvers for PDEs. Our goal is to enable fast solution of large PDE systems, fully exploiting the massively parallel ar...

  20. Analysis of twisted tape solutions for cooling of the residual ion dump of the ITER HNB

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa Guamán, Santiago, E-mail: santiago.ochoa@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hanke, Stefan [Karlsruhe Institute of Technology (KIT), Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Sartori, Emanuele; Palma, Mauro Dalla [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padua (Italy)

    2016-11-01

    Highlights: • Due to manufacturing deviations, the cooling channels are made by double side drilling. • Twisted tapes with two different thicknesses are necessary for a better cooling performance. • The manufacturing of cooling channels and twisted tapes was demonstrated to be feasible. • The water critical heat flux safety margin is higher than 1.5 for the total channel length. • Geometry optimization shown better cooling performance and higher CHF safety margins. - Abstract: The ITER HNB residual ion dump is exposed to a heat load about 17 MW on the dump panels with a peak power density of 7 MW/m{sup 2}. Water flows through cooling channels, 2 m long and 14 mm diameter, realized by double side deep drilling. Unavoidable manufacturing deviations could generate a discontinuity at the channel length center. It is necessary to verify the influence of issues such as cavitation, fluid stagnation, low boiling margins, among others, in the cooling performance. Assuming worst case conditions, analytical and CFD methods showed a subcooled boiling operation with high safety margins to the water critical heat flux. Additionally, by analysing several thermo-hydraulic parameters, the twisted tape cross sections were optimized. Per cooling channel, two twisted tapes are inserted from the sides of the panels, thus, a study of a separation gap between them at the channel length center presented an optimal distance. This paper demonstrates that common machining techniques and drilling tolerances allow the manufacturing of panels able to withstand safely the required beam operation heat loads, even under worst case operation scenarios.

  1. Communications oriented programming of parallel iterative solutions of sparse linear systems

    Science.gov (United States)

    Patrick, M. L.; Pratt, T. W.

    1986-01-01

    Parallel algorithms are developed for a class of scientific computational problems by partitioning the problems into smaller problems which may be solved concurrently. The effectiveness of the resulting parallel solutions is determined by the amount and frequency of communication and synchronization and the extent to which communication can be overlapped with computation. Three different parallel algorithms for solving the same class of problems are presented, and their effectiveness is analyzed from this point of view. The algorithms are programmed using a new programming environment. Run-time statistics and experience obtained from the execution of these programs assist in measuring the effectiveness of these algorithms.

  2. New numerical method for iterative or perturbative solution of quantum field theory

    International Nuclear Information System (INIS)

    Hahn, S.C.; Guralnik, G.S.

    1999-01-01

    A new computational idea for continuum quantum Field theories is outlined. This approach is based on the lattice source Galerkin methods developed by Garcia, Guralnik and Lawson. The method has many promising features including treating fermions on a relatively symmetric footing with bosons. As a spin-off of the technology developed for 'exact' solutions, the numerical methods used have a special case application to perturbation theory. We are in the process of developing an entirely numerical approach to evaluating graphs to high perturbative order. (authors)

  3. Numerical Solutions for Nonlinear High Damping Rubber Bearing Isolators: Newmark's Method with Netwon-Raphson Iteration Revisited

    Science.gov (United States)

    Markou, A. A.; Manolis, G. D.

    2018-03-01

    Numerical methods for the solution of dynamical problems in engineering go back to 1950. The most famous and widely-used time stepping algorithm was developed by Newmark in 1959. In the present study, for the first time, the Newmark algorithm is developed for the case of the trilinear hysteretic model, a model that was used to describe the shear behaviour of high damping rubber bearings. This model is calibrated against free-vibration field tests implemented on a hybrid base isolated building, namely the Solarino project in Italy, as well as against laboratory experiments. A single-degree-of-freedom system is used to describe the behaviour of a low-rise building isolated with a hybrid system comprising high damping rubber bearings and low friction sliding bearings. The behaviour of the high damping rubber bearings is simulated by the trilinear hysteretic model, while the description of the behaviour of the low friction sliding bearings is modeled by a linear Coulomb friction model. In order to prove the effectiveness of the numerical method we compare the analytically solved trilinear hysteretic model calibrated from free-vibration field tests (Solarino project) against the same model solved with the Newmark method with Netwon-Raphson iteration. Almost perfect agreement is observed between the semi-analytical solution and the fully numerical solution with Newmark's time integration algorithm. This will allow for extension of the trilinear mechanical models to bidirectional horizontal motion, to time-varying vertical loads, to multi-degree-of-freedom-systems, as well to generalized models connected in parallel, where only numerical solutions are possible.

  4. Numerical Solutions for Nonlinear High Damping Rubber Bearing Isolators: Newmark’s Method with Netwon-Raphson Iteration Revisited

    Directory of Open Access Journals (Sweden)

    Markou A.A.

    2018-03-01

    Full Text Available Numerical methods for the solution of dynamical problems in engineering go back to 1950. The most famous and widely-used time stepping algorithm was developed by Newmark in 1959. In the present study, for the first time, the Newmark algorithm is developed for the case of the trilinear hysteretic model, a model that was used to describe the shear behaviour of high damping rubber bearings. This model is calibrated against free-vibration field tests implemented on a hybrid base isolated building, namely the Solarino project in Italy, as well as against laboratory experiments. A single-degree-of-freedom system is used to describe the behaviour of a low-rise building isolated with a hybrid system comprising high damping rubber bearings and low friction sliding bearings. The behaviour of the high damping rubber bearings is simulated by the trilinear hysteretic model, while the description of the behaviour of the low friction sliding bearings is modeled by a linear Coulomb friction model. In order to prove the effectiveness of the numerical method we compare the analytically solved trilinear hysteretic model calibrated from free-vibration field tests (Solarino project against the same model solved with the Newmark method with Netwon-Raphson iteration. Almost perfect agreement is observed between the semi-analytical solution and the fully numerical solution with Newmark’s time integration algorithm. This will allow for extension of the trilinear mechanical models to bidirectional horizontal motion, to time-varying vertical loads, to multi-degree-of-freedom-systems, as well to generalized models connected in parallel, where only numerical solutions are possible.

  5. Physics fundamentals for ITER

    International Nuclear Information System (INIS)

    Rosenbluth, M.N.

    1999-01-01

    The design of an experimental thermonuclear reactor requires both cutting-edge technology and physics predictions precise enough to carry forward the design. The past few years of worldwide physics studies have seen great progress in understanding, innovation and integration. We will discuss this progress and the remaining issues in several key physics areas. (1) Transport and plasma confinement. A worldwide database has led to an 'empirical scaling law' for tokamaks which predicts adequate confinement for the ITER fusion mission, albeit with considerable but acceptable uncertainty. The ongoing revolution in computer capabilities has given rise to new gyrofluid and gyrokinetic simulations of microphysics which may be expected in the near future to attain predictive accuracy. Important databases on H-mode characteristics and helium retention have also been assembled. (2) Divertors, heat removal and fuelling. A novel concept for heat removal - the radiative, baffled, partially detached divertor - has been designed for ITER. Extensive two-dimensional (2D) calculations have been performed and agree qualitatively with recent experiments. Preliminary studies of the interaction of this configuration with core confinement are encouraging and the success of inside pellet launch provides an attractive alternative fuelling method. (3) Macrostability. The ITER mission can be accomplished well within ideal magnetohydrodynamic (MHD) stability limits, except for internal kink modes. Comparisons with JET, as well as a theoretical model including kinetic effects, predict such sawteeth will be benign in ITER. Alternative scenarios involving delayed current penetration or off-axis current drive may be employed if required. The recent discovery of neoclassical beta limits well below ideal MHD limits poses a threat to performance. Extrapolation to reactor scale is as yet unclear. In theory such modes are controllable by current drive profile control or feedback and experiments should

  6. ITER...ation

    International Nuclear Information System (INIS)

    Troyon, F.

    1997-01-01

    Recurrent attacks against ITER, the new generation of tokamak are a mix of political and scientific arguments. This short article draws a historical review of the European fusion program. This program has allowed to build and manage several installations in the aim of getting experimental results necessary to lead the program forwards. ITER will bring together a fusion reactor core with technologies such as materials, superconductive coils, heating devices and instrumentation in order to validate and delimit the operating range. ITER will be a logical and decisive step towards the use of controlled fusion. (A.C.)

  7. Public Community Support and Involvement around Vandellos ITER Site (EISS-Vandellos 2002/2003). Final Report

    International Nuclear Information System (INIS)

    Sola, R.; Prades, A.; Riba, D.; Doval, E.; Munoz, J.; Garay, A.; Viladrich, C.

    2006-01-01

    The Report summarizes a year and a half research on the social perception and expectations regarding the possible sitting of ITER in Vandellos carried out in the framework of the European ITER Site Studies (EISS). The aims were to examine the needs and preferences in terms of public information and communication; to explore the risks and benefits the community links to the Centre; and to analyse the local expectations concerning public participation. A methodological strategy integrating qualitative methodologies [semi structured interviews to key informants at the local level, and to key research groups in the surrounding area, together with a focus group with local opinion leaders], and quantitative techniques [Computer Assisted Telephone Interview (CATI) applied to a sample of 400 participants] was implemented. The local community has lived with complex and high risk facilities for decades, thus local people has a strong familiarity with technological and energy production systems, but no experience with large research installations. In such a context the global opinion towards the possibility of hosting ITER was clearly favourable, and linked to a strong demand in terms of public information and participation. (Author) 45 refs

  8. Public Community Support and Involvement around Vandellos ITER Site (EISS-Vandellos 2002/2003). Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sola, R.; Prades, A.; Riba, D.; Doval, E.; Munoz, J.; Garay, A.; Viladrich, C.

    2006-07-01

    The Report summarizes a year and a half research on the social perception and expectations regarding the possible sitting of ITER in Vandellos carried out in the framework of the European ITER Site Studies (EISS). The aims were to examine the needs and preferences in terms of public information and communication; to explore the risks and benefits the community links to the Centre; and to analyse the local expectations concerning public participation. A methodological strategy integrating qualitative methodologies [semi structured interviews to key informants at the local level, and to key research groups in the surrounding area, together with a focus group with local opinion leaders], and quantitative techniques [Computer Assisted Telephone Interview (CATI) applied to a sample of 400 participants] was implemented. The local community has lived with complex and high risk facilities for decades, thus local people has a strong familiarity with technological and energy production systems, but no experience with large research installations. In such a context the global opinion towards the possibility of hosting ITER was clearly favourable, and linked to a strong demand in terms of public information and participation. (Author) 45 refs.

  9. Iterative solution of multiple radiation and scattering problems in structural acoustics using the BL-QMR algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, M. [Stanford Univ., CA (United States)

    1996-12-31

    Finite-element discretizations of time-harmonic acoustic wave problems in exterior domains result in large sparse systems of linear equations with complex symmetric coefficient matrices. In many situations, these matrix problems need to be solved repeatedly for different right-hand sides, but with the same coefficient matrix. For instance, multiple right-hand sides arise in radiation problems due to multiple load cases, and also in scattering problems when multiple angles of incidence of an incoming plane wave need to be considered. In this talk, we discuss the iterative solution of multiple linear systems arising in radiation and scattering problems in structural acoustics by means of a complex symmetric variant of the BL-QMR method. First, we summarize the governing partial differential equations for time-harmonic structural acoustics, the finite-element discretization of these equations, and the resulting complex symmetric matrix problem. Next, we sketch the special version of BL-QMR method that exploits complex symmetry, and we describe the preconditioners we have used in conjunction with BL-QMR. Finally, we report some typical results of our extensive numerical tests to illustrate the typical convergence behavior of BL-QMR method for multiple radiation and scattering problems in structural acoustics, to identify appropriate preconditioners for these problems, and to demonstrate the importance of deflation in block Krylov-subspace methods. Our numerical results show that the multiple systems arising in structural acoustics can be solved very efficiently with the preconditioned BL-QMR method. In fact, for multiple systems with up to 40 and more different right-hand sides we get consistent and significant speed-ups over solving the systems individually.

  10. On varitional iteration method for fractional calculus

    Directory of Open Access Journals (Sweden)

    Wu Hai-Gen

    2017-01-01

    Full Text Available Modification of the Das’ variational iteration method for fractional differential equations is discussed, and its main shortcoming involved in the solution process is pointed out and overcome by using fractional power series. The suggested computational procedure is simple and reliable for fractional calculus.

  11. Solving Differential Equations Using Modified Picard Iteration

    Science.gov (United States)

    Robin, W. A.

    2010-01-01

    Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…

  12. Nontrivial Solution of Fractional Differential System Involving Riemann-Stieltjes Integral Condition

    Directory of Open Access Journals (Sweden)

    Ge-Feng Yang

    2012-01-01

    differential system involving the Riemann-Stieltjes integral condition, by using the Leray-Schauder nonlinear alternative and the Banach contraction mapping principle, some sufficient conditions of the existence and uniqueness of a nontrivial solution of a system are obtained.

  13. Solution of problems with material nonlinearities with a coupled finite element/boundary element scheme using an iterative solver. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Koteras, J.R.

    1996-01-01

    The prediction of stresses and displacements around tunnels buried deep within the earth is an important class of geomechanics problems. The material behavior immediately surrounding the tunnel is typically nonlinear. The surrounding mass, even if it is nonlinear, can usually be characterized by a simple linear elastic model. The finite element method is best suited for modeling nonlinear materials of limited volume, while the boundary element method is well suited for modeling large volumes of linear elastic material. A computational scheme that couples the finite element and boundary element methods would seem particularly useful for geomechanics problems. A variety of coupling schemes have been proposed, but they rely on direct solution methods. Direct solution techniques have large storage requirements that become cumbersome for large-scale three-dimensional problems. An alternative to direct solution methods is iterative solution techniques. A scheme has been developed for coupling the finite element and boundary element methods that uses an iterative solution method. This report shows that this coupling scheme is valid for problems where nonlinear material behavior occurs in the finite element region

  14. Modeling design iteration in product design and development and its solution by a novel artificial bee colony algorithm.

    Science.gov (United States)

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Due to fierce market competition, how to improve product quality and reduce development cost determines the core competitiveness of enterprises. However, design iteration generally causes increases of product cost and delays of development time as well, so how to identify and model couplings among tasks in product design and development has become an important issue for enterprises to settle. In this paper, the shortcomings existing in WTM model are discussed and tearing approach as well as inner iteration method is used to complement the classic WTM model. In addition, the ABC algorithm is also introduced to find out the optimal decoupling schemes. In this paper, firstly, tearing approach and inner iteration method are analyzed for solving coupled sets. Secondly, a hybrid iteration model combining these two technologies is set up. Thirdly, a high-performance swarm intelligence algorithm, artificial bee colony, is adopted to realize problem-solving. Finally, an engineering design of a chemical processing system is given in order to verify its reasonability and effectiveness.

  15. On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

    Czech Academy of Sciences Publication Activity Database

    Kočvara, Michal; Stingl, M.

    2007-01-01

    Roč. 109, 2-3 (2007), s. 413-444 ISSN 0025-5610 R&D Projects: GA AV ČR IAA1075402 Institutional research plan: CEZ:AV0Z10750506 Keywords : semidefinite programming * iterative methods * preconditioned conjugate gradient s * augmented lagrangian methods Subject RIV: BA - General Mathematics Impact factor: 1.475, year: 2007

  16. PCG: A software package for the iterative solution of linear systems on scalar, vector and parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, W. [Los Alamos National Lab., NM (United States); Carey, G.F. [Univ. of Texas, Austin, TX (United States)

    1994-12-31

    A great need exists for high performance numerical software libraries transportable across parallel machines. This talk concerns the PCG package, which solves systems of linear equations by iterative methods on parallel computers. The features of the package are discussed, as well as techniques used to obtain high performance as well as transportability across architectures. Representative numerical results are presented for several machines including the Connection Machine CM-5, Intel Paragon and Cray T3D parallel computers.

  17. Iterative Refinement Methods for Time-Domain Equalizer Design

    Directory of Open Access Journals (Sweden)

    Evans Brian L

    2006-01-01

    Full Text Available Commonly used time domain equalizer (TEQ design methods have been recently unified as an optimization problem involving an objective function in the form of a Rayleigh quotient. The direct generalized eigenvalue solution relies on matrix decompositions. To reduce implementation complexity, we propose an iterative refinement approach in which the TEQ length starts at two taps and increases by one tap at each iteration. Each iteration involves matrix-vector multiplications and vector additions with matrices and two-element vectors. At each iteration, the optimization of the objective function either improves or the approach terminates. The iterative refinement approach provides a range of communication performance versus implementation complexity tradeoffs for any TEQ method that fits the Rayleigh quotient framework. We apply the proposed approach to three such TEQ design methods: maximum shortening signal-to-noise ratio, minimum intersymbol interference, and minimum delay spread.

  18. Weak solutions for nonlocal evolution variational inequalities involving gradient constraints and variable exponent

    Directory of Open Access Journals (Sweden)

    Mingqi Xiang

    2013-04-01

    Full Text Available In this article, we study a class of nonlocal quasilinear parabolic variational inequality involving $p(x$-Laplacian operator and gradient constraint on a bounded domain. Choosing a special penalty functional according to the gradient constraint, we transform the variational inequality to a parabolic equation. By means of Galerkin's approximation method, we obtain the existence of weak solutions for this equation, and then through a priori estimates, we obtain the weak solutions of variational inequality.

  19. A mature industrial solution for ITER divertor plasma facing components: hypervapotron cooling concept adapted to Tore Supra flat tile technology

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F.; Missirlian, M.; Schlosser, J. [Association EURATOM-CEA Cadarache, Departement de Recherches sur la Fusion Controlee, 13 - Saint Paul lez Durance (France); Bobin-Vastra, I. [AREVA Centre Technique de Framatome, 71 - Le Creusot (France); Kuznetsov, V. [Efremov Institute, Doroga na Metallostroy, St. Petersburg (Russian Federation); Schedler, B. [Plansee AG, Reutte (Austria)

    2004-07-01

    The use of flat tile technology to handle heat fluxes in the range of 20 MW/m{sup 2} with components relevant for fusion experiment applications is technically possible with the hypervapotron cooling concept. This paper deals with recent high heat flux performances operated with success on 2 identical mock-ups, based on this concept, that were tested in 2 different electron gun facilities. Each mock-up consisted of a CuCrZr heat sink armored with 25 flat tiles of the 3D carbon fibre composite material SEPcarb NS31 assembled with pure copper by active metal casting (AMC). The AMC tiles were electron beam welded on the CuCrZr bar, fins and slots on the neutral beam JET design were machined into the bar, then the bar was closed with a thick CuCrZr rear plug including hydraulic connections then the bar was electron beam welded onto the sidewalls. The testing results show that full ITER design specifications were achieved with margins, the critical heat flux limit was even higher than 30 MW/m{sup 2}. These results highlight the high potential of this technology for ITER divertor application.

  20. A mature industrial solution for ITER divertor plasma facing components: hypervapotron cooling concept adapted to Tore Supra flat tile technology

    International Nuclear Information System (INIS)

    Escourbiac, F.; Missirlian, M.; Schlosser, J.; Bobin-Vastra, I.; Kuznetsov, V.; Schedler, B.

    2004-01-01

    The use of flat tile technology to handle heat fluxes in the range of 20 MW/m 2 with components relevant for fusion experiment applications is technically possible with the hypervapotron cooling concept. This paper deals with recent high heat flux performances operated with success on 2 identical mock-ups, based on this concept, that were tested in 2 different electron gun facilities. Each mock-up consisted of a CuCrZr heat sink armored with 25 flat tiles of the 3D carbon fibre composite material SEPcarb NS31 assembled with pure copper by active metal casting (AMC). The AMC tiles were electron beam welded on the CuCrZr bar, fins and slots on the neutral beam JET design were machined into the bar, then the bar was closed with a thick CuCrZr rear plug including hydraulic connections then the bar was electron beam welded onto the sidewalls. The testing results show that full ITER design specifications were achieved with margins, the critical heat flux limit was even higher than 30 MW/m 2 . These results highlight the high potential of this technology for ITER divertor application

  1. Introducing a new family of short-range potentials and their numerical solutions using the asymptotic iteration method

    Science.gov (United States)

    Assi, I. A.; Sous, A. J.

    2018-05-01

    The goal of this work is to derive a new class of short-range potentials that could have a wide range of physical applications, specially in molecular physics. The tridiagonal representation approach has been developed beyond its limitations to produce new potentials by requiring the representation of the Schrödinger wave operator to be multidiagonal and symmetric. This produces a family of Hulthén potentials that has a specific structure, as mentioned in the introduction. As an example, we have solved the nonrelativistic wave equation for the new four-parameter short-range screening potential numerically using the asymptotic iteration method, where we tabulated the eigenvalues for both s -wave and arbitrary l -wave cases in tables.

  2. RELAP/SCDAPSIM/MOD4.0 modification for transient accident scenario of Test Blanket Modules in ITER involving helium flows into heavy liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J.; Pérez, M.; Mas de les Valls, E.; Batet, L.; Sandeep, T.; Chaudhari, V.; Reventós, F.

    2015-07-01

    The Institute for Plasma Research (IPR), India, is currently involved in the design and development of its Test Blanket Module (TBM) for testing in ITER (International Thermo nuclear Experimental Reactor). The Indian TBM concept is a Lead-Lithium cooled Ceramic Breeder (LLCB), which utilizes lead-lithium eutectic alloy (LLE) as tritium breeder, neutron multiplier and coolant. The first wall facing the plasma is cooled by helium gas. In preparation of the regulatory safety files of ITER-TBM, a number of off-normal event sequences have been postulated. Thermal hydraulic safety analyses of the TBM system will be carried out with the system code RELAP/SCDAPSIM/MOD4.0 which was initially designed to predict the behavior of light water reactor systems during normal and accidental conditions. In order to analyze some of the postulated off-normal events, there is the need to simulate the mixing of Helium and Lead-Lithium fluids. The Technical University of Catalonia is cooperating with IPR to implement the necessary changes in the code to allow for the mixing of helium and liquid metal. In the present study, the RELAP/SCDAPSIM/MOD4 two-phase flow 6-equations structure has been modified to allow for the mixture of LLE in the liquid phase with dry Helium in the gas phase. Practically obtaining a two-fluid 6-equation model where each fluid is simulated with a set of energy, mass and momentum balance equations. A preliminary flow regime map for LLE and helium flow has been developed on the basis of numerical simulations with the OpenFOAM CFD toolkit. The new code modifications have been verified for vertical and horizontal configurations. (Author)

  3. ITER safety

    International Nuclear Information System (INIS)

    Raeder, J.; Piet, S.; Buende, R.

    1991-01-01

    As part of the series of publications by the IAEA that summarize the results of the Conceptual Design Activities for the ITER project, this document describes the ITER safety analyses. It contains an assessment of normal operation effluents, accident scenarios, plasma chamber safety, tritium system safety, magnet system safety, external loss of coolant and coolant flow problems, and a waste management assessment, while it describes the implementation of the safety approach for ITER. The document ends with a list of major conclusions, a set of topical remarks on technical safety issues, and recommendations for the Engineering Design Activities, safety considerations for siting ITER, and recommendations with regard to the safety issues for the R and D for ITER. Refs, figs and tabs

  4. Development of a new simulation code for evaluation of criticality transients involving fissile solution boiling

    International Nuclear Information System (INIS)

    Basoglu, Benan; Yamamoto, Toshihiro; Okuno, Hiroshi; Nomura, Yasushi

    1998-03-01

    In this work, we report on the development of a new computer code named TRACE for predicting the excursion characteristics of criticality excursions involving fissile solutions. TRACE employs point neutronics coupled with simple thermal-hydraulics. The temperature, the radiolytic gas effects, and the boiling phenomena are estimated using the transient heat conduction equation, a lumped-parameter energy model, and a simple boiling model, respectively. To evaluate the model, we compared our results with the results of CRAC experiments. The agreement in these comparisons is quite satisfactory. (author)

  5. Analysis of fast neutrons elastic moderator through exact solutions involving synthetic-kernels

    International Nuclear Information System (INIS)

    Moura Neto, C.; Chung, F.L.; Amorim, E.S.

    1979-07-01

    The computation difficulties in the transport equation solution applied to fast reactors can be reduced by the development of approximate models, assuming that the continuous moderation holds. Two approximations were studied. The first one was based on an expansion in Taylor's series (Fermi, Wigner, Greuling and Goertzel models), and the second involving the utilization of synthetic Kernels (Walti, Turinsky, Becker and Malaviya models). The flux obtained by the exact method is compared with the fluxes from the different models based on synthetic Kernels. It can be verified that the present study is realistic for energies smaller than the threshold for inelastic scattering, as well as in the resonance region. (Author) [pt

  6. ITER overview

    International Nuclear Information System (INIS)

    Shimomura, Y.; Aymar, R.; Chuyanov, V.; Huguet, M.; Parker, R.R.

    2001-01-01

    This report summarizes technical works of six years done by the ITER Joint Central Team and Home Teams under terms of Agreement of the ITER Engineering Design Activities. The major products are as follows: complete and detailed engineering design with supporting assessments, industrial-based cost estimates and schedule, non-site specific comprehensive safety and environmental assessment, and technology R and D to validate and qualify design including proof of technologies and industrial manufacture and testing of full size or scalable models of key components. The ITER design is at an advanced stage of maturity and contains sufficient technical information for a construction decision. The operation of ITER will demonstrate the availability of a new energy source, fusion. (author)

  7. ITER Overview

    International Nuclear Information System (INIS)

    Shimomura, Y.; Aymar, R.; Chuyanov, V.; Huguet, M.; Parker, R.

    1999-01-01

    This report summarizes technical works of six years done by the ITER Joint Central Team and Home Teams under terms of Agreement of the ITER Engineering Design Activities. The major products are as follows: complete and detailed engineering design with supporting assessments, industrial-based cost estimates and schedule, non-site specific comprehensive safety and environmental assessment, and technology R and D to validate and qualify design including proof of technologies and industrial manufacture and testing of full size or scalable models of key components. The ITER design is at an advanced stage of maturity and contains sufficient technical information for a construction decision. The operation of ITER will demonstrate the availability of a new energy source, fusion. (author)

  8. Conformable variational iteration method

    Directory of Open Access Journals (Sweden)

    Omer Acan

    2017-02-01

    Full Text Available In this study, we introduce the conformable variational iteration method based on new defined fractional derivative called conformable fractional derivative. This new method is applied two fractional order ordinary differential equations. To see how the solutions of this method, linear homogeneous and non-linear non-homogeneous fractional ordinary differential equations are selected. Obtained results are compared the exact solutions and their graphics are plotted to demonstrate efficiency and accuracy of the method.

  9. Determining partial differential cross sections for low-energy electron photodetachment involving conical intersections using the solution of a Lippmann-Schwinger equation constructed with standard electronic structure techniques.

    Science.gov (United States)

    Han, Seungsuk; Yarkony, David R

    2011-05-07

    A method for obtaining partial differential cross sections for low energy electron photodetachment in which the electronic states of the residual molecule are strongly coupled by conical intersections is reported. The method is based on the iterative solution to a Lippmann-Schwinger equation, using a zeroth order Hamiltonian consisting of the bound nonadiabatically coupled residual molecule and a free electron. The solution to the Lippmann-Schwinger equation involves only standard electronic structure techniques and a standard three-dimensional free particle Green's function quadrature for which fast techniques exist. The transition dipole moment for electron photodetachment, is a sum of matrix elements each involving one nonorthogonal orbital obtained from the solution to the Lippmann-Schwinger equation. An expression for the electron photodetachment transition dipole matrix element in terms of Dyson orbitals, which does not make the usual orthogonality assumptions, is derived.

  10. ITER licensing

    International Nuclear Information System (INIS)

    Gordon, C.W.

    2005-01-01

    ITER was fortunate to have four countries interested in ITER siting to the point where licensing discussions were initiated. This experience uncovered the challenges of licensing a first of a kind, fusion machine under different licensing regimes and helped prepare the way for the site specific licensing process. These initial steps in licensing ITER have allowed for refining the safety case and provide confidence that the design and safety approach will be licensable. With site-specific licensing underway, the necessary regulatory submissions have been defined and are well on the way to being completed. Of course, there is still work to be done and details to be sorted out. However, the informal international discussions to bring both the proponent and regulatory authority up to a common level of understanding have laid the foundation for a licensing process that should proceed smoothly. This paper provides observations from the perspective of the International Team. (author)

  11. Status of the ITER construction preparation

    International Nuclear Information System (INIS)

    Holtkamp, N.; Janeschitz, G.

    2007-01-01

    ITER as an organization has been established officially on Nov 21st 2006. Together with the creation of this international body the participating countries and the ITER International Organization have committed to a construction schedule of about 10 years under a fixed budget. ITER for the first time should bring together reactor-grade plasma and current technology, in an attempt to see how a viable energy source can be built. Apart from the scientific challenge, ITER will be the first mega-science project that is to be build under an ''in-kind'' arrangement in which contributions from the collaborating countries are given in terms of ready-to-install subsystems for the facility and only to a small extent in cash. The main engineering challenge is to turn the existing designs into procurement packages that can be executed within the countries on time, while ensuring an integrated design. In addition maintaining some flexibility in the layout to respond to changes in understanding as the device operates is key to every scientific endeavour. The current ITER design was completed in 2001, and a number of changes have been proposed since then. A design review process is underway to address outstanding design issues, to identify any new ones, to integrate solutions, and to ensure that the schedule and objectives can be met. This involves the expertise of the ITER Project Team, along with experts from the participating countries, and will focus initially on long lead items and related basic systems to provide a framework for later procurements. In addition to the above, the paper will address the status of the adaptation to the Cadarache site near Aix-en-Provence, the licensing process of the nuclear facility within France, and will show the construction progress. (orig.)

  12. ITER-FEAT operation

    International Nuclear Information System (INIS)

    Shimomura, Y.; Huguet, M.; Mizoguchi, T.; Murakami, Y.; Polevoi, A.R.; Shimada, M.; Aymar, R.; Chuyanov, V.A.; Matsumoto, H.

    2001-01-01

    ITER is planned to be the first fusion experimental reactor in the world operating for research in physics and engineering. The first ten years of operation will be devoted primarily to physics issues at low neutron fluence and the following ten years of operation to engineering testing at higher fluence. ITER can accommodate various plasma configurations and plasma operation modes, such as inductive high Q modes, long pulse hybrid modes and non-inductive steady state modes, with large ranges of plasma current, density, beta and fusion power, and with various heating and current drive methods. This flexibility will provide an advantage for coping with uncertainties in the physics database, in studying burning plasmas, in introducing advanced features and in optimizing the plasma performance for the different programme objectives. Remote sites will be able to participate in the ITER experiment. This concept will provide an advantage not only in operating ITER for 24 hours a day but also in involving the worldwide fusion community and in promoting scientific competition among the ITER Parties. (author)

  13. Thermodynamic stability of binary systems involving metal ions and the 4-methoxy benzylidenepyruvate in aqueous solution

    International Nuclear Information System (INIS)

    Redigolo, H.

    1989-01-01

    A review on studies previously carried out in this laboratory involving metal ions and benzylidene-pyruvate, in aqueous solutions, is presented; emphasis is mainly placed on complexes comprising 4-Dimethyl-amino-benzylidene-pyruvate (DMBP, p K a 3.79) and 2-Chloro-4-Dimethyl-amino-benzylidene-pyruvate (2 Cl-DMBP, p k a = 3.08). In an endeavour to extend the previous work, the dissociation constant of 4-methoxy-benzylidene-pyruvic acid (H-4-Me O-BP) was determined spectrophotometrically at 25.0 +- 0.1 0 C and ionic strength 0.500 M, held with sodium perchlorate (p k a = 1.473). The complex formation equilibria in M-4-Me O-BP systems, where M = Cu(II), La(III), Pr(III), Sm(III), Lu(III), Sc (III), In(III), Ga(III) or Th(IV) were investigated, also spectrophotometrically, in the above mentioned experimental conditions. In addition, the system involving Sm(III) was reinvestigated at ionic strengths 0.100 and 2.00 M, the remaining experimental conditions being maintained. The study is mostly concerned with the determination of formation constants of 1:1 complex species (β 1 ) and spectrophotometric parameters associated with these species. The investigation of possible higher binary complexes (ML n , n > 1) was prevented by solubility limitations. For all considered metal ions, log β 1 (DMBP) > log β 1 (4-Me O-BP) indicating that the stability is governed, at least in part, by ligand basicity. (author). 121 refs, 36 figs, 20 tabs

  14. Equivalent charge source model based iterative maximum neighbor weight for sparse EEG source localization.

    Science.gov (United States)

    Xu, Peng; Tian, Yin; Lei, Xu; Hu, Xiao; Yao, Dezhong

    2008-12-01

    How to localize the neural electric activities within brain effectively and precisely from the scalp electroencephalogram (EEG) recordings is a critical issue for current study in clinical neurology and cognitive neuroscience. In this paper, based on the charge source model and the iterative re-weighted strategy, proposed is a new maximum neighbor weight based iterative sparse source imaging method, termed as CMOSS (Charge source model based Maximum neighbOr weight Sparse Solution). Different from the weight used in focal underdetermined system solver (FOCUSS) where the weight for each point in the discrete solution space is independently updated in iterations, the new designed weight for each point in each iteration is determined by the source solution of the last iteration at both the point and its neighbors. Using such a new weight, the next iteration may have a bigger chance to rectify the local source location bias existed in the previous iteration solution. The simulation studies with comparison to FOCUSS and LORETA for various source configurations were conducted on a realistic 3-shell head model, and the results confirmed the validation of CMOSS for sparse EEG source localization. Finally, CMOSS was applied to localize sources elicited in a visual stimuli experiment, and the result was consistent with those source areas involved in visual processing reported in previous studies.

  15. Challenges and status of ITER conductor production

    Science.gov (United States)

    Devred, A.; Backbier, I.; Bessette, D.; Bevillard, G.; Gardner, M.; Jong, C.; Lillaz, F.; Mitchell, N.; Romano, G.; Vostner, A.

    2014-04-01

    Taking the relay of the large Hadron collider (LHC) at CERN, ITER has become the largest project in applied superconductivity. In addition to its technical complexity, ITER is also a management challenge as it relies on an unprecedented collaboration of seven partners, representing more than half of the world population, who provide 90% of the components as in-kind contributions. The ITER magnet system is one of the most sophisticated superconducting magnet systems ever designed, with an enormous stored energy of 51 GJ. It involves six of the ITER partners. The coils are wound from cable-in-conduit conductors (CICCs) made up of superconducting and copper strands assembled into a multistage cable, inserted into a conduit of butt-welded austenitic steel tubes. The conductors for the toroidal field (TF) and central solenoid (CS) coils require about 600 t of Nb3Sn strands while the poloidal field (PF) and correction coil (CC) and busbar conductors need around 275 t of Nb-Ti strands. The required amount of Nb3Sn strands far exceeds pre-existing industrial capacity and has called for a significant worldwide production scale up. The TF conductors are the first ITER components to be mass produced and are more than 50% complete. During its life time, the CS coil will have to sustain several tens of thousands of electromagnetic (EM) cycles to high current and field conditions, way beyond anything a large Nb3Sn coil has ever experienced. Following a comprehensive R&D program, a technical solution has been found for the CS conductor, which ensures stable performance versus EM and thermal cycling. Productions of PF, CC and busbar conductors are also underway. After an introduction to the ITER project and magnet system, we describe the ITER conductor procurements and the quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers. Then, we provide examples of technical challenges that have been encountered and

  16. Challenges and status of ITER conductor production

    International Nuclear Information System (INIS)

    Devred, A; Backbier, I; Bessette, D; Bevillard, G; Gardner, M; Jong, C; Lillaz, F; Mitchell, N; Romano, G; Vostner, A

    2014-01-01

    Taking the relay of the large Hadron collider (LHC) at CERN, ITER has become the largest project in applied superconductivity. In addition to its technical complexity, ITER is also a management challenge as it relies on an unprecedented collaboration of seven partners, representing more than half of the world population, who provide 90% of the components as in-kind contributions. The ITER magnet system is one of the most sophisticated superconducting magnet systems ever designed, with an enormous stored energy of 51 GJ. It involves six of the ITER partners. The coils are wound from cable-in-conduit conductors (CICCs) made up of superconducting and copper strands assembled into a multistage cable, inserted into a conduit of butt-welded austenitic steel tubes. The conductors for the toroidal field (TF) and central solenoid (CS) coils require about 600 t of Nb 3 Sn strands while the poloidal field (PF) and correction coil (CC) and busbar conductors need around 275 t of Nb–Ti strands. The required amount of Nb 3 Sn strands far exceeds pre-existing industrial capacity and has called for a significant worldwide production scale up. The TF conductors are the first ITER components to be mass produced and are more than 50% complete. During its life time, the CS coil will have to sustain several tens of thousands of electromagnetic (EM) cycles to high current and field conditions, way beyond anything a large Nb 3 Sn coil has ever experienced. Following a comprehensive R and D program, a technical solution has been found for the CS conductor, which ensures stable performance versus EM and thermal cycling. Productions of PF, CC and busbar conductors are also underway. After an introduction to the ITER project and magnet system, we describe the ITER conductor procurements and the quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers. Then, we provide examples of technical challenges that have been

  17. ITER-FEAT operation

    International Nuclear Information System (INIS)

    Shimomura, Y.; Huget, M.; Mizoguchi, T.; Murakami, Y.; Polevoi, A.; Shimada, M.; Aymar, R.; Chuyanov, V.; Matsumoto, H.

    2001-01-01

    ITER is planned to be the first fusion experimental reactor in the world operating for research in physics and engineering. The first 10 years' operation will be devoted primarily to physics issues at low neutron fluence and the following 10 years' operation to engineering testing at higher fluence. ITER can accommodate various plasma configurations and plasma operation modes such as inductive high Q modes, long pulse hybrid modes, non-inductive steady-state modes, with large ranges of plasma current, density, beta and fusion power, and with various heating and current drive methods. This flexibility will provide an advantage for coping with uncertainties in the physics database, in studying burning plasmas, in introducing advanced features and in optimizing the plasma performance for the different programme objectives. Remote sites will be able to participate in the ITER experiment. This concept will provide an advantage not only in operating ITER for 24 hours per day but also in involving the world-wide fusion communities and in promoting scientific competition among the Parties. (author)

  18. ITER fuel cycle

    International Nuclear Information System (INIS)

    Leger, D.; Dinner, P.; Yoshida, H.

    1991-01-01

    Resulting from the Conceptual Design Activities (1988-1990) by the parties involved in the International Thermonuclear Experimental Reactor (ITER) project, this document summarizes the design requirements and the Conceptual Design Descriptions for each of the principal subsystems and design options of the ITER Fuel Cycle conceptual design. The ITER Fuel Cycle system provides for the handling of all tritiated water and gas mixtures on ITER. The system is subdivided into subsystems for fuelling, primary (torus) vacuum pumping, fuel processing, blanket tritium recovery, and common processes (including isotopic separation, fuel management and storage, and processes for detritiation of solid, liquid, and gaseous wastes). After an introduction describing system function and conceptual design procedure, a summary of the design is presented including a discussion of scope and main parameters, and the fuel design options for fuelling, plasma chamber vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary and common processes. Design requirements are defined and design descriptions are given for the various subsystems (fuelling, plasma vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary/common processes). The document ends with sections on fuel cycle design integration, fuel cycle building layout, safety considerations, a summary of the research and development programme, costing, and conclusions. Refs, figs and tabs

  19. Multistep Hybrid Iterations for Systems of Generalized Equilibria with Constraints of Several Problems

    Directory of Open Access Journals (Sweden)

    Lu-Chuan Ceng

    2014-01-01

    Full Text Available We first introduce and analyze one multistep iterative algorithm by hybrid shrinking projection method for finding a solution of the system of generalized equilibria with constraints of several problems: the generalized mixed equilibrium problem, finitely many variational inclusions, the minimization problem for a convex and continuously Fréchet differentiable functional, and the fixed-point problem of an asymptotically strict pseudocontractive mapping in the intermediate sense in a real Hilbert space. We prove strong convergence theorem for the iterative algorithm under suitable conditions. On the other hand, we also propose another multistep iterative algorithm involving no shrinking projection method and derive its weak convergence under mild assumptions.

  20. ITER shielding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Strebkov, Yu [ENTEK, Moscow (Russian Federation); Avsjannikov, A [ENTEK, Moscow (Russian Federation); Baryshev, M [NIAT, Moscow (Russian Federation); Blinov, Yu [ENTEK, Moscow (Russian Federation); Shatalov, G [KIAE, Moscow (Russian Federation); Vasiliev, N [KIAE, Moscow (Russian Federation); Vinnikov, A [ENTEK, Moscow (Russian Federation); Chernjagin, A [DYNAMICA, Moscow (Russian Federation)

    1995-03-01

    A reference non-breeding blanket is under development now for the ITER Basic Performance Phase for the purpose of high reliability during the first stage of ITER operation. More severe operation modes are expected in this stage with first wall (FW) local heat loads up to 100-300Wcm{sup -2}. Integration of a blanket design with protective and start limiters requires new solutions to achieve high reliability, and possible use of beryllium as a protective material leads to technologies. The rigid shielding blanket concept was developed in Russia to satisfy the above-mentioned requirements. The concept is based on a copper alloy FW, austenitic stainless steel blanket structure, water cooling. Beryllium protection is integrated in the FW design. Fabrication technology and assembly procedure are described in parallel with the equipment used. (orig.).

  1. ITER EDA Newsletter. Vol. 1, No. 1

    International Nuclear Information System (INIS)

    1992-11-01

    After the ITER Engineering Design Activities (EDA) Agreement and Protocol 1 had been signed by the four ITER parties on July 21, 1992 and had entered into force, the ITER Council suggested at its first meeting (Vienna, September 10-11, 1992) that the publication of the ITER Newsletter be continued during the EDA with assistance of the International Atomic Energy Agency. This suggestion was supported by the Agency and subsequently the ITER office in Vienna assumed its responsibilities for planning and executing activities related to the publication of the Newsletter. The ITER EDA Newsletter is planned to be a monthly publication aimed at disseminating broad information and understanding, including the description of the personal and institutional involvements in the ITER project in addition to technical facts about it. The responsibility for the Newsletter rests with the ITER council. In this first issue the signing of the ITER EDA Activities and Protocol 1 is reported. The EDA organizational structure is described. This issue also reports on the first ITER EDA council meeting, the opening of the ITER EDA NAKA Co-Centre, the first meeting of the ITER Technical Advisory Committee, activities of special working groups, an ITER Technical Meeting, as well as ''News in Brief'' and ''Coming Events''

  2. Existence Theory for Pseudo-Symmetric Solution to -Laplacian Differential Equations Involving Derivative

    Directory of Open Access Journals (Sweden)

    You-Hui Su

    2011-01-01

    are obtained for the existence of at least one, triple, or arbitrary odd positive pseudosymmetric solutions by using pseudosymmetric technique and fixed-point theory in cone. As an application, two examples are given to illustrate the main results.

  3. Exact solutions of a class of fractional Hamiltonian equations involving Caputo derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Baleanu, Dumitru [Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Cankaya University, Ankara 06530 (Turkey); Trujillo, Juan J [Departamento de Analisis Matematico, University of La Laguna, 38271 La Laguna, Tenerife (Spain)], E-mail: dumitru@cankaya.edu.tr, E-mail: JTrujill@ullmat.es, E-mail: baleanu@venus.nipne.ro

    2009-11-15

    The fractional Hamiltonian equations corresponding to the Lagrangians of constrained systems within Caputo derivatives are investigated. The fractional phase space is obtained and the exact solutions of some constrained systems are obtained.

  4. Triple solutions for a Dirichlet boundary value problem involving a perturbed discrete p(k-Laplacian operator

    Directory of Open Access Journals (Sweden)

    Khaleghi Moghadam Mohsen

    2017-08-01

    Full Text Available Triple solutions are obtained for a discrete problem involving a nonlinearly perturbed one-dimensional p(k-Laplacian operator and satisfying Dirichlet boundary conditions. The methods for existence rely on a Ricceri-local minimum theorem for differentiable functionals. Several examples are included to illustrate the main results.

  5. ITER council proceedings: 2001

    International Nuclear Information System (INIS)

    2001-01-01

    Continuing the ITER EDA, two further ITER Council Meetings were held since the publication of ITER EDA documentation series no, 20, namely the ITER Council Meeting on 27-28 February 2001 in Toronto, and the ITER Council Meeting on 18-19 July in Vienna. That Meeting was the last one during the ITER EDA. This volume contains records of these Meetings, including: Records of decisions; List of attendees; ITER EDA status report; ITER EDA technical activities report; MAC report and advice; Final report of ITER EDA; and Press release

  6. ITER EDA Newsletter. V.2, no.5

    International Nuclear Information System (INIS)

    1993-05-01

    This ITER EDA (Engineering Design Activities), Newsletter issue includes reports on the third ITER council meeting in Tokyo on the involvement of other countries, on an outline of the report by the Management Advisory Committee (MAC), on such involvement, and on the improvement by the MAC and the ITER Council to proceed with Task Agreements on the Research and Development programme of the Superconductor Coils and Structures Division

  7. GRADING: Involving Students in a Time-saving Solution to the Homework Problem.

    Science.gov (United States)

    Mafi, Mohammad

    1989-01-01

    A procedure where homework assignments are collected, graded, and returned each week is suggested. Students were used to grade each other's homework against copies of the solutions according to criteria established at the beginning of the course. Student response has been positive. (MVL)

  8. Synthesis of 2D Metal Chalcogenide Thin Films through the Process Involving Solution-Phase Deposition.

    Science.gov (United States)

    Giri, Anupam; Park, Gyeongbae; Yang, Heeseung; Pal, Monalisa; Kwak, Junghyeok; Jeong, Unyong

    2018-04-24

    2D metal chalcogenide thin films have recently attracted considerable attention owing to their unique physicochemical properties and great potential in a variety of applications. Synthesis of large-area 2D metal chalcogenide thin films in controllable ways remains a key challenge in this research field. Recently, the solution-based synthesis of 2D metal chalcogenide thin films has emerged as an alternative approach to vacuum-based synthesis because it is relatively simple and easy to scale up for high-throughput production. In addition, solution-based thin films open new opportunities that cannot be achieved from vacuum-based thin films. Here, a comprehensive summary regarding the basic structures and properties of different types of 2D metal chalcogenides, the mechanistic details of the chemical reactions in the synthesis of the metal chalcogenide thin films, recent successes in the synthesis by different reaction approaches, and the applications and potential uses is provided. In the last perspective section, the technical challenges to be overcome and the future research directions in the solution-based synthesis of 2D metal chalcogenides are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Exact solutions to robust control problems involving scalar hyperbolic conservation laws using Mixed Integer Linear Programming

    KAUST Repository

    Li, Yanning

    2013-10-01

    This article presents a new robust control framework for transportation problems in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi equation, we pose the problem of controlling the state of the system on a network link, using boundary flow control, as a Linear Program. Unlike many previously investigated transportation control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e. discontinuities in the state of the system). We also demonstrate that the same framework can handle robust control problems, in which the uncontrollable components of the initial and boundary conditions are encoded in intervals on the right hand side of inequalities in the linear program. The lower bound of the interval which defines the smallest feasible solution set is used to solve the robust LP (or MILP if the objective function depends on boolean variables). Since this framework leverages the intrinsic properties of the Hamilton-Jacobi equation used to model the state of the system, it is extremely fast. Several examples are given to demonstrate the performance of the robust control solution and the trade-off between the robustness and the optimality. © 2013 IEEE.

  10. Exact solutions to robust control problems involving scalar hyperbolic conservation laws using Mixed Integer Linear Programming

    KAUST Repository

    Li, Yanning; Canepa, Edward S.; Claudel, Christian G.

    2013-01-01

    This article presents a new robust control framework for transportation problems in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi equation, we pose the problem of controlling the state of the system on a network link, using boundary flow control, as a Linear Program. Unlike many previously investigated transportation control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e. discontinuities in the state of the system). We also demonstrate that the same framework can handle robust control problems, in which the uncontrollable components of the initial and boundary conditions are encoded in intervals on the right hand side of inequalities in the linear program. The lower bound of the interval which defines the smallest feasible solution set is used to solve the robust LP (or MILP if the objective function depends on boolean variables). Since this framework leverages the intrinsic properties of the Hamilton-Jacobi equation used to model the state of the system, it is extremely fast. Several examples are given to demonstrate the performance of the robust control solution and the trade-off between the robustness and the optimality. © 2013 IEEE.

  11. ITER EDA status

    International Nuclear Information System (INIS)

    Aymar, R.

    2001-01-01

    The Project has focused on drafting the Plant Description Document (PDD), which will be published as the Technical Basis for the ITER Final Design Report (FDR), and its related documentation in time for the ITER review process. The preparations have involved continued intensive detailed design work, analyses and assessments by the Home Teams and the Joint Central Team, who have co-operated closely and efficiently. The main technical document has been completed in time for circulation, as planned, to TAC members for their review at TAC-17 (19-22 February 2001). Some of the supporting documents, such as the Plant Design Specification (PDS), Design Requirements and Guidelines (DRG1 and DRG2), and the Plant Safety Requirement (PSR) are also available for reference in draft form. A summary paper of the PDD for the Council's information is available as a separate document. A new documentation structure for the Project has been established. This hierarchical structure for documentation facilitates the entire organization in a way that allows better change control and avoids duplications. The initiative was intended to make this documentation system valid for the construction and operation phases of ITER. As requested, the Director and the JCT have been assisting the Explorations to plan for future joint technical activities during the Negotiations, and to consider technical issues important for ITER construction and operation for their introduction in the draft of a future joint implementation agreement. As charged by the Explorers, the Director has held discussions with the Home Team Leaders in order to prepare for the staffing of the International Team and Participants Teams during the Negotiations (Co-ordinated Technical Activities, CTA) and also in view of informing all ITER staff about their future directions in a timely fashion. One important element of the work was the completion by the Parties' industries of costing studies of about 83 ''procurement packages

  12. X-ray diffraction study on the structure of concentrated aqueous solutions involving alanine molecules with different optical activities

    International Nuclear Information System (INIS)

    Kameda, Yasuo; Okuyama, Aya; Amo, Yuko; Usuki, Takeshi; Kohara, Shinji

    2007-01-01

    X-ray diffraction measurements on aqueous 2.5 mol% DL-, L-, and D-alanine solutions in D 2 O were carried out at 26±2degC in order to obtain information concerning the difference in the hydrogen-bonded structure between aqueous solutions involving amino acid molecules with different optical activities. The difference function, Δi inter (Q), between intermolecular interference term observed for DL- and L-alanine and between DL- and D-alanine solutions both exhibited a first peak at Q=1.6 A -1 , followed by oscillatory features extending to higher-Q region, implying that there is a difference in the intermolecular structure is present between these solutions. The difference distribution function, Δg inter (r), obtained from the Fourier transform of the Δi inter (Q) between DL- and L-, and between DL- and D-alanine solutions showed an obvious negative peak at r=2.8 A, which was attributed to the nearest neighbor hydrogen-bonded O...O interaction. The least squares fitting analysis of the observed Δi inter (Q) showed that the intermolecular O...O distance and the difference in the coordination number between DL- and L-, and between DL- and D-alanine solutions are 2.76(2) A and -0.18(1), and 2.81(3) A and -0.18(1), respectively. It was concluded that the intermolecular hydrogen-bonded network in aqueous L- and D-alanine solutions is stronger than that in the DL-alanine solution. (author)

  13. Strictly positive solutions for one-dimensional nonlinear problems involving the p-Laplacian

    OpenAIRE

    Kaufmann, Uriel; Medri, Ivan

    2013-01-01

    Let $\\Omega$ be a bounded open interval, and let $p>1$ and $q\\in\\left(0,p-1\\right) $. Let $m\\in L^{p^{\\prime}}\\left(\\Omega\\right) $ and $0\\leq c\\in L^{\\infty}\\left(\\Omega\\right) $. We study existence of strictly positive solutions for elliptic problems of the form $-\\left(\\left\\| u^{\\prime}\\right\\|^{p-2}u^{\\prime}\\right) ^{\\prime}+c\\left(x\\right) u^{p-1}=m\\left(x\\right) u^{q}$ in $\\Omega$, $u=0$ on $\\partial\\Omega$. We mention that our results are new even in the case $c\\equiv0$.

  14. Iterative methods for weighted least-squares

    Energy Technology Data Exchange (ETDEWEB)

    Bobrovnikova, E.Y.; Vavasis, S.A. [Cornell Univ., Ithaca, NY (United States)

    1996-12-31

    A weighted least-squares problem with a very ill-conditioned weight matrix arises in many applications. Because of round-off errors, the standard conjugate gradient method for solving this system does not give the correct answer even after n iterations. In this paper we propose an iterative algorithm based on a new type of reorthogonalization that converges to the solution.

  15. Iterative oscillation results for second-order differential equations with advanced argument

    Directory of Open Access Journals (Sweden)

    Irena Jadlovska

    2017-07-01

    Full Text Available This article concerns the oscillation of solutions to a linear second-order differential equation with advanced argument. Sufficient oscillation conditions involving limit inferior are given which essentially improve known results. We base our technique on the iterative construction of solution estimates and some of the recent ideas developed for first-order advanced differential equations. We demonstrate the advantage of our results on Euler-type advanced equation. Using MATLAB software, a comparison of the effectiveness of newly obtained criteria as well as the necessary iteration length in particular cases are discussed.

  16. ITER-FEAT outline design report

    International Nuclear Information System (INIS)

    2001-01-01

    In July 1998 the ITER Parties were unable, for financial reasons, to proceed with construction of the ITER design proposed at that time, to meet the detailed technical objectives and target cost set in 1992. It was therefore decided to investigate options for the design of ITER with reduced technical objectives and with possibly decreased technical margins, whose target construction cost was one half that of the 1998 ITER design, while maintaining the overall programmatic objective. To identify designs that might meet the revised objectives, task forces involving the JCT and Home Teams met during 1998 and 1999 to analyse and compare a range of options for the design of such a device. This led at the end of 1999 to a single configuration for the ITER design with parameters considered to be the most credible consistent with technical limitations and the financial target, yet meeting fully the objectives with appropriate margins. This new design of ITER, called ''ITER-FEAT'', was submitted to the ITER Director to the ITER Parties as the ''ITER-FEAT Outline Design Report'' (ODR) in January 2000, at their meeting in Tokyo. The Parties subsequently conducted their domestic assessments of this report and fed the resulting comments back into the progressing design. The progress on the developing design was reported to the ITER Technical Advisory Committee (TAC) in June 2000 in the report ''Progress in Resolving Open Design Issues from the ODR'' alongside a report on Progress in Technology R and D for ITER. In addition, the progress in the ITER-FEAT Design and Validating R and D was reported to the ITER Parties. The ITER-FEAT design was subsequently approved by the governing body of ITER in Moscow in June 2000 as the basis for the preparation of the Final Design Report, recognising it as a single mature design for ITER consistent with its revised objectives. This volume contains the documents pertinent to the process described above. More detailed technical information

  17. Development of a Virtual Reality Solution for End User Involvement in Interior Design

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Sørensen, Jesper Bendix

    2016-01-01

    This paper describes development and test of a prototype Virtual Reality system aimed at user involvement in hospital design. User needs and functional requirements are captured by interviews and observations in three case studies of ongoing projects in Denmark. Based on the identified requirements......, a prototype is developed based on a multitouch display for manipulating room layout in a floor plan view and a set of Oculus Rift glasses for experiencing the design in Virtual Reality. Together with users from the studied cases, test scenarios were performed to identify possible benefits, challenges...

  18. ITER council proceedings: 1998

    International Nuclear Information System (INIS)

    1999-01-01

    This volume contains documents of the 13th and the 14th ITER council meeting as well as of the 1st extraordinary ITER council meeting. Documents of the ITER meetings held in Vienna and Yokohama during 1998 are also included. The contents include an outline of the ITER objectives, the ITER parameters and design overview as well as operating scenarios and plasma performance. Furthermore, design features, safety and environmental characteristics are given

  19. Integration of diagnostics into the ITER machine

    International Nuclear Information System (INIS)

    Janeschitz, G.; Walker, C.; Costley, A.

    2001-01-01

    This paper defines and discusses the integration of diagnostics systems into the ITER machine. For each machine region, the key constraints and solutions adopted are discussed, and illustrated with selected examples. (author)

  20. The danger of iteration methods

    International Nuclear Information System (INIS)

    Villain, J.; Semeria, B.

    1983-01-01

    When a Hamiltonian H depends on variables phisub(i), the values of these variables which minimize H satisfy the equations deltaH/deltaphisub(i) = O. If this set of equations is solved by iteration, there is no guarantee that the solution is the one which minimizes H. In the case of a harmonic system with a random potential periodic with respect to the phisub(i)'s, the fluctuations have been calculated by Efetov and Larkin by means of the iteration method. The result is wrong in the case of a strong disorder. Even in the weak disorder case, it is wrong for a one-dimensional system and for a finite system of 2 particles. It is argued that the results obtained by iteration are always wrong, and that between 2 and 4 dimensions, spin-pair correlation functions decay like powers of the distance, as found by Aharony and Pytte for another model

  1. ITER council proceedings: 2000

    International Nuclear Information System (INIS)

    2001-01-01

    No ITER Council Meetings were held during 2000. However, two ITER EDA Meetings were held, one in Tokyo, January 19-20, and one in Moscow, June 29-30. The parties participating in these meetings were those that partake in the extended ITER EDA, namely the EU, the Russian Federation, and Japan. This document contains, a/o, the records of these meetings, the list of attendees, the agenda, the ITER EDA Status Reports issued during these meetings, the TAC (Technical Advisory Committee) reports and recommendations, the MAC Reports and Advice (also for the July 1999 Meeting), the ITER-FEAT Outline Design Report, the TAC Reports and Recommendations both meetings), Site requirements and Site Design Assumptions, the Tentative Sequence of technical Activities 2000-2001, Report of the ITER SWG-P2 on Joint Implementation of ITER, EU/ITER Canada Proposal for New ITER Identification

  2. Third ITER International Industry Liaison Meeting

    International Nuclear Information System (INIS)

    Dautovich, D.

    2000-01-01

    Following previous meetings held in 1996 in San Diego and in 1997 in Tokyo, the Third ITER International Industry Liaison Meeting (IILM) meeting was held under the European Chairmanship in Toronto, Canada, November 7-9, 2000. The intention of such meetings is to provide a forum for industrialists of the ITER EDA parties and other interested countries to develop common understandings on important issues of the timing and nature of Industry involvement in the ITER project. This article describes the main views from Industry on the preconstruction and construction phases and the cost and benefit schemes, while summarizing the progress made by the ITER project since the Tokyo meeting

  3. US power outage won't dim ITER

    International Nuclear Information System (INIS)

    Lawler, A.

    1996-01-01

    The $8 billion International Thermonuclear Experimental Reactor (ITER) is moving ahead, without definite support of the USA. However, still undecided are where it will be built and how much each partner will pay. This article discusses the international political aspects of building the ITER, with a particular emphasis on the Japanese approach to landing the ITER. Also discussed are possible cost-saving solutions

  4. IHadoop: Asynchronous iterations for MapReduce

    KAUST Repository

    Elnikety, Eslam Mohamed Ibrahim

    2011-11-01

    MapReduce is a distributed programming frame-work designed to ease the development of scalable data-intensive applications for large clusters of commodity machines. Most machine learning and data mining applications involve iterative computations over large datasets, such as the Web hyperlink structures and social network graphs. Yet, the MapReduce model does not efficiently support this important class of applications. The architecture of MapReduce, most critically its dataflow techniques and task scheduling, is completely unaware of the nature of iterative applications; tasks are scheduled according to a policy that optimizes the execution for a single iteration which wastes bandwidth, I/O, and CPU cycles when compared with an optimal execution for a consecutive set of iterations. This work presents iHadoop, a modified MapReduce model, and an associated implementation, optimized for iterative computations. The iHadoop model schedules iterations asynchronously. It connects the output of one iteration to the next, allowing both to process their data concurrently. iHadoop\\'s task scheduler exploits inter-iteration data locality by scheduling tasks that exhibit a producer/consumer relation on the same physical machine allowing a fast local data transfer. For those iterative applications that require satisfying certain criteria before termination, iHadoop runs the check concurrently during the execution of the subsequent iteration to further reduce the application\\'s latency. This paper also describes our implementation of the iHadoop model, and evaluates its performance against Hadoop, the widely used open source implementation of MapReduce. Experiments using different data analysis applications over real-world and synthetic datasets show that iHadoop performs better than Hadoop for iterative algorithms, reducing execution time of iterative applications by 25% on average. Furthermore, integrating iHadoop with HaLoop, a variant Hadoop implementation that caches

  5. IHadoop: Asynchronous iterations for MapReduce

    KAUST Repository

    Elnikety, Eslam Mohamed Ibrahim; El Sayed, Tamer S.; Ramadan, Hany E.

    2011-01-01

    MapReduce is a distributed programming frame-work designed to ease the development of scalable data-intensive applications for large clusters of commodity machines. Most machine learning and data mining applications involve iterative computations over large datasets, such as the Web hyperlink structures and social network graphs. Yet, the MapReduce model does not efficiently support this important class of applications. The architecture of MapReduce, most critically its dataflow techniques and task scheduling, is completely unaware of the nature of iterative applications; tasks are scheduled according to a policy that optimizes the execution for a single iteration which wastes bandwidth, I/O, and CPU cycles when compared with an optimal execution for a consecutive set of iterations. This work presents iHadoop, a modified MapReduce model, and an associated implementation, optimized for iterative computations. The iHadoop model schedules iterations asynchronously. It connects the output of one iteration to the next, allowing both to process their data concurrently. iHadoop's task scheduler exploits inter-iteration data locality by scheduling tasks that exhibit a producer/consumer relation on the same physical machine allowing a fast local data transfer. For those iterative applications that require satisfying certain criteria before termination, iHadoop runs the check concurrently during the execution of the subsequent iteration to further reduce the application's latency. This paper also describes our implementation of the iHadoop model, and evaluates its performance against Hadoop, the widely used open source implementation of MapReduce. Experiments using different data analysis applications over real-world and synthetic datasets show that iHadoop performs better than Hadoop for iterative algorithms, reducing execution time of iterative applications by 25% on average. Furthermore, integrating iHadoop with HaLoop, a variant Hadoop implementation that caches

  6. Iterated crowdsourcing dilemma game

    Science.gov (United States)

    Oishi, Koji; Cebrian, Manuel; Abeliuk, Andres; Masuda, Naoki

    2014-02-01

    The Internet has enabled the emergence of collective problem solving, also known as crowdsourcing, as a viable option for solving complex tasks. However, the openness of crowdsourcing presents a challenge because solutions obtained by it can be sabotaged, stolen, and manipulated at a low cost for the attacker. We extend a previously proposed crowdsourcing dilemma game to an iterated game to address this question. We enumerate pure evolutionarily stable strategies within the class of so-called reactive strategies, i.e., those depending on the last action of the opponent. Among the 4096 possible reactive strategies, we find 16 strategies each of which is stable in some parameter regions. Repeated encounters of the players can improve social welfare when the damage inflicted by an attack and the cost of attack are both small. Under the current framework, repeated interactions do not really ameliorate the crowdsourcing dilemma in a majority of the parameter space.

  7. High-Order Finite-Difference Solution of the Poisson Equation Involving Complex Geometries in Embedded Meshes

    Science.gov (United States)

    Marques, Alexandre; Nave, Jean-Christophe; Rosales, Ruben

    2011-11-01

    The Poisson equation is of central importance in the description of fluid flows and other physical phenomena. In prior work, Marques, Nave, and Rosales introduced the Correction Function Method (CFM) to obtain fourth-order accurate solutions for the constant coefficient Poisson problem with prescribed jump conditions for the solution and its normal derivative across arbitrary interfaces. Here we combine this method with the ideas introduced by Mayo to solve other Poisson problems involving complex geometries. In summary, we are able to rewrite the problem as a boundary integral equation in terms of a potential distribution over the boundary or interface. The solution of this integral equation is discontinuous across the boundary or interface. Hence, after this integral equation is solved using standard techniques, the potential distribution can be used to determine the jump discontinuities. We are then able to use the CFM to solve the resulting Poisson equation with jump discontinuities. The outcome is a fourth-order accurate scheme to solve general Poisson problems which, over arbitrary geometries, has a cost that is approximately twice that of a fast Poisson solver using FFT on a rectangular geometry of the same size. Details of the method and applications will be presented.

  8. Establishment of ITER: Relevant documents

    International Nuclear Information System (INIS)

    1988-01-01

    At the Geneva Summit Meeting in November, 1985, a proposal was made by the Soviet Union to build a next-generation tokamak experiment on a collaborative basis involving the world's four major fusion blocks. In October, 1986, after consulting with Japan and the European Community, the United States responded with a proposal on how to implement such an activity. Ensuing diplomatic and technical discussions resulted in the establishment, under the auspices of the IAEA, of the International Thermonuclear Experimental Reactor Conceptual Design Activities. This tome represents a collection of all documents relating to the establishment of ITER, beginning with the initial meeting of the ITER Quadripartite Initiative Committee in Vienna on 15-16 March, 1987, through the meeting of the Provisional ITER Council, also in Vienna, on 8-9 February, 1988

  9. Approximate analytical solution of the Dirac equation for pseudospin symmetry with modified Po schl-Teller potential and trigonometric Scarf II non-central potential using asymptotic iteration method

    International Nuclear Information System (INIS)

    Pratiwi, B N; Suparmi, A; Cari, C; Yunianto, M; Husein, A S

    2016-01-01

    We apllied asymptotic iteration method (AIM) to obtain the analytical solution of the Dirac equation in case exact pseudospin symmetry in the presence of modified Pcischl- Teller potential and trigonometric Scarf II non-central potential. The Dirac equation was solved by variables separation into one dimensional Dirac equation, the radial part and angular part equation. The radial and angular part equation can be reduced into hypergeometric type equation by variable substitution and wavefunction substitution and then transform it into AIM type equation to obtain relativistic energy eigenvalue and wavefunctions. Relativistic energy was calculated numerically by Matlab software. And then relativistic energy spectrum and wavefunctions were visualized by Matlab software. The results show that the increase in the radial quantum number n_r causes decrease in the relativistic energy spectrum. The negative value of energy is taken due to the pseudospin symmetry limit. Several quantum wavefunctions were presented in terms of the hypergeometric functions. (paper)

  10. ITER council proceedings: 1995

    International Nuclear Information System (INIS)

    1996-01-01

    Records of the 8. ITER Council Meeting (IC-8), held on 26-27 July 1995, in San Diego, USA, and the 9. ITER Council Meeting (IC-9) held on 12-13 December 1995, in Garching, Germany, are presented, giving essential information on the evolution of the ITER Engineering Design Activities (EDA) and the ITER Interim Design Report Package and Relevant Documents. Figs, tabs

  11. ITER council proceedings: 1999

    International Nuclear Information System (INIS)

    1999-01-01

    In 1999 the ITER meeting in Cadarache (10-11 March 1999) and the Programme Directors Meeting in Grenoble (28-29 July 1999) took place. Both meetings were exclusively devoted to ITER engineering design activities and their agendas covered all issues important for the development of ITER. This volume presents the documents of these two important meetings

  12. ITER council proceedings: 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Records of the 10. ITER Council Meeting (IC-10), held on 26-27 July 1996, in St. Petersburg, Russia, and the 11. ITER Council Meeting (IC-11) held on 17-18 December 1996, in Tokyo, Japan, are presented, giving essential information on the evolution of the ITER Engineering Design Activities (EDA) and the cost review and safety analysis. Figs, tabs

  13. ITER EDA technical activities

    International Nuclear Information System (INIS)

    Aymar, R.

    1998-01-01

    Six years of technical work under the ITER EDA Agreement have resulted in a design which constitutes a complete description of the ITER device and of its auxiliary systems and facilities. The ITER Council commented that the Final Design Report provides the first comprehensive design of a fusion reactor based on well established physics and technology

  14. ITER radio frequency systems

    International Nuclear Information System (INIS)

    Bosia, G.

    1998-01-01

    Neutral Beam Injection and RF heating are two of the methods for heating and current drive in ITER. The three ITER RF systems, which have been developed during the EDA, offer several complementary services and are able to fulfil ITER operational requirements

  15. Design and technical status of the EU contribution to ITER

    International Nuclear Information System (INIS)

    Gasparotto, Maurizio; Federici, Gianfranco; Casci, Federico Riccardo

    2009-01-01

    Europe is involved in the procurement of most of the high-technology items for the ITER device (e.g. parts of the superconducting Toroidal (TF) and Poloidal Field (PF) coils, the vacuum vessel (VV), the in-vessel components, the remote handling, the additional heating systems, the tritium plant and cryoplant and finally parts of the diagnostics). In many cases the technologies required to manufacture these components are well established, in others there is still ongoing design and R and D work to select and optimise the final design solutions and to consolidate the underlying technologies as, for example, in the areas of heating and current drive, plasma diagnostics, shield blanket and first wall, remote handling, etc. A design review has recently been conducted by the ITER Organisation, with the support of the Domestic Agencies (DAs) established by the countries participating to ITER, to address the remaining outstanding technical issues and understand the associated implications for design, machine performance, schedule and cost. This paper provides an update of the design and technical status of EU contributions to ITER.

  16. ITER-FEAT safety

    International Nuclear Information System (INIS)

    Gordon, C.W.; Bartels, H.-W.; Honda, T.; Raeder, J.; Topilski, L.; Iseli, M.; Moshonas, K.; Taylor, N.; Gulden, W.; Kolbasov, B.; Inabe, T.; Tada, E.

    2001-01-01

    Safety has been an integral part of the design process for ITER since the Conceptual Design Activities of the project. The safety approach adopted in the ITER-FEAT design and the complementary assessments underway, to be documented in the Generic Site Safety Report (GSSR), are expected to help demonstrate the attractiveness of fusion and thereby set a good precedent for future fusion power reactors. The assessments address ITER's radiological hazards taking into account fusion's favourable safety characteristics. The expectation that ITER will need regulatory approval has influenced the entire safety design and assessment approach. This paper summarises the ITER-FEAT safety approach and assessments underway. (author)

  17. ITER council proceedings: 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This volume of the ITER EDA Documentation Series presents records of the 12th ITER Council Meeting, IC-12, which took place on 23-24 July, 1997 in Tampere, Finland. The Council received from the Parties (EU, Japan, Russia, US) positive responses on the Detailed Design Report. The Parties stated their willingness to contribute to fulfil their obligations in contributing to the ITER EDA. The summary discussions among the Parties led to the consensus that in July 1998 the ITER activities should proceed for additional three years with a general intent to enable an efficient start of possible, future ITER construction

  18. Towards fully authentic modelling of ITER divertor plasmas

    International Nuclear Information System (INIS)

    Maddison, G.P.; Hotston, E.S.; Reiter, D.; Boerner, P.

    1991-01-01

    Ignited next step tokamaks such as NET or ITER are expected to use a poloidal magnetic divertor to facilitate exhaust of plasma particles and energy. We report a development coupling together detailed computational models for both plasma and recycled neutral particle transport processes, to produce highly detailed and consistent design solutions. A particular aspect is involvement of an accurate specification of edge magnetic geometries, determined by an original equilibrium discretisation code, named LINDA. Initial results for a prototypical 22MA ITER double-null configuration are presented. Uncertainties in such modelling are considered, especially with regard to intrinsic physical scale lengths. Similar results produced with a simple, analytical treatment of recycling are also compared. Finally, a further extension allowing true oblique target sections is anticipated. (author) 8 refs., 5 figs

  19. Statistical process control charts for attribute data involving very large sample sizes: a review of problems and solutions.

    Science.gov (United States)

    Mohammed, Mohammed A; Panesar, Jagdeep S; Laney, David B; Wilson, Richard

    2013-04-01

    The use of statistical process control (SPC) charts in healthcare is increasing. The primary purpose of SPC is to distinguish between common-cause variation which is attributable to the underlying process, and special-cause variation which is extrinsic to the underlying process. This is important because improvement under common-cause variation requires action on the process, whereas special-cause variation merits an investigation to first find the cause. Nonetheless, when dealing with attribute or count data (eg, number of emergency admissions) involving very large sample sizes, traditional SPC charts often produce tight control limits with most of the data points appearing outside the control limits. This can give a false impression of common and special-cause variation, and potentially misguide the user into taking the wrong actions. Given the growing availability of large datasets from routinely collected databases in healthcare, there is a need to present a review of this problem (which arises because traditional attribute charts only consider within-subgroup variation) and its solutions (which consider within and between-subgroup variation), which involve the use of the well-established measurements chart and the more recently developed attribute charts based on Laney's innovative approach. We close by making some suggestions for practice.

  20. Iterative approach to effective interactions in nuclei

    International Nuclear Information System (INIS)

    Heiss, W.D.

    1982-01-01

    Starting from a non-linear equation for the effective interaction in a model space, various iteration procedures converge to a correct solution irrespective of the presence of intruder states. The physical significance of the procedures and the respective solution is discussed

  1. Technologies for ITER divertor vertical target plasma facing components

    International Nuclear Information System (INIS)

    Schlosser, J.; Escourbiac, F.; Merola, M.; Fouquet, S.; Bayetti, P.; Cordier, J.J.; Grosman, A.; Missirlian, M.; Tivey, R.; Roedig, M.

    2005-01-01

    The ITER divertor vertical target has to sustain heat fluxes up to 20 MW m -2 . The concept developed for this plasma facing component working at steady state is based on carbon fibre composite armour for the lower straight part and tungsten for the curved upper part. The main challenges involved in the use of such components include the removal of the high heat fluxes deposited and mechanically and thermally joining the armour to the metallic heat sink, despite the mismatch in the thermal expansions. Two solutions based on the use of a CuCrZr hardened copper alloy and an active metal casting (AMC (registered) ) process were investigated during the ITER EDA phase: the first one called 'flat tile geometry' was mainly developed for the Tore Supra pumped limiter, the second one called 'monoblock geometry' was developed by the EU Participating Team for the ITER project. This paper presents a review of these two solutions and analyses their assets and drawbacks: pressure drop, critical heat flux, surface temperature and expected behaviour during operation, risks during the manufacture, control of the armour defects during the manufacture and at the reception, and the possibility of repairing defective tiles

  2. Iteration and accelerator dynamics

    International Nuclear Information System (INIS)

    Peggs, S.

    1987-10-01

    Four examples of iteration in accelerator dynamics are studied in this paper. The first three show how iterations of the simplest maps reproduce most of the significant nonlinear behavior in real accelerators. Each of these examples can be easily reproduced by the reader, at the minimal cost of writing only 20 or 40 lines of code. The fourth example outlines a general way to iteratively solve nonlinear difference equations, analytically or numerically

  3. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules.

    Science.gov (United States)

    Ateshian, Gerard A; Nims, Robert J; Maas, Steve; Weiss, Jeffrey A

    2014-10-01

    Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio ( www.febio.org ). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the

  4. Future plan of ITER

    International Nuclear Information System (INIS)

    Kitsunezaki, Akio

    1998-01-01

    In cooperation of four countries, Japan, USA, EU and Russia, ITER plan has been proceeding as ''the conceptual design activities'' from 1988 to 1990 and ''the industrial design activities'' since 1992. To construct ITER, the legal and work side of ITER operation has been investigated by four countries. However, their economic conditions have been changed to be wrong. So that, construction of ITER can not begin after end of industrial design activities in 1998. Accordingly, they determined to continue the industrial design activities more three years in order to study low cost options and to test the superconductive model·coil. (S.Y.)

  5. ITER test programme

    International Nuclear Information System (INIS)

    Abdou, M.; Baker, C.; Casini, G.

    1991-01-01

    ITER has been designed to operate in two phases. The first phase which lasts for 6 years, is devoted to machine checkout and physics testing. The second phase lasts for 8 years and is devoted primarily to technology testing. This report describes the technology test program development for ITER, the ancillary equipment outside the torus necessary to support the test modules, the international collaboration aspects of conducting the test program on ITER, the requirements on the machine major parameters and the R and D program required to develop the test modules for testing in ITER. 15 refs, figs and tabs

  6. Novel aspects of plasma control in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, D.; Jackson, G.; Walker, M.; Welander, A. [General Atomics P.O. Box 85608, San Diego, California 92186-5608 (United States); Ambrosino, G.; Pironti, A. [CREATE/University of Naples Federico II, Napoli (Italy); Vries, P. de; Kim, S. H.; Snipes, J.; Winter, A.; Zabeo, L. [ITER Organization, St. Paul Lez durance Cedex (France); Felici, F. [Eindhoven University of Technology, Eindhoven (Netherlands); Kallenbach, A.; Raupp, G.; Treutterer, W. [Max-Planck Institut für Plasmaphysik, Garching (Germany); Kolemen, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Lister, J.; Sauter, O. [Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Moreau, D. [CEA, IRFM, 13108 St. Paul-lez Durance (France); Schuster, E. [Lehigh University, Bethlehem, Pennsylvania (United States)

    2015-02-15

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  7. Electromagnetic scattering using the iterative multi-region technique

    CERN Document Server

    Al Sharkawy, Mohamed H

    2007-01-01

    In this work, an iterative approach using the finite difference frequency domain method is presented to solve the problem of scattering from large-scale electromagnetic structures. The idea of the proposed iterative approach is to divide one computational domain into smaller subregions and solve each subregion separately. Then the subregion solutions are combined iteratively to obtain a solution for the complete domain. As a result, a considerable reduction in the computation time and memory is achieved. This procedure is referred to as the iterative multiregion (IMR) technique.Different enhan

  8. ITER activities status report: December 1989

    International Nuclear Information System (INIS)

    1990-01-01

    Beginning in 1988 and continuing through 1990, the four Parties involved, under the auspices of the IAEA, have been cooperating in the ITER Conceptual Design Activities. This activity resulted in a single conceptual design for a facility that could achieve the objectives established for ITER. This report is an interim report which gives a brief summary of the Conceptual Design Activities through December, 1989. 4 figs, 1 tab

  9. United States rejoin ITER

    International Nuclear Information System (INIS)

    Roberts, M.

    2003-01-01

    Upon pressure from the United States Congress, the US Department of Energy had to withdraw from further American participation in the ITER Engineering Design Activities after the end of its commitment to the EDA in July 1998. In the years since that time, changes have taken place in both the ITER activity and the US fusion community's position on burning plasma physics. Reflecting the interest in the United States in pursuing burning plasma physics, the DOE's Office of Science commissioned three studies as part of its examination of the option of entering the Negotiations on the Agreement on the Establishment of the International Fusion Energy Organization for the Joint Implementation of the ITER Project. These were a National Academy Review Panel Report supporting the burning plasma mission; a Fusion Energy Sciences Advisory Committee (FESAC) report confirming the role of ITER in achieving fusion power production, and The Lehman Review of the ITER project costing and project management processes (for the latter one, see ITER CTA Newsletter, no. 15, December 2002). All three studies have endorsed the US return to the ITER activities. This historical decision was announced by DOE Secretary Abraham during his remarks to employees of the Department's Princeton Plasma Physics Laboratory. The United States will be working with the other Participants in the ITER Negotiations on the Agreement and is preparing to participate in the ITA

  10. ITER CTA newsletter. No. 3

    International Nuclear Information System (INIS)

    2001-11-01

    This ITER CTA newsletter comprises reports of Dr. P. Barnard, Iter Canada Chairman and CEO, about the progress of the first formal ITER negotiations and about the demonstration of details of Canada's bid on ITER workshops, and Dr. V. Vlasenkov, Project Board Secretary, about the meeting of the ITER CTA project board

  11. ITER at Cadarache; ITER a Cadarache

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-15

    This public information document presents the ITER project (International Thermonuclear Experimental Reactor), the definition of the fusion, the international cooperation and the advantages of the project. It presents also the site of Cadarache, an appropriate scientifical and economical environment. The last part of the documentation recalls the historical aspect of the project and the today mobilization of all partners. (A.L.B.)

  12. Strong and Weak Convergence Criteria of Composite Iterative Algorithms for Systems of Generalized Equilibria

    Directory of Open Access Journals (Sweden)

    Lu-Chuan Ceng

    2014-01-01

    Full Text Available We first introduce and analyze one iterative algorithm by using the composite shrinking projection method for finding a solution of the system of generalized equilibria with constraints of several problems: a generalized mixed equilibrium problem, finitely many variational inequalities, and the common fixed point problem of an asymptotically strict pseudocontractive mapping in the intermediate sense and infinitely many nonexpansive mappings in a real Hilbert space. We prove a strong convergence theorem for the iterative algorithm under suitable conditions. On the other hand, we also propose another iterative algorithm involving no shrinking projection method and derive its weak convergence under mild assumptions. Our results improve and extend the corresponding results in the earlier and recent literature.

  13. ITER council proceedings: 1992

    International Nuclear Information System (INIS)

    1994-01-01

    At the signing of the ITER EDA Agreement on July, 1992, each of the Parties presented to the Director General the names of their designated members of the ITER Council. Upon receiving those names, the Director General stated that the ITER Engineering Design Activities were ''ready to begin''. The next step in this process was the convening of the first meeting of the ITER Council. The first meeting of the Council, held in Vienna, was opened by Director General Hans Blix. The second meeting was held in Moscow, the formal seat of the Council. This volume presents records of these first two Council meetings and, together with the previous volumes on the text of the Agreement and Protocol 1 and the preparations for their signing respectively, represents essential information on the evolution of the ITER EDA

  14. Precise fixpoint computation through strategy iteration

    DEFF Research Database (Denmark)

    Gawlitza, Thomas; Seidl, Helmut

    2007-01-01

    We present a practical algorithm for computing least solutions of systems of equations over the integers with addition, multiplication with positive constants, maximum and minimum. The algorithm is based on strategy iteration. Its run-time (w.r.t. the uniform cost measure) is independent of the s......We present a practical algorithm for computing least solutions of systems of equations over the integers with addition, multiplication with positive constants, maximum and minimum. The algorithm is based on strategy iteration. Its run-time (w.r.t. the uniform cost measure) is independent...

  15. ITMETH, Iterative Routines for Linear System

    International Nuclear Information System (INIS)

    Greenbaum, A.

    1989-01-01

    1 - Description of program or function: ITMETH is a collection of iterative routines for solving large, sparse linear systems. 2 - Method of solution: ITMETH solves general linear systems of the form AX=B using a variety of methods: Jacobi iteration; Gauss-Seidel iteration; incomplete LU decomposition or matrix splitting with iterative refinement; diagonal scaling, matrix splitting, or incomplete LU decomposition with the conjugate gradient method for the problem AA'Y=B, X=A'Y; bi-conjugate gradient method with diagonal scaling, matrix splitting, or incomplete LU decomposition; and ortho-min method with diagonal scaling, matrix splitting, or incomplete LU decomposition. ITMETH also solves symmetric positive definite linear systems AX=B using the conjugate gradient method with diagonal scaling or matrix splitting, or the incomplete Cholesky conjugate gradient method

  16. ITER towards the construction

    International Nuclear Information System (INIS)

    Shimomura, Y.

    2005-01-01

    The ITER Project has been significantly developed in the last few years in preparation for its construction. The ITER Participant's Negotiators have developed the Joint Implementation Agreement (JIA), ready for finalisation following selection of the construction site and nomination of the project's Director General. The ITER International Team and Participant Teams have continued technical and organisational preparations. Construction will be able to start immediately after the international ITER organisation is established, following signature of the JIA. The Project is strongly supported by the governments of the Participants as well as by the scientific community. The real negotiations, including siting and the final details of cost sharing, started in December 2003. The EU, with Cadarache, and Japan, with Rokkasho, have both promised large contributions to the project to strongly support their construction site proposals. Their wish to host ITER construction is too strong to allow convergence to a single site considering the ITER device in isolation. A broader collaboration among the Parties is therefore being contemplated, covering complementary activities to help accelerate fusion development towards a viable power source, and allow the Participants to reach a conclusion on ITER siting. This report reviews these preparations, and the status of negotiations

  17. Design iteration in construction projects – Review and directions

    Directory of Open Access Journals (Sweden)

    Purva Mujumdar

    2018-03-01

    Full Text Available Design phase of any construction project involves several designers who exchange information with each other most often in an unstructured manner throughout the design phase. When these information exchanges happen to occur in cycles/loops, it is termed as design iteration. Iteration is an inherent and unavoidable aspect of any design phase which requires proper planning. Till date, very few researchers have explored the design iteration (“complexity” in construction sector. Hence, the objective of this paper was to document and review the complexities of iteration during design phase of construction projects for efficient design planning. To achieve this objective, exhaustive literature review on design iteration was done for four sectors – construction, manufacturing, aerospace, and software development. In addition, semi-structured interviews and discussions were done with a few design experts to verify the different dimensions of iteration. Finally, a design iteration framework was presented in this study that facilitates successful planning. Keywords: Design iteration, Types of iteration, Causes and impact of iteration, Models of iteration, Execution strategies of iteration

  18. An implicit iterative scheme for solving large systems of linear equations

    International Nuclear Information System (INIS)

    Barry, J.M.; Pollard, J.P.

    1986-12-01

    An implicit iterative scheme for the solution of large systems of linear equations arising from neutron diffusion studies is presented. The method is applied to three-dimensional reactor studies and its performance is compared with alternative iterative approaches

  19. Regarding overrelaxation for accelerating an iteration process

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1984-06-01

    The solution for a vector that satisfies a set of coupled equations is often obtained economically in iteration. Application of an overrelaxation coefficient to augment the calculated iterate changes is done to accelerate the rate of convergence. This scheme is simple to implement and often effective. Much is known theoretically about the iterative behavior when the system of equations is linear, although there are complexities that are not widely known. Extensive use is made of the scheme even to non-linear systems of equations where behavior depends on the situation. Of much concern to the developer of solution methods (typically an engineer or applied mathematician) is implementing an effective procedure at a modest investment in development and testing. Applications are described to thermal cell and neutron diffusion modeling

  20. Perl Modules for Constructing Iterators

    Science.gov (United States)

    Tilmes, Curt

    2009-01-01

    The Iterator Perl Module provides a general-purpose framework for constructing iterator objects within Perl, and a standard API for interacting with those objects. Iterators are an object-oriented design pattern where a description of a series of values is used in a constructor. Subsequent queries can request values in that series. These Perl modules build on the standard Iterator framework and provide iterators for some other types of values. Iterator::DateTime constructs iterators from DateTime objects or Date::Parse descriptions and ICal/RFC 2445 style re-currence descriptions. It supports a variety of input parameters, including a start to the sequence, an end to the sequence, an Ical/RFC 2445 recurrence describing the frequency of the values in the series, and a format description that can refine the presentation manner of the DateTime. Iterator::String constructs iterators from string representations. This module is useful in contexts where the API consists of supplying a string and getting back an iterator where the specific iteration desired is opaque to the caller. It is of particular value to the Iterator::Hash module which provides nested iterations. Iterator::Hash constructs iterators from Perl hashes that can include multiple iterators. The constructed iterators will return all the permutations of the iterations of the hash by nested iteration of embedded iterators. A hash simply includes a set of keys mapped to values. It is a very common data structure used throughout Perl programming. The Iterator:: Hash module allows a hash to include strings defining iterators (parsed and dispatched with Iterator::String) that are used to construct an overall series of hash values.

  1. Complete study of the existence and uniqueness of solutions for semilinear elliptic equations involving measures concentrated on boundary

    KAUST Repository

    Chen, Huyuan

    2017-02-06

    The purpose of this paper is to study the weak solutions of the fractional elliptic problem(Formula presented.) where (Formula presented.), (Formula presented.) or (Formula presented.), (Formula presented.) with (Formula presented.) is the fractional Laplacian defined in the principle value sense, (Formula presented.) is a bounded (Formula presented.) open set in (Formula presented.) with (Formula presented.), (Formula presented.) is a bounded Radon measure supported in (Formula presented.) and (Formula presented.) is defined in the distribution sense, i.e.(Formula presented.) here (Formula presented.) denotes the unit inward normal vector at (Formula presented.). In this paper, we prove that (0.1) with (Formula presented.) admits a unique weak solution when g is a continuous nondecreasing function satisfying(Formula presented.) Our interest then is to analyse the properties of weak solution when (Formula presented.) with (Formula presented.), including the asymptotic behaviour near (Formula presented.) and the limit of weak solutions as (Formula presented.). Furthermore, we show the optimality of the critical value (Formula presented.) in a certain sense, by proving the non-existence of weak solutions when (Formula presented.). The final part of this article is devoted to the study of existence for positive weak solutions to (0.1) when (Formula presented.) and (Formula presented.) is a bounded nonnegative Radon measure supported in (Formula presented.). We employ the Schauder’s fixed point theorem to obtain positive solution under the hypothesis that g is a continuous function satisfying(Formula presented.)-pagination

  2. ITER containment structures

    International Nuclear Information System (INIS)

    Sadakov, S.; Fauser, F.; Nelson, B.

    1991-01-01

    This document describes the results and recommendations of the Containment Structures Design Unit (CSDU) on the containment structures for ITER, made in the context of the Conceptual Design Phase. The document describes the following subsystems: (1) the primary vacuum vessel (VV), (2) the attaching locks (AL) of the invessel components, (3) the plasma passive and active stabilizers, (4) the cryostat vessel, and (5) the machine gravity supports. Although for most components reference designs were selected, for some of these alternative design options were described, because unresolved problems necessitate further research and development. Conclusions and future needs are summarized for each of the above subsystems: (1) a reference VV design was selected, while most critical VV future needs are the feasibility studies of manufacturing, assembly, and the repair/disassembly/reassembly by remote handling. Alternative, thin-wall options appear attractive and should be studied further during the Engineering Design Activities; (2) no reference design solution was selected for the AL system, as AL design requirements are extremely difficult and internally contradictory, while there is no existing tokamak precedent, but instead, five different approaches will be further researched early in the Engineering Design Phase; (3) significant progress is reported on passive loops, for which the ''twin-loops'' concept is ready to be advanced into the Engineering Design Phase, and on active coils, where a new coil positioning prevents interference with the blanket removal paths, and the current joints are located in a secondary vacuum or in the atmosphere of the reactor hall, repairable by remote handling; (4) a full metallic welded cryostat design with increased toroidal resistance was chosen, but with a design based on concrete with a thin inner metallic liner as a back-up in case detailed nuclear shielding requirements would force the cryostat to act as biological shield; (5) out

  3. India's participation in the ITER (International Thermonuclear Experimental Reactor) collaboration

    International Nuclear Information System (INIS)

    Deshpande, Shishir

    2012-01-01

    Keeping its vision of developing fusion energy as a viable source, India joined the ITER collaboration in December 2005. ITER is a seven party collaboration with China, EU, India, Japan, S. Korea, Russia and the USA. ITER has a challenging mission of achieving Q=10 figure of merit at 500 MW fusion power output. The construction of ITER is structured as a set of 'in-kind' procurement packages to be executed by the partners. This involves all activities like design, prototyping, testing, shipping and assembly with commissioning at the ITER site at Cadarache, France. Currently, ITER presents the only opportunity to carry out novel experiments with burning plasmas and the new realms of fusion physics. It is important to participate in such experiments with a view for their exploitation in future. This talk summarizes the ITER device, its key challenges, role played by India and how these enmesh with the future of domestic program in fusion research. (author)

  4. ITER definition phase

    International Nuclear Information System (INIS)

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is envisioned as a fusion device which would demonstrate the scientific and technological feasibility of fusion power. As a first step towards achieving this goal, the European Community, Japan, the Soviet Union, and the United States of America have entered into joint conceptual design activities under the auspices of the International Atomic Energy Agency. A brief summary of the Definition Phase of ITER activities is contained in this report. Included in this report are the background, objectives, organization, definition phase activities, and research and development plan of this endeavor in international scientific collaboration. A more extended technical summary is contained in the two-volume report, ''ITER Concept Definition,'' IAEA/ITER/DS/3. 2 figs, 2 tabs

  5. Power converters for ITER

    CERN Document Server

    Benfatto, I

    2006-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a thermonuclear fusion experiment designed to provide long deuterium– tritium burning plasma operation. After a short description of ITER objectives, the main design parameters and the construction schedule, the paper describes the electrical characteristics of the French 400 kV grid at Cadarache: the European site proposed for ITER. Moreover, the paper describes the main requirements and features of the power converters designed for the ITER coil and additional heating power supplies, characterized by a total installed power of about 1.8 GVA, modular design with basic units up to 90 MVA continuous duty, dc currents up to 68 kA, and voltages from 1 kV to 1 MV dc.

  6. ITER convertible blanket evaluation

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.

    1995-01-01

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate

  7. ITER EDA and technology

    International Nuclear Information System (INIS)

    Baker, C.C.

    2001-01-01

    The year 1998 was the culmination of the six-year Engineering Design Activities (EDA) of the International Thermonuclear Experimental Reactor (ITER) Project. The EDA results in design and validating technology R and D, plus the associated effort in voluntary physics research, is a significant achievement and major milestone in the history of magnetic fusion energy development. Consequently, the ITER EDA was a major theme at this Conference, contributing almost 40 papers

  8. Toward construction of ITER

    International Nuclear Information System (INIS)

    Shimomura, Yasuo

    2005-01-01

    The ITER Project has been significantly developed in the past years in preparation for its construction. The ITER Negotiators have developed a draft Joint Implementation Agreement (JIA), ready for completion following the nomination of the Project's Director General (DG). The ITER International Team and Participant Teams have continued technical and organizational preparations. The actual construction will be able to start immediately after the international ITER organization will be established, following signature of the JIA. The Project is now strongly supported by all the participants as well as by the scientific community with the final high-level negotiations, focused on siting and the concluding details of cost sharing, started in December 2003. The EU, with Cadarache, and Japan, with Rokkasho, have both promised large contributions to the project to strongly support their construction site proposals. The extent to which they both wish to host the ITER facility is such that large contributions to a broader collaboration among the Parties are also proposed by them. This covers complementary activities to help accelerate fusion development towards a viable power source, as well as may allow the Participants to reach a conclusion on ITER siting. (author)

  9. ITER Status and Plans

    Science.gov (United States)

    Greenfield, Charles M.

    2017-10-01

    The US Burning Plasma Organization is pleased to welcome Dr. Bernard Bigot, who will give an update on progress in the ITER Project. Dr. Bigot took over as Director General of the ITER Organization in early 2015 following a distinguished career that included serving as Chairman and CEO of the French Alternative Energies and Atomic Energy Commission and as High Commissioner for ITER in France. During his tenure at ITER the project has moved into high gear, with rapid progress evident on the construction site and preparation of a staged schedule and a research plan leading from where we are today through all the way to full DT operation. In an unprecedented international effort, seven partners ``China, the European Union, India, Japan, Korea, Russia and the United States'' have pooled their financial and scientific resources to build the biggest fusion reactor in history. ITER will open the way to the next step: a demonstration fusion power plant. All DPP attendees are welcome to attend this ITER town meeting.

  10. Solution Prototype

    DEFF Research Database (Denmark)

    Efeoglu, Arkin; Møller, Charles; Serie, Michel

    2013-01-01

    This paper outlines an artifact building and evaluation proposal. Design Science Research (DSR) studies usually consider encapsulated artifact that have relationships with other artifacts. The solution prototype as a composed artifact demands for a more comprehensive consideration in its systematic...... environment. The solution prototype that is composed from blending product and service prototype has particular impacts on the dualism of DSR’s “Build” and “Evaluate”. Since the mix between product and service prototyping can be varied, there is a demand for a more agile and iterative framework. Van de Ven......’s research framework seems to fit this purpose. Van de Ven allows for an iterative research approach to problem solving with flexible starting point. The research activity is the result between the iteration of two dimensions. This framework focuses on the natural evaluation, particularly on ex...

  11. ITER CTA newsletter. No. 6

    International Nuclear Information System (INIS)

    2002-01-01

    This ITER CTA Newsletter issue comprises information about the following ITER Meetings: The second negotiation meeting on the joint implementation of ITER, held in Tokyo(Japan) on 22-23 January 2002, and an international ITER symposium on burning plasma science and technology, held the day later after the second negotiation meeting at the same place

  12. ITER CTA newsletter. No. 2

    International Nuclear Information System (INIS)

    2001-10-01

    This ITER CTA newsletter contains results of the ITER toroidal field model coil project presented by ITER EU Home Team (Garching) and an article in commemoration of the late Dr. Charles Maisonnier, one of the former leaders of ITER who made significant contributions to its development

  13. Positivity and negativity of solutions to nXn weighted systems involving the Laplace operator on R^N

    Directory of Open Access Journals (Sweden)

    Benedicte Alziary

    2012-06-01

    Full Text Available We consider the sign of the solutions of a $n imes n$ system defined on the whole space $mathbb{R}^N$, $Ngeq 3$ and a weight function $ho$ with a positive part decreasing fast enough, $$ -Delta U = lambda ho(x MU +F, $$ where $F$ is a vector of functions, $M$ is a $n imes n$ matrix with constant coefficients, not necessarily cooperative, and the weight function $ho$ is allowed to change sign. We prove that the solutions of the $nimes n$ system exist and then we prove the local fundamental positivity and local fundamental negativity of the solutions when $|lambdasigma_1-lambda_ho|$ is small enough, where $sigma_1$ is the largest eigenvalue of the constant matrix $M$ and $lambda_ho$ is the "principal" eigenvalue of $$ -Delta u = lambda ho(x u , quad lim_{|x|o infty} u(x = 0 ; quad u(x>0, quad xin mathbb{R}^N. $$

  14. The ITER management advisory committee (MAC) meeting in Cadarache

    International Nuclear Information System (INIS)

    Yoshikawa, M.

    1999-01-01

    The ITER management advisory committee meeting was held on 8 March in Cadarache, France. The main topics were the ITER EDA Status Report in the period between the ITER Meeting in Yokohama (October 1990) and February 1999. In particular, the management advisory committee shares the director's concern about the uncertainties against which the whole project operates at present. They also noted that the definition of an appropriate framework for continued US involvement in on-going projects is a very important issue

  15. Status and plans for US ITER studies

    International Nuclear Information System (INIS)

    Doggett, J.N.

    1992-01-01

    The United States' participation in the International Thermonuclear Experimental Reactor (ITER) began in later 1987 when the initiative to start a cooperative program among the four Parties -- the Soviet Union, Japan, the European Community, and the United States -- was initiated. Participation then continued through the start of Joint Work in May 1988 until the conclusion of the Conceptual Design Activities (CDA) in December 1990. In the period between the conclusion of the CDA and the agreement to execute the Engineering Design Activities (EDA), the US ITER Home Team continued to do work on the design, executed additional research and development, and participated in the preparations for the EDA. Activities included one major design study on a High-Aspect-Ratio Design and input to the National ITER Technical Review, the ITER Steering Committee -- US, Special Working Group 1, and the Fusion Energy Advisory Committee's Panel 1. Research and development was continued in areas of work that were identified as critical-path elements by an international panel chartered by the four ITER Parties near the end of the CDA. I will describe the conclusion of the CDA and the interim US ITER activities and will give an indication of our involvement in the EDA

  16. ITER tokamak device

    International Nuclear Information System (INIS)

    Doggett, J.; Salpietro, E.; Shatalov, G.

    1991-01-01

    The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER; and a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fuelling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (i) magnet systems (toroidal and poloidal field coils and cryogenic systems), (ii) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (iii) first wall, (iv) divertor plate (design and materials, performance and lifetime, a.o.), (v) blanket/shield system, (vi) maintenance equipment, (vii) current drive and heating, (viii) fuel cycle system, and (ix) diagnostics. 11 refs, figs and tabs

  17. Controlled Nuclear Fusion by Magnetic Confinement and ITER

    CERN Document Server

    CERN. Geneva. Audiovisual Unit; Alvarez-Gaumé, Luís

    2005-01-01

    For may years harnessing fusion energy was considered the final solution to the world's energy crisis. ITER is the last step in the elusive quest. This presentation will provide in its various acientific, technological and political aspects.

  18. Approximate inverse preconditioning of iterative methods for nonsymmetric linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Benzi, M. [Universita di Bologna (Italy); Tuma, M. [Inst. of Computer Sciences, Prague (Czech Republic)

    1996-12-31

    A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods.

  19. The ITER activity

    International Nuclear Information System (INIS)

    Glass, A.J.

    1991-01-01

    The International Thermonuclear Experimental Reactor (ITER) project is a collaboration among four parties, the United States, the Soviet Union, Japan, and the European Communities, to demonstrate the scientific and technological feasibility of fusion power for peaceful purposes. ITER will demonstrate this through the construction of a tokamak fusion reactor capable of generating 1000 megawatts of fusion power. The ITER project has three missions, as follows: (1) Physics mission -- to demonstrate ignition and controlled burn, with pulse durations from 200 to 1000 S; (2) Technology mission -- to demonstrate the technologies essential to a reactor in an integrated system, operating with high reliability and availability in pulsed operation, with steady-state operation as the ultimate goal; and (3) Testing mission -- to test nuclear and high-heat-flux components at flux levels for 1 mw/m 2 , and fluences of order 1 mw-yr/m 2

  20. Personnel Radiation Protection at the ITER Nuclear Fusion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, A.; Sandri, S. [ENEA, Radiation Protection Institute, Frascati (Italy); D' Arienzo, M. [RFX, Padova (Italy)

    2006-07-01

    The hosting site for the ITER nuclear fusion experiment was finally chosen in France (Cadarache). The radiation protection program for the ITER personnel involved into operation and maintenance activities will be then tested in the near future. Related studies were mainly carried out during the last ten years and important assessments were performed at the Frascati ENEA Research Center in Italy. In this ambit individual and collective doses to the operators were calculated for different categories of working activities involving more and less critical systems. The radiation protection organization was outlined and the related program was proposed. A short review of the analyses performed in this field by the Italian investigators of the ENEA Radiation Protection Institute is shown here. The principal parameter taken into account in these evaluations was the collective dose due to the different working activities. This quantity has been assessed considering the following radiological source terms: a) the prompt radiation during the plasma burning phase, b) the gamma radiation due to the neutron activation of the solid structures, c) the activated corrosion products (ACPs) generated in the water cooling system (WCS) by corrosion of the inner wall of the piping under the neutron flux, d) tritium concentration in the atmosphere of the working premises. Individual doses have been integrated over the different worker typology, considering the design evolution for the different systems and the required person power. Ordinary, inspection and maintenance activities were taken into account to assess the person power, sometime also construction, plant modifications and unscheduled maintenance were included in the working activities list. The collective dose assessed for ITER fusion projects has been compared with that of the fission power stations and analogies and differences have been pointed out. In this review the dose assessment process is recalled starting from the

  1. Personnel Radiation Protection at the ITER Nuclear Fusion Facility

    International Nuclear Information System (INIS)

    Coniglio, A.; Sandri, S.; D'Arienzo, M.

    2006-01-01

    The hosting site for the ITER nuclear fusion experiment was finally chosen in France (Cadarache). The radiation protection program for the ITER personnel involved into operation and maintenance activities will be then tested in the near future. Related studies were mainly carried out during the last ten years and important assessments were performed at the Frascati ENEA Research Center in Italy. In this ambit individual and collective doses to the operators were calculated for different categories of working activities involving more and less critical systems. The radiation protection organization was outlined and the related program was proposed. A short review of the analyses performed in this field by the Italian investigators of the ENEA Radiation Protection Institute is shown here. The principal parameter taken into account in these evaluations was the collective dose due to the different working activities. This quantity has been assessed considering the following radiological source terms: a) the prompt radiation during the plasma burning phase, b) the gamma radiation due to the neutron activation of the solid structures, c) the activated corrosion products (ACPs) generated in the water cooling system (WCS) by corrosion of the inner wall of the piping under the neutron flux, d) tritium concentration in the atmosphere of the working premises. Individual doses have been integrated over the different worker typology, considering the design evolution for the different systems and the required person power. Ordinary, inspection and maintenance activities were taken into account to assess the person power, sometime also construction, plant modifications and unscheduled maintenance were included in the working activities list. The collective dose assessed for ITER fusion projects has been compared with that of the fission power stations and analogies and differences have been pointed out. In this review the dose assessment process is recalled starting from the

  2. On Algebraic Structure of Improved Gauss-Seidel Iteration

    OpenAIRE

    O. M. Bamigbola; A. A. Ibrahim

    2014-01-01

    Analysis of real life problems often results in linear systems of equations for which solutions are sought. The method to employ depends, to some extent, on the properties of the coefficient matrix. It is not always feasible to solve linear systems of equations by direct methods, as such the need to use an iterative method becomes imperative. Before an iterative method can be employed to solve a linear system of equations there must be a guaranty that the process of solut...

  3. Variational iteration method for one dimensional nonlinear thermoelasticity

    International Nuclear Information System (INIS)

    Sweilam, N.H.; Khader, M.M.

    2007-01-01

    This paper applies the variational iteration method to solve the Cauchy problem arising in one dimensional nonlinear thermoelasticity. The advantage of this method is to overcome the difficulty of calculation of Adomian's polynomials in the Adomian's decomposition method. The numerical results of this method are compared with the exact solution of an artificial model to show the efficiency of the method. The approximate solutions show that the variational iteration method is a powerful mathematical tool for solving nonlinear problems

  4. Tuning coercive force by adjusting electric potential in solution processed Co/Pt(111) and the mechanism involved

    Science.gov (United States)

    Chang, Cheng-Hsun-Tony; Kuo, Wei-Hsu; Chang, Yu-Chieh; Tsay, Jyh-Shen; Yau, Shueh-Lin

    2017-03-01

    A combination of a solution process and the control of the electric potential for magnetism represents a new approach to operating spintronic devices with a highly controlled efficiency and lower power consumption with reduced production cost. As a paradigmatic example, we investigated Co/Pt(111) in the Bloch-wall regime. The depression in coercive force was detected by applying a negative electric potential in an electrolytic solution. The reversible control of coercive force by varying the electric potential within few hundred millivolts is demonstrated. By changing the electric potential in ferromagnetic layers with smaller thicknesses, the efficiency for controlling the tunable coercive force becomes higher. Assuming that the pinning domains are independent of the applied electric potential, an electric potential tuning-magnetic anisotropy energy model was derived and provided insights into our knowledge of the relation between the electric potential tuning coercive force and the thickness of the ferromagnetic layer. Based on the fact that the coercive force can be tuned by changing the electric potential using a solution process, we developed a novel concept of electric-potential-tuned magnetic recording, resulting in a stable recording media with a high degree of writing ability.

  5. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions

    Directory of Open Access Journals (Sweden)

    Iuliana Gabriela Breaban

    2013-07-01

    Full Text Available The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC. In this study, a mathematical approach was conducted using a two-level fractional factorial design (FFD for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m2, initial pH of aqueous dye solution (3 or 9, electrocoagulation time (20 or 180 min, GAC dose (0.1 or 0.5 g/L, support electrolyte (2 or 50 mM, initial dye concentration (0.05 or 0.25 g/L and current type (Direct Current—DC or Alternative Pulsed Current—APC. GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.

  6. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions.

    Science.gov (United States)

    Secula, Marius Sebastian; Cretescu, Igor; Cagnon, Benoit; Manea, Liliana Rozemarie; Stan, Corneliu Sergiu; Breaban, Iuliana Gabriela

    2013-07-10

    The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC). In this study, a mathematical approach was conducted using a two-level fractional factorial design ( FFD ) for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m²), initial pH of aqueous dye solution (3 or 9), electrocoagulation time (20 or 180 min), GAC dose (0.1 or 0.5 g/L), support electrolyte (2 or 50 mM), initial dye concentration (0.05 or 0.25 g/L) and current type (Direct Current- DC or Alternative Pulsed Current- APC ). GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.

  7. Earthly sun called ITER

    International Nuclear Information System (INIS)

    Pozdeyev, Mikhail

    2002-01-01

    Full text: Participating in the film are Academicians Velikhov and Glukhikh, Mr. Filatof, ITER Director from Russia, Mr. Sannikov from Kurchatov Institute. The film tells about the starting point of the project (Mr. Lavrentyev), the pioneers of the project (Academicians Tamme, Sakharov, Artsimovich) and about the situation the project is standing now. Participating in [ITER now are the US, Russia, Japan and the European Union. There are two associated members as well - Kazakhstan and Canada. By now the engineering design phase has been finished. Computer animation used in the video gives us the idea how the first thermonuclear reactor based on famous Russian TOKOMAK works. (author)

  8. ITER plant systems

    International Nuclear Information System (INIS)

    Kolbasov, B.; Barnes, C.; Blevins, J.

    1991-01-01

    As part of a series of documents published by the IAEA that summarize the results of the Conceptual Design Activities for the ITER project, this publication describes the conceptual design of the ITER plant systems, in particular (i) the heat transport system, (ii) the electrical distribution system, (iii) the requirements for radioactive equipment handling, the hot cell, and waste management, (iv) the supply system for fluids and operational chemicals, (v) the qualitative analyses of failure scenarios and methods of burn stability control and emergency shutdown control, (vi) analyses of tokamak building functions and design requirements, (vii) a plant layout, and (viii) site requirements. Refs, figs and tabs

  9. Iterated multidimensional wave conversion

    International Nuclear Information System (INIS)

    Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.

    2011-01-01

    Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

  10. Transport, logistics and packaging of ITER components

    International Nuclear Information System (INIS)

    Guerin, Olivier; Couturier, Bruno; Maas, Akko

    2005-01-01

    Cadarache, the European site for ITER, is located at around 50km as the crow flies from the sea. The feasibility of the transport of large and heavy ITER components has thus been thoroughly studied. These studies have covered the following items: - possible itineraries between the most convenient harbour (Fos) and Cadarache; - packaging (in particular for the largest and heaviest components); - means of transport (two types of trailers allowing to avoid lifting and load transfers); - logistics (analysis of transfer kinematics, including temporary storage); - administrative procedures and planning for the road adaptation, taking benefit of the recent successful implementation in the south-west of France of an itinerary for the Airbus A380 components. These studies, performed between 2001 and 2003, led to a viable solution, with a reasonable cost, fully supported by the French authorities. The planning necessary to implement the road modifications is also fully compatible with the expected dates of ITER components delivery

  11. SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS

    KAUST Repository

    Desmal, Abdulla

    2015-07-29

    A scheme for efficiently solving the nonlinear electromagnetic inverse scattering problem on sparse investigation domains is described. The proposed scheme reconstructs the (complex) dielectric permittivity of an investigation domain from fields measured away from the domain itself. Least-squares data misfit between the computed scattered fields, which are expressed as a nonlinear function of the permittivity, and the measured fields is constrained by the L0/L1-norm of the solution. The resulting minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two-dimensional problems, where the ``measured\\'\\' fields are synthetically generated or obtained from actual experiments. These numerical experiments demonstrate the accuracy, efficiency, and applicability of the proposed scheme in reconstructing sparse profiles with high permittivity values.

  12. ITER plasma facing components, design and development

    International Nuclear Information System (INIS)

    Vieider, G.; Cardella, A.; Akiba, M.; Matera, R.; Watson, R.

    1991-01-01

    The paper summarizes the collaborative effort of the ITER Conceptual Design Activity (CDA) on Plasma Facing Components (PFC) which focused on the following main tasks: (a) The definition of basic design concepts for the First Wall (FW) and Divertor Plates (DP), (b) the analysis of the performance and likely lifetime of these PFC designs including the identification of major critical issues, (c) the start of R and D work giving already first results, and the definition of the required further R and D program to support the contemplated ITER Engineering Design Activity (EDA). From the ITER CDA effort on PFC it is mainly concluded that: (a) The expected PFC operating conditions lead to design solutions at the limit of present technology in particular for the divertor, which may constrain the overall machine performance, (b) the development of convincing PFC designs requires an intensified R and D effort both on PFC technology and plasma physics. (orig.)

  13. Advances in iterative methods for nonlinear equations

    CERN Document Server

    Busquier, Sonia

    2016-01-01

    This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations...

  14. Physics research needs for ITER

    International Nuclear Information System (INIS)

    Sauthoff, N.R.

    1995-01-01

    Design of ITER entails the application of physics design tools that have been validated against the world-wide data base of fusion research. In many cases, these tools do not yet exist and must be developed as part of the ITER physics program. ITER's considerable increases in power and size demand significant extrapolations from the current data base; in several cases, new physical effects are projected to dominate the behavior of the ITER plasma. This paper focuses on those design tools and data that have been identified by the ITER team and are not yet available; these needs serve as the basis for the ITER Physics Research Needs, which have been developed jointly by the ITER Physics Expert Groups and the ITER design team. Development of the tools and the supporting data base is an on-going activity that constitutes a significant opportunity for contributions to the ITER program by fusion research programs world-wide

  15. A novel iterative scheme and its application to differential equations.

    Science.gov (United States)

    Khan, Yasir; Naeem, F; Šmarda, Zdeněk

    2014-01-01

    The purpose of this paper is to employ an alternative approach to reconstruct the standard variational iteration algorithm II proposed by He, including Lagrange multiplier, and to give a simpler formulation of Adomian decomposition and modified Adomian decomposition method in terms of newly proposed variational iteration method-II (VIM). Through careful investigation of the earlier variational iteration algorithm and Adomian decomposition method, we find unnecessary calculations for Lagrange multiplier and also repeated calculations involved in each iteration, respectively. Several examples are given to verify the reliability and efficiency of the method.

  16. Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative

    Directory of Open Access Journals (Sweden)

    Ai-Min Yang

    2014-01-01

    Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.

  17. ITER: a technology test bed for a fusion reactor

    International Nuclear Information System (INIS)

    Huguet, M.; Green, B.J.

    1996-01-01

    The ITER Project aims to establish nuclear fusion as an energy source that has potential safety and environmental advantages, and to develop the technologies required for a fusion reactor. ITER is a collaborative project between the European Union, Japan, the Russian Federation and the United States of America. During the current phase of the Project, an R and D programme of about 850 million dollars is underway to develop the technologies required for ITER. This technological effort should culminate in the construction of the components and systems of the ITER machine and its auxiliaries. The main areas of technological development include the first wall and divertor technology, the blanket technology and tritium breeding, superconducting magnet technology, pulsed power technology and remote handling. ITER is a test bed and an essential step to establish the technology of future fusion reactors. Many of the ITER technologies are of potential interest to other fields and their development is expected to benefit the industries involved. (author)

  18. Iterative List Decoding

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom; Hjaltason, Johan

    2005-01-01

    We analyze the relation between iterative decoding and the extended parity check matrix. By considering a modified version of bit flipping, which produces a list of decoded words, we derive several relations between decodable error patterns and the parameters of the code. By developing a tree...... of codewords at minimal distance from the received vector, we also obtain new information about the code....

  19. ITER power electrical networks

    International Nuclear Information System (INIS)

    Sejas Portela, S.

    2011-01-01

    The ITER project (International Thermonuclear Experimental Reactor) is an international effort to research and development to design, build and operate an experimental facility to demonstrate the scientific and technological possibility of obtaining useful energy from the physical phenomenon known as nuclear fusion.

  20. ITER conceptual design report

    International Nuclear Information System (INIS)

    1991-01-01

    Results of the International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activity (CDA) are reported. This report covers the Terms of Reference for the project: defining the technical specifications, defining future research needs, define site requirements, and carrying out a coordinated research effort coincident with the CDA. Refs, figs and tabs

  1. Nuclear analysis for ITER

    International Nuclear Information System (INIS)

    Santoro, R.T.; Iida, H.; Khripunov, V.; Petrizzi, L.; Sato, S.; Sawan, M.; Shatalov, G.; Schipakin, O.

    2001-01-01

    This paper summarizes the main results of nuclear analysis calculations performed during the International Thermonuclear Experimental Reactor (ITER) Engineering Design Activity (EDA). Major efforts were devoted to fulfilling the General Design Requirements to minimize the nuclear heating rate in the superconducting magnets and ensuring that radiation conditions at the cryostat are suitable for hands-on-maintenance after reactor shut-down. (author)

  2. ITER at Cadarache

    International Nuclear Information System (INIS)

    2005-06-01

    This public information document presents the ITER project (International Thermonuclear Experimental Reactor), the definition of the fusion, the international cooperation and the advantages of the project. It presents also the site of Cadarache, an appropriate scientifical and economical environment. The last part of the documentation recalls the historical aspect of the project and the today mobilization of all partners. (A.L.B.)

  3. ITER conceptual design

    International Nuclear Information System (INIS)

    Tomabechi, K.; Gilleland, J.R.; Sokolov, Yu.A.; Toschi, R.

    1991-01-01

    The Conceptual Design Activities of the International Thermonuclear Experimental Reactor (ITER) were carried out jointly by the European Community, Japan, the Soviet Union and the United States of America, under the auspices of the International Atomic Energy Agency. The European Community provided the site for joint work sessions at the Max-Planck-Institut fuer Plasmaphysik in Garching, Germany. The Conceptual Design Activities began in the spring of 1988 and ended in December 1990. The objectives of the activities were to develop the design of ITER, to perform a safety and environmental analysis, to define the site requirements as well as the future research and development needs, to estimate the cost and manpower, and to prepare a schedule for detailed engineering design, construction and operation. On the basis of the investigation and analysis performed, a concept of ITER was developed which incorporated maximum flexibility of the performance of the device and allowed a variety of operating scenarios to be adopted. The heart of the machine is a tokamak having a plasma major radius of 6 m, a plasma minor radius of 2.15 m, a nominal plasma current of 22 MA and a nominal fusion power of 1 GW. The conceptual design can meet the technical objectives of the ITER programme. Because of the success of the Conceptual Design Activities, the Parties are now considering the implementation of the next phase, called the Engineering Design Activities. (author). Refs, figs and tabs

  4. US ITER Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    This US ITER Management Plan is the plan for conducting the Engineering Design Activities within the US. The plan applies to all design, analyses, and associated physics and technology research and development (R ampersand D) required to support the program. The plan defines the management considerations associated with these activities. The plan also defines the management controls that the project participants will follow to establish, implement, monitor, and report these activities. The activities are to be conducted by the project in accordance with this plan. The plan will be updated to reflect the then-current management approach required to meet the project objectives. The plan will be reviewed at least annually for possible revision. Section 2 presents the ITER objectives, a brief description of the ITER concept as developed during the Conceptual Design Activities, and comments on the Engineering Design Activities. Section 3 discusses the planned international organization for the Engineering Design Activities, from which the tasks will flow to the US Home Team. Section 4 describes the US ITER management organization and responsibilities during the Engineering Design Activities. Section 5 describes the project management and control to be used to perform the assigned tasks during the Engineering Design Activities. Section 6 presents the references. Several appendices are provided that contain detailed information related to the front material

  5. ITER blanket designs

    International Nuclear Information System (INIS)

    Gohar, Y.; Parker, R.; Rebut, P.H.

    1995-01-01

    The ITER first wall, blanket, and shield system is being designed to handle 1.5±0.3 GW of fusion power and 3 MWa m -2 average neutron fluence. In the basic performance phase of ITER operation, the shielding blanket uses austenitic steel structural material and water coolant. The first wall is made of bimetallic structure, austenitic steel and copper alloy, coated with beryllium and it is protected by beryllium bumper limiters. The choice of copper first wall is dictated by the surface heat flux values anticipated during ITER operation. The water coolant is used at low pressure and low temperature. A breeding blanket has been designed to satisfy the technical objectives of the Enhanced Performance Phase of ITER operation for the Test Program. The breeding blanket design is geometrically similar to the shielding blanket design except it is a self-cooled liquid lithium system with vanadium structural material. Self-healing electrical insulator (aluminum nitride) is used to reduce the MHD pressure drop in the system. Reactor relevancy, low tritium inventory, low activation material, low decay heat, and a tritium self-sufficiency goal are the main features of the breeding blanket design. (orig.)

  6. Advances in iterative methods

    International Nuclear Information System (INIS)

    Beauwens, B.; Arkuszewski, J.; Boryszewicz, M.

    1981-01-01

    Results obtained in the field of linear iterative methods within the Coordinated Research Program on Transport Theory and Advanced Reactor Calculations are summarized. The general convergence theory of linear iterative methods is essentially based on the properties of nonnegative operators on ordered normed spaces. The following aspects of this theory have been improved: new comparison theorems for regular splittings, generalization of the notions of M- and H-matrices, new interpretations of classical convergence theorems for positive-definite operators. The estimation of asymptotic convergence rates was developed with two purposes: the analysis of model problems and the optimization of relaxation parameters. In the framework of factorization iterative methods, model problem analysis is needed to investigate whether the increased computational complexity of higher-order methods does not offset their increased asymptotic convergence rates, as well as to appreciate the effect of standard relaxation techniques (polynomial relaxation). On the other hand, the optimal use of factorization iterative methods requires the development of adequate relaxation techniques and their optimization. The relative performances of a few possibilities have been explored for model problems. Presently, the best results have been obtained with optimal diagonal-Chebyshev relaxation

  7. ITER neutral beam system

    International Nuclear Information System (INIS)

    Mondino, P.L.; Di Pietro, E.; Bayetti, P.

    1999-01-01

    The Neutral Beam (NB) system for the International Thermonuclear Experimental Reactor (ITER) has reached a high degree of integration with the tokamak and with the rest of the plant. Operational requirements and maintainability have been considered in the design. The paper considers the integration with the tokamak, discusses design improvements which appear necessary and finally notes R and D progress in key areas. (author)

  8. Iterative software kernels

    Energy Technology Data Exchange (ETDEWEB)

    Duff, I.

    1994-12-31

    This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.

  9. Solute transport in a single fracture involving an arbitrary length decay chain with rock matrix comprising different geological layers.

    Science.gov (United States)

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2014-08-01

    A model is developed to describe solute transport and retention in fractured rocks. It accounts for advection along the fracture, molecular diffusion from the fracture to the rock matrix composed of several geological layers, adsorption on the fracture surface, adsorption in the rock matrix layers and radioactive decay-chains. The analytical solution, obtained for the Laplace-transformed concentration at the outlet of the flowing channel, can conveniently be transformed back to the time domain by the use of the de Hoog algorithm. This allows one to readily include it into a fracture network model or a channel network model to predict nuclide transport through channels in heterogeneous fractured media consisting of an arbitrary number of rock units with piecewise constant properties. More importantly, the simulations made in this study recommend that it is necessary to account for decay-chains and also rock matrix comprising at least two different geological layers, if justified, in safety and performance assessment of the repositories for spent nuclear fuel. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Infinitely many solutions for Schrodinger-Kirchhoff type equations involving the fractional p-Laplacian and critical exponent

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-12-01

    Full Text Available In this article, we show the existence of infinitely many solutions for the fractional p-Laplacian equations of Schrodinger-Kirchhoff type equation $$ M([u]_{s, p}^p (-\\Delta _p^s u+V(x|u|^{p-2}u= \\alpha |u|^{ p_s^{*}-2 }u+\\beta k(x|u|^{q-2}u \\quad x\\in \\mathbb{R}^N, $$ where $(-\\Delta ^s_p$ is the fractional p-Laplacian operator, $[u]_{s,p}$ is the Gagliardo p-seminorm, $0 sp$, $1solutions which tend to zero for suitable positive parameters $\\alpha$ and $\\beta$.

  11. ITER Safety and Licensing

    International Nuclear Information System (INIS)

    Girard, J-.P; Taylor, N.; Garin, P.; Uzan-Elbez, J.; GULDEN, W.; Rodriguez-Rodrigo, L.

    2006-01-01

    The site for the construction of ITER has been chosen in June 2005. The facility will be implemented in Europe, south of France close to Marseille. The generic safety scheme is now under revision to adapt the design to the host country regulation. Even though ITER will be an international organization, it will have to comply with the French requirements in the fields of public and occupational health and safety, nuclear safety, radiation protection, licensing, nuclear substances and environmental protection. The organization of the central team together with its partners organized in domestic agencies for the in-kind procurement of components is a key issue for the success of the experimentation. ITER is the first facility that will achieve sustained nuclear fusion. It is both important for the experimental one-of-a-kind device, ITER itself, and for the future of fusion power plants to well understand the key safety issues of this potential new source of energy production. The main safety concern is confinement of the tritium, activated dust in the vacuum vessel and activated corrosion products in the coolant of the plasma-facing components. This is achieved in the design through multiple confinement barriers to implement the defence in depth approach. It will be demonstrated in documents submitted to the French regulator that these barriers maintain their function in all postulated incident and accident conditions. The licensing process started by examination of the safety options. This step has been performed by Europe during the candidature phase in 2002. In parallel to the final design, and taking into account the local regulations, the Preliminary Safety Report (RPrS) will be drafted with support of the European partner and others in the framework of ITER Task Agreements. Together with the license application, the RPrS will be forwarded to the regulatory bodies, which will launch public hearings and a safety review. Both processes must succeed in order to

  12. Identification of genes potentially involved in solute stress response in Sphingomonas wittichii RW1 by transposon mutant recovery

    Directory of Open Access Journals (Sweden)

    Edith eCoronado

    2014-11-01

    Full Text Available The term water stress refers to the effects of low water availability on microbial growth and physiology. Water availability has been proposed as a major constraint for the use of microorganisms in contaminated sites with the purpose of bioremediation. Sphingomonas wittichii RW1 is a bacterium capable of degrading the xenobiotic compounds dibenzofuran and dibenzo-p-dioxin, and has potential to be used for targeted bioremediation. The aim of the current work was to identify genes implicated in water stress in RW1 by means of transposon mutagenesis and mutant growth experiments. Conditions of low water potential were mimicked by adding NaCl to the growth media. Three different mutant selection or separation method were tested, which, however recovered different mutants. Recovered transposon mutants with poorer growth under salt-induced water stress carried insertions in genes involved in proline and glutamate biosynthesis, and further in a gene putatively involved in aromatic compound catabolism. Transposon mutants growing poorer on medium with lowered water potential also included ones that had insertions in genes involved in more general functions such as transcriptional regulation, elongation factor, cell division protein, RNA polymerase β or an aconitase.

  13. ITER activities status report: April 1990

    International Nuclear Information System (INIS)

    1990-01-01

    Beginning in 1988 and continuing through 1990, the four Parties involved, under the auspices of the IAEA, have been cooperating in the ITER Conceptual Design Activities. This activity resulted in a single conceptual design for a facility that could achieve the objectives established for ITER. This report is a second interim report which updates the previous report of December 1989, and in particular addresses considerations relevant to a possible next phase of cooperation, discussions with a view toward negotiations on an instrument to allow Engineering Design Activities. 5 refs, 3 figs, 1 tab

  14. Status of ITER

    International Nuclear Information System (INIS)

    Aymar, R.

    2002-01-01

    At the end of engineering design activities (EDA) in July 2001, all the essential elements became available to make a decision on construction of ITER. A sufficiently detailed and integrated engineering design now exists for a generic site, has been assessed for feasibility, and costed, and essential physics and technology R and D has been carried out to underpin the design choices. Formal negotiations have now begun between the current participants--Canada, Euratom, Japan, and the Russian Federation--on a Joint Implementation Agreement for ITER which also establishes the legal entity to run ITER. These negotiations are supported on technical aspects by Coordinated Technical Activities (CTA), which maintain the integrity of the project, for the good of all participants, and concentrate on preparing for procurement by industry of the longest lead items, and for formal application for a construction license with the host country. This paper highlights the main features of the ITER design. With cryogenically-cooled magnets close to neutron-generating plasma, the design of shielding with adequate access via port plugs for auxiliaries such as heating and diagnostics, and of remote replacement and refurbishing systems for in-vessel components, are particularly interesting nuclear technology challenges. Making a safety case for ITER to satisfy potential regulators and to demonstrate, as far as possible at this stage, the environmental attractiveness of fusion as an energy source, is also important. The paper gives illustrative details on this work, and an update on the progress of technical preparations for construction, as well as the status of the above negotiations

  15. iHadoop: Asynchronous Iterations Support for MapReduce

    KAUST Repository

    Elnikety, Eslam

    2011-08-01

    MapReduce is a distributed programming framework designed to ease the development of scalable data-intensive applications for large clusters of commodity machines. Most machine learning and data mining applications involve iterative computations over large datasets, such as the Web hyperlink structures and social network graphs. Yet, the MapReduce model does not efficiently support this important class of applications. The architecture of MapReduce, most critically its dataflow techniques and task scheduling, is completely unaware of the nature of iterative applications; tasks are scheduled according to a policy that optimizes the execution for a single iteration which wastes bandwidth, I/O, and CPU cycles when compared with an optimal execution for a consecutive set of iterations. This work presents iHadoop, a modified MapReduce model, and an associated implementation, optimized for iterative computations. The iHadoop model schedules iterations asynchronously. It connects the output of one iteration to the next, allowing both to process their data concurrently. iHadoop\\'s task scheduler exploits inter- iteration data locality by scheduling tasks that exhibit a producer/consumer relation on the same physical machine allowing a fast local data transfer. For those iterative applications that require satisfying certain criteria before termination, iHadoop runs the check concurrently during the execution of the subsequent iteration to further reduce the application\\'s latency. This thesis also describes our implementation of the iHadoop model, and evaluates its performance against Hadoop, the widely used open source implementation of MapReduce. Experiments using different data analysis applications over real-world and synthetic datasets show that iHadoop performs better than Hadoop for iterative algorithms, reducing execution time of iterative applications by 25% on average. Furthermore, integrating iHadoop with HaLoop, a variant Hadoop implementation that caches

  16. Industry participation in the ITER engineering designing

    International Nuclear Information System (INIS)

    Elagin, Yu.P.

    2006-01-01

    Involvement of the European industry promoted elaboration of the ITER engineering design. The EFDA is responsible for coordination of the industry involvement under the signed contracts the total amount of which is about 70 MEURO. Diversified remote handling equipment is available to replace internal structures and to transfer them to and back from hot cell. The contribution of the European industry consists mainly of divertor equipment, of air cushion transfer system and transfer casks [ru

  17. The Application of Visual Basic Computer Programming Language to Simulate Numerical Iterations

    Directory of Open Access Journals (Sweden)

    Abdulkadir Baba HASSAN

    2006-06-01

    Full Text Available This paper examines the application of Visual Basic Computer Programming Language to Simulate Numerical Iterations, the merit of Visual Basic as a Programming Language and the difficulties faced when solving numerical iterations analytically, this research paper encourage the uses of Computer Programming methods for the execution of numerical iterations and finally fashion out and develop a reliable solution using Visual Basic package to write a program for some selected iteration problems.

  18. Higher Order Aitken Extrapolation with Application to Converging and Diverging Gauss-Seidel Iterations

    OpenAIRE

    Tiruneh, Ababu Teklemariam

    2013-01-01

    Aitken extrapolation normally applied to convergent fixed point iteration is extended to extrapolate the solution of a divergent iteration. In addition, higher order Aitken extrapolation is introduced that enables successive decomposition of high Eigen values of the iteration matrix to enable convergence. While extrapolation of a convergent fixed point iteration using a geometric series sum is a known form of Aitken acceleration, it is shown in this paper that the same formula can be used to ...

  19. Winning the Passion and Emotion in Family Conflicts: Reconciliation and Mediation as a Viable Solution to Disputes Involving Family Law

    Directory of Open Access Journals (Sweden)

    José Sebastião de Oliveira

    2016-06-01

    Full Text Available The scope of the present study is to analyse the importance of the institutes of reconciliation and mediation in disputes involving family law, as a way towards social pacification, even thow it is common that parties, in such cases, come in hot headed. The reconciliation method has its focus set on the rapid and effective resolution of disputes, while the mediation method has a larger goal, which is the pacification of family conflict. This second method (mediation aims to arouse the interest of the parties in solving the problem of family reorganization

  20. The ITER divertor cassette project

    International Nuclear Information System (INIS)

    Ulrickson, M.; Tivey, R.; Akiba, M.

    2001-01-01

    The divertor ''Large Project'' was conceived with the aim of demonstrating the feasibility of meeting the lifetime requirements by employing the candidate armor materials of beryllium, tungsten (W) and carbon-fiber-composite (CFC). At the start, there existed only limited experience with constructing water-cooled high heat flux armored components for tokamaks. To this was added the complication posed by the need to use a silver-free joining technique that avoids the transmutation of n-irradiated silver to cadmium. The research project involving the four Home Teams (HTs) has focused on the design, development, manufacture and testing of full-scale Plasma Facing Components (PFCs) suitable for ITER. The task addressed all the issues facing ITER divertor design, such as providing adequate armor erosion lifetime, meeting the required armor-heat sink joint lifetime and heat sink fatigue life, sustaining thermal-hydraulic and electromechanical loads, and seeking to identify the most cost-effective manufacturing options. This paper will report the results of the divertor large project. (author)

  1. Status of the ITER magnets

    International Nuclear Information System (INIS)

    Mitchell, N.; Bauer, P.; Bessette, D.; Devred, A.; Gallix, R.; Jong, C.; Knaster, J.; Libeyre, P.; Lim, B.; Sahu, A.; Simon, F.

    2009-01-01

    The first 2 years of the ITER IO has seen substantial progress towards the construction of the magnets, in three main areas. Firstly, the design has been developed under the conflicting constraints to minimise construction costs and to maximise plasma physics performance. Building construction momentum while updating the design to take account of new physics assessments of the coil requirements has been challenging. Secondly, with a stabilising design, it has been possible for the Domestic Agencies to launch the first industrial procurement contracts. And thirdly, critical R and D to confirm the performance of the Nb3Sn cable in conduit design is proceeding successfully. The design consolidation has been accompanied by design reviews involving the international community. The reviews conducted by magnet experts have enabled a consensus to be built on choosing between some of the design options in the original ITER basic design in 2001. The major design decisions were to maintain the circular Nb 3 Sn conductor embedded in radial plates for the toroidal field (TF) coils and to maintain NbTi-based conductors for the PF coils. Cold testing, at low current, is also being introduced for quality control purposes for all coils.

  2. The ITER divertor cassette project

    International Nuclear Information System (INIS)

    Ulrickson, M.; Tivey, R.; Akiba, M.

    1999-01-01

    The divertor 'Large Project' was conceived with the aim of demonstrating the feasibility of meeting the lifetime requirements by employing the candidate armor materials of beryllium, tungsten (W) and carbon-fiber-composite (CFC). At the start, there existed only limited experience with constructing water-cooled high heat flux armored components for tokamaks. To this was added the complication posed by the need to use a silver-free joining technique that avoids the transmutation of n-irradiated silver to cadmium. The research project involving the four Home Teams (HTs) has focused on the design, development, manufacture and testing of full-scale Plasma Facing Components (PFCs) suitable for ITER. The task addressed all the issues facing ITER divertor design, such as providing adequate armor erosion lifetime, meeting the required armor-heat sink joint lifetime and heat sink fatigue life, sustaining thermal-hydraulic and electromechanical loads, and seeking to identify the most cost-effective manufacturing options. This paper will report the results of the divertor large project. (author)

  3. The physics role of ITER

    International Nuclear Information System (INIS)

    Rutherford, P.H.

    1997-04-01

    Experimental research on the International Thermonuclear Experimental Reactor (ITER) will go far beyond what is possible on present-day tokamaks to address new and challenging issues in the physics of reactor-like plasmas. First and foremost, experiments in ITER will explore the physics issues of burning plasmas--plasmas that are dominantly self-heated by alpha-particles created by the fusion reactions themselves. Such issues will include (i) new plasma-physical effects introduced by the presence within the plasma of an intense population of energetic alpha particles; (ii) the physics of magnetic confinement for a burning plasma, which will involve a complex interplay of transport, stability and an internal self-generated heat source; and (iii) the physics of very-long-pulse/steady-state burning plasmas, in which much of the plasma current is also self-generated and which will require effective control of plasma purity and plasma-wall interactions. Achieving and sustaining burning plasma regimes in a tokamak necessarily requires plasmas that are larger than those in present experiments and have higher energy content and power flow, as well as much longer pulse length. Accordingly, the experimental program on ITER will embrace the study of issues of plasma physics and plasma-materials interactions that are specific to a reactor-scale fusion experiment. Such issues will include (i) confinement physics for a tokamak in which, for the first time, the core-plasma and the edge-plasma are simultaneously in a reactor-like regime; (ii) phenomena arising during plasma transients, including so-called disruptions, in regimes of high plasma current and thermal energy; and (iii) physics of a radiative divertor designed for handling high power flow for long pulses, including novel plasma and atomic-physics effects as well as materials science of surfaces subject to intense plasma interaction. Experiments on ITER will be conducted by researchers in control rooms situated at major

  4. Femtosecond dynamics of a non-steroidal anti-inflammatory drug (piroxicam) in solution: The involvement of twisting motion

    Science.gov (United States)

    Gil, Michał; Douhal, Abderrazzak

    2008-06-01

    In this contribution, we report on fast and ultrafast dynamics of a non-steroidal anti-inflammatory drug, piroxicam (PX), in methyl acetate (MAC) and triacetin (TAC), two solvents of different viscosities. The enol form of PX undergoes a femtosecond (shorter than 100 fs) electronically excited state intramolecular proton-transfer reaction to produce keto tautomers. These structures exhibit an internal twisting motion to generate keto rotamers in ˜2-5 ps, a time being longer in TAC. The transient absorption/emission spectrum is very broad indicating that the potential-energy surface at the electronically excited state is very flat, and reflecting the involvement of several coordinates along which the wavepacket of the fs-produced structures evolve.

  5. ITER CTA newsletter. No. 4

    International Nuclear Information System (INIS)

    2001-12-01

    This ITER CTA Newsletter contains information about the organization of the ITER Co-ordinated Technical Activities (CTA) International Team as the follow-up of the ITER CTA project board meeting in Toronto on 7 November 2001. It also includes a summary on the start of the international tokamak physics activity by Dr. D. Campbell, Chair of the ITPA Co-ordinating Committee

  6. ITER CTA newsletter. No. 9

    International Nuclear Information System (INIS)

    2002-06-01

    This ITER CTA newsletter contains information about the Fourth Negotiations Meeting on the Joint Implementation of ITER held in Cadarache, France on 4-6 June 2002 and about the meeting of the ITER CTA Project Board which took place on the occasion of the N4 Meeting at Cadarache on 3-4 June 2002

  7. ITER management advisory committee meeting

    International Nuclear Information System (INIS)

    Yoshikawa, M.

    2001-01-01

    The ITER Management Advisory Committee (MAC) Meeting was held on 23 February in Garching, Germany. The main topics were: the consideration of the report by the Director on the ITER EDA Status, the review of the Work Programme, the review of the Joint Fund, the review of a schedule of ITER meetings, and the arrangements for termination and wind-up of the EDA

  8. ITER CTA newsletter. No. 1

    International Nuclear Information System (INIS)

    2001-01-01

    This ITER CTA newsletter comprises reports on ITER co-ordinated technical activities, information about the Meeting of the ITER CTA project board which took place in Vienna on 16 July 2001, and the Meeting of the expert group on MHD, disruptions and plasma control which was held on 25-26 June 2001 in Funchal, Madeira

  9. Status of the ITER EDA

    International Nuclear Information System (INIS)

    Aymar, R.

    2000-01-01

    This article summarizes progress made in the ITER Engineering Design Activities in the period between the ITER Meeting in Tokyo (January 2000) and June 2000. Topics: Termination of EDA, Joint Central Team and Support, Task Assignments, ITER Physics, Urgent and High Priority Physics Research Areas

  10. Iterative supervirtual refraction interferometry

    KAUST Repository

    Al-Hagan, Ola

    2014-05-02

    In refraction tomography, the low signal-to-noise ratio (S/N) can be a major obstacle in picking the first-break arrivals at the far-offset receivers. To increase the S/N, we evaluated iterative supervirtual refraction interferometry (ISVI), which is an extension of the supervirtual refraction interferometry method. In this method, supervirtual traces are computed and then iteratively reused to generate supervirtual traces with a higher S/N. Our empirical results with both synthetic and field data revealed that ISVI can significantly boost up the S/N of far-offset traces. The drawback is that using refraction events from more than one refractor can introduce unacceptable artifacts into the final traveltime versus offset curve. This problem can be avoided by careful windowing of refraction events.

  11. Iterative supervirtual refraction interferometry

    KAUST Repository

    Al-Hagan, Ola; Hanafy, Sherif M.; Schuster, Gerard T.

    2014-01-01

    In refraction tomography, the low signal-to-noise ratio (S/N) can be a major obstacle in picking the first-break arrivals at the far-offset receivers. To increase the S/N, we evaluated iterative supervirtual refraction interferometry (ISVI), which is an extension of the supervirtual refraction interferometry method. In this method, supervirtual traces are computed and then iteratively reused to generate supervirtual traces with a higher S/N. Our empirical results with both synthetic and field data revealed that ISVI can significantly boost up the S/N of far-offset traces. The drawback is that using refraction events from more than one refractor can introduce unacceptable artifacts into the final traveltime versus offset curve. This problem can be avoided by careful windowing of refraction events.

  12. ITER technical basis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    Following on from the Final Report of the EDA(DS/21), and the summary of the ITER Final Design report(DS/22), the technical basis gives further details of the design of ITER. It is in two parts. The first, the Plant Design specification, summarises the main constraints on the plant design and operation from the viewpoint of engineering and physics assumptions, compliance with safety regulations, and siting requirements and assumptions. The second, the Plant Description Document, describes the physics performance and engineering characteristics of the plant design, illustrates the potential operational consequences foe the locality of a generic site, gives the construction, commissioning, exploitation and decommissioning schedule, and reports the estimated lifetime costing based on data from the industry of the EDA parties.

  13. ITER technical basis

    International Nuclear Information System (INIS)

    2002-01-01

    Following on from the Final Report of the EDA(DS/21), and the summary of the ITER Final Design report(DS/22), the technical basis gives further details of the design of ITER. It is in two parts. The first, the Plant Design specification, summarises the main constraints on the plant design and operation from the viewpoint of engineering and physics assumptions, compliance with safety regulations, and siting requirements and assumptions. The second, the Plant Description Document, describes the physics performance and engineering characteristics of the plant design, illustrates the potential operational consequences foe the locality of a generic site, gives the construction, commissioning, exploitation and decommissioning schedule, and reports the estimated lifetime costing based on data from the industry of the EDA parties

  14. Iterated Leavitt Path Algebras

    International Nuclear Information System (INIS)

    Hazrat, R.

    2009-11-01

    Leavitt path algebras associate to directed graphs a Z-graded algebra and in their simplest form recover the Leavitt algebras L(1,k). In this note, we introduce iterated Leavitt path algebras associated to directed weighted graphs which have natural ± Z grading and in their simplest form recover the Leavitt algebras L(n,k). We also characterize Leavitt path algebras which are strongly graded. (author)

  15. ICP (ITER Collaborative Platform)

    Energy Technology Data Exchange (ETDEWEB)

    Capuano, C.; Carayon, F.; Patel, V. [ITER, 13 - St. Paul-Lez Durance (France)

    2009-07-01

    The ITER organization has the necessity to manage a massive amount of data and processes. Each team requires different process and databases often interconnected with those of others teams. ICP is the current central ITER repository of structured and unstructured data. All data in ICP is served and managed via a web interface that provides global accessibility with a common user friendly interface. This paper will explain the model used by ICP and how it serves the ITER project by providing a robust and agile platform. ICP is developed in ASP.NET using MSSQL Server for data storage. It currently houses 15 data driven applications, 150 different types of record, 500 k objects and 2.5 M references. During European working hours the system averages 150 concurrent users and 20 requests per second. ICP connects to external database applications to provide a single entry point to ITER data and a safe shared storage place to maintain this data long-term. The Core model provides an easy to extend framework to meet the future needs of the Organization. ICP follows a multi-tier architecture, providing logical separation of process. The standard three-tier architecture is expanded, with the data layer separated into data storage, data structure, and data access components. The business or applications logic layer is broken up into a common business functionality layer, a type specific logic layer, and a detached work-flow layer. Finally the presentation tier comprises a presentation adapter layer and an interface layer. Each layer is built up from small blocks which can be combined to create a wide range of more complex functionality. Each new object type developed gains access to a wealth of existing code functionality, while also free to adapt and extend this. The hardware structure is designed to provide complete redundancy, high availability and to handle high load. This document is composed of an abstract followed by the presentation transparencies. (authors)

  16. Metrology for ITER Assembly

    International Nuclear Information System (INIS)

    Bogusch, E.

    2006-01-01

    The overall dimensions of the ITER Tokamak and the particular assembly sequence preclude the use of conventional optical metrology, mechanical jigs and traditional dimensional control equipment, as used for the assembly of smaller, previous generation, fusion devices. This paper describes the state of the art of the capabilities of available metrology systems, with reference to the previous experience in Fusion engineering and in other industries. Two complementary procedures of transferring datum from the primary datum network on the bioshield to the secondary datum s inside the VV with the desired accuracy of about 0.1 mm is described, one method using the access directly through the ports and the other using transfer techniques, developed during the co-operation with ITER/EFDA. Another important task described is the development of a method for the rapid and easy measurement of the gaps between sectors, required for the production of the customised splice plates between them. The scope of the paper includes the evaluation of the composition and cost of the systems and team of technical staff required to meet the requirements of the assembly procedure. The results from a practical, full-scale demonstration of the methodologies used, using the proposed equipment, is described. This work has demonstrated the feasibility of achieving the necessary accuracies for the successful building of ITER. (author)

  17. The ITER tritium systems

    International Nuclear Information System (INIS)

    Glugla, M.; Antipenkov, A.; Beloglazov, S.; Caldwell-Nichols, C.; Cristescu, I.R.; Cristescu, I.; Day, C.; Doerr, L.; Girard, J.-P.; Tada, E.

    2007-01-01

    ITER is the first fusion machine fully designed for operation with equimolar deuterium-tritium mixtures. The tokamak vessel will be fuelled through gas puffing and pellet injection, and the Neutral Beam heating system will introduce deuterium into the machine. Employing deuterium and tritium as fusion fuel will cause alpha heating of the plasma and will eventually provide energy. Due to the small burn-up fraction in the vacuum vessel a closed deuterium-tritium loop is required, along with all the auxiliary systems necessary for the safe handling of tritium. The ITER inner fuel cycle systems are designed to process considerable and unprecedented deuterium-tritium flow rates with high flexibility and reliability. High decontamination factors for effluent and release streams and low tritium inventories in all systems are needed to minimize chronic and accidental emissions. A multiple barrier concept assures the confinement of tritium within its respective processing components; atmosphere and vent detritiation systems are essential elements in this concept. Not only the interfaces between the primary fuel cycle systems - being procured through different Participant Teams - but also those to confinement systems such as Atmosphere Detritiation or those to fuelling and pumping - again procured through different Participant Teams - and interfaces to buildings are calling for definition and for detailed analysis to assure proper design integration. Considering the complexity of the ITER Tritium Plant configuration management and interface control will be a challenging task

  18. Neutron cameras for ITER

    International Nuclear Information System (INIS)

    Johnson, L.C.; Barnes, C.W.; Batistoni, P.

    1998-01-01

    Neutron cameras with horizontal and vertical views have been designed for ITER, based on systems used on JET and TFTR. The cameras consist of fan-shaped arrays of collimated flight tubes, with suitably chosen detectors situated outside the biological shield. The sight lines view the ITER plasma through slots in the shield blanket and penetrate the vacuum vessel, cryostat, and biological shield through stainless steel windows. This paper analyzes the expected performance of several neutron camera arrangements for ITER. In addition to the reference designs, the authors examine proposed compact cameras, in which neutron fluxes are inferred from 16 N decay gammas in dedicated flowing water loops, and conventional cameras with fewer sight lines and more limited fields of view than in the reference designs. It is shown that the spatial sampling provided by the reference designs is sufficient to satisfy target measurement requirements and that some reduction in field of view may be permissible. The accuracy of measurements with 16 N-based compact cameras is not yet established, and they fail to satisfy requirements for parameter range and time resolution by large margins

  19. ITER plasma facing materials. Some critical considerations

    International Nuclear Information System (INIS)

    Barabash, V.; Dietz, K.J.; Federici, G.; Janeschitz, G.; Matera, R.; Tanaka, S.

    1995-01-01

    The description of current status with the choice of materials for ITER plasma facing components is presented. The main problem with lifetime of divertor elements is the particle and energy-induced erosion of armour materials. A solution for the first operation phase consists in using Be as an armour for the first wall and the divertor, however other possible materials (e.g. W) could be considered. (orig.)

  20. ITER ITA newsletter. No. 24, July 2005

    International Nuclear Information System (INIS)

    2005-08-01

    stimulant for international co-operation on science and technology in the twenty first century, and taking a broader view of the situation, Japan has decided that they will let the EU host the ITER site. Dr. J. Potocnik, European Commissioner for Science and Research, thanked Minister Nakayama for the highly constructive spirit with which he and his colleagues had conducted the bilateral discussions. He expressed his respect for the honourable manner in which the most sensitive stages were handled. He pointed out that the EU was well aware of the important task it had in front of it as the Host of ITER. The action taken had implications beyond that of establishing fusion energy. It was also an expression of mutual confidence to face the scientific, technical and political challenges that will occur in the course of this first-of-a-kind true international science cooperation among the leading nations of the world. ITER was establishing a model of global co-operation to address the increasingly global nature of the challenges confronting today's society. The Chinese Minister of Science and Technology, Mr. Xu Guanhua, expressed his pleasure that agreement on the site had been found within the six-Party framework. China considered that a sustainable solution to the world's energy source problem required multilateral international collaboration on fusion, so that participants could complement each other's skills and pool resources in the shared challenge. Mr. S. Choi, Vice-Minister of Science and Technology, Republic of Korea, reminded the delegates that the eyes of the world were on ITER as one of the most significant projects of the century, with a view to it being a peaceful and affluent one. Having just crossed the barrier of the site decision, there was still more to be done ahead, particularly by concluding the ITER Joint Implementation Agreement as soon as possible. He quoted a Korean proverb, literally translated as 'After rain ground hardens', which parallels with the

  1. ITER concept definition. V.2

    International Nuclear Information System (INIS)

    1989-01-01

    Volume II of the two volumes describing the concept definition of the International Thermonuclear Experimental Reactor deals with the ITER concept in technical depth, and covers all areas of design of the ITER tokamak. Included are an assessment of the current database for design, scoping studies, rationale for concepts selection, performance flexibility, the ITER concept, the operations and experimental/testing program, ITER parameters and design phase schedule, and research and development specific to ITER. This latter includes a definition of specific research and development tasks, a division of tasks among members, specific milestones, required results, and schedules. Figs and tabs

  2. ITER CTA newsletter. No. 10

    International Nuclear Information System (INIS)

    2002-07-01

    This ITER CTA newsletter issue comprises the ITER backgrounder, which was approved as an official document by the participants in the Negotiations on the ITER Implementation agreement at their fourth meeting, held in Cadarache from 4-6 June 2002, and information about two ITER meetings: one is the third meeting of the ITER parties' designated Safety Representatives, which took place in Cadarache, France from 6-7 June 2002, and the other is the second meeting of the International Tokamak Physics Activity (ITPA) topical group on diagnostics, which was held at General Atomics, San Diego, USA, from 4-8 March 2002

  3. On a novel iterative method to compute polynomial approximations to Bessel functions of the first kind and its connection to the solution of fractional diffusion/diffusion-wave problems

    International Nuclear Information System (INIS)

    Yuste, Santos Bravo; Abad, Enrique

    2011-01-01

    We present an iterative method to obtain approximations to Bessel functions of the first kind J p (x) (p > -1) via the repeated application of an integral operator to an initial seed function f 0 (x). The class of seed functions f 0 (x) leading to sets of increasingly accurate approximations f n (x) is considerably large and includes any polynomial. When the operator is applied once to a polynomial of degree s, it yields a polynomial of degree s + 2, and so the iteration of this operator generates sets of increasingly better polynomial approximations of increasing degree. We focus on the set of polynomial approximations generated from the seed function f 0 (x) = 1. This set of polynomials is useful not only for the computation of J p (x) but also from a physical point of view, as it describes the long-time decay modes of certain fractional diffusion and diffusion-wave problems.

  4. ITER EDA newsletter. V. 7, no. 7

    International Nuclear Information System (INIS)

    1998-07-01

    This newsletter contains the articles: 'Extraordinary ITER council meeting', 'ITER EDA final safety meeting' and 'Summary report of the 3rd combined workshop of the ITER confinement and transport and ITER confinement database and modeling expert groups'

  5. Spirit and prospects of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Velikhov, E.P. [Kurchatov Institute of Atomic Energy, Moscow (Russian Federation)

    2002-10-01

    ITER is the unique and the most straightforward way to study the burning plasma science in the nearest future. ITER has a firm physics ground based on the results from the world tokamaks in terms of confinement, stability, heating, current drive, divertor, energetic particle confinement to an extend required in ITER. The flexibility of ITER will allow the exploration of broad operation space of fusion power, beta, pulse length and Q values in various operational scenarios. Success of the engineering R and D programs has demonstrated that all party has an enough capability to produce all the necessary equipment in agreement with the specifications of ITER. The acquired knowledge and technologies in ITER project allow us to demonstrate the scientific and technical feasibility of a fusion reactor. It can be concluded that ITER must be constructed in the nearest future. (author)

  6. Spirit and prospects of ITER

    International Nuclear Information System (INIS)

    Velikhov, E.P.

    2002-01-01

    ITER is the unique and the most straightforward way to study the burning plasma science in the nearest future. ITER has a firm physics ground based on the results from the world tokamaks in terms of confinement, stability, heating, current drive, divertor, energetic particle confinement to an extend required in ITER. The flexibility of ITER will allow the exploration of broad operation space of fusion power, beta, pulse length and Q values in various operational scenarios. Success of the engineering R and D programs has demonstrated that all party has an enough capability to produce all the necessary equipment in agreement with the specifications of ITER. The acquired knowledge and technologies in ITER project allow us to demonstrate the scientific and technical feasibility of a fusion reactor. It can be concluded that ITER must be constructed in the nearest future. (author)

  7. Evaluation of high-performance network technologies for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Zagar, K., E-mail: klemen.zagar@cosylab.co [Cosylab d.d., 1000 Ljubljana (Slovenia); Hunt, S. [Alceli Hunt Beratung, 5616 Meisterschwanden (Switzerland); Kolaric, P.; Sabjan, R.; Zagar, A.; Dedic, J. [Cosylab d.d., 1000 Ljubljana (Slovenia)

    2010-07-15

    For the fast feedback plasma controllers, ITER's Control, Data Access and Communication system (CODAC) will need to provide a mechanism for hard real-time communication between its distributed nodes. In particular, the ITER CODAC team identified four types of high-performance communication applications. Synchronous Databus Network (SDN) is to provide an ability to distribute parameters of plasma (estimated to about 5000 double-valued signals) across the system to allow for 1 ms control cycles. Event Distribution Network (EDN) and Time Communication Network (TCN) are to allow synchronization of node I/O operations to 10 ns. Finally, the Audio-Video Network (AVN) is to provide sufficient bandwidth for streaming of surveillance and diagnostics video at a high resolution (1024 x 1024) and frame rate (30 Hz). In this article, we present some combinations of common-off-the-shelf (COTS) technologies that allow the above requirements to be met. Also, we present the performances achieved in a practical (though small scale) technology demonstrator, which involved a real-time Linux operating running on National Instruments' PXI platform, UDP communication implemented directly atop the Ethernet network adapter, CISCO switches, Micro Research Finland's timing and event solution, and GigE audio-video streaming.

  8. Evaluation of high-performance network technologies for ITER

    International Nuclear Information System (INIS)

    Zagar, K.; Hunt, S.; Kolaric, P.; Sabjan, R.; Zagar, A.; Dedic, J.

    2010-01-01

    For the fast feedback plasma controllers, ITER's Control, Data Access and Communication system (CODAC) will need to provide a mechanism for hard real-time communication between its distributed nodes. In particular, the ITER CODAC team identified four types of high-performance communication applications. Synchronous Databus Network (SDN) is to provide an ability to distribute parameters of plasma (estimated to about 5000 double-valued signals) across the system to allow for 1 ms control cycles. Event Distribution Network (EDN) and Time Communication Network (TCN) are to allow synchronization of node I/O operations to 10 ns. Finally, the Audio-Video Network (AVN) is to provide sufficient bandwidth for streaming of surveillance and diagnostics video at a high resolution (1024 x 1024) and frame rate (30 Hz). In this article, we present some combinations of common-off-the-shelf (COTS) technologies that allow the above requirements to be met. Also, we present the performances achieved in a practical (though small scale) technology demonstrator, which involved a real-time Linux operating running on National Instruments' PXI platform, UDP communication implemented directly atop the Ethernet network adapter, CISCO switches, Micro Research Finland's timing and event solution, and GigE audio-video streaming.

  9. Picard iterations for nonlinear Lipschitz strong pseudo-contractions in uniformly smooth Banach spaces

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1995-06-01

    Suppose E is a real uniformly smooth Banach space and K is a nonempty closed convex and bounded subset of E, T:K → K is a Lipschitz pseudo-contraction. It is proved that the Picard iterates of a suitably defined operator converges strongly to the unique fixed point of T. Furthermore, this result also holds for the slightly larger class of Lipschitz strong hemi-contractions. Related results deal with strong convergence of the Picard iterates to the unique solution of operator equations involving Lipschitz strongly accretive maps. Apart from establishing strong convergence, our theorems give existence, uniqueness and convergence-rate which is at least as fast as a geometric progression. (author). 51 refs

  10. Primal Domain Decomposition Method with Direct and Iterative Solver for Circuit-Field-Torque Coupled Parallel Finite Element Method to Electric Machine Modelling

    Directory of Open Access Journals (Sweden)

    Daniel Marcsa

    2015-01-01

    Full Text Available The analysis and design of electromechanical devices involve the solution of large sparse linear systems, and require therefore high performance algorithms. In this paper, the primal Domain Decomposition Method (DDM with parallel forward-backward and with parallel Preconditioned Conjugate Gradient (PCG solvers are introduced in two-dimensional parallel time-stepping finite element formulation to analyze rotating machine considering the electromagnetic field, external circuit and rotor movement. The proposed parallel direct and the iterative solver with two preconditioners are analyzed concerning its computational efficiency and number of iterations of the solver with different preconditioners. Simulation results of a rotating machine is also presented.

  11. ITER EDA newsletter. V. 10, special issue

    International Nuclear Information System (INIS)

    2001-07-01

    This ITER EDA Newsletter includes summaries of the reports of ITER EDA JCT Physics unit about ITER physics R and D during the Engineering Design Activities (EDA), ITER EDA JCT Naka JWC ITER technology R and D during the EDA, and Safety, Environment and Health group of ITER EDA JCT, Garching JWS on EDA activities related to safety

  12. Iteration in Early-Elementary Engineering Design

    Science.gov (United States)

    McFarland Kendall, Amber Leigh

    K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect of engineering design, and because research at the college and professional level suggests iteration improves the designer's understanding of problems and the quality of design solutions. My research presents qualitative case studies of students in kindergarten and third-grade as they engage in classroom engineering design challenges which integrate with traditional curricula standards in mathematics, science, and literature. I discuss my results through the lens of activity theory, emphasizing practices, goals, and mediating resources. Through three chapters, I provide insight into how early-elementary students iterate upon their designs by characterizing the ways in which lesson design impacts testing and revision, by analyzing the plan-driven and experimentation-driven approaches that student groups use when solving engineering design challenges, and by investigating how students attend to constraints within the challenge. I connect these findings to teacher practices and curriculum design in order to suggest methods of promoting iteration within open-ended, classroom-based engineering design challenges. This dissertation contributes to the field of engineering education by providing evidence of productive engineering practices in young students and support for the value of engineering design challenges in developing students' participation and agency in these practices.

  13. CFTSIM-ITER dynamic fuel cycle model

    International Nuclear Information System (INIS)

    Busigin, A.; Gierszewski, P.

    1998-01-01

    Dynamic system models have been developed for specific tritium systems with considerable detail and for integrated fuel cycles with lesser detail (e.g. D. Holland, B. Merrill, Analysis of tritium migration and deposition in fusion reactor systems, Proceedings of the Ninth Symposium Eng. Problems of Fusion Research (1981); M.A. Abdou, E. Vold, C. Gung, M. Youssef, K. Shin, DT fuel self-sufficiency in fusion reactors, Fusion Technol. (1986); G. Spannagel, P. Gierszewski, Dynamic tritium inventory of a NET/ITER fuel cycle with lithium salt solution blanket, Fusion Eng. Des. (1991); W. Kuan, M.A. Abdou, R.S. Willms, Dynamic simulation of a proposed ITER tritium processing system, Fusion Technol. (1995)). In order to provide a tool to understand and optimize the behavior of the ITER fuel cycle, a dynamic fuel cycle model called CFTSIM is under development. The CFTSIM code incorporates more detailed ITER models, specifically for the important isotope separation system, and also has an easier-to-use graphical interface. This paper provides an overview of CFTSIM Version 1.0. The models included are those with significant and varying tritium inventories over a test campaign: fueling, plasma and first wall, pumping, fuel cleanup, isotope separation and storage. An illustration of the results is shown. (orig.)

  14. Iterative Schemes for Convex Minimization Problems with Constraints

    Directory of Open Access Journals (Sweden)

    Lu-Chuan Ceng

    2014-01-01

    Full Text Available We first introduce and analyze one implicit iterative algorithm for finding a solution of the minimization problem for a convex and continuously Fréchet differentiable functional, with constraints of several problems: the generalized mixed equilibrium problem, the system of generalized equilibrium problems, and finitely many variational inclusions in a real Hilbert space. We prove strong convergence theorem for the iterative algorithm under suitable conditions. On the other hand, we also propose another implicit iterative algorithm for finding a fixed point of infinitely many nonexpansive mappings with the same constraints, and derive its strong convergence under mild assumptions.

  15. The ITER divertor concept

    International Nuclear Information System (INIS)

    Janeschitz, G.; Borrass, K.; Federici, G.; Igitkhanov, Y.; Kukushkin, A.; Pacher, H.D.; Pacher, G.W.; Sugihara, M.

    1995-01-01

    The ITER divertor must exhaust most of the alpha particle power and the He ash at acceptable erosion rates. The high recycling regime of the ITER-CDA for present parameters would yield high power loads and erosion rates on conventional targets. Improvement by radiation in the SOL at constant pressure is limited in principle. To permit a higher radiation fraction, the plasma pressure along the field must be reduced by more than a factor 10, reducing also the target ion flux. This pressure reduction can be obtained by strong plasma-neutral interaction below the X-point. Under these conditions T e in the divertor can be reduced to <5 eV along a flame like ionisation front by impurity radiation and CX losses. Downstream of the front, neutrals undergo more CX or i-n collisions than ionisation events, resulting in significant momentum loss via neutrals to the divertor chamber wall. The pressure reduction by this mechanism depends on the along-field length for neutral-plasma interaction, the parallel power flux, the neutral density, the ratio of neutral-neutral collision length to the plasma-wall distance and on the Mach number of ions and neutrals. A supersonic transition in the main plasma-neutral interaction region, expected to occur near the ionisation front, would be beneficial for momentum removal. The momentum transfer fraction to the side walls is calculated: low Knudsen number is beneficial. The impact of the different physics effects on the chosen geometry and on the ITER divertor design and the lifetime of the various divertor components are discussed. ((orig.))

  16. Stopping test of iterative methods for solving PDE

    International Nuclear Information System (INIS)

    Wang Bangrong

    1991-01-01

    In order to assure the accuracy of the numerical solution of the iterative method for solving PDE (partial differential equation), the stopping test is very important. If the coefficient matrix of the system of linear algebraic equations is strictly diagonal dominant or irreducible weakly diagonal dominant, the stopping test formulas of the iterative method for solving PDE is proposed. Several numerical examples are given to illustrate the applications of the stopping test formulas

  17. Iteration of adjoint equations

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1994-01-01

    Adjoint functions are the basis of variational methods and now widely used for perturbation theory and its extension to higher order theory as used, for example, in modelling fuel burnup and optimization. In such models, the adjoint equation is to be solved in a critical system with an adjoint source distribution that is not zero but has special properties related to ratios of interest in critical systems. Consequently the methods of solving equations by iteration and accumulation are reviewed to show how conventional methods may be utilized in these circumstances with adequate accuracy. (author). 3 refs., 6 figs., 3 tabs

  18. An iterative algorithm for fuzzy mixed production planning based on the cumulative membership function

    Directory of Open Access Journals (Sweden)

    Juan Carlos Figueroa García

    2011-12-01

    The presented approach uses an iterative algorithm which finds stable solutions to problems with fuzzy parameter sinboth sides of an FLP problem. The algorithm is based on the soft constraints method proposed by Zimmermann combined with an iterative procedure which gets a single optimal solution.

  19. iterClust: a statistical framework for iterative clustering analysis.

    Science.gov (United States)

    Ding, Hongxu; Wang, Wanxin; Califano, Andrea

    2018-03-22

    In a scenario where populations A, B1 and B2 (subpopulations of B) exist, pronounced differences between A and B may mask subtle differences between B1 and B2. Here we present iterClust, an iterative clustering framework, which can separate more pronounced differences (e.g. A and B) in starting iterations, followed by relatively subtle differences (e.g. B1 and B2), providing a comprehensive clustering trajectory. iterClust is implemented as a Bioconductor R package. andrea.califano@columbia.edu, hd2326@columbia.edu. Supplementary information is available at Bioinformatics online.

  20. Analysis of quench-vent pressures for present design of ITER [International Thermonuclear Experimental Reactor] TF [toroidal field] coils

    International Nuclear Information System (INIS)

    Slack, D.S.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Japan, the European Community, the Union of the Soviet Union, and the United States. This paper examines the effects of a quench within the toroidal field (TF) coils based on current ITER design. It is a preliminary, rough analysis. Its intent is to assist ITER designers while more accurate computer codes are being developed and to provide a check against these more rigorous solutions. Rigorous solutions to the quench problem are very complex involving three-dimensional heat transfer, extreme changes in heat capacities and copper resistivity, and varying flow dynamics within the conductors. This analysis addresses all these factors in an approximate way. The result is much less accurate than a rigorous analysis. Results here could be in error as much as 30 to 40 percent. However, it is believed that this paper can still be very useful to the coil designer. Coil pressures and temperatures vs time into a quench are presented. Rate of helium vent, energy deposition in the coil, and depletion of magnetic stored energy are also presented. Peak pressures are high (about 43 MPa). This is due to the very long vent path length (446 m), small hydraulic diameters, and high current densities associated with ITER's cable-in-conduit design. The effects of these pressures as well as the ability of the coil to be self protecting during a quench are discussed. 3 refs., 3 figs., 1 tab

  1. ITER assembly and maintenance

    International Nuclear Information System (INIS)

    Honda, T.; Davis, F.; Lousteau, D.

    1991-01-01

    This document is intended to describe the work conducted by the ITER Assembly and Maintenance (A and M) Design Unit and the supporting home teams during the ITER Conceptual Design Activities, carried out from 1988 through 1990. Its content consists of two main sections, i.e., Chapter III, which describes the identified tasks to be performed by the A and M system and a general description of the required equipment; and Chapter IV, which provides a more detailed description of the equipment proposed to perform the assigned tasks. A two-stage R and D program is now planned, i.e., (1) a prototype equipment functional tests using full scale mock-ups and (2) a full scale integration demonstration test facility with real components (vacuum vessel with ports, blanket modules, divertor modules, armor tiles, etc.). Crucial in-vessel and ex-vessel operations and the associated remote handling equipment, including handling of divertor plates and blanket modules will be demonstrated in the first phase, whereby the database needed to proceed with the engineering phase will be acquired. The second phase will demonstrate the ability of the overall system to execute the required maintenance procedures and evaluate the performance of the prototype equipment

  2. NetCDF based data archiving system applied to ITER Fast Plant System Control prototype

    International Nuclear Information System (INIS)

    Castro, R.; Vega, J.; Ruiz, M.; De Arcas, G.; Barrera, E.; López, J.M.; Sanz, D.; Gonçalves, B.; Santos, B.; Utzel, N.; Makijarvi, P.

    2012-01-01

    Highlights: ► Implementation of a data archiving solution for a Fast Plant System Controller (FPSC) for ITER CODAC. ► Data archiving solution based on scientific NetCDF-4 file format and Lustre storage clustering. ► EPICS control based solution. ► Tests results and detailed analysis of using NetCDF-4 and clustering technologies on fast acquisition data archiving. - Abstract: EURATOM/CIEMAT and Technical University of Madrid (UPM) have been involved in the development of a FPSC (Fast Plant System Control) prototype for ITER, based on PXIe (PCI eXtensions for Instrumentation). One of the main focuses of this project has been data acquisition and all the related issues, including scientific data archiving. Additionally, a new data archiving solution has been developed to demonstrate the obtainable performances and possible bottlenecks of scientific data archiving in Fast Plant System Control. The presented system implements a fault tolerant architecture over a GEthernet network where FPSC data are reliably archived on remote, while remaining accessible to be redistributed, within the duration of a pulse. The storing service is supported by a clustering solution to guaranty scalability, so that FPSC management and configuration may be simplified, and a unique view of all archived data provided. All the involved components have been integrated under EPICS (Experimental Physics and Industrial Control System), implementing in each case the necessary extensions, state machines and configuration process variables. The prototyped solution is based on the NetCDF-4 (Network Common Data Format) file format in order to incorporate important features, such as scientific data models support, huge size files management, platform independent codification, or single-writer/multiple-readers concurrency. In this contribution, a complete description of the above mentioned solution is presented, together with the most relevant results of the tests performed, while focusing in the

  3. Towards the procurement of the ITER divertor

    International Nuclear Information System (INIS)

    Merola, M.; Tivey, R.; Martin, A.; Pick, M.

    2006-01-01

    The procurement of the ITER divertor is planned to start in 2009. On the basis of the present common understanding of the sharing of the ITER components, the Japanese Participating Team (JAPT) will supply the outer vertical target, the Russian Federation (RF) PT the dome liner and will perform the high heat flux testing, the EU PT will supply the inner vertical targets and the cassette bodies, including final assembly of the divertor plasma-facing components (PFCs). The manufacturing of the PFCs of the ITER divertor represents a challenging endeavor due to the high technologies which are involved, and due to the unprecedented series production. To mitigate the associated risks, special arrangements need to be put in place prior to and during procurement to ensure quality and to keep to the time schedule. Before procurement can start, an ITER review of the qualification and production capability of each candidate PT is planned. Well in advance of the assumed start of the procurement, each PT which would like to contribute to the divertor PFC procurement, should first demonstrate its technical qualification to carry out the procurement with the required quality, and in an efficient and timely manner. Appropriate precautions, like subdivision of the procurement into stages, are also to be adopted during the procurement phase to mitigate the consequences of possible unexpected manufacturing problems. In preparation for writing the procurement specification for the vertical targets, the topic of setting acceptance criteria is also being addressed. This activity has the objective of defining workable acceptance criteria for the PFC armour joints. A complete set of analyses is also in progress to assess the latest design modifications against the design requirements. This task includes neutronic, shielding, thermo-mechanical and electromagnetic analyses. More than half of the ITER plasma parameters that must be measured and the related diagnostics are located in the

  4. ITER EDA newsletter. V. 8, no. 6

    International Nuclear Information System (INIS)

    1999-06-01

    A ceremony was held on 1 June 1999 at the Naka Fusion Research Establishment of JAERI to celebrate the successful development and fabrication of the ITER Central Solenoid Model Coil Inner Module and Outer Module and the CS Insert Coil. At this occasion, Dr. Martha Krebs from the US-DOE regretted the withdrawal of the United States from the ITER project, the US are now looking for Japan, the European Union and the Russian Federation to continue making progress. In response to this speech, Mr. Tsutomu Imamura said, that that was to be regretted and stated that Japan actively promoted the ITER project. Then, Dr. Michel Huguet, representing the JCT, presented a message from Dr. R. Aymar, the director of the ITER program. In this message he indicated that each and every one who had been involved in that project could take great pride. The ceremony was concluded by warm and thoughtful words from Dr. Masami Fujiwara and a toast by Dr. Masaji Yoshikawa. At the end, all participants praised each other for their efforts and the three coils, the CS Model Coil Inner Module, the Outer Module and the the CS Insert Coil, seemed to be smiling at them

  5. New methods of testing nonlinear hypothesis using iterative NLLS estimator

    Science.gov (United States)

    Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.

    2017-11-01

    This research paper discusses the method of testing nonlinear hypothesis using iterative Nonlinear Least Squares (NLLS) estimator. Takeshi Amemiya [1] explained this method. However in the present research paper, a modified Wald test statistic due to Engle, Robert [6] is proposed to test the nonlinear hypothesis using iterative NLLS estimator. An alternative method for testing nonlinear hypothesis using iterative NLLS estimator based on nonlinear hypothesis using iterative NLLS estimator based on nonlinear studentized residuals has been proposed. In this research article an innovative method of testing nonlinear hypothesis using iterative restricted NLLS estimator is derived. Pesaran and Deaton [10] explained the methods of testing nonlinear hypothesis. This paper uses asymptotic properties of nonlinear least squares estimator proposed by Jenrich [8]. The main purpose of this paper is to provide very innovative methods of testing nonlinear hypothesis using iterative NLLS estimator, iterative NLLS estimator based on nonlinear studentized residuals and iterative restricted NLLS estimator. Eakambaram et al. [12] discussed least absolute deviation estimations versus nonlinear regression model with heteroscedastic errors and also they studied the problem of heteroscedasticity with reference to nonlinear regression models with suitable illustration. William Grene [13] examined the interaction effect in nonlinear models disused by Ai and Norton [14] and suggested ways to examine the effects that do not involve statistical testing. Peter [15] provided guidelines for identifying composite hypothesis and addressing the probability of false rejection for multiple hypotheses.

  6. Rokkasho: Japanese site for ITER

    International Nuclear Information System (INIS)

    Ohtake, S.; Yamaguchi, V.; Matsuda, S.; Kishimoto, H.

    2003-01-01

    The Atomic Energy Commission of Japan authorized ITER as the core machine of the Third Phase Basic Program of Fusion Energy Development. After a series of discussions in the Atomic Energy Commission and the Council of Science and Technology Policy, Japanese Government concluded formally with the Cabinet Agreement on 31 May 2002 that Japan should participate in the ITER Project and offer the Rokkasho-Mura site for construction of ITER to the Negotiations among Canada (CA), the European Union (EU), Japan (JA), and the Russian Federation (RF). The JA site proposal is now under the international assessment in the framework of the ITER Negotiations. (author)

  7. IAEA activities related to ITER

    International Nuclear Information System (INIS)

    Dolan, T.J.; Schneider, U.

    2001-01-01

    As agreed between the IAEA and the ITER Parties, special sessions are dedicated to ITER at the IAEA Fusion Energy Conferences. At the 18th IAEA Fusion Energy Conference, held on 4-10 October 2000 in Sorrento, Italy, in the Artsimovich-Kadomtsev Memorial opening session there were special lectures by Carlo Rubbia (President, ENEA, Italy), A. Arima (Japan), and E.P. Velikhov (Russia); an overview talk on ITER by R. Aymar (ITER Director); and a talk on the FTU experiment by F. Romanelli. In total, 573 participants from 34 countries presented 389 papers (including 11 post-deadline papers and the 4 summaries)

  8. ITER CTA newsletter. No. 13, October 2002

    International Nuclear Information System (INIS)

    2002-11-01

    This ITER CTA newsletter issue comprises concise information about an ITER related meeting concerning the joint implementation of ITER - the fifth ITER Negotiations Meeting - which was held in Toronto, Canada, 19-20 September, 2002, and information about assessment of the possible ITER site in Clarington, Ontario, Canada, which was the subject of the first official stage of the Joint Assessment of Specific Sites (JASS) for the ITER Project. This assessment was completed just before the Fifth ITER Negotiations Meeting

  9. Iterative observer based method for source localization problem for Poisson equation in 3D

    KAUST Repository

    Majeed, Muhammad Usman

    2017-07-10

    A state-observer based method is developed to solve point source localization problem for Poisson equation in a 3D rectangular prism with available boundary data. The technique requires a weighted sum of solutions of multiple boundary data estimation problems for Laplace equation over the 3D domain. The solution of each of these boundary estimation problems involves writing down the mathematical problem in state-space-like representation using one of the space variables as time-like. First, system observability result for 3D boundary estimation problem is recalled in an infinite dimensional setting. Then, based on the observability result, the boundary estimation problem is decomposed into a set of independent 2D sub-problems. These 2D problems are then solved using an iterative observer to obtain the solution. Theoretical results are provided. The method is implemented numerically using finite difference discretization schemes. Numerical illustrations along with simulation results are provided.

  10. ITER waste management

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Na, B.C.; Benchikhoune, M.; Uzan, J. Elbez; Gastaldi, O.; Taylor, N.; Rodriguez, L.

    2010-01-01

    ITER will produce solid radioactive waste during its operation (arising from the replacement of components and from process and housekeeping waste) and during decommissioning (de-activation phase and dismantling). The waste will be activated by neutrons of energies up to 14 MeV and potentially contaminated by activated corrosion products, activated dust and tritium. This paper describes the waste origin, the waste classification as a function of the French national agency for radioactive waste management (ANDRA), the optimization process put in place to reduce the waste radiotoxicity and volumes, the estimated waste amount based on the current design and maintenance procedure, and the overall strategy from component removal to final disposal anticipated at this stage of the project.

  11. ITER cooling systems

    International Nuclear Information System (INIS)

    Natalizio, A.; Hollies, R.E.; Sochaski, R.O.; Stubley, P.H.

    1992-06-01

    The ITER reference system uses low-temperature water for heat removal and high-temperature helium for bake-out. As these systems share common equipment, bake-out cannot be performed until the cooling system is drained and dried, and the reactor cannot be started until the helium has been purged from the cooling system. This study examines the feasibility of using a single high-temperature fluid to perform both heat removal and bake-out. The high temperature required for bake-out would also be in the range for power production. The study examines cost, operational benefits, and impact on reactor safety of two options: a high-pressure water system, and a low-pressure organic system. It was concluded that the cost savings and operational benefits are significant; there are no significant adverse safety impacts from operating either the water system or the organic system; and the capital costs of both systems are comparable

  12. Divertor development for ITER

    International Nuclear Information System (INIS)

    Janeschitz, G.; Ando, T.; Antipenkov, A.; Barabash, V.; Chiocchio, S.; Federici, G.; Ibbott, C.; Jakeman, R.; Matera, R.; Martin, E.; Parker, R.; Tivey, R.; Pacher, H.D.

    1998-01-01

    The requirements for the ITER divertor design, i.e. power and He ash exhaust, neutral leakage control, lifetime, disruption load resistance and exchange by remote handling, are described in this paper. These requirements and the physics requirements for detached and semi-attached operation result in the vertical target configuration. This is realised by a concept incorporating 60 cassettes carrying the high heat flux components. The armour choice for these components is CFC monoblock in the strike zone near at the lower part of the vertical target, and a W brush elsewhere. Cooling is by swirl tubes or hypervapotrons depending on the component. The status of the heat sink and joining technology R and D is given. Finally, the resulting design of the high heat flux components is presented. (orig.)

  13. Robust Multiscale Iterative Solvers for Nonlinear Flows in Highly Heterogeneous Media

    KAUST Repository

    Efendiev, Y.

    2012-08-01

    In this paper, we study robust iterative solvers for finite element systems resulting in approximation of steady-state Richards\\' equation in porous media with highly heterogeneous conductivity fields. It is known that in such cases the contrast, ratio between the highest and lowest values of the conductivity, can adversely affect the performance of the preconditioners and, consequently, a design of robust preconditioners is important for many practical applications. The proposed iterative solvers consist of two kinds of iterations, outer and inner iterations. Outer iterations are designed to handle nonlinearities by linearizing the equation around the previous solution state. As a result of the linearization, a large-scale linear system needs to be solved. This linear system is solved iteratively (called inner iterations), and since it can have large variations in the coefficients, a robust preconditioner is needed. First, we show that under some assumptions the number of outer iterations is independent of the contrast. Second, based on the recently developed iterative methods, we construct a class of preconditioners that yields convergence rate that is independent of the contrast. Thus, the proposed iterative solvers are optimal with respect to the large variation in the physical parameters. Since the same preconditioner can be reused in every outer iteration, this provides an additional computational savings in the overall solution process. Numerical tests are presented to confirm the theoretical results. © 2012 Global-Science Press.

  14. ITER-FEAT - outline design report. Report by the ITER Director. ITER meeting, Tokyo, January 2000

    International Nuclear Information System (INIS)

    2001-01-01

    It is now possible to define the key elements of ITER-FEAT. This report provides the results, to date, of the joint work of the Special Working Group in the form of an Outline Design Report on the ITER-FEAT design which, subject to the views of ITER Council and of the Parties, will be the focus of further detailed design work and analysis in order to provide to the Parties a complete and fully integrated engineering design within the framework of the ITER EDA extension

  15. Application of the perturbation iteration method to boundary layer type problems.

    Science.gov (United States)

    Pakdemirli, Mehmet

    2016-01-01

    The recently developed perturbation iteration method is applied to boundary layer type singular problems for the first time. As a preliminary work on the topic, the simplest algorithm of PIA(1,1) is employed in the calculations. Linear and nonlinear problems are solved to outline the basic ideas of the new solution technique. The inner and outer solutions are determined with the iteration algorithm and matched to construct a composite expansion valid within all parts of the domain. The solutions are contrasted with the available exact or numerical solutions. It is shown that the perturbation-iteration algorithm can be effectively used for solving boundary layer type problems.

  16. ITER CTA newsletter. No. 8

    International Nuclear Information System (INIS)

    2002-05-01

    This ITER CTA newsletter contains information about the Third Negotiations Meeting on the Joint Implementation of ITER held in Moscow on 23-24 April 2002 and about the visit of Canadian officials and members of the Canadian delegation to RF research center 'Kurchatov Institute'

  17. ITER physics design guidelines: 1989

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1990-01-01

    The physics basis for ITER has been developed from an assessment of the results of the last twenty-five years of tokamak research and from detailed analysis of important physics issues specifically for the ITER design. This assessment has been carried out with direct participation of members of the experimental teams of each of the major tokamaks in the world fusion program through participation in ITER workshops, contributions to the ITER Physics R and D Program, and by direct contacts between the ITER team and the cognizant experimentalists. Extrapolations to the present data base, where needed, are made in the most cautious way consistent with engineering constraints and performance goals of the ITER. In cases where a working assumptions had to be introduced, which is insufficiently supported by the present data base, is explicitly stated. While a strong emphasis has been placed on the physics credibility of the design, the guidelines also take into account that ITER should be designed to be able to take advantage of potential improvements in tokamak physics that may occur before and during the operation of ITER. (author). 33 refs

  18. ITER management advisory committee meeting

    International Nuclear Information System (INIS)

    Yoshikawa, M.

    2001-01-01

    The ITER Management Advisory Committee (MAC) Meeting was held in Vienna on 16 July 2001. It was the last MAC Meeting and the main topics were consideration of the report by the Director on the ITER EDA status, review of the Work Programme, review of the Joint Fund and arrangements for termination and wind-up of the EDA

  19. ITER CTA newsletter. No. 7

    International Nuclear Information System (INIS)

    2002-04-01

    This issue of ITER CTA newsletter contains information about the meeting of the ITER CTA project board, which took place in Moscow, Russian Federation on 22 April 2002 on the occasion of the Third Negotiators Meeting (N3), and about the meeting 'EU divertor celebration day' organized on 16 January 2002 at Plansee AG, Reutte, Austria

  20. Krylov iterative methods and synthetic acceleration for transport in binary statistical media

    International Nuclear Information System (INIS)

    Fichtl, Erin D.; Warsa, James S.; Prinja, Anil K.

    2009-01-01

    In particle transport applications there are numerous physical constructs in which heterogeneities are randomly distributed. The quantity of interest in these problems is the ensemble average of the flux, or the average of the flux over all possible material 'realizations.' The Levermore-Pomraning closure assumes Markovian mixing statistics and allows a closed, coupled system of equations to be written for the ensemble averages of the flux in each material. Generally, binary statistical mixtures are considered in which there are two (homogeneous) materials and corresponding coupled equations. The solution process is iterative, but convergence may be slow as either or both materials approach the diffusion and/or atomic mix limits. A three-part acceleration scheme is devised to expedite convergence, particularly in the atomic mix-diffusion limit where computation is extremely slow. The iteration is first divided into a series of 'inner' material and source iterations to attenuate the diffusion and atomic mix error modes separately. Secondly, atomic mix synthetic acceleration is applied to the inner material iteration and S 2 synthetic acceleration to the inner source iterations to offset the cost of doing several inner iterations per outer iteration. Finally, a Krylov iterative solver is wrapped around each iteration, inner and outer, to further expedite convergence. A spectral analysis is conducted and iteration counts and computing cost for the new two-step scheme are compared against those for a simple one-step iteration, to which a Krylov iterative method can also be applied.

  1. ITER EDA Newsletter. V. 3, no. 8

    International Nuclear Information System (INIS)

    1994-08-01

    This ITER EDA (Engineering Design Activities) Newsletter issue reports on the sixth ITER council meeting; introduces the newly appointed ITER director and reports on his address to the ITER council. The vacuum tank for the ITER model coil testing, installed at JAERI, Naka, Japan is also briefly described

  2. ITER ITA newsletter. No. 6, July 2003

    International Nuclear Information System (INIS)

    2003-09-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about ITER related activities. One of them was the farewell party for for Annick Lyraud and Robert Aymar, who will take up his position as Director-General of CERN in January 2004, another is information about Dr. Yasuo Shimomura, ITER interim project leader, and ITER technical work during the transitional arrangements

  3. ITER ITA newsletter. No. 8, September 2003

    International Nuclear Information System (INIS)

    2003-10-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about ITER related activities including Robert Aymar's leaving ITER for CERN, ITER related issues at the IAEA General Conference and status and prospects of thermonuclear power and activity during the ITA on materials foe vessel and in-vessel components

  4. ITER interim design report package documents

    International Nuclear Information System (INIS)

    1996-01-01

    This publication contains the Excerpt from the ITER Council (IC-8), the ITER Interim Design Report, Cost Review and Safety Analysis, ITER Site Requirements and ITER Site Design Assumptions and the Excerpt from the ITER Council (IC-9). 8 figs, 2 tabs

  5. Involvement of Individuals in the Development of Technical Solutions and Rules of Management for Building Renovation Projects: A Case Study of Latvia

    Science.gov (United States)

    Pukite, I.; Grekis, A.; Geipele, I.; Zeltins, N.

    2017-08-01

    In March 2016, the Latvian government approved a new support program for increasing energy efficiency in residential apartment buildings. For the support of renovation of apartment buildings in the period from 2016 to 2023, 166 470 588 EUR will be available. Different persons, such as energy auditors, designers, architects, project managers and builders, will be involved in the process of planning, development and implementation of building renovation. At the development stage of the building renovation project, special attention should be devoted to the first stage - energy audit and technical project development. The problem arises due to the fact that each of these individuals, during the development of technical building documentation, does not work as a completely unified system. The implementation of construction project planning and organisational management system is one of the most important factors to guarantee that the quality of building renovation project is ensured in accordance with the laws and regulatory standards. The paper studies mutual cooperation, professionalism and the role of information feedback of personnel involved in the planning stage of building renovation, which is an essential prerequisite for the renovation process in order to achieve high quality of work and reduce the energy performance indicator. The present research includes the analysis of different technical solutions and their impact on energy efficiency. Mutual harmonisation of technical specifications is also investigated.

  6. Plasma control concepts for ITER

    International Nuclear Information System (INIS)

    Lister, J.B.; Nieswand, C.

    1997-01-01

    This overview paper skims over a wide range of issues related to the control of ITER plasmas. Although operation of the ITER project will require extensive developmental work to achieve the degree of control required, there is no indication that any of the identified problems will present overwhelming difficulties compared with the operation of present tokamaks. However, the precision of control required and the degree of automation of the final ITER plasma control system will present a challenge which is somewhat greater than for present tokamaks. In order to operate ITER optimally, integrated use of a large amount of diagnostic information will be necessary, evaluated and interpreted automatically. This will challenge both the diagnostics themselves and their supporting interpretation codes. The intervening years will provide us with the opportunity to implement and evaluate most of the new features required for ITER on existing tokamaks, with the exception of the control of an ignited plasma. (author) 7 figs., 7 refs

  7. ITER technical advisory committee meeting

    International Nuclear Information System (INIS)

    Fujiwara, M.

    2001-01-01

    The 17th Meeting of the ITER Technical Advisory Committee (TAC-17) was held on February 19-22, the ITER Garching Work Site in Germany. The objective of the meeting was to review the Draft Final Design Report of ITER-FEAT and assess the ability of the self-consistent overall design both to satisfy the technical objectives previously defined and to meet the cost limitations. TAC-17 was also organized to confirm that the design and critical elements, with emphasis on the key recommendations made at previous TAC meetings, are such as to extend the confidence in starting ITER construction. It was also intended to provide the ITER Council, scheduled to meet on 27 and 28 February in Toronto, with a technical assessment and key recommendations of the above mentioned report

  8. System engineering and configuration management in ITER

    International Nuclear Information System (INIS)

    Chiocchio, S.; Martin, E.; Barabaschi, P.; Bartels, Hans Werner; How, J.; Spears, W.

    2007-01-01

    The construction of ITER will represent a major challenge for the fusion community at large, because of the intrinsic complexity of the tokamak design, the large number of different systems which are all essential for its operation, the worldwide distribution of the design activities and the unusual procurement scheme based on a combination of in-kind and directly funded deliverables. A key requirement for the success of such a large project is that a systematic approach to ensure the consistency of the design with the required performance is adopted. Also, effective project management methods, tools and working practices must be deployed to facilitate the communication and collaboration among the institutions and industries involved in the project. The authors have been involved in the definition and practical implementation of the design integration and configuration control structure inside ITER and in the system engineering process during the selection and optimization of the machine configuration. In parallel, they have assessed design, drawing and documentation management software to be used for the construction phase. Here, they describe the experience gained in recent years, explain the drivers behind the selection of the documents and drawings management systems, and illustrate the scope and issues of the configuration management activities to ensure the congruence of the design, to control and track the design changes and to manage the interfaces among the ITER systems

  9. An iterative homogenization technique that preserves assembly core exchanges

    International Nuclear Information System (INIS)

    Mondot, Ph.; Sanchez, R.

    2003-01-01

    A new interactive homogenization procedure for reactor core calculations is proposed that requires iterative transport assembly and diffusion core calculations. At each iteration the transport solution of every assembly type is used to produce homogenized cross sections for the core calculation. The converged solution gives assembly fine multigroup transport fluxes that preserve macro-group assembly exchanges in the core. This homogenization avoids the periodic lattice-leakage model approximation and gives detailed assembly transport fluxes without need of an approximated flux reconstruction. Preliminary results are given for a one-dimensional core model. (authors)

  10. A fast iterative scheme for the linearized Boltzmann equation

    Science.gov (United States)

    Wu, Lei; Zhang, Jun; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.

    2017-06-01

    Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient for highly rarefied gas flows, but can be very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation by penalizing the collision operator L into the form L = (L + Nδh) - Nδh, where δ is the gas rarefaction parameter, h is the velocity distribution function, and N is a tuning parameter controlling the convergence rate. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion-type equation that is asymptotic-preserving into the Navier-Stokes limit. The efficiency of this new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. We find that the fastest convergence of our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close to the average collision frequency. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum gas flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative scheme does not need high spatial resolution in the near-continuum flow regime, which makes it even faster than the conventional iterative scheme. Using this synthetic scheme, with the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones intermolecular potential for the first time, and the difference

  11. Iterative regularization in intensity-modulated radiation therapy optimization

    International Nuclear Information System (INIS)

    Carlsson, Fredrik; Forsgren, Anders

    2006-01-01

    A common way to solve intensity-modulated radiation therapy (IMRT) optimization problems is to use a beamlet-based approach. The approach is usually employed in a three-step manner: first a beamlet-weight optimization problem is solved, then the fluence profiles are converted into step-and-shoot segments, and finally postoptimization of the segment weights is performed. A drawback of beamlet-based approaches is that beamlet-weight optimization problems are ill-conditioned and have to be regularized in order to produce smooth fluence profiles that are suitable for conversion. The purpose of this paper is twofold: first, to explain the suitability of solving beamlet-based IMRT problems by a BFGS quasi-Newton sequential quadratic programming method with diagonal initial Hessian estimate, and second, to empirically show that beamlet-weight optimization problems should be solved in relatively few iterations when using this optimization method. The explanation of the suitability is based on viewing the optimization method as an iterative regularization method. In iterative regularization, the optimization problem is solved approximately by iterating long enough to obtain a solution close to the optimal one, but terminating before too much noise occurs. Iterative regularization requires an optimization method that initially proceeds in smooth directions and makes rapid initial progress. Solving ten beamlet-based IMRT problems with dose-volume objectives and bounds on the beamlet-weights, we find that the considered optimization method fulfills the requirements for performing iterative regularization. After segment-weight optimization, the treatments obtained using 35 beamlet-weight iterations outperform the treatments obtained using 100 beamlet-weight iterations, both in terms of objective value and of target uniformity. We conclude that iterating too long may in fact deteriorate the quality of the deliverable plan

  12. Active beam spectroscopy for ITER

    International Nuclear Information System (INIS)

    Von Hellermann, M.; Giroud, C.; Jaspers, R.; Hawkes, N.C.; Mullane, M.O.; Zastrow, K.D.; Krasilnikov, A.; Tugarinov, S.; Lotte, P.; Malaquias, A.; Rachlew, E.

    2003-01-01

    The latest status of 'Active Beam' related spectroscopy aspects as part of the ITER diagnostic scenario is presented. A key issue of the proposed scheme is based on the concept that in order to achieve the ultimate goal of global data consistency, all particles involved, that is, intrinsic and seeded impurity ions as well as helium ash ions and bulk plasma ions and also the plasma background data (e.g. magnetic and electric fields, electron density and temperature profiles) need to be addressed. A further sensible step in this direction is the decision of exploiting both a dedicated low-energy, low-power diagnostic beam (DNB, 2.2 MW 100 keV/amu) as well as the high-power, high-energy heating beams (HNB, 17 MW 500 keV/amu) for maximum diagnostic information. The authors report some new aspects referring to the use of DNB for motional Stark effect (MSE) where the main idea is to treat both beams (HNB and DNB) as potential diagnostic tools with complementary roles. The equatorial ports for the DNB promise excellent spatial resolution, however, the angles are less favourable for a polarimetric MSE exploitation. HNB can be used as probe beam for diagnosing slowing-down fusion alpha with a birth energy of 3,5 MeV

  13. Iterative Decoding of Concatenated Codes: A Tutorial

    Directory of Open Access Journals (Sweden)

    Phillip A. Regalia

    2005-05-01

    Full Text Available The turbo decoding algorithm of a decade ago constituted a milestone in error-correction coding for digital communications, and has inspired extensions to generalized receiver topologies, including turbo equalization, turbo synchronization, and turbo CDMA, among others. Despite an accrued understanding of iterative decoding over the years, the “turbo principle” remains elusive to master analytically, thereby inciting interest from researchers outside the communications domain. In this spirit, we develop a tutorial presentation of iterative decoding for parallel and serial concatenated codes, in terms hopefully accessible to a broader audience. We motivate iterative decoding as a computationally tractable attempt to approach maximum-likelihood decoding, and characterize fixed points in terms of a “consensus” property between constituent decoders. We review how the decoding algorithm for both parallel and serial concatenated codes coincides with an alternating projection algorithm, which allows one to identify conditions under which the algorithm indeed converges to a maximum-likelihood solution, in terms of particular likelihood functions factoring into the product of their marginals. The presentation emphasizes a common framework applicable to both parallel and serial concatenated codes.

  14. EU Developments of the ITER ECRH System

    International Nuclear Information System (INIS)

    Henderson, M.

    2006-01-01

    performance, while the RS (backup solution) offers a remote steering mirror far from the plasma for simplified ex-vessel maintenance access. The principle role of the UL is to stabilise neoclassical tearing modes. However, an enhanced performance UL launcher is under investigation by EFDA, seeking synergy between the EL and UL that would extend the physics potential of both launchers for an enhanced ITER EC physics performance, while at the same time relax some of the engineering requirements. (author)

  15. ITER management advisory committee meeting in NAKA

    International Nuclear Information System (INIS)

    Yoshikawa, M.

    1999-01-01

    The ITER Management Advisory Committee (MAC) Meeting was held on 17 December 1999 in Naka, Japan. The main topics were the ITER EDA Status, Task Status Summary and Work Program and a schedule of ITER meetings

  16. ITER EDA newsletter. V. 7, no. 6

    International Nuclear Information System (INIS)

    1998-06-01

    This newsletter contains the articles: 'ITER representation at the 11th Pacific Basin Nuclear Conference', 'Summary of discussion points and further deliberations in the special committee on the ITER project in the Atomic Energy Commission', and 'ITER radio frequency systems'

  17. ITER EDA newsletter. V. 9, no. 2

    International Nuclear Information System (INIS)

    2000-02-01

    This ITER EDA Newsletter reports on the seventh ITER technical meeting on safety and environment and contains the executive summary of the eleventh ITER scrape-off layer and divertor physics expert group meeting. Individual abstracts have been prepared

  18. SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2015-01-01

    minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two

  19. ITER cooling system

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-11-01

    The present specification of the ITER cooling system does not permit its operation with water above 150 C. However, the first wall needs to be heated to higher temperatures during conditioning at 250 C and bake-out at 350 C. In order to use the cooling water for these operations the cooling system would have to operate during conditioning at 37 Bar and during bake-out at 164 Bar. This is undesirable from the safety analysis point of view, and alternative heating methods are to be found. This review suggests that superheated steam or gas heating can be used for both baking and conditioning. The blanket design must consider the use of dual heat transfer media, allowing for change from one to another in both directions. Transfer from water to gas or steam is the most intricate and risky part of the entire heating process. Superheated steam conditioning appears unfavorable. The use of inert gas is recommended, although alternative heating fluids such as organic coolant should be investigated

  20. ITER plasma facing components

    International Nuclear Information System (INIS)

    Kuroda, T.; Vieider, G.; Akiba, M.

    1991-01-01

    This document summarizes results of the Conceptual Design Activities (1988-1990) for the International Thermonuclear Experimental Reactor (ITER) project, namely those that pertain to the plasma facing components of the reactor vessel, of which the main components are the first wall and the divertor plates. After an introduction and an executive summary, the principal functions of the plasma-facing components are delineated, i.e., (i) define the low-impurity region within which the plasma is produced, (ii) absorb the electromagnetic radiation and charged-particle flux from the plasma, and (iii) protect the blanket/shield components from the plasma. A list of critical design issues for the divertor plates and the first wall is given, followed by discussions of the divertor plate design (including the issues of material selection, erosion lifetime, design concepts, thermal and mechanical analysis, operating limits and overall lifetime, tritium inventory, baking and conditioning, safety analysis, manufacture and testing, and advanced divertor concepts) and the first wall design (armor material and design, erosion lifetime, overall design concepts, thermal and mechanical analysis, lifetime and operating limits, tritium inventory, baking and conditioning, safety analysis, manufacture and testing, an alternative first wall design, and the limiters used instead of the divertor plates during start-up). Refs, figs and tabs

  1. ITER safety challenges and opportunities

    International Nuclear Information System (INIS)

    Piet, S.J.

    1992-01-01

    This paper reports on results of the Conceptual Design Activity (CDA) for the International Thermonuclear Experimental Reactor (ITER) suggest challenges and opportunities. ITER is capable of meeting anticipated regulatory dose limits, but proof is difficult because of large radioactive inventories needing stringent radioactivity confinement. Much research and development (R ampersand D) and design analysis is needed to establish that ITER meets regulatory requirements. There is a further oportunity to do more to prove more of fusion's potential safety and environmental advantages and maximize the amount of ITER technology on the path toward fusion power plants. To fulfill these tasks, three programmatic challenges and three technical challenges must be overcome. The first step is to fund a comprehensive safety and environmental ITER R ampersand D plan. Second is to strengthen safety and environment work and personnel in the international team. Third is to establish an external consultant group to advise the ITER Joint Team on designing ITER to meet safety requirements for siting by any of the Parties. The first of three key technical challenges is plasma engineering - burn control, plasma shutdown, disruptions, tritium burn fraction, and steady state operation. The second is the divertor, including tritium inventory, activation hazards, chemical reactions, and coolant disturbances. The third technical challenge is optimization of design requirements considering safety risk, technical risk, and cost

  2. The ITER remote maintenance system

    International Nuclear Information System (INIS)

    Tesini, A.; Palmer, J.

    2008-01-01

    The aim of this paper is to summarize the ITER approach to machine components maintenance. A major objective of the ITER project is to demonstrate that a future power producing fusion device can be maintained effectively and offer practical levels of plant availability. During its operational lifetime, many systems of the ITER machine will require maintenance and modification; this can be achieved using remote handling methods. The need for timely, safe and effective remote operations on a machine as complex as ITER and within one of the world's most hostile remote handling environments represents a major challenge at every level of the ITER Project organization, engineering and technology. The basic principles of fusion reactor maintenance are presented. An updated description of the ITER remote maintenance system is provided. This includes the maintenance equipment used inside the vacuum vessel, inside the hot cell and the hot cell itself. The correlation between the functions of the remote handling equipment, of the hot cell and of the radwaste processing system is also described. The paper concludes that ITER has equipped itself with a good platform to tackle the challenges presented by its own maintenance and upgrade needs

  3. ITER EDA Newsletter. V. 10, no. 7

    International Nuclear Information System (INIS)

    2001-07-01

    This ITER EDA Newsletter presents an overview of meetings held at IAEA Headquarters in Vienna during the week 16-20 July 2001 related to the successful completion of the ITER Engineering Design Activities (EDA). Among them were the final meeting of the ITER Council, the closing ceremony to commemorate the EDA completion, the final meeting of the ITER Management Advisory Committee, a briefing of issues related to ITER developments, and discussions on the possible joint implementation of ITER

  4. Iterative nonlinear unfolding code: TWOGO

    International Nuclear Information System (INIS)

    Hajnal, F.

    1981-03-01

    a new iterative unfolding code, TWOGO, was developed to analyze Bonner sphere neutron measurements. The code includes two different unfolding schemes which alternate on successive iterations. The iterative process can be terminated either when the ratio of the coefficient of variations in terms of the measured and calculated responses is unity, or when the percentage difference between the measured and evaluated sphere responses is less than the average measurement error. The code was extensively tested with various known spectra and real multisphere neutron measurements which were performed inside the containments of pressurized water reactors

  5. ITER technical advisory committee meeting

    International Nuclear Information System (INIS)

    Fujiwara, M.

    1999-01-01

    The ITER Technical Advisory Committee (TAC) meeting took place on December 20-22, 1999 at the Naka Joint Work Site. The objective of this meeting was to review the document 'Technical Basis for ITER-FEAT Outline Design (ODR)' issued by the Director on December 10. It was also aimed at providing the ITER Meeting scheduled for January 19-20, 2000 in Tokyo with a technical assessment of ODR and recommendations for the optimization of the anticipated plasma performance and engineering design, based on the guidelines approved by the Council in June 1998 and recommendations of the last TAC meeting

  6. Remote maintenance development for ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Shibanuma, Kiyoshi

    1998-01-01

    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  7. Remote maintenance development for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Shibanuma, Kiyoshi

    1998-04-01

    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  8. Natural Preconditioning and Iterative Methods for Saddle Point Systems

    KAUST Repository

    Pestana, Jennifer

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. The solution of quadratic or locally quadratic extremum problems subject to linear(ized) constraints gives rise to linear systems in saddle point form. This is true whether in the continuous or the discrete setting, so saddle point systems arising from the discretization of partial differential equation problems, such as those describing electromagnetic problems or incompressible flow, lead to equations with this structure, as do, for example, interior point methods and the sequential quadratic programming approach to nonlinear optimization. This survey concerns iterative solution methods for these problems and, in particular, shows how the problem formulation leads to natural preconditioners which guarantee a fast rate of convergence of the relevant iterative methods. These preconditioners are related to the original extremum problem and their effectiveness - in terms of rapidity of convergence - is established here via a proof of general bounds on the eigenvalues of the preconditioned saddle point matrix on which iteration convergence depends.

  9. LSODKR, Stiff Ordinary Differential Equations (ODE) System Solver with Krylov Iteration and Root-finding

    International Nuclear Information System (INIS)

    Hindmarsh, A.D.; Brown, P.N.

    1996-01-01

    1 - Description of program or function: LSODKR is a new initial value ODE solver for stiff and non-stiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, b) within the corrector iteration, LSODKR does automatic switching between functional (fix point) iteration and modified Newton iteration, c) LSODKR includes the ability to find roots of given functions of the solution during the integration. 2 - Method of solution: Integration is by Adams or BDF (Backward Differentiation Formula) methods, at user option. Corrector iteration is by Newton or fix point iteration, determined dynamically. Linear system solution is by a preconditioned Krylov iteration, selected by user from Incomplete Orthogonalization Method, Generalized Minimum Residual Method, and two variants of Preconditioned Conjugate Gradient Method. Preconditioning is to be supplied by the user. 3 - Restrictions on the complexity of the problem: None

  10. Limited-angle three-dimensional reconstructions using Fourier transform iterations and Radon transform iterations

    International Nuclear Information System (INIS)

    Tam, K.C.; Perez-Mendez, V.

    1981-01-01

    The principles of limited-angle reconstruction of space-limited objects using the concepts of allowed cone and missing cone in Fourier space are discussed. The distortion of a point source resulting from setting the Fourier components in the missing cone to zero has been calculated mathematically, and its bearing on the convergence of an iteration scheme involving Fourier transforms has been analyzed in detail. it was found that the convergence rate is fairly insensitive to the position of the point source within the boundary of the object, apart from an edge effect which tends to enhance some parts of the boundary in reconstructing the object. Another iteration scheme involving Radon transforms was introduced and compared to the Fourier transform method in such areas as root mean square error, stability with respect to noise, and computer reconstruction time

  11. Limited-angle 3-D reconstructions using Fourier transform iterations and Radon transform iterations

    International Nuclear Information System (INIS)

    Tam, K.C.; Perez-Mendez, V.

    1979-12-01

    The principles of limited-angle reconstruction of space-limited objects using the concepts of allowed cone and missing cone in Fourier space are discussed. The distortion of a point source resulting from setting the Fourier components in the missing cone to zero was calculated mathematically, and its bearing on the convergence of an iteration scheme involving Fourier transforms was analyzed in detail. It was found that the convergence rate is fairly insensitive to the position of the point source within the boundary of the object, apart from an edge effect that tends to enhance some parts of the boundary in reconstructing the object. Another iteration scheme involving Radon transforms was introduced and compared to the Fourier transform method in such areas as root mean square error, stability with respect to noise, and computer reconstruction time. 8 figures, 2 tables

  12. Updated safety analysis of ITER

    International Nuclear Information System (INIS)

    Taylor, Neill; Baker, Dennis; Ciattaglia, Sergio; Cortes, Pierre; Elbez-Uzan, Joelle; Iseli, Markus; Reyes, Susana; Rodriguez-Rodrigo, Lina; Rosanvallon, Sandrine; Topilski, Leonid

    2011-01-01

    An updated version of the ITER Preliminary Safety Report has been produced and submitted to the licensing authorities. It is revised and expanded in response to requests from the authorities after their review of an earlier version in 2008, to reflect enhancements in ITER safety provisions through design changes, to incorporate new and improved safety analyses and to take into account other ITER design evolution. The updated analyses show that changes to the Tokamak cooling water system design have enhanced confinement and reduced potential radiological releases as well as removing decay heat with very high reliability. New and updated accident scenario analyses, together with fire and explosion risk analyses, have shown that design provisions are sufficient to minimize the likelihood of accidents and reduce potential consequences to a very low level. Taken together, the improvements provided a stronger demonstration of the very good safety performance of the ITER design.

  13. Rollout sampling approximate policy iteration

    NARCIS (Netherlands)

    Dimitrakakis, C.; Lagoudakis, M.G.

    2008-01-01

    Several researchers have recently investigated the connection between reinforcement learning and classification. We are motivated by proposals of approximate policy iteration schemes without value functions, which focus on policy representation using classifiers and address policy learning as a

  14. Updated safety analysis of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Neill, E-mail: neill.taylor@iter.org [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Baker, Dennis; Ciattaglia, Sergio; Cortes, Pierre; Elbez-Uzan, Joelle; Iseli, Markus; Reyes, Susana; Rodriguez-Rodrigo, Lina; Rosanvallon, Sandrine; Topilski, Leonid [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2011-10-15

    An updated version of the ITER Preliminary Safety Report has been produced and submitted to the licensing authorities. It is revised and expanded in response to requests from the authorities after their review of an earlier version in 2008, to reflect enhancements in ITER safety provisions through design changes, to incorporate new and improved safety analyses and to take into account other ITER design evolution. The updated analyses show that changes to the Tokamak cooling water system design have enhanced confinement and reduced potential radiological releases as well as removing decay heat with very high reliability. New and updated accident scenario analyses, together with fire and explosion risk analyses, have shown that design provisions are sufficient to minimize the likelihood of accidents and reduce potential consequences to a very low level. Taken together, the improvements provided a stronger demonstration of the very good safety performance of the ITER design.

  15. ITER Conceptual design: Interim report

    International Nuclear Information System (INIS)

    1990-01-01

    This interim report describes the results of the International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activities after the first year of design following the selection of the ITER concept in the autumn of 1988. Using the concept definition as the basis for conceptual design, the Design Phase has been underway since October 1988, and will be completed at the end of 1990, at which time a final report will be issued. This interim report includes an executive summary of ITER activities, a description of the ITER device and facility, an operation and research program summary, and a description of the physics and engineering design bases. Included are preliminary cost estimates and schedule for completion of the project

  16. Cooperation between CERN and ITER

    CERN Document Server

    2008-01-01

    CERN and the International Fusion Organisation ITER have just signed a first cooperation agreeement. Kaname Ikeda, the Director-General of the International Fusion Energy Organisation (ITER) (on the right) and Robert Aymar, Director-General of CERN, signing the agreement.The Director-General of the International Fusion Energy Organization, Mr Kaname Ikeda, and CERN Director-General, Robert Aymar, signed a cooperation agreement at a meeting on the Meyrin site on Thursday 6 March. One of the main purposes of this agreement is for CERN to give ITER the benefit of its experience in the field of technology as well as in administrative domains such as finance, procurement, human resources and informatics through the provision of consultancy services. Currently in its start-up phase at its Cadarache site, 70 km from Marseilles (France), ITER will focus its research on the scientific and technical feasibility of using fusion energy as a fu...

  17. ITER must make its case

    International Nuclear Information System (INIS)

    1998-01-01

    Last month, as expected, the four partners in the International Thermonuclear Experimental Reactor (ITER) project announced a three-year extension of the ITER engineering design activity. Detailed design work on the next-generation fusion-energy device started in 1992 and has cost about $1 bn so far. A decision to build the device, once scheduled to be taken this year, will now be made in 2001 at the earliest. The ITER council said that the extension would ''provide the framework for undertaking jointly site(s)-specific and other activities with the aim of enabling future decision on construction and operation of ITER''. What the project is really doing is buying time as it tries to find a cheaper option that the partners will find acceptable. The US is keen to cut the project's cost by two-thirds. (author)

  18. Report of panel 1: The appropriate scope and mission of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K. (Los Alamos National Lab., NM (United States)); Weitzner, H.; Abdou, M.A.; Baldwin, D.E.; Berkner, K.H.; Berry, L.A.; Culler, F.L.; Dean, S.O.; DeFreece, D.A.; Gauster, W.B. (and others)

    1992-12-01

    This panel looked at the mission of ITER, and how the US should address the present plans, and considers a number of alternative plans to arrive at the eventual goals of ITER. The panel considered three major approaches which have been discussed on the international scale, and tries to present the strengths, weaknesses, and possible changes to these plans. It suggests that any of these plans can arrive at the eventual aim, but may involve differing risks and time commitments. All plans involve ITER design studies, development work on technologies which must be in place for ITER design to succeed, and testing of materials and components for application in the device.

  19. Report of panel 1: The appropriate scope and mission of ITER

    International Nuclear Information System (INIS)

    Linford, R.K.; Weitzner, H.; Abdou, M.A.; Baldwin, D.E.; Berkner, K.H.; Berry, L.A.; Culler, F.L.; Dean, S.O.; DeFreece, D.A.; Gauster, W.B.

    1992-01-01

    This panel looked at the mission of ITER, and how the US should address the present plans, and considers a number of alternative plans to arrive at the eventual goals of ITER. The panel considered three major approaches which have been discussed on the international scale, and tries to present the strengths, weaknesses, and possible changes to these plans. It suggests that any of these plans can arrive at the eventual aim, but may involve differing risks and time commitments. All plans involve ITER design studies, development work on technologies which must be in place for ITER design to succeed, and testing of materials and components for application in the device

  20. The ITER reduced cost design

    International Nuclear Information System (INIS)

    Aymar, R.

    2000-01-01

    Six years of joint work under the international thermonuclear experimental reactor (ITER) EDA agreement yielded a mature design for ITER which met the objectives set for it (ITER final design report (FDR)), together with a corpus of scientific and technological data, large/full scale models or prototypes of key components/systems and progress in understanding which both validated the specific design and are generally applicable to a next step, reactor-oriented tokamak on the road to the development of fusion as an energy source. In response to requests from the parties to explore the scope for addressing ITER's programmatic objective at reduced cost, the study of options for cost reduction has been the main feature of ITER work since summer 1998, using the advances in physics and technology databases, understandings, and tools arising out of the ITER collaboration to date. A joint concept improvement task force drawn from the joint central team and home teams has overseen and co-ordinated studies of the key issues in physics and technology which control the possibility of reducing the overall investment and simultaneously achieving the required objectives. The aim of this task force is to achieve common understandings of these issues and their consequences so as to inform and to influence the best cost-benefit choice, which will attract consensus between the ITER partners. A report to be submitted to the parties by the end of 1999 will present key elements of a specific design of minimum capital investment, with a target cost saving of about 50% the cost of the ITER FDR design, and a restricted number of design variants. Outline conclusions from the work of the task force are presented in terms of physics, operations, and design of the main tokamak systems. Possible implications for the way forward are discussed

  1. ITER diagnostic system: Vacuum interface

    International Nuclear Information System (INIS)

    Patel, K.M.; Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L.; Drevon, J.M.; Encheva, A.; Kashchuk, Y.; Maquet, Ph.; Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J.

    2013-01-01

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10 −7 Pa, irrespective of plasma operation, and a leak rate of less than 10 −10 Pa m 3 s −1 . In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions will be described

  2. ITER leader to head CERN

    CERN Document Server

    Feder, Toni

    2003-01-01

    After successfully chairing an external review committee for CERN last year, Robert Aymar will leave ITER to become director general of the European particle physics laboratory rom 2004. Before ITER he also successfully managed the startup or Tore Supra. He will attempt to ensure that the LHC begins operating in 2007 - two years late - and is paid for by 2010 and will also start the planning for life after the LHC (1 page)

  3. ITER diagnostic system: Vacuum interface

    Energy Technology Data Exchange (ETDEWEB)

    Patel, K.M., E-mail: Kaushal.Patel@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Drevon, J.M. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Encheva, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Kashchuk, Y. [Institution “PROJECT CENTER ITER”, 1, Akademika Kurchatova pl., Moscow (Russian Federation); Maquet, Ph. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France)

    2013-10-15

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10{sup −7} Pa, irrespective of plasma operation, and a leak rate of less than 10{sup −10} Pa m{sup 3} s{sup −1}. In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions

  4. Maintenance schemes for the ITER neutral beam test facility

    International Nuclear Information System (INIS)

    Zaccaria, P.; Dal Bello, S.; Marcuzzi, D.; Masiello, A.; Coniglio, A.; Antoni, V.; Cordier, J.J.; Hemsworth, R.; Jones, T.; Di Pietro, E.; Mondino, P.L.

    2004-01-01

    The ITER neutral beam test facility (NBTF) is planned to be built, after the approval of the ITER construction and the choice of the ITER site, with the agreement of the ITER International Team and of the JA and RF participant teams. The key purpose is to progressively increase the performance of the first ITER injector and to demonstrate its reliability at the maximum operation parameters: power delivered to the plasma 16.5 MW, beam energy 1 MeV, accelerated D - ion current 40 A, pulse length 3600 s. Several interventions for possible modifications and for maintenance are expected during the early operation of the ITER injector in order to optimize the beam generation, aiming and steering. The maintenance scheme and the related design solutions are therefore a very important aspect to be considered for the NBTF design. The paper describes consistently the many interrelated aspects of the design, such as the optimisation of the vessel and cryopump geometry, in order to get a better maintenance flexibility, an easier man access and a larger access for diagnostic and monitoring. (authors)

  5. ITER concept definition. V.1

    International Nuclear Information System (INIS)

    1989-01-01

    Under the auspices of the International Atomic Energy Agency (IAEA), an agreement among the four parties representing the world's major fusion programs resulted in a program for conceptual design of the next logical step in the fusion program, the International Thermonuclear Experimental Reactor (ITER). The definition phase, which ended in November, 1989, is summarized in two reports: a brief summary is contained in the ITER Definition Phase Report (IAEA/ITER/DS/2); the extended technical summary and technical details of ITER are contained in this two-volume report. The first volume of this report contains the Introduction and Summary, and the remainder will appear in Volume II. In the Conceptual Design Activities phase, ITER has been defined as being a tokamak device. The basic performance parameters of ITER are given in Volume I of this report. In addition, the rationale for selection of this concept, the performance flexibility, technical issues, operations, safety, reliability, cost, and research and development needed to proceed with the design are discussed. Figs and tabs

  6. ITER safety and operational scenario

    International Nuclear Information System (INIS)

    Shimomura, Y.; Saji, G.

    1998-01-01

    The safety and environmental characteristics of ITER and its operational scenario are described. Fusion has built-in safety characteristics without depending on layers of safety protection systems. Safety considerations are integrated in the design by making use of the intrinsic safety characteristics of fusion adequate to the moderate hazard inventories. In addition to this, a systematic nuclear safety approach has been applied to the design of ITER. The safety assessment of the design shows how ITER will safely accommodate uncertainties, flexibility of plasma operations, and experimental components, which is fundamental in ITER, the first experimental fusion reactor. The operation of ITER will progress step by step from hydrogen plasma operation with low plasma current, low magnetic field, short pulse and low duty factor without fusion power to deuterium-tritium plasma operation with full plasma current, full magnetic field, long pulse and high duty factor with full fusion power. In each step, characteristics of plasma and optimization of plasma operation will be studied which will significantly reduce uncertainties and frequency/severity of plasma transient events in the next step. This approach enhances reliability of ITER operation. (orig.)

  7. ITER primary cryopump test facility

    International Nuclear Information System (INIS)

    Petersohn, N.; Mack, A.; Boissin, J.C.; Murdoc, D.

    1998-01-01

    A cryopump as ITER primary vacuum pump is being developed at FZK under the European fusion technology programme. The ITER vacuum system comprises of 16 cryopumps operating in a cyclic mode which fulfills the vacuum requirements in all ITER operation modes. Prior to the construction of a prototype cryopump, the concept is tested on a reduced scale model pump. To test the model pump, the TIMO facility is being built at FZK in which the model pump operation under ITER environmental conditions, except for tritium exposure, neutron irradiation and magnetic fields, can be simulated. The TIMO facility mainly consists of a test vessel for ITER divertor duct simulation, a 600 W refrigerator system supplying helium in the 5 K stage and a 30 kW helium supply system for the 80 K stage. The model pump test programme will be performed with regard to the pumping performance and cryogenic operation of the pump. The results of the model pump testing will lead to the design of the full scale ITER cryopump. (orig.)

  8. The ITER remote maintenance system

    International Nuclear Information System (INIS)

    Tesini, A.; Palmer, J.

    2007-01-01

    ITER is a joint international research and development project that aims to demonstrate the scientific and technological feasibility of fusion power. As soon as the plasma operation begins using tritium, the replacement of the vacuum vessel internal components will need to be done with remote handling techniques. To accomplish these operations ITER has equipped itself with a Remote Maintenance System; this includes the Remote Handling equipment set and the Hot Cell facility. Both need to work in a cooperative way, with the aim of minimizing the machine shutdown periods and to maximize the machine availability. The ITER Remote Handling equipment set is required to be available, robust, reliable and retrievable. The machine components, to be remotely handle-able, are required to be designed simply so as to ease their maintenance. The baseline ITER Remote Handling equipment is described. The ITER Hot Cell Facility is required to provide a controlled and shielded area for the execution of repair operations (carried out using dedicated remote handling equipment) on those activated components which need to be returned to service, inside the vacuum vessel. The Hot Cell provides also the equipment and space for the processing and temporary storage of the operational and decommissioning radwaste. A conceptual ITER Hot Cell Facility is described. (orig.)

  9. Iterative analysis of concrete gravity dam-nonlinear foundation ...

    African Journals Online (AJOL)

    The solution of the coupled system is accomplished by solving the two systems separately and then considering the interaction effects at the soil–structure interface enforced by a developed iterative scheme. Emphasis has been laid on the study of material nonlinearity of the foundation material in the interaction analysis.

  10. Distributed Iterative Processing for Interference Channels with Receiver Cooperation

    DEFF Research Database (Denmark)

    Badiu, Mihai Alin; Manchón, Carles Navarro; Bota, Vasile

    2012-01-01

    We propose a method for the design and evaluation of distributed iterative algorithms for receiver cooperation in interference-limited wireless systems. Our approach views the processing within and collaboration between receivers as the solution to an inference problem in the probabilistic model...

  11. Convergence of iterative image reconstruction algorithms for Digital Breast Tomosynthesis

    DEFF Research Database (Denmark)

    Sidky, Emil; Jørgensen, Jakob Heide; Pan, Xiaochuan

    2012-01-01

    Most iterative image reconstruction algorithms are based on some form of optimization, such as minimization of a data-fidelity term plus an image regularizing penalty term. While achieving the solution of these optimization problems may not directly be clinically relevant, accurate optimization s...

  12. An iterative method for determination of a minimal eigenvalue

    DEFF Research Database (Denmark)

    Kristiansen, G.K.

    1968-01-01

    Kristiansen (1963) has discussed the convergence of a group of iterative methods (denoted the Equipoise methods) for the solution of reactor criticality problems. The main result was that even though the methods are said to work satisfactorily in all practical cases, examples of divergence can be...

  13. Subroutine MLTGRD: a multigrid algorithm based on multiplicative correction and implicit non-stationary iteration

    International Nuclear Information System (INIS)

    Barry, J.M.; Pollard, J.P.

    1986-11-01

    A FORTRAN subroutine MLTGRD is provided to solve efficiently the large systems of linear equations arising from a five-point finite difference discretisation of some elliptic partial differential equations. MLTGRD is a multigrid algorithm which provides multiplicative correction to iterative solution estimates from successively reduced systems of linear equations. It uses the method of implicit non-stationary iteration for all grid levels

  14. The General Iterative Methods for Asymptotically Nonexpansive Semigroups in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Rabian Wangkeeree

    2012-01-01

    Full Text Available We introduce the general iterative methods for finding a common fixed point of asymptotically nonexpansive semigroups which is a unique solution of some variational inequalities. We prove the strong convergence theorems of such iterative scheme in a reflexive Banach space which admits a weakly continuous duality mapping. The main result extends various results existing in the current literature.

  15. A Multiple Iterated Integral Inequality and Applications

    Directory of Open Access Journals (Sweden)

    Zongyi Hou

    2014-01-01

    Full Text Available We establish new multiple iterated Volterra-Fredholm type integral inequalities, where the composite function w(u(s of the unknown function u with nonlinear function w in integral functions in [Ma, QH, Pečarić, J: Estimates on solutions of some new nonlinear retarded Volterra-Fredholm type integral inequalities. Nonlinear Anal. 69 (2008 393–407] is changed into the composite functions w1(u(s,w2(u(s,…, wn (u(s of the unknown function u with different nonlinear functions w1,w2,…,wn, respectively. By adopting novel analysis techniques, the upper bounds of the embedded unknown functions are estimated explicitly. The derived results can be applied in the study of solutions of ordinary differential equations and integral equations.

  16. ITER Central Solenoid Module Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Smith, John [General Atomics, San Diego, CA (United States)

    2016-09-23

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort between the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of the first

  17. ITER EDA Newsletter. V. 4, no. 5

    International Nuclear Information System (INIS)

    1995-05-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains comments on the ITER project by the Permanent Representative of the Russian Federation to the International Organizations in Vienna; a report on the ITER Magnet Technical Meeting held at the Joint Work Site at Naka, Japan, April 19-21, 1995; and a contribution entitled ''ITER spouses cross the cultures''

  18. ITER EDA newsletter. V. 10, no. 6

    International Nuclear Information System (INIS)

    2001-06-01

    This ITER EDA Newsletter issue includes information about the ITER Management Advisory Committee Meeting held in Vienna on 16 July 2001 and also a summary of the ninth ITER Technical Meeting on safety and environment held at the ITER Garching Joint Work site, 8 to 10 May, 2001

  19. ITER ITA newsletter. No. 27, January 2006

    International Nuclear Information System (INIS)

    2006-02-01

    This issue of ITER ITA (ITER transitional arrangements) newsletter contains concise information about two ITER related meetings including the twelfth ITER Negotiations Meeting and The Ninth Meeting of the ITPA Topical Group (TG) on Diagnostics was held at the National Fusion Research Centre (NFRC), Daejeon, Korea, from 10-14 October 2005

  20. ITER EDA newsletter. V. 8, no. 9

    International Nuclear Information System (INIS)

    1999-09-01

    This edition of the ITER EDA Newsletter contains a contribution by the ITER Director, R. Aymar, on the subject of developments in ITER Physics R and D report on the completion of the ITER central solenoid model coils installation by H. Tsuji, Head fo the Superconducting Magnet Laboratory at JAERI in Naka, Japan. Individual abstracts are prepared for each of the two articles

  1. ITER EDA Newsletter. V.3, no.3

    International Nuclear Information System (INIS)

    1994-03-01

    This ITER EDA Newsletter issue contains reports on (i) the completion of the ITER EDA Protocol 1, (ii) the signing of ITER EDA Protocol 2, (iii) a technical meeting on pumping and fuelling and (iv) a technical meeting on the ITER Tritium Plant

  2. ITER EDA newsletter. V. 4, no. 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the first meeting of the ITER Test Blanket Working Group held 19-21 July 1995 at the ITER Garching Joint Work Site, and on the second workshop of the ITER Expert Group on Confinement and Transport.

  3. ITER EDA newsletter. V. 4, no. 9

    International Nuclear Information System (INIS)

    1995-09-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the first meeting of the ITER Test Blanket Working Group held 19-21 July 1995 at the ITER Garching Joint Work Site, and on the second workshop of the ITER Expert Group on Confinement and Transport

  4. ITER ITA newsletter. No. 10, November 2003

    International Nuclear Information System (INIS)

    2003-12-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about an ITER related meeting, namely, the Ninth ITER Negotiations Meeting (N-9), which was held on 9-10 November 2003 at the Fragrant Hill Golden Resources Commerce Hotel in Beijing and information about research on magnetic confinement fusion (MCF) in China

  5. ITER EDA newsletter. V. 8, no. 12

    International Nuclear Information System (INIS)

    1999-12-01

    This ITER EDA Newsletter reports about the ITER Management Advisory Committee Meeting in Naka, the ITER Technical Advisory Committee Meeting in Naka and the meeting of the ITER SWG-P2 in Vienna. A separate abstract is prepared for each meeting

  6. ITER EDA newsletter. V. 5, no. 9

    International Nuclear Information System (INIS)

    1996-09-01

    This issue of the Newsletter on the Engineering Design Activities (EDA) for the ITER project contains an overview of one of the seven large ITER Research and Development Projects identified by the ITER Director, namely the Vacuum Vessel Sector, as well as an account of computer animation created for ITER

  7. ITER EDA newsletter. V. 7, no. 1

    International Nuclear Information System (INIS)

    1998-01-01

    This issue of the ITER Newsletter contains a summary report on the Thirteenth meeting of the ITER Management Advisory Committee (MAC), a report on ITER at the International Conference on Fusion Reactor Materials and a report of a Russian scientist working at ITER Garching JWS

  8. ITER ITA newsletter. No. 22, May 2005

    International Nuclear Information System (INIS)

    2005-06-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about Japanese Participant Team's recent activities in the ITER Transitional Arrangements(ITA) phase and ITER related meeting the Fourth IAEA Technical Meeting (IAEA-TM) on Negative Ion Based Neutral Beam Injectors which was held in Padova, Italy from 9-11 May 2005

  9. ITER safety challenges and opportunities

    International Nuclear Information System (INIS)

    Piet, S.J.

    1991-01-01

    Results of the Conceptual Design Activity (CDA) for the International Thermonuclear Experimental Reactor (ITER) suggest challenges and opportunities. ''ITER is capable of meeting anticipated regulatory dose limits,'' but proof is difficult because of large radioactive inventories needing stringent radioactivity confinement. We need much research and development (R ampersand D) and design analysis to establish that ITER meets regulatory requirements. We have a further opportunity to do more to prove more of fusion's potential safety and environmental advantages and maximize the amount of ITER technology on the path toward fusion power plants. To fulfill these tasks, we need to overcome three programmatic challenges and three technical challenges. The first programmatic challenge is to fund a comprehensive safety and environmental ITER R ampersand D plan. Second is to strengthen safety and environment work and personnel in the international team. Third is to establish an external consultant group to advise the ITER Joint Team on designing ITER to meet safety requirements for siting by any of the Parties. The first of the three key technical challenges is plasma engineering -- burn control, plasma shutdown, disruptions, tritium burn fraction, and steady state operation. The second is the divertor, including tritium inventory, activation hazards, chemical reactions, and coolant disturbances. The third technical challenge is optimization of design requirements considering safety risk, technical risk, and cost. Some design requirements are now too strict; some are too lax. Fuel cycle design requirements are presently too strict, mandating inappropriate T separation from H and D. Heat sink requirements are presently too lax; they should be strengthened to ensure that maximum loss of coolant accident temperatures drop

  10. Dhage Iteration Method for Generalized Quadratic Functional Integral Equations

    Directory of Open Access Journals (Sweden)

    Bapurao C. Dhage

    2015-01-01

    Full Text Available In this paper we prove the existence as well as approximations of the solutions for a certain nonlinear generalized quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations starting at a lower or upper solution converges monotonically to the solutions of related quadratic functional integral equation under some suitable mixed hybrid conditions. We rely our main result on Dhage iteration method embodied in a recent hybrid fixed point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.

  11. ITER ITA newsletter No. 33, August-September-October 2006

    International Nuclear Information System (INIS)

    2006-11-01

    This issue of ITER ITA (ITER transitional arrangements) newsletter contains concise information about ITER related events such as public debate on ITER in Provence and fiftieth annual General Conference of the IAEA. Eight ITER related statements were made during Conference

  12. ITER Construction--Plant System Integration

    International Nuclear Information System (INIS)

    Tada, E.; Matsuda, S.

    2009-01-01

    This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.

  13. ITER ITA newsletter. No. 11, December 2003

    International Nuclear Information System (INIS)

    2003-12-01

    This issue of the ITER ITA (ITER transitional Arrangements) newsletter contains concise information about ITER including information from the editor about ITER update, about progress in ITER magnet design and preparation of procurement packages and about 25th anniversary of the First Steering Committee Meeting of the International Tokamak Reactor (INTOR) Workshop, organized under the auspices of the IAEA, took place at the IAEA Headquarters in Vienna

  14. ITER EDA newsletter. V. 4, no.12

    International Nuclear Information System (INIS)

    1995-12-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains a report on the ninth ITER council meeting held December 12 - 13, 1995 in Garching near Munich, Germany (by Dr. E. Canobbio), a report on the status of the ITER EDA (by Dr. R. Aymar, ITER Director) and a report on the ninth meeting of the ITER Technical Advisory Committee (by Professor P. Rutherford, TAC Chair) held 27 - 29 November 1995, in Garching near Munich, Germany

  15. ITER ITA newsletter. No. 4, May 2003

    International Nuclear Information System (INIS)

    2003-07-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about ITER related meetings, one of them the eighth meeting of the ITER negotiators' standing sub-group (NSSG-8) and a number of related meetings from 14 to 22 May 2003 at Garching, Germany, another was bilateral blanket meeting between ITER International Team (IT) and the Research and Development Institute of Power Engineering (ENTEK), which was held in Moscow, Russian Federation on 22 and 23 May, 2003

  16. ITER ITA newsletter. Special issue - December 2006

    International Nuclear Information System (INIS)

    2006-12-01

    This issue of ITER ITA (ITER transitional arrangements) newsletter contains information about signing ITER Agreement, which took place on 21 November 2006 in Paris, France. It was great day for fusion research as Ministers from the seven ITER Parties in the presence of President Jacques Chirac and President of European Commission Jose Barroso and some 400 invited guests signed the Agreement setting up the ITER International Fusion Energy Organization. This issues contains the speeches, statements and remarks of Presidents and Ministers

  17. ITER EDA newsletter. V. 5, no. 7

    International Nuclear Information System (INIS)

    1996-07-01

    This issue of the Newsletter on the Engineering Design Activities (EDA) for the ITER Tokamak project contains a report on the Tenth ITER Council Meeting, held July 24-25, 1996, in St. Petersburg, Russia; a description of the Status of the ITER EDA by the ITER Director, Dr. R. Aymar; and a report on the so-called Task Number One by the ITER Special Working Group (Basis for the Start of Explorations, presenting possible scenarios toward siting, licensing and host support)

  18. ITER ITA newsletter. No. 1, February 2003

    International Nuclear Information System (INIS)

    2003-04-01

    This first issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about ITER related meetings including eighth ITER Negotiations meeting, held on 18-19 February, 2003 in St. Petersburg, Russia, first meeting of the ITER preparatory committee, held on 17 February, 2003 in St. Petersburg, Russia and the third meeting of the ITPA (International Tokamak Physics Activity) coordinating committee, held on 24-25 October 2002 at the Max-Planck-Institut fuer Plasmaphysik, Garching

  19. Status and plans for U.S. ITER studies

    International Nuclear Information System (INIS)

    Doggett, J.N.

    1992-01-01

    The United States' participation in the International Thermonuclear Experimental Reactor (ITER) began in late 1987 when the initiative to start a cooperative program among the four Parties-the Soviet Union, Japan, the European Community, and the United States-was initiated. Participation then continued through the start of joint Work in May 1988 until the conclusion of the Conceptual Design Activities (CDA) in December 1990. In the period between the conclusion of the CDA and the agreement to execute the Engineering Design Activities (EDA), the U.S. ITER Home Team continued to do work on the design, executed additional research and development (R and D) and participated in the preparations for the EDA. Activities included one major design study on a High-Aspect-Ratio Design (HARD) and input to the National ITER Technical Review, the ITER Steering Committee-U.S. (ISCUS), Special Working Group 1 (SWG-1), and the Fusion Energy Advisory Committee's Panel 1 (FEAC-1). Research and development was continued in areas of work that were identified as critical-path elements by an international panel chartered by the four ITER Parties near the end of the CDA. During the interim period, the U.S. Home Team Management (HTM) was in the process of organizing to support the EDA both at home and in the central design sites. The major efforts have been in producing a management plan, establishing memorandums of agreement with the performing institutions for ITER tasks, establishing an industrial council, and producing a list of candidates who are qualified, willing, and available to serve on the joint Central Team or to participate in ITER home tasks. The author describes the conclusion of the CDA and the interim U.S. ITER activities and will give an indication of US involvement in the EDA

  20. A new simple iterative reconstruction algorithm for SPECT transmission measurement

    International Nuclear Information System (INIS)

    Hwang, D.S.; Zeng, G.L.

    2005-01-01

    This paper proposes a new iterative reconstruction algorithm for transmission tomography and compares this algorithm with several other methods. The new algorithm is simple and resembles the emission ML-EM algorithm in form. Due to its simplicity, it is easy to implement and fast to compute a new update at each iteration. The algorithm also always guarantees non-negative solutions. Evaluations are performed using simulation studies and real phantom data. Comparisons with other algorithms such as convex, gradient, and logMLEM show that the proposed algorithm is as good as others and performs better in some cases

  1. Fusion Power measurement at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bertalot, L.; Barnsley, R.; Krasilnikov, V.; Stott, P.; Suarez, A.; Vayakis, G.; Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-07-01

    Nuclear fusion research aims to provide energy for the future in a sustainable way and the ITER project scope is to demonstrate the feasibility of nuclear fusion energy. ITER is a nuclear experimental reactor based on a large scale fusion plasma (tokamak type) device generating Deuterium - Tritium (DT) fusion reactions with emission of 14 MeV neutrons producing up to 700 MW fusion power. The measurement of fusion power, i.e. total neutron emissivity, will play an important role for achieving ITER goals, in particular the fusion gain factor Q related to the reactor performance. Particular attention is given also to the development of the neutron calibration strategy whose main scope is to achieve the required accuracy of 10% for the measurement of fusion power. Neutron Flux Monitors located in diagnostic ports and inside the vacuum vessel will measure ITER total neutron emissivity, expected to range from 1014 n/s in Deuterium - Deuterium (DD) plasmas up to almost 10{sup 21} n/s in DT plasmas. The neutron detection systems as well all other ITER diagnostics have to withstand high nuclear radiation and electromagnetic fields as well ultrahigh vacuum and thermal loads. (authors)

  2. ITER project and fusion technology

    International Nuclear Information System (INIS)

    Takatsu, H.

    2011-01-01

    In the sessions of ITR, FTP and SEE of the 23rd IAEA Fusion Energy Conference, 159 papers were presented in total, highlighted by the remarkable progress of the ITER project: ITER baseline has been established and procurement activities have been started as planned with a target of realizing the first plasma in 2019; ITER physics basis is sound and operation scenarios and operational issues have been extensively studied in close collaboration with the worldwide physics community; the test blanket module programme has been incorporated into the ITER programme and extensive R and D works are ongoing in the member countries with a view to delivering their own modules in a timely manner according to the ITER master schedule. Good progress was also reported in the areas of a variety of complementary activities to DEMO, including Broader Approach activities and long-term technology. This paper summarizes the highlights of the papers presented in the ITR, FTP and SEE sessions with a minimum set of background information.

  3. General Large Deviations and Functional Iterated Logarithm Law for Multivalued Stochastic Differential Equations

    OpenAIRE

    Ren, Jiagang; Wu, Jing; Zhang, Hua

    2015-01-01

    In this paper, we prove a large deviation principle of Freidlin-Wentzell's type for the multivalued stochastic differential equations. As an application, we derive a functional iterated logarithm law for the solutions of multivalued stochastic differential equations.

  4. Single photon emission computed tomography using a regularizing iterative method for attenuation correction

    International Nuclear Information System (INIS)

    Soussaline, Francoise; Cao, A.; Lecoq, G.

    1981-06-01

    An analytically exact solution to the attenuated tomographic operator is proposed. Such a technique called Regularizing Iterative Method (RIM) belongs to the iterative class of procedures where a priori knowledge can be introduced on the evaluation of the size and shape of the activity domain to be reconstructed, and on the exact attenuation distribution. The relaxation factor used is so named because it leads to fast convergence and provides noise filtering for a small number of iteractions. The effectiveness of such a method was tested in the Single Photon Emission Computed Tomography (SPECT) reconstruction problem, with the goal of precise correction for attenuation before quantitative study. Its implementation involves the use of a rotating scintillation camera based SPECT detector connected to a mini computer system. Mathematical simulations of cylindical uniformly attenuated phantoms indicate that in the range of a priori calculated relaxation factor a fast converging solution can always be found with a (contrast) accuracy of the order of 0.2 to 4% given that numerical errors and noise are or not, taken into account. The sensitivity of the (RIM) algorithm to errors in the size of the reconstructed object and in the value of the attenuation coefficient μ was studied, using the same simulation data. Extreme variations of +- 15% in these parameters will lead to errors of the order of +- 20% in the quantitative results. Physical phantoms representing a variety of geometrical situations were also studied

  5. The ITER project technological challenges

    CERN Multimedia

    CERN. Geneva; Lister, Joseph; Marquina, Miguel A; Todesco, Ezio

    2005-01-01

    The first lecture reminds us of the ITER challenges, presents hard engineering problems, typically due to mechanical forces and thermal loads and identifies where the physics uncertainties play a significant role in the engineering requirements. The second lecture presents soft engineering problems of measuring the plasma parameters, feedback control of the plasma and handling the physics data flow and slow controls data flow from a large experiment like ITER. The last three lectures focus on superconductors for fusion. The third lecture reviews the design criteria and manufacturing methods for 6 milestone-conductors of large fusion devices (T-7, T-15, Tore Supra, LHD, W-7X, ITER). The evolution of the designer approach and the available technologies are critically discussed. The fourth lecture is devoted to the issue of performance prediction, from a superconducting wire to a large size conductor. The role of scaling laws, self-field, current distribution, voltage-current characteristic and transposition are...

  6. Construction Safety Forecast for ITER

    Energy Technology Data Exchange (ETDEWEB)

    cadwallader, lee charles

    2006-11-01

    The International Thermonuclear Experimental Reactor (ITER) project is poised to begin its construction activity. This paper gives an estimate of construction safety as if the experiment was being built in the United States. This estimate of construction injuries and potential fatalities serves as a useful forecast of what can be expected for construction of such a major facility in any country. These data should be considered by the ITER International Team as it plans for safety during the construction phase. Based on average U.S. construction rates, ITER may expect a lost workday case rate of < 4.0 and a fatality count of 0.5 to 0.9 persons per year.

  7. US--ITER activation analysis

    International Nuclear Information System (INIS)

    Attaya, H.; Gohar, Y.; Smith, D.

    1990-09-01

    Activation analysis has been made for the US ITER design. The radioactivity and the decay heat have been calculated, during operation and after shutdown for the two ITER phases, the Physics Phase and the Technology Phase. The Physics Phase operates about 24 full power days (FPDs) at fusion power level of 1100 MW and the Technology Phase has 860 MW fusion power and operates for about 1360 FPDs. The point-wise gamma sources have been calculated everywhere in the reactor at several times after shutdown of the two phases and are then used to calculate the biological dose everywhere in the reactor. Activation calculations have been made also for ITER divertor. The results are presented for different continuous operation times and for only one pulse. The effect of the pulsed operation on the radioactivity is analyzed. 6 refs., 12 figs., 1 tab

  8. Remote maintenance development for ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Shibanuma, Kiyoshi

    1997-01-01

    This paper both describes the overall design concept of the ITER remote maintenance system, which has been developed mainly for use with in-vessel components such as divertor and blanket, and outlines of the ITER R and D program, which has been established to develop remote handling equipment/tools and radiation hard components. In ITER, the reactor structures inside cryostat have to be maintained remotely because of activation due to DT operation. Therefore, remote-handling technology is fundamental, and the reactor-structure design must be made consistent with remote maintainability. The overall maintenance scenario and design concepts of the required remote handling equipment/tools have been developed according to their maintenance classification. Technologies are also being developed to verify the feasibility of the maintenance design and include fabrication and testing of a fullscale remote-handling equipment/tools for in-vessel maintenance. (author)

  9. Existence and Analytic Approximation of Solutions of Duffing Type Nonlinear Integro-Differential Equation with Integral Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Alsaedi Ahmed

    2009-01-01

    Full Text Available A generalized quasilinearization technique is developed to obtain a sequence of approximate solutions converging monotonically and quadratically to a unique solution of a boundary value problem involving Duffing type nonlinear integro-differential equation with integral boundary conditions. The convergence of order for the sequence of iterates is also established. It is found that the work presented in this paper not only produces new results but also yields several old results in certain limits.

  10. A Mixed Monotone Operator Method for the Existence and Uniqueness of Positive Solutions to Impulsive Caputo Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Jieming Zhang

    2013-01-01

    Full Text Available We establish some sufficient conditions for the existence and uniqueness of positive solutions to a class of initial value problem for impulsive fractional differential equations involving the Caputo fractional derivative. Our analysis relies on a fixed point theorem for mixed monotone operators. Our result can not only guarantee the existence of a unique positive solution but also be applied to construct an iterative scheme for approximating it. An example is given to illustrate our main result.

  11. The ITER CODAC conceptual design

    International Nuclear Information System (INIS)

    Lister, J.B.; Farthing, J.W.; Greenwald, M.; Yonekawa, I.

    2007-01-01

    CODAC orchestrates the activity of 60-90 Plant Systems in normal ITER operation. Interlock Systems protect ITER from potentially damaging operating off-normal conditions. Safety Systems protect the personnel and the environment and will be subject to licensing. The principal challenges to be met in the design and implementation of CODAC include: complexity, reliability, transparent access respecting security, a high experiment data rate and data volume since ITER is an experimental reactor, scientific exploitation from multiple Participant Team Experiment Sites and the long 35-year period for construction and operation. Complexity is addressed by prescribing the communication interfaces to the Plant Systems and prescribing the technical implementation within the Plant Systems. Plant Systems export to CODAC all the information on their construction and operation as 'self-description'. Complexity is also addressed by automating the operation of ITER and of the plasma, using a structured data description of 'Operation Schedules' which encompass all non-manual control, including Plasma Control. Reliability is addressed by maximising code reuse and maximising the use of existing products thereby minimising in-house development. The design is hierarchical and modular in both hardware and software. The latter facilitates evolution of methods during the project lifetime. Guaranteeing security while maximising access is addressed by flow separation. Out-flowing data, including experimental signals and the status of ITER plant is risk-free. In-flowing commands and data originate from Experiment Sites. The Cadarache Experiment Site is equated with the Remote Experiment Sites and a rigorous 'Operation Request Gatekeeper' is provided. The high data rates and data volumes are handled with high performance networks. Global Area Networks allow Participant Teams to access all CODAC data and applications. Scientific exploitation of ITER will remain a human as well as technical

  12. ITER Operating Limits and Conditions

    International Nuclear Information System (INIS)

    Ciattaglia, S.; Barabaschi, P.; Carretero, J.A.

    2006-01-01

    The Operating Limits and Conditions (OLCs) are operating parameters and conditions, chosen among all system/components, which together define the domain of the safe operation of ITER in all foreseen ITER status (operation, maintenance, commissioning). At the same time they are selected to guarantee the required operation flexibility which is a critical factor for the success of an experimental machine such as ITER. System and components important for personnel or public safety (Safety Important Class, SIC) are identified from the overall plant safety analysis on functional importance to safety of the components. SIC classification has to be presented already inside the preliminary safety analysis report and approved by the licensing safety authority before the relevant construction. OLCs comprise the safety limits, i.e. that if exceeded could result in a potential safety hazard, the relevant settings that determine the intervention of SIC systems and the operational limits on equipment which warn from or stop a functional departure from a planned operational status that could challenge equipment and functions. The safety limits have to indicate clearly states that leave the nominal safety state of ITER; they are derived from the safety analysis of ITER. OLCs can represent in some cases few parameters grouping together. Some operational conditions, e.g. inventories, will be controlled through no real time measurements and procedures. Operating experience from present tokamaks, in particular JET, and from nuclear plants is considered at the maximum possible extent. This paper presents the guidelines to develop the ITER OLCs with particular reference to safety limits. A few examples are reported as well as open issues on some OLCs control and measurement and the relevant R-and-D planned to solve the issues. (author)

  13. Array architectures for iterative algorithms

    Science.gov (United States)

    Jagadish, Hosagrahar V.; Rao, Sailesh K.; Kailath, Thomas

    1987-01-01

    Regular mesh-connected arrays are shown to be isomorphic to a class of so-called regular iterative algorithms. For a wide variety of problems it is shown how to obtain appropriate iterative algorithms and then how to translate these algorithms into arrays in a systematic fashion. Several 'systolic' arrays presented in the literature are shown to be specific cases of the variety of architectures that can be derived by the techniques presented here. These include arrays for Fourier Transform, Matrix Multiplication, and Sorting.

  14. ITER oriented issues-2 (etc.)

    International Nuclear Information System (INIS)

    Goryayev, G.V.; Savchuk, V.V.; Shakhvorostov, Yu. V.

    2004-01-01

    The study analyzes the possibilities of utilization beryllium ingots produced at UMZ (Ulba Metallurgical Plant) for the purpose of ITER program. The results of comparative analysis of specification requirement to S-65 grade chemical compound and statistics data of UMZ beryllium ingots impurities content are presented. It has been demonstrated that beryllium industrial ingots produced at UMZ can be used for a production of powders and billets conforming the requirements of ITER specification. Beryllium ingots production flow chart, description of basic process equipment, the layout of metallurgical production upgrade, the results of such upgrade implementation are complimentary data to this study. The study illustrated with explanatory drawings. (author)

  15. ITER and world chaos; Iter ou le bouleversement du monde

    Energy Technology Data Exchange (ETDEWEB)

    Pourcel, Eric

    2012-02-15

    ITER is the International Thermonuclear Experimental Reactor: the author here develops three scenarios linked to the control of nuclear fusion as a method of producing electrical energy that could take over from fossil fuels in the twenty-First century. His expose shows the likely strategic disarray that might result

  16. Final report of the ITER EDA. Final report of the ITER Engineering Design Activities. Prepared by the ITER Council

    International Nuclear Information System (INIS)

    2001-01-01

    This is the Final Report by the ITER Council on work carried out by ITER participating countries on cooperation in the Engineering Design Activities (EDA) for the ITER. In this report the main ITER EDA technical objectives, the scope of ITER EDA, its organization and resources, engineering design of ITER tokamak and its main parameters are presented. This Report also includes safety and environmental assessments, site requirements and proposed schedule and estimates of manpower and cost as well as proposals on approaches to joint implementation of the project

  17. Data archiving system implementation in ITER's CODAC Core System

    International Nuclear Information System (INIS)

    Castro, R.; Abadie, L.; Makushok, Y.; Ruiz, M.; Sanz, D.; Vega, J.; Faig, J.; Román-Pérez, G.; Simrock, S.; Makijarvi, P.

    2015-01-01

    Highlights: • Implementation of ITER's data archiving solution. • Integration of the solution into CODAC Core System. • Data archiving structure. • High efficient data transmission into fast plant system controllers. • Fast control and data acquisition in Linux. - Abstract: The aim of this work is to present the implementation of data archiving in ITER's CODAC Core System software. This first approach provides a client side API and server side software allowing the creation of a simplified version of ITERDB data archiving software, and implements all required elements to complete data archiving flow from data acquisition until its persistent storage technology. The client side includes all necessary components that run on devices that acquire or produce data, distributing and streaming to configure remote archiving servers. The server side comprises an archiving service that stores into HDF5 files all received data. The archiving solution aims at storing data coming for the data acquisition system, the conventional control and also processed/simulated data.

  18. ITER ITA newsletter No. 31, June 2006

    International Nuclear Information System (INIS)

    2006-07-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about initialling the ITER Agreement and its related instruments by seven ITER parties, which too place in Brussels on 24 May 2006. The initialling constituted the final act of the ITER negotiations. It confirmed the Parties' common acceptance of the negotiated texts, ad referendum, and signalled their intentions to move forward towards the entry into force of the ITER Agreement as soon as possible. 'ITER - Uniting science today, global energy tomorrow' was the theme of a number of media events timed to accompany a remarkable day in the history of the ITER international venture, May 24th 2006, initialling of the ITER international agreement

  19. Progress in standardization for ITER Remote Handling control system

    International Nuclear Information System (INIS)

    Hamilton, David Thomas; Tesini, Alessandro; Ranz, Roberto; Kozaka, Hiroshi

    2014-01-01

    Graphical abstract: - Highlights: • Standard parts specified for ITER Remote Handling (RH) control system. • Standard approach for VR modeling of structural deformations in real-time. • RH Core System produced as standard platform for RH controller applications. • Synthetic Viewing investigated and demonstrated. • Structured language defined for RH operation procedures and motion sequences. - Abstract: An integrated control system architecture has been defined for the ITER Remote Handling (RH) equipment systems, and work has been continuing to develop and validate standards for this architecture. Evaluations of standard parts and a standard control room work-cell have contributed to an update of the RH Control System Design Handbook, while R and D activities have been carried out to validate concepts for standard solutions to ITER RH problems: the use of a standard master arm with different slave arms, the achievement of high accuracy tracking of RH operations within virtual reality, and condition monitoring of RH equipment systems. The standardization efforts have been consolidated through the development of a freely distributable software platform to support the adoption of the ITER RH standards. The RH Core System installs on top of the CODAC Core System and provides the basic platform for the development of ITER RH equipment controller applications. The standardization work has continued in the areas of RH viewing, network communication protocols, and a structured language for programming ITER RH operations. Prototyping has been done on high-level control system applications, and R and D has been carried out in the area of synthetic viewing for ITER RH. These developments will be reflected in a new version of the RH Core System to be produced during 2013

  20. Progress in standardization for ITER Remote Handling control system

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, David Thomas, E-mail: david.hamilton@iter.org [ITER Organization, Route de Vinon, 13115 St. Paul-lez-Durance (France); Tesini, Alessandro [ITER Organization, Route de Vinon, 13115 St. Paul-lez-Durance (France); Ranz, Roberto [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Kozaka, Hiroshi [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan)

    2014-10-15

    Graphical abstract: - Highlights: • Standard parts specified for ITER Remote Handling (RH) control system. • Standard approach for VR modeling of structural deformations in real-time. • RH Core System produced as standard platform for RH controller applications. • Synthetic Viewing investigated and demonstrated. • Structured language defined for RH operation procedures and motion sequences. - Abstract: An integrated control system architecture has been defined for the ITER Remote Handling (RH) equipment systems, and work has been continuing to develop and validate standards for this architecture. Evaluations of standard parts and a standard control room work-cell have contributed to an update of the RH Control System Design Handbook, while R and D activities have been carried out to validate concepts for standard solutions to ITER RH problems: the use of a standard master arm with different slave arms, the achievement of high accuracy tracking of RH operations within virtual reality, and condition monitoring of RH equipment systems. The standardization efforts have been consolidated through the development of a freely distributable software platform to support the adoption of the ITER RH standards. The RH Core System installs on top of the CODAC Core System and provides the basic platform for the development of ITER RH equipment controller applications. The standardization work has continued in the areas of RH viewing, network communication protocols, and a structured language for programming ITER RH operations. Prototyping has been done on high-level control system applications, and R and D has been carried out in the area of synthetic viewing for ITER RH. These developments will be reflected in a new version of the RH Core System to be produced during 2013.

  1. Iterative Runge–Kutta-type methods for nonlinear ill-posed problems

    International Nuclear Information System (INIS)

    Böckmann, C; Pornsawad, P

    2008-01-01

    We present a regularization method for solving nonlinear ill-posed problems by applying the family of Runge–Kutta methods to an initial value problem, in particular, to the asymptotical regularization method. We prove that the developed iterative regularization method converges to a solution under certain conditions and with a general stopping rule. Some particular iterative regularization methods are numerically implemented. Numerical results of the examples show that the developed Runge–Kutta-type regularization methods yield stable solutions and that particular implicit methods are very efficient in saving iteration steps

  2. Oscillations in deviating difference equations using an iterative technique

    Directory of Open Access Journals (Sweden)

    George E Chatzarakis

    2017-07-01

    Full Text Available Abstract The paper deals with the oscillation of the first-order linear difference equation with deviating argument and nonnegative coefficients. New sufficient oscillation conditions, involving limsup, are given, which essentially improve all known results, based on an iterative technique. We illustrate the results and the improvement over other known oscillation criteria by examples, numerically solved in Matlab.

  3. A Fast Newton-Shamanskii Iteration for a Matrix Equation Arising from M/G/1-Type Markov Chains

    Directory of Open Access Journals (Sweden)

    Pei-Chang Guo

    2017-01-01

    Full Text Available For the nonlinear matrix equations arising in the analysis of M/G/1-type and GI/M/1-type Markov chains, the minimal nonnegative solution G or R can be found by Newton-like methods. We prove monotone convergence results for the Newton-Shamanskii iteration for this class of equations. Starting with zero initial guess or some other suitable initial guess, the Newton-Shamanskii iteration provides a monotonically increasing sequence of nonnegative matrices converging to the minimal nonnegative solution. A Schur decomposition method is used to accelerate the Newton-Shamanskii iteration. Numerical examples illustrate the effectiveness of the Newton-Shamanskii iteration.

  4. Evaluation of High-Performance Network Technologies for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Zagar, K.; Kolaric, P.; Sabjan, R.; Zagar, A. [Cosylab d.d., Ljubljana (Slovenia); Hunt, S. [Alceli Hunt Beratung, Meisterschwanden (Switzerland)

    2009-07-01

    To facilitate fast feedback control of plasma, ITER's Control, Data Access and Communication system (CODAC) will need to provide a mechanism for hard real-time communication between its distributed nodes. In particular, four types of high-performance communication have been identified. Synchronous Databus Network (SDN) is to provide an ability to distribute parameters of plasma (estimated to about 5000 double-valued signals) across the system to allow for 1 ms control cycles. Event Distribution Network (EDN) and Time Communication Network (TCN) are to allow synchronization of node I/O operations to 10 ns. Finally, the Audio Video Network (AVN) is to provide sufficient bandwidth for streaming of surveillance and diagnostics video at a high resolution (1024*1024) and frame rate (30 Hz). In this article, we present some combinations of common off-the-shelf (COTS) technologies that allow the above requirements to be met. Also, we present the performances achieved in a practical (though small scale) technology demonstrator, which involved a real-time LINUS operating running on National Instruments' PXI platform, UDP communication implemented directly atop the Ethernet network adapter, CISCO switches, Micro Research Finland's timing and event solution, and GigE audio-video streaming. This document is composed of an abstract followed by the presentation transparencies. (authors)

  5. Sparse BLIP: BLind Iterative Parallel imaging reconstruction using compressed sensing.

    Science.gov (United States)

    She, Huajun; Chen, Rong-Rong; Liang, Dong; DiBella, Edward V R; Ying, Leslie

    2014-02-01

    To develop a sensitivity-based parallel imaging reconstruction method to reconstruct iteratively both the coil sensitivities and MR image simultaneously based on their prior information. Parallel magnetic resonance imaging reconstruction problem can be formulated as a multichannel sampling problem where solutions are sought analytically. However, the channel functions given by the coil sensitivities in parallel imaging are not known exactly and the estimation error usually leads to artifacts. In this study, we propose a new reconstruction algorithm, termed Sparse BLind Iterative Parallel, for blind iterative parallel imaging reconstruction using compressed sensing. The proposed algorithm reconstructs both the sensitivity functions and the image simultaneously from undersampled data. It enforces the sparseness constraint in the image as done in compressed sensing, but is different from compressed sensing in that the sensing matrix is unknown and additional constraint is enforced on the sensitivities as well. Both phantom and in vivo imaging experiments were carried out with retrospective undersampling to evaluate the performance of the proposed method. Experiments show improvement in Sparse BLind Iterative Parallel reconstruction when compared with Sparse SENSE, JSENSE, IRGN-TV, and L1-SPIRiT reconstructions with the same number of measurements. The proposed Sparse BLind Iterative Parallel algorithm reduces the reconstruction errors when compared to the state-of-the-art parallel imaging methods. Copyright © 2013 Wiley Periodicals, Inc.

  6. Post-convergence automatic differentiation of iterative schemes

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1997-01-01

    A new approach for performing automatic differentiation (AD) of computer codes that embody an iterative procedure, based on differentiating a single additional iteration upon achieving convergence, is described and implemented. This post-convergence automatic differentiation (PAD) technique results in better accuracy of the computed derivatives, as it eliminates part of the derivatives convergence error, and a large reduction in execution time, especially when many iterations are required to achieve convergence. In addition, it provides a way to compute derivatives of the converged solution without having to repeat the entire iterative process every time new parameters are considered. These advantages are demonstrated and the PAD technique is validated via a set of three linear and nonlinear codes used to solve neutron transport and fluid flow problems. The PAD technique reduces the execution time over direct AD by a factor of up to 30 and improves the accuracy of the derivatives by up to two orders of magnitude. The PAD technique's biggest disadvantage lies in the necessity to compute the iterative map's Jacobian, which for large problems can be prohibitive. Methods are discussed to alleviate this difficulty

  7. ITER EDA Newsletter. V. 4, no. 7

    International Nuclear Information System (INIS)

    1995-07-01

    This ITER EDA (Engineering Design Activities) Newsletter issue contains reports on (i) the 8th meeting of the ITER Technical Advisory Committee (TAC-8) held on June 29 - July 7, 1995 at the ITER San Diego Work Site, (ii) the 8th meeting of the ITER Management Advisory Committee (MAC-8) held at the ITER San Diego Work Site on July 9-10, 1995, (iii) the 33rd meeting of the International Fusion Research Council (FRC), held July 11, 1995 at the IAEA Headquarters in Vienna, Austria, and (iv) the ITER participation in the fifth topical meeting on Tritium Technology in Fission, Fusion and Isotopic Applications

  8. ITER ITA Newsletter. No. 29, March 2006

    International Nuclear Information System (INIS)

    2006-05-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about ITER related activities and meetings, namely, the ITER Director-General Nominee, Dr. Kaname Ikeda, took up his position as ITER Project Leader in Cadarache on 13 March, the consolidation of information technology infrastructure for ITER and about he Thirty-Fifth Meeting of the Fusion Power Co-ordinating Committee (FPCC), which was held on 28 February-1 March 2006 at the headquarters of the International Energy Agency (IEA) in Paris

  9. ITER Council tour of Clarington site

    International Nuclear Information System (INIS)

    Dautovich, D.

    2001-01-01

    The ITER Council meeting was recently held in Toronto on 27 and 28 February. ITER Canada provided local arrangements for the Council meeting on behalf of Europe as the Official host. Following the meeting, on 1 March, ITER Canada conducted a tour of the proposed ITER construction site at Charington, and the ITER Council members attended a luncheon followed by a speech by Dr. Peter Barnard, Chairman and CEO of ITER Canada, at the Empire Club of Canada. The official invitation to participate in these events came from Dr. Peter Harrison, Deputy Minister of Natural Resources Canada. This report provides a brief summary of the events on 1 March

  10. ITER operating limit definition criteria

    International Nuclear Information System (INIS)

    Ciattaglia, S.; Barabaschi, P.; Carretero, J.A.; Chiocchio, S.; Hureau, D.; Girard, J.Ph.; Gordon, C.; Portone, A.; Rodrigo, L. Rodriguez; Roldan, C.; Saibene, G.; Uzan-Elbez, J.

    2009-01-01

    The operating limits and conditions (OLCs) are operating parameters and conditions, chosen among all system/components, which, together, define the domain of the safe operation of ITER in all foreseen ITER states (operation, maintenance, commissioning). At the same time they are selected to guarantee the required operation flexibility which is a critical factor for the success of an experimental machine such as ITER. System and components that are important for personnel or public safety (safety important class, SIC) are identified considering their functional importance in the overall plant safety analysis. SIC classification has to be presented already in the preliminary safety analysis report and approved by the licensing authority before manufacturing and construction. OLCs comprise the safety limits that, if exceeded, could result in a potential safety hazard, the relevant settings that determine the intervention of SIC systems, and the operational limits on equipment which warn against or stop a functional deviation from a planned operational status that could challenge equipment and functions. Some operational conditions, e.g. in-Vacuum Vessel (VV) radioactive inventories, will be controlled through procedures. Operating experience from present tokamaks, in particular JET, and from nuclear plants, is considered to the maximum possible extent. This paper presents the guidelines for the development of the ITER OLCs with particular reference to safety limits.

  11. ITER Neutral Beam Injection System

    International Nuclear Information System (INIS)

    Ohara, Yoshihiro; Tanaka, Shigeru; Akiba, Masato

    1991-03-01

    A Japanese design proposal of the ITER Neutral Beam Injection System (NBS) which is consistent with the ITER common design requirements is described. The injection system is required to deliver a neutral deuterium beam of 75MW at 1.3MeV to the reactor plasma and utilized not only for plasma heating but also for current drive and current profile control. The injection system is composed of 9 modules, each of which is designed so as to inject a 1.3MeV, 10MW neutral beam. The most important point in the design is that the injection system is based on the utilization of a cesium-seeded volume negative ion source which can produce an intense negative ion beam with high current density at a low source operating pressure. The design value of the source is based on the experimental values achieved at JAERI. The utilization of the cesium-seeded volume source is essential to the design of an efficient and compact neutral beam injection system which satisfies the ITER common design requirements. The critical components to realize this design are the 1.3MeV, 17A electrostatic accelerator and the high voltage DC acceleration power supply, whose performances must be demonstrated prior to the construction of ITER NBI system. (author)

  12. Status of the ITER EDA

    International Nuclear Information System (INIS)

    Aymar, R.

    1999-01-01

    This article summarises progress made in the ITER Design Activities between October 1998 and February 1999. The three main focusses of the activity were on design work, on R and D work and on the physics basis. The consequences of diminishing financial funds and personnel are discussed and the state of the individual R and D projects is given briefly

  13. Japanese site for ITER: Rokkasho

    International Nuclear Information System (INIS)

    Kishimoto, Hiroshi

    2003-01-01

    This paper describes the status of Japanese efforts for hosting ITER in Japan. In May 2002, Japanese Government decided to propose an ITER site, Rokkasho in Aomori Prefecture, a Northern part of the main island, based on the comprehensive/intensive assessments by the Site Selection Committee established by Japanese Government. ITER is designed basically with a potential flexibility beyond the detailed technical objectives to have more clear scope for developing technical key elements in a future power plant. Various flexibilities in the construction, operation and decommissioning of ITER are totally assessed. Consequently the Japanese site has been chosen and it satisfies sufficiently not only the Site Requirements and the Site Design Assumptions but also the further extension and flexibilities. In particular the potential for more flexible construction schedule and operations is technically described as well as the fulfillment of the site requirements and its assumptions as the minimum requirements in this paper. The socio-cultural environment is also described briefly because of a key aspect for the scientists and engineers who will participate in the project

  14. New developments in iterated rounding

    NARCIS (Netherlands)

    Bansal, N.; Raman, V.; Suresh, S.P.

    2014-01-01

    Iterated rounding is a relatively recent technique in algorithm design, that despite its simplicity has led to several remarkable new results and also simpler proofs of many previous results. We will briefly survey some applications of the method, including some recent developments and giving a high

  15. Iterative method for Amado's model

    International Nuclear Information System (INIS)

    Tomio, L.

    1980-01-01

    A recently proposed iterative method for solving scattering integral equations is applied to the spin doublet and spin quartet neutron-deuteron scattering in the Amado model. The method is tested numerically in the calculation of scattering lengths and phase-shifts and results are found better than those obtained by using the conventional Pade technique. (Author) [pt

  16. Informal meeting on ITER developments

    International Nuclear Information System (INIS)

    Canobbio, E.

    2000-01-01

    The International Fusion Research Council (IFRC), advisory body of the IAEA, organized an informal meeting on the general status and outlook for ITER, held October 9 at Sorrento, Italy, in conjunction with the 18th IAEA Fusion Energy Conference. This article describes the main events at the meeting

  17. ITER update. Information from the editor

    International Nuclear Information System (INIS)

    2004-01-01

    Following up the meeting of delegations on 21 February 2004, a meeting of technical experts took place in Vienna on 12-13 March aiming to reach a joint appreciation in common terms on key topics related to the siting of ITER construction. There is no formal published outcome for this meeting, but an informal internal summary indicated that: The presentations, which included much new material, were helpful to furthering the process of understanding. Similarly, the discussions between the two site proponents and involving the non-site proponents also illuminated the various issues on the table. This meeting brought to an end the joint technical discussions that have been supporting the site decision process. There was also a general appreciation for the great effort made by both sets of site advocates and for the helpful role of the IT leaders at this intense meeting. Finally, there was a difference of view among the delegations on the nature of the outcome of this two-day technical meeting. Some delegations had the expectation that there would be discussions on each of the nine topics addressing an agreed set of 'common terms' with sufficient detail that each delegation could make its own judgement about the factors at the two sites. Those delegations found the outcome to meet their expectations. Some other delegations had the expectation that a report would be developed appreciating jointly in common terms the two sites on each of the nine points, leaving to each proponent the right to formulate appreciations on its own proposal. These delegations regretted the lack of a written outcome of the meeting. Meanwhile the participants in ITER negotiations, in particular Japan and Europe, are continuing discussions with a view to reaching a conclusion on the choice of the ITER site

  18. A linear iterative unfolding method

    International Nuclear Information System (INIS)

    László, András

    2012-01-01

    A frequently faced task in experimental physics is to measure the probability distribution of some quantity. Often this quantity to be measured is smeared by a non-ideal detector response or by some physical process. The procedure of removing this smearing effect from the measured distribution is called unfolding, and is a delicate problem in signal processing, due to the well-known numerical ill behavior of this task. Various methods were invented which, given some assumptions on the initial probability distribution, try to regularize the unfolding problem. Most of these methods definitely introduce bias into the estimate of the initial probability distribution. We propose a linear iterative method (motivated by the Neumann series / Landweber iteration known in functional analysis), which has the advantage that no assumptions on the initial probability distribution is needed, and the only regularization parameter is the stopping order of the iteration, which can be used to choose the best compromise between the introduced bias and the propagated statistical and systematic errors. The method is consistent: 'binwise' convergence to the initial probability distribution is proved in absence of measurement errors under a quite general condition on the response function. This condition holds for practical applications such as convolutions, calorimeter response functions, momentum reconstruction response functions based on tracking in magnetic field etc. In presence of measurement errors, explicit formulae for the propagation of the three important error terms is provided: bias error (distance from the unknown to-be-reconstructed initial distribution at a finite iteration order), statistical error, and systematic error. A trade-off between these three error terms can be used to define an optimal iteration stopping criterion, and the errors can be estimated there. We provide a numerical C library for the implementation of the method, which incorporates automatic

  19. Progress on the MSE diagnostic for ITER

    International Nuclear Information System (INIS)

    Lotte, Ph.; Giannella, R.; Von Hellermann, M.; Kuldkepp, M.; Rachlew, E.; Malaquias, A.; Costley, A.; Walker, C.

    2004-01-01

    The Motional Stark Effect (MSE) diagnostic is now considered as an essential diagnostic for an accurate determination of current profiles in tokamak discharges. It mainly allows a measurement of the direction of the total magnetic field, a very powerful constraint for the determination of the safety factor profile. The realisation of such a diagnostic on ITER implies to face new challenges, because of the bigger size of the machine and of its hard environment. Now, most of the foreseen difficulties have been examined, solutions envisaged, and we propose to review them in this paper. This article is divided into 3 parts: 1) principle of the MSE diagnostic and its feasibility at higher Lorentz electric fields, 2) spatial and time resolution of the diagnostic, and 3) the light collection system

  20. Design study of ITER-like divertor target for DEMO

    International Nuclear Information System (INIS)

    Crescenzi, Fabio; Bachmann, C.; Richou, M.; Roccella, S.; Visca, E.; You, J.-H.

    2015-01-01

    Highlights: • ‘DEMO’ is a near-term Power Plant Conceptual Study (PPCS). • The ITER-like design concept represents a promising solution also for DEMO plasma facing units. • The optimization of PFUs aims to enhance the thermo-mechanical behaviour of the component. • The optimized geometry was evaluated by ITER SDC-IC criteria and in terms of low cycle fatigue (LCF). - Abstract: A near-term water-cooled target solution has to be evaluated together with the required technologies and its power exhaust limit under ‘DEMO’ conditions. The ITER-like design concept based on the mono-block technology using W as armour material and the CuCrZr-IG as structural material with an interlayer of pure copper represents a promising solution also for DEMO. This work reports the design study of an “optimized” ITER-like Water Cooled Divertor able to withstand a heat flux of 10 MW m"−"2, as requested for DEMO operating conditions. The optimization of plasma facing unit (PFU) aims to enhance the thermo-mechanical behaviour of the component by varying some geometrical parameters (monoblock size, interlayer thickness and, tube diameter and thickness). The optimization was performed by means of the multi-variable optimization algorithms using the FEM code ANSYS. The coolant hydraulic conditions (inlet pressure, temperature and velocity) were fixed for simplicity. This study is based on elastic analysis and 3 dimensional modelling. The resulting optimized geometry was evaluated on the basis of the ITER SDC-IC criteria and in terms of low cycle fatigue (LCF). The margin to the critical heat flux (CHF) was also estimated. Further design study (taking into account the effect of neutron radiation on the material properties) together with mock-up fabrication and high-heat-flux (HHF) tests are foreseen in next work programmes.

  1. Design study of ITER-like divertor target for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Crescenzi, Fabio, E-mail: fabio.crescenzi@enea.it [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Bachmann, C. [EFDA, Power Plant Physics and Technology, Boltzmannstraße 2, 85748 Garching (Germany); Richou, M. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); Roccella, S.; Visca, E. [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); You, J.-H. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-10-15

    Highlights: • ‘DEMO’ is a near-term Power Plant Conceptual Study (PPCS). • The ITER-like design concept represents a promising solution also for DEMO plasma facing units. • The optimization of PFUs aims to enhance the thermo-mechanical behaviour of the component. • The optimized geometry was evaluated by ITER SDC-IC criteria and in terms of low cycle fatigue (LCF). - Abstract: A near-term water-cooled target solution has to be evaluated together with the required technologies and its power exhaust limit under ‘DEMO’ conditions. The ITER-like design concept based on the mono-block technology using W as armour material and the CuCrZr-IG as structural material with an interlayer of pure copper represents a promising solution also for DEMO. This work reports the design study of an “optimized” ITER-like Water Cooled Divertor able to withstand a heat flux of 10 MW m{sup −2}, as requested for DEMO operating conditions. The optimization of plasma facing unit (PFU) aims to enhance the thermo-mechanical behaviour of the component by varying some geometrical parameters (monoblock size, interlayer thickness and, tube diameter and thickness). The optimization was performed by means of the multi-variable optimization algorithms using the FEM code ANSYS. The coolant hydraulic conditions (inlet pressure, temperature and velocity) were fixed for simplicity. This study is based on elastic analysis and 3 dimensional modelling. The resulting optimized geometry was evaluated on the basis of the ITER SDC-IC criteria and in terms of low cycle fatigue (LCF). The margin to the critical heat flux (CHF) was also estimated. Further design study (taking into account the effect of neutron radiation on the material properties) together with mock-up fabrication and high-heat-flux (HHF) tests are foreseen in next work programmes.

  2. A semi-analytical iterative technique for solving chemistry problems

    Directory of Open Access Journals (Sweden)

    Majeed Ahmed AL-Jawary

    2017-07-01

    Full Text Available The main aim and contribution of the current paper is to implement a semi-analytical iterative method suggested by Temimi and Ansari in 2011 namely (TAM to solve two chemical problems. An approximate solution obtained by the TAM provides fast convergence. The current chemical problems are the absorption of carbon dioxide into phenyl glycidyl ether and the other system is a chemical kinetics problem. These problems are represented by systems of nonlinear ordinary differential equations that contain boundary conditions and initial conditions. Error analysis of the approximate solutions is studied using the error remainder and the maximal error remainder. Exponential rate for the convergence is observed. For both problems the results of the TAM are compared with other results obtained by previous methods available in the literature. The results demonstrate that the method has many merits such as being derivative-free, and overcoming the difficulty arising in calculating Adomian polynomials to handle the non-linear terms in Adomian Decomposition Method (ADM. It does not require to calculate Lagrange multiplier in Variational Iteration Method (VIM in which the terms of the sequence become complex after several iterations, thus, analytical evaluation of terms becomes very difficult or impossible in VIM. No need to construct a homotopy in Homotopy Perturbation Method (HPM and solve the corresponding algebraic equations. The MATHEMATICA® 9 software was used to evaluate terms in the iterative process.

  3. Test facility TIMO for testing the ITER model cryopump

    International Nuclear Information System (INIS)

    Haas, H.; Day, C.; Mack, A.; Methe, S.; Boissin, J.C.; Schummer, P.; Murdoch, D.K.

    2001-01-01

    Within the framework of the European Fusion Technology Programme, FZK is involved in the research and development process for a vacuum pump system of a future fusion reactor. As a result of these activities, the concept and the necessary requirements for the primary vacuum system of the ITER fusion reactor were defined. Continuing that development process, FZK has been preparing the test facility TIMO (Test facility for ITER Model pump) since 1996. This test facility provides for testing a cryopump all needed infrastructure as for example a process gas supply including a metering system, a test vessel, the cryogenic supply for the different temperature levels and a gas analysing system. For manufacturing the ITER model pump an order was given to the company L' Air Liquide in the form of a NET contract. (author)

  4. Test facility TIMO for testing the ITER model cryopump

    International Nuclear Information System (INIS)

    Haas, H.; Day, C.; Mack, A.; Methe, S.; Boissin, J.C.; Schummer, P.; Murdoch, D.K.

    1999-01-01

    Within the framework of the European Fusion Technology Programme, FZK is involved in the research and development process for a vacuum pump system of a future fusion reactor. As a result of these activities, the concept and the necessary requirements for the primary vacuum system of the ITER fusion reactor were defined. Continuing that development process, FZK has been preparing the test facility TIMO (Test facility for ITER Model pump) since 1996. This test facility provides for testing a cryopump all needed infrastructure as for example a process gas supply including a metering system, a test vessel, the cryogenic supply for the different temperature levels and a gas analysing system. For manufacturing the ITER model pump an order was given to the company L'Air Liquide in the form of a NET contract. (author)

  5. Test of ITER conductors in SULTAN: An update

    International Nuclear Information System (INIS)

    Bruzzone, Pierluigi; Stepanov, Boris; Wesche, Rainer; Herzog, Robert; Calzolaio, Ciro; Vogel, Martin

    2011-01-01

    The ITER Toroidal Field (TF) conductor qualification phase has been carried out by testing short sample prototype conductors in the SULTAN test facility. This phase, started in 2007, has been substantially completed after minor adjustment of the conductor specification and test procedures. All the parties involved in the TF conductor procurement passed the qualification phase. Starting 2010, the samples for TF process qualification phase are tested in SULTAN. A summary of the results for all the ITER Qualification samples and an updated statistics are presented for the V-I and V-T characteristics of the cable-in-conduit conductors (CICC), including Nb 3 Sn and NbTi samples assembled with either a 'bottom joint' or a 'U-bend'. The technical improvements of the test facility are reported, including the enhanced cyclic loading rate and the calibration of the current meter. An outlook of the ITER conductor tests in the coming years is also presented.

  6. A sparse electromagnetic imaging scheme using nonlinear landweber iterations

    KAUST Repository

    Desmal, Abdulla

    2015-10-26

    Development and use of electromagnetic inverse scattering techniques for imagining sparse domains have been on the rise following the recent advancements in solving sparse optimization problems. Existing techniques rely on iteratively converting the nonlinear forward scattering operator into a sequence of linear ill-posed operations (for example using the Born iterative method) and applying sparsity constraints to the linear minimization problem of each iteration through the use of L0/L1-norm penalty term (A. Desmal and H. Bagci, IEEE Trans. Antennas Propag, 7, 3878–3884, 2014, and IEEE Trans. Geosci. Remote Sens., 3, 532–536, 2015). It has been shown that these techniques produce more accurate and sharper images than their counterparts which solve a minimization problem constrained with smoothness promoting L2-norm penalty term. But these existing techniques are only applicable to investigation domains involving weak scatterers because the linearization process breaks down for high values of dielectric permittivity.

  7. ITER EDA newsletter. V. 5, no. 8

    International Nuclear Information System (INIS)

    1996-08-01

    This issue of the Newsletter on the Engineering Design Activities (EDA) for the ITER Tokamak project contains a report on the divertor remote handling development (and of a summer party at the ITER Joint Work Site in Garching, Germany)

  8. ITER EDA newsletter. V. 8, no. 3

    International Nuclear Information System (INIS)

    1999-03-01

    This newsletter contains reports on: 'The ITER management advisory committee (MAC) meeting in Cadarache' and on 'ITER technical advisory committee meeting at Garching'. It contains photos of the participants of both meetings

  9. ITER EDA newsletter. V. 5, no. 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This issue of the Newsletter on the Engineering Design Activities (EDA) for the ITER Tokamak project contains a report on the divertor remote handling development (and of a summer party at the ITER Joint Work Site in Garching, Germany).

  10. Iteration and Prototyping in Creating Technical Specifications.

    Science.gov (United States)

    Flynt, John P.

    1994-01-01

    Claims that the development process for computer software can be greatly aided by the writers of specifications if they employ basic iteration and prototyping techniques. Asserts that computer software configuration management practices provide ready models for iteration and prototyping. (HB)

  11. ITER EDA newsletter. V. 7, special issue

    International Nuclear Information System (INIS)

    1998-07-01

    In conjunction with the ITER Council Meeting, a ceremony was held at the IAEA Headquarters in Vienna on 22 July 1998 to celebrate the achievements of the ITER Engineering Design Activities during the period 1992-1998

  12. Iterative perceptual learning for social behavior synthesis

    NARCIS (Netherlands)

    de Kok, I.A.; Poppe, Ronald Walter; Heylen, Dirk K.J.

    We introduce Iterative Perceptual Learning (IPL), a novel approach to learn computational models for social behavior synthesis from corpora of human–human interactions. IPL combines perceptual evaluation with iterative model refinement. Human observers rate the appropriateness of synthesized

  13. Iterative Perceptual Learning for Social Behavior Synthesis

    NARCIS (Netherlands)

    de Kok, I.A.; Poppe, Ronald Walter; Heylen, Dirk K.J.

    We introduce Iterative Perceptual Learning (IPL), a novel approach for learning computational models for social behavior synthesis from corpora of human-human interactions. The IPL approach combines perceptual evaluation with iterative model refinement. Human observers rate the appropriateness of

  14. ITER EDA Newsletter. V.3, no.4

    International Nuclear Information System (INIS)

    1994-04-01

    This ITER EDA Newsletter issue contains a report on the fifth meeting of the ITER Management Advisory Committee and a summary of a magnet and safety technical meeting held at Naka, February 22-25, 1994

  15. ITER EDA newsletter. V. 8, no. 8

    International Nuclear Information System (INIS)

    1999-08-01

    This ITER EDA newsletter reports on the programme directors meeting of 28-29 July 1999, the Snowmass Fusion Summer Study Group workshop and the ITER Management Advisory Committee meeting in Garching. Individual abstracts are prepared for the 3 meetings

  16. ITER EDA newsletter. V. 8, no. 7

    International Nuclear Information System (INIS)

    1999-07-01

    This newsletter contains an article concerning the ITER divertor cassette project meeting in Bologna, Italy (May 26-28, 1999), and an emotional outburst, concerning the closure of the ITER site in San Diego, USA

  17. ITER EDA newsletter. V. 2, no. 11

    International Nuclear Information System (INIS)

    1993-11-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains an ITER EDA Status Report, and a report on the Fourth International Fusion Neutronics Workshop at the University of California, Los Angeles Campus, October 20-21, 1993

  18. ITER on display at Yokohama, Japan

    International Nuclear Information System (INIS)

    Green, B.

    1998-01-01

    During the 17th IAEA Fusion Energy Conference, held in Yokohama, Japan, from 19-24 October 1998, the ITER Project exhibited a display, primarily of the research and development which has taken place to support the design of ITER

  19. ITER EDA newsletter. V. 6, no. 12

    International Nuclear Information System (INIS)

    1997-12-01

    This issue of the ITER Newsletter contains summary reports (i) on the Sixth ITER Technical Meeting on Safety and Environment and (ii) on JAERI's Annual Public Seminar on Fusion Research and Development

  20. Meeting of the ITER Council

    International Nuclear Information System (INIS)

    Drew, M.

    2001-01-01

    Full text: A meeting of the ITER Council took place in Toronto, Canada, on 27-28 February 2001 (Canada participates in the ITER EDA as an associate of the EU Party). The delegations to the Council were led by Dr. U. Finzi, Principal Advisor in charge of Fusion R and D in the Directorate-General for Research of the European Commission, Mr. T. Sugawa, Deputy Director-General of the Research and Development Bureau of the Ministry of Education, Culture, Sport, Science and Technology of Japan, and Academician E. Velikhov, President of the RRC ''Kurchatov Institute''. The European delegation was joined by Canadian experts including a representative from the Canadian Department of Natural Resources. The Council heard presentations from Dr. H. Kishimoto on the successful completion of the Explorations concerning future joint implementation of ITER, and from Dr. J.-P. Rager on the ITER International Industry Liaison Meeting held in Toronto in November 2000. Having noted statements of Parties' status, in particular concerning the readiness to start negotiations and the progress toward site offers, the Council encouraged the Parties to pursue preparations toward future implementation of ITER along the general lines proposed in the Explorers' final report. The Council also noted the readiness the of the RF and EU Parties to instruct specified current JCT members to remain at their places of assignment after the end of the EDA, in preparation for a transition to the Co-ordinated Technical Activities foreseen as support to ITER negotiations. The Council was pleased to hear that meetings with the Director of the ITER Parties' Designated Safety Representatives had started, and commended the progress toward achieving timely licensing processes with a good common understanding. The Council noted with appreciation the Director's view that no difficulties of principle in the licensing approach had been identified during the informal discussions with the regulatory representatives and

  1. ITER: Chronicle of a bankruptcy foretold

    International Nuclear Information System (INIS)

    Petit, Jean-Pierre

    2011-01-01

    By notably referring to Cedric Reux's research thesis and to Andrew Thornton's research thesis, the author shows that the ITER project is a very dangerous one as the use of a tokamak as an energy plant could lead to a catastrophe. He first recalls and describes the ITER's operation principle (use of nuclear fusion instead of nuclear fission) by recalling historical developments of this approach. He describes a tokamak operation, evokes some lessons learned from the experience, discusses tritium reactions, and the problem of plasma pollution. He then refers to Reux and Thornton, and also to an other author (Boozer from Columbia University) for their theoretical works on tokamaks, and quotes some important statements of their works. As quoted in this document, all these authors highlight the severe problem related to disruptions and to their consequences. The author quotes another article presented during a conference of the risk and consequences of disruptions in large tokamaks, and notably discusses the risk related to fatigue. He also illustrates the involved processes by commenting processes occurring at the Sun surface

  2. Nuclear energy and sustainability: Understanding ITER

    International Nuclear Information System (INIS)

    Fiore, Karine

    2006-01-01

    Deregulation and new environmental requirements combined with the growing scarcity of fossil resources and the increasing world energy demand lead to a renewal of the debate on tomorrow's energies. Specifically, nuclear energy, which has undeniable assets, faces new constraints. On the one hand, nuclear energy is very competitive and harmless to greenhouse effect. From this point, it seems to be an ideal candidate to reach future objectives of sustainability, availability and acceptability. On the other hand, its technology of production - based on fission - remains imperfect and generates risks for environment and health. In this respect, it is less desirable. Therefore, world researchers turn today towards another type of nuclear technique, fusion, on which the project ITER is founded. This worldwide project is interesting for our analysis because, as a technological revolution, it takes into consideration all the global challenges of nuclear energy for the future, and particularly its capacity to meet the increasing energy needs of developing countries. It is the example par excellence of a successful international scientific collaboration oriented towards very long-run energy ends that involve huge technological, economic and political stakes. Focusing on this project, we thus have to reconsider the future place of nuclear energy in a more and more demanding world. Considering the magnitude of the efforts undertaken to implement ITER, this paper aims at analysing, in a detailed way, its goals, its challenges and its matter

  3. ITER vacuum vessel structural analysis completion during manufacturing phase

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.-M., E-mail: jean-marc.martinez@live.fr [ITER Organization, Route Vinon sur Verdon, CS 90046, 13067, St. Paul lez Durance, Cedex (France); Alekseev, A.; Sborchia, C.; Choi, C.H.; Utin, Y.; Jun, C.H.; Terasawa, A.; Popova, E.; Xiang, B.; Sannazaro, G.; Lee, A.; Martin, A.; Teissier, P.; Sabourin, F. [ITER Organization, Route Vinon sur Verdon, CS 90046, 13067, St. Paul lez Durance, Cedex (France); Caixas, J.; Fernandez, E.; Zarzalejos, J.M. [F4E, c/Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019, Barcelona (Spain); Kim, H.-S.; Kim, Y.G. [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Privalova, E. [NTC “Sintez”, Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); and others

    2016-11-01

    Highlights: • ITER Vacuum Vessel (VV) is a part of the first barrier to confine the plasma. • A Nuclear Pressure Equipment necessitates Agreed Notified Body to assure design, fabrication, and conformance testing and quality assurance. • Some supplementary RCC-MR margin targets have been considered to guarantee considerable structural margins in areas not inspected in operation. • Many manufacturing deviation requests (MDR) and project change requests (PCR) impose to re-evaluate the structural margin. • Several structural analyses were performed with global and local models to guarantee the structural integrity of the whole ITER Vacuum Vessel. - Abstract: Some years ago, analyses were performed by ITER Organization Central Team (IO-CT) to verify the structural integrity of the ITER vacuum vessel baseline design fixed in 2010 and classified as a Protection Important Component (PIC). The manufacturing phase leads the ITER Organization domestic agencies (IO-DA) and their contracted manufacturers to propose detailed design improvements to optimize the manufacturing or inspection process. These design and quality inspection changes can affect the structural margins with regards to the Codes&Standards and thus oblige to evaluate one more time the modified areas. This paper proposes an overview of the additional analyses already performed to guarantee the structural integrity of the manufacturing designs. In this way, CT and DAs have been strongly involved to keep the considerable margins obtained previously which were used to fix reasonable compensatory measures for the lack of In Service Inspections of a Nuclear Pressure Equipment (NPE).

  4. ITER implementation and fusion energy research in China

    International Nuclear Information System (INIS)

    Zhao, Jing; Feng, Zhaoliang; Yang, Changchun

    2015-01-01

    ITER Project is jointly implemented by China, EU, India, Japan, Korea, Russian Federation and USA, under the coordination of Center Team of ITER International Fusion Energy Organization (IO-CT). Chinese fusion research related institutes and industrial enterprises are fully involved in the implementation of China contribution to the project under the leadership of ITER China Domestic Agency (CN-DA), together with IO-CT. The progresses of Procurement Packages (PA) allocated to China and the technical issues, especially on key technology development and schedule, QA/QC issues, are highlighted in this report. The specific enterprises carrying out different PAs are identified in order to make the increasing international manufactures and producers to ITER PAs know each other well for the successful implementation of ITER project. The participation of China to the management of IO-CT is also included, mainly from the governmental aspect and staff recruited from China. On the other hand, the domestic fusion researches, including upgrade of EAST, HL-2A Tokamaks in China, TBM program, the next step design activities for fusion energy power plant, namely, CFETR and training in this area, are also introduced for global cooperation for international fusion community. (author)

  5. Process and overview of diagnostics integration in ITER ports

    International Nuclear Information System (INIS)

    Drevon, J.M.; Walsh, M.; Andrew, P.; Barnsley, R.; Bertalot, L.; Bock, M. de; Bora, D.; Bouhamou, R.; Direz, M.F.; Encheva, A.; Fang, T.; Feder, R.; Giacomin, T.; Hellermann, M. von; Jakhar, S.; Johnson, D.; Kaschuk, Y.; Kusama, Y.; Lee, H.G.; Levesy, B.

    2013-01-01

    Highlights: ► An overview of the Port Integration hardware for tenant system hosting inside ITER diagnostics ports is given. ► The main challenges for diagnostic port integration engineering are presented. ► The actions taken for a common modular approach and a coordinated design are detailed. -- Abstract: ITER will have a set of 45 diagnostics to ensure controlled operation. Many of them are integrated in the ITER ports. This paper addresses the integration process of the diagnostic systems and the approach taken to enable coordinated progress. An overview of the Port Integration hardware introduces the various structures needed for hosting tenant systems inside ITER diagnostics ports. The responsibilities of the different parties involved (ITER Organization and the Domestic Agencies) are outlined. The main challenges for diagnostic port integration engineering are summarized. The plan for a common approach to design and manufacture of the supporting structures, in particular the Port Plug is detailed. A coordinated design including common components and a common approach for neutronic analyses is proposed. One particular port, the equatorial port 11, is used to illustrate the approach

  6. Status of the Japanese ITER Home Team: January 1993

    International Nuclear Information System (INIS)

    Matsuda, Shinzaburo

    1994-01-01

    In June, 1992, Atomic Energy Commission of Japan determined the Third Phase Basic Program of Fusion Research and Development. It directs national policy for the experimental reactor phase of fusion research and development. As a government committee, the promotion and the planning of the entire fusion program will be continually carried out by the Fusion Council of Atomic Energy Commission. The Fusion Council has recently established an ITER Technical Committee which will give advice on technical matters of the ITER program to the Fusion Council. Thus, the government is ready to be fully supportive of ITER for the execution of this unprecedented international collaboration. There will be some other units to be organized in the fear future, in pace with the evolution of ITER activities. The involvement of other research institutes is open as a future possibility. The number of persons nominated as Home Team members is about 100 at present and will be increased depending upon the tasks assigned to the Japanese Home Team. The participation of industries in the EDA is of significant importance for the success of ITER. Firstly, innovative concepts or proposals owing to the technical expertise in other fields can be expected. Secondly, experience in production, fabrication or assembly is valuable in the integral review of the design. Thirdly, development and integration of production technologies are essential to realize future construction

  7. ITER vacuum vessel structural analysis completion during manufacturing phase

    International Nuclear Information System (INIS)

    Martinez, J.-M.; Alekseev, A.; Sborchia, C.; Choi, C.H.; Utin, Y.; Jun, C.H.; Terasawa, A.; Popova, E.; Xiang, B.; Sannazaro, G.; Lee, A.; Martin, A.; Teissier, P.; Sabourin, F.; Caixas, J.; Fernandez, E.; Zarzalejos, J.M.; Kim, H.-S.; Kim, Y.G.; Privalova, E.

    2016-01-01

    Highlights: • ITER Vacuum Vessel (VV) is a part of the first barrier to confine the plasma. • A Nuclear Pressure Equipment necessitates Agreed Notified Body to assure design, fabrication, and conformance testing and quality assurance. • Some supplementary RCC-MR margin targets have been considered to guarantee considerable structural margins in areas not inspected in operation. • Many manufacturing deviation requests (MDR) and project change requests (PCR) impose to re-evaluate the structural margin. • Several structural analyses were performed with global and local models to guarantee the structural integrity of the whole ITER Vacuum Vessel. - Abstract: Some years ago, analyses were performed by ITER Organization Central Team (IO-CT) to verify the structural integrity of the ITER vacuum vessel baseline design fixed in 2010 and classified as a Protection Important Component (PIC). The manufacturing phase leads the ITER Organization domestic agencies (IO-DA) and their contracted manufacturers to propose detailed design improvements to optimize the manufacturing or inspection process. These design and quality inspection changes can affect the structural margins with regards to the Codes&Standards and thus oblige to evaluate one more time the modified areas. This paper proposes an overview of the additional analyses already performed to guarantee the structural integrity of the manufacturing designs. In this way, CT and DAs have been strongly involved to keep the considerable margins obtained previously which were used to fix reasonable compensatory measures for the lack of In Service Inspections of a Nuclear Pressure Equipment (NPE).

  8. Integration test of ITER full-scale vacuum vessel sector

    International Nuclear Information System (INIS)

    Nakahira, M.; Koizumi, K.; Oka, K.

    1999-01-01

    The full-scale Sector Model Project, which was initiated in 1995 as one of the Large Seven ITER R and D Projects, completed all R and D activities planned in the ITER-EDA period with the joint effort of the ITER Joint Central Team (JCT), the Japanese, the Russian Federation (RF) and the United States (US) Home Teams. The fabrication of a full-scale 18 toroidal sector, which is composed of two 9 sectors spliced at the port center, was successfully completed in September 1997 with the dimensional accuracy of - 3 mm for the total height and total width. Both sectors were shipped to the test site in JAERI and the integration test was begun in October 1997. The integration test involves the adjustment of field joints, automatic Narrow Gap Tungsten Inert Gas (NG-TIG) welding of field joints with splice plates, and inspection of the joint by ultrasonic testing (UT), which are required for the initial assembly of ITER vacuum vessel. This first demonstration of field joint welding and performance test on the mechanical characteristics were completed in May 1998 and the all results obtained have satisfied the ITER design. In addition to these tests, the integration with the mid plane port extension fabricated by the Russian Home Team, and the cutting and re-welding test of field joints by using full-remotized welding and cutting system developed by the US Home Team, are planned as post EDA activities. (author)

  9. ITER CTA newsletter. No. 15, December 2002

    International Nuclear Information System (INIS)

    2003-03-01

    This ITER CTA newsletter issue contains brief information about several meetings related to ITER. One of them is the seventh ITER Negotiations Meetings that took place in Barcelona, Spain on 9-10 December 2002, another is the final ITER CTA Project Board Meeting, which took place in Barcelona, Spain on 8 December 2002 and the last one is the Third Meeting of the International Tokamak Physics Activity (ITPA) Topical Group on diagnostics held in Toki, Japan on 18-21 September 2002

  10. ITER EDA newsletter. V. 5, no. 10

    International Nuclear Information System (INIS)

    1996-10-01

    This issue of the newsletter on the Engineering Design Activities (EDA) for the ITER Tokamak project contains a report on the Fifth ITER Technical Meeting on Safety, Environment, and Regulatory Approval, held September 29 - October 7, 1996 at the ITER San Diego Joint Work Site; and a report on the Fifth ITER Diagnostics Expert Group Workshop and Technical Meeting on Diagnostics held in Montreal, Canada, 12-13 October 1996

  11. ITER EDA newsletter. V. 5, no. 5

    International Nuclear Information System (INIS)

    1996-05-01

    This issues of the ITER Engineering Design Activities Newsletter contains a report on the Tenth Meeting of the ITER Management Advisory Committee held at JAERI Headquarters, Tokyo, June 5-6, 1996; on the Fourth ITER Divertor Physics and Divertor Modelling and Database Expert Group Workshop, held at the San Diego ITER Joint Worksite, March 11-15, 1996, and on the Agenda for the 16th IAEA Fusion Energy Conference (7-11 October 1996)

  12. ITER EDA newsletter. V. 9, no. 11

    International Nuclear Information System (INIS)

    2000-11-01

    This issue of the ITER EDA Newsletter contains discussions of three meetings, i.e., (1) the Third ITER International Industry Liaison Meeting held in Toronto, Canada (November 7-9, 2000), (2) an informal meeting on ITER developments held in Sorrento, Italy (October 9, 2000), and (3) the Thirteenth Meeting of the ITER Physics Expert Group on Diagnostics held in Naka, Japan (September 21-22, 2000)

  13. ITER EDA newsletter. V. 9, no. 8

    International Nuclear Information System (INIS)

    2000-08-01

    This ITER EDA Newsletter reports on the ITER meeting on 29-30 June 2000 in Moscow, summarizes the status report on the ITER EDA by R. Aymar, the ITER Director, and gives overviews of the expert group workshop on transport and internal barrier physics, confinement database and modelling and edge and pedestal physics, and the IEA workshop on transport barriers at edge and core. Individual abstracts have been prepared

  14. Colorado Conference on iterative methods. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The conference provided a forum on many aspects of iterative methods. Volume I topics were:Session: domain decomposition, nonlinear problems, integral equations and inverse problems, eigenvalue problems, iterative software kernels. Volume II presents nonsymmetric solvers, parallel computation, theory of iterative methods, software and programming environment, ODE solvers, multigrid and multilevel methods, applications, robust iterative methods, preconditioners, Toeplitz and circulation solvers, and saddle point problems. Individual papers are indexed separately on the EDB.

  15. ITER technical advisory committee meeting at Garching

    International Nuclear Information System (INIS)

    Fujiwara, M.

    1999-01-01

    The ITER Technical Advisory Committee meeting took place on 24-27 February at the Garching Joint Work Site. According to the discussions at the ITER meeting in Yokohama in October 1998, the Technical Advisory Committee was requested to conduct a thorough review of the document 'Options for the reduced technical objectives / reduced cost ITER'

  16. ITER EDA newsletter. V. 9, no. 9

    International Nuclear Information System (INIS)

    2000-09-01

    This ITER EDA Newsletter contains the following 5 contributions: CSMC and CSIC charging tests successfully completed; The ITER divertor cassette project meeting; Blanket R and D and design task meeting; IAEA technical committee meeting on fusion safety; ITER L-6 large project ''blanket remote handling and maintenance''

  17. Final ITER CTA project board meeting

    International Nuclear Information System (INIS)

    Vlasenkov, V.

    2003-01-01

    The final ITER CTA Project Board Meeting (PB) took place in Barcelona, Spain on 8 December 2002. The PB took notes of the comments concerning the status of the International Team and the Participants Teams, including Dr. Aymar's report 'From ITER to a FUSION Power Reactor' and the assessment of the ITER project cost estimate

  18. ITER ITA newsletter. No. 21, April 2005

    International Nuclear Information System (INIS)

    2005-05-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about Russian federation Participant Team's activity in the area of preparation for ITER construction and information about International Fusion materials irradiation Facility(IRMIF) project and prospects for implementation

  19. ITER EDA newsletter. V. 7, no. 12

    International Nuclear Information System (INIS)

    1998-12-01

    This edition of the ITER EDA Newsletter is dedicated to celebrate the achievements of the ITER activities at the San Diego Joint Work Site. Articles by E. Velikhov, A. Davies and R. Aymar mark the final days of American participation in the ITER program

  20. ITER EDA newsletter. V. 7, no. 10

    International Nuclear Information System (INIS)

    1998-10-01

    This newsletter contains three articles, namely a report on an ITER meeting (October 20-21,1998) in Yokohama, Japan, a short note on the 17th IAEA Fusion Energy Conference (October 19-24, 1998) in Yokohama and a monograph by ITER Director R. Aymar on 'the Legacy of Artsimovitch and the lessons of ITER'