WorldWideScience

Sample records for solution heat treatment

  1. Applicability of Solid Solution Heat Treatments to Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Miguel Rodríguez-Pérez

    2012-12-01

    Full Text Available Present research work evaluates the influence of both density and size on the treatability of Aluminum-based (6000 series foam-parts subjected to a typical solid solution heat treatment (water quenching. The results are compared with those obtained for the bulk alloy, evaluating the fulfilment of cooling requirements. Density of the foams was modeled by tomography analysis and the thermal properties calculated, based on validated density-scaled models. With this basis, cooling velocity maps during water quenching were predicted by finite element modeling (FEM in which boundary conditions were obtained by solving the inverse heat conduction problem. Simulations under such conditions have been validated experimentally. Obtained results address incomplete matrix hardening for foam-parts bigger than 70 mm in diameter with a density below 650 kg/m3. An excellent agreement has been found in between the predicted cooling maps and final measured microhardness profiles.

  2. Effect of solution heat treatment time on a rheocast Al-Zn-Mg-Cu alloy

    CSIR Research Space (South Africa)

    Mazibuko, NE

    2011-06-01

    Full Text Available During rheo-high pressure die casting (R-HPDC) of Al-Zn-Mg-Cu alloys a coarse eutectic phase is formed. This eutectic phase is difficult to take into solution because of its size and it would require longer solution heat treatment times...

  3. Improvement of stress-rupture life of GTD-111 by second solution heat treatment

    International Nuclear Information System (INIS)

    Yang, Caixiong; Xu, Yulai; Zhang, Zixing; Nie, Heng; Xiao, Xueshan; Jia, Guoqing; Shen, Zhi

    2013-01-01

    Highlights: ► The second solution heat treatment promoted the solution of γ–γ′ eutectic into γ matrix. ► The volume fraction of γ′ increases significantly after adding the second solution heat treatment. ► The improved stress-rupture life is primarily due to the increased volume fraction of γ′ phase. -- Abstract: An added second solution heat treatment was conducted to investigate its effects on the microstructures and stress-rupture properties of GTD-111. The microstructures were analyzed by scanning electron microscope after each step of heat treatments. The stress-rupture life of GTD-111 dramatically increases from about 180 to 288 h at 871 °C/310 MPa after adding a second solution heat treatment. The added second solution heat treatment promoted the solution of γ–γ′ eutectic into γ matrix, and facilitated the nucleation and precipitate of the secondary γ′ particles. The distribution of γ′ phase becomes much denser, the width of γ matrix channel is also reduced, and the volume fraction of γ′ phase significantly increases from about 29.3% to 44.2%. The improved stress-rupture life is primarily due to the increased volume fraction of γ′ phase. The carbides mainly consist of MC and a small amount of M 23 C 6 , which may prevent the dislocation moving and/or grain boundary sliding, and further improve the stress-rupture properties of GTD-111.

  4. Influence of Solution Heat Treatment on Structure and Mechanical Properties of ZnAl22Cu3 Alloy

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2016-09-01

    Full Text Available The influence of solution heat treatment at 385°C over 10 h with cooling in water on the structure, hardness and strength of the ZnAl22Cu3 eutectoid alloy is presented in the paper. The eutectoid ZnAl22Cu3 alloy is characterized by a dendritic structure. Dendrites are composed of a supersaturated solid solution of Al in Zn. In the interdendritic spaces a eutectoid mixture is present, with an absence of the ε (CuZn4 phase. Solution heat treatment of the ZnAl22Cu3 alloy causes the occurrence of precipitates rich in Zn and Cu, possibly ε phase. Solution heat treatment at 385°C initially causes a significant decrease of the alloy hardness, although longer solution heat treatment causes a significant increase of the hardness as compared to the as-cast alloy.

  5. A study on the effect of solution heat treatment on the corrosion resistance of super duplex stainless steels

    International Nuclear Information System (INIS)

    Park, Jee Yong; Park, Yong Soo; Kim, Soon Tae

    2001-01-01

    High temperature solution heat treatment(typically higher than 1100 .deg. C) is known generally to reduces the resistance to localized corrosion on super duplex stainless. This is attributed to the formation of zone depleted of alloying elements. In this study, the corrosion properties were investigated on super duplex stainless steels with various solution heat treatments. The corrosion resistance of these steels was evaluated in terms of critical pitting temperature and cyclic potentiodynamic polarization test. Chemical composition of the austenite and ferrite phases were analyzed by SEM-EDS. The following results were obtained. (1) By conducting furnace cooling, critical pitting temperature and repassivation potential increased. (2) By omitting furnace cooling, solution heat treatment produced Cr and Mo depleted zone in the phase boundary. (3) During furnace cooling, Cr and Mo rediffused through the phase boundary. This increased the corrosion resistance of super duplex stainless steels

  6. Effects of the Solid Solution Heat Treatment on the Corrosion Resistance Property of SSC13 Cast Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kuk-Jin [Hi-Sten Co., Ltd., Gimhae (Korea, Republic of); Lim, Su Gun [Gyeongsang National University, Jinju (Korea, Republic of); Pak, S. J. [Gachon BioNano Research Institute, Gachon University, Sungnam (Korea, Republic of)

    2015-04-15

    Recently, Stainless steels have been increasingly selected as the fitting or the valve materials of water pipes as the human health issue is getting higher and higher. Therefore, the connectors attached at pipes to deliver water are exposed to more severe environments than the pipes because crevice or galvanic corrosion is apt to occur at the fittings or the valves. Effects of the solid solution annealing, cooling rate after this heat treatment, and passivation on the corrosion properties of the shell mold casted SSC13 (STS304 alloy equivalent) were studied. The heating and quenching treatment more or less reduced hardness but effectively improved corrosion resistance. It was explained by the reduction of delta ferrite contents. Independent of heat treatment, the chemical passivation treatment also lowered corrosion rate but the improvement of corrosion resistance depended on temperature and time for passivation treatment indicating that the optimum conditions for passivation treatment were the bath temperature of 34 .deg. C and operating time of 10 minutes. Therefore it is suggested that the corrosion resistance of SSC13 can be effectively improved with the heat treatment, where SSC13 is heated for 10 minutes at 1120 °C and quenched and passivation treatment, where SSC13 is passivated for at least 10 seconds at 34 °C nitric acid solution.

  7. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tucho, Wakshum M., E-mail: wakshum.m.tucho@uis.no [Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, N-4036 Stavanger (Norway); Cuvillier, Priscille [Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, N-4036 Stavanger (Norway); Sjolyst-Kverneland, Atle [Roxar/Emerson Process Management, POB 112, 4065 Stavanger (Norway); Hansen, Vidar [Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, N-4036 Stavanger (Norway)

    2017-03-24

    The microstructure of Additive Manufactured (AM) Inconel 718 in general and Selective Laser Melting (SLM), in particular is different from the material produced by conventional methods due to the rapid solidification process associated with the former. As a result, the widely adapted standard solution heat treatment temperature (<1100 °C) for conventional material is found to be not high enough for materials fabricated with SLM method in order to dissolve Laves and other microsegregated phases for releasing the ageing constituents (Nb, Ti, Al) sufficiently into the alloy matrix. In this study, sample of Inconel 718 fabricated with SLM method were solution heat-treated to 1100 °C or 1250 °C at different hold times to investigate the dissolution of macro- and micro-segregated precipitates. Investigations of microstructure and segregation in as-printed and solution heat-treated states have been studied using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM). Measurement of material hardness was performed with Vickers hardness tests. The microstructure of the as-printed parts exhibit non-columnar grains, but contain well-shaped columnar/cellular sub-grains. The intergranular boundaries are decorated with high density of dislocations and segregated particles. Tremendous stress relief and grain coarsening were observed with solution heat treatment. In particular, at 1250 °C annealing, the sub-grains, including precipitates and dislocation networks along the sub-grain boundaries, were entirely dissolved. However, the 1100/1250 °C solution heat treatment scheme could not dissolve microsegregated precipitates and carbides completely. Details of the analysis on microstructure, dissolution of precipitates and hardness are presented.

  8. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment

    International Nuclear Information System (INIS)

    Tucho, Wakshum M.; Cuvillier, Priscille; Sjolyst-Kverneland, Atle; Hansen, Vidar

    2017-01-01

    The microstructure of Additive Manufactured (AM) Inconel 718 in general and Selective Laser Melting (SLM), in particular is different from the material produced by conventional methods due to the rapid solidification process associated with the former. As a result, the widely adapted standard solution heat treatment temperature (<1100 °C) for conventional material is found to be not high enough for materials fabricated with SLM method in order to dissolve Laves and other microsegregated phases for releasing the ageing constituents (Nb, Ti, Al) sufficiently into the alloy matrix. In this study, sample of Inconel 718 fabricated with SLM method were solution heat-treated to 1100 °C or 1250 °C at different hold times to investigate the dissolution of macro- and micro-segregated precipitates. Investigations of microstructure and segregation in as-printed and solution heat-treated states have been studied using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM). Measurement of material hardness was performed with Vickers hardness tests. The microstructure of the as-printed parts exhibit non-columnar grains, but contain well-shaped columnar/cellular sub-grains. The intergranular boundaries are decorated with high density of dislocations and segregated particles. Tremendous stress relief and grain coarsening were observed with solution heat treatment. In particular, at 1250 °C annealing, the sub-grains, including precipitates and dislocation networks along the sub-grain boundaries, were entirely dissolved. However, the 1100/1250 °C solution heat treatment scheme could not dissolve microsegregated precipitates and carbides completely. Details of the analysis on microstructure, dissolution of precipitates and hardness are presented.

  9. The effect of solution heat treatments on the microstructure and hardness of ZK60 magnesium alloys prepared under low-frequency alternating magnetic fields

    International Nuclear Information System (INIS)

    Li, Caixia; Yu, Yan Dong

    2013-01-01

    The solidified structure of ZK60 magnesium alloys in the presence and absence of electromagnetic stirring during the solidification process was compared, and the precipitates of ZK60 magnesium alloys were analyzed after a solution heat treatment using optical microscopy, micro-hardness analysis, X-ray diffraction and scanning electron microscopy. The results showed that the microstructure of cast alloys under a low-frequency alternating magnetic field (LFAMF) was mainly composed of a primary crystalline Mg matrix and a non-equilibrium eutectic structure (Mg+MgZn+MgZn 2 ). In comparison with the microstructure observed in the absence of the electromagnetic field, the eutectic network structure on the grain boundary under low-frequency alternating magnetic field was finer and exhibited a more uniform grain distribution. The grains under the LFAMF were refined in comparison with those under no electromagnetic field before the solution heat treatment, and the former grain distribution was more uniform than the latter after the solution heat treatment. The more uniform grain distribution is because the solution heat treatment is conducive to the dissolution of the second phase particles. The hardness exhibited a downward trend with increasing solution heat treatment time. Under the same solution heat treatment, the hardness value of the samples prepared under the LFAMF was lower than those prepared in the absence of the electromagnetic field. In contrast, the mechanical properties of alloys prepared under the LFAMF were better than those prepared in the absence of the electromagnetic field.

  10. Influence of sub-solvus solution heat treatment on γ′ morphological instability in a new Ni–Cr–Co-based powder metallurgy superalloy

    International Nuclear Information System (INIS)

    Yang, W.P.; Liu, G.Q.; Wu, K.; Hu, B.F.

    2014-01-01

    Highlights: • A special γ′ morphological instability in a new Ni–Cr–Co-based P/M superalloy was studied. • Three heat treatments were applied to the alloy and microstructures were observed. • Microstructure of the alloy was homogenized by sub-solvus solution heat treatment. • Sub-solvus solution heat treatment influences morphology of γ′ fan-type structures. • Sub-solvus solution heat treatment makes γ′ fan-type structures regular and stable. -- Abstract: The influence of the sub-solvus solution heat treatment on the microstructure, especially the γ′ morphology (γ′ fan-type structure), and microhardness of a new Ni–Cr–Co-based powder metallurgy superalloy was studied by means of field emission scanning electron microscopy (FESEM) and microhardness testing. The results show that sub-solvus solution heat treatment changes the microstructure of an as-forged alloy. It makes large primary γ′ phases at grain boundaries smaller and the distribution of secondary γ′ phases in the interior of the grains more homogeneous. Moreover, the grain boundaries widen because of the supplementary precipitate. The sub-solvus solution heat treatment before the super-solvus solution heat treatment does not change nucleation sites of the γ′ fan-type structures which precipitate during the super-solvus solution heat treatment. However, it influences the morphology of γ′ fan-type structures. Length distribution of the secondary γ′ dendrites in fan-type structures changes from a bimodal to a unimodal distribution, which means the lengths of the secondary γ′ dendrites become more uniform. Applying a sub-solvus solution heat treatment after the super-solvus solution heat treatment causes the secondary γ′ dendrites to be broken off in the fan-type structures and a refinement of the γ′ phases, and this improves stability of the γ′ phases

  11. Effect of solution heat treatment on the precipitation behavior and strengthening mechanisms of electron beam smelted Inconel 718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiaogang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Tan, Yi, E-mail: tanyi@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Shi, Shuang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Yang, Jenn-Ming [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Wang, Yinong [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Li, Jiayan; You, Qifan [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China)

    2017-03-24

    Inconel 718 superalloy was fabricated by electron beam smelting (EBS) technique. The effect of solution heat treatment on the precipitation behavior and mechanical properties of EBS 718 superalloys were studied, the strengthening mechanisms were analyzed and related to the mechanical properties. The results indicate that the optimized microstructures can be acquired by means of EBS, which is attributed to the rapid cooling rate of approximately 280 ℃/min. The solution heat treatment shows a great impact on the microstructures, precipitation behavior and mechanical properties of EBS 718 superalloy. The γ'' phase shows an apt to precipitate at relatively lower solution temperatures followed by aging, while the γ' precipitates are prone to precipitate at higher temperatures. When solution treated at 1150 ℃, the γ' precipitates are dispersively distributed in the matrix with size and volume fraction of 8.43 nm and 21.66%, respectively, a Vickers hardness of approximately 489 HV{sub 0.1} is observed for the aged superalloy. The precipitation strengthening effect of EBS 718 superalloy could be elucidated by considering the interaction between the dislocations and γ''/γ' precipitates. The shearing of γ' is resisted by the coherency strengthening and formation of antiphase boundary (APB), which shows equal effect as weakly coupled dislocation (WCD) model. And for γ'', the strengthening effect is much more prominent with the primary strengthening mechanism of ordering. Moreover, it is interestingly found that the strengthening mechanism of stacking fault (SF) shearing coexists with APB shearing, and SF shearing plays a major role in strengthening of EBS 718 superalloy.

  12. Alternative welding reconditioning solutions without post welding heat treatment of pressure vessel

    Science.gov (United States)

    Cicic, D. T.; Rontescu, C.; Bogatu, A. M.; Dijmărescu, M. C.

    2017-08-01

    In pressure vessels, working on high temperature and high pressure may appear some defects, cracks for example, which may lead to failure in operation. When these nonconformities are identified, after certain examination, testing and result interpretation, the decision taken is to repair or to replace the deteriorate component. In the current legislation it’s stipulated that any repair, alteration or modification to an item of pressurised equipment that was originally post-weld heat treated after welding (PWHT) should be post-weld heat treated again after repair, requirement that cannot always be respected. For that reason, worldwide, there were developed various welding repair techniques without PWHT, among we find the Half Bead Technique (HBT) and Controlled Deposition Technique (CDT). The paper presents the experimental results obtained by applying the welding reconditioning techniques HBT and CDT in order to restore as quickly as possible the pressure vessels made of 13CrMo4-5. The effects of these techniques upon the heat affected zone are analysed, the graphics of the hardness variation are drawn and the resulted structures are compared in the two cases.

  13. Effect of Heat Treatment on the Lithium Ion Conduction of the LiBH4–LiI Solid Solution

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Mýrdal, Jón Steinar Garðarsson; Blanchard, Didier

    2013-01-01

    The LiBH4–LiI solid solution is a good Li+ conductor and a promising crystalline electrolyte for all-solid-state lithium based batteries. The focus of the present work is on the effect of heat treatment on the Li+ conduction. Solid solutions with a LiI content of 6.25–50% were synthesized by high...

  14. Effect of heat treatment on pitting corrosion of austenitic Cr-Ni-Mo steels in sodium chloride solution

    International Nuclear Information System (INIS)

    Stefec, R.; Franz, F.; Holecek, A.

    1979-01-01

    The pitting corrosion resistance of Cr17Ni12Mo2,5 type steel under potentiostatic polarization in a sodium chloride solution is adversely affected by previous annealing. The data obtained were systematically dependent on annealing temperature, time and surface roughness. The corrosion current, the number of pits or the mean area of pit opening and the corrosion rate within the pits were increased by previous annealing at 550 to 750 0 C for 1-100 hrs. The highest corrosion rate estimated corresponded to heat treatments provoking severe sensitization to intergranular corrosion. The paercentage area of corrosion pit openings and the estimated pit penetration rates were several times higher for as-machined than for polished surfaces. It can be assumed that pitting corrosion is little affected by the carbon content and that molybdenum depletion of grain-boundary zones is responsible for the reduced pitting resistance of annealed steels. (orig./HP) [de

  15. Heat treatment as a universal technical solution for silcrete use? A comparison between silcrete from the Western Cape (South Africa and the Kalahari (Botswana.

    Directory of Open Access Journals (Sweden)

    Patrick Schmidt

    Full Text Available Heat treatment was one of the first transformative technologies in the southern African Middle Stone Age (MSA, with many studies in the Cape coastal zone of South Africa identifying it as an essential step in the preparation of silcrete prior to its use in stone tool manufacture. To date, however, no studies have investigated whether heat treatment is necessary for all silcrete types, and how geographically widespread heat treatment was in the subcontinent. The aim of this study is to investigate experimentally whether heat treatment continued further north into the Kalahari Desert of Botswana and northernmost South Africa, the closest area with major silcrete outcrops to the Cape. For this we analyse the thermal transformations of silcrete from both regions, proposing a comprehensive model of the chemical, crystallographic and 'water'-related processes taking place upon heat treatment. For the first time, we also explore the mobility of minor and trace elements during heat treatment and introduce a previously undescribed mechanism-steam leaching-causing depletion of a limited number of elements. The results of this comparative study reveal the Cape and Kalahari silcrete to respond fundamentally differently to heat treatment. While the former can be significantly improved by heat, the latter is deteriorated in terms of knapping quality. These findings have important implications for our understanding of the role of fire as a technical solution in MSA stone tool knapping, and for the extension of its use in southern Africa. Silcrete heat treatment-at least in the form we understand it today-may have been a strictly regional phenomenon, confined to a narrow zone along the west and south coast of the Cape. On the basis of our findings, silcrete heat treatment should not be added as a new trait on the list of behaviours that characterise the MSA of the southern African subcontinent.

  16. Effect of heating rate on mechanical property, microstructure and texture evolution of Al–Mg–Si–Cu alloy during solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofeng; Guo, Mingxing, E-mail: mingxingguo@skl.ustb.edu.cn; Cao, Lingyong; Luo, Jinru; Zhang, Jishan; Zhuang, Linzhong

    2015-01-05

    The effect of heating rate on the mechanical properties, microstructure and texture of Al–Mg–Si–Cu alloy during solution treatment was investigated through tensile testing, scanning electron microscope, scanning transmission electron microscope, metallographic observation and EBSD measurement. The experimental results reveal that there are great differences in the mechanical properties, microstructures and textures after the solution treatment with two different heating rates. Compared with the alloy sheet solution treated with slow heating rate, the alloy sheet solution treated with rapid heating rate possesses weak mechanical property anisotropy and higher average r value. The equiaxed grain is the main recrystallization microstructure for the case of rapid heating rate, while the elongated grain appears in the case of slow heating rate. The texture components are also quite different in the two cases, Cube{sub ND} orientation is the main texture component for the former case, while the latter one includes Cube, R, Goss, P and Brass orientations. The relationship between r value, texture components and microstructure has also been established in this paper.

  17. Effect of heating rate on mechanical property, microstructure and texture evolution of Al–Mg–Si–Cu alloy during solution treatment

    International Nuclear Information System (INIS)

    Wang, Xiaofeng; Guo, Mingxing; Cao, Lingyong; Luo, Jinru; Zhang, Jishan; Zhuang, Linzhong

    2015-01-01

    The effect of heating rate on the mechanical properties, microstructure and texture of Al–Mg–Si–Cu alloy during solution treatment was investigated through tensile testing, scanning electron microscope, scanning transmission electron microscope, metallographic observation and EBSD measurement. The experimental results reveal that there are great differences in the mechanical properties, microstructures and textures after the solution treatment with two different heating rates. Compared with the alloy sheet solution treated with slow heating rate, the alloy sheet solution treated with rapid heating rate possesses weak mechanical property anisotropy and higher average r value. The equiaxed grain is the main recrystallization microstructure for the case of rapid heating rate, while the elongated grain appears in the case of slow heating rate. The texture components are also quite different in the two cases, Cube ND orientation is the main texture component for the former case, while the latter one includes Cube, R, Goss, P and Brass orientations. The relationship between r value, texture components and microstructure has also been established in this paper

  18. Effects of solution heat treatment on the microstructure and hardness of Mg-5Li-3Al-2Zn-2Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jiqing; An Jiangmin; Qu Zhikun [Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin 150001 (China); Wu Ruizhi, E-mail: Ruizhiwu2006@yahoo.com [Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin 150001 (China); Zhang Jinghuai; Zhang Milin [Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin 150001 (China)

    2010-10-15

    The microstructure and hardness of Mg-5Li-3Al-2Zn-2Cu alloy were investigated both in the as-cast condition and after solution heat treatment at 330-390 deg. C for 5 h. The as-cast alloy contains a microstructure consisting of {alpha}-Mg matrix, AlLi phase, AlCuMg phase and Al{sub 2}Cu phase. After the solution heat treament, the AlLi phase was dissolved into the matrix, however, the AlCuMg and Al{sub 2}Cu phases were not dissolved. With the increase of solution temperature, almost all the AlLi phase was dissolved, and the effects of solution strengthening of Al and Li atoms in the alloy increase, which results in the gradual increase of the Brinell hardness of the solution-treated alloy.

  19. Oxygen availability in model solutions and purées during heat treatment and the impact on vitamin C degradation

    OpenAIRE

    Herbig , Anna-Lena; Maingonnat , Jean Francois; Renard , Catherine

    2017-01-01

    Oxygen availability in different media during heat treatment (8 h at 80°C) and the related vitamin C loss was assessed. Dissolved oxygen in water containing 3 mmol kg-1 of ascorbic acid decreased initially and seemed to be replaced by oxygen from the headspace in the course of time, as oxygen values increased again. In apple puree and carrot puree in contrast, oxygen was depleted within 60 min. Vitamin C in ultrapure water was stable even in the presence of oxygen. A trigger seemed to be cruc...

  20. Optimisation of the solution heat treatment of Rheo-processed Al-Cu-Mg-(Ag) Alloys A206 and A201

    CSIR Research Space (South Africa)

    Masuku, EP

    2009-06-01

    Full Text Available The traditional solution treatment cycles that are currently applied to rheo-processed A201 are mostly those that are used for conventional castings. These solution treatments are not necessarily the optimum solution treatments for rheo...

  1. Heat treatment furnace

    Science.gov (United States)

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  2. Gelation on heating of supercooled gelatin solutions.

    Science.gov (United States)

    Guigo, Nathanaël; Sbirrazzuoli, Nicolas; Vyazovkin, Sergey

    2012-04-23

    Diluted (1.0-1.5 wt%) aqueous gelatin solutions have been cooled to -10 °C at a cooling rate 20 °C min(-1) without freezing and detectable gelation. When heated at a constant heating rate (0.5 -2 °C min(-1)), the obtained supercooled solutions demonstrate an atypical process of gelation that has been characterized by regular and stochastically modulated differential scanning calorimetry (DSC) as well as by isoconversional kinetic analysis. The process is detectable as an exothermic peak in the total heat flow of regular DSC and in the nonreversing heat flow of stochastically modulated DSC. Isoconversional kinetic analysis applied to DSC data reveals that the effective activation energy of the process increases from approximately 75 to 200 kJ mol(-1) as a supercooled solution transforms to gel on continuous heating. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Structural and luminescence properties of Gd{sub 2}Si{sub 2}O{sub 7}:Ce prepared by solution combustion followed by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Seema; Pitale, Shreyas; Singh, S.G.; Ghosh, M.; Tiwari, B.; Sen, S.; Gadkari, S.C., E-mail: gadkari@barc.gov.in; Gupta, S.K.

    2015-05-05

    Highlights: • Synthesis of triclinic and orthorhombic phases of Gd{sub 2}Si{sub 2}O{sub 7}:Ce by a two step process. • Method involves solution combustion followed by a post heat treatment. • Ce concentration is found to affect the orthorhombic phase formation temperature. • First time reporting a double exponential decay in nano sized Gd{sub 2}Si{sub 2}O{sub 7}:Ce. - Abstract: A method comprising solution combustion followed by a heat treatment has been employed to synthesize cerium doped gadolinium pyrosilicate (Gd{sub 2}Si{sub 2}O{sub 7}:Ce, or GPS:Ce) compounds. The powder obtained after the combustion was annealed at 1200 °C for 4 h and 1600 °C for 3 h to synthesize triclinic and orthorhombic phases of the GPS, respectively. Structural and morphological characterizations of the synthesized compounds were carried out using X-ray diffraction and electron microscopy (SEM, TEM) techniques. A change in the enthalpy was observed in the differential thermal analysis data as a consequence of triclinic to orthorhombic phase transition in the GPS. Luminescence spectra and fluorescence decay time were measured at room temperature to characterize emission centers created in GPS compounds doped with trivalent rare earth ion (Ce{sup 3+}). The triclinic GPS:Ce phase exhibited photoluminescence peaks at 379 nm and 410 nm while for the orthorhombic phase emissions at 353 nm and 380 nm were observed. A multi-component exponential decay pattern of the luminescence is observed for both the GPS:Ce phases. In addition, samples of the orthorhombic GPS:Ce were found to exhibit X-ray excited luminescence (XEL)

  4. Heat of solution of hydrogen in aluminium

    International Nuclear Information System (INIS)

    Mahajan, S.; Prakash, S.

    1984-01-01

    The heat of solution of hydrogen in aluminium is investigated accounting for both, the lattice dilation and its relaxation. The lattice contribution is evaluated using a linearly screened local model potential for the ions. The non-linear screening in the density functional formalism along with the exchange and correlation corrections in the jellium model is used to evaluate the proton contribution. The dilation enhances the lattice contribution by about 12 % and decreases the protonic contribution by about 5 %. The relaxation energy is reduced by about 40 % for the dilated lattice. Adding all the contributions, the heat of solution is found to be 20 % larger for the dilated lattice than that for the undilated lattice. The calculated heat of solution is found in good agreement with the experimental value. Comparing the results with the calculations of Perrot and Rasolt, the spherical solid model correction is estimated and it is found that it further improves the results. (author)

  5. Magnetic induced heating of nanoparticle solutions

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S. Hunyadi [Savannah River Site (SRS), Aiken, SC (United States); Univ. of Georgia, Athens, GA (United States); Brown, M. [Savannah River Site (SRS), Aiken, SC (United States); Coopersmith, K. [Savannah River Site (SRS), Aiken, SC (United States); Fulmer, S. [Savannah River Site (SRS), Aiken, SC (United States); Sessions, H. [Savannah River Site (SRS), Aiken, SC (United States); Ali, M. [Univ. of South Carolina, Columbia, SC (United States)

    2016-12-02

    Magnetic induced heating of nanoparticles (NP) provides a useful advantage for many energy transfer applications. This study aims to gain an understanding of the key parameters responsible for maximizing the energy transfer leading to nanoparticle heating through the use of simulations and experimental results. It was found that magnetic field strength, NP concentration, NP composition, and coil size can be controlled to generate accurate temperature profiles in NP aqueous solutions.

  6. Plasma assisted heat treatment: annealing

    International Nuclear Information System (INIS)

    Brunatto, S F; Guimaraes, N V

    2009-01-01

    This work comprises a new dc plasma application in the metallurgical-mechanical field, called plasma assisted heat treatment, and it presents the first results for annealing. Annealing treatments were performed in 90% reduction cold-rolled niobium samples at 900 deg. C and 60 min, in two different heating ways: (a) in a hollow cathode discharge (HCD) configuration and (b) in a plasma oven configuration. The evolution of the samples' recrystallization was determined by means of the microstructure, microhardness and softening rate characterization. The results indicate that plasma species (ions and neutrals) bombardment in HCD plays an important role in the recrystallization process activation and could lead to technological and economical advantages considering the metallic materials' heat treatment application. (fast track communication)

  7. Solid-state transformation of Fe-rich intermetallic phases in Al–5.0Cu–0.6Mn squeeze cast alloy with variable Fe contents during solution heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Bo [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); School of Mechanical Engineering, Gui Zhou University, Guiyang 550000 (China); Zhang, Weiwen, E-mail: mewzhang@scut.edu.cn [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhao, Yuliang; Li, Yuanyuan [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China)

    2015-06-15

    The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al{sub 6}(FeMn) and needle-like Al{sub 3}(FeMn) phases transform to a new Cu-rich β-Fe (Al{sub 7}Cu{sub 2}(FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Display Omitted - Highlights: • The α-Fe, Al{sub 6}(FeMn) and Al{sub 3}(FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve.

  8. Solid-state transformation of Fe-rich intermetallic phases in Al–5.0Cu–0.6Mn squeeze cast alloy with variable Fe contents during solution heat treatment

    International Nuclear Information System (INIS)

    Lin, Bo; Zhang, Weiwen; Zhao, Yuliang; Li, Yuanyuan

    2015-01-01

    The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al 6 (FeMn) and needle-like Al 3 (FeMn) phases transform to a new Cu-rich β-Fe (Al 7 Cu 2 (FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Display Omitted - Highlights: • The α-Fe, Al 6 (FeMn) and Al 3 (FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve

  9. Nuclear heating solutions. Realizations and projects

    International Nuclear Information System (INIS)

    Dumitrescu, Monica; Prisecaru, Ilie

    2009-01-01

    Considering the present situation of thermal energy in Romania and having in view the fact that Romania is a Kyoto protocol signatory state one estimates that the development of the nuclear energy will have a promising growth. According with the statement of the National Energetic Observer, Romania became a net energy resource importer for the past 30 years and the estimations about the future are not optimistic. The finite reserves of fossil fuel (coal and natural gas), the gradual reduction of their share in the national energy balance with a tendency to become insignificant after 2025, as well as the present situation of the thermal power plants which are already beyond their operation life, all these indicate the nuclear energy as being the most reliable and sustainable future source for thermal energy production. Having in view these circumstances the paper aims at a short presentation of the existing nuclear solutions for district heating. Also, reviewed are the reactor projects that are under different development stage in the world, as well as the best nuclear solutions to be possibly implemented in Romania. The article represents a synthesis of the documentation made by PhD student Monica Dumitrescu in her preparation stage. (authors)

  10. Differential-algebraic solutions of the heat equation

    OpenAIRE

    Buchstaber, Victor M.; Netay, Elena Yu.

    2014-01-01

    In this work we introduce the notion of differential-algebraic ansatz for the heat equation and explicitly construct heat equation and Burgers equation solutions given a solution of a homogeneous non-linear ordinary differential equation of a special form. The ansatz for such solutions is called the $n$-ansatz, where $n+1$ is the order of the differential equation.

  11. 29 CFR 1919.80 - Heat treatment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.80 Section 1919.80 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.80 Heat treatment. (a) Wherever heat treatment of any loose gear is recommended by the manufacturer, it shall be carried out in...

  12. 29 CFR 1919.36 - Heat treatment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall be...

  13. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    Science.gov (United States)

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  14. Application of microjet in heat treatment of aluminium bronzes

    Directory of Open Access Journals (Sweden)

    Z. Górny

    2011-04-01

    Full Text Available Mechanical properties of a CuAl10Fe4Ni4 bronze subjected to solution heat treatment and toughening were examined. In solution heattreatment, a microjet was used to raise the cooling rate. A slight increase of mechanical properties was observed.

  15. Weak Solution and Weakly Uniformly Bounded Solution of Impulsive Heat Equations Containing “Maximum” Temperature

    Directory of Open Access Journals (Sweden)

    Oyelami, Benjamin Oyediran

    2013-09-01

    Full Text Available In this paper, criteria for the existence of weak solutions and uniformly weak bounded solution of impulsive heat equation containing maximum temperature are investigated and results obtained. An example is given for heat flow system with impulsive temperature using maximum temperature simulator and criteria for the uniformly weak bounded of solutions of the system are obtained.

  16. Investigation of anodic oxide coatings on zirconium after heat treatment

    International Nuclear Information System (INIS)

    Sowa, Maciej; Dercz, Grzegorz; Suchanek, Katarzyna; Simka, Wojciech

    2015-01-01

    Highlights: • Oxide layers prepared via PEO of zirconium were subjected to heat treatment. • Surface characteristics were determined for the obtained oxide coatings. • Heat treatment led to the partial destruction of the anodic oxide layer. • Pitting corrosion resistance of zirconium was improved after the modification. - Abstract: Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500–800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment

  17. Surface engineering and heat treatment

    International Nuclear Information System (INIS)

    Morton, P.H.

    1991-01-01

    This book is the proceedings of a Conference organised jointly by The Institute of Metals and The Centre for Exploitation of Science and Technology (CEST). It sets out to review this role and point the way to the future by collecting together a series of invited papers written by noted authorities in their fields. The opening review by CEST highlights the economic and industrial importance of Surface Engineering and is followed by a group of four articles devoted to specific branches of industry. Several technical papers then describe various aspects of the development of heat treatment over the last twenty-five years. These are followed by papers describing advances made possible by new technologies such as plasma, laser and ion beam. A separate abstract has been prepared for a paper on materials aspects of ion beam technology. (author)

  18. Numberical Solution to Transient Heat Flow Problems

    Science.gov (United States)

    Kobiske, Ronald A.; Hock, Jeffrey L.

    1973-01-01

    Discusses the reduction of the one- and three-dimensional diffusion equation to the difference equation and its stability, convergence, and heat-flow applications under different boundary conditions. Indicates the usefulness of this presentation for beginning students of physics and engineering as well as college teachers. (CC)

  19. Solution of heat equation with variable coefficient using derive

    CSIR Research Space (South Africa)

    Lebelo, RS

    2008-09-01

    Full Text Available In this paper, the method of approximating solutions of partial differential equations with variable coefficients is studied. This is done by considering heat flow through a one-dimensional model with variable cross-sections. Two cases...

  20. Stable solutions of nonlocal electron heat transport equations

    International Nuclear Information System (INIS)

    Prasad, M.K.; Kershaw, D.S.

    1991-01-01

    Electron heat transport equations with a nonlocal heat flux are in general ill-posed and intrinsically unstable, as proved by the present authors [Phys. Fluids B 1, 2430 (1989)]. A straightforward numerical solution of these equations will therefore lead to absurd results. It is shown here that by imposing a minimal set of constraints on the problem it is possible to arrive at a globally stable, consistent, and energy conserving numerical solution

  1. Probabilistic Representations of Solutions to the Heat Equation

    Indian Academy of Sciences (India)

    In this paper we provide a new (probabilistic) proof of a classical result in partial differential equations, viz. if is a tempered distribution, then the solution of the heat equation for the Laplacian, with initial condition , is given by the convolution of with the heat kernel (Gaussian density). Our results also extend the ...

  2. Heat treatment of nickel alloys

    International Nuclear Information System (INIS)

    Smith, D.F. Jr.; Clatworthy, E.F.

    1975-01-01

    A heat treating process is described that can be used to produce desired combinations of strength, ductility, and fabricability characteristics in heat resistant age-hardenable alloys having precipitation-hardening amounts of niobium, titanium, and/or tantalum in a nickel-containing matrix. (U.S.)

  3. 29 CFR 1919.16 - Heat treatment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.16 Section 1919.16 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.16 Heat treatment. (a) All chains (other...

  4. Advances in the heat treatment of steels

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.; Kim, J.I.; Syn, C.K.

    1978-06-01

    A number of important recent advances in the processing of steels have resulted from the sophisticated uses of heat treatment to tailor the microstructure of the steels so that desirable properties are established. These new heat treatments often involve the tempering or annealing of the steel to accompish a partial or complete reversion from martensite to austenite. The influence of these reversion heat treatments on the product microstructure and its properties may be systematically discussed in terms of the heat treating temperature in relation to the phase diagram. From this perspective, four characteristic heat treatments are defined: (1) normal tempering, (2) inter-critical tempering, (3) intercritical annealing, and (4) austenite reversion. The reactions occurring during each of these treatments are described and the nature and properties of typical product microstructures discussed, with specific reference to new commercial or laboratory steels having useful and exceptional properties

  5. Solution of heat removal from nuclear reactors by natural convection

    Directory of Open Access Journals (Sweden)

    Zitek Pavel

    2014-03-01

    Full Text Available This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR.The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.

  6. Numerical simulation on vacuum solution heat treatment and gas quenching process of a low rhenium-containing Ni-based single crystal turbine blade

    Directory of Open Access Journals (Sweden)

    Zhe-xin Xu

    2016-11-01

    Full Text Available Numerical heat-transfer and turbulent flow model for an industrial high-pressure gas quenching vacuum furnace was established to simulate the heating, holding and gas fan quenching of a low rhenium-bearing Ni-based single crystal turbine blade. The mesh of simplified furnace model was built using finite volume method and the boundary conditions were set up according to the practical process. Simulation results show that the turbine blade geometry and the mutual shielding among blades have significant influence on the uniformity of the temperature distribution. The temperature distribution at sharp corner, thin wall and corner part is higher than that at thick wall part of blade during heating, and the isotherms show a toroidal line to the center of thick wall. The temperature of sheltered units is lower than that of the remaining part of blade. When there is no shelteration among multiple blades, the temperature distribution for all blades is almost identical. The fluid velocity field, temperature field and cooling curves of the single and multiple turbine blades during gas fan quenching were also simulated. Modeling results indicate that the loading tray, free outlet and the location of turbine blades have important influences on the flow field. The high-speed gas flows out from the nozzle is divided by loading tray, and the free outlet enhanced the two vortex flow at the end of the furnace door. The closer the blade is to the exhaust outlet and the nozzle, the greater the flow velocity is and the more adequate the flow is. The blade geometry has an effect on the cooling for single blade and multiple blades during gas fan quenching, and the effects in double layers differs from that in single layer. For single blade, the cooing rate at thin-walled part is lower than that at thick-walled part, the cooling rate at sharp corner is greater than that at tenon and blade platform, and the temperature at regions close to the internal position is

  7. District heating and heat storage using the solution heat of an ammonia/water system

    International Nuclear Information System (INIS)

    Taube, M.; Peier, W.; Mayor, J.C.

    1976-01-01

    The article describes a model for the optimum use of the heat energy generated in a nuclear power station for district heating and heat storage taking account of the electricity and heat demand varying with time. (HR/AK) [de

  8. Geothermal energy - effective solutions for heating and cooling of buildings

    International Nuclear Information System (INIS)

    Veleska, Viktorija

    2014-01-01

    Energy and natural resources are essential prerequisites for the maintenance of the life and the development of human civilization. With the advancement of technology is more emphasis on energy efficiency and reducing carbon dioxide emissions. Energy efficiency is using less power without reducing the quality of life. Almost half of the energy used is devoted to buildings, including heating and cooling. Buildings are a major source of CO_2 emissions in the atmosphere. Reducing the impact of buildings on the environment and the development of renewable energy, energy solutions are key factor in terms of sustainable development. Energy and geothermal pumps posts represent effective solutions for large facilities for heating and cooling. Geothermal energy piles represent a system of pipes that circulate thermal fluid and embedded in earth, thus extracting heat from the bearing to satisfy the needs for heating and cooling. Experience has shown that this type of energy piles can save up to two thirds of the cost of conventional heating, while geothermal pump has the ability to low temperature resources (such as groundwater and earth) to extract energy and raise the higher level needed for heating buildings. Their implementation is supported by an active group of researchers working with industry to demonstrate the benefits of dual benefit performance at the foundations. Initiative for renewable heat and potential for further adoption of solutions with these technologies is rapidly expanding. The use of this source of energy has great potential due to environmental, economic and social benefits. (author)

  9. MATHEMATICAL MODELING OF HEATING RATE PRODUCT AT HIGH HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    M. M. Akhmedova

    2014-01-01

    Full Text Available Methods of computing and mathematical modeling are all widely used in the study of various heat exchange processes that provide the ability to study the dynamics of the processes, as well as to conduct a reasonable search for the optimal technological parameters of heat treatment.This work is devoted to the identification of correlations among the factors that have the greatest effect on the rate of heating of the product at hightemperature heat sterilization in a stream of hot air, which are chosen as the temperature difference (between the most and least warming up points and speed cans during heat sterilization.As a result of the experimental data warming of the central and peripheral layers compote of apples in a 3 liter pot at high-temperature heat treatment in a stream of hot air obtained by the regression equation in the form of a seconddegree polynomial, taking into account the effects of pair interaction of these parameters. 

  10. The Effect of Toughening Combined with Microjet Cooling During Quenching (Solution Heat Treatment of Calcium Carbide-Modified CuAl10Fe4Ni4 Alloy on its Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Górny Z.

    2013-03-01

    Full Text Available The work presents the results of the experimental research concerning the impact of a heat treatment (toughening of aluminum bronze CuAl10Fe4Ni4 on its mechanical properties. The conditions of the experiments and selected results are described. A detailed description of the effects of individual heat treatment conditions namely low and high temperature aging is also presented in the work.

  11. The Effect of Toughening Combined with Microjet Cooling During Quenching (Solution Heat Treatment of Calcium Carbide-modified CuAl10Fe4Ni4 Alloy on its Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Z. Górny

    2013-01-01

    Full Text Available The work presents the results of the experimental research concerning the impact of a heat treatment (toughening of aluminum bronze CuAl10Fe4Ni4 on its mechanical properties. The conditions of the experiments and selected results are described. A detailed description of the effects of individual heat treatment conditions namely low and high temperature aging is also presented in the work.

  12. ISOCHORIC HEAT CAPACITY OF 1% AQUEOUS SOLUTION OF MAGNESIUM CHLORIDE

    Directory of Open Access Journals (Sweden)

    V. I. Dvoryanchikov

    2016-01-01

    Full Text Available Aim. The aim is to conduct an experimental study of isochoric heat capacity of 1% aqueous solution of magnesium chloride along the phase boundary curve.Method. In order to determine the isochoric heat capacity at the phase boundary curve we used the adiabatic calorimeter of KH. I. Amirkhanov.Results. Results of the study of the isochoric heat capacity depending on the temperature are given in tables and figures; the findings are compared with those of other researchers. When evaluating a complex system, we ought not to evaluate its effectiveness on the basis of only one criterion, even a very important, in this case must take into account the requirements of the technical, economic, environmental and of other natures.Conclusions. When solving optimization problems of efficiency in geothermal energy it is necessary to take into account the fact of the temperature dependence of the heat and density. The temperature dependence of the density and heat capacity in the calculations significantly affect the value of the efficiency criterion to be taken into account, otherwise the calculation error can be up to 20%. The data obtained from the isochoric heat capacity of aqueous solutions of magnesium chloride is compared with the data for water and aqueous solutions of NaCl and NaOH, obtained previously, which may be represented as a model of geothermal and sea water.

  13. Heat Treatment of Tools in Light Industry

    Science.gov (United States)

    Petukhov, V. A.

    2005-09-01

    Heat treatment processes for some tools (knitting needles, travelers for thimbles of spinning and doubling frames, thread-forming spinnerets) used for the production of cloths, hosiery, and other articles) in the knitting and textile industries are considered. Problems of the choice of steel and the kind and parameters of heat treatment are discussed in connection with the special features of tool design and operating conditions.

  14. Precipitation of Np(VI) by urotropine from heated solutions

    International Nuclear Information System (INIS)

    Logvis, A.I.; Krot, N.N.

    1993-01-01

    The precipitate formed by heating HNO 3 solutions of Np(VI) and urotropine under various conditions is studied by x-ray phase analysis, gravimetry, and spectrophotometry. The precipitate is determined to be NpO 3 ·xH 2 O·yNH 3 , where x ≤ 2 and y ≤ 0.28. It is demonstrated that at least 12% of the starting Np remains in solution as Np(V)

  15. Heat-treatment and heat-to-heat variations in the fracture toughness of Alloy 718

    International Nuclear Information System (INIS)

    Mills, W.J.

    1981-07-01

    The effect of heat-treatment and heat-to-heat variations on the J Ic fracture toughness response of Alloy 718 was examined at room and elevated temperatures using the multiple-specimen R-curve technique. Six heats of alloy 718 were tested in the conventional and modified heat-treated conditions. The fracture toughness response for the modified superalloy was found to be superior to that exhibited by the conventional material. Heat-to-heat variations in the J Ic response of Alloy 718 were observed in both heat-treated conditions; the modified treatment exhibited much larger variability. The J Ic and corresponding K Ic fracture toughness values were analyzed statistically to establish minimum expected toughness, values for use in design and safety analyses. 26 refs., 10 figs., 9 tabs

  16. Solution microcalorimeter for measuring heats of solution of radioactive elements and compounds

    International Nuclear Information System (INIS)

    Raschella, D.L.

    1978-12-01

    The microcalorimeter vessel is constructed of tantalum metal, with a nominal volume of 5 cm 3 . Its energy equivalent is 24 J K -1 when containing 5 cm 3 H 2 O. The thermal leakage modulus is 0.010 min -1 . A thermistor is employed as the temperature sensor. The operating sensitivity is about 1 x 10 -5 K (300 μJ). The performance of the calorimetry system was tested using tris(hydroxymethyl)aminomethane (TRIS) and magnesium metal. The results of the TRIS experiments, at a concentration of 1 g dm -3 in 0.1 N HCl at 298 K, yielded a heat of solution of -29.606 +- 0.063 kJ mol -1 . The magnesium experiments, in 1 N HCl at 298 K, gave a heat of solution of -465.965 +- 1.136 kJ mol -1 . The heat of solution of curium-248 metal in 1 N HCl at 298 K was measured. The experiments, which should not be considered definitive, yielded a heat of solution of -606.4 +- 1.8 kJ mol -1 . A single measurement in 6 N HCl gave a heat of solution of -602.3 kJ mol -1 . From these results the heat of formation of Cm 3+ /sub (aq)/ is calculated to be -607.2 +- 2.5 kJ mol -1

  17. 49 CFR 179.400-12 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.400-12 Section 179... and 107A) § 179.400-12 Postweld heat treatment. (a) Postweld heat treatment of the inner tank is not... be attached before postweld heat treatment. Welds securing the following need not be postweld heat...

  18. Treatment of uranyl nitrate and flouride solutions

    International Nuclear Information System (INIS)

    Rodrigo Otero, A.; Rodrigo Vilaseca, F.; Morales Calvo, G.

    1977-01-01

    A theoretical study on the fluoride complexes contained in uranyl and aluminium solutions has been carried out. Likewise concentration limits and Duhring diagrams for those solutions have been experimentally established. As a result, the optimum operation conditions for concentration by evaporation in the treatment plant, have been deduced. (Author) 12 refs

  19. Failures of tool steels after heat treatments

    International Nuclear Information System (INIS)

    Nunez-Gonzalez, G.

    1990-01-01

    The main objective of the work was to determine the most common defects occuring in tool steels of the AISI D-2, S-1, 0-1 and W-2 series during thermal treatment. Defects were evaluated by metallographic analyses, a method used to determine and recognize micro structural defects and their origin in order to be able to eliminate and correct some of the stages that are caused by heat treatment. Results show a large number of defects due to irregularities during thermal heating such as excess or lack of temperature, heating time, and atmosphere, rectifying and handling in service and, to a lesser extent, poor design. In conclusion, with the results obtained for each of the thermal treatments it is necessary to define, particularly the values each of these variables should have since they affect the material properties. (Author)

  20. Calorimetric investigation of solution heat of rare earth sulfates in acid solutions

    International Nuclear Information System (INIS)

    Vasin, S.K.; Babkin, A.G.; Kessler, Yu.M.

    1978-01-01

    To determine the thermodynamic characteristics of sulfates of rare elements an adiabatic airtight calorimeter has been developed, enabling measurement of minor heat effects of processes in aggressive media with an absolute error of about 5x10 -3 cal, the temperature sensitivity being no less than 2x10 -5 C 0 . The calorimeter is schematically represented. Measured with the aid of the calorimeter was the heat of dissolution of TiOSO 4 x2H 2 O in chloric acid solutions

  1. Lowcost automated control for steel heat treatments

    International Nuclear Information System (INIS)

    Zambaldi, Edimilson; Magalhães, Ricardo R.; Barbosa, Bruno H.G.; Silva, Sandro P. da; Ferreira, Danton D.

    2017-01-01

    Highlights: • Control the furnace temperature measured by thermocouple and adjusts it. • Activating the furnace resistors through Pulse Width Modulation. • Appling heat treatments to steels by a low-cost controller. - Abstract: The aim of this paper is to propose a low cost, automated furnace control system for the heat treatment of steel. We used an open source electronic prototyping platform to control the furnace temperature, thus reducing human interaction during the heat process. The platform can be adapted to non-controlled commercial furnaces, which are often used by small businesses. A Proportional-Integral-Derivative (PID) controller was implemented to regulate the furnace temperature based on a defined heat treatment cycle. The embedded system activates the furnace resistors through Pulse Width Modulation (PWM), allowing for control of electrical power supplied to the furnace. Hardening and tempering were performed on standard steel samples using a traditional method (visual inspection without temperature control) as well the embedded system with PID feedback control. The results show that the proposed system can reproduce an arbitrary heat treatment curve with accuracy and provide the desired final hardness as inferred through metallographic analysis. In addition, we observed a 6% saving in energy consumption using the proposed control system. Furthermore, the estimated cost to implement the system is 42% lower than a commercial controller model implemented in commercial furnaces.

  2. Effect of heat/pressure on cyanidin-3-glucoside ethanol model solutions

    International Nuclear Information System (INIS)

    Corrales, M; Lindauer, R; Butz, P; Tauscher, B

    2008-01-01

    The stability of cyanidin-3-glucoside (Cy3gl) in 50% ethanol model solutions under heat/pressure treatments was investigated. Cy3gl was rapidly degraded when solutions were subjected to a heat/pressure treatment. The higher the pressure and the temperature used, the higher the degradation. Moreover, the degradation was increased according to increasing holding times. Parallel to the degradation of Cy3gl several hydrolytic products were formed and identified by LC-DAD/ESI-MS. The degradation of Cy3gl was well fitted to a first order reaction (R=0.99). This study pointed out the rate of susceptibility of Cy3gl in model solutions to degrade when exposed to a heat/pressure treatment and the trigger effect of high hydrostatic pressure to hydrolyse Cy3gl. By contrast, the degradation of anthocyanins in a food matrix (red grape extract solutions) was negligible after a heat/pressure process at 600MPa, 70 deg. C during 1h (P >0.05)

  3. Precipitaion of neptunium(6) by urotropin from the heated solutions

    International Nuclear Information System (INIS)

    Logvis', A.I.; Krot, N.N.

    1992-01-01

    The composition of precipitate, formed in the course of neptunium(6) nitric acid solution heating with urotropin under different conditions was studied by the methods of X-ray phase analysis, gravimetry and spectrophotometry. The compound studied is determined as NpO 3 ·xH 2 O·yNH 3 , where x <= 2, y <= 0.28. It is shown that not less than 12 % of the initial amount of neptunium remain in solution in the form of neptunium(5)

  4. Solution treatment of fast reactor claddings

    International Nuclear Information System (INIS)

    Miura, Makoto; Nagaki, Hiroshi; Koyama, Masahiro

    1974-01-01

    The fuel cladding tubes for Joyo (experimental FBR) are required to be a material corresponding to AISI Type 316 and cold-rolled after solution treatment. It is necessary to have no precipitation of carbide and to make the grain size smaller than ASTM No.6. It is very difficult to obtain the fine grains without the precipitation, however. In this connection, the behavior of carbide solution at high temperature and the annealing behavior of the material cold-worked and solution-treated were studied. The following matters are described: the solid solubility line of AISI Type 316; the behavior of carbide at solution treatment temperature; and the annealing behavior of the cold-worked material. (Mori, K.)

  5. Asymptotic solution for heat convection-radiation equation

    Energy Technology Data Exchange (ETDEWEB)

    Mabood, Fazle; Ismail, Ahmad Izani Md [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Khan, Waqar A. [Department of Engineering Sciences, National University of Sciences and Technology, PN Engineering College, Karachi, 75350 (Pakistan)

    2014-07-10

    In this paper, we employ a new approximate analytical method called the optimal homotopy asymptotic method (OHAM) to solve steady state heat transfer problem in slabs. The heat transfer problem is modeled using nonlinear two-point boundary value problem. Using OHAM, we obtained the approximate analytical solution for dimensionless temperature with different values of a parameter ε. Further, the OHAM results for dimensionless temperature have been presented graphically and in tabular form. Comparison has been provided with existing results from the use of homotopy perturbation method, perturbation method and numerical method. For numerical results, we used Runge-Kutta Fehlberg fourth-fifth order method. It was found that OHAM produces better approximate analytical solutions than those which are obtained by homotopy perturbation and perturbation methods, in the sense of closer agreement with results obtained from the use of Runge-Kutta Fehlberg fourth-fifth order method.

  6. 49 CFR 179.220-11 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.220-11 Section 179... Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b) Postweld heat treatment of the cylindrical portions of the outer shell to which the anchorage...

  7. 49 CFR 179.500-6 - Heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Heat treatment. 179.500-6 Section 179.500-6...-6 Heat treatment. (a) Each necked-down tank shall be uniformly heat treated. Heat treatment shall... treatment of alternate steels shall be approved. All scale shall be removed from outside of tank to an...

  8. A new paradigm for heat treatment of alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ustinovshikov, Y., E-mail: ust@ftiudm.ru

    2014-11-25

    Highlights: • The sign of the ordering energy in alloys varies with the temperature. • Each temperature of heating leads to formation of its characteristic microstructure. • Quenching of alloys is a totally unnecessary and useless operation. - Abstract: The article considers the consequences in the field of heat treatment of alloys that could follow the introduction of the concept of phase transition ordering-phase separation into common use. By example of the Fe{sub 50}Cr{sub 50} alloy, industrial carbon tool steel and Ni{sub 88}Al{sub 12} alloy, it is shown that this transition occurs at a temperature, which is definite for each system, that the change of the sign of the chemical interaction between component atoms reverses the direction of diffusion fluxes in alloys, which affects changes in the type of microstructures. The discovery of this phase transition dramatically changes our understanding of the solid solution, changes the ideology of alloy heat treatment. It inevitably leads to the conclusion about the necessity of carrying out structural studies with the help of TEM in order to adjust the phase diagrams of the systems where this phase transition has been discovered. Conclusions have been made that quenching of alloys from the so-called region of the solid solution, which is usually performed before tempering (aging) is a completely unnecessary and useless operation, that the final structure of the alloy is formed during tempering (aging) no matter what the structure was before this heat treatment.

  9. Assembly for melting and heat treatment

    International Nuclear Information System (INIS)

    Blumenfeld, M.

    1976-11-01

    Laboratory scale production of alloys having a precise alloying materials content and the exact heat treatment of metallurgical specimens are discussed. The design and assembly of two relevant instruments are described. These instruments include a laboratory vacuum induction furnace and a specially designed glass lathe, that enables even an unskilled operator to encapsulate and seal metallurgical specimens in glass capsules. (author)

  10. Effect of heat treatment temperature on microstructure

    Indian Academy of Sciences (India)

    The results of electrochemical performance measurements for the HCSs as anode material for lithium ion batteries indicate that the discharge capacity of the HCSs is improved after heat treatment at 800°C compared with the as-prepared HCSs and have a maximum value of 357 mAh/g and still retains 303 mAh/g after 40 ...

  11. Desensitization of stainless steels by laser surface heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Yoshikuni; Nishimoto, Kazutoshi

    1987-11-01

    Laser heating was applied for the desensitization heat-treatment of the surface layer in the sensitized HAZ of Type 304 stainless steel. The degree of sensitization was examined by EPR technique and the 10 % oxalic acid electrolytic etch test. The CO/sub 2/ laser with maximum power of 1.5 kW was used for heat-treatment. Time-Temperature-Desensitization diagram (TTDS diagram) for sensitized Type 304 stainless steels were developed by calculation assuming the chromium diffusion control for desensitization which might occur when the chromium depleted zone was healed up due to dissolution of chromium carbide and chromium diffusion from the matrix being heated at the solution annealing temperatures. TTDS diagrams calculated agree fairly well with ones determined by corrosion tests. Laser irradiation conditions (e.g., Laser power, beam diameter and traveling velocity) required for desensitization of sensitized Type 304 stainless steels were calculated using additivity rule from the TTDS diagram calculated and theoretical thermal curve of laser heating derived from the heat conduction theory. After laser beam irradiated under an optimum condition predicted by calculation, the sensitized HAZ of Type 304 stainless steel restored complete resistance to intergranular corrosion.

  12. Effect of hydrogen peroxide on improving the heat stability of whey protein isolate solutions.

    Science.gov (United States)

    Sutariya, Suresh; Patel, Hasmukh

    2017-05-15

    Whey protein isolate (WPI) solutions (12.8%w/w protein) were treated with varying concentrations of H 2 O 2 in the range of 0-0.144 H 2 O 2 to protein ratios (HTPR) by the addition of the required quantity of H 2 O 2 and deionized water. The samples were analyzed for heat stability, rheological properties, denaturation level of β-lactoglobulin (β-LG) and α-lactalbumin (α-LA). The samples treated with H 2 O 2 concentration >0.072 (HTPR) showed significant improvement in the heat stability, and decreased whey protein denaturation and aggregation. The WPI solution treated with H 2 O 2 (>0.072 HTPR) remained in the liquid state after heat treatment at 120°C, whereas the control samples formed gel upon heat treatment. Detailed analysis of these samples suggested that the improvement in the heat stability of H 2 O 2 treated WPI solution was attributed to the significant reduction in the sulfhydryl-disulfide interchange reaction during denaturation of β-LG and α-LA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Plasma treatment of heat-resistant materials

    International Nuclear Information System (INIS)

    Vlasov, V A; Kosmachev, P V; Skripnikova, N K; Bezukhov, K A

    2015-01-01

    Refractory lining of thermal generating units is exposed to chemical, thermal, and mechanical attacks. The degree of fracture of heat-resistant materials depends on the chemical medium composition, the process temperature and the material porosity. As is known, a shortterm exposure of the surface to low-temperature plasma (LTP) makes possible to create specific coatings that can improve the properties of workpieces. The aim of this work is to produce the protective coating on heat-resistant chamotte products using the LTP technique. Experiments have shown that plasma treatment of chamotte products modifies the surface, and a glass-ceramic coating enriched in mullite is formed providing the improvement of heat resistance. For increasing heat resistance of chamotte refractories, pastes comprising mixtures of Bacor, alumina oxide, and chamot were applied to their surfaces in different ratios. It is proved that the appropriate coating cannot be created if only one of heat-resistant components is used. The required coatings that can be used and recommended for practical applications are obtained only with the introduction of powder chamot. The paste composition of 50% chamot, 25% Bacor, and 25% alumina oxide exposed to plasma treatment, has demonstrated the most uniform surface fusion. (paper)

  14. In situ heat treatment process utilizing a closed loop heating system

    Science.gov (United States)

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  15. Heat Treatment and Properties of Iron and Steel

    National Research Council Canada - National Science Library

    Digges, Thomas

    1966-01-01

    .... Chemical compositions, heat treatments, and some properties and uses are presented for structural steels, tool steels, stainless and heat-resisting steels, precipitation-hardenable stainless steels...

  16. Fabrication techniques to eliminate postweld heat treatment

    International Nuclear Information System (INIS)

    Lochhead, J.C.

    1978-01-01

    Postweld heat treatments to reduce residual stresses (stress relief operations) have been a common practice in the pressure vessel industry for a large number of years. A suitable heat treatment operation can, in particular for low alloy steels, have additional beneficial effects, i.e. a reduction in peak hardness values in the heat-affected zone, an improvement in weld metal properties, and a lowering of the adverse effects of the welding process on the mechanical properties of the parent material adjacent to the weld metal. However, continuing studies in the field of brittle fracture, improved parent materials, and more sophisticated nondestructive testing techniques have led to the elimination of such a practice in ever-increasing thickness ranges and types of material. For instance, the recently issued BS 5500 compared with BS 1113 (1969) lifts the thickness limit requiring stress relief in certain circumstances from 19 to 35mm for C steels. With respect to materials the CEGB has stated that as a result of successful operational experience it will no longer be necessary to postweld heat treat butt welds in 2 1/4 Cr-1Mo tubes of certain dimensions. Despite this trend, over a period of years a number of instances have arisen where, because of some factor, postweld heat treatment, although perhaps desirable, is not possible. This Paper describes several such examples. It must be noted that the examples quoted consist of relatively important and major items. It has been necessary within the confines of this Paper to condense the reports. It is hoped that no significant factors have been omitted. (author)

  17. Optimisation of the T6 heat treatment of rheocast alloy A356

    CSIR Research Space (South Africa)

    Moller, H

    2007-11-01

    Full Text Available popular solution heat treatment employed for SSM processed A356 is 6 hours at 540oC (i.e. similar to that used for permanent mould cast A356)6,7,9. Only limited work has been performed on the optimisation of the solution heat treatment of SSM processed... was not adequately studied by either Dewhirst8 or Rosso and Actis Grande5. The optimum artificial aging heat treatment proposed in both papers5,8 is 180oC for 4 hours. This was also confirmed in this work, but importantly, this applies only when natural aging...

  18. Isothermal heat measurements of TBP-nitric acid solutions

    International Nuclear Information System (INIS)

    Smith, J.R.; Cavin, W.S.

    1994-01-01

    Net heats of reaction were measured in an isothermal calorimeter for both single phase (organic) and two phase (organic and aqueous) TBP/HNO 3 reacting solutions at temperatures above 100 C. The oxidation rate constant was determined to be 5.4E-4 min -1 at 110 C for an open ''vented'' system as compared to 1.33 E-3 min -1 in the closed system. The heat released per unit material oxidized was also reduced. The oxidation in both phases was found to be first order in nitric acid and pseudo-zero order in butylnitrate and water. The hydrolysis (esterification) rate constant determined by Nichols' (1.33E-3 min -1 ) fit the experimental data from this work well. Forced evaporation of the volatile components by the product gases from oxidation resulted in a cooling mechanism which more than balanced the heat from the oxidation reaction in the two-phased systems. Rate expressions were derived and rate constants determined for both the single and two phase systems. An approximating mathematical model was developed to fit the experimental data and to extrapolate beyond the experimental conditions. This model shows that one foot of ''reacting'' 14.3M HNO 3 aqueous phase solution at 121 C will transport sufficient water to the organic phase to replace evaporative losses, maintaining endothermicity, for organic layers up to 12.2 + 6.0 feet deep. If the pressure in a reacting system is allowed to increase due to insufficient venting the temperature of the organic phase would increase in temperature to reach a new equilibrium. The rate of oxidation would increase not only due to the increase in temperature but also from the increased concentration of dissolved HNO 3 reduction products. Another important factor is that the cooling system described in this work becomes less effective as the total pressure increases. These factors probably contributed to the explosion at Tomsk

  19. Induction heat treatment of laser welds

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Sørensen, Joakim Ilsing

    2003-01-01

    of an induction coil. A number of systematic laboratory tests were then performed in order to study the effects of the coil on bead-on-plate laser welded samples. In these tests, important parameters such as coil current and distance between coil and sample were varied. Temperature measurements were made...... the laser beam as close as possible. After welding, the samples were quality assessed according to ISO 13.919-1 and tested for hardness. The metallurgical phases are analysed and briefly described. A comparison between purely laser welded samples and induction heat-treated laser welded samples is made......In this paper, a new approach based on induction heat-treatment of flat laser welded sheets is presented. With this new concept, the ductility of high strength steels GA260 with a thickness of 1.8 mm and CMn with a thickness of 2.13 mm is believed to be improved by prolonging the cooling time from...

  20. Diquafosol ophthalmic solution for dry eye treatment.

    Science.gov (United States)

    Nakamura, Masatsugu; Imanaka, Takahiro; Sakamoto, Asuka

    2012-07-01

    There has been rapid progress in our understanding of dry eye pathogenesis, as well as the development of improved diagnostic clinical tests. Various types of dry eye treatment drugs have been developed. This review summarizes the basic and clinical research carried out in the development of diquafosol for ophthalmic use. Diquafosol is a dinucleotide, purinoreceptor P2Y(2) receptor agonist. Basic pharmacological studies have shown that it acts on P2Y(2) receptors at the ocular surface, to promote tear and mucin secretion via elevated intracellular Ca(2+) concentrations. Diquafosol also improves tear and mucin secretion in experimental dry eye models. Based on the results of laboratory experiments, the authors conducted a series of clinical studies in patients with dry eye disease. Diquafosol was effective in the treatment of dry eye disease at an optimal dose of 3% six times a day. In comparison to commercially available 0.1% sodium hyaluronate ophthalmic solution, 3% diquafosol ophthalmic solution showed non-inferiority in improving corneal fluorescein staining scores and superiority in improving keratoconjunctival Rose Bengal staining scores. Diquafosol ophthalmic solution has a novel mechanism of action that is characterized by its stimulatory effects on tear and mucin secretion. This drug has the potential to be effective in patients with tear film instability and short break-up time type of dry eye, which are essential factors in dry eye pathogenesis.

  1. Hierarchical Cu precipitation in lamellated steel after multistage heat treatment

    Science.gov (United States)

    Liu, Qingdong; Gu, Jianfeng

    2017-09-01

    The hierarchical distribution of Cu-rich precipitates (CRPs) and related partitioning and segregation behaviours of solute atoms were investigated in a 1.54 Cu-3.51 Ni (wt.%) low-carbon high-strength low-alloy (HSLA) steel after multistage heat treatment by using the combination of electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and atom probe tomography (APT). Intercritical tempering at 725 °C of as-quenched lathlike martensitic structure leads to the coprecipitation of CRPs at the periphery of a carbide precipitate which is possibly in its paraequilibrium state due to distinct solute segregation at the interface. The alloyed carbide and CRPs provide constituent elements for each other and make the coprecipitation thermodynamically favourable. Meanwhile, austenite reversion occurs to form fresh secondary martensite (FSM) zone where is rich in Cu and pertinent Ni and Mn atoms, which gives rise to a different distributional morphology of CRPs with large size and high density. In addition, conventional tempering at 500 °C leads to the formation of nanoscale Cu-rich clusters in α-Fe matrix. As a consequence, three populations of CRPs are hierarchically formed around carbide precipitate, at FSM zone and in α-Fe matrix. The formation of different precipitated features can be turned by controlling diffusion pathways of related solute atoms and further to tailor mechanical properties via proper multistage heat treatments.

  2. Analytical solution for heat conduction problem in composite slab and its implementation in constructal solution for cooling of electronics

    International Nuclear Information System (INIS)

    Kuddusi, Luetfullah; Denton, Jesse C.

    2007-01-01

    The constructal solution for cooling of electronics requires solution of a fundamental heat conduction problem in a composite slab composed of a heat generating slab and a thin strip of high conductivity material that is responsible for discharging the generated heat to a heat sink located at one end of the strip. The fundamental 2D heat conduction problem is solved analytically by applying an integral transform method. The analytical solution is then employed in a constructal solution, following Bejan, for cooling of electronics. The temperature and heat flux distributions of the elemental heat generating slabs are assumed to be the same as those of the analytical solution in all the elemental volumes and the high conductivity strips distributed in the different constructs. Although the analytical solution of the fundamental 2D heat conduction problem improves the accuracy of the distributions in the elemental slabs, the results following Bejan's strategy do not affirm the accuracy of Bejan's constructal solution itself as applied to this problem of cooling of electronics. Several different strategies are possible for developing a constructal solution to this problem as is indicated

  3. 49 CFR 179.200-11 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.200-11 Section 179.200-11 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Postweld heat treatment. When specified in § 179.201-1, after welding is complete, postweld heat treatment...

  4. 75 FR 34171 - Trueheat, Inc., a Subsidiary of Global Heating Solutions, Inc., Currently Known as Truheat, a...

    Science.gov (United States)

    2010-06-16

    ..., Inc., a Subsidiary of Global Heating Solutions, Inc., Currently Known as Truheat, a Division of Three Heat LLC, Allegan, MI; Electro-Heat, Inc., a Subsidiary of Global Heating Solutions, Inc., Currently... subsidiary of Global Heating Solutions, Inc., Allegan, Michigan and Electro-Heat, Inc., a subsidiary of...

  5. Reactions of lactose during heat treatment of milk : a quantitative study

    NARCIS (Netherlands)

    Berg, H.E.

    1993-01-01

    The kinetics of the chemical reactions of lactose during heat treatment of milk were studied. Skim milk and model solutions resembling milk were heated. Reaction products were determined and the influence of varying lactose, casein and fat concentration on the formation of these products

  6. The electric heating: solutions and advices for any situation; Le chauffage electrique: des solutions et des conseils pour chaque situation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Since four years, EDF proposes the customers advices to help them in the choice of an electric heating of their house. More specially for those who want to upgrade or change their heating installation, EDF proposes a personalized advice and for those who have a project of building, the Vivrelec solutions. This document presents the EDF policy in the domain of the houses electric heating and the technical solutions proposed. Examples of installations and costs are provided. (A.L.B.)

  7. Solution of the transient Fourier heat conduction equation in r,phi geometry

    International Nuclear Information System (INIS)

    Kowa, E.; Ehnis, L.

    1978-11-01

    The two-dimensional transient Fourier heat conduction equation is solved in r,phi geometry for anisotropic materials with the computer program TERFI. The Alternating-Direction-Implicit method is used for the solution of this equation with specified start- and boundary conditions, temperature dependent material properties and space dependent heat sources. The solution area is devided in a mesh grid by the finite difference method. Slidely non-orthogonaly geometry (displacement of mesh grid) can be regarded. There were some difficulties in the treatment of the boundary conditions for the circularly-closed solution area because of the continuity of temperature and heat flux on the 0 0 /360 0 -line. This problem can be solved by an iterativ method with different starting points for the solution scheme. Emphasis was put on reaching reasonable computer time for the iteration. The computer code TERFI, programed in FORTRAN IV, is a modul of the program system RSYST. As an example the temperature distribution of a PWR fuel rod is calculated. (orig.) [de

  8. Viscose liquid heat treatment using plate scraper heat exchanger

    Directory of Open Access Journals (Sweden)

    K. A. Rashkin

    2012-01-01

    Full Text Available The current work analyzes the use of different types of heat exchangers, depending on the technology of production. It is taken the detail analysis of the ways of applicability of various types of heat exchangers, depending on the viscosity of the processed product. It is posed the problem of the analytical determination of the required area of heat exchange with the use of differential equations of heat transfer in a moving liquid media, written in cylindrical coordinates, for symmetrical temperature distribution, without taking in account the energy dissipation.

  9. Electrochemical corrosion response of a low carbon heat treated steel in a NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, W.R.; Peixoto, L.C.; Garcia, L.R.; Garcia, A. [Department of Materials Engineering, State University of Campinas, SP (Brazil)

    2009-10-15

    Dual-phase (DP) steels are produced from a specific heat treatment procedure and have recently emerged as a potential class of engineering materials for a number of structural and automobile applications. Such steels have high strength-to-weight ratio and reasonable formability. The present study aims to investigate the effects of four different and conventional heat treatments (i.e., hot rolling, normalizing, annealing, and intercritical annealing) on the resulting microstructural patterns and on the electrochemical corrosion behavior. Electrochemical impedance spectroscopy (EIS) and Tafel plots were carried out on heat treated steel samples in a 0.5 M NaCl solution at 25 C with neutral pH. An equivalent circuit analysis was also used to provide quantitative support for the discussions. The normalizing and the annealing heat treatments have provided the highest and the lowest corrosion resistances, respectively. The intercritical annealing and as-received (hot rolled) low carbon steel samples have shown similar corrosion behavior. Although a deleterious effect on the corrosion resistance has been verified for DP steel due to the residual stress from the martensite formation, it combines good mechanical properties with intermediate electrochemical corrosion resistance. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  10. Mortality of insect life stages during simulated heat treatment

    Science.gov (United States)

    . Heat treatment for insect disinfestation uses elevated air temperatures that are lethal to stored-product insects. Heat treatment has been demonstrated in our research to offer a reduced-risk alternative to fumigation or residual pesticide use in empty bins. Heat is also compatible with organic gr...

  11. Efficacy of heat treatment for disinfestation of concrete grain silos

    Science.gov (United States)

    Field experiments were conducted in 2007 and 2008 to evaluate heat treatment for disinfestations of empty concrete elevator silos. A Mobile Heat Treatment Unit was used to introduce heat into silos to attain target conditions of 50°C for at least 6 h. Ventilated plastic containers with a capacity of...

  12. A review on adsorption heat pump: Problems and solutions

    OpenAIRE

    Demir, Hasan; Mobedi, Moghtada; Ülkü, Semra

    2008-01-01

    Adsorption heat pumps have considerably sparked attentions in recent years. The present paper covers the working principle of adsorption heat pumps, recent studies on advanced cycles, developments in adsorbent-adsorbate pairs and design of adsorbent beds. The adsorbent-adsorbate pair features for in order to be employed in the adsorption heat pumps are described. The adsorption heat pumps are compared with the vapor compression and absorption heat pumps. The problems and troubles of adsorptio...

  13. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, Mehdi [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, Mohammad, E-mail: m_azadi@ip-co.com [Fatigue and Wear Workgroup, Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of); Hossein Farrahi, Gholam [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Winter, Gerhard; Eichlseder, Wilfred [Chair of Mechanical Engineering, University of Leoben, Leoben (Austria)

    2013-12-20

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests.

  14. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, Mehdi; Azadi, Mohammad; Hossein Farrahi, Gholam; Winter, Gerhard; Eichlseder, Wilfred

    2013-01-01

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests

  15. Alternative solutions for inhibiting Legionella in domestic hot water systems based on low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2015-01-01

    Abstract District heating is a cost-effective way of providing heat to high heat density areas. Low-temperature district heating (LTDH) is a promising way to make district heating more energy-efficient and adaptable to well-insulated buildings with low heating demand in the future. However, one c...... systems. They have the additional benefit of reducing the heat loss of the hot water system. The alternative design solutions both enrich our options for water sanitation and improve the energy efficiency of our energy systems....... concern is the multiplication of Legionella due to insufficient temperature elevation with low-temperature supply. The aim of this study was to find optimal solutions to this dilemma for specific situations. The solutions were of two types: alternative system designs and various methods of sterilization...... methods, thermal treatment, ionization, chlorine, chlorine dioxide, ultraviolet light, photocatalysis and filtration are discussed as the most frequently used methods in hot water systems. The characteristics, efficacy and operation methods of LTDH using the solutions investigated are documented...

  16. Calculation and Designing of Up-to-Date Gas-Flame Plants for Metal Heating and Heat Treatment

    Directory of Open Access Journals (Sweden)

    V. I. Тimoshpolsky

    2008-01-01

    Full Text Available An analysis of development trends in the CIS machine-building industry and current status of the heating and heat treatment furnaces of main machine-building enterprises of the Republic of Belarus as of the 1st quarter of 2008 is given in the paper.The paper presents the most efficient engineering solutions from technological and economic point of view that concern calculation and designing of up-to-date gas-flame plants which are to be applied for modernization of the current heating and heat treatment furnaces of the machine-building enterprises in the Republic of Belarus.A thermo-technical calculation of main indices of the up-to-date gas-flame plant has been carried out in the paper.

  17. Evaluation of dry heat treatment of soft wheat flour for the production of high ratio cakes.

    Science.gov (United States)

    Keppler, S; Bakalis, S; Leadley, C E; Sahi, S S; Fryer, P J

    2018-05-01

    An accurate method to heat treat flour samples has been used to quantify the effects of heat treatment on flour functionality. A variety of analytical methods has been used such as oscillatory rheology, rheomixer, solvent retention capacity tests, and Rapid Visco Analysis (RVA) in water and in aqueous solutions of sucrose, lactic acid, and sodium carbonate. This work supports the hypothesis that heat treatment facilitates the swelling of starch granules at elevated temperature. Results furthermore indicated improved swelling ability and increased interactions of flour polymers (in particular arabinoxylans) of heat treated flour at ambient conditions. The significant denaturation of the proteins was indicated by a lack of gluten network formation after severe heat treatments as shown by rheomixer traces. Results of these analyses were used to develop a possible cake flour specification. A method was developed using response surfaces of heat treated flour samples in the RVA using i) water and ii) 50% sucrose solution. This can uniquely characterise the heat treatment a flour sample has received and to establish a cake flour specification. This approach might be useful for the characterisation of processed samples, rather than by baking cakes. Hence, it may no longer be needed to bake a cake after flour heat treatment to assess the suitability of the flour for high ratio cake production, but 2 types of RVA tests suffice. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Evaluation of the Characteristics of the Aluminum Alloy Casting Material by Heat Treatment

    International Nuclear Information System (INIS)

    Lee, Syung Yul; Park, Dong Hyun; Won, Jong Pil; Kim, Yun Hae; Lee, Myung Hoon; Moon, Kyung Man; Jeong, Jae Hyun

    2012-01-01

    Aluminum is on active metal, but it is well known that its oxide film plays a role as protective barrier which is comparatively stable in air and neutral aqueous solution. Thus, aluminum alloys have been widely applied in architectural trim, cold and hot-water storage vessels and piping etc., furthermore, the aluminum alloy of AC8A have been widely used in mold casting material of engine piston because of its properties of temperature and wear resistance. In recent years, the oil price is getting higher and higher, thus the using of low quality oil has been significantly increased in engines of ship and vehicle. Therefore it is considered that evaluation of corrosion resistance as well as wear resistance of AC8A material is also important to improve its property and prolong its lifetime. In this study, the effect of solution and tempering heat treatment to corrosion and wear resistance is investigated with electrochemical method and measurement of hardness. The hardness decreased with solution heat treatment compared to mold casting condition, but its value increased with tempering heat treatment and exhibited the highest value of hardness with tempering heat treatment temperature at 190 .deg. C for 24hrs. Furthermore, corrosion resistance increased with decreasing of the hardness, and decreased with increasing of the hardness reversely. As a result, it is suggested that the optimum heat treatment to improve both corrosion and wear resistance is tempering heat treatment temperature at 190 .deg. C for 16hrs

  19. Calorimetric determination of the heat of precipitation of pseudoephedrine racemic compound--its agreement with the heat of solution.

    Science.gov (United States)

    Pudipeddi, M; Sokoloski, T D; Duddu, S P; Carstensen, J T

    1995-10-01

    The heat of precipitation of dl-pseudoephedrine was determined by direct calorimetry using a Tronac isoperibolic calorimeter. The precipitation of dl-pseudoephedrine was induced by mixing aqueous solutions of the two enantiomers, namely, d- and l-pseudoephedrine, directly in the calorimeter. The molar heat of precipitation of dl-pseudoephedrine was -2.7 and -3.0 kcal/mol at 25 and 30 degrees C, respectively. The aqueous solubility of dl-pseudoephedrine was determined over a temperature range of 20-40 degrees C. The van't Hoff solubility plot was nonlinear. The apparent heat of solution at saturation was obtained from the solubility data using a nonlinear regression model. A good agreement between the magnitude of the apparent heat of solution at saturation and the heat of precipitation was noticed at both 25 and 30 degrees C.

  20. 49 CFR 179.100-10 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.100-10 Section 179...-10 Postweld heat treatment. (a) After welding is complete, steel tanks and all attachments welded... treatment is prohibited. (c) Tank and welded attachments, fabricated from ASTM A 240/A 240M (IBR, see § 171...

  1. First heats of cerium solution in liquid aluminium, gallium, indium, tin, lead and bismuth

    International Nuclear Information System (INIS)

    Yamshchikov, L.F.; Lebedev, V.A.; Nichkov, I.F.; Raspopin, S.P.; Shein, V.G.

    1983-01-01

    Cerium solution heats in liquid alluminium, gallium, indium, tin, lead and bismuth are determined in high temperature mixing calorimeter with an isothermal shell. The statistical analysis carried out proves that values of cerium solution heat in fusible metals obtained by the methods of electric motive forces and calorimety give a satisfactory agreement

  2. Effects of heat treatment on the radiosensitivity of Salmonellae

    International Nuclear Information System (INIS)

    Choi, E.H.; Yang, J.S.; Lee, S.R.

    1978-01-01

    When the food poisoning bacteria Salmonella enteritidis and S. typhimurium were treated with radiation (cobalt-60 γ-rays) and heat (10 minutes at 45 0 C or 50 0 C), their sterilizing effect was revealed differently depending on the order of treatments. Post-irradiation heating showed a synergistic effect whereas pre-irradiation heating revealed the opposite effect and the effects differed slightly with heating temperature. (author)

  3. Effects of heat treatments on laser welded Mg-rare earth alloy NZ30K

    International Nuclear Information System (INIS)

    Dai Jun; Huang Jian; Li Min; Li Zhuguo; Dong Jie; Wu Yixiong

    2011-01-01

    Highlights: → Firstly find the tadpole-shape precipitates in the welding joint. → The precipitation strengthening can account for 79% of the total strength. → The results can provide some insights on the application of Mg-RE alloy. - Abstract: In this study, the effects of heat treatments on the quality of laser welded Mg-rare earth alloy NZ30K were systematically studied. The microstructure and mechanical properties of joints, welded by a 15 kW high power CO 2 laser, under different heat treatments had been tested and analyzed. The results indicated that the heat treatment plays an important role in the mechanical strength of laser welded joint of NZ30K. The microstructure of samples after the solution treatment as well as aging treatment is different from that of the as-received welded joint. For solution treatment, although the microstructure is much different from that of as-received welded joint, the solution strengthening effect is not obvious. There are lots of precipitates in the fusion zone after the aging treatment, which will significantly enhance the ultimate tensile strength (UTS) and the yield tensile strength (YTS) of the welding joint. 79% of YTS is caused by precipitation strengthening. Therefore, the results implied that the UTS and YTS can be greatly improved by proper heat treatment.

  4. Fouling of roughened stainless steel surfaces during convective heat transfer to aqueous solutions

    International Nuclear Information System (INIS)

    Herz, A.; Malayeri, M.R.; Mueller-Steinhagen, H.

    2008-01-01

    The deterioration of heat transfer performance due to fouling is the prime cause for higher energy consumption and inefficiency in many industrial heat exchangers such as those in power plants, refineries, food and dairy industries. Fouling is also a very complex process in which many geometrical, physical and operating parameters are involved with poorly understood interaction. Among them, the surface roughness is an important surface characteristic that would greatly influence crystallisation fouling mechanisms and hence deposition morphology and stickability to the surface. In this work, the effect of the surface roughness of AISI 304 BA stainless steel surfaces on fouling of an aqueous solution with inverse solubility behaviour has been investigated under convective heat transfer. Several experiments have been performed on roughened surfaces ranging from 0.18 to 1.55 μm for different bulk concentrations and heat fluxes. The EDTA titration method was used to measure the concentration of the calcium sulphate salt in order to maintain it at constant value during each fouling run. Experimental results show that the heat transfer coefficient of very rough surfaces (1.55 μm) decreases more rapidly than that of 0.54 μm. Several facts contribute to this behaviour notably (1) increased of primary heterogeneous nucleation rate on the surfaces; (2) reduction of local shear stress in the valleys and (3) reduced removal rate of the crystals from the surfaces where the roughness elements protrude out of the viscous sub-layer. The results also show linear and proportional variation of the fouling rate and heat flux within the range of operating conditions. In addition, the deposition process in terms of fouling rate could only be affected at lower surface contact angles. Such results would particularly be of interest for new surface treatment technologies which aim at altering the surface texture

  5. 49 CFR 179.300-10 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.300-10 Section 179.300-10 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Postweld heat treatment. After welding is complete, steel tanks and all attachments welded thereto, must be...

  6. Effect of heat treatment on structure and magnetic properties

    Indian Academy of Sciences (India)

    Fe46Co35Ni19/CNTs nanocomposites have been prepared by an easy two-step route including adsorption and heat treatment processes. We investigated the effect of heat treatment conditions on structure, morphology, nanoparticle sizes and magnetic properties of the Fe46Co35Ni19 alloy nanoparticles attached on the ...

  7. 7 CFR 58.236 - Pasteurization and heat treatment.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Pasteurization and heat treatment. 58.236 Section 58... Service 1 Operations and Operating Procedures § 58.236 Pasteurization and heat treatment. All milk and... is handled according to sanitary conditions approved by the Administrator. (a) Pasteurization. (1...

  8. Effect of heat treatment temperature on binder thermal conductivities

    International Nuclear Information System (INIS)

    Wagner, P.

    1975-12-01

    The effect of heat treatment on the thermal conductivities of a pitch and a polyfurfuryl alcohol binder residue was investigated. Graphites specially prepared with these two binders were used for the experiments. Measured thermal conductivities were treated in terms of a two-component system, and the binder thermal conductivities were calculated. Both binder residues showed increased thermal conductivity with increased heat treatment temperature

  9. Future Services for District Heating Solutions in Residential Districts

    Directory of Open Access Journals (Sweden)

    Hannele Ahvenniemi

    2014-06-01

    Full Text Available The underlying assumption of this study is that in order to retain the competitiveness while reaching for the EU targets regarding low-energy construction, district heating companies need to develop new business and service models. How district heating companies could broaden their perspective and switch to a more service-oriented way of thinking is a key interest of our research. The used methods in our study are house builder interviews and a questionnaire. With the help of these methods we discussed the potential interest in heating related services acquiring a comprehensive understanding of the customer needs. The results indicate the importance of certain criteria when choosing the heating system in households: easiness, comfort and affordability seem to dominate the house builders’ preferences. Also environmental awareness seems to be for many an important factor when making a decision about the heating of the house. Altogether, based on the results of this study, we suggest that the prospects of district heating could benefit from highlighting certain aspects and strengths in the future. District heating companies need to increase flexibility, readiness to adopt new services, to invest in new marketing strategies and improving the communication skills.

  10. Effect of solution treatment temperature and cooling rate on the mechanical properties of tungsten heavy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Anjali, E-mail: anjalikumari1261@gmail.com; Prabhu, G.; Sankaranarayana, M.; Nandy, T.K.

    2017-03-14

    The present study investigates the effect of solution treatment temperature and cooling rate on mechanical properties of a tungsten heavy alloy (89.6W-6.2Ni-1.8Fe-2.4Co). In addition to water quenching, rapid argon quenching has been attempted in this study since it is a relatively cleaner process and it can be used in conjunction with vacuum treatment. Since in these alloys, there is a possibility of incomplete dissolution of intermetallics or segregation of impurities during heat treatment, which results in scatter in the mechanical properties, it was decided that the solution treatment temperature for both water and argon quenching would be varied from 1100 to 1250 °C in order to see its effect on the microstructure and mechanical properties. Solution treatment at varying temperatures followed by water quenching resulted in tensile strength ranging from 908 to 921 MPa and % elongation varied from 19% to 26%. On the other hand, the argon quenching heat treatment resulted in tensile strength in the range of 871–955 MPa and % elongation from 9% to 25%. No significant trend with respect to solution treatment temperature on tensile properties was seen in both argon and water quenched samples. % elongation to failure and impact values of water quenched specimens were better than those of argon quenched specimens for a given solution treatment temperature. The impact values appeared to improve with increasing solution treatment temperature in water quenched condition. The properties were correlated with underlying microstructure and fractographs of the failed specimens. The study showed the argon quenching may not be appropriate for the heat treatment of heavy alloys since it results in inferior mechanical properties as compared to water quenching.

  11. An Analytical Solution for Transient Heat Conduction in a Composite Slab with Time-Dependent Heat Transfer Coefficient

    Directory of Open Access Journals (Sweden)

    Ryoichi Chiba

    2018-01-01

    Full Text Available An analytical solution is derived for one-dimensional transient heat conduction in a composite slab consisting of n layers, whose heat transfer coefficient on an external boundary is an arbitrary function of time. The composite slab, which has thermal contact resistance at n-1 interfaces, as well as an arbitrary initial temperature distribution and internal heat generation, convectively exchanges heat at the external boundaries with two different time-varying surroundings. To obtain the analytical solution, the shifting function method is first used, which yields new partial differential equations under conventional types of external boundary conditions. The solution for the derived differential equations is then obtained by means of an orthogonal expansion technique. Numerical calculations are performed for two composite slabs, whose heat transfer coefficient on the heated surface is either an exponential or a trigonometric function of time. The numerical results demonstrate the effects of temporal variations in the heat transfer coefficient on the transient temperature field of composite slabs.

  12. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  13. Subcooled flow boiling heat transfer of ethanol aqueous solutions in vertical annulus space

    Directory of Open Access Journals (Sweden)

    Sarafraz M.M.

    2012-01-01

    Full Text Available The subcooled flow boiling heat-transfer characteristics of water and ethanol solutions in a vertical annulus have been investigated up to heat flux 132kW/m2. The variations in the effects of heat flux and fluid velocity, and concentration of ethanol on the observed heat-transfer coefficients over a range of ethanol concentrations implied an enhanced contribution of nucleate boiling heat transfer in flow boiling, where both forced convection and nucleate boiling heat transfer occurred. Increasing the ethanol concentration led to a significant deterioration in the observed heat-transfer coefficient because of a mixture effect, that resulted in a local rise in the saturation temperature of ethanol/water solution at the vapor-liquid interface. The reduction in the heat-transfer coefficient with increasing ethanol concentration is also attributed to changes in the fluid properties (for example, viscosity and heat capacity of tested solutions with different ethanol content. The experimental data were compared with some well-established existing correlations. Results of comparisons indicate existing correlations are unable to obtain the acceptable values. Therefore a modified correlation based on Gnielinski correlation has been proposed that predicts the heat transfer coefficient for ethanol/water solution with uncertainty about 8% that is the least in comparison to other well-known existing correlations.

  14. Comparison of two solution ways of district heating control: Using analysis methods, using artificial intelligence methods

    Energy Technology Data Exchange (ETDEWEB)

    Balate, J.; Sysala, T. [Technical Univ., Zlin (Czech Republic). Dept. of Automation and Control Technology

    1997-12-31

    The District Heating Systems - DHS (Centralized Heat Supply Systems - CHSS) are being developed in large cities in accordance with their growth. The systems are formed by enlarging networks of heat distribution to consumers and at the same time they interconnect the heat sources gradually built. The heat is distributed to the consumers through the circular networks, that are supplied by several cooperating heat sources, that means by power and heating plants and heating plants. The complicated process of heat production technology and supply requires the system approach when solving the concept of automatized control. The paper deals with comparison of the solution way using the analysis methods and using the artificial intelligence methods. (orig.)

  15. Evaluating Growth of Zeolites on Fly Ash in Hydro-Thermally Heated Low Alkaline Solution

    Science.gov (United States)

    Jha, Bhagwanjee; Singh, D. N.

    2017-12-01

    Fly ash has been well established materials for synthesis of zeolites, under hydrothermally heated aqueous NaOH solution. Efficacy of such technique is reported to be improved when high molarity of NaOH is used. Consequently, highly alkaline waste solution, as by-product, is generally disposed of in the surrounding, which may contaminate the environment. In this context, less alkaline NaOH solution may become a safer option, which has not been tried in the past as per the literature. With this in view, the present study demonstrates effectiveness of the 0.5 M NaOH solution and critically monitors transition on the fly ash after hydrothermal treatment. As an enhancement over previous researchers, such activation of the fly ash finally results in remarkable morphological and mineralogical growth on the bulk material (the residue), which comprises of new nano-sized crystals (the zeolites Na-P1 and natrolite), after 24 h of activation of the fly ash.

  16. New Nomenclatures for Heat Treatments of Additively Manufactured Titanium Alloys

    Science.gov (United States)

    Baker, Andrew H.; Collins, Peter C.; Williams, James C.

    2017-07-01

    The heat-treatment designations and microstructure nomenclatures for many structural metallic alloys were established for traditional metals processing, such as casting, hot rolling or forging. These terms do not necessarily apply for additively manufactured (i.e., three-dimensionally printed or "3D printed") metallic structures. The heat-treatment terminology for titanium alloys generally implies the heat-treatment temperatures and their sequence relative to a thermomechanical processing step (e.g., forging, rolling). These designations include: β-processing, α + β-processing, β-annealing, duplex annealing and mill annealing. Owing to the absence of a thermomechanical processing step, these traditional designations can pose a problem when titanium alloys are first produced via additive manufacturing, and then heat-treated. This communication proposes new nomenclatures for heat treatments of additively manufactured titanium alloys, and uses the distinct microstructural features to provide a correlation between traditional nomenclature and the proposed nomenclature.

  17. Thermoluminescent determination of prehistoric heat treatment of chert artifacts

    International Nuclear Information System (INIS)

    Melcher, C.L.; Zimmerman, D.W.

    1977-01-01

    In recent years archeologists have become interested in the extent to which prehistoric peoples heat-treated chert prior to shaping it into tools. Thermoluminescent determination of the radiation dose accumulated by an artifact since it was formed or last heated provides a simple, reliable test for such heat treatment. This test can be applied to single artifacts without the need for raw source material for comparison. Results on 25 artifacts from four sites indicate that, for many chert sources, color and luster are not useful indicators of heat treatment by prehistoric peoples

  18. Influence of Heat Treatment on Abrasive Wear Resistance of Silumin Matrix Composite Castings

    Directory of Open Access Journals (Sweden)

    Gawdzińska K.

    2016-03-01

    Full Text Available The authors attempted at examining the effect of heat treatment on abrasive wear resistance of metal composite castings. Metal matrix composites were made by infiltrating preforms created from unordered short fibers (graphite or silumin with liquid aluminium alloy AlSi12(b. Thus prepared composites were subject to solution heat treatment at a temperature of 520°C for four hours, then aging at a temperature of 220°C for four hours. Abrasion resistance of the material was tested before and after thermal treatment.

  19. Process for forming thin film, heat treatment process of thin film sheet, and heat treatment apparatus therefor

    International Nuclear Information System (INIS)

    Watanabe, S.

    1984-01-01

    The invention provides a process for forming a magnetic thin film on a base film, a heat treatment process of a thin film sheet consisting of the base film and the magnetic thin film, and an apparatus for performing heat treatment of the thin film sheet. Tension applied to the thin film sheet is substantially equal to that applied to the base film when the magnetic thin film is formed thereon. Then, the thin film sheet is treated with heat. The thin film sheet is heated with a given temperature gradient to a reactive temperature at which heat shrinkage occurs, while the tension is being applied thereto. Thereafter, the thin film sheet to which the tension is still applied is cooled with substantially the same temperature gradient as applied in heating. The heat treatment apparatus has a film driving unit including a supply reel, a take-up reel, a drive source and guide rollers; a heating unit including heating plates, heater blocks and a temperature controller for heating the sheet to the reactive temperature; and a heat insulating unit including a thermostat and another temperature controller for maintaining the sheet at the nonreactive temperature which is slightly lower than the reactive temperature

  20. Performance analysis and experimental study of heat-source tower solution regeneration

    International Nuclear Information System (INIS)

    Liang, Caihua; Wen, Xiantai; Liu, Chengxing; Zhang, Xiaosong

    2014-01-01

    Highlights: • Theoretical analysis is performed on the characteristics of heat-source tower. • Experimental study is performed on various rules of the solution regeneration rate. • The characteristics of solution regeneration vary widely with different demands. • Results are useful for optimizing the process of solution regeneration. - Abstract: By analyzing similarities and difference between the solution regeneration of a heat-source tower and desiccant solution regeneration, this paper points out that solution regeneration of a heat-source tower has the characteristics of small demands and that a regeneration rate is susceptible to outdoor ambient environments. A theoretical analysis is performed on the characteristics of a heat-source tower solution in different outdoor environments and different regeneration modes, and an experimental study is performed on variation rules of the solution regeneration rate of a cross-flow heat-source tower under different inlet parameters and operating parameters. The experimental results show that: in the operating regeneration mode, as the air volume was increased from 123 m 3 h −1 to 550 m 3 h −1 , the system heat transfer amount increased from 0.42 kW to 0.78 kW, and the regeneration rate increased from 0.03 g s −1 to 0.19 g s −1 . Increasing the solution flow may increase the system heat transfer amount; however, the regeneration rate decreased to a certain extent. In the regeneration mode when the system is idle, as the air volume was increased from 136 m 3 h −1 to 541 m 3 h −1 , the regeneration rate increased from 0.03 g s −1 to 0.1 g s −1 . The regeneration rate almost remained unchanged around 0.07 g s −1 as the solution flow is increased. In the regeneration mode with auxiliary heat when the system is idle, increasing the air volume and increasing the solution flow required more auxiliary heat, thereby improving the solution regeneration rate. As the auxiliary heat was increased from 0.33 k

  1. Treatment for hydrazine-containing waste water solution

    Science.gov (United States)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  2. A Study of Ballast Water Treatment Using Engine Waste Heat

    Science.gov (United States)

    Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin

    2018-05-01

    Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.

  3. Effect of heat treatment and artificial ageing on Al-5Mg-2Zn

    CSIR Research Space (South Africa)

    Chauke, Levy

    2017-10-01

    Full Text Available ageing of Al-5Mg-2Zn. The study showed intermetallic phases at the grain boundaries and a melting peak at about 476 °C for the F condition. Solution heat treatment at 440°C for 4 hours dissolved the intermetallic phase thus increasing the melting point...

  4. The solution of heat transfer problems using HEATRAN

    International Nuclear Information System (INIS)

    Collier, W.D.

    1976-07-01

    HEATRAN solves the heat diffusion equation over a two dimensional area of any shape or material distribution. Transfer by radiation across voids is allowed and special provsion is made for narrow gaps. A wide range of boundary conditions is available. (author)

  5. A Heat Vulnerability Index and Adaptation Solutions for Pittsburgh, Pennsylvania.

    Science.gov (United States)

    Bradford, Kathryn; Abrahams, Leslie; Hegglin, Miriam; Klima, Kelly

    2015-10-06

    With increasing evidence of global warming, many cities have focused attention on response plans to address their populations' vulnerabilities. Despite expected increased frequency and intensity of heat waves, the health impacts of such events in urban areas can be minimized with careful policy and economic investments. We focus on Pittsburgh, Pennsylvania and ask two questions. First, what are the top factors contributing to heat vulnerability and how do these characteristics manifest geospatially throughout Pittsburgh? Second, assuming the City wishes to deploy additional cooling centers, what placement will optimally address the vulnerability of the at risk populations? We use national census data, ArcGIS geospatial modeling, and statistical analysis to determine a range of heat vulnerability indices and optimal cooling center placement. We find that while different studies use different data and statistical calculations, all methods tested locate additional cooling centers at the confluence of the three rivers (Downtown), the northeast side of Pittsburgh (Shadyside/Highland Park), and the southeast side of Pittsburgh (Squirrel Hill). This suggests that for Pittsburgh, a researcher could apply the same factor analysis procedure to compare data sets for different locations and times; factor analyses for heat vulnerability are more robust than previously thought.

  6. Causes and Architectural Solution to Heat and Nonconducive Air ...

    African Journals Online (AJOL)

    Passive Solar building aspire to maintain interior thermal comfort all through the sun's daily and annual cycles at the same time as reducing the requirement for active cooling and heating systems. Passive solar building design is one fraction of green building design and does not consist of active systems such as ...

  7. Genetic solutions to infertility caused by heat stress

    Science.gov (United States)

    Reproductive function in mammals is very susceptible to disruption by heat stress. In lactating dairy cows, for example, pregnancy rates per insemination can be as low as 10-15% in the summer vs. 25-40% in cool weather. Reduced fertility in females is caused by a combination of 1) the negative cons...

  8. Effect of heat treatment on carbon steel pipe welds

    International Nuclear Information System (INIS)

    Mohamad Harun.

    1987-01-01

    The heat treatment to improve the altered properties of carbon steel pipe welds is described. Pipe critical components in oil, gasification and nuclear reactor plants require adequate room temperature toughness and high strength at both room and moderately elevated temperatures. Microstructure and microhardness across the welds were changed markedly by the welding process and heat treatment. The presentation of hardness fluctuation in the welds can produce premature failure. A number of heat treatments are suggested to improve the properties of the welds. (author) 8 figs., 5 refs

  9. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bartholomew, Timothy V [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-06-26

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient to passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon

  10. Treatment of phosphorus-uraniferous solution

    International Nuclear Information System (INIS)

    Araujo Figueiredo, C. de.

    1984-01-01

    A solvent extraction process for the recovery of uranium from Itataia wet process phosphoric acid was studied. The proposed process consists of two extraction cycles. Uranium, reduced to its tetravalent state, is extracted in the first cycle using octylpyrosphoric acid (OPPA) in a kerosene type diluent. Stripping is accomplished with concentrated raffinate phosphoric acid and an oxidizing agent, in order to convert U (IV) to its hexavalent state. The strip solution from the first cycle is processed in the second cycle with the synergistic combination of di-( 2- ethylhexyl) phosphoric acid and tri-n-octylphosphine oxide (D2EHPA-TOPO). The extract is scrubbed and uranium is stripped with ammonium carbonate solution and recovered as a commercial concentrate. The results obtained from batch tests were used to set up a bench scale array of mixer settlers so as to demonstrate the process. (Author) [pt

  11. Ultrasonic evaluation of heat treatment for stress relief in steel

    International Nuclear Information System (INIS)

    Bittencourt, Marcelo de S.Q.; Lamy, Carlos A.; Goncalves Filho, Orlando J.A.; Payao Filho, Joao da C.

    2000-01-01

    Residual stresses in materials arise due to the manufacturing processes. As a consequence, in the nuclear area some components must suffer a stress relief treatment according to strict criteria. Although these treatments are carefully carried on, concern with nuclear safety is constantly growing. This work proposes a nondestructive ultrasonic method to guarantee the efficiency of the heat treatment. It was used a short peened steel plate with tensile and compressive stresses which was submitted to a stress relief treatment. The results show that the proposed ultrasonic method could be used to confirm the efficiency of the stress relief heat treatment. (author)

  12. Online Adaptive Hyperthermia Treatment Planning During Locoregional Heating to Suppress Treatment-Limiting Hot Spots

    NARCIS (Netherlands)

    Kok, H. Petra; Korshuize-van Straten, Linda; Bakker, Akke; de Kroon-Oldenhof, Rianne; Geijsen, Elisabeth D.; Stalpers, Lukas J. A.; Crezee, Johannes

    2017-01-01

    Adequate tumor temperatures during hyperthermia are essential for good clinical response, but excessive heating of normal tissue should be avoided. This makes locoregional heating using phased array systems technically challenging. Online application of hyperthermia treatment planning could help to

  13. Solvation thermodynamics and heat capacity of polar and charged solutes in water

    Science.gov (United States)

    Sedlmeier, Felix; Netz, Roland R.

    2013-03-01

    The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F- and a Na+ ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na+ and F- ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity ΔCp stays positive and even increases slightly upon charging the Na+ ion, it decreases upon charging the F- ion and becomes negative beyond an ion charge of q = -0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.

  14. Heat Transfer Analysis of Localized Heat-Treatment for Grade 91 Steel

    Science.gov (United States)

    Walker, Jacob D.

    Many of the projects utilizing Grade 91 steel are large in scale, therefore it is necessary to assemble on site. The assembly of the major pieces requires welding in the assembly; this drastically changes the superior mechanical properties of Grade 91 steel that it was specifically developed for. Therefore, because of the adverse effects of welding on the mechanical properties of Grade 91, it is necessary to do a localized post weld heat treatment. As with most metallic materials grade 91 steel requires a very specific heat treatment process. This process includes a specific temperature and duration at that temperature to achieve the heat treatment desired. Extensive research has been done to determine the proper temperatures and duration to provide the proper microstructure for the superior mechanical properties that are inherent to Grade 91 steel. The welded sections are typically large structures that require local heat treatments and cannot be placed in an oven. The locations of these structures vary from indoors in a controlled environment to outdoors with unpredictable environments. These environments can be controlled somewhat, however in large part the surrounding conditions are unchangeable. Therefore, there is a need to develop methods to accurately apply the surrounding conditions and geometries to a theoretical model in order to provide the proper requirements for the local heat treatment procedure. Within this requirement is the requirement to define unknowns used in the heat transfer equations so that accurate models can be produced and accurate results predicted. This study investigates experimentally and numerically the heat transfer and temperature fields of Grade 91 piping in a local heat treatment. The objective of this thesis research is to determine all of the needed heat transfer coefficients. The appropriate heat transfer coefficients are determined through the inverse heat conduction method utilizing a ceramic heat blanket. This will be done

  15. The non-differentiable solution for local fractional Laplace equation in steady heat-conduction problem

    Directory of Open Access Journals (Sweden)

    Chen Jie-Dong

    2016-01-01

    Full Text Available In this paper, we investigate the local fractional Laplace equation in the steady heat-conduction problem. The solutions involving the non-differentiable graph are obtained by using the characteristic equation method (CEM via local fractional derivative. The obtained results are given to present the accuracy of the technology to solve the steady heat-conduction in fractal media.

  16. Investigations of Heat Recovery in Different Refrigeration System Solutions in Supermarkets. Effsys2 project final report

    Energy Technology Data Exchange (ETDEWEB)

    Sawalha, Same; Chen, Yang

    2010-07-01

    Supermarkets are intensive energy consumers with constantly increasing number of installations. About 50 % of the energy consumption in the supermarket is absorbed by the refrigeration system to cover the cooling demands. Simultaneously, heating is needed in the supermarket where the rejected heat from the refrigeration system is usually higher than the needs. It is an interesting possibility to utilize the rejected heat from the refrigeration system to cover the heating needs in supermarkets. The objective of this project is to investigate the heat recovery performance of the new refrigeration system solutions in supermarket applications. The focus is on environmentally friendly systems with natural working fluids, mainly CO{sub 2} trans-critical systems. The project analyzes the temperature levels and capacities of rejected heat from different system solutions and investigates its matching with the heating needs in supermarkets. Using simulation tools this project also aims at defining the system solution/s which has good energy efficiency for simultaneous cooling and heat recovery.

  17. Twin solution calorimeter determines heats of formation of alloys at high temperatures

    Science.gov (United States)

    Darby, J. B., Jr.; Kleb, R.; Kleppa, O. J.

    1968-01-01

    Calvert-type, twin liquid metal solution calorimeter determines the heats of formation of transition metal alloys at high temperatures. The twin differential calorimeter measures the small heat effects generated over extended periods of time, has maximum operating temperature of 1073 degrees K and an automatic data recording system.

  18. Examination of heat treatments at preservation of grape must

    Directory of Open Access Journals (Sweden)

    Péter Korzenszky

    2014-02-01

    Full Text Available Heat treatment is a well-known process in food preservation. It is made to avoid and to slow down food deterioration. The process was developed by Louise Pasteur French scientist to avoid late among others wine further fermentation. The different heat treatments influence the shelf life in food production. In our article we present the process of grape must fermentation, as grape must is the base material of wine production. The treatment of harvested fresh grape juice has a big influence on end product quality. It is our experiments we examined the same grape must with four different methods in closed and in open spaces to determine CO2 concentration change. There are four different methods for treatment of grape juice: boiling, microwave treatment, treatment by water bath thermostat and a control without treatment. As a result of the comparison it can be stated that the heat treatment delays the start of fermentation, thereby increasing shelf life of grape must. However, no significant differences were found between two fermentation of heat-treated grape must by the microwave and water-bath thermostat. The different heat treatment of grape must base materials was done at the laboratory in Faculty of Mechanical Engineering of Szent István University. The origin of the table grapes used for the examination was Gödöllő-hillside. Normal 0 21 false false false HU X-NONE X-NONE

  19. Solar thermal space heating combined with swimming pool heating: A promising solution for southern Europe climates

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, M.J.; Neves, Ana [INETI/DER, Lisboa (Portugal)

    2006-07-01

    The system concept evaluation performed focused on systems that can provide hot water, space heating and swimming-pool heating, and are designed for application in southern climates specifically for single-family houses. Due to the climate characteristics of southern Europe, space heating is required only for a few months in the year. In this evaluation it was considered a six month period for space heating and, on the other six months, swimming pool heating was considered. This type of systems are applicable to a niche market of people who are building their houses as single-family houses and want also to take profit of the good climate conditions for the use of solar energy. It is common that the construction of a swimming pool is also planned and constructed. The evaluation is made considering as reference system a factory made with 4m{sup 2} collector area and 300 l storage tank. The system in evaluation offers extra service - space heating and swimming pool heating and is formed by a collector field and a combistore providing solar hot water preparation and space heating in the winter period and providing also swimming pool heating in the summer period. The evaluation made shows that in southern Europe climates this system will give extra service in comparison to the traditional solar systems used and can be economically interesting.

  20. Heat and mass transfer at adiabatic evaporation of binary zeotropic solutions

    Science.gov (United States)

    Makarov, M. S.; Makarova, S. N.

    2016-01-01

    Results of numerical simulation of heat and mass transfer in a laminar flow of three-component gas at adiabatic evaporation of binary solutions from a flat plate are presented. The studies were carried out for the perfect solution of ethanol/methanol and zeotrope solutions of water/acetone, benzene/acetone, and ethanol/acetone. The liquid-vapor equilibrium is described by the Raoult law for the ideal solution and Carlson-Colburn model for real solutions. The effect of gas temperature and liquid composition on the heat and diffusion flows, and temperature of vapor-gas mixture at the interface is analyzed. The formula for calculating the temperature of the evaporation surface for the binary liquid mixtures using the similarity of heat and mass transfer was proposed. Data of numerical simulations are in a good agreement with the results of calculations based on the proposed dependence for all examined liquid mixtures in the considered range of temperatures and pressures.

  1. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes

    OpenAIRE

    D'Evoli, Laura; Lombardi-Boccia, Ginevra; Lucarini, Massimo

    2013-01-01

    Tomatoes and tomato products are rich sources of carotenoids—principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in ...

  2. Influence of heat treatment on the machinability and corrosion behavior of AZ91 Mg alloy

    Directory of Open Access Journals (Sweden)

    Swetha Chowdary V

    2018-03-01

    Full Text Available In the present study, AZ91 Mg alloy was heat treated at 410 °C for 6, 12 and 24 h to investigate the influence of heat treatment on machinability and corrosion behavior. The effect of soaking time on the amount and distribution of Mg17Al12 (β – phase was analyzed under the optical microscope. Microhardness measurements demonstrated the increased hardness with increased heat treatment soaking time, which can be attributed to the solid solution strengthening. The influence of super saturated α-grains on reducing the cutting force (Fz with respect to increased cutting speed was observed as prominent. The corrosion behavior of the heat treated specimens was studied by conducting electrochemical tests. Surprisingly, corrosion rate of heat treated samples was observed as increased compared with the base material. From the results, it is evident that the machinability of AZ91 Mg alloy can be improved by producing super saturated α-grains through heat treatment but at the cost of losing corrosion resistance. Keywords: AZ91 Mg alloy, Solid solution, Turning, Corrosion, Machinability

  3. Treatment of spent solutions containing tributylphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Barinova, Ella A.; Diordiy, Mikhail N.; Karlina, Olga K. [Federal State Unitary Enterprise ' RADON' , 2/14, 7 th Rostovsky lane, Moscow (Russian Federation)

    2013-07-01

    The realization of the process of treatment of organic radioactive waste (RW) containing tributylphosphate (TBP) in hydrocarbon solvent under the laboratory conditions is considered in this work. The main parameters of the process have been investigated as well as the characteristics of the final process product - sodium-aluminium-phosphate glass matrix. (authors)

  4. Finite element solution of two dimensional time dependent heat equation

    International Nuclear Information System (INIS)

    Maaz

    1999-01-01

    A Microsoft Windows based computer code, named FHEAT, has been developed for solving two dimensional heat problems in Cartesian and Cylindrical geometries. The programming language is Microsoft Visual Basic 3.0. The code makes use of Finite element formulation for spatial domain and Finite difference formulation for time domain. Presently the code is capable of solving two dimensional steady state and transient problems in xy- and rz-geometries. The code is capable excepting both triangular and rectangular elements. Validation and benchmarking was done against hand calculations and published results. (author)

  5. Effect of phosphorus and heat treatment on microstructure of Al-25%Si alloy

    Directory of Open Access Journals (Sweden)

    Bo Dang

    2017-01-01

    Full Text Available It is known that phosphorus can refine the primary silicon and heat treatment can spheroidize the eutectic silicon. This paper presents an optimal combination of heat treatment processes and P refinement on hypereutectic Al-Si alloy. The optimal P addition amount, and the solution and aging temperatures for Al-25%Si alloy were obtained through the orthogonal experiment, and their modification effects were discussed. The results show that P addition has the greatest modification effect, followed by aging temperature, and the modification effect of solution temperature is the least. The optimized modification parameters are: addition of 0.6% P, solution at 540 篊 and aging at 160 篊 . In addition, the cooling curve, superheating and hardness of the alloy were also analyzed.

  6. Effect of Shortened Heat Treatment on the Hardness and Microstructure of 320.0 Aluminium Alloy

    Directory of Open Access Journals (Sweden)

    Pezda J.

    2014-06-01

    Full Text Available Improvement of Al-Si alloys properties in scope of classic method is connected with change of Si precipitations morphology through: using modification of the alloy, maintaining suitable temperature of overheating and pouring process, as well as perfection of heat treatment methods. Growing requirements of the market make it necessary to search after such procedures, which would quickly deliver positive results with simultaneous consideration of economic aspects. Presented in the paper shortened heat treatment with soaking of the alloy at temperature near temperature of solidus could be assumed as the method in the above mentioned understanding of the problem. Such treatment consists in soaking of the alloy to temperature of solutioning, keeping in such temperature, and next, quick quenching in water (20 °C followed by artificial ageing. Temperature ranges of solutioning and ageing treatments implemented in the adopted testing plan were based on analysis of recorded curves from the ATD method. Obtained results relate to dependencies and spatial diagrams describing effect of parameters of the solutioning and ageing treatments on HB hardness of the investigated alloy and change of its microstructure. Performed shortened heat treatment results in precipitation hardening of the investigated 320.0 alloy, what according to expectations produces increased hardness of the material.

  7. Improved process for the treatment of bituminous materials. [two heat treatments

    Energy Technology Data Exchange (ETDEWEB)

    1947-04-30

    A continuous process for recovering valuable hydrocarbon oils from solid minerals adapted to produce such oils upon application of heat, consists of reducing the raw minerals to a powder, suspending the powdered minerals in a gaseous medium and subjecting the suspension thus formed to heat treatment in a primary reaction zone, followed by heat treatment in a secondary reaction zone separate from the primary reaction zone. The temperature during the second of said treatments being substantially higher than that of the first.

  8. Heat treatment of cathodic arc deposited amorphous hard carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Ager, J.W. III; Brown, I.G. [and others

    1997-02-01

    Amorphous hard carbon films of varying sp{sup 2}/sp{sup 3} fractions have been deposited on Si using filtered cathodic are deposition with pulsed biasing. The films were heat treated in air up to 550 C. Raman investigation and nanoindentation were performed to study the modification of the films caused by the heat treatment. It was found that films containing a high sp{sup 3} fraction sustain their hardness for temperatures at least up to 400 C, their structure for temperatures up to 500 C, and show a low thickness loss during heat treatment. Films containing at low sp{sup 3} fraction graphitize during the heat treatment, show changes in structure and hardness, and a considerable thickness loss.

  9. Effect of heat treatment on anodic activation of aluminium by trace element indium

    Energy Technology Data Exchange (ETDEWEB)

    Graver, Brit [Department of Materials Science and Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Helvoort, Antonius T.J. van [Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Nisancioglu, Kemal, E-mail: kemal.nisancioglu@material.ntnu.n [Department of Materials Science and Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2010-11-15

    Research highlights: {yields} Indium segregation activates AlIn alloy surface anodically in chloride solution. {yields} Enrichment of In on Al surface can occur thermally by heat treatment at 300 {sup o}C. {yields} Increasing temperature homogenises indium in aluminium reducing anodic activation. {yields} Indium can activate AlIn surface by segregating through dealloying of aluminium. {yields} Anodic activation is caused by AlIn amalgam formation at aluminium surface. - Abstract: The presence of trace elements in Group IIIA-VA is known to activate aluminium anodically in chloride environment. The purpose of this paper is to investigate the surface segregation of trace element In by heat treatment and resulting surface activation. Model binary AlIn alloys, containing 20 and 1000 ppm by weight of In, were characterized after heat treatment at various temperatures by use of glow discharge optical emission spectroscopy, electron microscopy and electrochemical polarization. Heat treatment for 1 h at 300 {sup o}C gave significant segregation of discrete In particles (thermal segregation), which activated the surface. Indium in solid solution with aluminium, obtained by 1 h heat treatment at 600 {sup o}C, also activated by surface segregation of In on alloy containing 1000 ppm In, resulting from the selective dissolution of the aluminium component during anodic oxidation (anodic segregation). The effect of anodic segregation was reduced by decreasing indium concentration in solid solution; it had negligible effect at the 20 ppm level. The segregated particles were thought to form a liquid phase alloy with aluminium during anodic polarization, which in turn, together with the chloride in the solution destabilized the oxide.

  10. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    Science.gov (United States)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  11. Solution of the conjugated heat transfer problem for the fuel elements assemblies

    International Nuclear Information System (INIS)

    Golba, V.S.; Ivanenko, I.J.; Zinina, G.A.

    1997-01-01

    The paper presents the assemblies conjugated heat conductivity problem calculation and experimental method. The method is based on the temperature superposition modified concept and subchannel method and allows to predict the fuel elements surface temperatures with availability of fuel elements inside structure of any complication caused by technological and working defects and with availability of depositions with low heat conductivity on the fuel elements surfaces. According to the method developed the partial solutions of the heat conductivity equation at the heat removal boundaries (solid-liquid) are found separately for the fuel elements and for the liquid. The heat conductivity equation partial solutions for the fuel elements are predicted by calculations. The coolant heat conductivity equation partial solution ('influence functions') data massif is obtained in present work experimentally in the fuel assembly model consists of 7 tube bundle of fuel elements imitators placed in right grating with relative grating step equal to 1.1 and cooled by eutectic alloy Pb-Bi. It is shown that 'subchannel prediction method' decreases the crosswise heat transfer in comparison with crosswise heat transfer, when the fuel element inside structure is taken into account. Also in the paper it is shown that it is possible to realize the assembly temperature prediction method suggested without carrying out the experiments in the assembly's model in order to get the external problem influence functions'. (author)

  12. PN solutions of radiative heat transfer in a slab with reflective boundaries

    International Nuclear Information System (INIS)

    Atalay, M.A.

    2006-01-01

    The spherical harmonics method is used to obtain solution for the radiative heat transfer equation for a slab with reflective boundaries. An absorbing, emitting, non-isothermal, gray medium is considered with linearly anisotropic scattering. Under the condition of the thermal equilibrium, the slab boundaries are subjected to specular and diffuse reflection. The analytical form of solutions is obtained for both conservative and non-conservative cases. The accuracy of the method was verified by benchmark comparisons against the solutions of an earlier work performed by the normal-mode expansion technique. The present predictions of heat flux were found to be in good agreement with the benchmark data. a

  13. On the physical solutions to the heat equation subjected to nonlinear boundary conditions

    International Nuclear Information System (INIS)

    Gama, R.M.S. da.

    1990-01-01

    This work consists of a discussion on the physical solutions to the steady-state heat transfer equation, when it is subjected to nonlinear boundary conditions. It will be presented a functional, whose minimum occurs for the (unique) physical solution to the condidered heat transfer problem, suitable for a large class of typical (nonlinear) boundary conditions (representing the radiative/convective loss from the body to the environment). It will be demonstrated that these problems admit-always one, and only one, physical solution (which represents the absolute temperature). (author)

  14. Solution of axisymmetric transient inverse heat conduction problems using parameter estimation and multi block methods

    International Nuclear Information System (INIS)

    Azimi, A.; Hannani, S.K.; Farhanieh, B.

    2005-01-01

    In this article, a comparison between two iterative inverse techniques to solve simultaneously two unknown functions of axisymmetric transient inverse heat conduction problems in semi complex geometries is presented. The multi-block structured grid together with blocked-interface nodes is implemented for geometric decomposition of physical domain. Numerical scheme for solution of transient heat conduction equation is the finite element method with frontal technique to solve algebraic system of discrete equations. The inverse heat conduction problem involves simultaneous unknown time varying heat generation and time-space varying boundary condition estimation. Two parameter-estimation techniques are considered, Levenberg-Marquardt scheme and conjugate gradient method with adjoint problem. Numerically computed exact and noisy data are used for the measured transient temperature data needed in the inverse solution. The results of the present study for a configuration including two joined disks with different heights are compared to those of exact heat source and temperature boundary condition, and show good agreement. (author)

  15. Heat treatment of transparent Yb:YAG and YAG ceramics and its influence on laser performance

    Science.gov (United States)

    Fujioka, Kana; Mochida, Tetsuo; Fujimoto, Yasushi; Tokita, Shigeki; Kawanaka, Junji; Maruyama, Momoko; Sugiyama, Akira; Miyanaga, Noriaki

    2018-05-01

    Composite transparent ceramic materials are promising for improving the performance of high-average-power lasers. A combination of room-temperature bonding via surface treatment by a fast atom beam and diffusion bonding via heating, which effectively controls the ion diffusion distance near the interface, makes the laser materials suitable for a variety of oscillator/amplifier. During the heat treatment of yttrium aluminum garnet (YAG) ceramics, the Si ions in the solid solution of the sintering aid incorporated within the grains were seen to segregate at the grain boundary, resulting in an increase of scattering sites. The number density and size of the scattering sites strongly depended on the post-heating temperature rather than the heating time. Specifically, heating at 1300 °C did not affect the transmittance of the YAG ceramic, whereas both the size and number of scattering sites substantially increased with a heat treatment at 1400 °C. The laser oscillation experiment using cryogenically-cooled Yb:YAG ceramics exhibited heating temperature dependence of the slope efficiency owing to the increasing scattering loss.

  16. Effect of heat-treatment on elevated temperature fatigue-crack growth behavior of two heats of Alloy 718

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    1978-05-01

    The room temperature and elevated temperature fatigue-crack growth behavior of two heats of Alloy 718 was characterized within a linear-elastic fracture mechanics framework. Two different heat-treatments were used: the ''conventional'' (ASTM A637) treatment, and a ''modified'' heat-treatment designed to improve the toughness of Alloy 718 base metal and weldments. Heat-to-heat variations in the fatigue-crack propagation behavior were observed in the conventionally-treated material. On the other hand, no heat-to-heat variations were observed in the modified condition. Furthermore, both heats of Alloy 718 exhibited superior fatigue-crack growth resistance when given the modified heat-treatment. Electron fractographic examination of Alloy 718 fatigue fracture surfaces revealed that the operative crack growth mechanisms were dependent on heat-treatment, temperature, and ΔK level

  17. Technical Solution for Protection of Heat Pump Evaporators Against Freezing the Moisture Condensed

    Directory of Open Access Journals (Sweden)

    Vasilyev Gregory P.

    2016-01-01

    Full Text Available This article is dedicated to the study of the processes of formation and freezing of condensate in heat exchangers using ambientair heat and is prepared according to the results of experimental investigations. The aim of this work has been set to elaboratean energy-independent technical solution for protection of heat-exchange equipment against freezing the moisture condensed on the heat-exchange surfaces while using the low-potential heat of ambient air in heat pump systems. The investigations have shown that at the temperatures of ambient air close to 0°C when using the «traditional» way of defrostation, which means the reverse mode of operation of heat pump, an intensive formation of ice is observed at the bottom part of evaporator (if not provided with tray heater. This effect is provoked by downward flow of thawed water and it’s freezing in the lower part of the heat-exchanger due to the fact that the tray and housing of heat pump have a temperature below zero. Thereafter, while the defrostation mode has been periodically used, the ice coat would be going to continue its growth, and by time significant area of evaporator could appear to be covered with ice. The results of the investigations presented in the article could be applied both to air-source heat pumps and to ventilation air heat recuperators.

  18. Effect of heat moisture treatment and annealing on physicochemical ...

    African Journals Online (AJOL)

    Red sorghum starch was physically modified by annealing and heat moisture treatment. The swelling power and solubility increased with increasing temperature range (60-90°), while annealing and heatmoisture treatment decreased swelling power and solubility of starch. Solubility and swelling were pH dependent with ...

  19. Solutions to mitigate heat loads due to electrons on sensitive components of ITER HNB beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Emanuele, E-mail: emanuele.sartori@gmail.com [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Veltri, Pierluigi; Dalla Palma, Mauro; Agostinetti, Piero [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Hemsworth, Ronald; Singh, Mahendrajit [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Serianni, Gianluigi [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy)

    2016-11-01

    Highlights: • Energetic electrons leaking out of the ITER HNB accelerator are simulated. • Electrons generated along the ITER HNB beamline are simulated. • Heat loads and heat load maps on cryopumps are calculated for ITER HNB and test facility. • Protection solutions that will be installed are presented and their effect discussed. - Abstract: The operation of neutral beam injectors for plasma heating and current drive in a fusion device provides challenges in the thermal management of beamline components. Sensitive components such as the cryogenic pumps at beamline periphery shall be protected from the heat flux due to stray electrons. These are emitted by the negative ion accelerator or generated along the beamline by interaction of fast electrons, ions or atoms with background gas and surfaces. In this article the case of the ITER Heating Neutral Beam (HNB) and its test facility MITICA is discussed, for which the beam parameters and the required pulse length of one hour is a major leap forward with respect to the present experience with neutral beam systems. The engineering solutions adopted for effective cryopump protection against the heat load from electrons are described. The use of three-dimensional numerical simulations of particle trajectories in the complex geometry of the beamline was needed for the quantitative estimations of the heat loads. The presented solutions were optimized to minimize the impact on gas pumping and on the functionality of other components.

  20. Comparison of DSMC and CFD Solutions of Fire II Including Radiative Heating

    Science.gov (United States)

    Liechty, Derek S.; Johnston, Christopher O.; Lewis, Mark J.

    2011-01-01

    The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. These flows may also contain significant radiative heating. To prepare for these missions, NASA is developing the capability to simulate rarefied, ionized flows and to then calculate the resulting radiative heating to the vehicle's surface. In this study, the DSMC codes DAC and DS2V are used to obtain charge-neutral ionization solutions. NASA s direct simulation Monte Carlo code DAC is currently being updated to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced Quantum-Kinetic chemistry model, and to include electronic energy levels as an additional internal energy mode. The Fire II flight test is used in this study to assess these new capabilities. The 1634 second data point was chosen for comparisons to be made in order to include comparisons to computational fluid dynamics solutions. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid. It is shown that there can be quite a bit of variability in the vibrational temperature inferred from DSMC solutions and that, from how radiative heating is computed, the electronic temperature is much better suited for radiative calculations. To include the radiative portion of heating, the flow-field solutions are post-processed by the non-equilibrium radiation code HARA. Acceptable agreement between CFD and DSMC flow field solutions is demonstrated and the progress of the updates to DAC, along with an appropriate radiative heating solution, are discussed. In addition, future plans to generate more high fidelity radiative heat transfer solutions are discussed.

  1. An analytical solution to the heat transfer problem in thick-walled hunt flow

    International Nuclear Information System (INIS)

    Bluck, Michael J; Wolfendale, Michael J

    2017-01-01

    Highlights: • Convective heat transfer in Hunt type flow of a liquid metal in a rectangular duct. • Analytical solution to the H1 constant peripheral temperature in a rectangular duct. • New H1 result demonstrating the enhancement of heat transfer due to flow distortion by the applied magnetic field. • Analytical solution to the H2 constant peripheral heat flux in a rectangular duct. • New H2 result demonstrating the reduction of heat transfer due to flow distortion by the applied magnetic field. • Results are important for validation of CFD in magnetohydrodynamics and for implementation of systems code approaches. - Abstract: The flow of a liquid metal in a rectangular duct, subject to a strong transverse magnetic field is of interest in a number of applications. An important application of such flows is in the context of coolants in fusion reactors, where heat is transferred to a lead-lithium eutectic. It is vital, therefore, that the heat transfer mechanisms are understood. Forced convection heat transfer is strongly dependent on the flow profile. In the hydrodynamic case, Nusselt numbers and the like, have long been well characterised in duct geometries. In the case of liquid metals in strong magnetic fields (magnetohydrodynamics), the flow profiles are very different and one can expect a concomitant effect on convective heat transfer. For fully developed laminar flows, the magnetohydrodynamic problem can be characterised in terms of two coupled partial differential equations. The problem of heat transfer for perfectly electrically insulating boundaries (Shercliff case) has been studied previously (Bluck et al., 2015). In this paper, we demonstrate corresponding analytical solutions for the case of conducting hartmann walls of arbitrary thickness. The flow is very different from the Shercliff case, exhibiting jets near the side walls and core flow suppression which have profound effects on heat transfer.

  2. Effect of heat treatments on machinability of gold alloy with age-hardenability at intraoral temperature.

    Science.gov (United States)

    Watanabe, I; Baba, N; Watanabe, E; Atsuta, M; Okabe, T

    2004-01-01

    This study investigated the effect of heat treatment on the machinability of heat-treated cast gold alloy with age-hardenability at intraoral temperature using a handpiece engine with SiC wheels and an air-turbine handpiece with carbide burs and diamond points. Cast gold alloy specimens underwent various heat treatments [As-cast (AC); Solution treatment (ST); High-temperature aging (HA), Intraoral aging (IA)] before machinability testing. The machinability test was conducted at a constant machining force of 0.784N. The three circumferential speeds used for the handpiece engine were 500, 1,000 and 1,500 m/min. The machinability index (M-index) was determined as the amount of metal removed by machining (volume loss, mm(3)). The results were analyzed by ANOVA and Scheffé's test. When an air-turbine handpiece was used, there was no difference in the M-index of the gold alloy among the heat treatments. The air-turbine carbide burs showed significantly (pmachinability of the gold alloy using the air-turbine handpiece. The heat treatments had a small effect on the M-index of the gold alloy machined with a SiC wheel for a handpiece engine.

  3. Solution to Two-Dimensional Steady Inverse Heat Transfer Problems with Interior Heat Source Based on the Conjugate Gradient Method

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2017-01-01

    Full Text Available The compound variable inverse problem which comprises boundary temperature distribution and surface convective heat conduction coefficient of two-dimensional steady heat transfer system with inner heat source is studied in this paper applying the conjugate gradient method. The introduction of complex variable to solve the gradient matrix of the objective function obtains more precise inversion results. This paper applies boundary element method to solve the temperature calculation of discrete points in forward problems. The factors of measuring error and the number of measuring points zero error which impact the measurement result are discussed and compared with L-MM method in inverse problems. Instance calculation and analysis prove that the method applied in this paper still has good effectiveness and accuracy even if measurement error exists and the boundary measurement points’ number is reduced. The comparison indicates that the influence of error on the inversion solution can be minimized effectively using this method.

  4. Benchmark numerical solutions for radiative heat transfer in two-dimensional medium with graded index distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.H. [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)]. E-mail: lhliu@hit.edu.cn

    2006-11-15

    In graded index media, the ray goes along a curved path determined by Fermat principle. Generally, the curved ray trajectory in graded index media is a complex implicit function, and the curved ray tracing is very difficult and complex. Only for some special refractive index distributions, the curved ray trajectory can be expressed as a simple explicit function. Two important examples are the layered and the radial graded index distributions. In this paper, the radiative heat transfer problems in two-dimensional square semitransparent with layered and radial graded index distributions are analyzed. After deduction of the ray trajectory, the radiative heat transfer problems are solved by using the Monte Carlo curved ray-tracing method. Some numerical solutions of dimensionless net radiative heat flux and medium temperature are tabulated as the benchmark solutions for the future development of approximation techniques for multi-dimensional radiative heat transfer in graded index media.

  5. Irradiation in combination of heat treatment of mango puree

    International Nuclear Information System (INIS)

    Noomhorm, A.; Apintanapong, M.

    1996-01-01

    The effect of irradiation with heat combination treatment on the shelf life and quality of mango puree was studied. Thermal inactivation of polyphenol oxidase enzyme at 80 degree C and 15 min. was used as a measure of adequacy of pre-heat treatment. Irradiation of mango puree after heat treatment at dosage of 0, 2, 4, 6 and 8 kGy showed no change in mc, pH, acidity, and TSS but during storage, growth of microorganisms brought changes in these values. Irradiation in combination with low temperature (5 degree C) reduced discoloration and darkening rate during storage. Irradiation dose from 0 to 8 kGy resulted in log linear reductions in microorganism levels but at 6 and 8 kGy, there was no growth of microorganisms. Products irradiated at 8 kGy showed no microorganism growth at both temperatures

  6. A computational procedure for finding multiple solutions of convective heat transfer equations

    International Nuclear Information System (INIS)

    Mishra, S; DebRoy, T

    2005-01-01

    In recent years numerical solutions of the convective heat transfer equations have provided significant insight into the complex materials processing operations. However, these computational methods suffer from two major shortcomings. First, these procedures are designed to calculate temperature fields and cooling rates as output and the unidirectional structure of these solutions preclude specification of these variables as input even when their desired values are known. Second, and more important, these procedures cannot determine multiple pathways or multiple sets of input variables to achieve a particular output from the convective heat transfer equations. Here we propose a new method that overcomes the aforementioned shortcomings of the commonly used solutions of the convective heat transfer equations. The procedure combines the conventional numerical solution methods with a real number based genetic algorithm (GA) to achieve bi-directionality, i.e. the ability to calculate the required input variables to achieve a specific output such as temperature field or cooling rate. More important, the ability of the GA to find a population of solutions enables this procedure to search for and find multiple sets of input variables, all of which can lead to the desired specific output. The proposed computational procedure has been applied to convective heat transfer in a liquid layer locally heated on its free surface by an electric arc, where various sets of input variables are computed to achieve a specific fusion zone geometry defined by an equilibrium temperature. Good agreement is achieved between the model predictions and the independent experimental results, indicating significant promise for the application of this procedure in finding multiple solutions of convective heat transfer equations

  7. Comparative study on heat pipe performance using aqueous solutions of alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, R.; Vaidyanathan, S.; Sivaraman, B. [Annamalai University, Department of Mechanical Engineering, Annamalai Nagar, Tamil Nadu (India)

    2012-12-15

    This paper deals with the performance characterization of heat pipes using an aqueous solution of long chain alcohols like n-Butanol, n-Pentanol, n-Hexanol and n-Heptanol as working mediums. These solutions are called as self-rewetting fluids, since these fluid mixtures possess a non-linear dependence of the surface tension with temperature. A cylindrical heat pipe made up of copper with two layers of wrapped screen is used as a wick material and partially filled with the self-rewetting fluid water mixture and tested for its heat transport capability like thermal efficiency and thermal resistance at different inclinations and input power levels. A number of tests have been performed with heat pipes, filled with various aqueous solutions of alcohols with a concentration of 2 ml/l in de-ionized water (DI water) on volume basis. The results obtained for heat pipes using self rewetting fluids show improved performances, when compared to DI water heat pipes. (orig.)

  8. Enhancing the mechanical properties of electrospun polyester mats by heat treatment

    Directory of Open Access Journals (Sweden)

    M. Kancheva

    2015-01-01

    Full Text Available Microfibrous materials with a targeted design based on poly(L-lactic acid (PLA and poly(ε-caprolactone (PCL were prepared by electrospinning and by combining electrospinning and electrospraying. Several approaches were used: (i electrospinning of a common solution of the two polymers, (ii simultaneous electrospinning of two separate solutions of PLA and PCL, (iii electrospinning of PLA solution in conjunction with electrospraying of PCL solution, and (iv alternating layer-by-layer deposition by electrospinning of separate PLA and PCL solutions. The mats were heated at the melting temperature of PCL (60°", thus achieving melting of PCL fibers/particles and thermal sealing of the fibers. The mats subjected to thermal treatment were characterized by greater mean fiber diameters and reduced values of the water contact angle compared to the pristine mats. Heat treatment of the mats affected their thermal stability and led to an increase in the crystallinity degree of PLA incorporated in the mats, whereas that of PCL was reduced. All mats were characterized by enhanced mechanical properties after thermal treatment as compared to the non-treated fibrous materials.

  9. Technical solutions for waste treatment in the Belene project

    International Nuclear Information System (INIS)

    Büttner, K.; Eichhorn, H.

    2011-01-01

    Outline: In June 2010 NUKEM Technologies GmbH was awarded a contract from ATOMSTROYEXPORT JSC to perform the complete work package related to designing and completion of the equipment for treatment of radioactive waste on the turn-key basis for Belene NPP. Technical Solutions: Waste Streams and Technologies at UKC and UKS; Concentration Plant; Thermal Treatment of Resins Sorting Facility; Biological Waste Water Treatment; Conditioning – Cementation • Sorting of Radwaste; Plasma Facility; Grouting; Filter Press; Monitoring and Tracking

  10. A Green's function solution for a rectangular heat source on an infinite plate

    International Nuclear Information System (INIS)

    Bainbridge, B.L.

    1989-01-01

    The applications associated with a rectangular heat source on an infinite plate range from integrated circuits to thin film heat flux sensors on thin substrates. The particular problem from which the solution is developed concerns the use of a resistive strip for monitoring currents generated in circuits exposed to electromagnetic fields. The Green's function formulation is solved by using early and late time approximations for which analytical solutions can be derived. In this paper expressions are developed for three sets of boundary conditions and compared to the experimental performance of a physical device

  11. Studies and solutions of steam turbines for nuclear heating power stations

    International Nuclear Information System (INIS)

    Drahy, J.

    1979-01-01

    The possibilities of combined generation of heat and electric power and special features of the corresponding equipment for WWER type reactors are considered. Condensing steam turbines with bled steam points and the constructional solution of bled points are presented for heating the network water to 110 0 C, 120 0 C, and 160 0 C, respectively. The dimensions of the low pressure final stage of the turbine are given. Problems concerning condensing and bleeding turbines and combination types of back-pressure and condensing turbines as well as solutions to the design of 250 MW and 500 MW turbines are discussed

  12. An Approximate Solution for Predicting the Heat Extraction and Preventing Heat Loss from a Closed-Loop Geothermal Reservoir

    Directory of Open Access Journals (Sweden)

    Bisheng Wu

    2017-01-01

    Full Text Available Approximate solutions are found for a mathematical model developed to predict the heat extraction from a closed-loop geothermal system which consists of two vertical wells (one for injection and the other for production and one horizontal well which connects the two vertical wells. Based on the feature of slow heat conduction in rock formation, the fluid flow in the well is divided into three stages, that is, in the injection, horizontal, and production wells. The output temperature of each stage is regarded as the input of the next stage. The results from the present model are compared with those obtained from numerical simulator TOUGH2 and show first-order agreement with a temperature difference less than 4°C for the case where the fluid circulated for 2.74 years. In the end, a parametric study shows that (1 the injection rate plays dominant role in affecting the output performance, (2 higher injection temperature produces larger output temperature but decreases the total heat extracted given a specific time, (3 the output performance of geothermal reservoir is insensitive to fluid viscosity, and (4 there exists a critical point that indicates if the fluid releases heat into or absorbs heat from the surrounding formation.

  13. Using geothermal energy to heat a portion of a formation for an in situ heat treatment process

    Science.gov (United States)

    Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich

    2010-06-08

    Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.

  14. Microsegregation of heat and homogenization treatments in uranium-niobium alloys (U-Nb)

    International Nuclear Information System (INIS)

    Leal, J.F.

    1988-01-01

    In the following sections microsegration results in U-3,6 Wt% Nb and U-6,1 Wt% Nb alloys casted in noconsumable electrode arc furnace are presented. The microsegration is studied qualitatively by optical microscopy and quantitatively by electron microprobe. The degree of homogenization has been measured after 800 and 850 0 C heat treatments in tubular resistive furnace. The microstructures after heat treatments are quantitatively analysed to check effects on the casting structures, mainly the variations in solute along the dendrite arm spacing. Some solidification phenomena are then discussed on reference to theorical models of dendritic solidification, including microstructure and microsegregation. The experimental results are compared to theoretical on basis of initial and residual microsegregation after homogenization treatments. The times required for homogenization of the alloys are also discussed in function of the microsegregation from casting structures and the temperatures of the treatments. (author) [pt

  15. Impact Toughness and Heat Treatment for Cast Aluminum

    Science.gov (United States)

    Lee, Jonathan A (Inventor)

    2016-01-01

    A method for transforming a cast component made of modified aluminum alloy by increasing the impact toughness coefficient using minimal heat and energy. The aluminum alloy is modified to contain 0.55%-0.60% magnesium, 0.10%-0.15% titanium or zirconium, less than 0.07% iron, a silicon-tomagnesium product ratio of 4.0, and less than 0.15% total impurities. The shortened heat treatment requires an initial heating at 1,000deg F. for up to I hour followed by a water quench and a second heating at 350deg F. to 390deg F. for up to I hour. An optional short bake paint cycle or powder coating process further increase.

  16. EFFECT OF HEAT TREATMENT ON SOYBEAN PROTEIN SOLUBILITY

    Directory of Open Access Journals (Sweden)

    RODICA CĂPRIŢĂ

    2007-05-01

    Full Text Available The use of soybean products in animal feeds is limited due to the presence of antinutritional factors (ANF. Proper heat processing is required to destroy ANF naturally present in raw soybeans and to remove solvent remaining from the oil extraction process. Over and under toasting of soybean causes lower nutritional value. Excessive heat treatment causes Maillard reaction which affects the availability of lysine in particular and produces changes to the chemical structure of proteins resulting in a decrease of the nutritive value. The objective of this study was to evaluate the effect of heating time on the protein solubility. The investigation of the heating time on protein solubility in soybean meal (SBM revealed a negative correlation (r = -0.9596. Since the urease index is suitable only for detecting under processed SBM, the protein solubility is an important index for monitoring SBM quality.

  17. Treatment of pediatric molluscum contagiosum with 10% potassium hydroxide solution.

    Science.gov (United States)

    Can, Burce; Topaloğlu, Filiz; Kavala, Mukaddes; Turkoglu, Zafer; Zindancı, Ilkin; Sudogan, Sibel

    2014-06-01

    Molluscum contagiosum (MC) is a common cutaneous viral infection of the skin that is frequently seen in children. Although lesions can resolve spontaneously, treatment is mandatory because of the psychological effect of widespread lesions in children. Potassium hydroxide (KOH) is a strong alkali that has been used by dermatologists for a long time in identifying the fungal infections from skin scrapings. We evaluated 40 children with MC for the safety and efficacy of treatment with topical 10% KOH aqueous solution. Parents were instructed to apply a 10% KOH aqueous solution, twice daily, with a cotton stick to all lesions. Treatment was continued till the lesions showed signs of inflammation or superficial ulceration. Assessments of response and side effects were performed at the end of week 2, week 4, week 8 and week 12. We found complete clearance of lesions in 37 (92.5%) patients receiving topical 10%KOH solution after a mean period of four weeks. Three children dropped out of the study; two children reported severe stinging of the lesions and discontinued the treatment; the other patient developed hypopigmentation during the treatment. Local side effects were observed in 12 children (32.4%). Even though 10% KOH solution is associated with some local side effects, it is a safe, effective, inexpensive and noninvasive alternative treatment of MC in children.

  18. Heat treatment effect on ductility of nickel-base alloys

    International Nuclear Information System (INIS)

    Burnakov, K.K.; Khasin, G.A.; Danilov, V.F.; Oshchepkov, B.V.; Listkova, A.I.

    1979-01-01

    Causes of low ductility of the KhN75MBTYu and KhN78T alloys were studied along with the heat treatment effects. Samples were tested at 20, 900, 1100, 1200 deg C. Large amount of inclusions was found in intercrystalline fractures of the above low-ductile alloys. The inclusions of two types took place: (α-Al 2 O 3 , FeO(Cr 2 O 3 xAl 2 O 3 )) dendrite-like ones and large-size laminated SiO 2 , FeO,(CrFe) 2 O 3 inclusions situated as separate colonies. Heat treatment of the alloys does not increase high-temperature impact strength and steel ductility. The heating above 1000 deg C leads to a partial dissolution and coagulation of film inclusions which results in an impact strength increase at room temperature

  19. The Microstructure And Mechanical Properties Of The AlSi17Cu5 Alloy After Heat Treatment

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2015-09-01

    Full Text Available In the paper results of the microstructure and mechanical properties (HB, Rm and R0,2 of AlSi17Cu5 alloy, subjected by solution heat treatment (500ºC/6h/woda and aging (200ºC/16h/piec are presented. In next step the alloy was modified and heated significantly above the Tliq temperature (separately and together. It was found that the increase in the strength properties of the tested alloy after heat treatment compared to alloys without solution heat treatment and aging was due to precipitation hardening. The applied aging treatment of ingots (preceded by solution heat treatment, causes not only increase in concentration in α(Al solid solution, but also a favorable change of the primary Si crystals morphology. During stereological measurements significant size reduction and change in the morphology of hypereutectic silicon crystals ware found. This effects can be further enhanced by overheating the alloy to a temperature of 920ºC and rapid cooling before casting of the alloy.

  20. Decontamination of waste radioactive polluted solutions in radiation treatment

    International Nuclear Information System (INIS)

    Simova, G.; Boyadzhiev, A.; Mikhajlov, M.G.; Shopov, N.

    1979-01-01

    The decontamination capacity of solutions of the trivial cleaning Bulgarian preparations ''Mipro'', ''Sana'', ''Synthek'' and ''Univer'' for different surfaces (steel, glass, PVC and linoleum) contaminated with cesium-134, strontium-85 or cerium-144 chlorides, was studied. Concentrations from 5 to 15 g/l of the solutions used in this study displayed a degree of cleaning over 90%. Higher concentration of the solution does not improve its cleaning capacity. For evaluation of foam formation by the solutions, the so called ''foam column stability coefficient'' has been adopted. This coefficient represents the ratio between the height of the foam column and the time of its half life, referred to the time for the foam column formation when blown through with a constant air current. On the basis of this index, solutions of the preparation ''Mipro'' proved to be the best ones for decontamination - in the whole investigated concentration span, the foam column stability coefficient for the solutions of this preparation is with two orders lower than the respective coefficient of the other preparations. It was experimentally established that radiation treatment of radio-contaminated solutions reduces the foam column stability coefficient. Radiation treatment should be carried out in a gamma field, realizing at least one megarad within an acceptable for the liquid wastes time period. (A.B.)

  1. Effect of heat treatment on brewer's yeast fermentation activity

    OpenAIRE

    Kharandiuk, Tetiana; Kosiv, Ruslana; Palianytsia, Liubov; Berezovska, Natalia

    2015-01-01

    The influence of temperature treatment of brewer's yeast strain Saflager W-34/70 at temperatures of -17, 20, 25, 30, 35, 40 °C on their fermentative activity was studied. It was established that the freezing of yeast leads to a decrease of fermentation activity in directly proportional to the duration way. Fermentative activity of yeast samples can be increased by 20-24% by heat treatment at 35 °C during 15-30 minutes.

  2. Heat treatment effect on impact strength of 40Kh steel

    International Nuclear Information System (INIS)

    Golubev, V.K.; Novikov, S.A.; Sobolev, Yu.S.; Yukina, N.A.

    1984-01-01

    The paper presents results of studies on the effect of heat treatment on strength and pattern of 40Kh steel impact failure. Loading levels corresponding to macroscopic spalling microdamage initiation in the material are determined for three initial states. Metallographic study on the spalling failure pattern for 40Kh steel in different initial states and data on microhardness measurement are presented

  3. Influence of heat treatment temperature on bonding and oxidation ...

    Indian Academy of Sciences (India)

    The effects of heat treatment temperature on the morphology, composition, chemical bonds, oxidation resistance and compressive strength of diamond particles coated with TiO2 films were characterized through scanning electron microscopy, Fourier transform infrared, Raman spectroscopy, X-ray diffraction analysis, X-ray ...

  4. Influence of heat treatment temperature on bonding and oxidation ...

    Indian Academy of Sciences (India)

    Administrator

    Diamond; TiO2 film; heat treatment temperature; anti-oxidation; mechanical properties. 1. Introduction. Due to its ..... figure 4a, which was due to the change of chemical envi- ronment of ... graphite, diamond, diamond-like carbon and carbon.10.

  5. The effects of heat treatment on physical and technological ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... ween 450 and 660 m altitudes in Cide-Sehdagi (Gercek et al., 1998; Dogu ... changes continue as the temperature is increased in ... Heat treatment slows water uptake and wood cell wall absorbs ...... The Effect of Boiling Time.

  6. The effects of heat treatment on physical and technological ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of ... Some of the products developed by thermal treat- .... boards were stored uncontrolled condition in an unheated room for .... These results can be explained with material loses in ...... Finland-state of the art.

  7. THE EFFECTS OF INTERCRITICAL HEAT TREATMENTS ON THE ...

    African Journals Online (AJOL)

    Effect of intercritical heat treatment on 0.14wt%C 0.56wt%Mn 0.13wt%Si struc- ... Table 1: Chemical composition of the steel used (wt. %) with its critical temperature (calculated). C. Mn. Si. Ni. S ... primary austenitic grain size hardening and.

  8. Effect of heat treatment on polyphenol oxidase and peroxidase ...

    African Journals Online (AJOL)

    Effect of heat treatment (55°C/20 min) on polyphenol oxidase (PPO) and peroxidase (POD) activities and total phenolic compounds was investigated in Algerian dates (Deglet Nour variety) at Tamar (fully ripe) stage and in dates stored for 5 months at ambient temperature and in cold storage (10°C). Results obtained ...

  9. Laser heat treatment of welds for various stainless steels

    Science.gov (United States)

    Dontu, O.; Ganatsios, S.; Alexandrescu, N.; Predescu, C.

    2008-03-01

    The paper presents a study concerning the post - weld heat treatment of a duplex stainless steel. Welded joint samples were surface - treated using the same laser source adopted during welding in order to counterbalance the excess of ferrite formed in the welding process.

  10. Effects of heat treatment on density, dimensional stability and color ...

    African Journals Online (AJOL)

    The purpose of this study was to evaluate the effect of heat treatment on some physical properties and color change of Pinus nigra wood which has high industrial use potential and large growing stocks in Turkey. Wood samples which comprised the material of the study were obtained from an industrial plant. Samples were ...

  11. Analytical solutions for tomato peeling with combined heat flux and convective boundary conditions

    Science.gov (United States)

    Cuccurullo, G.; Giordano, L.; Metallo, A.

    2017-11-01

    Peeling of tomatoes by radiative heating is a valid alternative to steam or lye, which are expensive and pollutant methods. Suitable energy densities are required in order to realize short time operations, thus involving only a thin layer under the tomato surface. This paper aims to predict the temperature field in rotating tomatoes exposed to the source irradiation. Therefore, a 1D unsteady analytical model is presented, which involves a semi-infinite slab subjected to time dependent heating while convective heat transfer takes place on the exposed surface. In order to account for the tomato rotation, the heat source is described as the positive half-wave of a sinusoidal function. The problem being linear, the solution is derived following the Laplace Transform Method. In addition, an easy-to-handle solution for the problem at hand is presented, which assumes a differentiable function for approximating the source while neglecting convective cooling, the latter contribution turning out to be negligible for the context at hand. A satisfying agreement between the two analytical solutions is found, therefore, an easy procedure for a proper design of the dry heating system can be set up avoiding the use of numerical simulations.

  12. Effect of Heat Treatment Parameters on the Microstructure and Properties of Inconel-625 Superalloy

    Science.gov (United States)

    Sukumaran, Arjun; Gupta, R. K.; Anil Kumar, V.

    2017-07-01

    Inconel-625 is a solid solution-strengthened alloy used for long-duration applications at high temperatures and moderate stresses. Different heat treatment cycles (temperatures of 625-1025 °C and time of 2-6 h) have been studied to obtain optimum mechanical properties suitable for a specific application. It has been observed that room temperature strength and, hardness decreased and ductility increased with increase in heat treatment temperature. The rate of change of these properties is found to be moderate for the samples heat-treated up to 850 °C, and thereafter, it increases rapidly. It is attributed to the microstructural changes like dissolution of carbides, recrystallization and grain growth. Microstructures are found to be predominantly single-phase austenitic with the presence of fine alloy carbides. The presence of twins is observed in samples heat-treated at lower temperature, which act as nucleation sites for recrystallization at 775 °C. Beyond 850 °C, the role of carbides present in the matrix is subsided by the coarsening of recrystallized grains and finally at 1025 °C, significant dissolution of carbide results in substantial reduction in strength and increase in ductility. Elongation to an extent of >71% has been obtained in sample heat-treated at 1025 °C indicating excellent tendency for cold workability. Failure of heat-treated specimens is found to be mainly due to carbide particle-matrix decohesion which acts as locations for crack initiation.

  13. Exact traveling wave solutions for a new nonlinear heat transfer equation

    Directory of Open Access Journals (Sweden)

    Gao Feng

    2017-01-01

    Full Text Available In this paper, we propose a new non-linear partial differential equation to de-scribe the heat transfer problems at the extreme excess temperatures. Its exact traveling wave solutions are obtained by using Cornejo-Perez and Rosu method.

  14. Solution of the two- dimensional heat equation for a rectangular plate

    Directory of Open Access Journals (Sweden)

    Nurcan BAYKUŞ SAVAŞANERİL

    2015-11-01

    Full Text Available Laplace equation is a fundamental equation of applied mathematics. Important phenomena in engineering and physics, such as steady-state temperature distribution, electrostatic potential and fluid flow, are modeled by means of this equation. The Laplace equation which satisfies boundary values is known as the Dirichlet problem. The solutions to the Dirichlet problem form one of the most celebrated topics in the area of applied mathematics. In this study, a novel method is presented for the solution of two-dimensional heat equation for a rectangular plate. In this alternative method, the solution function of the problem is based on the Green function, and therefore on elliptic functions.

  15. Heat of Absorption of CO2 in Aqueous Solutions of DEEA, MAPA and their Mixture

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; von Solms, Nicolas; Thomsen, Kaj

    2013-01-01

    A reaction calorimeter was used to measure the differential heat of absorption of CO2 in phase change solvents as a function of temperature, CO2 loading and solvent composition. The measurements were taken for aqueous solutions of 2-(diethylamino)ethanol (DEEA), 3-(methylamino)propylamine (MAPA......) and their mixture. The tested compositions were 5M DEEA, 2M MAPA and their mixture, 5M DEEA + 2M MAPA which gives two liquid phases on reacting with CO2. Experimental measurements were also carried out for 30% MEA used as a base case. The measurements were taken isothermally at three different temperatures 40, 80...... and 120°C at a CO2 feed pressure of 600kPa. In single aqueous amine solutions, heat of absorption increases with increase in temperature and depends on thetype of amine used. DEEA, a tertiary amine, has lower heat of absorption compared to MAPA being a diamine with primary and secondary amine functional...

  16. Structure and distribution of nitrogen in Fe-N, Fe-V-N alloys after casting and heat treatment

    International Nuclear Information System (INIS)

    Svyazhin, A.G.; Shaidurova, E.S.; Kaputkina, L.M.; Prokoshkina, V.G.; Siwka, J.; Hutny, A.

    2004-01-01

    The investigation of parameters of dendrites, microhardness and lattice spacing of the solid solution after crystallization and heat treatment of microingots with a mass of 1 g has been undertaken. Sizes of dendrites vary in the ingot section with the change of the local cooling rate. In the case at hand microhardness depends to a greater extent on the alloy makeup than on the grain size. In heat treatment the ferrite lattice parameter decreases as a result of nitrogen and vanadium liberation from the solution. (author)

  17. Influence of tribomechanical micronization and hydrocolloids addition on enthalpy and apparent specific heat of whey protein model solutions

    Directory of Open Access Journals (Sweden)

    Zoran Herceg

    2002-01-01

    Full Text Available Knowledge of thermophysical properties, especially the phase transitions temperature, specific heat and enthalpy, are essential in defining the freezing process parameters as well as storage conditions of frozen food. In this work thermophysical properties of 10% model solutions prepared with 60% whey protein concentrate (WPC with various hydrocolloids addition (HVEP, YO-EH, YO-L i YO-M were investigated. Powdered whey protein concentrate was treated in equipment for tribomechanical micronization and activation at 40000 rpm (Patent: PCT/1B99/00757 just before model solutions preparation. Particle size analysis was performed using Frich –laser particle sizer “analysette 22”. The phase transition temperatures were determined by differential thermal analysis (DTA, while specific heat and enthalpy were calculated according to several mathematical equations. The results have shown that, due to tribomechanical treatment, certain changes in thermophysical and energetic properties of materials occurred. Tribomechanical treatment affects changes in granulometrical composition of WPC which result in higher abilities of reactions with hydrocolloids in model solutions and significant changes in thermophysical properties of the mentioned models.

  18. Analysis of Thermal Stresses and Strains Developing during the Heat Treatment of Windmill Shaft

    Directory of Open Access Journals (Sweden)

    Cebo-Rudnicka A.

    2017-06-01

    Full Text Available In the paper the results of evaluation of the temperature and stress fields during four cycles of the heat treatment process of the windmill shaft has been presented. The temperature field has been calculated from the solution to the heat conduction equation over the whole heat treatment cycles of the windmill shaft. To calculate the stress field an incremental method has been used. The relations between stresses and strains have been described by Prandtl-Reuss equation for the elastic-plastic body. In order to determine the changes in the temperature and stress fields during heat treatment of the windmill shaft self-developed software utilizing the Finite Element Method has been used. This software can also be used to calculate temperature changes and stress field in ingots and other axially symmetric products. In the mathematical model of heating and cooling of the shaft maximum values of the strains have been determined, which allowed to avoid the crack formation. The critical values of strains have been determined by using modified Rice and Tracy criterion.

  19. Numerical solution of fully developed heat transfer problem with constant wall temperature and application to isosceles triangle and parabolic ducts

    International Nuclear Information System (INIS)

    Karabulut, Halit; Ipci, Duygu; Cinar, Can

    2016-01-01

    Highlights: • A numerical method has been developed for fully developed flows with constant wall temperature. • The governing equations were transformed to boundary fitted coordinates. • The Nusselt number of parabolic duct has been investigated. • Validation of the numerical method has been made by comparing published data. - Abstract: In motor-vehicles the use of more compact radiators have several advantages such as; improving the aerodynamic form of cars, reducing the weight and volume of the cars, reducing the material consumption and environmental pollutions, and enabling faster increase of the engine coolant temperature after starting to run and thereby improving the thermal efficiency. For the design of efficient and compact radiators, the robust determination of the heat transfer coefficient becomes imperative. In this study the external heat transfer coefficient of the radiator has been investigated for hydrodynamically and thermally fully developed flows in channels with constant wall temperature. In such situation the numerical treatment of the problem results in a trivial solution. To find a non-trivial solution the problem is treated either as an eigenvalue problem or as a thermally developing flow problem. In this study a numerical solution procedure has been developed and the heat transfer coefficients of the fully developed flow in triangular and parabolic air channels were investigated. The governing equations were transformed to boundary fitted coordinates and numerically solved. The non-trivial solution was obtained by means of guessing the temperature of any grid point within the solution domain. The correction of the guessed temperature was performed via smoothing the temperature profile on a line passing through the mentioned grid point. Results were compared with literature data and found to be consistent.

  20. Heat treatment versus properties studies associated with the Inconel 718 PBF acoustic filters

    International Nuclear Information System (INIS)

    Smolik, G.R.; Reuter, W.G.

    1975-01-01

    PBF acoustic filter Unit No. 1 cracked when heat treatment was attempted. The effects of prior thermal cycling, solution anneal temperature, and cooling rate from solution anneals were investigated. The investigations concerned influences of the above variables upon both 1400 0 F stress rupture solution-annealed properties and room temperature age-hardened properties. 1400 0 F stress rupture properties were of interest to assist the prevention of cracking during heat treatments. Room temperature age-hardened properties were needed to ensure that design requirement would be provided. Prior thermal cycling was investigated to determine if extra thermal cycles would be detrimental to the repaired filter. Slow furnace cools were considered as a means of reducing thermal stresses. Effects of solution annealing at 2000 and 1900 0 F were also determined. Test results showed that slow cooling rates would not only reduce thermal stresses but also improve 1400 0 F ductility. A modified aging treatment was established which provided the required 145 ksi room temperature yield strength for the slowly cooled material. Prior cooling did not degrade final age-hardened room temperature tensile or impact properties

  1. Heat Transfer from Optically Excited Gold Nanostructures into Water, Sugar, and Salt Solutions

    Science.gov (United States)

    Green, Andrew J.

    coherence length associated with the liquid-liquid transition. The second topic will measure the change in heat dissipation with respect to solute adhesion onto the nanoheater. A small amount of aqueous solute molecules (1 solute molecule in 550 water molecules) dramatically increases the heat dissipation from a nanoparticle into the surrounding liquid. This result is consistent with a thermal conductance that is limited by an interface interaction where minority aqueous components significantly alter the surface properties and heat transport through the interface. The increase in heat dissipation can be used to make an extremely sensitive molecular detector that can be scaled to give single molecule detection without amplification or utilizing fluorescence labels.

  2. Sour gas injection for use with in situ heat treatment

    Science.gov (United States)

    Fowler, Thomas David [Houston, TX

    2009-11-03

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.

  3. Unsteady free convection flow of a micropolar fluid with Newtonian heating: Closed form solution

    Directory of Open Access Journals (Sweden)

    Hussanan Abid

    2017-01-01

    Full Text Available This article investigates the unsteady free convection flow of a micropolar fluid over a vertical plate oscillating in its own plane with Newtonian heating condition. The problem is modelled in terms of partial differential equations with some physical conditions. Closed form solutions in terms of exponential and complementary error functions of Gauss are obtained by using the Laplace transform technique. They satisfy the governing equations and impose boundary and initial conditions. The present solution in the absence of microrotation reduces to well-known solutions of Newtonian fluid. Graphs are plotted to study the effects of various physical parameters on velocity and microrotation. Numerical results for skin friction and wall couple stress is computed in tables. Apart from the engineering point of view, the present article has strong advantage over the published literature as the exact solutions obtained here can be used as a benchmark for comparison with numerical/ approximate solutions and experimental data.

  4. Solutions for Energy Efficient and Sustainable Heating of Ventilation Air: A Review

    Directory of Open Access Journals (Sweden)

    A. Žandeckis

    2015-10-01

    Full Text Available A high energy efficiency and sustainability standards defined by modern society and legislation requires solutions in the form of complex integrated systems. The scope of this work is to provide a review on technologies and methods for the heating of ventilation air as a key aspect for high energy and environmental performance of buildings located in a cold climate. The results of this work are more relevant in the buildings where space heating consumes a significant part of the energy balance of a building, and air exchange is arranged in an organized manner. A proper design and control strategy, heat recovery, the use of renewable energy sources, and waste heat are the main aspects which must be considered for efficient and sustainable ventilation. This work focuses on these aspects. Air conditioning is not in the scope of this study.

  5. SOLUTION TREATMENT EFFECT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AUTOMOTIVE CAST ALLOY

    Directory of Open Access Journals (Sweden)

    Eva Tillová

    2012-02-01

    Full Text Available The contribution describes influence of the heat treatment (solution treatment at temperature 545°C and 565°C with different holding time 2, 4, 8, 16 and 32 hours; than water quenching at 40°C and natural aging at room temperature during 24 hours on mechanical properties (tensile strength and Brinell hardness and microstructure of the secondary AlSi12Cu1Fe automotive cast alloy. Mechanical properties were measured in line with EN ISO. A combination of different analytical techniques (light microscopy, scanning electron microscopy (SEM were therefore been used for study of microstructure. Solution treatment led to changes in microstructure includes the spheroidization and coarsening of eutectic silicon. The dissolution of precipitates and the precipitation of finer hardening phase further increase the hardness and tensile strength of the alloy. Optimal solution treatment (545°C/4 hours most improves mechanical properties and there mechanical properties are comparable with mechanical properties of primary AlSi12Cu1Fe alloy. Solution treatment at 565 °C caused testing samples distortion, local melting process and is not applicable for this secondary alloy with 12.5 % Si.

  6. Novel magnetic heating probe for multimodal cancer treatment.

    Science.gov (United States)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Soboyejo, Wole

    2015-05-01

    Multifunctional materials consisting of polymers and magnetic nanoparticles (MNPs) are highly sought after in the field of biomedical engineering. These materials offer new opportunities for the development of novel cancer treatment modalities that can increase the efficacy of cancer therapy. In this paper, a novel probe for multimodal cancer treatment is proposed and analyzed. The probe is essentially a cannula with two main parts: a distal heat generating tip made of a magnetic nanocomposite and a proximal insulated shaft. A description of the concept and functional operations of the probe is presented. In an effort to assess its feasibility, the authors evaluated the ability of probe tip (made of PMMA-Fe3O4 nanocomposite) to generate heat in biological tissue using alternating magnetic field (AMF) parameters (field strength and frequency) that are acceptable for human use. Heat generation by MNPs was determined using the linear response theory. The effects of Fe3O4 volume fraction on heat generation as well as treatment time on the thermal dose were studied. The finite element method model was tested for its validity using an analytical model. Lesions were revealed to have an ellipsoidal shape and their sizes were affected by treatment time. However, their shapes remained unchanged. The comparison with the analytical model showed reasonably a good agreement to within 2%. Furthermore, the authors' numerical predictions also showed reasonable agreement with the experimental results previously reported in the literature. The authors' predictions demonstrate the feasibility of their novel probe to achieve reasonable lesion sizes, during hyperthermic or ablative heating using AMF parameters (field strength and frequency) that are acceptable for human use.

  7. Effect of T6 heat treatment on tensile strength of EN AB-48000 alloy modified with strontium

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2011-07-01

    Full Text Available Among alloys of non-ferrous metals, aluminum alloys have found their broadest application in foundry industry. Silumins are widely used in automotive, aviation and shipbuilding industries; as having specific gravity nearly three times lower than specific gravity of cast iron. The silumins can be characterized by high mechanical properties. To upgrade mechanical properties of a castings made from silumins one makes use of heat treatment, what leads to change of their structure and advantageously affects on mechanical properties of the silumins. In the paper are presented test results concerning effect of dispersion hardening on change of tensile strength of EN AB-48000 silumin modified with strontium. Investigated alloy was melted in electric resistance furnace. Temperature ranges of solution heat treatment and ageing heat treatment were selected on base of curves from ATD method, recorded for refined alloy and for modified alloy. The heat treatment resulted in change of Rm tensile strength, while performed investigations have enabled determination of temperatures and durations of solution heat treatment and ageing heat treatment, which precondition obtainment of the best tensile strength Rm of the investigated alloy.

  8. Comparative study of heat transfer and wetting behaviour of conventional and bioquenchants for industrial heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Peter; Prabhu, K. Narayan [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, P.O. Srinivasnagar 575 025 Mangalore, Karnataka State (India)

    2008-02-15

    An investigation was conducted to study the suitability of vegetable oils as bioquenchants for industrial heat treatment. The study involved the assessment of the severity of quenching and wetting behaviour of conventional and vegetable oil quench media. Quench severities of sunflower, coconut and palm oils were found to be greater than mineral oil. The quench severity of aqueous media is greater than oil media although their wettability is poor as indicated by their higher contact angles. A dimensionless contact angle parameter defined in this work is found to be a better parameter to compare the wetting behaviour with heat transfer. (author)

  9. Comparing the steam and electric heat tracing solutions for petrochemical or refining facilities

    Energy Technology Data Exchange (ETDEWEB)

    Young, Joseph G.; McQueen, Greg [Tyco Thermal Controls, Belgie (Belgium)

    2012-07-01

    In this era of energy conservation and cost reduction, the ability to effectively select the optimal solution to meet the heat management system needs of petrochemical or refining facilities is becoming increasingly important. Depending on the type and location of the plant, a heat management system (HMS) can comprise a significant portion of the overall capital expenditure, as well as the ongoing operating and maintenance costs. Several important heat management system design decisions affect the financial operations of a facility, including the selection of the heat tracing technology, the utility distribution scheme, and the insulation system criteria, among others. However, most of these decisions are made early in the project life-cycle without thorough analysis of the various options available. From a high level perspective, numerous heat trace media should be considered, including electric, steam, tempered water, and glycol. These systems also have different impacts on piping systems within the plant battery limits (ISBL) and transfer lines outside of the battery limits (OSBL). This paper takes a careful look at two of the predominant heat tracing technologies - electric heat tracing and steam tracing - and compares these within the larger framework of the heat management system, and relative to petrochemical or refining facilities within the general Brazil geography. In the broader context, a heat management system is defined as the heat tracing technology itself, the utility distribution associated with that technology, the control and monitoring scheme associated with that technology, and the insulation system. We will evaluate the capital expenditure cost, operating expenditure cost, and overall reliability of the electric and steam tracing mediums in both the ISBL and OSBL environments within this broader context. (author)

  10. Numerical analysis of heat treatment of TiCN coated AA7075 aluminium alloy

    Science.gov (United States)

    Srinath, M. K.; Prasad, M. S. Ganesha

    2018-04-01

    The Numerical analysis of heat treatments of TiCN coated AA7075 aluminium alloys is presented in this paper. The Convection-Diffusion-Reaction (CDR) equation with solutions in the Streamlined-Upward Petrov-Galerkin (SUPG) method for different parameters is provided for the understanding of the process. An experimental process to improve the surface properties of AA-7075 aluminium alloy was attempted through the coatings of TiCN and subsequent heat treatments. From the experimental process, optimized temperature and time was obtained which gave the maximum surface hardness and corrosion resistance. The paper gives an understanding and use of the CDR equation for application of the process. Expression to determine convection, diffusion and reaction parameters are provided which is used to obtain the overall expression of the heat treatment process. With the substitution of the optimized temperature and time, the governing equation may be obtained. Additionally, the total energy consumed during the heat treatment process is also developed to give a mathematical formulation of the energy consumed.

  11. Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure

    International Nuclear Information System (INIS)

    Martins, Marcelo; Casteletti, Luiz Carlos

    2005-01-01

    Duplex and super duplex stainless steels are ferrous alloys with up to 26% chromium, 8% nickel, 5% molybdenum and 0.3% nitrogen, which are largely used in applications in media containing ions from the halogen family, mainly the chloride ion (Cl - ). The emergence of this material aimed at substituting Copper-Nickel alloys (Cupro-Nickel) that despite presenting good corrosion resistance, has mechanical properties quite inferior to steel properties. The metallurgy of duplex and super duplex stainless steel is complex due to high sensitiveness to sigma phase precipitation that becomes apparent, due to the temperatures they are exposed on cooling from solidification as well as from heat treatment processes. The objective of this study was to verify the influence of heat treating temperatures on the microstructure and hardness of ASTM A890/A890M Gr 6A super duplex stainless steel type. Microstructure control is of extreme importance for castings, as the chemical composition and cooling during solidification inevitably provide conditions for precipitation of sigma phase. Higher hardness in these materials is directly associated to high sigma phase concentration in the microstructure, precipitated in the ferrite/austenite interface. While heat treatment temperature during solution treatment increases, the sigma phase content in the microstructure decreases and consequently, the material hardness diminishes. When the sigma phase was completely dissolved by the heat treatment, the material hardness was influenced only due to ferrite and austenite contents in the microstructure

  12. Ploidy Manipulation of Zebrafish Embryos with Heat Shock 2 Treatment

    Science.gov (United States)

    Baars, Destiny L.; Pelegri, Francisco

    2016-01-01

    Manipulation of ploidy allows for useful transformations, such as diploids to tetraploids, or haploids to diploids. In the zebrafish Danio rerio, specifically the generation of homozygous gynogenetic diploids is useful in genetic analysis because it allows the direct production of homozygotes from a single heterozygous mother. This article describes a modified protocol for ploidy duplication based on a heat pulse during the first cell cycle, Heat Shock 2 (HS2). Through inhibition of centriole duplication, this method results in a precise cell division stall during the second cell cycle. The precise one-cycle division stall, coupled to unaffected DNA duplication, results in whole genome duplication. Protocols associated with this method include egg and sperm collection, UV treatment of sperm, in vitro fertilization and heat pulse to cause a one-cell cycle division delay and ploidy duplication. A modified version of this protocol could be applied to induce ploidy changes in other animal species. PMID:28060351

  13. Grain Refinement of Low Carbon Martensitic Steel by Heat Treatment

    Directory of Open Access Journals (Sweden)

    N. V. Kolebina

    2015-01-01

    Full Text Available The low-carbon steels have good corrosion and technological properties. Hot deformation is the main operation in manufacturing the parts from these steels. So one of the important properties of the material is a property of plasticity. The grain size significantly influences on the ductility properties of steel. The grain size of steel depends on the chemical composition of the crystallization process, heat treatment, and steel machining. There are plenty methods to have grain refinement. However, taking into account the large size of the blanks for the hydro turbine parts, the thermal cycling is an advanced method of the grain refinement adaptable to streamlined production. This work experimentally studies the heat treatment influence on the microstructure of the low-carbon 01X13N04 alloy steel and proposes the optimal regime of the heat treatment to provide a significantly reduced grain size. L.M. Kleiner, N.P. Melnikov and I.N. Bogachyova’s works focused both on the microstructure of these steels and on the influence of its parameters on the mechanical properties. The paper focuses mainly on defining an optimal regime of the heat treatment for grain refinement. The phase composition of steel and temperature of phase transformation were defined by the theoretical analysis. The dilatometric experiment was done to determine the precise temperature of the phase transformations. The analysis and comparison of the experimental data with theoretical data and earlier studies have shown that the initial sample has residual stress and chemical heterogeneity. The influence of the heat treatment on the grain size was studied in detail. It is found that at temperatures above 950 ° C there is a high grain growth. It is determined that the optimal number of cycles is two. The postincreasing number of cycles does not cause further reducing grain size because of the accumulative recrystallization process. Based on the results obtained, the thermal cycling

  14. VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.

    Science.gov (United States)

    Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R

    2018-01-29

    Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.

  15. Extended stability of intravenous 0.9% sodium chloride solution after prolonged heating or cooling.

    Science.gov (United States)

    Puertos, Enrique

    2014-03-01

    The primary objective of this study was to evaluate the stability and sterility of an intravenous 0.9% sodium chloride solution that had been cooled or heated for an extended period of time. Fifteen sterile 1 L bags of 0.9% sodium chloride solution were randomly selected for this experiment. Five bags were refrigerated at an average temperature of 5.2°C, 5 bags were heated at an average temperature of 39.2°C, and 5 bags were stored at an average room temperature of 21.8°C to serve as controls. All samples were protected from light and stored for a period of 199 days prior to being assayed and analyzed for microbial and fungal growth. There was no clinically significant difference in the mean sodium values between the refrigerated samples, the heated samples, and the control group. There were no signs of microbial or fungal growth for the duration of the study. A sterile intravenous solution of 0.9% sodium chloride that was heated or cooled remained stable and showed no signs of microbial or fungal growth for a period of 199 days. This finding will allow hospitals and emergency medical technicians to significantly extend the expiration date assigned to these fluids and therefore obviate the need to change out these fluids every 28 days as recommended by the manufacturer.

  16. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes

    Directory of Open Access Journals (Sweden)

    Laura D'Evoli

    2013-07-01

    Full Text Available Tomatoes and tomato products are rich sources of carotenoids—principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in raw tomatoes (11.60 mg/100 g versus 5.12 mg/100 g. Lutein and β-carotene were respectively 0.15 mg/100 g and 0.75 mg/100 g in canned tomatoes versus 0.11 mg/100 g and 1.00 mg/100 g in raw tomatoes. For home-processed tomatoes, β-carotene and lutein showed a content decrease in all thermally treated products. This decrease was more evident for β-carotene in the skin fraction (−17%, while for lutein it was greater in the pulp fraction (−25%. Lycopene presented a different pattern: after heat treatment its concentration increased both in the whole and in pulp fractions, while in the skin fraction it decreased dramatically (−36%. The analysis of the isomers formed during the thermal treatment suggests that lycopene is rather stable inside the tomato matrix.

  17. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes.

    Science.gov (United States)

    D'Evoli, Laura; Lombardi-Boccia, Ginevra; Lucarini, Massimo

    2013-07-31

    Tomatoes and tomato products are rich sources of carotenoids-principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in raw tomatoes (11.60 mg/100 g versus 5.12 mg/100 g). Lutein and β-carotene were respectively 0.15 mg/100 g and 0.75 mg/100 g in canned tomatoes versus 0.11 mg/100 g and 1.00 mg/100 g in raw tomatoes. For home-processed tomatoes, β-carotene and lutein showed a content decrease in all thermally treated products. This decrease was more evident for β-carotene in the skin fraction (-17%), while for lutein it was greater in the pulp fraction (-25%). Lycopene presented a different pattern: after heat treatment its concentration increased both in the whole and in pulp fractions, while in the skin fraction it decreased dramatically (-36%). The analysis of the isomers formed during the thermal treatment suggests that lycopene is rather stable inside the tomato matrix.

  18. Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme

    Science.gov (United States)

    Luo, Xiao-Ping; Wang, Cun-Hai; Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2018-06-01

    The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.

  19. Apparent and partial molal heat capacities of aqueous rare earth nitrate solutions at 250C

    International Nuclear Information System (INIS)

    Spedding, F.H.; Baker, J.L.; Walters, J.P.

    1979-01-01

    Specific heats of aqueous solutions of the trinitrates of La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu were measured from 0.1 m to saturation at 25 0 C. Apparent molal heat capacities, phi/sub cp/, were calculated for these solutions, and empirical polynomial equations were obtained which expressed phi/sub cp/ as a function of m/sup 1/2/ for each salt. The partial molal heat capacities of the solvent, anti C 1 /sub p/, and solute, anti C 2 /sub p/, were calculated from these equations. Unlike chloride and perchlorate data reported earlier, values of anti C 1 /sub p/ for nitrate solutions across the rare earth series did not show a two series effect. Instead, anti C 1 /sub p/ values at lower concentrations (0.5 and 1.0 m) appear correlated with reported first formation constants for rare earth-nitrate complexes. 31 references, 9 figures, 2 tables

  20. Investigation on Minimum Film Boiling Point of Highly Heated Vertical Metal Rod in Aqueous Surfactant Solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chi Young; Kim, Jae Han [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2017-09-15

    In this study, experiments were conducted on the MFB(minimum film boiling) point of highly heated vertical metal rod quenched in aqueous surfactant solution at various temperature conditions. The aqueous Triton X-100 solution(100 wppm) and pure water were used as the liquid pool. Their temperatures ranged from 77 °C to 100 °C. A stainless steel vertical rod of initial center temperature of 500 °C was used as a test specimen. In both liquid pools, as the liquid temperature decreased, the time to reach the MFB point decreased with a parallel increase in the temperature and heat flux of the MFB point. However, over the whole present temperature range, in the aqueous Triton X-100 solution, the time to reach the MFB point was longer, while the temperature and heat flux of the MFB point were reduced when compared with pure water. Based on the present experimental data, this study proposed the empirical correlations to predict the MFB temperature of a high temperature vertical metal rod in pure water and in aqueous Triton X-100 solution.

  1. Heat treatments of TiAl-Cr-V casting alloy

    International Nuclear Information System (INIS)

    Pu, Z.J.; Ma, J.L.; Wu, K.H.

    1995-01-01

    The need to investigate various kinds of fine microstructure based on casting TiAl alloy led to development of a multiple-stage heat treatment procedure. The first stage required the transformation of as-cast lamellar structure into near-gamma structure, followed by required transformation of near-gamma structure into various kinds of fine microstructure. The as-cast lamellar structure can be changed into near-gamma structure by annealing the alloy at 1,200 C for at least 50 hours. During the annealing process, two mechanisms are involved in transforming the lamellar structure into a near-gamma structure. One is the discontinuous coarsening (DC) process, and the other is the continuous coarsening (CC) process. With the near-gamma structure as an initial structure, the alloy being heat-treated in the γ + α and in the α fields can produce various kinds of microstructure with fine grain size. These microstructure significantly differ from the microstructure produced by heat-treating the deformed lamellar structure. Results of the investigation show that careful control of the time of the heat-treatment process in the single a field can produce a fine fully lamellar structure

  2. Flow friction and heat transfer of ethanol–water solutions through silicon microchannels

    International Nuclear Information System (INIS)

    Wu Huiying; Wu Xinyu; Wei Zhen

    2009-01-01

    An experimental investigation was performed on the flow friction and convective heat transfer characteristics of the ethanol–water solutions flowing through five sets of trapezoidal silicon microchannels having hydraulic diameters ranging from 141.7 µm to 268.6 µm. Four kinds of ethanol–water solutions with the ethanol volume concentrations ranging from 0 to 0.8 were tested under different flow and heating conditions. It was found that the cross-sectional geometric parameters had great effect on the flow friction and heat transfer, and the microchannels with a larger W b /W t (bottom width-to-top width ratio) and a smaller H/W t (depth-to-top width ratio) usually had a larger friction constant and a higher Nusselt number. Entrance effects were significant for the flow friction and heat transfer in silicon microchannels, and decreased with the increase of dimensionless hydrodynamic length L and dimensionless thermal length L + h . When L > 1.0, the hydrodynamic entrance effect on the flow friction was ignorable. For the developed laminar flow in silicon microchannels, the Navier–Stokes equation was applicable. It was also found that the volume concentrations had different effects on the flow friction and heat transfer. Within the experimental range, the effect of volume concentrations on the flow friction was ignorable, and the friction constants of the ethanol–water solutions having different concentrations were the same as those of the pure water. However, volume concentrations had great effect on the convection heat transfer in silicon microchannels. With the increase of the volume concentrations, the Nusselt number of the ethanol–water solutions increased obviously, which was attributed to the combination effect of the increase in the Prantdtl number as well as the volatilization effect of the ethanol. Based on the experimental data, the dimensionless correlations for the flow friction and heat transfer of the ethanol–water solutions in the silicon

  3. Thermal radiation influence on MHD flow of a rotating fluid with heat transfer through EFGM solutions

    Science.gov (United States)

    Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa

    2018-05-01

    The aim of this research work is to find the EFGM solutions of the unsteady magnetohydromagnetic natural convection heat transfer flow of a rotating, incompressible, viscous, Boussinesq fluid is presented in this study in the presence of radiative heat transfer. The Rosseland approximation for an optically thick fluid is invoked to describe the radiative flux. Numerical results obtained show that a decrease in the temperature boundary layer occurs when the Prandtl number and the radiation parameter are increased and the flow velocity approaches steady state as the time parameter t is increased. These findings are in quantitative agreement with earlier reported studies.

  4. A study on post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems

    Science.gov (United States)

    Shahariar, G. M. H.; Wardana, M. K. A.; Lim, O. T.

    2018-04-01

    The post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems was numerically investigated in a constant volume chamber using STAR CCM+ CFD code. The turbulence flow was modelled by realizable k-ε two-layer model together with standard wall function and all y+ treatment was applied along with two-layer approach. The Eulerian-Lagrangian approach was used for the modelling of multi phase flow. Urea water solution (UWS) was injected onto the heated wall for the wall temperature of 338, 413, 473, 503 & 573 K. Spray development after impinging on the heated wall was visualized and measured. Droplet size distribution and droplet evaporation rates were also measured, which are vital parameters for the system performance but still not well researched. Specially developed user defined functions (UDF) are implemented to simulate the desired conditions and parameters. The investigation reveals that wall temperature has a great impact on spray development after impingement, droplet size distribution and evaporation. Increasing the wall temperature leads to longer spray front projection length, smaller droplet size and faster droplet evaporation which are preconditions for urea crystallization reduction. The numerical model and parameters are validated comparing with experimental data.

  5. Hydrogenated amorphous carbon next deposit after heat treatment

    International Nuclear Information System (INIS)

    Salancon, E.; Durbeck, T.; Schwarz-Selinger, T.; Jacob, W.

    2006-01-01

    One of the main safety problems in the ITER tokamak project is the tritium adsorption in the reactor walls and in particular the deposits which appear after the plasma discharge. These deposits are amorphous hydrogenated carbon films, type polymer (soft a-C:H). The heating of these deposits with a pulse laser is a proposed solution for the tritium desorption. Meanwhile, Gibson and al show that in experimental conditions, products are deposed on the walls before entering the mass spectrometer. The authors present thermo-desorption spectra of different amorphous carbon films. (A.L.B.)

  6. The heat treatment of steel. A mathematical control problem

    Energy Technology Data Exchange (ETDEWEB)

    Hoemberg, Dietmar; Kern, Daniela

    2009-07-21

    The goal of this paper is to show how the heat treatment of steel can be modelled in terms of a mathematical optimal control problem. The approach is applied to laser surface hardening and the cooling of a steel slab including mechanical effects. Finally, it is shown how the results can be utilized in industrial practice by a coupling with machine-based control. (orig.)

  7. Deep heat muscle treatment: A mathematical model - I

    International Nuclear Information System (INIS)

    Ogulu, A.; Bestman, A.R.

    1992-03-01

    The flow of blood during deep heat muscle treatment is studied in this paper. We model the blood vessel as a long tube in circular section whose radius varied slowly. Under the Boussinesq approximation, we seek asymptotic series expansions for the velocity components, temperature and pressure about a small parameter, ε, characterizing the radius variation. The study reveals mathematically why physicians recommend a hot bath for cuts and physiotherapists use ice packs for bruises. (author). 5 refs, 3 figs

  8. Global, decaying solutions of a focusing energy-critical heat equation in R4

    Science.gov (United States)

    Gustafson, Stephen; Roxanas, Dimitrios

    2018-05-01

    We study solutions of the focusing energy-critical nonlinear heat equation ut = Δu - | u|2 u in R4. We show that solutions emanating from initial data with energy and H˙1-norm below those of the stationary solution W are global and decay to zero, via the "concentration-compactness plus rigidity" strategy of Kenig-Merle [33,34]. First, global such solutions are shown to dissipate to zero, using a refinement of the small data theory and the L2-dissipation relation. Finite-time blow-up is then ruled out using the backwards-uniqueness of Escauriaza-Seregin-Sverak [17,18] in an argument similar to that of Kenig-Koch [32] for the Navier-Stokes equations.

  9. Microwave heat treatment as a substitute for conventional treatment of palm oil fruits

    International Nuclear Information System (INIS)

    Mujahid H Al-Fayadh; Nor Azura Masabbir Ali

    1996-01-01

    Microwave energy has become a sound method of heat treatment because of its high penetration power, cleanliness and possible economic significance. In this research, microwave heat was used as a substitute for conventional blanching method of palm oil fruits. Microwave treatment at 2450 MHz and 800 watts gave very close color and frn,frying characteristics to oil of blanched fruits after one minute exposure time. However, five minutes of microwave heat gave severe husk oil discoloration after 49 hours of deep frying, compared to all oils extracted from fruits treated by either low, microwave exposure time or conventional steam treatment. Kernel oil, after five minutes of microwave treatment, was less discolored than both steam or microwave-treated fruits for one minute. More carotenes and discoloration compounds may be contributed to discoloration during microwave treatments. Oil chemical constants of both husk and kernel oils treated by microwave heat were close to those treated by conventional heat. Further research is needed to investigate detailed oil characteristics and evaluate the feasibility study for using microwave energy, as a substitute for conventional heat in palm oil industry

  10. Complete heat transfer solutions of an insulated regular polygonal pipe by using a PWTR model

    International Nuclear Information System (INIS)

    Wong, K.-L.; Chou, H.-M.; Li, Y.-H.

    2004-01-01

    The heat transfer characteristics for insulated long regular polygonal (including circular) pipes are analyzed by using the same PWRT model in the present study as that used by Chou and Wong previously [Energy Convers. Manage. 44 (4) (2003) 629]. The thermal resistance of the inner convection term and the pipe conduction term in the heat transfer rate are not neglected in the present study. Thus, the complete heat transfer solution will be obtained. The present results can be applied more extensively to practical situations, such as heat exchangers. The results of the critical thickness t cr and the neutral thickness t e are independent of the values of J (generated by the combined effect of the inner convection term and the pipe conduction term). However, the heat transfer rates are dependent on the values of J. The present study shows that the thermal resistance of the inner convection term and the pipe conduction term cannot be neglected in the heat transfer equation in situations of low to medium inner convection coefficients h i and/or low to medium pipe conductivities K, especially in situations with large pipe sizes or/and great outer convection coefficients h 0

  11. Simulations of Precipitate Microstructure Evolution during Heat Treatment

    Science.gov (United States)

    Wu, Kaisheng; Sterner, Gustaf; Chen, Qing; Jou, Herng-Jeng; Jeppsson, Johan; Bratberg, Johan; Engström, Anders; Mason, Paul

    Precipitation, a major solid state phase transformation during heat treatment processes, has for more than one century been intensively employed to improve the strength and toughness of various high performance alloys. Recently, sophisticated precipitation reaction models, in assistance with well-developed CALPHAD databases, provide an efficient and cost-effective way to tailor precipitate microstructures that maximize the strengthening effect via the optimization of alloy chemistries and heat treatment schedules. In this presentation, we focus on simulating precipitate microstructure evolution in Nickel-base superalloys under arbitrary heat treatment conditions. The newly-developed TC-PRISMA program has been used for these simulations, with models refined especially for non-isothermal conditions. The effect of different cooling profiles on the formation of multimodal microstructures has been thoroughly examined in order to understand the underlying thermodynamics and kinetics. Meanwhile, validations against several experimental results have been carried out. Practical issues that are critical to the accuracy and applicability of the current simulations, such as modifications that overcome mean-field approximations, compatibility between CALPHAD databases, selection of key parameters (particularly interfacial energy and nucleation site densities), etc., are also addressed.

  12. THE HEAT TREATMENT ANALYSIS OF E110 CASE HARDENING STEEL

    Directory of Open Access Journals (Sweden)

    MAJID TOLOUEI-RAD

    2016-03-01

    Full Text Available This paper investigates mechanical and microstructural behaviour of E110 case hardening steel when subjected to different heat treatment processes including quenching, normalizing and tempering. After heat treatment samples were subjected to mechanical and metallographic analysis and the properties obtained from applying different processes were analysed. The heat treatment process had certain effects on the resultant properties and microstructures obtained for E110 steel which are described in details. Quenching produced a martensitic microstructure characterized by significant increase in material’s hardness and a significant decreased in its impact energy. Annealed specimens produced a coarse pearlitic microstructure with minimal variation in hardness and impact energy. For normalized samples, fine pearlitic microstructure was identified with a moderate increase in hardness and significant reduction in impact energy. Tempering had a significant effect on quenched specimens, with a substantial rise in material ductility and reduction of hardness with increasing tempering temperature. Furthermore, Results provide additional substantiation of temper embrittlement theory for low-carbon alloys, and indicate potential occurrence of temper embrittlement for fine pearlitic microstructures.

  13. Heat treatment trials for ITER toroidal field coils

    International Nuclear Information System (INIS)

    Matsui, Kunihiro; Hemmi, Tsutomu; Koizumi, Norikiyo; Nakajima, Hideo; Kimura, Satoshi; Nakamoto, Kazunari

    2012-01-01

    Cable-in-conduit (CIC) conductors using Nb 3 Sn strands are used in ITER toroidal fields (TF) coils. Heat treatment generates thermal strain in CIC conductors because of the difference in thermal expansion between the Nb 3 Sn strands and the stainless-steel jacket. The elongation/shrinkage of the TF conductor may make it impossible to insert a wound TF conductor into the groove of a radial plate. In addition, it is expected that the deformation of the winding due to heat treatment-based release of the residual force in the jacket may also make it impossible to insert the winding in the groove, and that correcting the winding geometry to allow insertion of the winding may influence the superconducting performance of the TF conductor. The authors performed several trials using heat treatment as the part of activities in Phase II of TF coil procurement aiming to resolve the above-mentioned technical issues, and evaluated the elongations of 0.064, 0.074 and 0.072% for the straight and curved conductors and 1/3-scale double-pancake (DP) winding, respectively. It was confirmed that correction if the deformed winding did not influence the superconducting performance of the conductor. (author)

  14. Characteristics microstructure and microhardness of cast Ti-6Al-4V ELI for biomedical application submitted to solution treatment

    Science.gov (United States)

    Damisih, Jujur, I. Nyoman; Sah, Joni; Agustanhakri, Prajitno, Djoko Hadi

    2018-05-01

    Ti 6Al-4V ELI (Extra Low Interstitial)alloy containing 6wt% of aluminum, 4wt% of vanadium with controlled level of iron and oxygen is one of most popular alloy employed in biomedical applications as implant material. Heat treatment process for titanium alloys becomes important and could be performed by some of different ways in order to develop microstructure as well as its properties. The objective of this paper is to study the effects of solution treatment temperature on microstructure and mechanical properties of as-cast Ti-6Al-4V ELI especially microhardness value. The alloy was melted by single arc melting furnace with a water-cooled copper crucible hearth under argon atmosphere and then casted. It was heat treated through solution treatment at 3 (three) different temperaturesi.e. 850°C, 950°C and 1050°C in an argon gas atmosphere for around 30 minutes. After solution treatment, samples were water quenched and then aged at temperature of 500°C for 4 hours. To investigate its microstructure, the alloy was investigated under optical microscope and scanning electron microscope (SEM). It was observed Widmanstätten microstructure consisting of mixture α and β phase with basket-weave pattern. The Vickers microhardness test was performed and the results exhibited the optimum value was obtained at temperature of 950°C of solution treatment. From the observation, it revealed that the heat treatment has substantial effect on microstructural properties where microhardness increased due to formation of α' martensite structure. It was showed also that solution treatment followed by aging could improve mechanical properties especially microhardness value of Ti-6Al-4V ELI alloy. These results were suggesting the optimized conditions of heat treatment to obtain the best microstructure properties and microhardness value.

  15. Uninterrupted heat-treatment of starch raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Bronshtein, D Z

    1958-01-01

    A setup is presented, with a Rekord grinder, a Khronos scale, and other equipment of Soviet manufacture, in which oats, rye, wheat, and other grains are treated at 42 to 45 degrees prior to their use as raw materials in the ethanol industry. These materials are analyzed with respect to H/sub 2/O, starch, bulk, weight, screen analysis, and the final ethanol yields/ton of such raw materials. In a three year run in plant, this heat-treatment was advantageous, as compared to the former treatment of the starch materials.

  16. Uninterrupted heat-treatment of starch raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Bronshtein, D Z

    1958-01-01

    A setup is presented, with a Rekord grinder, a Khronos scale, and other equipment of Soviet manufacture, in which oats, rye, wheat, and other grains are treated at 42 to 45/sup 0/ prior to their use as raw materials in the ethanol industry. These materials are analyzed with respect to H/sub 2/O, starch, bulk weight, screen analysis, and the final ethanol yields/ton of such raw materials. In a three year run in a plant, this heat-treatment was advantageous, as compared to the former treatment of the starch materials.

  17. Hybrid fuzzy logic control of laser surface heat treatments

    International Nuclear Information System (INIS)

    Perez, Jose Antonio; Ocana, Jose Luis; Molpeceres, Carlos

    2007-01-01

    This paper presents an advanced hybrid fuzzy logic control system for laser surface heat treatments, which allows to increase significantly the uniformity and final quality of the obtained product, reducing the rejection rate and increasing the productivity and efficiency of the treatment. Basically, the proposed hybrid control structure combines a fuzzy logic controller, with a pure integral action, both fully decoupled, improving the performances of the process with a reasonable design cost, since the system nonlinearities are fully compensated by the fuzzy component of the controller, while the integral action contributes to eliminate the steady-state error

  18. Effect of pre-cooling and heat treatment on antioxidant enzymes ...

    African Journals Online (AJOL)

    Effect of pre-cooling and heat treatment on antioxidant enzymes profile of mango and banana. ... In banana, pre-cooling treatment (8 ºC) and heat treatment followed by cooling reduced CAT activity in peel and pulp, whereas POX activity increased. Pre-cooling and heat treatments altered normal homeostasis of these fruits, ...

  19. DHC in Helsinki - The Ultimate Heating and Cooling Solution for a Large Urban Area

    Energy Technology Data Exchange (ETDEWEB)

    Wirgentius, Niko; Riipinen, Marko

    2010-09-15

    Since the 1950s there has been successful district energy business in Helsinki. It has been the main factor for superior energy efficiency and low CO2 emissions both in heating and cooling as well as providing clean air for the metropolitan area. The system has been grown by commercial basis based on customers' own willingness to select district energy solution. It also provided a profitable energy business to local energy company, Helsinki Energy. Helsinki DHC system is a good example of ultimate urban energy solution that provides benefits for the customer, energy company, metropolitan area and for the whole society as well.

  20. Enhanced age-strengthening by two-step progressive solution treatment in an Mg–Zn–Al–Re alloy

    International Nuclear Information System (INIS)

    Zhang, Jing; Yuan, Fuqing; Du, Yong

    2013-01-01

    Highlights: • A two-step progressive solution treatment schedule was proposed. • The treatment enhanced dissolution of ternary eutectic phases in Mg–Zn–Al alloy. • Solution temperature could break the limit of the ternary eutectic temperature. • There was no microstructural over-heating defect during the progressive heating. • The τ precipitates have a remarkable dispersion strengthening effect. - Abstract: A two-step progressive solution treatment was designed and performed on an as-extruded Mg–7Zn–3Al–0.7Er alloy. The resultant microstructure and mechanical properties were examined by means of scanning electron microscopy, X-ray diffractometer, differential scanning calorimetry and hardness testing. The results showed that the two-step progressive solution treatment could enhance the dissolution of the ternary eutectic phases in the Mg–Zn–Al system without the formation of microstructure over-heating defects. After homogenization for 50 h at 325 °C, the volume fraction of the undissolved particles in the Mg–7Zn–3Al–0.7Er alloy ingot was ∼4.1%. Two-step progressive solution treatment performed on the as-extruded alloy could further dissolve the particles. Only 1.5% undissolved particles remained after the treatment. The supersaturated degree of both the dissolved solute atoms and vacancies in the α-Mg matrix was expected to be increased, resulting in an enhanced age-strengthening, compared with normal solution and aging treatments. Moreover, the processed alloy exhibited a homogenous and stable fine grain structure. Remarkable dispersion strengthening effect of ternary τ (Mg 32 (Al,Zn) 49 ) precipitates occurred in Mg–Zn–Al alloy was also identified

  1. SOLUTION OF TRANSIENT HEAT CONDUCTION PROBLEM BY THE FINITE ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    Süleyman TAŞGETİREN

    1995-01-01

    Full Text Available Determination of temperature distribution is generally the first step in the design of machine elements subjected to ubnormal temperatures in their service life and for selection of materials. During this heat transfer analysis, the boundary and enviromental conditions must be modeled realistically and the geometry must be well represented. A variety of materials deviating from simple constant property isotropic material to composit materials having different properties according to direction of reinforcements are to be analysed. Then, the finite element method finds a large application area due to its use of same notation in heat transfer analysis and mechanical analysis of elements. In this study, the general formulation of two dimensional transient heat conduction is developed and a sample solution is given for arectangular bar subjected to convection baundary condition.

  2. TRIP: a finite element computer program for the solution of convection heat transfer problems

    International Nuclear Information System (INIS)

    Slagter, W.; Roodbergen, H.A.

    1976-01-01

    The theory and use of the finite element code TRIP are described. The code calculates temperature distributions in three-dimensional continua subjected to convection heat transfer. A variational principle for transport phenomena is applied to solve the convection heat transfer problem with temperature and heat flux boundary conditions. The finite element discretization technique is used to reduce the continuous spatial solution into a finite number of unknowns. The method is developed in detail to determine temperature distributions in coolant passages of fuel rod bundles which are idealized by hexahedral elements. The development of the TRIP code is discussed and the listing of the program is given in FORTRAN IV. An example is given to illustrate the validity and practicality of the method

  3. Modeling of amorphous pocket formation in silicon by numerical solution of the heat transport equation

    International Nuclear Information System (INIS)

    Kovac, D.; Otto, G.; Hobler, G.

    2005-01-01

    In this paper we present a model of amorphous pocket formation that is based on binary collision simulations to generate the distribution of deposited energy, and on numerical solution of the heat transport equation to describe the quenching process. The heat transport equation is modified to consider the heat of melting when the melting temperature is crossed at any point in space. It is discretized with finite differences on grid points that coincide with the crystallographic lattice sites, which allows easy determination of molten atoms. Atoms are considered molten if the average of their energy and the energy of their neighbors meets the melting criterion. The results obtained with this model are in good overall agreement with published experimental data on P, As, Te and Tl implantations in Si and with data on the polyatomic effect at cryogenic temperature

  4. Synthesis of Mo5SiB2 based nanocomposites by mechanical alloying and subsequent heat treatment

    International Nuclear Information System (INIS)

    Abbasi, A.R.; Shamanian, M.

    2011-01-01

    Research highlights: → α-Mo-Mo 5 SiB 2 nanocomposite was produced after 20 h milling of Mo-Si-B powders. → Heat treatment of 5 h MAed powders led to the formation of boride phases. → Heat treatment of 10 h MAed powders led to the formation of Mo 5 SiB 2 phase. → By increasing heat treatment time, quantity of Mo 5 SiB 2 phase increased. → 5 h heat treatment of 20 h MAed powders led to the formation of Mo 5 SiB 2 -based composite. - Abstract: In this study, systematic investigations were conducted on the synthesis of Mo 5 SiB 2 -based alloy by mechanical alloying and subsequent heat treatment. In this regard, Mo-12.5 mol% Si-25 mol% B powder mixture was milled for different times. Then, the mechanically alloyed powders were heat treated at 1373 K for 1 h. The phase transitions and microstructural evolutions of powder particles during mechanical alloying and heat treatment were studied by X-ray diffractometry and scanning electron microscopy. The results showed that the phase evolutions during mechanical alloying and subsequent heat treatment are strongly dependent on milling time. After 10 h of milling, a Mo solid solution was formed, but, no intermetallic phases were detected at this stage. However, an α-Mo-Mo 5 SiB 2 nanocomposite was formed after 20 h of milling. After heat treatment of 5 h mechanically alloyed powders, small amounts of MoB and Mo 2 B were detected and α-Mo-MoB-Mo 2 B composite was produced. On the other hand, heat treatment of 10 h and 20 h mechanically alloyed powders led to the formation of an α-Mo-Mo 5 SiB 2 -MoSi 2 -Mo 3 Si composite. At this point, there is a critical milling time (10 h) for the formation of Mo 5 SiB 2 phase after heat treatment wherein below that time, boride phase and after that time, Mo 5 SiB 2 phase are formed. In the case of 20 h mechanically alloyed powders, by increasing heat treatment time, not only the quantity of α-Mo was reduced and the quantity of Mo 5 SiB 2 was increased, but also new boride

  5. Exact solutions for MHD flow of couple stress fluid with heat transfer

    Directory of Open Access Journals (Sweden)

    Najeeb Alam Khan

    2016-01-01

    Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.

  6. Evaluation of carbon diffusion in heat treatment of H13 tool steel under different atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Maziar Ramezani

    2015-04-01

    Full Text Available Although the cost of the heat treatment process is only a minor portion of the total production cost, it is arguably the most important and crucial stage on the determination of material quality. In the study of the carbon diffusion in H13 steel during austenitization, a series of heat treatment experiments had been conducted under different atmospheric conditions and length of treatment. Four austenitization atmospheric conditions were studied, i.e., heat treatment without atmospheric control, heat treatment with stainless steel foil wrapping, pack carburization heat treatment and vacuum heat treatment. The results showed that stainless steel foil wrapping could restrict decarburization process, resulting in a constant hardness profile as vacuum heat treatment does. However, the tempering characteristic between these two heat treatment methods is different. Results from the gas nitrided samples showed that the thickness and the hardness of the nitrided layer is independent of the carbon content in H13 steel.

  7. Technical project of complex fast cycle heat treatment of hydrogenous coal preparation

    OpenAIRE

    Moiseev, V. A.; Andrienko, V. G.; Pileckij, V. G.; Urvancev, A. I.; Gvozdyakov, Dmitry Vasilievich; Gubin, Vladimir Evgenievich; Matveev, Aleksandr Sergeevich; Savostiyanova, Ludmila Viktorovna

    2015-01-01

    Problems of heat-treated milled hydrogenous coal preparation site creation in leading fast cycle heat treatment complex were considered. Conditions for effective use of electrostatic methods of heat-treated milled hydrogenous coal preparation were set. Technical project of heat treatment of milled hydrogenous coal preparation site was developed including coupling of working equipment complex on fast heat treatment and experimental samples of equipment being designed for manufacturing. It was ...

  8. Hydrometallurgical treatment of copper smelter dusts. Desarsenification of leaching solutions

    International Nuclear Information System (INIS)

    Alguacil, F.J.; Magne, L.; Navarro, P.; Simpson, J.

    1996-01-01

    Copper smelter dusts contain along with this metal, which is amenable for its recovery, a number of other metals (especially arsenic) which are considered as toxic. Different alternatives have been proposed for the treatment of such metallurgical residues and among them Hydrometallurgy shows good perspectives for its application in this field. In the present work different hydrometallurgical processes proposed for the treatment of copper smelter dusts are described and evaluated together with different alternatives given for the Desarsenification of the leaching solutions. (Author) 36 refs

  9. European roadmap to the realization of fusion energy: Mission for solution on heat-exhaust systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnyanskiy, M., E-mail: mikhail.turnyanskiy@euro-fusion.org [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Neu, R. [Max-Planck-Institut für Plasmapysik, Boltzmannstraße 2, D-85748 Garching (Germany); Technische Universität München, Fachgebiet Plasma-Wand-Wechselwirkung, D-85748 Garching (Germany); Albanese, R.; Ambrosino, R. [Assoc. EURATOM/ENEA/CREATE/DIETI – Univ. Napoli Federico II, Via Claudio 21, I-80125 (Italy); Bachmann, C. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Brezinsek, S. [Association EURATOM/Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Donne, T. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Eich, T. [Max-Planck-Institut für Plasmapysik, Boltzmannstraße 2, D-85748 Garching (Germany); Falchetto, G. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Federici, G.; Kalupin, D.; Litaudon, X.; Mayoral, M.L.; McDonald, D.C. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Reimerdes, H. [EPFL, CRPP, CH-1015 Lausanne (Switzerland); Romanelli, F.; Wenninger, R. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); You, J.-H. [Max-Planck-Institut für Plasmapysik, Boltzmannstraße 2, D-85748 Garching (Germany)

    2015-10-15

    Highlights: • A summary of the main aims of the Mission 2 for a solution on heat-exhaust systems. • A description of the EUROfusion consortium strategy to address Mission 2. • A definition of main unresolved issues and challenges in Mission 2. • Work Breakdown Structure to set up the collaborative efforts to address these challenges. - Abstract: Horizon 2020 is the largest EU Research and Innovation programme to date. The European fusion research programme for Horizon 2020 is outlined in the “Roadmap to the realization of fusion energy” and published in 2012 [1]. As part of it, the European Fusion Consortium (EUROfusion) has been established and will be responsible for implementing this roadmap through its members. The European fusion roadmap sets out a strategy for a collaboration to achieve the goal of generating fusion electricity by 2050. It is based on a goal-oriented approach with eight different missions including the development of heat-exhaust systems which must be capable of withstanding the large heat and particle fluxes of a fusion power plant (FPP). A summary of the main aims of the mission for a solution on heat-exhaust systems and the EUROfusion consortium strategy to set up an efficient Work Breakdown Structure and the collaborative efforts to address these challenges will be presented.

  10. European roadmap to the realization of fusion energy: Mission for solution on heat-exhaust systems

    International Nuclear Information System (INIS)

    Turnyanskiy, M.; Neu, R.; Albanese, R.; Ambrosino, R.; Bachmann, C.; Brezinsek, S.; Donne, T.; Eich, T.; Falchetto, G.; Federici, G.; Kalupin, D.; Litaudon, X.; Mayoral, M.L.; McDonald, D.C.; Reimerdes, H.; Romanelli, F.; Wenninger, R.; You, J.-H.

    2015-01-01

    Highlights: • A summary of the main aims of the Mission 2 for a solution on heat-exhaust systems. • A description of the EUROfusion consortium strategy to address Mission 2. • A definition of main unresolved issues and challenges in Mission 2. • Work Breakdown Structure to set up the collaborative efforts to address these challenges. - Abstract: Horizon 2020 is the largest EU Research and Innovation programme to date. The European fusion research programme for Horizon 2020 is outlined in the “Roadmap to the realization of fusion energy” and published in 2012 [1]. As part of it, the European Fusion Consortium (EUROfusion) has been established and will be responsible for implementing this roadmap through its members. The European fusion roadmap sets out a strategy for a collaboration to achieve the goal of generating fusion electricity by 2050. It is based on a goal-oriented approach with eight different missions including the development of heat-exhaust systems which must be capable of withstanding the large heat and particle fluxes of a fusion power plant (FPP). A summary of the main aims of the mission for a solution on heat-exhaust systems and the EUROfusion consortium strategy to set up an efficient Work Breakdown Structure and the collaborative efforts to address these challenges will be presented.

  11. Using solute and heat tracers for aquifer characterization in a strongly heterogeneous alluvial aquifer

    Science.gov (United States)

    Sarris, Theo S.; Close, Murray; Abraham, Phillip

    2018-03-01

    A test using Rhodamine WT and heat as tracers, conducted over a 78 day period in a strongly heterogeneous alluvial aquifer, was used to evaluate the utility of the combined observation dataset for aquifer characterization. A highly parameterized model was inverted, with concentration and temperature time-series as calibration targets. Groundwater heads recorded during the experiment were boundary dependent and were ignored during the inversion process. The inverted model produced a high resolution depiction of the hydraulic conductivity and porosity fields. Statistical properties of these fields are in very good agreement with estimates from previous studies at the site. Spatially distributed sensitivity analysis suggests that both solute and heat transport were most sensitive to the hydraulic conductivity and porosity fields and less sensitive to dispersivity and thermal distribution factor, with sensitivity to porosity greatly reducing outside the monitored area. The issues of model over-parameterization and non-uniqueness are addressed through identifiability analysis. Longitudinal dispersivity and thermal distribution factor are highly identifiable, however spatially distributed parameters are only identifiable near the injection point. Temperature related density effects became observable for both heat and solute, as the temperature anomaly increased above 12 degrees centigrade, and affected down gradient propagation. Finally we demonstrate that high frequency and spatially dense temperature data cannot inform a dual porosity model in the absence of frequent solute concentration measurements.

  12. Finite Volume Element (FVE) discretization and multilevel solution of the axisymmetric heat equation

    Science.gov (United States)

    Litaker, Eric T.

    1994-12-01

    The axisymmetric heat equation, resulting from a point-source of heat applied to a metal block, is solved numerically; both iterative and multilevel solutions are computed in order to compare the two processes. The continuum problem is discretized in two stages: finite differences are used to discretize the time derivatives, resulting is a fully implicit backward time-stepping scheme, and the Finite Volume Element (FVE) method is used to discretize the spatial derivatives. The application of the FVE method to a problem in cylindrical coordinates is new, and results in stencils which are analyzed extensively. Several iteration schemes are considered, including both Jacobi and Gauss-Seidel; a thorough analysis of these schemes is done, using both the spectral radii of the iteration matrices and local mode analysis. Using this discretization, a Gauss-Seidel relaxation scheme is used to solve the heat equation iteratively. A multilevel solution process is then constructed, including the development of intergrid transfer and coarse grid operators. Local mode analysis is performed on the components of the amplification matrix, resulting in the two-level convergence factors for various combinations of the operators. A multilevel solution process is implemented by using multigrid V-cycles; the iterative and multilevel results are compared and discussed in detail. The computational savings resulting from the multilevel process are then discussed.

  13. Integral transform solution of natural convection in a square cavity with volumetric heat generation

    Directory of Open Access Journals (Sweden)

    C. An

    2013-12-01

    Full Text Available The generalized integral transform technique (GITT is employed to obtain a hybrid numerical-analytical solution of natural convection in a cavity with volumetric heat generation. The hybrid nature of this approach allows for the establishment of benchmark results in the solution of non-linear partial differential equation systems, including the coupled set of heat and fluid flow equations that govern the steady natural convection problem under consideration. Through performing the GITT, the resulting transformed ODE system is then numerically solved by making use of the subroutine DBVPFD from the IMSL Library. Therefore, numerical results under user prescribed accuracy are obtained for different values of Rayleigh numbers, and the convergence behavior of the proposed eigenfunction expansions is illustrated. Critical comparisons against solutions produced by ANSYS CFX 12.0 are then conducted, which demonstrate excellent agreement. Several sets of reference results for natural convection with volumetric heat generation in a bi-dimensional square cavity are also provided for future verification of numerical results obtained by other researchers.

  14. Heat transfer in nucleate pool boiling of aqueous SDS and triton X-100 solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wasekar, Vivek M. [Tata Steel Limited, Department of Research and Development, Jamshedpur (India)

    2009-09-15

    Variation in degree of surface wettability is presented through the application of Cooper's correlative approach (h{proportional_to}M{sup -0.5}q{sub w}''0.67) for computing enhancement ({phi}) in nucleate pool boiling of aqueous solutions of SDS and Triton X-100 and its presentation with Marangoni parameter ({chi}) that represents the dynamic convection effects due to surface tension gradients. Dynamic spreading coefficient defined as {sigma} {sub dyn}N{sub a}, which relates spreading and wetting characteristics with the active nucleation site density on the heated surface and bubble evolution process, represents cavity filling and activation process and eliminates the concentration dependence of nucleate pool boiling heat transfer in boiling of aqueous surfactant solutions. Using the dynamic spreading coefficient ({sigma}{sub dyn}N{sub a}=0.09q{sub w}''0.71), correlation predictions within {+-}15% for both SDS and triton X-100 solutions for low heat flux boiling condition (q{sub w}''{<=} 100 kW/m {sup 2}) characterised primarily by isolated bubble regime are presented. (orig.)

  15. Analytical Solutions of Ionic Diffusion and Heat Conduction in Multilayered Porous Media

    Directory of Open Access Journals (Sweden)

    Yu Bai

    2015-01-01

    Full Text Available Ionic diffusion and heat conduction in a multiple layered porous medium have many important engineering applications. One of the examples is the chloride ions from deicers penetrating into concrete structures such as bridge decks. Different overlays can be placed on top of concrete surface to slowdown the chloride penetration. In this paper, the chloride ion diffusion equations were established for concrete structures with multiple layers of protective system. By using Laplace transformation, an analytical solution was developed first for chloride concentration profiles in two-layered system and then extended to multiple layered systems with nonconstant boundary conditions, including the constant boundary and linear boundary conditions. Because ionic diffusion in saturated media and heat conduction are governed by the same form of partial differential equations with different materials parameters, the analytical solution was further extended to handle heat conduction in a multiple layered system under nonconstant boundary conditions. The numerical results were compared with available test data. The basic trends of the analytical solution and the test data agreed quite well.

  16. Standard partial molar heat capacities and enthalpies of formation of aqueous aluminate under hydrothermal conditions from integral heat of solution measurements

    International Nuclear Information System (INIS)

    Coulier, Yohann; Tremaine, Peter R.

    2014-01-01

    Highlights: • Heats of solution of NaAlO 2 (s) were measured at five temperatures up to 250 °C. • Standard molar enthalpies of solution were determined from the measured heats of solution. • Standard molar enthalpies of solution were correlated with the density model. • The density model allows us to determine the standard molar heat capacities of reaction. - Abstract: Heats of solution of sodium aluminum oxide, NaAlO 2 (s), were measured in aqueous sodium hydroxide solutions using a Tian–Calvet heat-flow calorimeter (Setaram, Model C80) with high pressure “batch cells” made of hastelloy C-276, at five temperatures from (373.15 to 523.15) K, steam saturation pressure, and concentrations from (0.02 to 0.09) mol · kg −1 . Standard molar enthalpies of solution, Δ soln H ∘ , and relative standard molar enthalpies, [H ∘ (T) − H ∘ (298.15 K)], of NaAl(OH) 4 (aq) were determined from the measured heats of solution. The results were fitted with the “density” model. The temperature dependence of Δ soln H ∘ from the model yielded the standard molar heat capacities of reaction, Δ soln C p ∘ , from which standard partial molar heat capacities for aqueous aluminate, C p ∘ [A1(OH) 4 − ,aq], were calculated. Standard partial molar enthalpies of formation, Δ f H ∘ , and entropies, S ∘ , of A1(OH) 4 − (aq) were also determined. The values for C p ∘ [A1(OH) 4 − ,aq] agree with literature data determined up to T = 413 K from enthalpy of solution and heat capacity measurements to within the combined experimental uncertainties. They are consistent with differential heat capacity measurements up to T = 573 K from Schrödle et al. (2010) [29] using the same calorimeter, but this method has the advantage that measurements could be made at much lower concentrations in the presence of an excess concentration of ligand. To our knowledge, these are the first standard partial molar heat capacities measured under hydrothermal conditions by the

  17. Effect of heat treatment on antimycotic activity of Sahara honey

    Directory of Open Access Journals (Sweden)

    Moussa Ahmed

    2014-11-01

    Full Text Available Objective: To evaluate the influence of the temperature on honey colour, polyphenol contents and antimycotic capacity and to evaluate the correlation between these parameters. Methods: Sahara honey were heated up to 25, 50, 75 and 100 °C for 15, 30 and 60 min, and their colour intensity, polyphenol contents and antimycotic capacity. The Folin-Ciocalteu test was used to determine the total polyphenol contents (TPC. The antimycotic activity was evaluated both by agar diffusion method and micro wells dilution method against the Candida albicans (C. albicans and Candida glabrata (C. glabrata. Results: Initial values for TPC in Sahara honey ranged from 0.55 to 1.14 mg of gallic acid per kg of honey, with the average value of 0.78 mg of gallic acid per kg of honey. The TPC values after heat-treatment were 0.54 to 1.54 with the average value of 1.49 mg. The minimal inhibitory concentrations before heat-treatment of Sahara honey against C. albicans and C. glabrata ranged from 3.06%-12.5% and 50% respectively. After heat-treatment the minimal inhibitory concentrations between 12.5% and 50% for C. albicans and C. glabrata, respectively. The diameters of inhibition zones of Sahara honey with 50% concentration varied from (12.67-15.00 mm by C. albicans to (14.33-15.67 mm by C. glabrata. The diameters of inhibition zones after heat-treatment at 25 and 50 °C for 15.30 and 60 min ranged from (2.00-18.67 mm by C. albicans to (8.00-16.67 mm by C. glabrata. Statistically significant relations between the TPC and the colour intensity of Sahara honey (r=0.99, P<0.05. Furthermore, the results showed that the TPC and colour is not correlated with the antimycotic capacity. Conclusions: To our knowledge this is the first report on the antimycotic capacity of Sahara honey.

  18. Application of Quasi-Heat-Pulse Solutions for Luikov’s Equations of Heat and Moisture Transfer for Calibrating and Utilizing Thermal Properties Apparatus

    Science.gov (United States)

    Mark A. Dietenberger; Charles R. Boardman

    2014-01-01

    Several years ago the Laplace transform solutions of Luikov’s differential equations were presented for one-dimensional heat and moisture transfer in porous hydroscopic orthotropic materials for the boundary condition of a gradual heat pulse applied to both surfaces of a flat slab. This paper presents calibration methods and data for the K-tester 637 (Lasercomp),...

  19. Heating homes and water with the sun. Solar thermal solutions adapted to individual homes

    International Nuclear Information System (INIS)

    Bareau, Helene; Juniere, Olivier; Leplay, Camille

    2016-09-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic outlook of the way to complete the installation of a solar space and hot water heating system in an individual home. After some recall of the key points to be considered before taking the decision to invest in a solar heating system (minimum surface, orientation, etc.) and the main administrative procedures to be respected (in France), this document presents the common individual solar water heating system (which is now reliable and robust), its various equipment and operating principles, the dimensioning of the system, gives recommendations on points such as the panel position and orientation, the risk of overheating and the way to avoid it, etc. It also presents combined solar heating solutions that simultaneously heat water and space, their operating principles and the way to complete their installation for a home. Informations on financing, selection of the equipment and the installer, and installation maintenance are also proposed

  20. Modeling heat and mass transfer in the heat treatment step of yerba maté processing

    Directory of Open Access Journals (Sweden)

    J. M. Peralta

    2007-03-01

    Full Text Available The aim of this research was to estimate the leaf and twig temperature and moisture content of yerba maté branches (Ilex paraguariensis Saint Hilaire during heat treatment, carried out in a rotary kiln dryer. These variables had to be estimated (modeling the heat and mass transfer due to the difficulty of experimental measurement in the dryer. For modeling, the equipment was divided into two zones: the flame or heat treatment zone and the drying zone. The model developed fit well with the experimental data when water loss took place only in leaves. In the first zone, leaf temperature increased until it reached 135°C and then it slowly decreased to 88°C at the exit, despite the gas temperature, which varied in this zone from 460°C to 120°C. Twig temperature increased in the two zones from its inlet temperature (25°C up to 75°C. A model error of about 3% was estimated based on theoretical and experimental data on leaf moisture content.

  1. Water, solute and heat transport in the soil: the Australian connection

    Science.gov (United States)

    Knight, John

    2016-04-01

    The interest of Peter Raats in water, solute and heat transport in the soil has led to scientific and/or personal interactions with several Australian scientists such as John Philip, David Smiles, Greg Davis and John Knight. Along with John Philip and Robin Wooding, Peter was an early user of the Gardner (1958) linearised model of soil water flow, which brought him into competition with John Philip. I will discuss some of Peter's solutions relevant to infiltration from line and point sources, cavities and basins. A visit to Canberra, Australia in the early 1980s led to joint work on soil water flow, and on combined water and solute movement with David Smiles and others. In 1983 Peter was on the PhD committee for Greg Davis at the University of Wollongong, and some of the methods in his thesis 'Mathematical modelling of rate-limiting mechanisms of pyritic oxidation in overburden dumps' were later used by Peter's student Sjoerd van der Zee. David Smiles and Peter wrote a survey article 'Hydrology of swelling clay soils' in 2005. In the last decade Peter has been investigating the history of groundwater and vadose zone hydrology, and recently he and I have been bringing to light the largely forgotten work of Lewis Fry Richardson on finite difference solution of the heat equation, drainage theory, soil physics, and the soil-plant-atmosphere continuum.

  2. Linear perturbations of a self-similar solution of hydrodynamics with non-linear heat conduction

    International Nuclear Information System (INIS)

    Dubois-Boudesocque, Carine

    2000-01-01

    The stability of an ablative flow, where a shock wave is located upstream a thermal front, is of importance in inertial confinement fusion. The present model considers an exact self-similar solution to the hydrodynamic equations with non-linear heat conduction for a semi-infinite slab. For lack of an analytical solution, a high resolution numerical procedure is devised, which couples a finite difference method with a relaxation algorithm using a two-domain pseudo-spectral method. Stability of this solution is studied by introducing linear perturbation method within a Lagrangian-Eulerian framework. The initial and boundary value problem is solved by a splitting of the equations between a hyperbolic system and a parabolic equation. The boundary conditions of the hyperbolic system are treated, in the case of spectral methods, according to Thompson's approach. The parabolic equation is solved by an influence matrix method. These numerical procedures have been tested versus exact solutions. Considering a boundary heat flux perturbation, the space-time evolution of density, velocity and temperature are shown. (author) [fr

  3. Heat Treatment of a Casting Element of a Through Clamp to Suspension of Electric Cables on Line Post Insulators

    Directory of Open Access Journals (Sweden)

    Pezda J.

    2016-09-01

    Full Text Available Heat treatment of a casting elements poured from silumins belongs to technological processes aimed mainly at change of their mechanical properties in solid state, inducing predetermined structural changes, which are based on precipitation processes (structural strengthening of the material, being a derivative of temperature and duration of solutioning and ageing operations. The subject-matter of this paper is the issue concerning implementation of a heat treatment process, basing on selection of dispersion hardening parameters to assure improvement of technological quality in terms of mechanical properties of a clamping element of energy network suspension, poured from hypoeutectic silumin of the LM25 brand; performed on the basis of experimental research program with use of the ATD method, serving to determination of temperature range of solutioning and ageing treatments. The heat treatment performed in laboratory conditions on a component of energy network suspension has enabled increase of the tensile strength Rm and the hardness HB with about 60-70% comparing to the casting without the heat treatment, when the casting was solutioned at temperature 520 °C for 1 hour and aged at temperature 165 °C during 3 hours.

  4. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    Science.gov (United States)

    Boudreault, E.; Hazel, B.; Côté, J.; Godin, S.

    2014-03-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated "CA6NM". This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named "Scompi". This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions.

  5. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    International Nuclear Information System (INIS)

    Boudreault, E; Hazel, B; Côté, J; Godin, S

    2014-01-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated C A6NM . This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named S compi . This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions

  6. Abnormal Grain Growth in the Heat Affected Zone of Friction Stir Welded Joint of 32Mn-7Cr-1Mo-0.3N Steel during Post-Weld Heat Treatment

    Directory of Open Access Journals (Sweden)

    Yijun Li

    2018-04-01

    Full Text Available The abnormal grain growth in the heat affected zone of the friction stir welded joint of 32Mn-7Cr-1Mo-0.3N steel after post-weld heat treatment was confirmed by physical simulation experiments. The microstructural stability of the heat affected zone can be weakened by the welding thermal cycle. It was speculated to be due to the variation of the non-equilibrium segregation state of solute atoms at the grain boundaries. In addition, the pressure stress in the welding process can promote abnormal grain growth in the post-weld heat treatment.

  7. Investigation of heat distribution during magnetic heating treatment using a polyurethane–ferrofluid phantom-model

    International Nuclear Information System (INIS)

    Henrich, F.; Rahn, H.; Odenbach, S.

    2014-01-01

    Magnetic heating treatment can be used as an adjuvant treatment for cancer therapy. In this therapy, magnetic nanoparticles are enriched inside the tumour and exposed to an alternating magnetic field. Due to magnetic losses the temperature in the tumour rises. The resulting temperature profile inside the tumour is useful for the therapeutic success. In this context heat transfer between tissue with nanoparticles and tissue without nanoparticles is a highly important feature which is actually not understood in detail. In order to investigate this, a phantom has been created which can be used to measure the temperature profile around a region enriched with magnetic nanoparticles. This phantom is composed of a material, which has similar thermal conductivity as human tissue. A tempered water bath surrounds the phantom to establish a constant surrounding temperature simulating the heat sink provided by the human body in a real therapeutic application. It has been found that even at a low concentration of magnetic nanoparticles around 13 mg/ml, sufficient heating of the enriched region can be achieved. Moreover it has been observed that the temperature drops rapidly in the material surrounding the enriched region. Corresponding numerical investigations provide a basis for future recalculations of the temperature inside the tumour using temperature data obtained in the surrounding tissue. - Highlights: • The temperature profile by magnetic hyperthermia was examined. • A model was built to get a deeper understanding of the temperature profile. • The temperature profile of the model inside magnetic fields was measured. • Based on the model a simulation of the temperature profile was performed. • The simulated temperature profile agreed well with the measured profile

  8. China's Scientific Investigation for Liquid Waste Treatment Solutions

    International Nuclear Information System (INIS)

    Liangjin, B.; Meiqiong, L.; Kelley, D.

    2006-01-01

    Post World War II created the nuclear age with several countries developing nuclear technology for power, defense, space and medical applications. China began its nuclear research and development programs in 1950 with the establishment of the China Institute of Atomic Energy (CIAE) located near Beijing. CIAE has been China's leader in nuclear science and technical development with its efforts to create advanced reactor technology and upgrade reprocessing technology. In addition, with China's new emphasis on environmental safety, CIAE is focusing on waste treatment options and new technologies that may provide solutions to legacy waste and newly generated waste from the full nuclear cycle. Radioactive liquid waste can pose significant challenges for clean up with various treatment options including encapsulation (cement), vitrification, solidification and incineration. Most, if not all, nuclear nations have found the treatment of liquids to be difficult, due in large part to the high economic costs associated with treatment and disposal and the failure of some methods to safely contain or eliminate the liquid. With new environmental regulations in place, Chinese nuclear institutes and waste generators are beginning to seek new technologies that can be used to treat the more complex liquid waste streams in a form that is safe for transport and for long-term storage or final disposal. [1] In 2004, CIAE and Pacific Nuclear Solutions, a division of Pacific World Trade, USA, began discussions about absorbent technology and applications for its use. Preliminary tests were conducted at CIAE's Department of Radiochemistry using generic solutions, such as lubricating oil, with absorbent polymers for solidification. Based on further discussions between both parties, it was decided to proceed with a more formal test program in April, 2005, and additional tests in October, 2005. The overall objective of the test program was to apply absorbent polymers to various waste streams

  9. Effect of pH Changes on Antioxidant Capacity and the Content of Betalain Pigments During the Heating of a Solution of Red Beet Betalains

    Directory of Open Access Journals (Sweden)

    Mikołajczyk-Bator Katarzyna

    2017-06-01

    Full Text Available Red beets and their products are mainly consumed after processing. In this study, the effect of pH on changes in antioxidant capacity (AC and the content of betalain pigments were analysed during the heating of a betalain preparation solution. With pH ranging from 4 to 9 during the heat-treatment, the content of red pigments decreased depending on the pH level of the sample. The losses of red pigments in the investigated betalain preparation solution increased along with rising pH levels of the heated solution. The greatest losses were recorded at pH of 9.0. An opposite correlation was observed for yellow pigments. The content of yellow pigments in the heated betalain preparation solution was increasing along with increasing pH. The most pronounced increase in the content of yellow pigments was found at pH of 6.5 and 7.0. At the same time, the heated betalain preparation solution was shown to exhibit a higher antioxidant capacity at pH of 6.0 (14.9 μmol Trolox/mL than at pH of 4.0 (12.6 μmol Trolox/mL. It was observed that the increase in the antioxidant capacity in heated betalain preparation solutions with pH in the 6.0–6.5 range occurred as a result of increased concentrations of neobetanin, assessed by HPLC, within the pH range from 5.0 to 6.5.

  10. Effects of heat treatment on some physical properties of Douglas fir (Pseudotsuga menziesii) wood

    Science.gov (United States)

    Xianjun Li; Zhiyong Cai; Qunying Mou; Yiqiang Wu; Yuan Liu

    2011-01-01

    In this study the effect of heat treatment on some physical properties of Douglas fir (Pseudotsuga menziesii) was investigated. Wood specimens were subjected to heat treatment at 160, 180, 200 and 220°C for 1, 2, 3 and 4h. The results show that heat treatment resulted in a darkened color, decreased moisture performance and increased dimensional stability of...

  11. Optimization of properties of parts in the heat treatment

    International Nuclear Information System (INIS)

    Shpis, Kh.I.

    1981-01-01

    Properties of parts of the improved steel depending considerably on the structure obtained after the tempering have been investigated. It is shown that in many cases properties of steel with the structure of the tempered lower bainite are no worse than the properties of steels with the structure of tempered martensite. At certain dimensions of parts and under certain conditions of cooling tempering degree is determined with calcination. Calcination of steel is evaluated by the dispersion bands of hardness obtained using the method of end quenching. Account of the calcination when steels are selected permits to optimize part properties during heat treatment [ru

  12. COMPUTERIZED HEAT-TREATMENT IN A ZIMBABWEAN FACTORY

    Directory of Open Access Journals (Sweden)

    M. Collier

    2012-01-01

    Full Text Available In the context of Zimbabwe's current economic problems, parts of the manufacturing industry are turning their attention to the possibility of utilising local design talent in upgrading their manufacturing plants. This paper describes a project undertaken by the National University of Science and Technology to convert the heat-treatment process in a major manufacturing plant from semi -manual to a computerized one. The system comprises microcontroller connection to the furnaces and sensors, and communicates with a central computer on which software for a windowed user-interface is hosted. Experimental results for the system are presented, and a strategy for other companies in the same predicament is proposed.

  13. Solutions obtained to international heat transfer benchmarking problems for nuclear fuel casks using Q/TRAN

    International Nuclear Information System (INIS)

    Sanchez, L.C.

    1987-02-01

    In 1985 Sandia National Laboratories participated in the Nuclear Energy Agency Committee on Reactor Physics (NEACRP) Specialists' Meeting on Heat Transfer Assessment of Transportation Packages. The objective of the meeting was to establish a set of model problems for use in comparing the performance of thermal analysis computer codes that may be used in the design of nuclear fuel shipping casks. The selected problems are to be used to compare code results for the thermal phenomena of conduction, convection, and radiation in cask-like problems. Two model problems were used in this study. The first problem required the determination of the steady-state temperatures of a 16 x 16 array of heated and unheated pins (representing fuel and control rod positions) of a simulated PWR fuel assembly. The second problem required the determination of transient temperatures of a finned surface (representing the external surface of a cask) subjected to an internal heat flux and to an external engulfing fire. Solutions to the problems were obtained with the code ''Q/TRAN.'' Solutions and descriptions of the necessary modeling techniques are given in this report

  14. Analytical solutions of heat transfer for laminar flow in rectangular channels

    Directory of Open Access Journals (Sweden)

    Rybiński Witold

    2014-12-01

    Full Text Available The paper presents two analytical solutions namely for Fanning friction factor and for Nusselt number of fully developed laminar fluid flow in straight mini channels with rectangular cross-section. This type of channels is common in mini- and microchannel heat exchangers. Analytical formulae, both for velocity and temperature profiles, were obtained in the explicit form of two terms. The first term is an asymptotic solution of laminar flow between parallel plates. The second one is a rapidly convergent series. This series becomes zero as the cross-section aspect ratio goes to infinity. This clear mathematical form is also inherited by the formulae for friction factor and Nusselt number. As the boundary conditions for velocity and temperature profiles no-slip and peripherally constant temperature with axially constant heat flux were assumed (H1 type. The velocity profile is assumed to be independent of the temperature profile. The assumption of constant temperature at the channel’s perimeter is related to the asymptotic case of channel’s wall thermal resistance: infinite in the axial direction and zero in the peripheral one. It represents typical conditions in a minichannel heat exchanger made of metal.

  15. Effect of solution treatment on precipitation behaviors and age hardening response of Al–Cu alloys with Sc addition

    International Nuclear Information System (INIS)

    Chen, B.A.; Pan, L.; Wang, R.H.; Liu, G.; Cheng, P.M.; Xiao, L.; Sun, J.

    2011-01-01

    Highlights: ► Effects of Sc addition on the precipitation and age hardening of Al–Cu alloy were investigated. ► The critical influence of solution treatment on the Sc effect was revealed. ► A significant enhancement in age hardening response was experimentally found and quantitatively assessed. - Abstract: Influences of solution treatment on precipitation behaviors and age hardening response of Al–2.5 wt% Cu–0.3 wt% Sc alloys were investigated, in comparison with Sc-free one. The Al 3 Sc dispersoids, formed during homogenization, were either survived or dissolved to become Sc solute atoms in solution treatment, depending on the solution temperature. When the temperature for solution treatment is 873 K, most of the Al 3 Sc dispersoids were dissolved and a significant enhancement in the uniform precipitation of finer θ′-Al 2 Cu particles was achieved in following aging treatment, causing a noticeable increase in peak-aging hardness by about 90% compared to Sc-free alloys. The enhanced age hardening effect was quantitatively related to the remarkable reduction in effective inter-particle spacing of the plate-shaped θ′-Al 2 Cu precipitates. When the temperature for solution treatment is 793 K, however, most of the Al 3 Sc dispersoids were survived after solution treatment and facilitated the heterogeneous precipitation of θ′-Al 2 Cu plates directly on the {1 0 0} facets of dispersoids in following aging treatment. Concomitantly, the uniform precipitation of θ′-Al 2 Cu plates was greatly suppressed, resulting in a reduced age hardening response. The age hardening responses were quantitatively assessed by using a modified strengthening model that is applicable to the plate-shaped precipitates. The calculations were in good agreement with experimental results. The present results show the importance of controlling solution treatments to achieve significant promotion effect of Sc addition on the precipitation hardening in heat-treatable aluminum

  16. MSWT-01, flood disaster water treatment solution from common ideas

    Science.gov (United States)

    Ananto, Gamawan; Setiawan, Albertus B.; Z, Darman M.

    2013-06-01

    Indonesia has a lot of potential flood disaster places with clean water problems faced. Various solution programs always initiated by Government, companies CSR, and people sporadical actions to provide clean water; with their advantages and disadvantages respectively. One solution is easy to operate for instance, but didn't provide adequate capacity, whereas the other had ideal performance but more costly. This situation inspired to develop a water treatment machine that could be an alternative favor. There are many methods could be choosed; whether in simple, middle or high technology, depends on water source input and output result quality. MSWT, Mobile Surface Water Treatment, is an idea for raw water in flood area, basically made for 1m3 per hour. This water treatment design adopted from combined existing technologies and related literatures. Using common ideas, the highlight is how to make such modular process put in compact design elegantly, and would be equipped with mobile feature due to make easier in operational. Through prototype level experiment trials, the machine is capable for producing clean water that suitable for sanitation and cooking/drinking purposes although using contaminated water input source. From the investment point of view, such machine could be also treated as an asset that will be used from time to time when needed, instead of made for project approach only.

  17. MSWT-01, flood disaster water treatment solution from common ideas

    International Nuclear Information System (INIS)

    Ananto, Gamawan; Setiawan, Albertus B; Darman M Z

    2013-01-01

    Indonesia has a lot of potential flood disaster places with clean water problems faced. Various solution programs always initiated by Government, companies CSR, and people sporadical actions to provide clean water; with their advantages and disadvantages respectively. One solution is easy to operate for instance, but didn't provide adequate capacity, whereas the other had ideal performance but more costly. This situation inspired to develop a water treatment machine that could be an alternative favor. There are many methods could be choosed; whether in simple, middle or high technology, depends on water source input and output result quality. MSWT, Mobile Surface Water Treatment, is an idea for raw water in flood area, basically made for 1m 3 per hour. This water treatment design adopted from combined existing technologies and related literatures. Using common ideas, the highlight is how to make such modular process put in compact design elegantly, and would be equipped with mobile feature due to make easier in operational. Through prototype level experiment trials, the machine is capable for producing clean water that suitable for sanitation and cooking/drinking purposes although using contaminated water input source. From the investment point of view, such machine could be also treated as an asset that will be used from time to time when needed, instead of made for project approach only.

  18. Analytical Solution of the Hyperbolic Heat Conduction Equation for Moving Semi-Infinite Medium under the Effect of Time-Dependent Laser Heat Source

    Directory of Open Access Journals (Sweden)

    R. T. Al-Khairy

    2009-01-01

    source, whose capacity is given by (,=((1−− while the semi-infinite body has insulated boundary. The solution is obtained by Laplace transforms method, and the discussion of solutions for different time characteristics of heat sources capacity (constant, instantaneous, and exponential is presented. The effect of absorption coefficients on the temperature profiles is examined in detail. It is found that the closed form solution derived from the present study reduces to the previously obtained analytical solution when the medium velocity is set to zero in the closed form solution.

  19. Viability analysis of heat recovery solution for industrial process of roasting coffee

    Directory of Open Access Journals (Sweden)

    Kljajić Miroslav V.

    2016-01-01

    Full Text Available Every industrial heat recovery solution is specific engineering challenge but not because predicted energy rationalization or achieved energy savings but potential unavoidable technological deviations and consequences on related processes and for sure, high investment because of delicate design and construction. Often, the energy savings in a particular segment of the industrial process is a main goal. However, in the food industry, especially roasting coffee, additional criteria has to be strictly observed and fulfilled. Such criteria may include prescribed and uniform product quality, compliance with food safety standards, stability of the processes etc., and all in the presence of key process parameters variability, inconsistency of raw material composition and quality, complexity of measurement and analytical methods etc. The paper respects all circumstances and checks viability of proposed recovery solution. The paper analyzes the possibility of using waste heat from the roasting process to ensure shortening of roasting cycle, reduction of fuel consumption and increasing capacity of roasting lines on daily basis. Analysis concludes that effects are valuable and substantial, although the complete solution is on the threshold of economic sustainability with numerous opportunities to improve of both technical and economic indicators. The analysis combines measuring and analytical methods with standard cost-benefit analysis. Conclusions are derived from measurements and calculations of key parameters in the operating conditions and checked by experimental methods. Test results deviate from 10 to 15%, in relation with parameters in main production line.

  20. ANALYSIS OF PITTING CORROSION ON AN INCONEL 718 ALLOY SUBMITTED TO AGING HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    Felipe Rocha Caliari

    2014-10-01

    Full Text Available Inconel 718 is one of the most important superalloys, and it is mainly used in the aerospace field on account of its high mechanical strength, good resistance to fatigue and creep, good corrosion resistance and ability to operate continuously at elevated temperatures. In this work the resistance to pitting corrosion of a superalloy, Inconel 718, is analyzed before and after double aging heat treatment. The used heat treatment increases the creep resistance of the alloy, which usually is used up to 0.6 Tm. Samples were subjected to pitting corrosion tests in chloride-containing aqueous solution, according to ASTM-F746-04 and the procedure described by Yashiro et al. The results of these trials show that after heat treatment the superalloy presents higher corrosion resistance, i.e., the pitting corrosion currents of the as received surfaces are about 6 (six times bigger (~0.15 mA than those of double aged surfaces (~0.025 mA.

  1. Effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tocci, Marialaura, E-mail: m.tocci@unibs.it [Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia (Italy); Donnini, Riccardo, E-mail: riccardo.donnini@cnr.it [National Research Council of Italy (CNR), Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Via R. Cozzi 53, 20125 Milan (Italy); Angella, Giuliano, E-mail: giuliano.angella@cnr.it [National Research Council of Italy (CNR), Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Via R. Cozzi 53, 20125 Milan (Italy); Pola, Annalisa, E-mail: annalisa.pola@unibs.it [Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia (Italy)

    2017-01-15

    In the present paper the effect of heat treatment on an AlSi3Mg alloy with and without Cr and Mn addition was investigated. Beside the well-known modification of the morphology of Fe-containing intermetallics, it was found that Cr and Mn allowed the formation of dispersoids in the aluminium matrix after solution heat treatment at 545 °C, as shown by scanning transmission electron microscope observations. These particles were responsible of the enhanced Vickers microhardness of the aluminium matrix in comparison with the base alloy after solution treatment and quenching, according to dispersion hardening mechanism. The presence of these particles was not affected by ageing treatment, which instead allowed the precipitation of β-Mg{sub 2}Si, as shown by the elaboration of differential scanning calorimeter curves. The formation of dispersoids and the study of their effect on mechanical properties can represent an interesting development for applications at high temperatures of casting alloys due to their thermal stability compared to other strengthening phases as β-Mg{sub 2}Si. - Highlights: •Cr and Mn successfully modified the morphology of Fe-containing intermetallics. •Cr- and Mn-dispersoids formed in the aluminium matrix during solution treatment. •Dispersion hardening was detected after solution treatment for Cr-containing alloy. •The dispersion hardening effect was maintained after ageing treatment.

  2. Vanadium and heat treatments effect on elastic characteristics of niobium

    International Nuclear Information System (INIS)

    Vasil'eva, E.V.; Tret'yakov, V.I.; Prokoshkin, D.A.; Pustovalov, V.A.

    1975-01-01

    The effect of vanadium content and of heat treatment conditions on the elastic properties of niobium at temperatures of 20 to 800 deg C was studied. Nb-V alloys were produced by binary vacuum remelting. The Nb-V alloys have been then subjected to thermal treatment. The total degree of deformation amounts to about 95%. The specimens were tested with a view to determine their microhardness, specific electric resistance, elasticity limit and modulus of elasticity. The elastic limit of niobium rises when alloyed with vanadium. With the increase of vanadium content the elastic limit of the alloy becomes greater. Pre-crystallization annealing at 600 - 700 deg C considerably increases the elastic limit, which is explained by development of the thermally activated processes leading to a decrease of dislocation mobility and thereby to a strengthening of the alloy

  3. Analytical Solution of Flow and Heat Transfer over a Permeable Stretching Wall in a Porous Medium

    Directory of Open Access Journals (Sweden)

    M. Dayyan

    2013-01-01

    Full Text Available Boundary layer flow through a porous medium over a stretching porous wall has seen solved with analytical solution. It has been considered two wall boundary conditions which are power-law distribution of either wall temperature or heat flux. These are general enough to cover the isothermal and isoflux cases. In addition to momentum, both first and second laws of thermodynamics analyses of the problem are investigated. The governing equations are transformed into a system of ordinary differential equations. The transformed ordinary equations are solved analytically using homotopy analysis method. A comprehensive parametric study is presented, and it is shown that the rate of heat transfer increases with Reynolds number, Prandtl number, and suction to the surface.

  4. Modernization and efficiency of heat treatment and heating up plants; Modernisierung und Effizienz von Thermoprozessanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Peter [LOI Thermprocess GmbH, Essen (Germany); Kuehn, Friedhelm [Ingenieurbuero fuer Waermebehandlung, Industrieoefen und Energieberatung, Muelheim (Germany)

    2010-10-15

    A goal of this contribution is to show, using examples of the thermal heat treatment industry and the thermal processing units used there (Beltype plants, routary hearth, walking hearth, walking beam, pusher type furnaces and gas carburizing plants as well as case hardening plants), which increases in efficiency within and outside of the actual thermal treatment process and the necessary thermal processing units for the order are available today. From the possibilities of the reduction of energy employment resulting from that, a high potential for the discharge of the environment can be derived. The economic effect concerning energy employment and saving possibilities will also be considered. Concluding, examples of case-hardening show which variants of a change of process present themselves partially in the future, in order to achieve substantial production increases and thus energy cost reductions. (orig.)

  5. Electrochemical treatment of spent tan bath solution for reuse

    Directory of Open Access Journals (Sweden)

    Amel Benhadji

    2018-03-01

    Full Text Available A spent tanning bath contains high concentration of salts, chromium and protein. The treatment system for removal of chlorides or chromium from this effluent is expensive. In this context this waste has to be reused. Our study focuses on the application of advanced oxidation processes for protein removal present in a tanning bath. To improve the quality of the chromium tanning bath, two electrochemical processes (electrooxidation and peroxi-electrocoagulation process, PEP are investigated in a batch reactor. The effects of operational parameters such as reactor configuration, current density and electrolysis time on chemical oxygen demand (COD and protein removal efficiency are examined. Results indicated that under the optimum operating range for process, the COD and protein removal efficiency reached 53 and 100%, respectively. The optimum values are determined for the hybrid process (PEP under 0.13 A·cm−2 over 2 h. The treated tanning bath is used as a tanning solution in leather processing. The influence of chromium salt dose, pH solution, stirring time and contact time on the leather characteristic is evaluated. The hides tanned after the addition of 0.25% of commercial chromium salt, at pH solution, leaving them stirring for 4 h with a contact time of 2 days, and showed good hydrothermal stability and physical characteristics of leather.

  6. Heart rate variability during exertional heat stress: effects of heat production and treatment.

    Science.gov (United States)

    Flouris, Andreas D; Bravi, Andrea; Wright-Beatty, Heather E; Green, Geoffrey; Seely, Andrew J; Kenny, Glen P

    2014-04-01

    We assessed the efficacy of different treatments (i.e., treatment with ice water immersion vs. natural recovery) and the effect of exercise intensities (i.e., low vs. high) for restoring heart rate variability (HRV) indices during recovery from exertional heat stress (EHS). Nine healthy adults (26 ± 3 years, 174.2 ± 3.8 cm, 74.6 ± 4.3 kg, 17.9 ± 2.8 % body fat, 57 ± 2 mL·kg·(-1) min(-1) peak oxygen uptake) completed four EHS sessions incorporating either walking (4.0-4.5 km·h(-1), 2 % incline) or jogging (~7.0 km·h(-1), 2 % incline) on a treadmill in a hot-dry environment (40 °C, 20-30 % relative humidity) while wearing a non-permeable rain poncho for a slow or fast rate of rectal temperature (T re) increase, respectively. Upon reaching a T re of 39.5 °C, participants recovered until T re returned to 38 °C either passively or with whole-body immersion in 2 °C water. A comprehensive panel of 93 HRV measures were computed from the time, frequency, time-frequency, scale-invariant, entropy and non-linear domains. Exertional heat stress significantly affected 60/93 HRV measures analysed. Analyses during recovery demonstrated that there were no significant differences between HRV measures that had been influenced by EHS at the end of passive recovery vs. whole-body cooling treatment (p > 0.05). Nevertheless, the cooling treatment required statistically significantly less time to reduce T re (p whole-body immersion in 2 °C water results in faster cooling, there were no observed differences in restoration of autonomic heart rate modulation as measured by HRV indices with whole-body cold-water immersion compared to passive recovery in thermoneutral conditions.

  7. Regularized Fractional Power Parameters for Image Denoising Based on Convex Solution of Fractional Heat Equation

    Directory of Open Access Journals (Sweden)

    Hamid A. Jalab

    2014-01-01

    Full Text Available The interest in using fractional mask operators based on fractional calculus operators has grown for image denoising. Denoising is one of the most fundamental image restoration problems in computer vision and image processing. This paper proposes an image denoising algorithm based on convex solution of fractional heat equation with regularized fractional power parameters. The performances of the proposed algorithms were evaluated by computing the PSNR, using different types of images. Experiments according to visual perception and the peak signal to noise ratio values show that the improvements in the denoising process are competent with the standard Gaussian filter and Wiener filter.

  8. Endotoxin inactivation via steam-heat treatment in dilute simethicone emulsions used in biopharmaceutical processes.

    Science.gov (United States)

    Britt, Keith A; Galvin, Jeffrey; Gammell, Patrick; Nti-Gyabaah, Joseph; Boras, George; Kolwyck, David; Ramirez, José G; Presente, Esther; Naugle, Gregory

    2014-01-01

    Simethicone emulsion is used to regulate foaming in cell culture operations in biopharmaceutical processes. It is also a potential source of endotoxin contamination. The inactivation of endotoxins in dilute simethicone emulsions was assessed as a function of time at different steam temperatures using a Limulus amebocyte lysate kinetic chromogenic technique. Endotoxin inactivation from steam-heat treatment was fit to a four-parameter double exponential decay model, which indicated that endotoxin inactivation was biphasic, consisting of fast and slow regimes. In the fast regime, temperature-related effects were dominant. Transitioning into the slow regime, the observed temperature dependence diminished, and concentration-related effects became increasingly significant. The change in the Gibbs free energy moving through the transition state indicated that a large energy barrier must be overcome for endotoxin inactivation to occur. The corresponding Arrhenius pre-exponential factor was >10(12) s(-1) suggesting that endotoxins in aqueous solution exist as aggregates. The disorder associated with the endotoxin inactivation reaction pathway was assessed via the change in entropy moving through the transition state. This quantity was positive indicating that endotoxin inactivation may result from hydrolysis of individual endotoxin molecules, which perturbs the conformation of endotoxin aggregates, thereby modulating the biological activity observed. Steam-heat treatment decreased endotoxin levels by 1-2 logarithm (log) reduction (LRV), which may be practically relevant depending on incoming raw material endotoxin levels. Antifoam efficiency and cell culture performance were negligibly impacted following steam-heat treatment. The results from this study show that steam-heat treatment is a viable endotoxin control strategy that can be implemented to support large-scale biopharmaceutical manufacturing. © 2014 American Institute of Chemical Engineers.

  9. Effect of Post-weld Heat Treatment on the Mechanical Properties of Supermartensitic Stainless Steel Deposit

    Science.gov (United States)

    Zappa, Sebastián; Svoboda, Hernán; Surian, Estela

    2017-02-01

    Supermartensitic stainless steels have good weldability and adequate tensile property, toughness and corrosion resistance. They have been developed as an alternative technology, mainly for oil and gas industries. The final properties of a supermartensitic stainless steel deposit depend on its chemical composition and microstructure: martensite, tempered martensite, ferrite, retained austenite and carbides and/or nitrides. In these steels, the post-weld heat treatments (PWHTs) are usually double tempering ones, to ensure both complete tempering of martensite and high austenite content, to increase toughness and decrease hardness. The aim of this work was to study the effect of post-weld heat treatments (solution treatment with single and double tempering) on the mechanical properties of a supermartensitic stainless steel deposit. An all-weld metal test coupon was welded according to standard ANSI/AWS A5.22-95 using a GMAW supermartensitic stainless steel metal cored wire, under gas shielding. PWHTs were carried out varying the temperature of the first tempering treatment with and without a second tempering one, after solution treatment. All-weld metal chemical composition analysis, metallurgical characterization, hardness and tensile property measurements and Charpy-V tests were carried out. There are several factors which can be affected by the PWHTs, among them austenite content is a significant one. Different austenite contents (0-42%) were found. Microhardness, tensile property and toughness were affected with up to 15% of austenite content, by martensite tempering and carbide precipitation. The second tempering treatment seemed not to have had an important effect on the mechanical properties measured in this work.

  10. Boundary Element Solution of Geometrical Inverse Heat Conduction Problems for Development of IR CAT Scan

    International Nuclear Information System (INIS)

    Choi, C. Y.; Park, C. T.; Kim, T. H.; Han, K. N.; Choe, S. H.

    1995-01-01

    A geometrical inverse heat conduction problem is solved for the development of Infrared Computerized-Axial-Tomography (IR CAT) Scan by using a boundary element method in conjunction with regularization procedure. In this problem, an overspecified temperature condition by infrared scanning is provided on the surface, and is used together with other conditions to solve the position of an unknown boundary (cavity). An auxiliary problem is introduced in the solution of this problem. By defining a hypothetical inner boundary for the auxiliary problem domain, the cavity is located interior to the domain and its position is determined by solving a potential problem. Boundary element method with regularization procedure is used to solve this problem, and the effects of regularization on the inverse solution method are investigated by means of numerical analysis

  11. Exact solution for heat transfer free convection flow of Maxwell nanofluids with graphene nanoparticles

    Science.gov (United States)

    Aman, Sidra; Zuki Salleh, Mohd; Ismail, Zulkhibri; Khan, Ilyas

    2017-09-01

    This article focuses on the flow of Maxwell nanofluids with graphene nanoparticles over a vertical plate (static) with constant wall temperature. Possessing high thermal conductivity, engine oil is useful to be chosen as base fluid with free convection. The problem is modelled in terms of PDE’s with boundary conditions. Some suitable non-dimensional variables are interposed to transform the governing equations into dimensionless form. The generated equations are solved via Laplace transform technique. Exact solutions are evaluated for velocity and temperature. These solutions are significantly controlled by some parameters involved. Temperature rises with elevation in volume fraction while Velocity decreases with increment in volume fraction. A comparison with previous published results are established and discussed. Moreover, a detailed discussion is made for influence of volume fraction on the flow and heat profile.

  12. Formation of Ni(Al, Mo) solid solutions by mechanical alloying and their ordering on heating

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tomilin, I.A.; Blinov, A.M.; Kulik, T.

    2002-01-01

    The Ni(Al, Mo) solid solutions with different crystalline lattice periods (0.3592 and 0.3570 nm correspondingly) are formed in the course of the Ni 70 Al 25 Mo 5 and Ni 75 Al 20 Mo 5 powder mixtures mechanical alloying (MA) (through the mechanical activation in a vibrating mill). After MA the Mo atoms in the Ni 75 Al 20 Mo 5 mixture completely replace the aluminium positions with formation of the Ni 75 (AlMo) 25 (the L1 2 -type) ternary ordered phase, whereby such a distribution remains after heating up to 700 deg C. The Ni(Al, Mo) metastable solution is formed by MA in the Ni 75 Al 20 Mo 5 mixture, which decays with the release of molybdenum and the remained aluminide undergoes ordering by the L1 2 -type [ru

  13. Numerical modelling of coupled fluid, heat, and solute transport in deformable fractured rock

    International Nuclear Information System (INIS)

    Chan, T.; Reid, J.A.K.

    1987-01-01

    This paper reports on a three-dimensional (3D) finite-element code, MOTIF (model of transport in fractured/porous media), developed to model the coupled processes of groundwater flow, heat transport, brine transport, and one-species radionuclide transport in geological media. Three types of elements are available: a 3D continuum element, a planar fracture element that can be oriented in any arbitrary direction in 3D space or pipe flow in 3D space, and a line element for simulating fracture flow in 2D space or pipe flow in 3D space. As a quality-assurance measure, the MOTIF code was verified by comparison of its results with analytical solutions and other published numerical solutions

  14. Effect of heat treatments on the tensile and electrical properties of high-strength, high-conductivity copper alloys

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Eatherly, W.S.

    1997-01-01

    The unirradiated tensile properties of CuCrZr produced by two different vendors have been measured following different heat treatments. Room temperature electrical resistivity measurements were also performed in order to estimate the thermal conductivity of these specimens. The thermomechanical conditions studied included solution quenched, solution quenched and aged (ITER reference heat treatment), simulated slow HIP thermal cycle (∼1 degrees C/min cooling from solutionizing temperature) and simulated fast HIP thermal cycle (∼100 degrees C/min cooling from solutionizing temperature). Specimens from the last two heat treatments were tested in both the solution-cooled condition and after subsequent precipitate aging at 475 degrees C for 2 h. Both of the simulated HIP thermal cycles caused a pronounced decreases in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycles caused a pronounced decrease in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycle specimens, whereas the strength and conductivity following aging in the fast HIP thermal cycle improved to ∼65% of the solution quenched and aged CuCrZr values. Limited tensile and electrical resistivity measurements were also made on two new heats of Hycon 3HP CuNiBe. High strength but poor uniform and total elongations were observed at 500 degrees C on one of these new heats of CuNiBe, similar to that observed in other heats

  15. Effect of heat treatments on the tensile and electrical properties of high-strength, high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    The unirradiated tensile properties of CuCrZr produced by two different vendors have been measured following different heat treatments. Room temperature electrical resistivity measurements were also performed in order to estimate the thermal conductivity of these specimens. The thermomechanical conditions studied included solution quenched, solution quenched and aged (ITER reference heat treatment), simulated slow HIP thermal cycle ({approximately}1{degrees}C/min cooling from solutionizing temperature) and simulated fast HIP thermal cycle ({approximately}100{degrees}C/min cooling from solutionizing temperature). Specimens from the last two heat treatments were tested in both the solution-cooled condition and after subsequent precipitate aging at 475{degrees}C for 2 h. Both of the simulated HIP thermal cycles caused a pronounced decreases in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycles caused a pronounced decrease in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycle specimens, whereas the strength and conductivity following aging in the fast HIP thermal cycle improved to {approximately}65% of the solution quenched and aged CuCrZr values. Limited tensile and electrical resistivity measurements were also made on two new heats of Hycon 3HP CuNiBe. High strength but poor uniform and total elongations were observed at 500{degrees}C on one of these new heats of CuNiBe, similar to that observed in other heats.

  16. Microstructure and mechanical properties of a novel Ti–Al–Cr–Fe titanium alloy after solution treatment

    International Nuclear Information System (INIS)

    Wang, Zhenguo; Cai, Haijiao; Hui, Songxiao

    2015-01-01

    Highlights: • Microstructure and mechanical properties of a novel Ti–3.0Al–3.7Cr–2.0Fe alloy were studied. • The effects of cooling rates and solution temperature were considered. • The strength–ductility combination were investigated through different heat treatment. - Abstract: The relationship between microstructure and mechanical properties of a novel Ti–3.0Al–3.7Cr–2.0Fe alloy were studied. The effects of cooling rates and solution temperature were considered. The analysis methods of optical microscope (OM), X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were used. The results indicate that β and α phase in this alloy are obtained after solution treated at 1183 K on the cooling ways of air cooling and furnace cooling; and β and α″ martensite are observed after quenching in water. Besides, the volume of α phase is decreased with increasing solution temperature. In the present study, the ultimate strength 1065 MPa with 12.0% in elongation of the alloy is acquired under the heat treatment condition of 1183 K/30 min/AC, and the strength–ductility combination in this case is also the best. Under the heat treatment condition of 1183 K/30 min/WQ, the elasticity modulus of the alloy is only 91.3 GPa, as a result of the lower elasticity modulus of β phase

  17. Heat treatment control of Bi-2212 coils: I. Unravelling the complex dependence of the critical current density of Bi-2212 wires on heat treatment

    Science.gov (United States)

    Shen, Tengming; Li, Pei; Ye, Liyang

    2018-01-01

    A robust and reliable heat treatment is crucial for developing superconducting magnets from several superconductors especially Bi-2212. An improper heat treatment may significantly reduce the critical current density Jc of a Bi-2212 superconducting coil, even to zero, since the Jc of Bi-2212 wires is sensitive to parameters of its heat treatment (partial melt processing). To provide an essential database for heat treating Bi-2212 coils, the dependence of Jc on heat treatment is studied systematically in 11 industrial Bi-2212 wires, revealing several common traits shared between these wires and outlier behaviors. The dependence of the Jc of Bi-2212 on heat treatment is rather complex, with many processing parameters affecting Jc, including the peak processing temperature Tp, the time at the peak temperature tp, the time in the melt tmelt, the rate at which Bi-2212 melt is initially cooled CR1, the rate at which the solidification of Bi-2212 melt occurs CR2, and the temperature Tq at which the cooling rate switches from CR1 to CR2. The role of these parameters is analyzed and clarified, in the perspective of heat treating a coil. Practical advices on heat treatment design are given. The ability of a Bi-2212 coil to follow the prescribed recipe decreases with increasing coil sizes. The size of a coil that can be properly heat treated is determined.

  18. COHO - Utilizing Waste Heat and Carbon Dioxide at Power Plants for Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Sumanjeet [Porifera Inc., Hayward, CA (United States); Wilson, Aaron [Porifera Inc., Hayward, CA (United States); Wendt, Daniel [Porifera Inc., Hayward, CA (United States); Mendelssohn, Jeffrey [Porifera Inc., Hayward, CA (United States); Bakajin, Olgica [Porifera Inc., Hayward, CA (United States); Desormeaux, Erik [Porifera Inc., Hayward, CA (United States); Klare, Jennifer [Porifera Inc., Hayward, CA (United States)

    2017-07-25

    The COHO is a breakthrough water purification system that can concentrate challenging feed waters using carbon dioxide and low-grade heat. For this project, we studied feeds in a lab-scale system to simulate COHO’s potential to operate at coal- powered power plants. COHO proved successful at concentrating the highly scaling and challenging wastewaters derived from a power plant’s cooling towers and flue gas desulfurization units. We also found that COHO was successful at scrubbing carbon dioxide from flue gas mixtures. Thermal regeneration of the switchable polarity solvent forward osmosis draw solution ended up requiring higher temperatures than initially anticipated, but we also found that the draw solution could be polished via reverse osmosis. A techno-economic analysis indicates that installation of a COHO at a power plant for wastewater treatment would result in significant savings.

  19. Microstructure evolution during spray rolling and heat treatment of 2124 Al

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, K.M. [Industrial Technology Department, Idaho National Laboratory, Idaho Falls, ID 83415-2050 (United States)], E-mail: kevin.mchugh@inl.gov; Lin, Y.; Zhou, Y.; Johnson, S.B.; Delplanque, J.-P.; Lavernia, E.J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2008-03-25

    Spray rolling is a strip-casting technology that combines elements of spray forming and twin-roll casting. It consists of atomizing molten metal with a high velocity inert gas, quenching the resultant droplets in flight, and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets and conduction heat transfer at the rolls rapidly remove the metal's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly-solidified strip. Spray rolling operates at a higher solidification rate than conventional twin-roll casting and is able to process a broader range of alloys at high production rates. A laboratory-scale strip caster was constructed and used to evaluate the interplay of processing parameters and strip quality for strips up to 200 mm wide and 1.6-6.4 mm thick. This paper examines microstructure evolution during spray rolling and explores how gas-to-metal mass flow ratio influences the microstructure and mechanical properties of spray-rolled 2124 Al. The influences of solution heat treatment and cold rolling on grain structure and constituent particle spheroidization are also examined.

  20. Effect of Challenge Temperature and Solute Type on Heat Tolerance of Salmonella Serovars at Low Water Activity

    Science.gov (United States)

    Mattick, K. L.; Jørgensen, F.; Wang, P.; Pound, J.; Vandeven, M. H.; Ward, L. R.; Legan, J. D.; Lappin-Scott, H. M.; Humphrey, T. J.

    2001-01-01

    Salmonella spp. are reported to have an increased heat tolerance at low water activity (aw; measured by relative vapor pressure [rvp]), achieved either by drying or by incorporating solutes. Much of the published data, however, cover only a narrow treatment range and have been analyzed by assuming first-order death kinetics. In this study, the death of Salmonella enterica serovar Typhimurium DT104 when exposed to 54 combinations of temperature (55 to 80°C) and aw (rvp 0.65 to 0.90, reduced using glucose-fructose) was investigated. The Weibull model (LogS = −btn) was used to describe microbial inactivation, and surface response models were developed to predict death rates for serovar Typhimurium at all points within the design surface. The models were evaluated with data generated by using six different Salmonella strains in place of serovar Typhimurium DT104 strain 30, two different solutes in place of glucose-fructose to reduce aw, or six low-aw foods artificially contaminated with Salmonella in place of the sugar broths. The data demonstrate that, at temperatures of ≥70°C, Salmonella cells at low aw were more heat tolerant than those at a higher aw but below 65°C the reverse was true. The same patterns were generated when sucrose (rvp 0.80 compared with 0.90) or NaCl (0.75 compared with 0.90) was used to reduce aw, but the extent of the protection afforded varied with solute type. The predictions of thermal death rates in the low-aw foods were usually fail-safe, but the few exceptions highlight the importance of validating models with specific foods that may have additional factors affecting survival. PMID:11526015

  1. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption.

    Science.gov (United States)

    Wibowo, N; Setyadhi, L; Wibowo, D; Setiawan, J; Ismadji, S

    2007-07-19

    The influence of surface chemistry and solution pH on the adsorption of benzene and toluene on activated carbon and its acid and heat treated forms were studied. A commercial coal-based activated carbon F-400 was chosen as carbon parent. The carbon samples were obtained by modification of F-400 by means of chemical treatment with HNO3 and thermal treatment under nitrogen flow. The treatment with nitric acid caused the introduction of a significant number of oxygenated acidic surface groups onto the carbon surface, while the heat treatment increases the basicity of carbon. The pore characteristics were not significantly changed after these modifications. The dispersive interactions are the most important factor in this adsorption process. Activated carbon with low oxygenated acidic surface groups (F-400Tox) has the best adsorption capacity.

  2. Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system

    International Nuclear Information System (INIS)

    Chae, Kyu-Jung; Ren, Xianghao

    2016-01-01

    Highlights: • Specially designed fixed-inverter hybrid heat pump system was developed. • Hybrid operation performed better at part loads than single inverter operation. • The applied heat pump can work stably over a wide range of heat load variations. • Heat energy potential of treated effluent was better than influent. • The heat pump’s COP from the field test was 4.06 for heating and 3.64 for cooling. - Abstract: Among many options to improve energy self-sufficiency in sewage treatment plants, heat extraction using a heat pump holds great promise, since wastewater contains considerable amounts of thermal energy. The actual heat energy demand at municipal wastewater treatment plants (WWTPs) varies widely with time; however, the heat pumps typically installed in WWTPs are of the on/off controlled fixed-speed type, thus mostly run intermittently at severe part-load conditions with poor efficiency. To solve this mismatch, a specially designed, fixed-inverter hybrid heat pump system incorporating a fixed-speed compressor and an inverter-driven, variable-speed compressor was developed and tested in a real WWTP. In this hybrid configuration, to improve load response and energy efficiency, the base-heat load was covered by the fixed-speed compressor consuming relatively less energy than the variable-speed type at nominal power, and the remaining varying load was handled by the inverter compressor which exhibits a high load-match function while consuming relatively greater energy. The heat pump system developed reliably extracted heat from the treated effluent as a heat source for heating and cooling purposes throughout the year, and actively responded to the load changes with a high measured coefficient of performance (COP) of 4.06 for heating and 3.64 for cooling. Moreover, this hybrid operation yielded a performance up to 15.04% better on part loads than the single inverter operation, suggesting its effectiveness for improving annual energy saving when

  3. Microstructural evolution of direct chill cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy during solution treatment

    OpenAIRE

    He Kezhun; Yu Fuxiao; Zhao Dazhi

    2011-01-01

    Heat treatment has important influence on the microstructure and mechanical properties of Al-Si alloys. The most common used heat treatment method for these alloys is solution treatment followed by age-hardening. This paper investigates the microstructural evolution of a direct chill (DC) cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy after solution treated at 500, 510, 520 and 530℃, respectively for different times. The major phases observed in the as-cast alloy are α-aluminum dendrite, primary Si p...

  4. Gas injection to inhibit migration during an in situ heat treatment process

    Science.gov (United States)

    Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren

    2010-11-30

    Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

  5. Influence of Heat Treatment on Biocorrosion and Hemocompatibility of Biodegradable Mg-35Zn-3Ca Alloy

    Directory of Open Access Journals (Sweden)

    Jeong-Hui Ji

    2015-01-01

    Full Text Available Mg-35Zn-3Ca (wt.% alloy containing nontoxic and biocompatible Zn and Ca as alloying elements was prepared and subjected to heat treatment and artificial aging for different duration of time to reduce its rate of degradation. Solution heat treatment was performed at 310°C while artificial aging was performed at 170°C for 0, 2.5, 5.0, 7.5, and 10.0 h and they were designated as AT0, AT1, AT2, AT3, and AT4, respectively. The finest and most homogenous reticulum was observed on the surface of the AT2 group. The result of immersion test in Hank’s balanced salt solution (HBSS showed that the corrosion rate of the AT2 group was 2.32 mg/(cm2 day, which was significantly lower as compared to other groups P<0.05. The hemolysis value was ≤5% in all groups, indicating no toxicity during short-term blood reaction.

  6. Effects of nanoparticle heating on the structure of a concentrated aqueous salt solution

    Science.gov (United States)

    Sindt, Julien O.; Alexander, Andrew J.; Camp, Philip J.

    2017-12-01

    The effects of a rapidly heated nanoparticle on the structure of a concentrated aqueous salt solution are studied using molecular dynamics simulations. A diamond-like nanoparticle of radius 20 Å is immersed in a sodium-chloride solution at 20% above the experimental saturation concentration and equilibrated at T = 293 K and P = 1 atm. The nanoparticle is then rapidly heated to several thousand degrees Kelvin, and the system is held under isobaric-isoenthalpic conditions. It is observed that after 2-3 ns, the salt ions are depleted far more than water molecules from a proximal zone 15-25 Å from the nanoparticle surface. This leads to a transient reduction in molality in the proximal zone and an increase in ion clustering in the distal zone. At longer times, ions begin to diffuse back into the proximal zone. It is speculated that the formation of proximal and distal zones, and the increase in ion clustering, plays a role in the mechanism of nonphotochemical laser-induced nucleation.

  7. Effects of nanoparticle heating on the structure of a concentrated aqueous salt solution.

    Science.gov (United States)

    Sindt, Julien O; Alexander, Andrew J; Camp, Philip J

    2017-12-07

    The effects of a rapidly heated nanoparticle on the structure of a concentrated aqueous salt solution are studied using molecular dynamics simulations. A diamond-like nanoparticle of radius 20 Å is immersed in a sodium-chloride solution at 20% above the experimental saturation concentration and equilibrated at T = 293 K and P = 1 atm. The nanoparticle is then rapidly heated to several thousand degrees Kelvin, and the system is held under isobaric-isoenthalpic conditions. It is observed that after 2-3 ns, the salt ions are depleted far more than water molecules from a proximal zone 15-25 Å from the nanoparticle surface. This leads to a transient reduction in molality in the proximal zone and an increase in ion clustering in the distal zone. At longer times, ions begin to diffuse back into the proximal zone. It is speculated that the formation of proximal and distal zones, and the increase in ion clustering, plays a role in the mechanism of nonphotochemical laser-induced nucleation.

  8. QUALITY IMPROVEMENT OF SECONDARY SILUMINS BY USING REFINING-MODIFYING, HEAT AND LASER TREATMENTS

    Directory of Open Access Journals (Sweden)

    I. P. Volchok

    2014-10-01

    Full Text Available Purpose. As a rule secondary silumins are characterized by lower quality than their primary analogues. During manufacture of alloys a large quantity of intermetallides, first of all on the basis of iron, in their structure is ignored. To achieve the optimum level of properties it is necessary to search for ways to adapt refining-modifying, heat and laser treatments to peculiarities of the structure of secondary Al-Si alloys. Methodology. The research was carried out by using standard methods of metallographic analysis, determination of foundry, mechanical and service properties of alloys according to rotatable plans of multifactor experiments. Findings. It was established, that refiningmodifying treatment is a required procedure during manufacture of secondary silumins as it permits to effectively influence the iron-containing phases' segregations by changing their morphology, size and distribution and to increase the effectiveness of further treatment in solid state. It was found that standard modes of heat treatment are not optimal for secondary silumins. Laser treatment has shown high effectiveness in increasing of strength, wear resistance, corrosion and cavitation resistance of secondary Al-Si alloys, and the increased iron content contributed to additional solid solution hardening. Originality. It was established, that after refining-modifying treatment the phase Al5SiFe, which crystallizes in the shape of long stretched plates transformed into phase Al15(FeMn3Si2 in skeletal or polyhedral shape. The relationship between iron content in secondary silumins and holding time during heat treatment that ensures optimum of mechanical properties was obtained. It was proved that the presence of ironcontaining intermetallides Al5SiFe results in the decrease of hardened layer's depth during laser treatment. It was established, that with increasing of iron concentration the corrosion rate of secondary silumins in 3 % NaCl + 0.1 % H2O2 and 10 % HCl

  9. Optimization of the heat and mechanical treatment of the Al-Zn-Mg-Li alloy

    Directory of Open Access Journals (Sweden)

    M. Stegliński

    2010-07-01

    Full Text Available In terms of high strength in relation to mass the alloys of aluminium – lithium find more and more use mainly in aircraft industry like inspacecraft. At present intensive investigations are carried out in aim of use of Al – Li in automotive industry in particular to components subject to fatigue wear. It could contribute to replace transmission’s elements made from traditional materials by aluminium - lithium alloys. However low resistance to wear due to forming of thin Al2O3 layer which is reproducing in friction contact disqualifies using aluminium alloys in friction contact. From this point of view first stage of investigation was to enhance hardness properties of the substrate by applying thermo-mechanical treatment.In this article the results of heat treatment of Al-Zn-Mg-Li alloy were presented. During investigations optimum parameters (timetemperature of the solution heat treatment were elaborated. Micro hardness on the cross-section were investigated. Phase, chemicalcomposition and morphology were determined. It was found that hardness after thermo-mechanical treatment of Al-Zn-Mg-Li is about20% higher than for AlCu4Mg1 (7075 –T6 alloy.

  10. Effect of heat treatment on the microstructures and damping properties of biomedical Mg-Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Hung [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); Department of Dentistry, Chang Yin dental clinic, No.46-1, Yangming St., Banqiao City, Taipei County 220, Taiwan (China); Research Center for Biomedical Devices, Taipei Medical University, Taipei 110, Taiwan (China); Chen, May-Show [Research Center for Biomedical Devices, Taipei Medical University, Taipei 110, Taiwan (China); School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Lin, Ling-Hung [Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Lin, Ming-Hong [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); Wu, Ching-Zong, E-mail: chinaowu@tmu.edu.tw [Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Ou, Keng-Liang, E-mail: klou@tmu.edu.tw [Research Center for Biomedical Devices, Taipei Medical University, Taipei 110, Taiwan (China); Graduated Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Yu, Chih-Hua [Research Center for Biomedical Devices, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China)

    2011-01-21

    Research highlights: > When the as-quenched Mg-1Zr alloy was aged at temperatures ranging from 200 deg. C to 500 deg. C, a microstructural transformation sequence was found to be {alpha}-Mg {yields} ({alpha}-Mg + twin{sub dense}) {yields} ({alpha}-Mg + twin{sub loose}) {yields} ({alpha}-Mg + {alpha}-Zr). > As the as-quenched Mg-1Zr alloy was subjected to aging treatment at 300 deg. C for 16 h, it exhibited the maximum damping properties. > The twin structure plays a crucial role in increasing the damping capacity of the Mg-1Zr alloy. - Abstract: In this study, we elucidated the effect of heat treatment on the microstructures and damping properties of the biomedical Mg-1 wt% Zr (K1) alloy by optical microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometry, and experimental model analysis. The following microstructural transformation occurred when the as-quenched (AQ, i.e., solution heat treated and quenched) K1 alloy was subjected to aging treatment in the temperature range 200-500 deg. C: {alpha}-Mg {yields} ({alpha}-Mg + twin{sub dense}) {yields} ({alpha}-Mg + twin{sub loose}) {yields} ({alpha}-Mg + {alpha}-Zr). This microstructural transformation was accompanied by variations in the damping capacity. The damping properties of the AQ K1 alloy subjected to aging treatment at 300 deg. C for 16 h were the best among those of the alloys investigated in the present study. The presence of twin structures in the alloy matrix was thought to play a crucial role in increasing the damping capacity of the K1 alloy. Hence, we state that a combination of solution treatment and aging is an effective means of improving the damping capacity of biomedical K1 alloys.

  11. Effect of heat treatment on the microstructures and damping properties of biomedical Mg-Zr alloy

    International Nuclear Information System (INIS)

    Tsai, Ming-Hung; Chen, May-Show; Lin, Ling-Hung; Lin, Ming-Hong; Wu, Ching-Zong; Ou, Keng-Liang; Yu, Chih-Hua

    2011-01-01

    Research highlights: → When the as-quenched Mg-1Zr alloy was aged at temperatures ranging from 200 deg. C to 500 deg. C, a microstructural transformation sequence was found to be α-Mg → (α-Mg + twin dense ) → (α-Mg + twin loose ) → (α-Mg + α-Zr). → As the as-quenched Mg-1Zr alloy was subjected to aging treatment at 300 deg. C for 16 h, it exhibited the maximum damping properties. → The twin structure plays a crucial role in increasing the damping capacity of the Mg-1Zr alloy. - Abstract: In this study, we elucidated the effect of heat treatment on the microstructures and damping properties of the biomedical Mg-1 wt% Zr (K1) alloy by optical microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometry, and experimental model analysis. The following microstructural transformation occurred when the as-quenched (AQ, i.e., solution heat treated and quenched) K1 alloy was subjected to aging treatment in the temperature range 200-500 deg. C: α-Mg → (α-Mg + twin dense ) → (α-Mg + twin loose ) → (α-Mg + α-Zr). This microstructural transformation was accompanied by variations in the damping capacity. The damping properties of the AQ K1 alloy subjected to aging treatment at 300 deg. C for 16 h were the best among those of the alloys investigated in the present study. The presence of twin structures in the alloy matrix was thought to play a crucial role in increasing the damping capacity of the K1 alloy. Hence, we state that a combination of solution treatment and aging is an effective means of improving the damping capacity of biomedical K1 alloys.

  12. Perturbation Solutions for Hagen-Poiseuille Flow and Heat Transfer of Third-Grade Fluid with Temperature-Dependent Viscosities and Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    B. Y. Ogunmola

    2016-01-01

    Full Text Available Regular perturbation technique is applied to analyze the fluid flow and heat transfer in a pipe containing third-grade fluid with temperature-dependent viscosities and heat generation under slip and no slip conditions. The obtained approximate solutions were used to investigate the effects of slip on the heat transfer characteristics of the laminar flow in a pipe under Reynolds’s and Vogel’s temperature-dependent viscosities. Also, the effects of parameters such as variable viscosity, non-Newtonian parameter, viscous dissipation, and pressure gradient at various values were established. The results of this work were compared with the numerical results found in literature and good agreements were established. The results can be used to advance the analysis and study of the behavior of third-grade fluid flow and steady state heat transfer processes such as those found in coal slurries, polymer solutions, textiles, ceramics, catalytic reactors, and oil recovery applications.

  13. Hemodialysis Catheter Heat Transfer for Biofilm Prevention and Treatment.

    Science.gov (United States)

    Richardson, Ian P; Sturtevant, Rachael; Heung, Michael; Solomon, Michael J; Younger, John G; VanEpps, J Scott

    2016-01-01

    Central line-associated bloodstream infections (CLABSIs) are not easily treated, and many catheters (e.g., hemodialysis catheters) are not easily replaced. Biofilms (the source of infection) on catheter surfaces are notoriously difficult to eradicate. We have recently demonstrated that modest elevations of temperature lead to increased staphylococcal susceptibility to vancomycin and significantly soften the biofilm matrix. In this study, using a combination of microbiological, computational, and experimental studies, we demonstrate the efficacy, feasibility, and safety of using heat as an adjuvant treatment for infected hemodialysis catheters. Specifically, we show that treating with heat in the presence of antibiotics led to additive killing of Staphylococcus epidermidis with similar trends seen for Staphylococcus aureus and Klebsiella pneumoniae. The magnitude of temperature elevation required is relatively modest (45-50°C) and similar to that used as an adjuvant to traditional cancer therapy. Using a custom-designed benchtop model of a hemodialysis catheter, positioned with tip in the human vena cava as well as computational fluid dynamic simulations, we demonstrate that these temperature elevations are likely achievable in situ with minimal increased in overall blood temperature.

  14. Analytical solutions of steady-state conjugate heat transfer in ducts with turbulent flow

    International Nuclear Information System (INIS)

    Cerqueira, Djane R.; Jian Su

    2007-01-01

    In this work, we present an approximate analytical solution of the steady-state conjugate heat transfer of turbulent forced convection in a circular pipe with wall axial heat conduction and external convective boundary conditions. Improved lumped differential approach based on two points Hermite approximation for integrals was applied to reduce the heat conduction equation in the solid into a second-order ordinary differential equation for the radially averaged solid temperature. The energy equation in the fluid was solved by applying the generalized integral transform technique (GITT). The Sturm-Lioville eigenproblem for fluid energy equation in the cylindrical coordinate system was solved by the sign-count method. The truncated system of N ordinary differential equations for transformed potentials of the fluid temperature and the second-order ordinary differential equation for radially averaged solid temperature formed a homogeneous system of N+2 ordinary differential equations, which was solved analytically. The effects of the fluid-solid thermal conductivity ratio on the Nusselt number, the average fluid and solid temperatures, and the fluid-solid interface temperature were investigated. (author)

  15. Evaluation of carbon diffusion in heat treatment of H13 tool steel under different atmospheric conditions

    OpenAIRE

    Ramezani, Maziar; Pasang, Timotius; Chen, Zhan; Neitzert, Thomas; Au, Dominique

    2015-01-01

    Although the cost of the heat treatment process is only a minor portion of the total production cost, it is arguably the most important and crucial stage on the determination of material quality. In the study of the carbon diffusion in H13 steel during austenitization, a series of heat treatment experiments had been conducted under different atmospheric conditions and length of treatment. Four austenitization atmospheric conditions were studied, i.e., heat treatment without atmospheric contro...

  16. Influence of heat treatment on corrosive resistance of concrete steels

    International Nuclear Information System (INIS)

    Woldan, A.; Suliga, I.; Kusinski, J.; Jazowy, R.

    1998-01-01

    The reinforcing bars are essential elements of ferro-concrete structures. During the building structure service the reinforcing bars should co-operate with surrounding concrete. Any bonding defects as well as corrosion induced strength reduction may result in construction failure. The reinforcing steel working environment is determined by concrete chemical and phase composition and surrounding environmental properties. The aggressive corrosive activity of the letter implies necessity of effective ways development to protect elements against corrosion. The effect of heat treatment, increased Si content in steel on corrosion resistance of reinforcing steel in concrete was studied in the current work. Corrosion tests and metallographic examinations proved a positive influence of hardening and Si enrichment on corrosion resistance of reinforcing bars in ferro-concrete structures. (author)

  17. Zr-2.5 Nb microstructure evolution during heat treatments

    International Nuclear Information System (INIS)

    Campitelli, Emiliano N.; Banchik, Abrahan D.; Versaci, Raul A.

    1999-01-01

    This work has the following two basic objectives: 1) To gain experience in the preparation of thin layers of zirconium alloys to be used as T.E.M specimens. To construct a double jet thinning prototype able to perform this task with appropriate finishing and reproducible results to be used in a future work (point 2). To become familiar with the relevant parameters of the thinning process and to apply this experience in the prototype. The layers must have sufficient area with good transmission and mechanical support, free of deformations and defects polishing. 2) To perform T.E.M. observations and metallographies to study the microstructural evolution during heat treatments of Zr-2.5 Nb alloy samples. These samples were obtained from a pressure tube similar to those used in Candu power plants, in the as-received condition. This alloy served, in this application, to replace Zircaloy-2, for better creep and corrosion resistance. (author)

  18. Online Adaptive Hyperthermia Treatment Planning During Locoregional Heating to Suppress Treatment-Limiting Hot Spots.

    Science.gov (United States)

    Kok, H Petra; Korshuize-van Straten, Linda; Bakker, Akke; de Kroon-Oldenhof, Rianne; Geijsen, Elisabeth D; Stalpers, Lukas J A; Crezee, Johannes

    2017-11-15

    Adequate tumor temperatures during hyperthermia are essential for good clinical response, but excessive heating of normal tissue should be avoided. This makes locoregional heating using phased array systems technically challenging. Online application of hyperthermia treatment planning could help to improve the heating quality. The aim of this study was to evaluate the clinical benefit of online treatment planning during treatment of pelvic tumors heated with the AMC-8 locoregional hyperthermia system. For online adaptive hyperthermia treatment planning, a graphical user interface was developed. Electric fields were calculated in a preprocessing step using our in-house-developed finite-difference-based treatment planning system. This allows instant calculation of the temperature distribution for user-selected phase-amplitude settings during treatment and projection onto the patient's computed tomographic scan for online visualization. Online treatment planning was used for 14 treatment sessions in 8 patients to reduce the patients' reports of hot spots while maintaining the same level of tumor heating. The predicted decrease in hot spot temperature should be at least 0.5°C, and the tumor temperature should decrease less than 0.2°C. These predictions were compared with clinical data: patient feedback about the hot spot and temperature measurements in the tumor region. In total, 17 hot spot reports occurred during the 14 sessions, and the alternative settings predicted the hot spot temperature to decrease by at least 0.5°C, which was confirmed by the disappearance of all 17 hot spot reports. At the same time, the average tumor temperature was predicted to change on average -0.01°C (range, -0.19°C to 0.34°C). The measured tumor temperature change was on average only -0.02°C (range, -0.26°C to 0.31°C). In only 2 cases the temperature decrease was slightly larger than 0.2°C, but at most it was 0.26°C. Online application of hyperthermia treatment planning is

  19. Microstructure, mechanical property and metal release of As-SLM CoCrW alloy under different solution treatment conditions.

    Science.gov (United States)

    Lu, Yanjin; Wu, Songquan; Gan, Yiliang; Zhang, Shuyuan; Guo, Sai; Lin, Junjie; Lin, Jinxin

    2015-03-01

    In the study, the microstructure, mechanical property and metal release behavior of selective laser melted CoCrW alloys under different solution treatment conditions were systemically investigated to assess their potential use in orthopedic implants. The effects of the solution treatment on the microstructure, mechanical properties and metal release were systematically studied by OM, SEM, XRD, tensile test, and ICP-AES, respectively. The XRD indicated that during the solution treatment the alloy underwent the transformation of γ-fcc to ε-hcp phase; the ε-hcp phase nearly dominated in the alloy when treated at 1200°C following the water quenching; the results from OM, SEM showed that the microstructural change was occurred under different solution treatments; solution at 1150°C with furnace cooling contributed to the formation of larger precipitates at the grain boundary regions, while the size and number of the precipitates was decreased as heated above 1100°C with the water quenching; moreover, the diamond-like structure was invisible at higher solution temperature over 1150°C following water quenching; compared with the furnace cooling, the alloy quenched by water showed excellent mechanical properties and low amount of metal release; as the alloy heated at 1200°C, the mechanical properties of the alloy reached their optimum combination at UTS=1113.6MPa, 0.2%YS=639.5MPa, and E%=20.1%, whilst showed the lower total quantity of metal release. It is suggested that a proper solution treatment is an efficient strategy for improving the mechanical properties and corrosion resistance of As-SLM CoCrW alloy that show acceptable tensile ductility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effect of heat treatment of whole cottonseed on in vitro, in situ and in ...

    African Journals Online (AJOL)

    Keywords: Amino acid flow, heat treatment, protein degradation, whole cononseed. * Author to whom ... heat-treated soybearu were compared with raw soybeans, it was found that ... et al., 1985; Faldet & Sarter, 1989) while milk fat percenrage.

  1. Structural steels for power generating equipment and heat and chemical heat treatments

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1979-01-01

    Development of structural steels for power generating equipment and for reactor engineering, in particular, is elucidated. Noted is utilization of the 15Kh2NMFA steels for the WWER-1000 reactor vessels, the 10GN2MFA steels for steam generators, pressurizers, vessels of the automatic emergency shut down and safety system; the 00Kh12N3DL steel for cast pump vessels and main locking bars. The recommendations on heat treatment of big forgings, for instance, ensuring the necessary complex of mechanical properties are given. Diffusion chromizing with subsequent nitriding of austenitic steels which increase durability of the components in BN reactors more than 4 times, is practised on a large scale

  2. Effects of heat treatment on the microstructure and mechanical properties of AA2618 DC cast alloy

    International Nuclear Information System (INIS)

    Elgallad, E.M.; Shen, P.; Zhang, Z.; Chen, X.-G.

    2014-01-01

    Highlights: • The microstructure and mechanical properties of AA2618 DC cast alloy were studied. • The Al 2 CuMg, Al 2 Cu, Al 7 Cu 4 Ni, Al 7 Cu 2 (Fe,Ni) and Al 9 FeNi phases were identified. • Solution treatment at 530 °C for 5 h is the optimum solution treatment. • Different combinations of strength and ductility can be achieved. • The strengthening of AA2618 DC cast alloy was caused by GPB zones and S′ phase. - Abstract: Direct chill (DC) cast ingot plates of AA2618 alloy have been increasingly used for large-mold applications in the plastics and automotive industries. The effects of different heat treatments on the microstructure and mechanical properties of AA2618 DC cast alloy were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and hardness and tensile testing. The as-cast microstructure contained a considerable amount of coarse intermetallic phases, including Al 2 CuMg, Al 2 Cu, Al 7 Cu 4 Ni, Al 7 Cu 2 (Fe,Ni) and Al 9 FeNi, resulting in poor mechanical properties. Solution treatment at 530 °C for 5 h dissolved the first three phases into the solid solution and consequently improved the mechanical properties of the alloy. By utilizing the appropriate aging temperature and time, different combinations of strength and ductility could be obtained to fulfill the design requirements of large-mold applications. The strengthening of AA2618 DC cast alloy under the aging conditions studied was caused by GPB zones and S′ precipitates. The evolution of both precipitates in terms of their size and density was observed to have a significant effect on the mechanical properties of the alloy

  3. Importance of Heat and Pressure for Solubilization of Recombinant Spider Silk Proteins in Aqueous Solution.

    Science.gov (United States)

    Jones, Justin A; Harris, Thomas I; Oliveira, Paula F; Bell, Brianne E; Alhabib, Abdulrahman; Lewis, Randolph V

    2016-11-23

    The production of recombinant spider silk proteins continues to be a key area of interest for a number of research groups. Several key obstacles exist in their production as well as in their formulation into useable products. The original reported method to solubilize recombinant spider silk proteins (rSSp) in an aqueous solution involved using microwaves to quickly generate heat and pressure inside of a sealed vial containing rSSp and water. Fibers produced from this system are remarkable in their mechanical ability and demonstrate the ability to be stretched and recover 100 times. The microwave method dissolves the rSSPs with dissolution time increasing with higher molecular weight constructs, increasing concentration of rSSPs, protein type, and salt concentration. It has proven successful in solvating a number of different rSSPs including native-like sequences (MaSp1, MaSp2, piriform, and aggregate) as well as chimeric sequences (FlAS) in varied concentrations that have been spun into fibers and formed into films, foams, sponges, gels, coatings, macro and micro spheres and adhesives. The system is effective but inherently unpredictable and difficult to control. Provided that the materials that can be generated from this method of dissolution are impressive, an alternative means of applying heat and pressure that is controllable and predictable has been developed. Results indicate that there are combinations of heat and pressure (135 °C and 140 psi) that result in maximal dissolution without degrading the recombinant MaSp2 protein tested, and that heat and pressure are the key elements to the method of dissolution.

  4. Fabrication and heat treatment of high strength Al-Cu-Mg alloy processed using selective laser melting

    Science.gov (United States)

    Zhang, Hu; Zhu, Haihong; Nie, Xiaojia; Qi, Ting; Hu, Zhiheng; Zeng, Xiaoyan

    2016-04-01

    The proposed paper illustrates the fabrication and heat treatment of high strength Al-Cu-Mg alloy produced by selective laser melting (SLM) process. Al-Cu-Mg alloy is one of the heat treatable aluminum alloys regarded as difficult to fusion weld. SLM is an additive manufacturing technique through which components are built by selectively melting powder layers with a focused laser beam. The process is characterized by short laser-powder interaction times and localized high heat input, which leads to steep thermal gradients, rapid solidification and fast cooling. In this research, 3D Al-Cu-Mg parts with relative high density of 99.8% are produced by SLM from gas atomized powders. Room temperature tensile tests reveal a remarkable mechanical behavior: the samples show yield and tensile strengths of about 276 MPa and 402 MPa, respectively, along with fracture strain of 6%. The effect of solution treatment on microstructure and related tensile properties is examined and the results demonstrate that the mechanical behavior of the SLMed Al-Cu-Mg samples can be greatly enhanced through proper heat treatment. After T4 solution treatment at 540°C, under the effect of precipitation strengthening, the tensile strength and the yield strength increase to 532 MPa and 338 MPa, respectively, and the elongation increases to 13%.

  5. Continued development of a semianalytical solution for two-phase fluid and heat flow in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, C.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.

  6. Evolution of microstructure and hardness of AE42 alloy after heat treatments

    DEFF Research Database (Denmark)

    Huang, Y.D.; Dieringa, H.; Hort, N.

    2008-01-01

    properties even further. It is shown that the microstructure of the squeeze-cast AE42 alloy is stable at high temperature 450 degrees C. The subsequent solution and ageing treatments have a limited effect on the hardness. The weak age-hardening is attributed to the precipitation of small amount Of Mg17Al12......The AE42 magnesium alloy was developed for high pressure die casting (HPDC) from low-aluminum magnesium alloys. In this alloy the rare earth (RE) elements were shown to increase creep resistance by forming AlxREy intermetallics along the grain boundaries. The present work investigates...... the microstructure of squeeze cast AE42 magnesium alloy and evaluates its hardness before and after heat treatments. The change in hardness is discussed based on the microstructural observations. Some suggestions are given concerning future design of alloy compositions in order to improve high temperature creep...

  7. Chemistry and heat-treatment effects on mechanical and microstructural properties of heat-treated, beta-extruded Ti--6A1--6V--2Sn

    International Nuclear Information System (INIS)

    Ulitchny, M.G.; Rack, H.J.; Dawson, D.B.

    1979-04-01

    The mechanical behavior of beta-extruded Ti--6A1--6V--2Sn was examined after a variety of sub-transus heat treatments. The microstructural variations resulting from the range of heat treatments studied also were examined. A range of alloy chemistries, within commercial limits, was used to evaluate the effect of this variable on mechanical properties. The strength--toughness combinations obtained in beta-extruded Ti--6A1--6V--2Sn ranged from about 895 MPa and 82.5 MPa√m for duplex annealed material to 1200 MPa and 54.9 MPa√m for solution treated and peak aged material. Chemistry variations had less effect on mechanical properties than would have been the case with alpha--beta processing

  8. Analytical Solution of Heat Conduction for Hollow Cylinders with Time-Dependent Boundary Condition and Time-Dependent Heat Transfer Coefficient

    Directory of Open Access Journals (Sweden)

    Te-Wen Tu

    2015-01-01

    Full Text Available An analytical solution for the heat transfer in hollow cylinders with time-dependent boundary condition and time-dependent heat transfer coefficient at different surfaces is developed for the first time. The methodology is an extension of the shifting function method. By dividing the Biot function into a constant plus a function and introducing two specially chosen shifting functions, the system is transformed into a partial differential equation with homogenous boundary conditions only. The transformed system is thus solved by series expansion theorem. Limiting cases of the solution are studied and numerical results are compared with those in the literature. The convergence rate of the present solution is fast and the analytical solution is simple and accurate. Also, the influence of physical parameters on the temperature distribution of a hollow cylinder along the radial direction is investigated.

  9. Saving energy resources during heat treatment - the most important problem of the branch

    Energy Technology Data Exchange (ETDEWEB)

    Zadernovskiy, V V; Firger, I V

    1980-01-01

    Natural gas fired thermal furnaces expend significantly less fuel than electric furnaces with an equal quality of metal heating. An important reserve in power reserve economy is the use of the forging heat in an article for heat treatment (TOB), where besides the power resources, metal is also saved as a result of the reduction in the volume of heating means and production spaces. From the experience in the progressive enterprises of the branch, in a number of cases it is possible to combine heating for plastic deformation with heating for primary or secondary heat treatment. Other measures are examined which save power resources in heat treatment: the use of thermal furnaces for aerodynamic heating, the use of local heat treatment, the reduction in the duration of the heat treatment processes, savings in the power carriers during heat treatment in furnaces with a roll out hearth. Fibrous refractory materials are being used more and more as fettling materials in the construction of thermal furnaces.

  10. Local total and radiative heat-transfer coefficients during the heat treatment of a workpiece in a fluidised bed

    International Nuclear Information System (INIS)

    Gao, W.M.; Kong, L.X.; Hodgson, P.D.

    2006-01-01

    The heat-transfer coefficients around a workpiece immersed in an electrically heated heat treatment fluidised bed were studied. A suspension probe designed to simulate a workpiece of complex geometry was developed to measure local total and radiative heat-transfer coefficients at a high bed temperature. The probe consisted of an energy-storage region separated by insulation from the fluidised bed, except for the measuring surface, and a multi-thermocouple measurement system. Experiments in the fluidised bed were performed for a fluidising medium of 120-mesh alumina, a wide temperature range of 110-1050 deg. C and a fluidising number range of 1.18-4.24. It was found that the workpiece surface temperature has a more significant effect on heat transfer than the bed temperature. The total heat-transfer coefficient at the upper surface of the workpiece sharply decreased at the start of heating, and then steadily increased as heating progressed, while a sharp decrease became a rapid increase and then a slow increase for the radiative heat-transfer coefficient. A great difference in the heat-transfer coefficients around the workpiece was observed

  11. Effect of individual or combined treatment of heat or radiation on clostridium perfringens spores

    Energy Technology Data Exchange (ETDEWEB)

    El-Zawahry, Y A; El-Fouly, M Z; Aziz, N H

    1986-01-01

    Separate treatments of high temperature had considerable effect on Cl.perfrigens spores suspended in saline solution especially at 90 and 100[sup 0]C, while 70 and 80[sup 0]C had only slight effect on the spores viabilty. The decimal reduction times (D[sub T]) were 33.7, 26, 4, 10.7 and 2.8 at 70, 80, 90 and 100[sup 0]C for NCTC 8798 strain and were 45.1, 27.1, 10.2 and 4.0 for the Egyptian strain at the same degrees of temperature respectively. Heat treatment pre-irradiation at 70 and 80[sup 0]C for 30 and 60 min decreased the viable spore numbers by about 0.5 to 3.0 log cycles, but the treatment had no effect on increasing the sensitivity of the rest spores to radiation. The decimal reduction dose (D[sub 10]-value) for the spores was almost the same as the control but there was a tendency to reduce the shoulder part in the radiation response curve especially when the spores were subjected to 80[sup 0]C for 60 min. On the other hand, irradiation pre-heat treatment with doses from 1-10 KGY was sufficient to decrease the spore numbers from 0.2 to 5.0 log cycles and had a sensitizing effect on subsequently heated spores especially those exposed to 90 and 100[sup 0]C. Meanwhile the rate of inactivation for spores exposed to 70 and 80[sup 0]C after irradiation increased only during the first ten minutes. Thereafter, the rate of inactivation was almost the same for the non-irradiated spores. The D[sub 10]-values for the spores irradiated with 10 KGY were 0.77 and 0.84 minutes for NCTC 8798 strain and Egyptian strain at 100[sup 0]C respectively and the spores were completely destroyed before 5 minutes.

  12. EXACT SOLUTION OF HEAT CONDUCTION IN A TWO-DOMAIN COMPOSITE CYLINDER WITH AN ORTHOTROPIC OUTER LAYER

    International Nuclear Information System (INIS)

    AVILES-RAMOS, C.; RUDY, C.

    2000-01-01

    The transient exact solution of heat conduction in a two-domain composite cylinder is developed using the separation of variables technique. The inner cylinder is isotropic and the outer cylindrical layer is orthotropic. Temperature solutions are obtained for boundary conditions of the first and second kinds at the outer surface of the orthotropic layer. These solutions are applied to heat flow calorimeters modeling assuming that there is heat generation due to nuclear reactions in the inner cylinder. Heat flow calorimeter simulations are carried out assuming that the inner cylinder is filled with plutonium oxide powder. The first objective in these simulations is to predict the onset of thermal equilibrium of the calorimeter with its environment. Two types of boundary conditions at the outer surface of the orthotropic layer are used to predict thermal equilibrium. The procedure developed to carry out these simulations can be used as a guideline for the design of calorimeters. Another important application of these solutions is on the estimation of thermophysical properties of orthotropic cylinders. The thermal conductivities in the vertical, radial and circumferential directions of the orthotropic outer layer can be estimated using this exact solution and experimental data. Simultaneous estimation of the volumetric heat capacity and thermal conductivities is also possible. Furthermore, this solution has potential applications to the solution of the inverse heat conduction problem in this cylindrical geometry. An interesting feature of the construction of this solution is that two different sets of eigenfunctions need to be considered in the eigenfunction expansion. These eigenfunctions sets depend on the relative values of the thermal diffusivity of the inner cylinder and the thermal diffusivity in the vertical direction of the outer cylindrical layer

  13. Heat applied chitosan treatment on hardwood chips to improve physical and mechanical properties of particleboard

    Directory of Open Access Journals (Sweden)

    Mehmet Altay Basturk

    2012-11-01

    Full Text Available High-heat treatment after surface application of chitosan was used in an effort to improve physical and mechanical performances of particleboard. Particleboard is mainly used in the furniture industry and also used as a home decoration material; however, it has a poor dimensional stability. In this work, hardwood chips were obtained from a commercial plant; half of the chips were used for the control panels without chitosan treatment, and the other half were treated with chitosan acetate solutions (2% wt. Those chitosan-treated particles were also exposed to extra high-heat (140oC treatment for 90 minutes to convert chitosan acetate back to chitin. Liquid phenol-formaldehyde resin was sprayed onto dry particles at a level of 6 and 7% (wt based upon oven-dry weight. The mat was pressed (200oC for 11 minutes to form 19 mm thickness and a target of 0.63 g cm-3 density panels. Thickness swelling, linear expansion, and water gain of the treated panels were reduced over untreated panels during a 24-hour water-soak test. In addition, chitosan-treated panels showed better internal bond strength than control panels. Static bending test results showed a negative effect for the chitosan treated particleboard.

  14. Formation of inorganic nanofibers by heat-treatment of poly(vinyl alcohol-zirconium compound hybrid nanofibers

    Directory of Open Access Journals (Sweden)

    Nakane K.

    2013-01-01

    Full Text Available Poly(vinyl alcohol-zirconium compound hybrid nanofibers (precursors were formed by electrospinning employing water as a solvent for the spinning solution. The precursors were converted into oxide (ZrO2, carbide (ZrC or nitride (ZrN nanofibers by heating them in air, Ar or N2 atmospheres. Monoclinic ZrO2 nanofibers with high-specific surface area were obtained by heat-treatment of the precursors in air. ZrC and ZrN nanofibers could be obtained below theoretical temperatures calculated from thermodynamics data.

  15. Methods for microwave heat treatment of manufactured components

    Science.gov (United States)

    Ripley, Edward B.

    2010-08-03

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  16. Use of aqua ammonia solution for long distant heat supply from NPP

    International Nuclear Information System (INIS)

    Stolyarevskij, A.Ya.; Fedotov, I.L.; Verkhivker, G.P.

    1989-01-01

    Feasibility study of aqueous-ammonia heat supply systems is presented in brief. Temperature NPP heat is the energy source. It is shown that application of such systems, using industrial waste heat, is more expedient, than application of traditional two-tube heat supply system. Heat supply system without use of waste heat of a consumer is competitive if distances from a consumer exceed 60 km. Heat transfer coefficient of such systems can achieve 90-92%

  17. Revisiting the Fundamental Analytical Solutions of Heat and Mass Transfer: The Kernel of Multirate and Multidimensional Diffusion

    Science.gov (United States)

    Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny; Birkholzer, Jens T.

    2017-11-01

    There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1-D, 2-D, and 3-D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, td. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, td0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the first two terms for high-accuracy approximations (with less than 10-7 relative error) for 1-D isotropic (spheres, cylinders, slabs) and 2-D/3-D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1-D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2-D/3-D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.

  18. Structural transformation in mechanosynthesized bcc Fe-Al-Si(Ge) solid solutions during heating

    International Nuclear Information System (INIS)

    Kubalova, L.M.; Sviridov, I.A.; Vasilyeva, O.Ya.; Fadeeva, V.I.

    2007-01-01

    X-ray diffractometry and Moessbauer spectroscopy study of Fe 50 Al 25 Si 25 and Fe 50 Al 25 Ge 25 alloys obtained by mechanical alloying (MA) of elementary powders was carried out. Phase transformation during heating of synthesized products was studied using differential scanning calorimetry (DSC). After 2.5 h of MA monophase alloys containing bcc Fe(Al, Ge) solid solutions Fe(Al, Si) are formed. Fe(Al, Si) is partially ordered B2 type and Fe(Al, Ge) is completely disordered. DSC curves of synthesized alloys displayed the presence of exothermal peaks caused by phase transformation. The metastable Fe(Al, Si) solid solution transformed into FeAl 1-x Si x (B2) and FeSi 1-x Al x (B20) equilibrium phases. The Fe(Al, Ge) solid solution transformed into equilibrium phases through intermediate stage of Fe 6 Ge 3 Al 2 metastable phase formation. The Fe 6 Ge 3 Al 2 phase dissociated into three equilibrium phases: FeAl 1-x Ge x (B2), χ-Fe 6 Ge 5 and η-Fe 13 (Ge, Al) 8 (B8 2 ). The structure of Fe 6 Ge 3 Al 2 was calculated by Rietveld method, the distribution of Al and Ge in the elementary cell and its parameters were calculated. Moessbauer study showed that Fe(Al, Si) and Fe(Al, Ge) solid solutions are paramagnetic. In the equilibrium state the alloy containing Si is also paramagnetic while the alloy with Ge showed ferromagnetic properties

  19. Effect of heat treatment on the temperature dependence of the fracture behavior of X-750 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, C.; Depinoy, S. [University of South Carolina (United States); Kaoumi, D. [North Carolina State University (United States)

    2016-11-20

    X-750 is a nickel-chromium based super alloy of usefulness in a wide variety of applications such as gas turbines, rocket engines, nuclear reactors, pressure vessels, tooling, and aircraft structures. Its good mechanical properties are due to the strengthening from precipitation of γ′ particles upon prior ageing heat treatment. In this work, the effect of such heat treatment on the fracture mechanisms of X-750 was studied at various temperatures by comparing it with a non-aged, solution annealed X-750. Tensile tests were conducted from room temperatures up to 900 °C; fracture surfaces were analyzed by means of SEM observations. In addition, the microstructure of both aged and solution annealed materials were studied using SEM and TEM, both on as received and on tested specimens. In terms of mechanical properties, as expected, the yield strength and the ultimate tensile strength of the aged material were better than for the solution-annealed one, and only slightly decreased with increasing temperature when tested between room temperatures and 650 °C. In this range of temperature, the fracture surface of aged material evolves from purely intergranular to purely transgranular due to the thermal activation of dislocation mobility that relieves the stress at the grain boundaries, while the rupture of the solution annealed material is due to the coalescence of voids induced by decohesion at the MC carbides/matrix interface. At higher temperatures, precipitation of γ’ particles upon testing of the solution-annealed material leads to a temperature-dependent increase in both yield strength and ultimate tensile strength, which nevertheless remain below the aged material ones with the exception of the higher temperatures. At the same time, an overall decrease of the aged material mechanical properties is observed. Minimum ductility was observed at 750 °C for both solution annealed and aged specimen, due to the oxidation of grain boundaries leading to an

  20. Effects of Heat-treatments on the Mechanical Strength of Coated YSZ: An Experimental Assessment

    DEFF Research Database (Denmark)

    Toftegaard, Helmuth Langmaack; Sørensen, Bent F.; Linderoth, Søren

    2009-01-01

    The mechanical strength of thin, symmetric sandwich specimens consisting of a dense yttria-stabilized zirconia (YSZ) substrate coated with a porous NiO–YSZ layer at both major faces was investigated. Specimens were loaded in uniaxial tension to failure following heat treatments at various...... temperatures. In comparison with the YSZ material, the failure strength of coated specimens was found to increase for heat treatments at 1100°C, but decreased again with further increased heat-treatment temperatures....

  1. A finite volume method for cylindrical heat conduction problems based on local analytical solution

    KAUST Repository

    Li, Wang

    2012-10-01

    A new finite volume method for cylindrical heat conduction problems based on local analytical solution is proposed in this paper with detailed derivation. The calculation results of this new method are compared with the traditional second-order finite volume method. The newly proposed method is more accurate than conventional ones, even though the discretized expression of this proposed method is slightly more complex than the second-order central finite volume method, making it cost more calculation time on the same grids. Numerical result shows that the total CPU time of the new method is significantly less than conventional methods for achieving the same level of accuracy. © 2012 Elsevier Ltd. All rights reserved.

  2. A finite volume method for cylindrical heat conduction problems based on local analytical solution

    KAUST Repository

    Li, Wang; Yu, Bo; Wang, Xinran; Wang, Peng; Sun, Shuyu

    2012-01-01

    A new finite volume method for cylindrical heat conduction problems based on local analytical solution is proposed in this paper with detailed derivation. The calculation results of this new method are compared with the traditional second-order finite volume method. The newly proposed method is more accurate than conventional ones, even though the discretized expression of this proposed method is slightly more complex than the second-order central finite volume method, making it cost more calculation time on the same grids. Numerical result shows that the total CPU time of the new method is significantly less than conventional methods for achieving the same level of accuracy. © 2012 Elsevier Ltd. All rights reserved.

  3. Smooth and robust solutions for Dirichlet boundary control of fluid-solid conjugate heat transfer problems

    KAUST Repository

    Yan, Yan

    2015-01-01

    We study a new optimization scheme that generates smooth and robust solutions for Dirichlet velocity boundary control (DVBC) of conjugate heat transfer (CHT) processes. The solutions to the DVBC of the incompressible Navier-Stokes equations are typically nonsmooth, due to the regularity degradation of the boundary stress in the adjoint Navier-Stokes equations. This nonsmoothness is inherited by the solutions to the DVBC of CHT processes, since the CHT process couples the Navier-Stokes equations of fluid motion with the convection-diffusion equations of fluid-solid thermal interaction. Our objective in the CHT boundary control problem is to select optimally the fluid inflow profile that minimizes an objective function that involves the sum of the mismatch between the temperature distribution in the fluid system and a prescribed temperature profile and the cost of the control.Our strategy to resolve the nonsmoothness of the boundary control solution is based on two features, namely, the objective function with a regularization term on the gradient of the control profile on both the continuous and the discrete levels, and the optimization scheme with either explicit or implicit smoothing effects, such as the smoothed Steepest Descent and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) methods. Our strategy to achieve the robustness of the solution process is based on combining the smoothed optimization scheme with the numerical continuation technique on the regularization parameters in the objective function. In the section of numerical studies, we present two suites of experiments. In the first one, we demonstrate the feasibility and effectiveness of our numerical schemes in recovering the boundary control profile of the standard case of a Poiseuille flow. In the second one, we illustrate the robustness of our optimization schemes via solving more challenging DVBC problems for both the channel flow and the flow past a square cylinder, which use initial

  4. Influence of heat treatment on microstructure and tensile properties of a cast Al-Cu-Si-Mn alloy

    Directory of Open Access Journals (Sweden)

    Liu Zhixue

    2013-11-01

    Full Text Available Solution and aging treatments are important approaches to improve mechanical properties and microstructure of aluminum-base alloys. In this research, a new type high strength Al-Cu-Si-Mn cast alloy was prepared. The effect of different solution and aging treatment temperatures on microstructure and mechanical properties of the Al-Cu-Si-Mn cast alloy were studied by means of microstructure observation and mechanical properties testing. Results showed that after solution treated at different temperatures for 12 h and aged at 175 ℃ for 12 h, with the increase of the solution temperature, both the tensile strength and the elongation of the alloy firstly increase and then decrease, and reach their peak values at 530 ℃. When the solution temperature is below 530 ℃, the microstructure of the alloy consists of α phase, undissolved θ phase and T phase; while when it exceeds 530 ℃, the microstructure only consists of α phase and T phase. After solution treated at 530 ℃ for 12 h and aged at different temperatures for 12 h, both the tensile strength and the elongation of the alloy firstly increase and then decrease with the increasing of temperature, and reach their peak values at 175 ℃. Therefore, the optimal heat treatment process for the alloy in this study is 12 h solution at 530 ℃ and 12 h aging at 175 ℃, and the corresponding tensile strength is 417 MPa, elongation is 4.0%.

  5. Effect of heat treatment conditions on stress corrosion cracking resistance of alloy X-750 in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Onimura, Kichiro; Sakamoto, Naruo; Sasaguri, Nobuya; Susukida, Hiroshi; Nakata, Hidenori.

    1984-01-01

    In order to improve the resistance of the Alloy X-750 in high temperature and high purity water, the authors investigated the influence of heat treatment condition on the stress corrosion cracking resistance of the alloy. This paper describes results of the stress corrosion cracking test and some discussion on the mechanism of the stress corrosion cracking of Alloy X-750 in deaerated high temperature water. The following results were obtained. (1) The stress corrosion cracking resistance of Alloy X-750 in deaerated high temperature water remarkably depended upon the heat treatment condition. The materials solution heat treated and aged within temperature ranges from 1065 to 1100 0 C and from 704 to 732 0 C, respectively, have a good resistance to the stress corrosion cracking in deaerated high temperature water. Especially, water cooling after the solution heat treatment gives an excellent resistance to the stress corrosion cracking in deaerated high temperature water. (2) Any correlations were not observed between the stress corrosion cracking susceptibility of Alloy X-750 in deaerated high temperature water and grain boundary chromium depleted zones, precipitate free zones and the grain boundary segregation of impurity elements and so on. It appears that there are good correlations between the stress corrosion cracking resistance of the alloy in the environment and the kinds, morphology and coherency of precipitates along the grain boundaries. (author)

  6. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn

    2012-05-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts, which can be regenerated using low-temperature waste heat, can also produce sufficient voltage for hydrogen gas generation in an MREC. The maximum hydrogen production rate was 1.6 m3 H2/m3·d, with a hydrogen yield of 3.4 mol H2/mol acetate at a salinity ratio of infinite. Energy recovery was 10% based on total energy applied with an energy efficiency of 22% based on the consumed energy in the reactor. The cathode overpotential was dependent on the catholyte (sodium bicarbonate) concentration, but not the salinity ratio, indicating high catholyte conductivity was essential for maximizing hydrogen production rates. The direction of the HC and LC flows (co- or counter-current) did not affect performance in terms of hydrogen gas volume, production rates, or stack voltages. These results show that the MREC can be successfully operated using ammonium bicarbonate salts that can be regenerated using conventional distillation technologies and waste heat making the MREC a useful method for hydrogen gas production from wastes. © 2012 American Chemical Society.

  7. The boundary element method for the solution of the multidimensional inverse heat conduction problem

    International Nuclear Information System (INIS)

    Lagier, Guy-Laurent

    1999-01-01

    This work focuses on the solution of the inverse heat conduction problem (IHCP), which consists in the determination of boundary conditions from a given set of internal temperature measurements. This problem is difficult to solve due to its ill-posedness and high sensitivity to measurement error. As a consequence, numerical regularization procedures are required to solve this problem. However, most of these methods depend on the dimension and the nature, stationary or transient, of the problem. Furthermore, these methods introduce parameters, called hyper-parameters, which have to be chosen optimally, but can not be determined a priori. So, a new general method is proposed for solving the IHCP. This method is based on a Boundary Element Method formulation, and the use of the Singular Values Decomposition as a regularization procedure. Thanks to this method, it's possible to identify and eliminate the directions of the solution where the measurement error plays the major role. This algorithm is first validated on two-dimensional stationary and one-dimensional transient problems. Some criteria are presented in order to choose the hyper-parameters. Then, the methodology is applied to two-dimensional and three-dimensional, theoretical or experimental, problems. The results are compared with those obtained by a standard method and show the accuracy of the method, its generality, and the validity of the proposed criteria. (author) [fr

  8. Development Characteristics of Velocity Transports in An Isothermal Heated Drag-Reducing Surfactant Solution Flow

    Science.gov (United States)

    Zhang, Hongxia; Wang, Dezhong; Chen, Hanping; Wang, Yanping

    2007-06-01

    The development characteristics, turbulence transports for stresses and kinetic energy of a cetyltrimethyl ammonium chloride (CTAC) surfactant solution for a two-dimensional channel flow have been experimentally investigated. Time mean velocity and fluctuating velocity are measured using a Phase Doppler Anemometry (PDA) at the Reynolds number 1.78×104 and isothermal heated temperature 31°C. Although mean velocity profiles at three cross sections show that the fluid is almost fully developed, the peak location of fluctuating intensity for the CTAC solution is slightly away from the wall downstream from the fluid and the peak location of fluctuating intensity is observed at far away from the wall than that of water. The location where the velocity gradient has its maximum, the fluctuating intensity does not get the high value. The elastic shear stress contribution to the total shear stress is 15 percents to 36 percents and it gets to the maximum near to the wall. The surfactant elastic shear stress is almost a liner function of the height of the channel, which means that the elastic stress contribution of the different cross locations is approximately the same. The fluctuating surfactant stress work is negative and the fluctuating elastic shear stresses produce rather than dissipate kinetic energy.

  9. Effect of heat-treatment on toughness and strength properties of C-Mn steel

    International Nuclear Information System (INIS)

    Mohd bin Harun; Goh Kian Seong; Jasmin binti Baba

    1991-01-01

    The strength and toughness of the heat-treated and tempered C-Mn are studied. Two types of heat-treatment have been carried out with the specimens in an argon gas. The variation in the fracture surfaces of the heat-treated and tempered specimens with impact test temperature is discussed also

  10. Effect of heat treatment of toughness and strength properties of C-Mn steel

    International Nuclear Information System (INIS)

    Mohamad bin Harun; Goh Kian Seong; Yasmin binti Baba

    1989-01-01

    The strength and toughness of the heat-treated and tempered C-Mn are studied. Two type of heat-treatments have been carried out with the specimens in an argon gas. The variation in the fracture surfaces of the heat-treated and tempered specimens with impact test temperatures also is discussed. (author)

  11. Microstructural evolution of aluminide coatings on Eurofer during heat treatments

    International Nuclear Information System (INIS)

    Bhanumurthy, K.; Krauss, W.; Konys, J.

    2011-01-01

    Development of ceramic coatings are essential for the realization of Demo fusion reactor beyond ITER. These functional coatings have to be stable at high temperatures, provide insulating coatings to reduce MHD effects and also act as corrosion barriers to reduce tritium permeation. Some of important development of high temperature coatings are CVD process, powder slurry coatings, hot-dip aluminization and plasma detonation jet processes. Recently Galvono-Al (ECA) process is being used for depositing Al from organic electrolyte, where Al is existing as an toluol-based Al(C x H y ) complex. The deposit is performed under Ar cover gas at 100 deg C with a deposit rate of 10-12 μm/hr. This process is suitable for coating large and complex shaped assemblies and is a well established industrial process for coating Al for wide range of applications including automobile industry. In order to study the effect of high temperature on these coatings, few Al coated on Eurofer specimens were obtained from M/s. Rasant-Alcotec, Germany. The thickness of these coating is around 20 μm. The objective of the presents studies is to subject these coatings to standard heat treatment schedule of Eurofer and study the evolution of microchemistry and microstructure

  12. Network Simulation solution of free convective flow from a vertical cone with combined effect of non- uniform surface heat flux and heat generation or absorption

    Science.gov (United States)

    Immanuel, Y.; Pullepu, Bapuji; Sambath, P.

    2018-04-01

    A two dimensional mathematical model is formulated for the transitive laminar free convective, incompressible viscous fluid flow over vertical cone with variable surface heat flux combined with the effects of heat generation and absorption is considered . using a powerful computational method based on thermoelectric analogy called Network Simulation Method (NSM0, the solutions of governing nondimensionl coupled, unsteady and nonlinear partial differential conservation equations of the flow that are obtained. The numerical technique is always stable and convergent which establish high efficiency and accuracy by employing network simulator computer code Pspice. The effects of velocity and temperature profiles have been analyzed for various factors, namely Prandtl number Pr, heat flux power law exponent n and heat generation/absorption parameter Δ are analyzed graphically.

  13. Numerical study of partitions effect on multiplicity of solutions in an infinite channel periodically heated from below

    International Nuclear Information System (INIS)

    Abourida, B.; Hasnaoui, M.

    2005-01-01

    Laminar natural convection in an infinite horizontal channel heated periodically from below and provided with thin adiabatic partitions on its lower wall, is investigated numerically. The effect of these partitions on the multiplicity of solutions and heat transfer characteristics in the computational domain is studied. The parameters of the study are the Rayleigh number (10 2 Ra 4.9 x 10 6 ) and the height of the partitions (0 B = h'/H' 1/2). The results obtained in the case of air (Pr = 0.72) as working fluid show that depending on the governing parameters, the existence of multiple solutions is possible. Important differences in terms of heat transfer are observed between two different solutions

  14. Temperature field due to time-dependent heat sources in a large rectangular grid - Derivation of analytical solution

    International Nuclear Information System (INIS)

    Claesson, J.; Probert, T.

    1996-01-01

    The temperature field in rock due to a large rectangular grid of heat releasing canisters containing nuclear waste is studied. The solution is by superposition divided into different parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. The global field is reduced to a single integral. The local field is also solved analytically using solutions for a finite line heat source and for an infinite grid of point sources. The local solution is reduced to three parts, each of which depends on two spatial coordinates only. The temperatures at the envelope of a canister are given by a single thermal resistance, which is given by an explicit formula. The results are illustrated by a few numerical examples dealing with the KBS-3 concept for storage of nuclear waste. 8 refs

  15. Engineering design solutions of flux swing with structural requirements for ohmic heating solenoids

    International Nuclear Information System (INIS)

    Smith, R.A.

    1977-01-01

    Here a more detailed publication is summarized which presents analytical methods with solutions that describe the structural behavior of ohmic heating solenoids to achieve a better understanding of the relationships between the functional variables that can provide the basis for recommended design improvements. The solutions relate the requirements imposed by structural integrity to the need for producing sufficient flux swing to initiate a plasma current in the tokamak fusion machine. A method is provided to perform a detailed structural analysis of every conducting turn in the radial build of the solenoid, and computer programmed listings for the closed form solutions are made available as part of the reference document. Distinction is made in deriving separate models for the regions of the solenoid where turn-to-turn radial contact is maintained with radial compression or with a bond in the presence of radial tension, and also where there is turn-to-turn radial separation due to the absence or the loss of bonding in the presence of would be radial tension. The derivations follow the theory of elasticity for a body possessing cylindrical anisotropy where the material properties are different in the radial and tangential directions. The formulations are made practical by presenting the methods for reducing stress and for relocating the relative position for potential turn-to-turn radial delamination by permitting an arbitrary traction at the outer radial surface of the solenoid in the form of pressure or displacement such as may be applied by a containment or a shrink fit structural cylinder

  16. Effect of heat treatments and minor elements on caustic stress corrosion cracking of type 304 stainless steel

    International Nuclear Information System (INIS)

    Yamanaka, Kazuo; Kowaka, Masamichi

    1983-01-01

    The effect of heat treatments and minor elements (C, S, P, N) on caustic stress corrosion cracking of Type 304 stainless steel in boiling 34% NaOH solution at 393 K was studied. The results obtained as follows: (1) Susceptibility to IGSCC (intergranular stress corrosion cracking) in NaOH solution was increased with the intergranular precipitation of chromium carbides by the sensitizing heat treatments, but was not completely consistent with the susceptibility to IGC (intergranular corrosion) by Strauss test in H 2 SO 4 + CuSO 4 solution. (2) SCC in NaOH solution took place in three potential ranges of about -100 to +150 mV (vs SCE), -600 to -300 mV and -1100 to -900 mV. Transglanular cracking predominantly occurred in the first region and intergranular cracking occurred in the latter two regions. IGC occurred in the potential range of about -400 to 0 mV. No IGC was observed at corrosion potential. (3) Among minor elements carbon and sulfur had a detrimental effect on SCC, but no effect of phosphorus and nitrogen was almost observed on SCC in NaOH solution. (author)

  17. Study on the elastic behavior of Ti-13Nb-13Zr subjected to different heat treatments

    International Nuclear Information System (INIS)

    Florencio, O.; Chaves, J.M.; Silva Junior, P.S.; Schneider, S.G.

    2010-01-01

    Study of elastic behavior of Ti-13Nb-13Zr alloy was realized through measures of anelastic relaxation (internal friction and frequency) as a function of temperature, obtained by mechanical spectroscopy using flexural vibration of the fundamental mode of the two samples, β-ST WQ heat-treated to 1170K for 30min and water quenched and β-ST WQ +670 K/3h with subsequent aging treatment at 670K for 3h. Spectra of anelastic relaxation not showed the presence of relaxation processes due to interstitial and substitutional solutes in the alloy, the dynamic elastic modulus of alloys at room temperature was 64GPa and 87GPa, respectively. After a further heat treatment at 1170K for 30 minutes, for to reduce internal stresses of the material was observed an increase in elastic modulus, with values of 87GPa and 110GPa respectively, this increment was associated with the variation of the proportions of phases α and β present in the samples, as was revealed by XRD and SEM results. (author)

  18. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718

    International Nuclear Information System (INIS)

    Rao, G. Appa; Kumar, Mahendra; Srinivas, M.; Sarma, D.S.

    2003-01-01

    Ni-Fe base superalloy, Inconel 718, was processed through powder metallurgy (P/M) hot isostatic pressing (HIP) route. In order to balance the strength and ductility, the HIPed material was given the standard heat treatment, viz. solution treatment at 980 deg. C for 1 h/water quenched (WQ) to room temperature and a two-step ageing treatment consisting of 720 deg. C for 8 h/furnace cooling (FC) at 55 deg. C h -1 to 620 deg. C and holding at 620 deg. C for 8 h before air cooling (AC) to room temperature. Optical microscopy and scanning electron microscopy (SEM) studies on the heat treated alloy have shown a homogeneous microstructure with fine grain size (25 μm) along with the presence of prior particle boundary (PPB) networks. Transmission electron microscopy (TEM) on the heat treated material has revealed the presence of oxides, MC carbides and δ-precipitates at the grain boundaries and a uniform precipitation of fine γ'' and γ' strengthening phases in the matrix. Tensile and stress rupture tests were performed on the heat treated material. While the yield strength (YS) and ultimate tensile strength (UTS) of the HIPed and heat treated alloy at room temperature and 650 deg. C were comparable to those of conventionally processed wrought IN 718, its ductility was lower. The stress rupture life of the HIPed alloy improved marginally due to heat treatment and met the minimum specification requirement of life hours but the rupture ductility was found to be inferior to that of the wrought material. The fractography of the failed samples has revealed the transgranular ductile mode of fracture in the as-solution treated alloy, while intergranular mode of failure with the decohesion of PPBs occurred more predominantly in the aged condition. This change of fracture mode with ageing treatment shows the ductility dependence on the relative strength of the matrix and PPBs. The TEM studies on the deformed alloy have revealed that the brittle oxides and carbides at the prior

  19. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J [ORNL; Hsu, Julia [Massachusetts Institute of Technology (MIT)

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C were found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.

  20. Solutions of Heat-Like and Wave-Like Equations with Variable Coefficients by Means of the Homotopy Analysis Method

    International Nuclear Information System (INIS)

    Alomari, A. K.; Noorani, M. S. M.; Nazar, R.

    2008-01-01

    We employ the homotopy analysis method (HAM) to obtain approximate analytical solutions to the heat-like and wave-like equations. The HAM contains the auxiliary parameter ħ, which provides a convenient way of controlling the convergence region of series solutions. The analysis is accompanied by several linear and nonlinear heat-like and wave-like equations with initial boundary value problems. The results obtained prove that HAM is very effective and simple with less error than the Adomian decomposition method and the variational iteration method

  1. Optimization of heat treatment parameters for additive manufacturing and gravity casting AlSi10Mg alloy

    Science.gov (United States)

    Girelli, L.; Tocci, M.; Montesano, L.; Gelfi, M.; Pola, A.

    2017-11-01

    Additive manufacturing of metals is a production process developed in the last few years to realize net shape components with complex geometry and high performance. AlSi10Mg is one of the most widely used aluminium alloys, both in this field and in conventional foundry processes, for its significant mechanical properties combined with good corrosion resistance. In this paper the effect of heat treatment on AlSi10Mg alloy was investigated. Solution and ageing treatments were carried out with different temperatures and times on samples obtained by direct metal laser sintering and gravity casting in order to compare their performance. Microstructural analyses and hardness tests were performed to investigate the effectiveness of the heat treatment. The results were correlated to the sample microstructure and porosity, analysed by means of optical microscopy and density measurements. It was found that, in the additive manufactured samples, the heat treatment can reduce significantly the performance of the alloy also because of the increase of porosity due to entrapped gas during the deposition technique and that the higher the solution temperature the higher the increase of such defects. A so remarkable effect was not found in the conventional cast alloy.

  2. Heat treatment device for extending the life of a pressure vessel, particularly a reactor pressure vessel

    International Nuclear Information System (INIS)

    Krauss, P.; Mueller, E.; Poerner, H.; Weber, R.

    1979-01-01

    A support body in the form of an insulating cylinder is tightly sealed by connected surfaces at its outer circumference to the inner wall of the pressure vessel. It forms an annular heating space. The heat treatment or tempering of the pressure vessel takes place with the reactor space empty and screened from the outside by ceiling bolts. Heating gas or an induction winding can be used as the means of heating. (DG) [de

  3. Effect of heat treatment on the microstructure and properties of Ni based soft magnetic alloy.

    Science.gov (United States)

    Li, Chunhong; Ruan, Hui; Chen, Dengming; Li, Kejian; Guo, Donglin; Shao, Bin

    2018-04-20

    A Ni-based alloy was heat treated by changing the temperature and ambient atmosphere of the heat treatment. Morphology, crystal structure, and physical performance of the Ni-based alloy were characterized via SEM, XRD, TEM, and PPMS. Results show that due to the heat treatment process, the grain growth of the Ni-based alloy and the removal of impurities and defects are promoted. Both the orientation and stress caused by rolling are reduced. The permeability and saturation magnetization of the alloy are improved. The hysteresis loss and coercivity are decreased. Higher heat treatment temperature leads to increased improvement of permeability and saturation magnetization. Heat treatment in hydrogen is more conducive to the removal of impurities. At the same temperature, the magnetic performance of the heat-treated alloy in hydrogen is better than that of an alloy with heat treatment in vacuum. The Ni-based alloy shows an excellent magnetic performance on 1,373 K heat treatment in hydrogen atmosphere. In this process, the µ m , B s , P u , and H c of the obtained alloy are 427 mHm -1 , 509 mT, 0.866 Jm -3 , and 0.514 Am -1 , respectively. At the same time, the resistivity of alloy decreases and its thermal conductivity increases in response to heat treatment. © 2018 Wiley Periodicals, Inc.

  4. The effect of heat treatments on the corrosion behavior of Zircaloy-4

    International Nuclear Information System (INIS)

    Zhou Bangxin; Zhao Wenjin; Miao Zhi; Pan Shufang; Li Cong; Jiang Yourong

    1996-06-01

    The effect of penultimate annealing temperature and cooling rate on the corrosion behavior of Zircaloy-4 cladding tube has been investigated. Both nodular corrosion and uniform corrosion resistance can be improved obviously after changing the heat treatment from the original annealing at 650 degree C to quenching from 830 degree C (upper temperature of alpha phase region or lower temperature of beta phase region). Although the nodular corrosion resistance can be improved obviously after quenching from beta phase, there was a second transition in the variation between weight gain and exposure time, which shows a poor uniform corrosion resistance after a long exposure time during the autoclave tests. The main factor of affecting corrosion behavior is the solid solution contents of Fe and Cr in alpha zirconium rather than the size of second phase particles. About 200 μg/g Fe and Cr super saturated solid solution in alpha zirconium could get good uniform and nodular corrosion resistance, but much more solid solution contents of Fe and Cr in alpha zirconium could bring about a trend toward poor uniform corrosion resistance for long-term exposure time. (14 refs., 10 figs., 1 tab.)

  5. Study of the heat conductivity of double and triple disordered solid solutions in the titanium-zirconium-hafnium system

    Energy Technology Data Exchange (ETDEWEB)

    Zarichnyak, Yu.P.; Lisnenko, T.A.

    1977-10-01

    Measurements are presented of the heat physical properties of trinary alloys in the system Ti-Zr-Hf. The possibility is shown of summarizing the results of the measurement and prediction of the heat conductivity of trinary continuous disordered solid solutions. Comparison of calculated results with experimental data shows that the method of modeling of the structure and prediction of heat conductivity suggested yields good qualitative and quantitative agreement throughout the entire range of change of concentration of the components. The maximum disagreement between calculated and experimental results is about 10%. 8 references, 2 figures, 1 table.

  6. Account of volume heat capacity on interface in numerical solution of the Stephen problem using the strained coordinates method

    International Nuclear Information System (INIS)

    Latynin, V.A.; Reshetov, V.A.; Karaseva, L.N.

    1988-01-01

    Numerical solution of the Stephen problem by the strained coordinate method is presented for an one-dimensional sphere. Differential formulae of heat fluxes from moving interfaces do not take into account volume heat capacities of the front nodes. Calculations, carried out according to these balanced formulae, as well as according to those usually used, have shown that the balanced formulae permit to reduce approximately by an order the number of nodes on the sphere radius, if similar accuracy of heat balance of the whole process of melting or crystallization is observed. 2 refs.; 1 fig

  7. Nuclear safety inspection in treatment process for SG heat exchange tubes deficiency of unit 1, TNPS

    International Nuclear Information System (INIS)

    Zhang Chunming; Song Chenxiu; Zhao Pengyu; Hou Wei

    2006-01-01

    This paper describes treatment process for SG heat exchange tubes deficiency of Unit 1, TNPS, nuclear safety inspection of Northern Regional Office during treatment process for deficiency and further inspection after deficiency had been treated. (authors)

  8. The local heat treatment equipment and technology of the pipelines welded joints

    International Nuclear Information System (INIS)

    Korol'kov, P.M.

    1998-01-01

    The principal methods and equipment for local treatment of the pipe-lines weld joints in different industry branches is described. Recommendations about heat treatment equipment and technology application are given

  9. Study of critical dependence of stable phases in Nitinol on heat treatment using electrical resistivity probe

    International Nuclear Information System (INIS)

    Uchil, J.; Mohanchandra, K.P.; Kumara, K.G.; Mahesh, K.K.

    1998-01-01

    Phase transformations in 40% cold-worked Nitinol as a function of heat treatment have been studied using electrical resistivity variation with temperature. The stabilisation of austenitic, rhombohedral and martensitic phases is shown to critically depend on the temperatures of heat treatment by the analysis of temperature dependence of electrical resistivity in heating and cooling parts of the cycle. Characteristic values of electrical resistivity of the stable phases are determined. The R-phase has been found to form continuously with increasing heat-treatment temperature starting from room temperature and to suddenly disappear beyond heat-treatment at 683 K. The observed presence or absence of R-phase is confirmed by heat capacity measurements as a function of temperature. (orig.)

  10. Thermal Effects That Arise upon Different Heat Treatments in Austenitic Steels Alloyed with Titanium and Phosphorus

    Science.gov (United States)

    Arbuzov, V. L.; Berger, I. F.; Bobrovskii, V. I.; Voronin, V. I.; Danilov, S. E.; Kazantsev, V. A.; Kataev, N. V.; Sagaradze, V. V.

    2018-04-01

    Structural and microstructural changes that arise in the course of the heat treatment of Cr-Ni-Mo austenitic stainless steels with different concentrations of titanium and phosphorus have been studied. It has been found that the alloying with phosphorus decreases the lattice parameter of these steels. The phosphorus contribution to this effect is 0.015 ± 0.002 Å/at %. Aging at a temperature of 670 K for about 20 h leads to the precipitation of dispersed needle-like particles, which are most likely to be iron phosphides. In the temperature range of 700-800 K, in austenitic steels, the atomic separation of the solid solution occurs, the intensity of which decreases upon alloying with titanium or phosphorus at concentrations of 1.0 and 0.1 wt %, respectively. At higher temperatures (about 950 K), the formed precipitates of the Ni3Ti (γ') phase increase in size to 7-10 nm.

  11. Study of the effects of heat-treatment of hydroxyapatite synthesized in gelatin matrix

    Science.gov (United States)

    Zaits, A. V.; Golovanova, O. A.; Kuimova, M. V.

    2017-01-01

    In the study, the isothermal thermogravimetric analysis (TGA) of hydroxyapatite synthesized in gelatin matrix (HAG) has been performed. 3 wt.% HAG samples were synthesized from the solution simulating the human extracellular fluid (SBF). X-ray diffraction and IR spectroscopy were used to determine the composition. During the experiment, increase in the calcination temperature up to 200°C-800°C was found to cause weight loss. The study of phase composition revealed that heat treatment does not affect the phase composition of the solid phase, which is composed of hydroxylapatite (HA). The prepared HAG (3 wt.% gelatin) samples are shown to have low thermal stability; the degradation of the samples occurs at 400°C.

  12. Multi objective genetic algorithm to optimize the local heat treatment of a hardenable aluminum alloy

    Science.gov (United States)

    Piccininni, A.; Palumbo, G.; Franco, A. Lo; Sorgente, D.; Tricarico, L.; Russello, G.

    2018-05-01

    The continuous research for lightweight components for transport applications to reduce the harmful emissions drives the attention to the light alloys as in the case of Aluminium (Al) alloys, capable to combine low density with high values of the strength-to-weight ratio. Such advantages are partially counterbalanced by the poor formability at room temperature. A viable solution is to adopt a localized heat treatment by laser of the blank before the forming process to obtain a tailored distribution of material properties so that the blank can be formed at room temperature by means of conventional press machines. Such an approach has been extensively investigated for age hardenable alloys, but in the present work the attention is focused on the 5000 series; in particular, the optimization of the deep drawing process of the alloy AA5754 H32 is proposed through a numerical/experimental approach. A preliminary investigation was necessary to correctly tune the laser parameters (focus length, spot dimension) to effectively obtain the annealed state. Optimal process parameters were then obtained coupling a 2D FE model with an optimization platform managed by a multi-objective genetic algorithm. The optimal solution (i.e. able to maximize the LDR) in terms of blankholder force and extent of the annealed region was thus evaluated and validated through experimental trials. A good matching between experimental and numerical results was found. The optimal solution allowed to obtain an LDR of the locally heat treated blank larger than the one of the material either in the wrought condition (H32) either in the annealed condition (H111).

  13. Effects of heat treatment on microstructure and mechanical properties of Ni60/h-BN self-lubricating anti-wear composite coatings on 304 stainless steel by laser cladding

    Science.gov (United States)

    Lu, Xiao-Long; Liu, Xiu-Bo; Yu, Peng-Cheng; Zhai, Yong-Jie; Qiao, Shi-Jie; Wang, Ming-Di; Wang, Yong-Guang; Chen, Yao

    2015-11-01

    Laser clad Ni60/h-BN self-lubricating anti-wear composite coating on 304 stainless steel were heat treated at 600 °C (stress relief annealing) for 1 h and 2 h, respectively. Effects of the phase compositions, microstructure, microhardness, nano-indentation and tribological properties of the composite coatings with and without heat treatment had been investigated systemically. Results indicated that three coatings mainly consist of the matrix γ-(Ni, Fe) solid solution, the CrB ceramic phases and the h-BN lubricating phases. The maximum microhardness of the coatings was first increased from 667.7 HV0.5 to 765.0 HV0.5 after heat treatment for 1 h, and then decreased to 698.3 HV0.5 after heat treatment for 2 h. The hardness of γ-(Ni, Fe) solid solution without heat treatment and after heat treatment 1 h and 2 h were 5.09 GPa, 7.20 GPa and 3.77 GPa, respectively. Compared with the coating without heat treatment, the friction coefficients of the coating after heat treatment were decreased obviously. Effects of the heat treatment time on friction coefficient were negligible, but were significant on wear volume loss. Comparatively speaking, the laser clad self-lubricating anti-wear composite coating after heat treatment for 1 h presented the best anti-wear and friction reduction properties.

  14. Prediction of heat treatment in food processing machinery

    DEFF Research Database (Denmark)

    Karlson, Torben; Friis, Alan; Szabo, Peter

    1997-01-01

    The velocity and temperature fields of a shear thinning fluid in a co-rotating disc scraped surface heat exchanger (CDHE) are calculated using the finite element method. By tracking and timingparticles through the heat exchanger residence time and thermal time distributions are computed. The resi...

  15. A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment.

    Science.gov (United States)

    Kumar, P; Kumar, Dinesh; Rai, K N

    2015-01-01

    The success of hyperthermia in the treatment of cancer depends on the precise prediction and control of temperature. It was absolutely a necessity for hyperthermia treatment planning to understand the temperature distribution within living biological tissues. In this paper, dual-phase-lag model of bio-heat transfer has been studied using Gaussian distribution source term under most generalized boundary condition during hyperthermia treatment. An approximate analytical solution of the present problem has been done by Finite element wavelet Galerkin method which uses Legendre wavelet as a basis function. Multi-resolution analysis of Legendre wavelet in the present case localizes small scale variations of solution and fast switching of functional bases. The whole analysis is presented in dimensionless form. The dual-phase-lag model of bio-heat transfer has compared with Pennes and Thermal wave model of bio-heat transfer and it has been found that large differences in the temperature at the hyperthermia position and time to achieve the hyperthermia temperature exist, when we increase the value of τT. Particular cases when surface subjected to boundary condition of 1st, 2nd and 3rd kind are discussed in detail. The use of dual-phase-lag model of bio-heat transfer and finite element wavelet Galerkin method as a solution method helps in precise prediction of temperature. Gaussian distribution source term helps in control of temperature during hyperthermia treatment. So, it makes this study more useful for clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effect of heat treatment on interfacial and mechanical properties of A6022/A7075/A6022 roll-bonded multi-layer Al alloy sheets

    Science.gov (United States)

    Cha, Joon-Hyeon; Kim, Su-Hyeon; Lee, Yun-Soo; Kim, Hyoung-Wook; Choi, Yoon Suk

    2016-09-01

    Multi-layered Al alloy sheets can exhibit unique properties by the combination of properties of component materials. A poor corrosion resistance of high strength Al alloys can be complemented by having a protective surface with corrosion resistant Al alloys. Here, a special care should be taken regarding the heat treatment of multi-layered Al alloy sheets because dissimilar Al alloys may exhibit unexpected interfacial reactions upon heat treatment. In the present study, A6022/A7075/A6022 sheets were fabricated by a cold roll-bonding process, and the effect of the heat treatment on the microstructure and mechanical properties was examined. The solution treatment gave rise to the diffusion of Zn, Mg, Cu and Si elements across the core/clad interface. In particular, the pronounced diffusion of Zn, which is a major alloying element (for solid-solution strengthening) of the A7075 core, resulted in a gradual hardness change across the core/clad interface. Mg2Si precipitates and the precipitate free zone were also formed near the interface after the heat treatment. The heat-treated sheet showed high strengths and reasonable elongation without apparent deformation misfit or interfacial delamination during the tensile deformation. The high strength of the sheet was mainly due to the T4 and T6 heat treatment of the A7075 core.

  17. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    Energy Technology Data Exchange (ETDEWEB)

    Shipley, Ms. Anna [Sentech, Inc.; Hampson, Anne [Energy and Environmental Analysis, Inc., an ICF Company; Hedman, Mr. Bruce [Energy and Environmental Analysis, Inc., an ICF Company; Garland, Patricia W [ORNL; Bautista, Paul [Sentech, Inc.

    2008-12-01

    Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. Using CHP today, the United States already avoids more than 1.9 Quadrillion British thermal units (Quads) of fuel consumption and 248 million metric tons of carbon dioxide (CO{sub 2}) emissions annually compared to traditional separate production of electricity and thermal energy. This CO{sub 2} reduction is the equivalent of removing more than 45 million cars from the road. In addition, CHP is one of the few options in the portfolio of energy alternatives that combines environmental effectiveness with economic viability and improved competitiveness. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future as an: (1) Environmental Solution: Significantly reducing CO{sub 2} emissions through greater energy efficiency; (2) Competitive Business Solution: Increasing efficiency, reducing business costs, and creating green-collar jobs; (3) Local Energy Solution: Deployable throughout the US; and (4) Infrastructure Modernization Solution: Relieving grid congestion and improving energy security. CHP should be one of the first technologies deployed for near-term carbon reductions. The cost-effectiveness and near-term viability of widespread CHP deployment place the technology at the forefront of practical alternative energy solutions such as wind, solar, clean coal, biofuels, and nuclear power. Clear synergies exist between CHP and most other technologies that dominate the energy and environmental policy dialogue in the country today. As the Nation transforms how it produces, transports, and uses the many forms of energy, it must seize the clear opportunity afforded by CHP in terms of climate change, economic competitiveness, energy security, and infrastructure

  18. A novel laboratory scale method for studying heat treatment of cake flour

    OpenAIRE

    Chesterton, AKS; Wilson, David Ian; Sadd, PI; Moggridge, Geoffrey Dillwyn

    2014-01-01

    A lab-scale method for replicating the time–temperature history experienced by cake flours undergoing heat treatment was developed based on a packed bed configuration. The performance of heat-treated flours was compared with untreated and commercially heat-treated flour by test baking a high ratio cake formulation. Both cake volume and AACC shape measures were optimal after 15 min treatment at 130 °C, though their values varied between harvests. Separate oscillatory rheometry tests of cake ba...

  19. Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition

    Science.gov (United States)

    Story, William A.; Brewer, Luke N.

    2018-02-01

    This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.

  20. Heat stroke during long-term clozapine treatment: should we be concerned about hot weather?

    OpenAIRE

    Hoffmann, Maurício Scopel; Oliveira, Lucas Mendes; Lobato, Maria Inês Rodrigues; Belmonte-de-Abreu, Paulo

    2016-01-01

    Objective To describe the case of a patient with schizophrenia on clozapine treatment who had an episode of heat stroke. Case description During a heat wave in January and February 2014, a patient with schizophrenia who was on treatment with clozapine was initially referred for differential diagnose between systemic infection and neuroleptic malignant syndrome, but was finally diagnosed with heat stroke and treated with control of body temperature and hydration. Comments This report aims to...

  1. Effect of heat treatment duration on phase separation of sodium borosilicate glass, containing copper

    International Nuclear Information System (INIS)

    Shejnina, T.G.; Gutner, S.Kh.; Anan'in, N.I.

    1989-01-01

    The effect of heat treatment duration on phase separation of sodium borosilicate (SBS) glass, containing copper is studied. It is stated that phase separation close to equilibrium one is attained under 12 hours of heat treatment of SBS glass containing copper

  2. Industrial heat treatment of R-HPDC A356 automotive brake callipers

    CSIR Research Space (South Africa)

    Chauke, L

    2012-10-01

    Full Text Available Heat treatment of rheo-high pressure die cast (R-HPDC) A356 brake callipers has produced good mechanical properties on the laboratory scale. An industrial heat treatment is required to evaluate the applicability and conformance of the R-HPDC A356...

  3. Relaxation of residual stress in MMC after combined plastic deformation and heat treatment

    International Nuclear Information System (INIS)

    Bruno, G.; Ceretti, M.; Girardin, E.; Giuliani, A.; Manescu, A.

    2004-01-01

    Neutron Diffraction shows that plastic pre-deformation and heat treatments have opposite effects on the residual stress in Al-SiC p composites. The thermal micro residual stress is relaxed or even reversed by pre-strains above 0.2%, but restored by heat treatments. The sense of relaxation changes above 400 deg. C (the mixing temperature)

  4. Influence of heat treatment on magnesium alloys meant to automotive industry

    NARCIS (Netherlands)

    Popescu, G.; Moldovan, P.; Bojin, D.; Sillekens, W.H.

    2009-01-01

    The paper presents a study concerning the heat treatment realized on magnesium alloys, from AZ80 and ZK60 class. These alloys are destined to replace the conventional ferrous and aluminum alloys in automotive industry. It was realized the heat treatment, T5 - artificially aging, and it were

  5. Influence of heat treatment on microstructure and properties of bainitic cast steel used for frogs in railway crossovers

    Directory of Open Access Journals (Sweden)

    E. Tasak

    2010-01-01

    Full Text Available This work deals with influence of heat treatment on microstructure and properties of sample cast assigned as a material used for frogs in railway crossover. Materials used in railway industry for frogs (manganese cast steel and forged pearlitic steel do not fulfil strict conditions of exploitation of railway. One of the solutions is using cast steel with bainitic or bainite-martensite microstructure, what allows to gain high resistance properties (Rm = 1400 MPa, Rp0,2 = 900 MPa, hardness to 400 HBW. The cooling rates of rail type UIC60 shows that it is possible to reach the bainitic microstructure in cast of frog. The microstructure of lower banite should have an advantageous influence on cracking resistance. In order to set the parameters of heat treatment, the critical temperatures were determined by dilatometric methods determined. This heat treatment consisted of normalizing that prepared it to the farther process of resistance welding. Moreover, the CCT diagram of proposed bainitic cast steel was prepared. The exams were done that can be used to evaluate the influence of heat treatment on microstructure and properties of the sample cast.

  6. Processing and refinement of steel microstructure images for assisting in computerized heat treatment of plain carbon steel

    Science.gov (United States)

    Gupta, Shubhank; Panda, Aditi; Naskar, Ruchira; Mishra, Dinesh Kumar; Pal, Snehanshu

    2017-11-01

    Steels are alloys of iron and carbon, widely used in construction and other applications. The evolution of steel microstructure through various heat treatment processes is an important factor in controlling properties and performance of steel. Extensive experimentations have been performed to enhance the properties of steel by customizing heat treatment processes. However, experimental analyses are always associated with high resource requirements in terms of cost and time. As an alternative solution, we propose an image processing-based technique for refinement of raw plain carbon steel microstructure images, into a digital form, usable in experiments related to heat treatment processes of steel in diverse applications. The proposed work follows the conventional steps practiced by materials engineers in manual refinement of steel images; and it appropriately utilizes basic image processing techniques (including filtering, segmentation, opening, and clustering) to automate the whole process. The proposed refinement of steel microstructure images is aimed to enable computer-aided simulations of heat treatment of plain carbon steel, in a timely and cost-efficient manner; hence it is beneficial for the materials and metallurgy industry. Our experimental results prove the efficiency and effectiveness of the proposed technique.

  7. Surface properties tuning of welding electrode-deposited hardfacings by laser heat treatment

    Science.gov (United States)

    Oláh, Arthur; Croitoru, Catalin; Tierean, Mircea Horia

    2018-04-01

    In this paper, several Cr-Mn-rich hardfacings have been open-arc deposited on S275JR carbon quality structural steel and further submitted to laser treatment at different powers. An overall increase with 34-98% in the average microhardness and wear resistance of the coatings has been obtained, due to the formation of martensite, silicides, as well as simple and complex carbides on the surface of the hardfacings, in comparison with the reference, not submitted to laser thermal treatment. Surface laser treatment of electrode-deposited hardfacings improves their chemical resistance under corrosive saline environments, as determined by the 43% lower amount of leached iron and respectively, 28% lower amount of manganese ions leached in a 10% wt. NaCl aqueous solution, comparing with the reference hardfacings. Laser heat treatment also promotes better compatibility of the hardfacings with water-based paints and oil-based paints and primers, through the relative increasing in the polar component of the surface energy (with up to 65%) which aids both water and filler spreading on the metallic surface.

  8. Treatment of organic waste solutions containing tributyl phosphate

    International Nuclear Information System (INIS)

    Drobnik, S.

    The two processes developed in the laboratory for treating waste solutions containing TBP, namely TBP separation with phosphoric acid and saponification were tested on a semi-industrial scale. A waste solution from the first phase of the Karlsruhe reprocessing plant was used

  9. Effects of heat treatment on the mechanical properties of kenaf fiber

    Energy Technology Data Exchange (ETDEWEB)

    Carada, Paulo Teodoro D. L. [Master’s student in the Graduate School of Science and Engineering, Mechanical Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto Prefecture, 610-0394 (Japan); Fujii, Toru; Okubo, Kazuya [Professor in the Faculty of Science and Engineering, Department of Mechanical and Systems Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto Prefecture, 610-0394 (Japan)

    2016-05-18

    Natural fibers are utilized in various ways. One specific application of it, is in the field natural fiber composite (NFC). Considerable amount of researches are conducted in this field due to rising concerns in the harmful effects of synthetic materials to the environment. Additionally, these researches are done in order to overcome the drawbacks which limit the wide use of natural fiber. A way to improve NFC is to look into the reinforcing component (natural fiber). Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the performance of the natural fiber. The aim of this study is to assess the effects of heat treatment in the mechanical properties of kenaf fiber. In addition, the response of mechanical properties after exposure to high moisture environment of heat-treated kenaf fibers was observed. Heat treatment was done for one hour with the following heating temperatures: 140, 160, 180, and 200 °C. X-ray diffraction analysis was done to calculate the crystallinity index of kenaf fibers after heat treatment. The results showed that increase in tensile strength can be attained when kenaf fibers are heat treated at 140 °C. However, the tensile modulus showed inconsistency with respect to heat treatment temperature. The computed crystallinity index of the fiber matched the tensile strength observed in non-treated and heat-treated kenaf fibers. The results obtained in this study can be used for applications where heat treatment on kenaf fibers is needed.

  10. Treatment of chlorofluorocarbons in alcohol solutions by γ-irradiation

    International Nuclear Information System (INIS)

    Shimokawa, Toshinari; Nakagawa, Seiko; Sawai, Teruko

    1995-01-01

    A study was done on dechlorination of 1,1,2-trichloro-1,2,2-trifluoroethane (CFC113) in neutral and alkaline alcohol solutions by means of γ-irradiation. The dechlorination yield (G (Cl - )) was found to depend on the kind of alcohol used as solvents and the presence of hydroxide ion. The order of G (Cl - ) value in alkaline solution was isopropyl alcohol>> ethyl alcohol > methyl alcohol. It was suggested that the high yield obtained in alkaline isopropyl alcohol solution is explained by a chain process in dechlorination reaction. In case of alkaline isopropyl alcohol solution, CFC113 was dechlorinated to lower chlorinated ethane, and 1,1-dichloro-1,2,2-trifluoroetane was a main product. We have discussed on the chain dechlorination mechanism in alkaline isopropyl alcohol solution. (author)

  11. Study of heat treatment parameters for large-scale hydraulic steel gate track

    Directory of Open Access Journals (Sweden)

    Ping-zhou Cao

    2013-10-01

    Full Text Available In order to enhance external hardness and strength, a large-scale hydraulic gate track should go through heat treatment. The current design method of hydraulic gate wheels and tracks is based on Hertz contact linear elastic theory, and does not take into account the changes in mechanical properties of materials caused by heat treatment. In this study, the heat treatment parameters were designed and analyzed according to the bearing mechanisms of the wheel and track. The quenching process of the track was simulated by the ANSYS program, and the temperature variation, residual stress, and deformation were obtained and analyzed. The metallurgical structure field after heat treatment was predicted by the method based on time-temperature-transformation (TTT curves. The results show that the analysis method and designed track heat treatment process are feasible, and can provide a reference for practical projects.

  12. Heat treatment evaluation of steel ASTM A-131 grade A by X-Ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Junior, Francisco; Feio, Luciana Gaspar; Costa, Ednelson Silva; Rodrigues, Lino Alberto Soares; Braga, Eduardo Magalhaes, E-mail: juniorferrer93@gmail.com [Universidade Federal do Pará (UFPA), Belém, PA (Brazil)

    2016-07-01

    Full text: This study evaluates the residual stress of naval steel ASTM A-131 grade A before and after heat treatment. Residual stresses were determined by the technique of X-ray diffraction (XRD). Before heat treatment the residual stress measurements were made at 36 (thirty six) points distributed in a specimen with dimensions of 400 mm long, 200 mm wide and 95 mm thick, then the plate under analysis was brought to the oven for the implementation of heat treatment. To check the performance of the heat treatment, the plate was again subjected to XRD measurements of the same points previously measured in order to compare the residual stresses. As result, there was a reduction of residual stresses with the application of heat treatment. References: [1] COLPAERT, H. Metalografia dos Produtos Siderurgicos Comuns. 4 Edição. Editora Blucher. Saõ Paulo, SP, 2008. [2] HILL, R. Princípios de Metalurgia Física, 1992. (author)

  13. Degradation of Penicillin G by heat activated persulfate in aqueous solution.

    Science.gov (United States)

    Norzaee, Samira; Taghavi, Mahmoud; Djahed, Babak; Kord Mostafapour, Ferdos

    2018-06-01

    We used Heat Activated of Persulfate (HAP) to decompose Penicillin G (PEN G) in aqueous solution. The effect of pH (3-11), temperature (313-353 K), and initial concentration of Sodium Persulfate (SPS) (0.05-0.5 mM) on the decomposition level of PEN G were investigated. The residue of PEN G was determined by spectrophotometry at the wavelength of 290 nm. Also, the Chemical Oxygen Demand (COD) was measured in each experiment. The Total Organic Carbon (TOC) analysis was utilized for surveying the mineralization of PEN G. In addition, based on Arrhenius equation, the activation energy of PEN G decomposition was calculated. The results indicated that the maximum PEN G removal rate was obtained at pH 5 and by increasing the doses of SPS from 0.05 to 0.5 mM, the PEN G decomposition was enhanced. It was found that an increase in temperature is accompanied by an increase in removal efficiency of PEN G. The activation energy of the studied process was determined to be 94.8 kJ mol -1 , suggesting that a moderate activation energy is required for PEN G decomposition. The TOC measurements indicate that the HAP can efficiently mineralize PEN G. Besides, the presence of the scavengers significantly suppressed the HAP process to remove the PEN G. Overall, the results of this study demonstrate that using HAP process can be a suitable method for decomposing of PEN G in aqueous solutions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Energy consumption and management in metal heat treatment implementation; Consommation et gestion d`energie dans la mise en oeuvre des traitements thermiques des metaux

    Energy Technology Data Exchange (ETDEWEB)

    Leroux, C. [Vide et Traitements Services, 92 - Gennevilliers (France)

    1996-12-31

    Energy management in the metal heat treatment sector, where thermal efficiency is generally poor, is based on an adequate power supply contract with utilities, a thorough evaluation of energy consumption from the various equipment, and systems for the limitation of energy consumption: warning signals when the contracted power is to be reached, power cut-off systems or intelligent cut-off/restart systems and global load management. For gas appliances, heat recovery combustors may be a solution

  15. SOLUTIONS TO OVERCOME BARRIERS TO IMPLEMENTATION OF TREATMENT TECHNOLOGIES

    Science.gov (United States)

    To make treatment a viable option for remediation you must first identify the barriers to implementing treatment. The primary barrier is economics. Treatment options are relatively expensive and there is a lack of funds for treatment. The cost of technologies can be lowered by 1)...

  16. Dimensional Behavior of Matrix Graphite Compacts during Heat Treatments for HTGR Fuel Element Fabrication

    International Nuclear Information System (INIS)

    Lee, Young-Woo; Yeo, Seunghwan; Cho, Moon Sung

    2015-01-01

    The carbonization is a process step where the binder that is incorporated during the matrix graphite powder preparation step is evaporated and the residue of the binder is carbonized during the heat treatment at about 1073 K. This carbonization step is followed by the final high temperature heat treatment where the carbonized compacts are heat treated at 2073-2173 K in vacuum for a relatively short time (about 2 hrs). In order to develop a fuel compact fabrication technology, and for fuel matrix graphite to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions, which has a strong influence on the further steps and the material properties of fuel element. In this work, the dimensional changes of green compacts during the carbonization and final heat treatment are evaluated when compacts have different densities from different pressing conditions and different final heat treatment temperatures are employed, keeping other process parameters constant, such as the binder content, carbonization time, temperature and atmosphere (two hours ant 1073K and N2 atmosphere). In this work, the dimensional variations of green compacts during the carbonization and final heat treatment are evaluated when compacts have different densities from different pressing conditions and different final heat treatment temperatures are employed

  17. Algorithms and programs for solution of static and dynamic characteristics of counterflow heat exchangers with dissociating coolant

    International Nuclear Information System (INIS)

    Nitej, N.V.; Sharovarov, G.A.

    1982-01-01

    The method of estimation of counterflow heat exchanger characteristics is presented. Mathematical description of the processes is presented by the mass, energy and pulse conservation equations for both coolants and energy conservation equation for the wall which devides them. In the presence of chemical reactions the system is supplemented by equations, characterizing the kinetics of their progress. The methods of numerical solution of static and dynamic problems have been chosen, and the computer programs on the Fortran language have been developed. The schemes of solution of both problems are so constructed, that the conservation equations are placed in the main program, and such characteristics of the coolants as properties, heat transfer and friction coefficients, the mechanism of chemical reaction are concentrated in the subprogram unit. This allows to create the single method of solution with the flow of single-phase and two-phase coolants of abovecritical and supercritical paramters. The evaluation results of three heat exchangers are given: with heating of N 2 O 4 gas phase by heat of flue gas; with cooling of N 2 O 4 supercritical parameters by water; regenerator on N 2 O 4

  18. Effect of heat treatment on polyphenol oxidase and peroxidase ...

    African Journals Online (AJOL)

    GREGO

    2006-12-18

    Dec 18, 2006 ... enzymes in plant and its resistance to heat has been reported by a ... sintered glass funnel and washed with cold acetone under low vacuum ... Peroxidase activity was determined by measuring the colour deve- lopment at ...

  19. Heating treatment schemes for enhancing chelant-assisted phytoextraction of heavy metals from contaminated soils.

    Science.gov (United States)

    Chen, Yahua; Wang, Chunchun; Wang, Guiping; Luo, Chunling; Mao, Ying; Shen, Zhenguo; Li, Xiangdong

    2008-04-01

    Recent research has shown that chelant-assisted phytoextraction approaches often require a high dosage of chelant applied to soil. The present study focused on optimization of phytoremediation processes to increase the phytoextraction efficiency of metals at reduced chelant applications. Pot experiments were carried out to investigate the effects of increased soil temperature on shoot uptake of heavy metals by corn (Zea mays L.) and mung bean (Vigna radiat L. Wilczek) from heavy metal-contaminated soils. After the application of S,S-ethylenediaminedisuccinic acid or ethylenediaminetetra-acetic acid, soils were exposed to high temperatures (50 or 80 degrees C) for 3 h, which significantly increased the concentration of heavy metals in shoots. The heating treatment 2 d after the chelant addition resulted in higher concentrations of metals compared with those treatments 2 d before or simultaneously with the chelant application. Irrigation with 100 degrees C water 2 d after the chelant addition, or irrigation with 100 degrees C chelant solutions directly, also resulted in significantly higher phytoextraction of metals in the two crops compared with 25 degrees C chelant solutions. In addition, a novel application method to increase soil temperature using underground polyvinyl chloride tubes would increase the chelant-assisted extraction efficiency of Cu approximately 10- to 14-fold in corn and fivefold in mung bean compared with those nonheating treatments. In a field experiment, increasing soil temperature 2 d after chelant addition also increased the shoot Cu uptake approximately fivefold compared with those nonheating treatments. This new technique may represent a potential, engineering-oriented approach for phytoremediation of metal-polluted soils.

  20. Ploidy Manipulation of Zebrafish Embryos with Heat Shock 2 Treatment

    OpenAIRE

    Baars, Destiny L.; Takle, Kendra A.; Heier, Jonathon; Pelegri, Francisco

    2016-01-01

    Manipulation of ploidy allows for useful transformations, such as diploids to tetraploids, or haploids to diploids. In the zebrafish Danio rerio, specifically the generation of homozygous gynogenetic diploids is useful in genetic analysis because it allows the direct production of homozygotes from a single heterozygous mother. This article describes a modified protocol for ploidy duplication based on a heat pulse during the first cell cycle, Heat Shock 2 (HS2). Through inhibition of centriole...

  1. Interactions between goethite particles subjected to heat treatment

    DEFF Research Database (Denmark)

    Madsen, Daniel Esmarch; Hansen, Mikkel Fougt; Koch, C.B.

    2008-01-01

    We have studied the effect of heating on the magnetic properties of particles of nanocrystalline goethite by use of Mossbauer spectroscopy. Heating at 150 degrees C for 24 h leads to a change in the quadrupole shift in the low-temperature spectra, indicating a rotation of the sublattice...... magnetization directions. Fitting of quantiles, derived from the asymmetrically broadened spectra between 80 and 300 K, to the superferromagnetism model indicates that this change is due to a stronger magnetic coupling between the particles....

  2. Dual solutions of three-dimensional flow and heat transfer over a non-linearly stretching/shrinking sheet

    Science.gov (United States)

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2018-05-01

    This study investigated the influence of the non-linearly stretching/shrinking sheet on the boundary layer flow and heat transfer. A proper similarity transformation simplified the system of partial differential equations into a system of ordinary differential equations. This system of similarity equations is then solved numerically by using the bvp4c function in the MATLAB software. The generated numerical results presented graphically and discussed in the relevance of the governing parameters. Dual solutions found as the sheet stretched and shrunk in the horizontal direction. Stability analysis showed that the first solution is physically realizable whereas the second solution is not practicable.

  3. Exact harmonic solutions to Guyer-Krumhansl-type equation and application to heat transport in thin films

    Science.gov (United States)

    Zhukovsky, K.; Oskolkov, D.

    2018-03-01

    A system of hyperbolic-type inhomogeneous differential equations (DE) is considered for non-Fourier heat transfer in thin films. Exact harmonic solutions to Guyer-Krumhansl-type heat equation and to the system of inhomogeneous DE are obtained in Cauchy- and Dirichlet-type conditions. The contribution of the ballistic-type heat transport, of the Cattaneo heat waves and of the Fourier heat diffusion is discussed and compared with each other in various conditions. The application of the study to the ballistic heat transport in thin films is performed. Rapid evolution of the ballistic quasi-temperature component in low-dimensional systems is elucidated and compared with slow evolution of its diffusive counterpart. The effect of the ballistic quasi-temperature component on the evolution of the complete quasi-temperature is explored. In this context, the influence of the Knudsen number and of Cauchy- and Dirichlet-type conditions on the evolution of the temperature distribution is explored. The comparative analysis of the obtained solutions is performed.

  4. Heating of leads casks. An analytical solution to the heat equation made up of a series of Laguerre functions; Echauffement des chateaux de plomb. Une solution analytique a l'equation de la chaleur constituee par une serie de fonctions de Laguerre

    Energy Technology Data Exchange (ETDEWEB)

    Formery, Ph; Gilles, A [Commissariat a l' Energie Atomique, Dir. des Productions, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    The packing used for the transport of highly radioactive materials such as in-pile irradiated rods; have to comply to fairly strict safety standards. They should in particular resist to fire without the radioactive protection being seriously affected. The heating of a transport cask placed in a fire has been calculated by normal automatic computation methods assuming that only thermal radiation is responsible for the heating and that this obeys STEFAN'S law. Simultaneously, a purely analytical treatment has been attempted as follows. The existence of a simple solution, of the Laguerre function type, to the heat equation has been demonstrated. By superposing an infinite number of simple solutions, it is possible to produce a fairly general solution, depending on parameters, which satisfies the initial state and the limiting conditions. The parameters can be adjusted so that the temperature and the flux produced on the shell by this solution satisfy approximately STEFAN'S relationship. (authors) [French] Les emballages qui servent au transport de produits fortement radioactifs, tels que des barreaux irradies dans les piles, doivent satisfaire a des normes de securite assez strictes. Ils doivent, en particulier, resister au feu sans que la protection contre le rayonnement soit sensiblement entamee. L'echauffement, par seul rayonnement thermique suppose obeir a la loi de STEFAN, d'un chateau de transport plonge dans un feu a ete calcule par les methodes habituelles du calcul automatique. Parallelement a ete tentee l'approche purement analytique que voici: Une solution simple, du type fonction de LAGUERRE, a l'equation de la chaleur est mise en evidence. La superposition, en nombre infini, de solutions simples, permet de fabriquer une solution assez generale dependant de parametres, satisfaisant a l'etat initial et aux conditions aux limites. Les parametres peuvent etre ajustes de facon que la temperature et le flux engendres sur la coque par cette solution

  5. Gas Furnace with Pulsed Feeding of the Heating Agent for Volume Precision Heat Treatment of CCM Rolls

    Science.gov (United States)

    Moroz, V. I.; Egorova, V. M.; Gusev, S. V.

    2001-05-01

    A standard chamber batch furnace of the Severstal' plant has been modified for precision heat treatment of CCM rolls. The certification tests of a charge of rolls from steel 24KhM1F have shown the technical and economical advantages of the new design.

  6. Corrosion Behaviour of Heat - Treated Al-6063/ SiCp Composites Immersed in 5 wt% NaCl Solution

    Directory of Open Access Journals (Sweden)

    Kenneth ALANEME

    2011-06-01

    Full Text Available The influence of SiC volume percent and temper conditions (namely, as-cast, solutionized, and artificial age hardening at 180°C and 195°C on the corrosion behaviour of Al (6063 composites and its monolithic alloy immersed in 5wt% NaCl solution has been investigated. Al (6063 - SiC particulate composites containing 6, 12 and 15 volume percent SiC were produced by premixing the SiC particles with borax additive and then adopting two step stir casting. Mass loss and corrosion rate measurements were utilized as criteria for evaluating the corrosion behaviour of the composites. The results show that the corrosion susceptibility of the Al (6063 - SiCp composites was higher than that of the monolithic alloy, and for most cases the corrosion rate of the composites increased with increase in volume percent of SiC. However, it was discovered that the nature of the passive films formed on the composites was sufficiently stable to reduce significantly the corrosion rate of the composites after 13days of immersion. This trend was observed to be consistent for all heat-treatment conditions utilized.

  7. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment.

    Science.gov (United States)

    Ramesh, Gopalan; Prabhu, Narayan Kotekar

    2011-04-14

    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.

  8. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment

    Directory of Open Access Journals (Sweden)

    Ramesh Gopalan

    2011-01-01

    Full Text Available Abstract The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.

  9. A solution of coupled heat-moisture transfer in saturated-unsaturated media

    International Nuclear Information System (INIS)

    Geraminegad, M.; Saxena, S.K.

    1985-01-01

    Two formulations of coupled heat and mass flow in the porous media are presented and solved numerically using finite element method. This paper concludes that the formulation based on Phillip and de Vries better estimates heat flow, and, the non-linear behavior of soil parameters significantly affects heat and mass flow in the porous media

  10. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    1997-02-01

    The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.

  11. INFLUENCE OF ORGANIZATIONAL AND TECHNOLOGICAL SOLUTIONS TO TECHNICAL AND ECONOMICAL INDICATORS IN PROJECT OF HEAT INSULATION FACADES

    Directory of Open Access Journals (Sweden)

    BABIJ I. N. Cand. Sc. (Tech., Associate Professor,

    2016-09-01

    Full Text Available Summary. Raising of problem. The article dedicated to the solution important problems of choosing rational technical and economic indicators of the duration and cost the process heat insulation facades of buildings by means of experimental and statistical modeling organizational and technological solutions. For this we used the results of numerical experiment, theory a shorthand experiment planning and contemporary computer programs. Purpose. We used experimentally-statistical modeling to establish the impact of organizational and technological solutions for heat insulation of facades by hinged ventilated systems on technical and economic parameters of the project, such as duration and cost. Conclusion. We investigated depending duration assembly jobs and manufacturing cost on the value and combination of variable factors experimental and statistical modeling of construction processes and results patterns of change in studied parameters.

  12. Ti-Mo alloys employed as biomaterials: effects of composition and aging heat treatment on microstructure and mechanical behavior.

    Science.gov (United States)

    Cardoso, Flavia F; Ferrandini, Peterson L; Lopes, Eder S N; Cremasco, Alessandra; Caram, Rubens

    2014-04-01

    The correlation between the composition, aging heat treatments, microstructural features and mechanical properties of β Ti alloys is of primary significance because it is the foundation for developing and improving new Ti alloys for orthopedic biomaterials. However, in the case of Ti-Mo alloys, this correlation is not fully described in the literature. Therefore, the purpose of this study was to experimentally investigate the effect of composition and aging heat treatments on the microstructure, Vickers hardness and elastic modulus of Ti-Mo alloys. These alloys were solution heat-treated and water-quenched, after which their response to aging heat treatments was investigated. Their microstructure, Vickers hardness and elastic modulus were evaluated, and the results allow us to conclude that stabilization of the β phase is achieved with nearly 10% Mo when a very high cooling rate is applied. Young's modulus was found to be more sensitive to phase variations than hardness. In all of the compositions, the highest hardness values were achieved by aging at 723K, which was attributed to the precipitation of α and ω phases. All of the compositions aged at 573K, 623K and 723K showed overaging within 80h. © 2013 Published by Elsevier Ltd.

  13. Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kreitcberg, Alena, E-mail: alena.kreitcberg.1@ens.etsmtl.ca [École de technologie supérieure, 110 Notre-Dame Street West, Montreal, Quebec H3C 1K3 Canada (Canada); Brailovski, Vladimir, E-mail: vladimir.brailovski@etsmtl.ca [École de technologie supérieure, 110 Notre-Dame Street West, Montreal, Quebec H3C 1K3 Canada (Canada); Turenne, Sylvain, E-mail: sylvain.turenne@polymtl.ca [École Polytechnique de Montréal, 2900 boul. Édouard-Montpetit, Montreal, Quebec H3T 1J4 Canada (Canada)

    2017-03-24

    The effect of different heat treatments and hot isostatic pressing on the microstructure and mechanical properties of laser powder bed fusion IN625 alloy was studied. The heat treatments were: stress relief annealing, recrystallization annealing and low-temperature solution treatment. The resulting microstructure and crystallographic textures were studied using optical and scanning electron microscopy. The mechanical properties of the as-built and post-treated IN625 alloy were obtained after tensile testing at room temperature and at 760 °C (1400 °F), and compared to those of an annealed wrought alloy of the same composition.

  14. Study on the Effect of Heat Treatment on Physical Properties of Poplar and Beech Woods Impregnated with Nano-Copper and Nano-Silver

    Directory of Open Access Journals (Sweden)

    Hassan Siahposht

    2012-06-01

    Full Text Available Present study conducted to review effects of heat treatment on weight loss, water adsorption, and thickness swelling of poplar (Populus nigra and beech (Fagus oreintalis woods impregnated with nano-copper and nano-silver. Specimens werepressur (2.5 bar impregnated with 400 PPM water-based solution of nano-copper and nano-silver particles in a pressure vessel. For heat treatment, nano-cupper,  nano-silver impregnated and control specimens, were heat treated at 145°C temperature for 24 hours. Water absorption and thickness swelling decreased in heat treated and nano-heat treated specimens and this decrease in specimens impregnated with nano-copper and nano-silver was more obvious than in heat treated control specimens. The reasons were the degradation in crystal sections of celluloses chains and the ink variation of wood polymers. On the other hand, a comparison between heat treated and nano- heat treated specimens has shown weight loss further in nano-heat treated specimens. This shows that retent nano-copper and nano-silver by impregnation facilitates heat transfer in wood; and it may increase the process of degradation and pyrolysis of wood structures in inner parts of specimens.

  15. Dynamical Treatment of Virialization Heating in Galaxy Formation

    Science.gov (United States)

    Wang, Peng; Abel, Tom

    2008-01-01

    In a hierarchical picture of galaxy formation virialization continually transforms gravitational potential energy into kinetic energies of the baryonic and dark matter. For the gaseous component the kinetic, turbulent energy is transformed eventually into internal thermal energy through shocks and viscous dissipation. Traditionally this virialization and shock heating has been assumed to occur instantaneously, allowing an estimate of the gas temperature to be derived from the virial temperature defined from the embedding dark matter halo velocity dispersion. As the mass grows the virial temperature of a halo grows. Mass accretion hence can be translated into a heating term. We derive this heating rate from the extended Press Schechter formalism and demonstrate its usefulness in semianalytical models of galaxy formation. Our method explicitly conserves energy, unlike the previous impulsive heating assumptions. Our formalism can trivially be applied in all current semianalytical models as the heating term can be computed directly from the underlying merger trees. Our analytic results for the first cooling halos and the transition from cold to hot accretion are in agreement with numerical simulations.

  16. Electrolytic conductivity and molar heat capacity of two aqueous solutions of ionic liquids at room-temperature: Measurements and correlations

    International Nuclear Information System (INIS)

    Lin Peiyin; Soriano, Allan N.; Leron, Rhoda B.; Li Menghui

    2010-01-01

    As part of our systematic study on physicochemical characterization of ionic liquids, in this work, we report new measurements of electrolytic conductivity and molar heat capacity for aqueous solutions of two 1-ethyl-3-methylimidazolium-based ionic liquids, namely: 1-ethyl-3-methylimidazolium dicyanamide and 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate, at normal atmospheric condition and for temperatures up to 353.2 K. The electrolytic conductivity and molar heat capacity were measured by a commercial conductivity meter and a differential scanning calorimeter (DSC), respectively. The estimated experimental uncertainties for the electrolytic conductivity and molar heat capacity measurements were ±1% and ±2%, respectively. The property data are reported as functions of temperature and composition. A modified empirical equation from another researcher was used to correlate the temperature and composition dependence of the our electrolytic conductivity results. An excess molar heat capacity expression derived using a Redlich-Kister type equation was used to represent the temperature and composition dependence of the measured molar heat capacity and calculated excess molar heat capacity of the solvent systems considered. The correlations applied represent the our measurements satisfactorily as shown by an acceptable overall average deviation of 6.4% and 0.1%, respectively, for electrolytic conductivity and molar heat capacity.

  17. A high-temperature high-pressure calorimeter for determining heats of solution up to 623 K.

    Science.gov (United States)

    Djamali, Essmaiil; Turner, Peter J; Murray, Richard C; Cobble, James W

    2010-07-01

    A high-temperature high-pressure isoperibol calorimeter for determining the heats of solution and reaction of very dilute substances in water (10(-4) m) at temperatures up to 623 K is described. The energies of vaporization of water at steam saturation pressure were measured as a function of temperature and the results agree with the corresponding values from steam tables to better than 0.08+/-0.18%. The novelties of the present instrument relative to flow type heat capacity calorimeters are that measurements can be made at orders of magnitude lower concentrations and that measurement of heat of reaction involving solids or gases or in the presence of high concentrations of supporting electrolytes, acids, and bases is possible. Furthermore, the advantage of using enthalpy data over heat capacity data for calculations of the standard state Gibbs free energies of electrolytes is that the experimental heat data of this research need only be integrated once to derive higher temperature free energy data from lower temperatures. The derived heat capacities can be used mathematically to obtain free energies by double integration. However, the resulting errors are much smaller than if experimental aqueous heat capacities were used for the integrations.

  18. Solution of operational problems utilization of an EX-IRT-2000 heat exchanger

    International Nuclear Information System (INIS)

    Razak, Abdu

    1986-01-01

    The Bandung TRIGA Mark II Reactor has been successfully operated for 21 years, especially in low power operation or as neutron sources for various experiments. Most of the operating time, approximately 80% of routine operation, was dedicated for radio-isotope production. During routine operation for radio-isotope production, the reactor could not be operated at full power. The reactor was operated at 60% of the maximum power (1 MWth) due to the inability of the original heat exchanger to operate properly. The reason is that slack deposition was built-up on the secondary side of the heat exchanger. Therefore, it reduced the coefficient of heat transfer considerably. To solve the problems, a set of heat exchanger including the pump was installed In parallel with the original unit. The heat exchanger was an IRT-2000 Reactor Heat exchanger which was collected from the abandoned IRT-2000 Project. The heat exchanger has capacity of 1.25 MW. The new heat exchanger could reduced the outlet temperature of the primary coolant Into 42 deg. C. While the original-heat exchanger at the worst condition and at 600 kW of power reach outlet temperature 49 deg. C. The IRT Heat Exchanger is a counter flow heat exchanger. (author)

  19. Solution of operational problems utilization of an EX-IRT-2000 heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Razak, Abdu [Research Centre for Nuclear Techniques, National Atomic Energy Agency (Indonesia)

    1986-07-01

    The Bandung TRIGA Mark II Reactor has been successfully operated for 21 years, especially in low power operation or as neutron sources for various experiments. Most of the operating time, approximately 80% of routine operation, was dedicated for radio-isotope production. During routine operation for radio-isotope production, the reactor could not be operated at full power. The reactor was operated at 60% of the maximum power (1 MWth) due to the inability of the original heat exchanger to operate properly. The reason is that slack deposition was built-up on the secondary side of the heat exchanger. Therefore, it reduced the coefficient of heat transfer considerably. To solve the problems, a set of heat exchanger including the pump was installed In parallel with the original unit. The heat exchanger was an IRT-2000 Reactor Heat exchanger which was collected from the abandoned IRT-2000 Project. The heat exchanger has capacity of 1.25 MW. The new heat exchanger could reduced the outlet temperature of the primary coolant Into 42 deg. C. While the original-heat exchanger at the worst condition and at 600 kW of power reach outlet temperature 49 deg. C. The IRT Heat Exchanger is a counter flow heat exchanger. (author)

  20. A Study on Microstructural Change and Properties of Mg-1.4 wt%Ca-xwt%Zn Alloys by Two-Step Solid Solution and Aging Treatment

    International Nuclear Information System (INIS)

    Koo, Seong Mo; Kim, Hye Sung; Jeong, Ha-Guk; Kim, Teak-Soo

    2015-01-01

    Optimum heat treatment conditions to improve the hardness and corrosion resistance of ternary Mg-Ca-Zn alloys have been studied, based on the theoretical models and DSC (Differential scanning calorimetry) experimental data. Two-step heating process at 420 ℃ and 480 ℃ has been applied and we have found that the low melting point phase, Ca_2Mg_6Zn_3 can effectively be dissolved into α-Mg matrix without premature melting. Due to preceding treatment at lower temperature followed by the second stage solid solution heat treatment at 480 ℃, Mg-1.4 wt%Ca-xwt%Zn alloys (x=0, 1.5 and 4.0) exhibit improved corrosion resistance than that from the single step solid solution treated alloy at 480 ℃. However, aging treatment of the alloy at 200 ℃ has led to the homogeneous precipitation of Ca_2Mg_6Zn_3 and Mg_2Ca phases in the matrix as well as at the grain boundary. This microstructural change results in the deterioration of corrosion resistance mainly originated from galvanic corrosion between the matrix and the precipitates. The hardness of Mg-1.4%Cax%Zn alloy, on the other hand, significantly increases with Zn addition by applying two-step solid solution and aging heat treatment.

  1. Effect of heat treatment on the crystal structure, martensitic transformation and magnetic properties of Mn{sub 53}Ni{sub 25}Ga{sub 22} ferromagnetic shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, G.F., E-mail: dgfu0451@sina.com [Department of mechanics Dalian University, Dalian 116622 (China); Gao, Z.Y. [National Key Laboratory Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, P.O. Box 405, Harbin 150001 (China)

    2016-02-01

    In this study, the effect of heat treatment on crystal structure, martensitic transformation, thermodynamic behavior and magnetic properties of polycrystalline Mn{sub 53}Ni{sub 25}Ga{sub 22} ferromagnetic shape memory alloy was systematically investigated. The results show that the heat treatment has obvious effect on martensitic transformation temperatures, crystal structure and hysteresis loops. Heat treatment greatly effects on transformation temperatures due to modified composition of the matrix. Martensitic transformation temperature, saturation magnetization decreased with the increase heat treatment temperature, reaching their minimum values at the heat treatment temperature of 1173 K for 12 h. Curie temperature of maximum values obtained at solution-treated of 1173 K for 12 h. In other word, increasing heat treatment temperature and time has an effect on Curie temperature. In addition, the annealed alloy Mn{sub 53}Ni{sub 25}Ga{sub 22} may completely dissolve in vacuum tubes at 1173 K for 12 h. It is found that the studied alloys have some (Mn,Ni){sub 4} Ga-type compound precipitates, which can be seen dispersing both in grain interiors and on grain boundaries at other heat treatment process. Lastly, Rietveld analysis shows the good agreement between experiment and calculated data of XRD patterns. - Highlights: • Heat treatment has obvious effect on transformation, structure and hysteresis. • Transformation temperature decreased with increase heat treatment temperature. • Magnetization decreased with increase heat treatment temperature. • Annealed alloy completely dissolve in vacuum tubes at 1123 K for 24 h.

  2. Effect of laser heat treatment on intergranular corrosion of austenitic stainless steel; Austenite kei stainless ko no ryukai fushoku kanjusei ni oyobosu laser netsushori no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, M.; Yoneyama, T. [Tokyo Denki University, Tokyo (Japan). Faculty of Engineering; Isshiki, Y. [Tokyo Metropolitan Industrial Technology Center, Tokyo (Japan)

    1995-03-15

    The laser heat treatment of SUS304 steel was studied to lower the intergranular corrosion sensitivity of austenitic stainless steel. By the short-time heating around 923K, the SUS304 steel is sensitized to the intergranular corrosion with the deposition of Cr carbide into the granular field of crystals. To recover it, it is necessary to solidly dissolve, and simultaneously, quickly cool the Cr carbide above 1273K. For such solution heat treatment, CO2 laser beams were used with the treatment condition that the power and beam diameter were 800 to 1200W and 0.3 to 0.64cm, respectively. Regardless of both power density and beam diameter, the desensitization was observed at heating temperatures above 1323K. As a result of calculation by simulation, the solid dissolution of Cr carbide and recovery of Cr`s depletion zone in the granular field of crystals took place in a very short time at heating temperatures above 1323K. It agreed well with the experimental result. The laser beams are effective in the solution heat treatment of stainless steel. 14 refs., 15 figs., 1 tab.

  3. Effect of heat treatment upon the fatigue-crack growth behavior of Alloy 718 weldments

    International Nuclear Information System (INIS)

    James, L.A.; Mills, W.J.

    1981-05-01

    Gas-tungsten-arc weldments in Alloy 718 were studied in fatigue-crack growth test conducted at five temperatures over the range 24--649 degree C. In general, crack growth rates increased with increasing temperature, and weldments given the ''conventional'' post-weld heat-treatment generally exhibited crack growth rates that were higher than for weldments given the ''modified'' (INEL) heat-treatment. Limited testing in the as-welded condition revealed crack growth rates significantly lower than observed for the heat-treated cases, and this was attributed to residual stresses. Three different heats of filler wire were utilized, and no heat-to-heat variations were noted. 23 refs., 9 figs., 6 tabs

  4. Characterization of Aluminum Magnesium Alloy Reverse Sensitized via Heat Treatment

    Science.gov (United States)

    2016-09-01

    when magnesium comes out of solution as a second phase, Al3Mg2, on the grain boundaries, eventually forming a continuous network and increasing...alloys. Al-Mg alloys can become sensitized when magnesium comes out of solution as a second phase, Al3Mg2, on the grain boundaries, eventually...THIS PAGE INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION A. MOTIVATION Aluminum alloys are attractive ship-building materials. They are lightweight

  5. EFFECT OF HEAT TREATMENT ON THE SURVIVAL OF ...

    African Journals Online (AJOL)

    BARTH EKWUEME

    seconds at temperatures ranging from 69OC to 73OC. E. coli O157:H7 ... inoculum was added to 90ml of sterile raw milk (heated in water bath ..... the high temperature short time (HTST) pasteurization technique .... I. The use of selective media.

  6. Influence of heat treatment on microstructure and passivity of Cu ...

    Indian Academy of Sciences (India)

    200 ◦C for 20 h in salt bath and air cooled), B (heating up to 800 ◦C for 20 h and water ... chloride ions on passivity was associated with the formation of copper oxides/hydroxide and ... passive layer inhibits copper redeposition and/or preferen-.

  7. Efficient on-chip hotspot removal combined solution of thermoelectric cooler and mini-channel heat sink

    International Nuclear Information System (INIS)

    Hao, Xiaohong; Peng, Bei; Xie, Gongnan; Chen, Yi

    2016-01-01

    Highlights: • A combined solution of thermoelectric cooler (TEC) and mini-channel heat sink to remove the hotspot of the chip has been proposed. • The TEC's mathematical model is established to assess its work performance. • A comparative study on the proposed efficient On-Chip Hotspot Removal Combined Solution. - Abstract: Hotspot will significantly degrade the reliability and performance of the electronic equipment. The efficient removal of hotspot can make the temperature distribution uniform, and ensure the reliable operation of the electronic equipment. This study proposes a combined solution of thermoelectric cooler (TEC) and mini-channel heat sink to remove the hotspot of the chip in the electronic equipment. Firstly, The TEC's mathematical model is established to assess its work performance under different boundary conditions. Then, the hotspot removal capability of the TEC is discussed for different cooling conditions, which has shown that the combined equipment has better hotspot removal capability compared with others. Finally, A TEC is employed to investigate the hotspot removal capacity of the combined solution, and the results have indicated that it can effectively remove hotspot in the diameter of 0.5 mm, the power density of 600W/cm 2 when its working current is 3A and heat transfer thermal resistance is 0 K/W.

  8. Heat treatment regularity for viscose products in plate scrapers heat exchanger

    Directory of Open Access Journals (Sweden)

    K. A. Rashkin

    2012-01-01

    Full Text Available The current work describesthe construction of scraperplate-typeheat exchangerscurrently usedin industryand thetraffic patternof the productin it. Ananalytical model is represented and it is also posed the problemofthe analyticaldetermination ofthe requiredarea of heat exchangewith the use ofdifferential equations ofheat transfer in amovingliquid media, written in cylindrical coordinates, for symmetrical temperature distribution,without taking into accountthe energy dissipation.

  9. Additive manufacturing of Co-Cr-Mo alloy: Influence of heat treatment on microstructure, tribological and electrochemical properties

    Directory of Open Access Journals (Sweden)

    Kedar Mallik Mantrala

    2015-03-01

    Full Text Available Co-Cr-Mo alloy samples, fabricated using Laser Engineered Net Shaping – a laser based additive manufacturing technology, have been subjected heat treatment to study its influence on microstructure, wear and corrosion properties. Following L9 Orthogonal array of Taguchi method, the samples were solutionized at 1200oC for 30, 45 and 60 min followed by water quenching. Ageing treatment was done at 815oC and 830oC for 2, 4 and 6 h. Heat treated samples were evaluated for their microstructure, hardness, wear resistance and corrosion resistance. The results revealed that highest hardness of 512 ± 58 Hv and wear rate of 0.90 ± 0.14 × 10-4 mm3/N.m can be achieved with appropriate post-fabrication heat treatment. ANOVA and grey relational analysis on the experimental data revealed that the samples subjected to solution treatment for 60 min, without ageing, exhibit best combination of hardness, wear and corrosion resistance.

  10. Milk protein-gum tragacanth mixed gels: effect of heat-treatment sequence.

    Science.gov (United States)

    Hatami, Masoud; Nejatian, Mohammad; Mohammadifar, Mohammad Amin; Pourmand, Hanieh

    2014-01-30

    The aim of this study was to investigate the role of the heat-treatment sequence of biopolymer mixtures as a formulation parameter on the acid-induced gelation of tri-polymeric systems composed of sodium caseinate (Na-caseinate), whey protein concentrate (WPC), and gum tragacanth (GT). This was studied by applying four sequences of heat treatment: (A) co-heating all three biopolymers; (B) heating the milk-protein dispersion and the GT dispersion separately; (C) heating the dispersion containing Na-caseinate and GT together and heating whey protein alone; and (D) co-heating whey protein with GT and heating Na-caseinate alone. According to small-deformation rheological measurements, the strength of the mixed-gel network decreased in the order: C>B>D>A samples. SEM micrographs show that the network of sample C is much more homogenous, coarse and dense than sample A, while the networks of samples B and D are of intermediate density. The heat-treatment sequence of the biopolymer mixtures as a formulation parameter thus offers an opportunity to control the microstructure and rheological properties of mixed gels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Effect of Pressure and Heat Treatments on the Compressive Strength of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Helmi Masdar

    2018-01-01

    Full Text Available This paper presents the corresponding compressive strength of RPC with variable pressure combined with heating rate, heating duration, and starting time of heating. The treatments applied were 8 MPa static pressure on fresh RPC prims and heat curing at 240 °C in an oven. The compressive strength test was conducted at 7-d and 28-d. The images of RPC morphology were captured on the surface of a fractured specimen using Scanning Electron Microscopy in Secondary Electron detector mode to describe pore filing mechanism after treatments. The results show that a heating rate at 50 °C/hr resulted in the highest compressive strength about 40 % more than those at 10 or 100 °C/hr. A heating duration of 48 hours led to the maximum compressive strength. Heat curing applied 2 days after casting resulted in the maximum compressive. Heat curing had a signicant effect on the compresssive strength due to the acceleration of both reactions (hydration and pozzolanic and the degree of transformation from tobermorite to xonotlite. It is concluded that the optimum condition of treatments is both pressure and heat curing at 2-day after casting with a rate of 50 °C/hr for 48 hours.

  12. Effects of heat treatment on evolution of microstructure of boron free and boron containing biomedical Ti-13Zr-13Nb alloys.

    Science.gov (United States)

    Majumdar, Pallab

    2012-08-01

    In the present study, the effects of heat treatment on the microstructure of Ti-13Zr-13Nb (TZN) and Ti-13Zr-13Nb-0.5B (TZNB) alloys have been investigated. Depending on the heat treatment conditions, the microstructure of the heat treated TZN alloy consisted mainly of elongated and/or equiaxed α, β or martensite. Slow cooling (furnace or air cooling) from the solution treatment temperature produced α and β phases in the microstructure. Rapid cooling (water quenching) resulted in martensite and retained β when the solution treatment temperature was above or close to β transus. However, martensite was not formed after water quenching from a solution treatment temperature which was below β transus due to partitioning effect of the alloying elements. Increasing the cooling rate from the furnace cooling to the air cooling led to finer microstructure. Aging of water quenched samples transformed the martensite, if present, into α and β, and the morphology of α phase changed from elongated to equiaxed and enhanced the growth of α. The microstructure of all the TZNB samples consisted of dispersed precipitated particles of TiB in the matrix. The majority of the boride particles showed an acicular (needle like) morphology. The other phases present in the TZNB alloy were similar to those in the similarly heat treated TZN alloy. Moreover, a growth of α phase was observed in the microstructure of TZNB alloy when compared with that of TZN alloy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Stone heat treatment in the Early Mesolithic of southwestern Germany: Interpretation and identification.

    Directory of Open Access Journals (Sweden)

    Patrick Schmidt

    Full Text Available The Early Mesolithic of southwestern Germany, the so-called Beuronian (9600-7100 BC, is a period of important transformations in the way people lived, in their subsistence and in the stone tools they produced. One of the perhaps most spectacular re-inventions of that time is heat treatment of stones prior to their manufacture into tools. Although heat treatment has been understood as one of the defining characteristics of the Beuronian of southwestern Germany, and although its existence has been known for almost 30 years now, relatively few systematic studies on it are available. In this paper, we present such a study, aiming to shed light on two questions: (1 what technique and heating parameters were used in the Beuronian and (2 how reliable are the macroscopic proxies traditionally used to identify heat treatment in this context? We investigate these questions using a non-destructive archaeometric technique for measuring past heating temperatures of heat-treated stones and a quantitative surface roughness analysis aiming to understand the relations between surface aspect and heat treatment. These methods are applied to 46 Jurassic chert artefacts from the site Helga-Abri located in the Swabian Alb region of southwestern Germany. Our results document that an opportunistic low-investment procedure was used to heat stone, probably relying on the use of the above-ground part of regular camp-fires. We also found that the traditionally used macroscopic criteria, such as colour and surface gloss, cannot be unambiguously used to identify heat treatment in assemblages made from Jurassic chert. These findings have important implications for our understanding of the Beuronian lithic chaîne opératoire in terms of the investment in time and resources necessary, and for the refinement of archaeological techniques used to identify heat treatment in the Mesolithic of the Swabian Alb.

  14. Stone heat treatment in the Early Mesolithic of southwestern Germany: Interpretation and identification.

    Science.gov (United States)

    Schmidt, Patrick; Spinelli Sanchez, Océane; Kind, Claus-Joachim

    2017-01-01

    The Early Mesolithic of southwestern Germany, the so-called Beuronian (9600-7100 BC), is a period of important transformations in the way people lived, in their subsistence and in the stone tools they produced. One of the perhaps most spectacular re-inventions of that time is heat treatment of stones prior to their manufacture into tools. Although heat treatment has been understood as one of the defining characteristics of the Beuronian of southwestern Germany, and although its existence has been known for almost 30 years now, relatively few systematic studies on it are available. In this paper, we present such a study, aiming to shed light on two questions: (1) what technique and heating parameters were used in the Beuronian and (2) how reliable are the macroscopic proxies traditionally used to identify heat treatment in this context? We investigate these questions using a non-destructive archaeometric technique for measuring past heating temperatures of heat-treated stones and a quantitative surface roughness analysis aiming to understand the relations between surface aspect and heat treatment. These methods are applied to 46 Jurassic chert artefacts from the site Helga-Abri located in the Swabian Alb region of southwestern Germany. Our results document that an opportunistic low-investment procedure was used to heat stone, probably relying on the use of the above-ground part of regular camp-fires. We also found that the traditionally used macroscopic criteria, such as colour and surface gloss, cannot be unambiguously used to identify heat treatment in assemblages made from Jurassic chert. These findings have important implications for our understanding of the Beuronian lithic chaîne opératoire in terms of the investment in time and resources necessary, and for the refinement of archaeological techniques used to identify heat treatment in the Mesolithic of the Swabian Alb.

  15. Advanced concepts and solutions for geothermal heating applied in Oradea, Romania

    Science.gov (United States)

    Antal, C.; Popa, F.; Mos, M.; Tigan, D.; Popa, B.; Muresan, V.

    2017-01-01

    Approximately 70% of the total population of Oradea benefits from centralized heating, about 55,000 apartments and 159,000 inhabitants are connected. The heating system of Oradea consists of: sources of thermal energy production (Combined heat and power (CHP) I Oradea and geothermal water heating plants); a transport network of heat; heat distribution network for heating and domestic hot water; substations, most of them equipped with worn and obsolete equipment. Recently, only a few heat exchangers were rehabilitated and electric valves were installed to control the water flow. After heat extraction, geothermal chilled waters from the Oradea area are: discharged into the sewer system of the city, paying a fee to the local water company which manages the city’s sewers; discharged into the small river Peta; or re-injected into the reservoir. In order to ensure environmental protection and a sustainable energy development in Oradea, renewable sources of energy have been promoted in recent years. In this respect, the creation of a new well for geothermal water re-injection into the reservoir limits any accidental thermal pollution of the environment, while ensuring the conservation properties of the aquifer by recharging with geothermal chilled water. The paper presents the achievements of such a project whose aim is to replace thermal energy obtained from coal with geothermal heating. The novelty consists in the fact that within the substation we will replace old heat exchangers, circulation pumps and valves with fully automated substations operating in parallel on both a geothermal system and on a primary heating system of a thermal plant.

  16. Microstructural evolution during the homogenization heat treatment of 6XXX and 7XXX aluminum alloys

    Science.gov (United States)

    Priya, Pikee

    Homogenization heat treatment of as-cast billets is an important step in the processing of aluminum extrusions. Microstructural evolution during homogenization involves elimination of the eutectic morphology by spheroidisation of the interdendritic phases, minimization of the microsegregation across the grains through diffusion, dissolution of the low-melting phases, which enhances the surface finish of the extrusions, and precipitation of nano-sized dispersoids (for Cr-, Zr-, Mn-, Sc-containing alloys), which inhibit grain boundary motion to prevent recrystallization. Post-homogenization cooling reprecipitates some of the phases, changing the flow stress required for subsequent extrusion. These precipitates, however, are deleterious for the mechanical properties of the alloy and also hamper the age-hardenability and are hence dissolved during solution heat treatment. Microstructural development during homogenization and subsequent cooling occurs both at the length scale of the Secondary Dendrite Arm Spacing (SDAS) in micrometers and dispersoids in nanometers. Numerical tools to simulate microstructural development at both the length scales have been developed and validated against experiments. These tools provide easy and convenient means to study the process. A Cellular Automaton-Finite Volume-based model for evolution of interdendritic phases is coupled with a Particle Size Distribution-based model for precipitation of dispersoids across the grain. This comprehensive model has been used to study the effect of temperature, composition, as-cast microstructure, and cooling rates during post-homogenization quenching on microstructural evolution. The numerical study has been complimented with experiments involving Scanning Electron Microscopy, Energy Dispersive Spectroscopy, X-Ray Diffraction and Differential Scanning Calorimetry and a good agreement has with numerical results has been found. The current work aims to study the microstructural evolution during

  17. Preparation, heat treatment, and mechanical properties of the uranium-5 weight percent chromium eutectic alloy

    International Nuclear Information System (INIS)

    Townsend, A.B.

    1980-10-01

    The eutectic alloy of uranium-5 wt % chromium (U-5Cr) was prepared from high-purity materials and cast into 1-in.-thick ingots. This material was given several simple heat treatments, the mechanical properties of these heat-treated samples were determined; and the microstructure was examined. Some data on the melting point and transformation temperatures were obtained

  18. Effect of Heat Treatment on the Lycopene Content of Tomato Puree ...

    African Journals Online (AJOL)

    Effect of Heat Treatment on the Lycopene Content of Tomato Puree. MI Mohammed, DI Malami. Abstract. Lycopene is a powerful antioxidant. Epidemiological studies have associated its consumption with numerous health benefits. In this study the effects of heating on lycopene were investigated by exposing tomato ...

  19. Improved corrosion resistance of aluminum brazing sheet by a post-brazing heat treatment

    NARCIS (Netherlands)

    Norouzi Afshar, F.; Tichelaar, F.D.; Glenn, A. M.; Taheri, P.; Sababi, M.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    This work studies the influence of the microstructure on the corrosion mechanism and susceptibility of as-brazed aluminum sheet. Various microstructures are obtained using postbrazing heat treatments developed to enhance the corrosion resistance of an AA4xxx/AA3xxx brazing sheet. The heat

  20. Initial Development of a Combined PCM and TABS Solution for Heat Storage and Cooling

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    to their significant thermal energy storage capabilities. The TABS has a potential for increasing the exploitation of the thermal mass of the building, which is rarely exposed for heat transfer.The main objective of this study is to optimize the location and amount of PCM in a hollow core deck in order to optimize...... heat storage capacity. A series of simulations were conducted using the COMSOL program to obtain knowledge regarding the dynamic heat storage capacity of the investigated hollow core deck element as a function of the amount and location of PCM. Furthermore, the dynamic heat storage capacity...

  1. Heat treatment of NiCrFe alloy 600 to optimize resistance to intergranular stress corrosion

    Science.gov (United States)

    Steeves, A.F.; Bibb, A.E.

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprises heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cooling the alloy body, and heating the cooled body to a temperature between 1100 to 1500/sup 0/F for about 1 to 30 hours.

  2. Probing liquation cracking and solidification through modeling of momentum, heat, and solute transport during welding of aluminum alloys

    International Nuclear Information System (INIS)

    Mishra, S.; Chakraborty, S.; DebRoy, T.

    2005-01-01

    A transport phenomena-based mathematical model is developed to understand liquation cracking in weldments during fusion welding. Equations of conservation of mass, momentum, heat, and solute transport are numerically solved considering nonequilibrium solidification and filler metal addition to determine the solid and liquid phase fractions in the solidifying region and the solute distribution in the weld pool. An effective partition coefficient that considers the local interface velocity and the undercooling is used to simulate solidification during welding. The calculations show that convection plays a dominant role in the solute transport inside the weld pool. The predicted weld-metal solute content agreed well with the independent experimental observations. The liquation cracking susceptibility in Al-Cu alloy weldments could be reliably predicted by the model based on the computed solidifying weld-metal composition and solid fraction considering nonequilibrium solidification

  3. Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel Castings

    Energy Technology Data Exchange (ETDEWEB)

    Beckermann, Christoph; Carlson, Kent

    2011-07-22

    Heat treatment and associated processing, such as quenching, are critical during high strength steel casting production. These processes must be managed closely to prevent thermal and residual stresses that may result in distortion, cracking (particularly after machining), re-work, and weld repair. The risk of casting distortion limits aggressive quenching that can be beneficial to the process and yield an improved outcome. As a result of these distortions, adjustments must be made to the casting or pattern design, or tie bars must be added. Straightening castings after heat treatments can be both time-consuming and expensive. Residual stresses may reduce a casting's overall service performance, possibly resulting in catastrophic failure. Stress relieving may help, but expends additional energy in the process. Casting software is very limited in predicting distortions during heat treatment, so corrective measures most often involve a tedious trial-and-error procedure. An extensive review of existing heat treatment residual stress and distortion modeling revealed that it is vital to predict the phase transformations and microstructure of the steel along with the thermal stress development during heat treatment. After reviewing the state-of-the-art in heat treatment residual stress and distortion modeling, an existing commercial code was selected because of its advanced capabilities in predicting phase transformations, the evolving microstructure and related properties along with thermal stress development during heat treatment. However, this software was developed for small parts created from forgings or machined stock, and not for steel castings. Therefore, its predictive capabilities for heat treatment of steel castings were investigated. Available experimental steel casting heat treatment data was determined to be of insufficient detail and breadth, and so new heat treatment experiments were designed and performed, casting and heat treating modified versions

  4. Heat Transfer treatment in computer codes for safety analysis

    International Nuclear Information System (INIS)

    Jerele, A.; Gregoric, M.

    1984-01-01

    Increased number of operating nuclear power plants has stressed importance of nuclear safety evaluation. For this reason, accordingly to regulatory commission request, safety analyses with computer codes are preformed. In this paper part of this thermohydraulic models dealing with wall-to-fluid heat transfer correlations in computer codes TRAC=PF1, RELAP4/MOD5, RELAP5/MOD1 and COBRA-IV is discussed. (author)

  5. Process Analytical Technology in Freeze-Drying: Detection of the Secondary Solute + Water Crystallization with Heat Flux Sensors.

    Science.gov (United States)

    Wang, Qiming; Shalaev, Evgenyi

    2018-04-01

    In situ and non-invasive detection of solute crystallization during freeze-drying would facilitate cycle optimization and scale-up from the laboratory to commercial manufacturing scale. The objective of the study is to evaluate heat flux sensor (HFS) as a tool for monitoring solute crystallization and other first-order phase transitions (e.g., onset of freezing). HFS is a thin-film differential thermopile, which acts as a transducer to generate an electrical signal proportional to the total heat applied to its surface. In this study, HFS is used to detect both primary (ice formation) and secondary (also known as eutectic) solute + water crystallization during cooling and heating of solutions in a freeze-dryer. Binary water-solute mixtures with typical excipients concentrations (e.g., 0.9% of NaCl and 5% mannitol) and fill volumes (1 to 3 ml/vial) are studied. Secondary crystallization is detected by the HFS during cooling in all experiments with NaCl solutions, whereas timing of mannitol crystallization depends on the cooling conditions. In particular, mannitol crystallization takes place during cooling, if the cooling rate is lower than the critical value. On the other hand, if the cooling rate exceeds the critical cooling rate, mannitol crystallization during cooling is prevented, and crystallization occurs during subsequent warming or annealing. It is also observed that, while controlled ice nucleation allows initiation of the primary freezing event in different vials simultaneously, there is a noticeable vial-to-vial difference in the timing of secondary crystallization. The HFS could be a valuable process monitoring tool for non-invasive detection of various crystallization events during freeze-drying manufacturing.

  6. Pharmaceutical Compounds in Wastewater: Wetland Treatment as a Potential Solution

    OpenAIRE

    White, John R.; Belmont, Marco A.; Metcalfe, Chris D.

    2006-01-01

    Pharmaceutical compounds are being released into the aquatic environment through wastewater discharge around the globe. While there is limited removal of these compounds within wastewater treatment plants, wetland treatment might prove to be an effective means to reduce the discharge of the compounds into the environment. Wetlands can promote removal of these pharmaceutical compounds through a number of mechanisms including photolysis, plant uptake, microbial degradation, and sorption to the ...

  7. Development of the heat treatment system for the 40 T hybrid magnet superconducting outsert.

    Science.gov (United States)

    Chen, W G; Chen, Z M; Chen, Z Y; Huang, P C; He, P; Zhu, J W

    2011-10-01

    The heat treatment of Nb(3)Sn coil with the glass fabric insulation is one of the key and critical processes for the outsert solenoids of the 40 T hybrid magnet, which could be wound with cable-in-conduit conductors using the insulation-wind-and-react technique. The manufacturing of the large vertical type vacuum/Ar atmosphere-protection heat treatment system has been completed and recently installed in the High Magnetic Filed Laboratory, Chinese Academy of Sciences. The heat treatment system composed mainly the furnace, the purging gas supply system, the control system, the gas impurities monitoring system, and so on. At present, the regulation and testing of the heat treatment system has been successfully finished, and all of technical parameters meet or exceed specifications.

  8. Effects of Mead Wort Heat Treatment on the Mead Fermentation Process and Antioxidant Activity.

    Science.gov (United States)

    Czabaj, Sławomir; Kawa-Rygielska, Joanna; Kucharska, Alicja Z; Kliks, Jarosław

    2017-05-14

    The effects of mead wort heat treatment on the mead fermentation process and antioxidant activity were tested. The experiment was conducted with the use of two different honeys (multiflorous and honeydew) collected from the Lower Silesia region (Poland). Heat treatment was performed with the use of a traditional technique (gently boiling), the more commonly used pasteurization, and without heat treatment (control). During the experiment fermentation dynamics were monitored using high performance liquid chromatography with refractive index detection (HPLC-RID). Total antioxidant capacity (TAC) and total phenolic content (TPC) were estimated for worts and meads using UV/Vis spectrophotometric analysis. The formation of 5-hydroxymethylfurfural (HMF) was monitored by HPLC analyses. Heat treatment had a great impact on the final antioxidant capacity of meads.

  9. Effect of Carbon Nanofiber Heat Treatment on Physical Properties of Polymeric Nanocomposites—Part I

    Directory of Open Access Journals (Sweden)

    Khalid Lafdi

    2007-01-01

    Full Text Available The definition of a nanocomposite material has broadened significantly to encompass a large variety of systems made of dissimilar components and mixed at the nanometer scale. The properties of nanocomposite materials also depend on the morphology, crystallinity, and interfacial characteristics of the individual constituents. In the current work, vapor-grown carbon nanofibers were subjected to varying heat-treatment temperatures. The strength of adhesion between the nanofiber and an epoxy (thermoset matrix was characterized by the flexural strength and modulus. Heat treatment to 1800C∘ demonstrated maximum improvement in mechanical properties over that of the neat resin, while heat-treatment to higher temperatures demonstrated a slight decrease in mechanical properties likely due to the elimination of potential bonding sites caused by the elimination of the truncated edges of the graphene layers. Both the electrical and thermal properties of the resulting nanocomposites increased in conjunction with the increasing heat-treatment temperature.

  10. Experimental heat treatment of silcrete implies analogical reasoning in the Middle Stone Age.

    Science.gov (United States)

    Wadley, Lyn; Prinsloo, Linda C

    2014-05-01

    Siliceous rocks that were not heated to high temperatures during their geological formation display improved knapping qualities when they are subjected to controlled heating. Experimental heat treatment of South African silcrete, using open fires of the kind used during the Middle Stone Age, shows that the process needed careful management, notwithstanding recent arguments to the contrary. Silcrete blocks fractured when heated on the surface of open fires or on coal beds, but were heated without mishap when buried in sand below a fire. Three silcrete samples, a control, a block heated underground with maximum temperature between 400 and 500 °C and a block heated in an open fire with maximum temperature between 700 and 800 °C, were analysed with X-ray powder diffraction (XRD), X-ray fluorescence (XRF), optical microscopy, and both Fourier transform infrared (FTIR) and Raman spectroscopy. The results show that the volume expansion during the thermally induced α- to β-quartz phase transformation and the volume contraction during cooling play a major role in the heat treatment of silcrete. Rapid heating or cooling through the phase transformation at 573 °C will cause fracture of the silcrete. Successful heat treatment requires controlling surface fire temperatures in order to obtain the appropriate underground temperatures to stay below the quartz inversion temperature. Heat treatment of rocks is a transformative technology that requires skilled use of fire. This process involves analogical reasoning, which is an attribute of complex cognition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effect of post weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade AA7075-T651 aluminium alloy

    Directory of Open Access Journals (Sweden)

    P. Sivaraj

    2014-03-01

    Full Text Available This paper reports the effects of post weld heat treatments, namely artificial ageing and solution treatment followed by artificial ageing, on microstructure and mechanical properties of 12 mm thick friction stir welded joints of precipitation hardenable high strength armour grade AA7075-T651 aluminium alloy. The tensile properties, such as yield strength, tensile strength, elongation and notch tensile strength, are evaluated and correlated with the microhardness and microstructural features. The scanning electron microscope is used to characterie the fracture surfaces. The solution treatment followed by ageing heat treatment cycle is found to be marginally beneficial in improving the tensile properties of friction stir welds of AA7075-T651 aluminium alloy.

  12. Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM.

    Science.gov (United States)

    Singh, Brajesh K; Srivastava, Vineet K

    2015-04-01

    The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.

  13. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    Energy Technology Data Exchange (ETDEWEB)

    Shipley, Anna [SENTECH, Inc., Bethesda, MD (United States); Hampson, Anne [ICF, International, Arlington, VA (United States); Hedman, Bruce [ICF, International, Arlington, VA (United States); Garland, Patti [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bautista, Paul [SENTECH, Inc., Bethesda, MD (United States)

    2008-12-01

    This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future—as an: environmental solution, significantly reducing CO2 emissions through greater energy efficiency; competitive business solution, increasing efficiency, reducing business costs, and creating green-collar jobs; local energy solution, deployable throughout the United States; and infrastructure modernization solution, relieving grid congestion and improving energy security.

  14. Using a Potassium Acetate Solution for Cooling High Pressure Hydrogen in a Prototype Heat Exchanger

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard; Abel, M.; Rokni, Masoud

    2011-01-01

    is to be delivered at high pressure a heat exchanger was designed and constructed. The paper presents a detailed study of construction of the heat exchanger which has been tested and compared to theory to predict and verify its performance. The method presented by Nellis and Klein for laminar flow in annulus tubes...

  15. Influence of Heat Treatment on the Corrosion Behavior of Purified Magnesium and AZ31 Alloy

    OpenAIRE

    Khalifeh, Sohrab; Burleigh, T. David

    2017-01-01

    Magnesium and its alloys are ideal for biodegradable implants due to their biocompatibility and their low-stress shielding. However, they can corrode too rapidly in the biological environment. The objective of this research was to develop heat treatments to slow the corrosion of high purified magnesium and AZ31 alloy in simulated body fluid at 37{\\deg}C. Heat treatments were performed at different temperatures and times. Hydrogen evolution, weight loss, PDP, and EIS methods were used to measu...

  16. Regularities of texture formation in alloys undergoing phase transformations during heat treatment and plastic working

    International Nuclear Information System (INIS)

    Ageev, N.V.; Babarehko, A.A.

    1983-01-01

    Peculiarities of texture formation in metals undergoing phase transformations in the temperature range of heat treatment and hot working are investigated theoretically and experimentally. A low-temperature phase after hot working is shown to inherite a high-temperature phase texture due to definite orientation conformity during phase transformation. Strengthened heat and thermomechanical treatments, as a rule, do not destroy material texture but change it

  17. Colony formation by sublethally heat-injured Zygosaccharomyces rouxii as affected by solutes in the recovery medium and procedure for sterilizing medium.

    Science.gov (United States)

    Golden, D A; Beuchat, L R

    1990-01-01

    Recovery and colony formation by healthy and sublethally heat-injured cells of Zygosaccharomyces rouxii as influenced by the procedure for sterilizing recovery media (YM agar [YMA], wort agar, cornmeal agar, and oatmeal agar) were investigated. Media were supplemented with various concentrations of glucose, sucrose, glycerol, or sorbitol and sterilized by autoclaving (110 degrees C, 15 min) and by repeated treatment with steam (100 degrees C). An increase in sensitivity was observed when heat-injured cells were plated on glucose-supplemented YMA at an aw of 0.880 compared with aws of 0.933 and 0.998. Colonies which developed from unheated and heated cells on YMA at aws of 0.998 and 0.933 generally exceeded 0.5 mm in diameter within 3.5 to 4 days of incubation at 25 degrees C, whereas colonies formed on YMA at an aw of 0.880 typically did not exceed 0.5 mm in diameter until after 5.5 to 6.5 days of incubation. The number of colonies exceeding 0.5 mm in diameter which were formed by heat-injured cells on YMA at an aw of 0.880 was 2 to 3 logs less than the total number of colonies detected, i.e., on YMA at an aw of 0.933 and using no limits of exclusion based on colony diameter. A substantial portion of cells which survived heat treatment were sublethally injured as evidenced by increased sensitivity to a suboptimum aw (0.880). In no instance was recovery of Z. rouxii significantly affected by medium sterilization procedure when glucose or sorbitol was used as the aw-suppressing solute.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2403251

  18. Colony formation by sublethally heat-injured Zygosaccharomyces rouxii as affected by solutes in the recovery medium and procedure for sterilizing medium.

    Science.gov (United States)

    Golden, D A; Beuchat, L R

    1990-08-01

    Recovery and colony formation by healthy and sublethally heat-injured cells of Zygosaccharomyces rouxii as influenced by the procedure for sterilizing recovery media (YM agar [YMA], wort agar, cornmeal agar, and oatmeal agar) were investigated. Media were supplemented with various concentrations of glucose, sucrose, glycerol, or sorbitol and sterilized by autoclaving (110 degrees C, 15 min) and by repeated treatment with steam (100 degrees C). An increase in sensitivity was observed when heat-injured cells were plated on glucose-supplemented YMA at an aw of 0.880 compared with aws of 0.933 and 0.998. Colonies which developed from unheated and heated cells on YMA at aws of 0.998 and 0.933 generally exceeded 0.5 mm in diameter within 3.5 to 4 days of incubation at 25 degrees C, whereas colonies formed on YMA at an aw of 0.880 typically did not exceed 0.5 mm in diameter until after 5.5 to 6.5 days of incubation. The number of colonies exceeding 0.5 mm in diameter which were formed by heat-injured cells on YMA at an aw of 0.880 was 2 to 3 logs less than the total number of colonies detected, i.e., on YMA at an aw of 0.933 and using no limits of exclusion based on colony diameter. A substantial portion of cells which survived heat treatment were sublethally injured as evidenced by increased sensitivity to a suboptimum aw (0.880). In no instance was recovery of Z. rouxii significantly affected by medium sterilization procedure when glucose or sorbitol was used as the aw-suppressing solute.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Synergistic effects of heat and irradiation treatment (thermoradiation) in the sterilization of medical products

    International Nuclear Information System (INIS)

    Trauth, C.A. Jr.; Sivinski, H.D.

    1975-01-01

    This paper describes a generic class of sterilization processes is which properly chosen combinations of radiation and heat synergistically inactivate many bacteria and viruses. Treatments with optimal combinations are shown to offer the possibility of using lower total doses and lower temperatures than would be required separately for sterilization. This results from easier elimination of heat-labile, radioresistant organisms and radiolabile, heat-resistant organisms, and from synergistic inactivation of organisms which are both radioresistant and heat resistant. These processes depend upon temperature, dose-rate, and time in fairly complex ways; therefore, an analytical framework in which they can be defined is also presented. (author)

  20. A Dilute-Limit Heat of Solution of 3d Transition Metals in Iron Studied with 57Fe Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Chojcan, Jan

    2004-01-01

    The room-temperature 57 Fe Moessbauer spectra for binary iron-based solid solutions Fe 1-x D x with D=V, Cr, Mn and Co, were analysed in terms of binding energy E b between two D atoms in the Fe-D system. The extrapolated values of E b for x=0 were used for computation of the dilute-limit heat of solution of D metals in iron. The results were compared with those derived from calorimetric data concerning the heat of formation of the systems mentioned as well as with those resulting from the Miedema's model of alloys. The comparison shows that our Moessbauer spectroscopy findings are in a qualitative agreement with the available calorimetric data and they are at variance with corresponding Miedema's values for Fe-Mn and Fe-Co systems.

  1. Effects of irrigation solutions and Calcium hydroxide dressing on root canal treatments of periapical lesions

    OpenAIRE

    Nirmala, Vita

    2006-01-01

    The preparation of root canal in endodontic treatment plays an important role in treating non vital teeth with periapical lesion. Some factors influence the success of root canal treatment in short and long terms are the irrigation of root canal using antiseptic solution and the use of root canal medicament. The aim of this literature study is to determined the effect of irrigation solution and Calcium hydroxide dressing in root canal treatment of periapical lesions. The use of root canal med...

  2. EFFECTS OF HEAT TREATMENT AND CALCIUM ON POSTHARVEST STORAGE OF ATEMOYA FRUITS*

    Directory of Open Access Journals (Sweden)

    LIZ MARIA ABI RACHED TORRES

    2010-03-01

    Full Text Available

    The aim of the present study was to investigate the effect of postharvest warm dipping with calcium chloride (CaCl2 on atemoya fruit (Annona cherimola Mill x Annona squamosa L. storage. Fruits were immersed in 6% CaCl2 solution at 20 and 40°C for 20 min followed by storage at room temperature. The effectiveness of the treatment was assessed in terms of its impact on peel and fl esh appearance, weight loss, total soluble solids (TSS, total titratable acidity (TTA, pH, ascorbic acid content, total phenolics, and enzyme activities of polyphenoloxidase (PPO and peroxidase (POD. Treatment at 40°C preserved eatable conditions up to 6 days, although calcium affected the appearance of the peel as soon as 4 days. Flesh browning was detected only on the 8th day in untreated fruits, after an increase in PPO and POD activities and total phenolics, and a decrease in ascorbic acid content. The weight loss was continuous throughout the storage period, with no signifi cant difference between treatments. TTA and TSS contents increased and pH decreased during the experiment. Results suggest that CaCl2 dipping had a positive effect on fl esh browning, which was reduced, while heat treatment showed a synergic effect, which could be related broadly with a fall in PPO activity. The variations in ascorbic acid content during storage suggest that the warm dipping combined with CaCl2, contributed to the antioxidant capacity of the fruit.

  3. Two-dimensional numerical modeling and solution of convection heat transfer in turbulent He II

    Science.gov (United States)

    Zhang, Burt X.; Karr, Gerald R.

    1991-01-01

    Numerical schemes are employed to investigate heat transfer in the turbulent flow of He II. FEM is used to solve a set of equations governing the heat transfer and hydrodynamics of He II in the turbulent regime. Numerical results are compared with available experimental data and interpreted in terms of conventional heat transfer parameters such as the Prandtl number, the Peclet number, and the Nusselt number. Within the prescribed Reynolds number domain, the Gorter-Mellink thermal counterflow mechanism becomes less significant, and He II acts like an ordinary fluid. The convection heat transfer characteristics of He II in the highly turbulent regime can be successfully described by using the conventional turbulence and heat transfer theories.

  4. Analysis and research on promising solutions of low temperature district heating without risk of legionella

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Fog, Jette M.

    2014-01-01

    Most regulations of domestic hot water supply temperature is around 55-60 oC, which potentially requires higher district heating temperature. However, high supply temperature of district heating causes many problems, such as the high heating loss, and obstacles for applying renewable energy...... resources. The most crucial restriction for applying low temperature district heating is the worry about the breakout of legionella, which exists preferably in low temperature hot water systems. Several novel techniques such as electric tracing and flat station were investigated for such dilemma. The pros...... and cons were compared in this paper. Both the energy and economy saving ratios were analysed comparing with high temperature supply scenario. Furthermore, the viability of the applications in different types of buildings for low temperature district heating (LTDH) was also discussed by using dynamic...

  5. Effect of T6 Heat Treatment Parameters on Technological Quality of the AlSi7Mg Alloy

    Directory of Open Access Journals (Sweden)

    Pezda J.

    2016-12-01

    Full Text Available Very well-known advantages of aluminum alloys, such as low mass, good mechanical properties, corrosion resistance, machining-ability, high recycling potential and low cost are considered as a driving force for their development, i.e. implementation in new applications as early as in stage of structural design, as well as in development of new technological solutions. Mechanical and technological properties of the castings made from the 3xx.x group of alloys depend mainly on correctly performed processes of melting and casting, design of a mould and cast element, and a possible heat treatment.

  6. Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: Binary solutions of lithium nitrate with methanol

    International Nuclear Information System (INIS)

    Safarov, Javid T.

    2005-01-01

    Vapor pressure p of LiNO 3 + CH 3 OH solutions at T = (298.15 to 323.15) K was reported, osmotic φ and activity coefficients γ; and activity of solvent a s have been evaluated. The experiments were carried out in molality range m = (0.18032 to 5.2369) mol . kg -1 . The Antoine equation was used for the empiric description of experimental vapor pressure results. The Pitzer-Mayorga model with inclusion of Archer's ionic strength dependence of the third virial coefficient was used for the description of calculated osmotic coefficients. The parameters of Archer extended Pitzer model were used for evaluation of activity coefficients

  7. Treatment Solutions for Rainwater Contaminated with Various Pollutants

    Directory of Open Access Journals (Sweden)

    Adriana Tokar

    2015-07-01

    Full Text Available This study presents aspects on the environmental pollution with contaminants difficult to manage from sources such as car parking, roads and roofs in crowded areas that have deficient wastewater harvesting urban networks. The contaminants washed by the rainwater that are not collected and treated can reach directly into the natural environment. Thus, rainwater which falls on rough surfaces, especially in car parking and roads without drainage channels carries out various pollutants directly into the soil and water. In order to control environmental pollution there are presented solutions for contaminated rainwater depollution.

  8. Postharvest behaviour of two Sardinian apple varieties following immersion in heated sodium bicarbonate solution.

    Science.gov (United States)

    Venditti, T; Molinu, M G; Dore, A; Agabbio, M; D'Hallewin, G

    2010-01-01

    'Miali' and 'Caddina' are apple varieties of Sardinian germplasm, mainly produced under sustainable conditions. Fruit is rarely subjected to cold storage and postharvest losses are generally high. In order to prolong the marketing period and contain postharvest decay of these local varieties, we investigated on their storage behaviour and on the efficacy of combined alternative postharvest treatments. Pre-climateric fruit was harvested and immersed for 0 (control), 15, 30, 45 or 60 sec. in water at 20, 50, 55 or 60 degrees C with or without 2% (W/V) NaHCO3 (SBC). Then, fruit was stored for 4 months at 5 degrees C and 90% RH followed by a 6 day simulated marketing period (SMP) at 10 degrees C and 75% RH. Decay was monitored at the end of storage and after the SMP, while appearance and physiological disorders were evaluated after SMP. During storage 56 and 62% of the untreated 'Caddina' and 'Miali' apples rotted, respectively. During the SMP, an additional 3% of 'Caddina' and 5% of 'Miali' was lost. Among the treatments the best decay control, for both varieties, was attained when fruit was immersed in the SBC solution at 55 degrees C for 60 sec. Compared to control, decay was reduced by 91 and 95% for 'Caddina' and 'Miali', respectively. This combination induced some rind damage, mainly on 'Caddina' fruit. Superficial scald was evident on 'Caddina' and scored as medium while, cold storage induced a significant deposition of epicuticular wax in 'Miali' fruit, affecting significantly fruit appearance. A significant reduction of decay was also achieved when fruit was immersed at 60 degrees C for 30 or 45 sec., attaining for 'Caddina' a reduction of 82 and 88% of decay, respectively. Other combinations were lesser effective or produced rind damages and most decay was caused by Penicillium expansum.

  9. The effects of heated and room-temperature abdominal lavage solutions on core body temperature in dogs undergoing celiotomy.

    Science.gov (United States)

    Nawrocki, Michael A; McLaughlin, Ron; Hendrix, P K

    2005-01-01

    To document the magnitude of temperature elevation obtained with heated lavage solutions during abdominal lavage, 18 dogs were lavaged with sterile isotonic saline intraoperatively (i.e., during a celiotomy). In nine dogs, room-temperature saline was used. In the remaining nine dogs, saline heated to 43+/-2 degrees C (110+/-4 degrees F) was used. Esophageal, rectal, and tympanic temperatures were recorded every 60 seconds for 15 minutes after initiation of the lavage. Temperature levels decreased in dogs lavaged with room-temperature saline. Temperature levels increased significantly in dogs lavaged with heated saline after 2 to 6 minutes of lavage, and temperatures continued to increase throughout the 15-minute lavage period.

  10. Applications of alternating direction methods to the solution of the heat conduction equation, with source, and in transient state

    International Nuclear Information System (INIS)

    Oliveira Barroso, A.C. de; Alvim, A.C.M.; Gebrin, A.N.; Santos, R.S. dos

    1981-01-01

    Various types and variants of alternating direction methods. (ADM), were applied to the solution of the time-dependent heat conduction equation, with source, in regions with axial simmetry. Among the basic ADM's, the alternating direction explicit was the one which performed better. An exponential transformation coupled to the ADE seems to be the variant with greater potential, especially if used with a variable time step scheme. (Author) [pt

  11. Effect of post weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade AA7075-T651 aluminium alloy

    OpenAIRE

    Sivaraj, P.; Kanagarajan, D.; Balasubramanian, V.

    2014-01-01

    This paper reports the effects of post weld heat treatments, namely artificial ageing and solution treatment followed by artificial ageing, on microstructure and mechanical properties of 12 mm thick friction stir welded joints of precipitation hardenable high strength armour grade AA7075-T651 aluminium alloy. The tensile properties, such as yield strength, tensile strength, elongation and notch tensile strength, are evaluated and correlated with the microhardness and microstructural features....

  12. Temperature Field Prediction for Determining the Residual Stresses Under Heat Treatment of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    A. V. Livshits

    2014-01-01

    Full Text Available The article is devoted to non-stationary temperature field blanks from aluminum alloys during heat treatment. It consists of the introduction and two smaller paragraphs. In the introduction the author concerns the influence of residual stresses arising in the manufacturing process of details, on the strength of the whole aircraft construction and, consequently, on their technical and economic parameters, such as weight, reliability, efficiency, and cost. He also notes that the residual stresses appeared during the production of parts change their location, size and direction under the influence of the elastic deformations that occur during the exploitation of aircraft. Redistributed residual stresses may have a chaotic distribution that may cause overlap of these stresses on the stresses caused by the impact of workload of constructions and destruction or damage of aircraft components.The first paragraph is devoted to the existing methods and techniques for determining the residual stresses. The presented methods and techniques are analyzed to show the advantages and disadvantages of each of them. The conclusion is drawn that the method to determine the residual stresses is necessary, its cost is less than those of existing ones, and an error does not exceed 10%.In the second section, the author divides the problem of determining the residual stresses into two parts, and describes the solution methods of the first one. The first problem is to define the temperature field of the work piece. The author uses a Fourier equation with the definition of initial and boundary conditions to describe a mathematical model of the heat cycle of work piece cooling. He draws special attention here to the fact that it is complicated to determine the heat transfer coefficient, which characterizes the process of cooling the work piece during hardening because of its dependence on a number of factors, such as changing temperature-dependent material properties of

  13. Pharmaceutical Compounds in Wastewater: Wetland Treatment as a Potential Solution

    Directory of Open Access Journals (Sweden)

    John R. White

    2006-01-01

    Full Text Available Pharmaceutical compounds are being released into the aquatic environment through wastewater discharge around the globe. While there is limited removal of these compounds within wastewater treatment plants, wetland treatment might prove to be an effective means to reduce the discharge of the compounds into the environment. Wetlands can promote removal of these pharmaceutical compounds through a number of mechanisms including photolysis, plant uptake, microbial degradation, and sorption to the soil. We review relevant laboratory research on these various mechanisms and provide data on the few studies that have examined wetland removal. There is a need to document the degree to which various pharmaceutical compounds are removed in full-scale treatment wetlands, as there is a paucity of data on overall pharmaceutical removal rates.

  14. Influence of the collector and heat treatment in the structure of BiFeO_3 electrospun nanofibers

    International Nuclear Information System (INIS)

    Melo, G.H.F.; Santos, J.P.F.; Bretas, R.E.S.

    2016-01-01

    The objective of this work was to analyze the influence of the collector type and heat treatment on the morphology and crystalline phases of BiFeO_3 electrospun nanofibers. A solution containing (Fe(NO_3)_3_._9H_2O and Bi(NO_3)_3_._5H_2O) as precursors together with a polyvinylpyrrolidone solution was electrospun using 2.8KV/cm as electrical field. The collector type was however, changed (aluminum and glass). After the electrospinning, the as-spun nanofibers were submitted to two different heat treatments: one at 550°C and the other at 750°C, both during 2h. The collector type changed the morphology of the nanofibers; while in the glass collector, a non-woven mat of flat and rough nanofibers was obtained, in the aluminum collector, mats of circular and smooth nanofibers were obtained. The thermal treatment also changed the morphology and amount of crystalline phases; at 550°C, the nanofiber morphology was maintained and only one crystalline phase (BiFeO_3) was detected. On the other hand, at 750°C, flakes were obtained of two crystalline phases (BiFeO_3 and Bi_2Fe_4O_9). (author)

  15. Aging of iron (hydr)oxides by heat treatment and effects on heavy metal binding

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Starckpoole, M. M.; Frenkel, A. I.

    2000-01-01

    their transformations caused by heat treatment prior to disposal or aging at a proper disposal site. The transformations were investigated by XRD, SEM, XANES, EXAFS, surface area measurements, pH static leaching tests, and extractions with oxalate and weak hydrochloric acid. It was found that at 600 and 900 °C the iron...... oxides were transformed to hematite, which had a greater thermodynamic stability but less surface area than the initial products. Heat treatment also caused some volatilization of heavy metals (most notably, Hg). Leaching with water at pH 9 (L/S 10, 24 h) and weak acid extraction showed that heat...

  16. Heat Treatment of Cr- and Cr-V ledeburitic tool steels

    Directory of Open Access Journals (Sweden)

    Peter Jurči

    2014-11-01

    Full Text Available Cr- and Cr-V ledeburitic cold work tool steels belong to the most important tool materials for large series manufacturing. To enable high production stability, the tools must be heat treated before use. This overview paper brings a comprehensive study on the heat treatment of these materials, starting from the soft annealing and finishing with the tempering. Also, it describes the impact of any step of the heat treatment on the most important structural and mechanical characteristics, like the hardness, the toughness and the wear resistance. The widely used AIS D2- steel (conventionally manufactured and Vanadis 6 (PM are used as examples in most cases.

  17. Study of tokamaks carbon deposits after heat treatment

    International Nuclear Information System (INIS)

    Richou, M.; Martin, C.; Roubin, P.; Delhaes, P.; Couzi, M.; Brosset, C.; Pegourie, B.

    2006-01-01

    One of the most important problem of tokamak is the interaction plasma-wall. The wall component is the graphite. Meanwhile it is submitted to erosion phenomena, deposition and co-deposition with the hydrogen. This carbon deposits have been studied and show an oval shape. In order to obtain more information on the structure and the growth of these deposits, the authors heated them till 2500 C. Raman spectroscopy, transmission microscopy, magnetic and density measurements have been realized and compared for two types of samples: from Tore Supra and from Textor. (A.L.B.)

  18. Effect of alkali and heat treatments for bioactivity of TiO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seo young, E-mail: mast6269@nate.com [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Kim, Yu kyoung, E-mail: yk0830@naver.com [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Park, Il song, E-mail: ilsong@jbnu.ac.kr [Division of Advanced Materials Engineering, Research Center for Advanced Materials Development and Institute of Biodegradable Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Jin, Guang chun, E-mail: jingc88@126.com [Oral Medical College, Beihua University, Jilin City 132013 (China); Bae, Tae sung, E-mail: bts@jbnu.ac.kr [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Lee, Min ho, E-mail: mh@jbnu.ac.kr [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of)

    2014-12-01

    Highlights: • TiO{sub 2} nanotubes formed via anodization were treated by alkali and heat. • The surface roughness was increased after alkali treatment (p < 0.05). • After alkali and heat treatment, the wettability was better than before treatment. • Alkali treated TiO{sub 2} nanotubes were shown higher HAp formation in SBF. • Heat treatment affected on the attachment of cells for alkali treated nanotubes. - Abstract: In this study, for improving the bioactivity of titanium used as an implant material, alkali and heat treatments were carried out after formation of the nanotubes via anodization. Nanotubes with uniform length, diameter, and thickness were formed by anodization. The alkali and heat-treated TiO{sub 2} nanotubes were covered with the complex network structure, and the Na compound was generated on the surface of the specimens. In addition, after 5 and 10 days of immersion in the SBF, the crystallized OCP and HAp phase was significantly increased on the surface of the alkali-treated TiO{sub 2} nanotubes (PNA) and alkali and heat-treated TiO{sub 2} nanotubes (PNAH) groups. Cell proliferation was decreased due to the formation of amorphous sodium titanate (Na{sub 2}TiO{sub 3}) layer on the surface of the PNA group. However, anatase and crystalline sodium titanate were formed on the surface of the PNAH group after heat treatment at 550 °C, and cell proliferation was improved. Thus, PNA group had higher HAp forming ability in the simulated body fluid. Additional heat treatment affected on enhancement of the bioactivity and the attachment of osteoblasts for PNA group.

  19. Heat treatment of large-sized welded rotors of steam turbines for atomic power stations

    Energy Technology Data Exchange (ETDEWEB)

    Kutasov, R F; Mukhina, M P; Tustanovskii, A S

    1977-01-01

    The heat treatment of a welded rotor of grade 25Kh2NMFA steel for steam turbines of nuclear power plants was considered. A following heat treatment schedule was suggested: charging the rotor in to a furnace at 100-150 deg C, heating to 200-250 deg C and holding for 12 hrs; slow heating (10 deg C/h) to 400-450 deg C and holding for 12 hrs; slow heating to 630-640 deg C and holding for 50 hrs, cooling at a rate of 5 deg C/h down to 100 deg C, holding for 20 hrs and cooling with the furnace open. The proposed heat treatment schedule of a duration of 356 hrs ensures a temperature gradient throughout the cross section and the length of the rotor of not more than +-5 deg C, least deviations of geometric dimensions and makes possible machining finish to within 0-0.02 mm. Described are the particularities of the design of a roll-out hearth electric chamber furnace, measuring 13000x5500x5000 mm and built for the purpose of carrying out said heat treatment. The power rating of the furnace is 2850 kW.

  20. A numerical solution to an inverse unsteady-state heat transfer problem involving the Trefftz functions

    Directory of Open Access Journals (Sweden)

    Maciejewska Beata

    2017-01-01

    Full Text Available This paper shows the results concerning flow boiling heat transfer in an asymmetrically heated vertical minichannel. The heated element for FC-72 Fluorinert flowing in that minichannel was a thin foil. The foil surface temperature was monitored continuously at 18 points by K-type thermocouples from the outer foil surface. Fluid temperature and pressure in the minichannel inlet and outlet, current supplied to the foil and voltage drop were also monitored. Measurements were carried out at 1 s intervals. The objective was to determine the heat transfer coefficient on the heated foil–fluid contact surface in the minichannel. It was obtained from the Robin boundary condition. The foil temperature was the result of solving the nonstationary two-dimensional inverse boundary problem in the heated foil. Using the FEM combined with Trefftz functions as basis functions solved the problem. The unknown temperature values at nodes were calculated by minimising the adequate functional. The values of local heat transfer coefficients were consistent with the results obtained by the authors in their previous studies when steady-state conditions were analysed. This time, however, these values were analysed as time dependent, which facilitated observation of coefficient changes that were impossible to observe under the steady-state conditions.

  1. Effect of Heat Treatment on Microstructure and Mechanical Properties of Inconel 625 Alloy Fabricated by Pulsed Plasma Arc Deposition

    Science.gov (United States)

    Xu, Fujia; Lv, Yaohui; Liu, Yuxin; Xu, Binshi; He, Peng

    Pulsed plasma arc deposition (PPAD) was successfully used to fabricate the Ni-based superalloy Inconel 625 samples. The effects of three heat treatment technologies on microstructure and mechanical properties of the as-deposited material were investigated. It was found that the as-deposited structure exhibited homogenous cellular dendrite structure, which grew epitaxially along the deposition direction. Moreover, some intermetallic phases including Laves phase and MC carbides were precipitated in the interdendritic region as a result of Nb segregation. Compared with the as-deposited microstructure, the direct aged (DA) microstructure changed little except the precipitation of hardening phases γ' and γ" (Ni3Nb), which enhanced the hardness and tensile strength. But the plastic property was inferior due to the existence of brittle Laves phase. After solution and aging heat treatment (STA), a large amount of Laves particles in the interdendritic regions were dissolved, resulting in the reduction of Nb segregation and the precipitation of needle-like δ (Ni3Nb) in the interdendritic regions and grain boundaries. The hardness and tensile strength were improved without sacrificing the ductility. By homogenization and STA heat treatment (HSTA), Laves particles were dissolved into the matrix completely and resulted in recrystallized large grains with bands of annealing twins. The primary MC particles and remaining phase still appeared in the matrix and grain boundaries. Compared with the as-deposited sample, the mechanical properties decreased severely as a result of the grain growth coarsening. The failure modes of all the tensile specimens were analyzed with fractography.

  2. Herbal solution to the treatment of tuberculosis infection in Kaduna ...

    African Journals Online (AJOL)

    This paper examined the use of medicinal plants in the treatment of Tuberculosis in Kaduna south local government area in Kaduna state, Nigeria. Eighty randomly selected respondents comprising of 80 structure questionnaire were administered to traditional healer, herbs trader, farmers and civil servants in the Local ...

  3. Inverse planning and class solutions for brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Trnkova, P.

    2010-01-01

    Brachytherapy or interventional radiooncology is a method of radiation therapy. It is a method, where a small encapsulated radioactive source is placed near to / in the tumour and therefore delivers high doses directly to the target volume. Organs at risk (OARs) are spared due to the inverse square dose fall-off. In the past years there was a slight stagnation in the development of techniques for brachytherapy treatment. While external beam radiotherapy became more and more sophisticated, in brachytherapy traditional methods have been still used. Recently, 3D imaging was considered also as the modality for brachytherapy and more precise brachytherapy could expand. Nowadays, an image guided brachytherapy is state-of-art in many centres. Integration of imaging methods lead to the dose distribution individually tailored for each patient. Treatment plan optimization is mostly performed manually as an adaptation of a standard loading pattern. Recently, inverse planning approaches have been introduced into brachytherapy. The aim of this doctoral thesis was to analyze inverse planning and to develop concepts how to integrate inverse planning into cervical cancer brachytherapy. First part of the thesis analyzes the Hybrid Inverse treatment Planning and Optimization (HIPO) algorithm and proposes a workflow how to safely work with this algorithm. The problem of inverse planning generally is that only the dose and volume parameters are taken into account and spatial dose distribution is neglected. This fact can lead to unwanted high dose regions in a normal tissue. A unique implementation of HIPO into the treatment planning system using additional features enabled to create treatment plans similar to the plans resulting from manual optimization and to shape the high dose regions inside the CTV. In the second part the HIPO algorithm is compared to the Inverse Planning Simulated Annealing (IPSA) algorithm. IPSA is implemented into the commercial treatment planning system. It

  4. Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: Binary solutions of lithium nitrate with methanol

    Energy Technology Data Exchange (ETDEWEB)

    Safarov, Javid T. [Heat and Refrigeration Techniques, Azerbaijan Technical University, Huseyn Javid Avn. 25, AZ1073 Baku (Azerbaijan)]. E-mail: javids@azdata.net

    2005-12-15

    Vapor pressure p of LiNO{sub 3} + CH{sub 3}OH solutions at T = (298.15 to 323.15) K was reported, osmotic {phi} and activity coefficients {gamma}; and activity of solvent a {sub s} have been evaluated. The experiments were carried out in molality range m = (0.18032 to 5.2369) mol . kg{sup -1}. The Antoine equation was used for the empiric description of experimental vapor pressure results. The Pitzer-Mayorga model with inclusion of Archer's ionic strength dependence of the third virial coefficient was used for the description of calculated osmotic coefficients. The parameters of Archer extended Pitzer model were used for evaluation of activity coefficients.

  5. Corrosion performance of 7075 alloy under laser heat treatment

    Science.gov (United States)

    Liu, Tong; Su, Ruiming; Qu, Yingdong; Li, Rongde

    2018-05-01

    Microstructure, exfoliation corrosion (EXCO), intergranular corrosion (IGC) and potentidynamic polarization test of the 7075 aluminum alloy after retrogression and re-aging (RRA) treatment, and laser retrogression and re-aging (LRRA), respectively, were studied by using scanning electron microscope, and transmission electron microscope (TEM). The results show that after pre-aging, laser treatment (650 W, 2 mm s‑1) and re-aging a lot of matrix precipitates of alloy were precipitated again. The semi-continuous grain boundary precipitates and the wider precipitate-free zones (PFZ) improve the corrosion resistance of the alloy. The corrosion properties of the alloy after LRRA (650 W, 2 mm s‑1) treatment are better than that after RRA treatment.

  6. Effects of heat treatment temperature on morphology and properties of opal crystal

    International Nuclear Information System (INIS)

    Duan Tao; China Academy of Engineering Physics, Mianyang; Peng Tongjiang; Chen Jiming; Tang Yongjian

    2008-01-01

    The monodispersed SiO 2 microspheres were synthesized by reactant mixed equally. The colloid crystal templates were assemblied by vertical sedimentation method in ethanol at certain temperatures, and the effects of the heat treatment temperature on the morphology and the properties of opal colloid crystals were investigated. SEM, TCr-DSC results indicate SiO 2 colloid templates should be heat treated at 700-800 degree C, enhancing the conglutination and mechanistic intensity of opal templates. UV-Vis analysis result indicates that the heat treatment process can remove the photonic band gap location of the opal colloid crystals, and with the heat treatment temperature increasing gradually, blue shift occurs and the gap narrows. (authors)

  7. UV-Heat Treatments for the Control of Foodborne Microbial Pathogens in Chicken Broth

    Directory of Open Access Journals (Sweden)

    M. Gouma

    2015-01-01

    Full Text Available This investigation established the process criteria for using UV-C light and mild heat (UV-H treatment to inactivate 5-Log10 cycles (performance criterion of common foodborne pathogen populations, Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus, when inoculated in chicken broth. To define the target microorganism and the proper UV-H treatment conditions (including UV dose, treatment time, and temperature that would achieve the stated performance criterion, mathematical equations based on Geeraerd’s model were developed for each microorganism. For the sake of comparison, inactivation equations for heat treatments were also performed on the same chicken broth and for the same microorganisms. L. monocytogenes was the most UV-H resistant microorganism at all temperatures, requiring a UV dose between 6.10 J/mL (5.6 min and 2.26 J/mL (2.09 min to achieve 5-Log10 reductions. In comparison with UV treatments at room temperatures, the combination of UV and mild heat allowed both the UV dose and treatment time to be reduced by 30% and 63% at 55°C and 60°C, respectively. Compared to heat treatments, the UV-H process reduced the heating time for 5-Log10 reductions of all the investigated microorganisms in chicken broth from 20-fold to 2-fold when the operating temperature varied from 53 to 60°C.

  8. Effect of heat treatment operations on the Rm tensile strength of silumins

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2010-10-01

    Full Text Available Owing to good technological properties, low weight and good corrosion resistance, aluminum-silicon alloys are widely used as a material for cast machinery components. State of macro- and microstructure of a castings manufactured from Al-Si alloys, which is determined by a shape and distribution of hardening phases, segregation of alloying constituents and impurities, as well as distribution of porosity, create conditions to obtainment of proper mechanical properties. These properties can be improved through modification of the alloy and performed heat treatment operations. The paper presents effect of modification and heat treatment process on the Rm tensile strength of a selected silumins (EN AB-AlSi9Cu3(Fe, EN AB-AlSi12CuNiMg, EN AB-AlSi17Cu1Ni1Mg. Investigated alloys were put to treatments of refining and modification, and next to heat treatment. Temperature range of the heat treatment operations was determined on base of curves from the ATD method. Obtained results illustrate registered curves of melting and solidification from the ATD method and strength tests. On base of performed initial tests one determined parameters of the heat treatment process (temperature and duration of solutionig and ageing treatments enabling obtainment of improved Rm tensile strength of the investigated alloys.

  9. Effect of heat treatment on friction and wear behavior of al-6061 composite reinforced with 10% submicron Al2O3 particles

    International Nuclear Information System (INIS)

    AlQutub, Amro M

    2009-01-01

    The present research aims at investigating experimentally the effect of heat treatment on the hardness, wear behavior, and friction properties of 6061 Al composite reinforced with sub-micron Al2O3 (10% vol.) produced by powder metallurgy. Heat treatment of the as-received composite starts by the solution treatment at a temperature of 550 degree C for a period of two hours followed by quenching in chilled water and then age hardening at 175 degree C for different periods. It is illustrated that heat treatment has relatively small effect on the hardness of the composite. This can be attributed to the large interface areas between the matrix and the sub-micron alumina in the composite, which reduces the whole concentration of vacancies in the matrix. The result is reduced efficiency of age hardening. For this reason, wear and friction tests were limited to the heat treated composite with four hours aging only. A pin-on-disc tribometer was used to conduct wear and friction tests against AISI 4140 at room temperature for both as-received composite and heat treated composite (with four hours of aging) for comparison. Wear tests indicate that heat treatment has the advantage of increasing transition load to severe wear by 30% compared to as-received composite. On the other hand, at high loads heat treatment results in larger delaminated flakes on the worn surface, indicating reduced fracture toughness. This, in turn, resulted in higher wear rates compared to the as-received composite. Dry friction coefficient is practically unaffected by the heat treatment. (author)

  10. Impact of Heat-Shock Treatment on Yellowing of Pak Choy Leaves

    Institute of Scientific and Technical Information of China (English)

    WANG Xiang-yang; SHEN Lian-qing; YUAN Hai-na

    2004-01-01

    The physiological mechanism of maintaining the green colour of pak choy leaves (Brassica rapa var chinensis) with heat-shock treatment was studied. Chlorophyll in the outer leaves of pak choy degraded rapidly during storage at ambient temperature (20 ± 2℃), a slight yellow appeared. Heat-shock treatment (46- 50℃) had a mild effect on maintaining the green colour of outer leaves. Normal chlorophyll degradation was associated with a binding of chlorophyll with chlorophyll-binding-protein preceding chlorophyll breakdown.Heat-shock treatment was found to reduce the binding-capacity between chlorophyllbinding-protein and chlorophyll. In the chlorophyll degradation pathway, pheide dioxygenase was synthesized during leaf senescence which was considered to be a key enzyme in chlorophyll degradation. Activity of this enzyme was reduced following heat-shock treatment, which might explain the observed reduction in chlorophyll breakdown. Two groups of heat-shock proteins were detected in treated leaves, the first group containing proteins from 54KDa to 74 Kda, and the second group contained proteins from 15 KDa to 29KDa. Heat-shock treatment was also found to retard the decline of glucose and fructose (the main energy substrates) of outer leaves.

  11. A previously undescribed organic residue sheds light on heat treatment in the Middle Stone Age.

    Science.gov (United States)

    Schmidt, Patrick; Porraz, Guillaume; Bellot-Gurlet, Ludovic; February, Edmund; Ligouis, Bertrand; Paris, Céline; Texier, Pierre-Jean; Parkington, John E; Miller, Christopher E; Nickel, Klaus G; Conard, Nicholas J

    2015-08-01

    South Africa has in recent years gained increasing importance for our understanding of the evolution of 'modern human behaviour' during the Middle Stone Age (MSA). A key element in the suite of behaviours linked with modern humans is heat treatment of materials such as ochre for ritual purposes and stone prior to tool production. Until now, there has been no direct archaeological evidence for the exact procedure used in the heat treatment of silcrete. Through the analysis of heat-treated artefacts from the Howiesons Poort of Diepkloof Rock Shelter, we identified a hitherto unknown type of organic residue - a tempering-residue - that sheds light on the processes used for heat treatment in the MSA. This black film on the silcrete surface is an organic tar that contains microscopic fragments of charcoal and formed as a residue during the direct contact of the artefacts with hot embers of green wood. Our results suggest that heat treatment of silcrete was conducted directly using an open fire, similar to those likely used for cooking. These findings add to the discussion about the complexity of MSA behaviour and appear to contradict previous studies that had suggested that heat treatment of silcrete was a complex (i.e., requiring a large number of steps for its realization) and resource-consuming procedure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Observed relationships between wood density and solution uptake during pressure treatment

    Science.gov (United States)

    Steve Halverson; Stan Lebow

    2011-01-01

    A better understanding of the relationship between wood properties and solution uptake during pressure treatment could lead to improvements in treatment quality and more efficient use of preservatives. In this study several years of treatment data representing a range of wood species, charge conditions and preservative formulations were analyzed to evaluate the...

  13. Study on Spheroidization and Related Heat Treatments of Medium Carbon Alloy Steels

    Directory of Open Access Journals (Sweden)

    Harisha S. R.

    2018-01-01

    Full Text Available The importance of medium carbon steels as engineering materials is reflected by the fact that out of the vast majority of engineering grade ferrous alloys available and used in the market today, a large proportion of them are from the family of medium carbon steels. Typically medium carbon steels have a carbon range of 0.25 to 0.65% by weight, and a manganese content ranging from 0.060 to 1.65% by weight. Medium carbon steels are more resistive to cutting, welding and forming as compared to low carbon steels. From the last two decades a number of research scholars reported the use of verity of heat treatments to tailor the properties of medium carbon steels. Spheroidizing is the novel industrial heat treatment employed to improve formability and machinability of medium/high carbon low alloy steels. This exclusive study covers procedure, the effects and possible outcomes of various heat treatments on medium carbon steels. In the present work, other related heat treatments like annealing and special treatments for property alterations which serve as pretreatments for spheroidizing are also reviewed. Medium carbon steels with property alterations by various heat treatment processes are finding increased responsiveness in transportation, aerospace, space, underwater along with other variegated fields. Improved tribological and mechanical properties consisting of impact resistance, stiffness, abrasion and strength are the main reasons for the increased attention of these steels in various industries. In the present scenario for the consolidation of important aspects of various heat treatments and effects on mechanical properties of medium carbons steel, a review of different research papers has been attempted. This review may be used as a guide to provide practical data for heat treatment industry, especially as a tool to enhance workability and tool life.

  14. Combined heat transfer and kinetic models to predict cooking loss during heat treatment of beef meat.

    Science.gov (United States)

    Kondjoyan, Alain; Oillic, Samuel; Portanguen, Stéphane; Gros, Jean-Bernard

    2013-10-01

    A heat transfer model was used to simulate the temperature in 3 dimensions inside the meat. This model was combined with a first-order kinetic models to predict cooking losses. Identification of the parameters of the kinetic models and first validations were performed in a water bath. Afterwards, the performance of the combined model was determined in a fan-assisted oven under different air/steam conditions. Accurate knowledge of the heat transfer coefficient values and consideration of the retraction of the meat pieces are needed for the prediction of meat temperature. This is important since the temperature at the center of the product is often used to determine the cooking time. The combined model was also able to predict cooking losses from meat pieces of different sizes and subjected to different air/steam conditions. It was found that under the studied conditions, most of the water loss comes from the juice expelled by protein denaturation and contraction and not from evaporation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Heat as a groundwater tracer in shallow and deep heterogeneous media: Analytical solution, spreadsheet tool, and field applications

    Science.gov (United States)

    Kurylyk, Barret L.; Irvine, Dylan J.; Carey, Sean K.; Briggs, Martin A.; Werkema, Dale D.; Bonham, Mariah

    2017-01-01

    Groundwater flow advects heat, and thus, the deviation of subsurface temperatures from an expected conduction‐dominated regime can be analysed to estimate vertical water fluxes. A number of analytical approaches have been proposed for using heat as a groundwater tracer, and these have typically assumed a homogeneous medium. However, heterogeneous thermal properties are ubiquitous in subsurface environments, both at the scale of geologic strata and at finer scales in streambeds. Herein, we apply the analytical solution of Shan and Bodvarsson (2004), developed for estimating vertical water fluxes in layered systems, in 2 new environments distinct from previous vadose zone applications. The utility of the solution for studying groundwater‐surface water exchange is demonstrated using temperature data collected from an upwelling streambed with sediment layers, and a simple sensitivity analysis using these data indicates the solution is relatively robust. Also, a deeper temperature profile recorded in a borehole in South Australia is analysed to estimate deeper water fluxes. The analytical solution is able to match observed thermal gradients, including the change in slope at sediment interfaces. Results indicate that not accounting for layering can yield errors in the magnitude and even direction of the inferred Darcy fluxes. A simple automated spreadsheet tool (Flux‐LM) is presented to allow users to input temperature and layer data and solve the inverse problem to estimate groundwater flux rates from shallow (e.g., regimes.

  16. Studies on the Corrosion Behavior of TiCode-12 with the Variation of Environmental Factors and Heat Treatment Conditions

    International Nuclear Information System (INIS)

    Yoon, S. R.; Kim, T. Y.; Lee, K. H.

    1989-01-01

    Corrosion behavior of TiCode-12 (Ti-0.8Ni-0.3Mo) has been studied by means of electrochemical polarization measurements and corrosion morphology examinations in various corrosive environments and different heat treatment conditions of the alloy. 1N H 2 SO 4 at 45 .deg. C was taken as a standard corrosive solution in which Cl - , Fe 3+ and Br - ion were added to investigate their effects. Acid concentration and temperature were also varied. Polarization behaviors of pure Ti, Ni, Mo and Ti 2 Ni were compared with those of heat-treated TiCode-12 specimens to find out how the constituent elements and the intermetallic compound formed during heat treatment of TiCode-12 affect the corrosion of the alloy. Mill-annealed TiCode-12 showed primary and secondary active-passive transition behavior in all the tested H 2 SO 4 solutions. The former behavior was confirmed to be due to Ti and the latter due to Ni and Mo. The passive current densities increased with increased Cl - ion concentration but decreased reversely beyond certain concentration. Fe 3+ ion raised the corrosion potential of TiCode-12 to the passive region, thus reducing the corrosion rate. Br - ion was turned out to be a critical species to induce the pitting of TiCode-12 by some unknown reason. Cathodic polarization behavior of pure Ni and Ti 2 Ni revealed that hydrogen evolution reaction was promoted on these electrodes in acid media. This was ascribed to the cause for sensitization phenomena of TiCode-12 heat-treated in the temperature range in which the eutectoid reaction β→α + Ti 2 Ni occurs. Near pits, observed on a sensitized TiCode-12 specimen immersed in H 2 SO 4 , always found were β crystals in which Ni peak was detected by EDS

  17. On the Borel summability of divergent solutions of the heat equation

    OpenAIRE

    Lutz, D. A.; Miyake, M.; Schäfke, R.

    1999-01-01

    In recent years, the theory of Borel summability or multisummability of divergent power series of one variable has been established and it has been proved that every formal solution of an ordinary differential equation with irregular singular point is multisummable. For partial differential equations the summability problem for divergent solutions has not been studied so well, and in this paper we shall try to develop the Borel summability of divergent solutions of the Cauch...

  18. Simulation and experiment of the unsteady heat transport in the onset time of nucleation and crystallization of ice from the subcooled solution

    Energy Technology Data Exchange (ETDEWEB)

    Qin, F.G.F.; Jian Chao Zhao; Russell, A.B.; Xiao Dong Chen; Chen, J.J. [University of Auckland (New Zealand). Dept. of Chemical and Materials Engineering; Robertson, L. [Fonterra Research Centre, Palmerston North (New Zealand)

    2003-08-01

    Heat transfer is an unsteady process in the initial period of ice nucleation or phase transition from aqueous solution. During this period the latent heat of freezing increases the temperature in bulk solution monotonously until the system reaches equilibrium. Meanwhile heat can transfer from the solution to the environment or vise versa. The analysis of this unsteady heat transfer process leads to the establishment of a mathematical model, which is represented by two simultaneous differential equations. Using the Laplace transform and inverse transform, and incorporating the initial condition of ice nucleation, we obtained an analytical solution of this model. Further discussion of the model's fitness by comparing to the experimental data leads to a recognition that ice fouling (or ice adhesion) on the cooler wall should be highlighted in estimating the heat transfer resistance at the very beginning of the ice formation. The model fits to the experimental data satisfactorily. (author)

  19. Effect of heat treatment and composition on stress corrosion cracking of steam generation tubing materials

    International Nuclear Information System (INIS)

    Kim, H. P.; Hwang, S. S.; Kuk, I. H.; Kim, J. S.; Oh, C. Y.

    1998-01-01

    Effects of heat treatment and alloy composition on stress corrosion cracking (SCC) of steam generator tubing materials have been studied in 40% NaOH at 315.deg.C at potential of +200mV above corrosion potential using C-ring specimen and reverse U bend specimen. The tubing materials used were commercial Alloy 600, Alloy 690 and laboratory alloys, Ni-χCr-10Fe. Commercial Alloy 600, Alloy 690 were mill annealed or thermally treated.Laboratory alloy Ni-χCr-10Fe, and some of Alloy 600 and Alloy 690 were solution annealed. Polarization curves were measured to find out any relationship between SCC susceptibility and electrochemical behaviour. The variation in thermal treatment of Alloy 600 and Alloy 690 had no effect on polarization behaviour probably due to small area fraction of carbide and Cr depletion zone near grain boundary. In anodic polarization curves, the first and second anodic peaks at about 170mV and about at 260mV, respectively, above corrosion potential were independent of Cr content, whereas the third peak at 750mV above corrosion potential and passive current density in-creased with Cr content. SCC susceptibility decreased with Cr content and thermal treatment producing semicontinuous grain boundary decoration. Examination of cross sectional area of C-ring specimen showed deep SCC cracks for the alloys with less than 17%Cr and many shallow attacks for alloy 690. The role of Cr content in steam generator tubing materials and grain boundary carbide on SCC were discussed

  20. Treatment of plutonium-bearing solutions: A brief survey of the DOE complex

    International Nuclear Information System (INIS)

    Conner, C.; Chamberlain, D.B.; Chen, L.; Vandegrift, G.F.

    1995-03-01

    With the abrupt shutdown of some DOE facilities, a significant volume of in-process material was left in place and still requires treatment for interim storage. Because the systems containing these process streams have deteriorated since shutdown, a portable system for treating the solutions may be useful. A brief survey was made of the DOE complex on the need for a portable treatment system to treat plutonium-bearing solutions. A survey was completed to determine (1) the compositions and volumes of solutions and heels present, (2) the methods that have been used to treat these solutions and heels in the past, and (3) the potential problems that exist in removing and treating these solutions. Based on the surveys and on the Defense Nuclear Facilities Safety Board Recommendation 94-1, design criteria for a portable treatment system were generated