WorldWideScience

Sample records for solution enzyme concentration

  1. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...

  2. Enzyme stabilization by glass-derived silicates in glass-exposed aqueous solutions

    Science.gov (United States)

    Ives, J.A.; Moffett, J.R.; Arun, P.; Lam, D.; Todorov, T.I.; Brothers, A.B.; Anick, D.J.; Centeno, J.; Namboodiri, M.A.A.; Jonas, W.B.

    2010-01-01

    Objectives: To analyze the solutes leaching from glass containers into aqueous solutions, and to show that these solutes have enzyme activity stabilizing effects in very dilute solutions. Methods: Enzyme assays with acetylcholine esterase were used to analyze serially succussed and diluted (SSD) solutions prepared in glass and plastic containers. Aqueous SSD preparations starting with various solutes, or water alone, were prepared under several conditions, and tested for their solute content and their ability to affect enzyme stability in dilute solution. Results: We confirm that water acts to dissolve constituents from glass vials, and show that the solutes derived from the glass have effects on enzymes in the resultant solutions. Enzyme assays demonstrated that enzyme stability in purified and deionized water was enhanced in SSD solutions that were prepared in glass containers, but not those prepared in plastic. The increased enzyme stability could be mimicked in a dose-dependent manner by the addition of silicates to the purified, deionized water that enzymes were dissolved in. Elemental analyses of SSD water preparations made in glass vials showed that boron, silicon, and sodium were present at micromolar concentrations. Conclusions: These results show that silicates and other solutes are present at micromolar levels in all glass-exposed solutions, whether pharmaceutical or homeopathic in nature. Even though silicates are known to have biological activity at higher concentrations, the silicate concentrations we measured in homeopathic preparations were too low to account for any purported in vivo efficacy, but could potentially influence in vitro biological assays reporting homeopathic effects. ?? 2009 The Faculty of Homeopathy.

  3. Solution of non-steady-state substrate concentration in the action of biosensor response at mixed enzyme kinetics

    Science.gov (United States)

    Senthamarai, R.; Jana Ranjani, R.

    2018-04-01

    In this paper, a mathematical model of an amperometric biosensor at mixed enzyme kinetics and diffusion limitation in the case of substrate inhibition has been developed. The model is based on time dependent reaction diffusion equation containing a non -linear term related to non -Michaelis - Menten kinetics of the enzymatic reaction. Solution for the concentration of the substrate has been derived for all values of parameters using the homotopy perturbation method. All the approximate analytic expressions of substrate concentration are compared with simulation results using Scilab/Matlab program. Finally, we have given a satisfactory agreement between them.

  4. 21 CFR 864.9400 - Stabilized enzyme solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stabilized enzyme solution. 864.9400 Section 864... and Blood Products § 864.9400 Stabilized enzyme solution. (a) Identification. A stabilized enzyme... enzyme solutions include papain, bromelin, ficin, and trypsin. (b) Classification. Class II (performance...

  5. Detection of microwave radiation of cytochrome CYP102 A1 solution during the enzyme reaction

    Directory of Open Access Journals (Sweden)

    Yu.D. Ivanov

    2016-03-01

    Full Text Available Microwave radiation at 3.4–4.2 GHz frequency of the cytochrome P450 CYP102 A1 (BM3 solution was registered during the lauric acid hydroxylation reaction. The microwave radiation generation was shown to occur following the addition of electron donor NADPH to a system containing an enzyme and a substrate. The radiation occurs for the enzyme solutions with enzyme concentrations of 10−8 and 10−9 М. The microwave radiation effect elicited by the aqueous enzyme solution was observed for the first time. The results obtained can be used to elaborate a new approach to enzyme systems research, including studying of the mechanism of interaction of a functioning enzyme system with microenvironment.

  6. Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration

    Science.gov (United States)

    Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R.

    2009-01-01

    Background Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. Conclusions/Significance The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that

  7. Concentration profiles near an activated enzyme.

    Science.gov (United States)

    Park, Soohyung; Agmon, Noam

    2008-09-25

    When a resting enzyme is activated, substrate concentration profile evolves in its vicinity, ultimately tending to steady state. We use modern theories for many-body effects on diffusion-influenced reactions to derive approximate analytical expressions for the steady-state profile and the Laplace transform of the transient concentration profiles. These show excellent agreement with accurate many-particle Brownian-dynamics simulations for the Michaelis-Menten kinetics. The steady-state profile has a hyperbolic dependence on the distance of the substrate from the enzyme, albeit with a prefactor containing the complexity of the many-body effects. These are most conspicuous for the substrate concentration at the surface of the enzyme. It shows an interesting transition as a function of the enzyme turnover rate. When it is high, the contact concentration decays monotonically to steady state. However, for slow turnover it is nonmonotonic, showing a minimum due to reversible substrate binding, then a maximum due to diffusion of new substrate toward the enzyme, and finally decay to steady state. Under certain conditions one can obtain a good estimate for the critical value of the turnover rate constant at the transition.

  8. Homogeneous solutions of hydrophilic enzymes in nonpolar organic solvents. New systems for fundamental studies and biocatalytic transformations.

    Science.gov (United States)

    Mozhaev, V V; Poltevsky, K G; Slepnev, V I; Badun, G A; Levashov, A V

    1991-11-04

    A typical hydrophilic enzyme, CT, can be dissolved in nonpolar organic solvents (n-octane, cyclohexane and toluene) up to microM concentrations. In the homogeneous solution obtained, the enzyme possesses catalytic activity and enormously high thermostability. It does not lose this activity even after several hours refluxing in octane (126 degrees C) or cyclohexane (81 degrees C).

  9. Effect of irradiation on immobilized enzymes compared with that on enzymes in solution

    International Nuclear Information System (INIS)

    Schachinger, L.; Schippel, C.; Altmann, E.; Diepold, B.; Yang, C.; Jaenike, M.; Hochhaeuser, E.

    1985-01-01

    Glucose oxidase and catalase were immobilized by attaching them to nylon fibers that had been treated with triethyloxonium-tetrafluoroborate, diaminohexane and glutaraldialdehyde according to Morris, Campell and Hornby (1975). This method assures that the enzymes are bound to a side chain of the polyamide structure. Enzyme activity (as measured by the O 2 -uptake and by microcalorimetry) was found to be unchanged after 2 years. The apparent Ksub(m)-constants of the immobilized enzymes with glucose were the same as those for enzymes in solution. GOD and catalase immobilized in poly(acrylamide) gel had the same Ksub(m)-value. Despite the high stability during storage, the radiation induced inactivation of enzymes immobilized on gel or chromosorb, an inorganic carrier, was of the same order of magnitude as that of the dissolved enzymes. The enzymes bound to nylon fibers showed a higher radiation sensitivity. This might have been caused by an additional attack on the binding site of the carrier. (orig.)

  10. Optimization of moistening solution concentration on xylanase activity in solid state fermentation from oil palm empty fruit bunches

    Science.gov (United States)

    Mardawati, Efri; Parlan; Rialita, Tita; Nurhadi, Bambang

    2018-03-01

    Xylanase is an enzyme used in the industrial world, including food industry. Xylanase can be utilized as a 1,4-β-xylosidic endo-hydrolysis catalyst of xylanase, a hemicellulose component for obtaining a xylose monomer. This study aims to determine the optimum concentration of the fermentation medium using Response Surface Method (RSM) in the production of xylanase enzyme from oil palm empty fruit bunches (OPEFB) through solid state fermentation process. The variables varied in this study used factor A (ammonium sulphate concentration 1.0-2.0 g/L), B (concentration of potassium dihydrogen phosphate 1.5-2.5 g/L) and C (urea concentration 0.2 – 0.5 g/L). The data was analysed by using Design Expert version 10.0.1.0 especially CCD with total 17 running including 3 times replicated of canter point. Trichoderma viride was used for the process production of xylanase enzyme. The ratio between substrate and moistening solution used was 0.63 g / mL with temperature of 32.80C, 60 h incubation time. The analysis of enzyme activity was done by DNS method with 1% xylan as substrate. Analysis of protein content in enzyme was done by Bradford method. The optimum of moistening solution concentration in this fermentation was obtained. They are, the ammonium sulphate concentration of 1.5 g/L, potassium dihydrogen phosphate 2.0 g/L and urea 0.35 g/L with activity of 684.70 U/mL, specific activity enzyme xylanase 6261.58 U/mg, protein content 0.1093 U/mg, the model was validated using experiment design with perfect reliability value 0.96.

  11. [Alanine solution as enzyme reaction buffer used in A to O blood group conversion].

    Science.gov (United States)

    Li, Su-Bo; Zhang, Xue; Zhang, Yin-Ze; Tan, Ying-Xia; Bao, Guo-Qiang; Wang, Ying-Li; Ji, Shou-Ping; Gong, Feng; Gao, Hong-Wei

    2014-06-01

    The aim of this study was to investigate the effect of alanine solution as α-N-acetylgalactosaminidase enzyme reaction buffer on the enzymatic activity of A antigen. The binding ability of α-N-acetylgalactosaminidase with RBC in different reaction buffer such as alanine solution, glycine solution, normal saline (0.9% NaCl), PBS, PCS was detected by Western blot. The results showed that the efficiency of A to O conversion in alanine solution was similar to that in glycine solution, and Western blot confirmed that most of enzymes blinded with RBC in glycine or alanine solution, but few enzymes blinded with RBC in PBS, PCS or normal saline. The evidences indicated that binding of enzyme with RBC was a key element for A to O blood group conversion, while the binding ability of α-N-acetylgalactosaminidase with RBC in alanine or glycine solution was similar. It is concluded that alanine solution can be used as enzyme reaction buffer in A to O blood group conversion. In this buffer, the α-N-acetylgalactosaminidase is closely blinded with RBC and α-N-acetylgalactosaminidase plays efficient enzymatic activity of A antigen.

  12. Effect of γ-rays irradiation and alkali solution pretreatment on hydrolyzing enzyme and microcosmic structure of core straw

    International Nuclear Information System (INIS)

    Tang Hongtao; Wang Feng; Li Weiming; Li An; Ha Yiming; Li Yanjie

    2012-01-01

    To increase yield of reducing sugar enzymatic hydrolyzed from corn straw yield of corn stalk on Enzymatic hydrolysis, γ-rays radiation and NaOH solution pretreatment were used. The changes of microstructure of the corn straw before and after pretreatments were characterized by IR, X-rays diffraction and SEM. The results shows that the γ-rays radiation can significantly decrease the essential concentration of NaOH solution and shorten the immersion time, but it could not affected the yield of reducing sugar remarkably. The scanning electron microscopy (SEM) results show that the sample which was treated at the 200 kGy irradiation dose and NaOH solution circumstance has the biggest surface area increase. The reducing sugar content of enzyme hydrolyzed corn straw treated at 200 kGy irradiation dose and 2% NaOH solution was achieved 48.34%, which provides the theoretical basis for industry ethanol production using enzyme hydrolyzed corn straw. (authors)

  13. Influence of temperature and solvent concentration on the kinetics of the enzyme carbonic anhydrase in carbon capture technology

    DEFF Research Database (Denmark)

    Gladis, Arne; Deslauriers, Maria Gundersen; Fosbøl, Philip Loldrup

    2017-01-01

    In this study the effect of carbonic anhydrase addition on the absorption of CO2 was investigated in a wetted wall column apparatus. Four different solvents: the primary amine monoethanolamine (MEA), the sterically hindered primary amine 2-amino-2-methyl-1-propanol (AMP), the tertiary amine N......-methyl-diethanolamine (MDEA) and the carbonate salt solution K2CO3 were compared in concentrations from 5 to 50 wt% in a temperature range of 298–328 K with and without enzyme. Necessary mass transfer parameters such as liquid side mass transfer coefficient and solvent and enzyme reaction rates were determined...

  14. Sensitizing effect of Z,Z-bilirubin IXα and its photoproducts on enzymes in model solutions

    Science.gov (United States)

    Plavskii, V. Yu.; Mostovnikov, V. A.; Tret'yakova, A. I.; Mostovnikova, G. R.

    2008-05-01

    In model systems, we have studied side effects which may be induced by light during phototherapy of hyperbilirubinemia (jaundice) in newborn infants, with the aim of reducing the Z,Z-bilirubin IXα (Z,Z-BR IXα) level. We have shown that the sensitizing effect of Z,Z-BR IXα, localized at strong binding sites of the human serum albumin (HSA) macromolecule, is primarily directed at the amino acid residues of the carrier protein and does not involve the molecules of the enzyme (lactate dehydrogenase (LDH)) present in the buffer solution. The detected photodynamic damage to LDH is due to sensitization by bilirubin photoisomers, characterized by lower HSA association constants and located (in contrast to native Z,Z-BR IXα) on the surface of the HSA protein globule. Based on study of the spectral characteristics of the photoproducts of Z,Z-BR IXα and comparison of their accumulation kinetics in solution and the enzyme photo-inactivation kinetics, we concluded that the determining role in sensitized damage to LDH is played by lumirubin. The photosensitization effect depends on the wavelength of the radiation used for photoconversion of bilirubin. When (at the beginning of exposure) we make sure that identical numbers of photons are absorbed by the pigment in the different spectral ranges, the side effect is minimal for radiation corresponding to the long-wavelength edge of the bilirubin absorption band. We have shown that for a bilirubin/HSA concentration ratio >2 (when some of the pigment molecules are sorbed on the surface of the protein globule), the bilirubin can act as a photosensitizing agent for the enzyme present in solution. We discuss methods for reducing unfavorable side effects of light on the body of newborn infants during phototherapy of hyperbilirubinemia.

  15. One-electron reduction reactions with enzymes in solution

    International Nuclear Information System (INIS)

    Bisby, R.H.; Cundall, R.B.; Redpath, J.L.; Adams, G.E.

    1976-01-01

    At pH 8 and above, hydrated electrons react with ribonuclease lysozyme and α-chymotrypsin to form transient products whose spectra resemble, but are not identical to, those for the RSSR - radical anion already known for simple disulphides. Assuming a value for the extinction coefficient similar to that for RSSR - in simple disulphides, only a fraction of the hydrated electrons are shown to react with the disulphide bridges: the remainder react at other sites in the protein molecule, such as histidine, tyrosine and, in lysozyme, tryptophan residues, giving rise to comparatively weak optical absorptions between 300 and 400 nm. This has been substantiated by studying the reaction of e - sub(aq) with subtilisin Novo (an enzyme which does not contain disulphide bridges), with enzymes in which the sulphur bridges have been oxidised and with some amino acid derivatives. On lowering the pH of the solution the intensity of the RSSR - absorption diminishes as the protonated histidine residues become the favoured reaction sites. In acid solutions (pH 2 to 3) the transient optical absoptions observed are due to reactions of hydrogen atoms with the aromatic amino acids tyrosine, tryptophan and phenylalanine. The CO - 2 radical anion is only observed to transfer an electron to disulphide groups in ribonuclease, although the effect of repeated pulsing shows that some reaction must occur elsewhere in the protein molecule. In acid solutions, protonation of the electron adduct appears to produce the RSSRH. radical, whose spectrum has a maximum at 340 nm. (author)

  16. Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions

    International Nuclear Information System (INIS)

    Wach, Radoslaw A.; Mitomo, Hiroshi; Nagasawa, Naotsugu; Yoshii, Fumio

    2003-01-01

    The effects of ionizing radiation on aqueous solutions of cellulose ethers, methylcellulose (MC) and hydroxyethylcellulose (HEC) were investigated. The well-established knowledge states that cellulose and its derivatives belong to degrading type of polymers. However, in our study intermolecular crosslinking initiated by gamma rays or electron beam leaded to the formation of insoluble gel. This is an opposite effect of irradiation to the degradation. Paste-like form of the initial specimen, i.e. concentration 20-30%, when water plasticizes the bulk of polymer; and a high dose rate were favorable for hydrogel formation. Gel fraction up to 60% and 70% was obtained from solutions of HEC and MC, respectively. Produced hydrogels swell markedly in aqueous media by imbibing and holding the solvent. Radiation parameters of irradiation, such as yields of degradation and crosslinking and the gelation dose, were evaluated by sol-gel analysis on the basis of Charlesby-Rosiak equation. Despite of the crosslinked structure, obtained hydrogels can be included into the group of biodegradable materials. They undergo decomposition by the action of cellulase enzyme or microorganisms from compost

  17. Inhibition of raw starch digestion by one glucoamylase preparation from black Aspergillus at high enzyme concentration

    Energy Technology Data Exchange (ETDEWEB)

    Saka, B C; Veda, S

    1981-09-01

    Raw starch digestion by glucoamylase I (Ab. G-I) preparation from black Aspergillus was inhibited significantly at relatively high concentration of the enzyme. The properties of this enzyme were studied together with those of another glucoamylase I (Nor. G-I), also from black Aspergillus. The two glucoamylases do not differ so much in their physico-chemical properties such as molecular weight, pH and thermal stability, pH and temperature optimum, substrate specificity, debranching activity, isoelectric point etc. The adsorption rate of both enzymes on raw starch increased by the increase of enzyme concentration. The raw starch digestion rate by adsorbed Ab. G-I, however, was decreased with the increase of concentration of enzyme whereas the same was increased in case of Nor. G-I. The inhibitory effect was weaker at 60 deg. Celcius or above. (Refs. 11).

  18. USE CELLULOSE FOR CLEANING CONCENTRATED SUGAR SOLUTIONS

    Directory of Open Access Journals (Sweden)

    N. G. Kul’neva

    2015-01-01

    Full Text Available Summary. Producing high quality intermediate products in the boiling-crystallization station is an actual problem of sugar production. In the production of white sugar brown sugar syrup is not further purified that decreases the quality of the end product. Studies have been conducted using cellulose as an adsorbent for the purification of concentrated sugar solutions, having affinity to dyes and other impurities. Research have been carried out with the intermediate products of the Lebedyan sugar plant. Test results have shown cellulose ability to adsorb the dyes in sugar production. The influence of the adsorbent concentration and the mass fraction of solids in the syrup on the decolorization effect has been studied; rational process parameters have been obtained. It has been found that proceeding an additional adsorption purification of brown sugars syrup allows to reduce the solution color, increase the amount and quality of the end product. Adsorbing means, received from production wastes on the basis of organic resources, have many advantages: economical, environmentally friendly for disposal, safe to use, reliable and efficient in use. Conducted research on using cellulose as adsorbent for treatment of concentrated sugar solutions, having an affinity for colouring matter and other impurities. The experiments were carried out on the intermediates Lebedyanskiy sugar factory. The test results showed the ability of cellulose to adsorb coloring matter of sugar production. To evaluate the effect of bleaching depending on the mass fraction of dry substances prepared yellow juice filtration of sugar concentration of 55, 60, 65 % with subsequent adsorption purification of cellulose. The results of the experiment built adsorption isotherm of dyestuffs. The influence of the concentration of the adsorbent and a mass fraction of solids of juice filtration on the efficiency of decolorization obtained by rational parameters of the process. It is

  19. Nitrate concentrations in soil solutions below Danish forests

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Raulund-Rasmussen, Karsten; Gundersen, Per

    1999-01-01

    leaching in relation to land-use, a national monitoring programme has established sampling routines in a 7x7 km grid including 111 points in forests. During winters of 1986-1993, soil samples were obtained from a depth of 0-25, 25-50, 50-75 and 75-100 cm. Nitrate concentrations in soil solutions were...... species. A few sites deviated radically from the general pattern of low concentrations. The elevated concentrations recorded there were probably caused by high levels of N deposition due to emission from local sources or temporal disruptions of the N cycle. The nitrate concentration in the soil solution...

  20. Reexamining Michaelis-Menten Enzyme Kinetics for Xanthine Oxidase

    Science.gov (United States)

    Bassingthwaighte, James B.; Chinn, Tamara M.

    2013-01-01

    Abbreviated expressions for enzyme kinetic expressions, such as the Michaelis-Menten (M-M) equations, are based on the premise that enzyme concentrations are low compared with those of the substrate and product. When one does progress experiments, where the solute is consumed during conversion to form a series of products, the idealized conditions…

  1. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes

    Directory of Open Access Journals (Sweden)

    Robert F. Standaert

    2018-06-01

    Full Text Available Metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB, a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI, from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA, the oxidation product of 4-HB. Neither enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA, duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI, growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity. Keywords: Lignin, Protocatechuate, Experimental evolution

  2. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes.

    Science.gov (United States)

    Standaert, Robert F; Giannone, Richard J; Michener, Joshua K

    2018-06-01

    Metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB), a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI , from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA), the oxidation product of 4-HB. Neither enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA , duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI , growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity.

  3. Single-enzyme analysis in a droplet-based micro- and nanofluidic system

    NARCIS (Netherlands)

    Arayanarakool, Rerngchai; Shui, Lingling; Kengen, Servé W.M.; van den Berg, Albert; Eijkel, Jan C.T.

    2013-01-01

    The kinetic activity of individual enzyme molecules was determined in aqueous droplets generated in a nano- and microfluidic device. To avoid high background noise, the enzyme and substrate solution was confined into femtoliter carriers, achieving high product concentrations from single-molecule

  4. A discussion about maximum uranium concentration in digestion solution of U3O8 type uranium ore concentrate

    International Nuclear Information System (INIS)

    Xia Dechang; Liu Chao

    2012-01-01

    On the basis of discussing the influence of single factor on maximum uranium concentration in digestion solution,the influence degree of some factors such as U content, H 2 O content, mass ratio of P and U was compared and analyzed. The results indicate that the relationship between U content and maximum uranium concentration in digestion solution was direct ratio, while the U content increases by 1%, the maximum uranium concentration in digestion solution increases by 4.8%-5.7%. The relationship between H 2 O content and maximum uranium concentration in digestion solution was inverse ratio, the maximum uranium concentration in digestion solution decreases by 46.1-55.2 g/L while H 2 O content increases by 1%. The relationship between mass ratio of P and U and maximum uranium concentration in digestion solution was inverse ratio, the maximum uranium concentration in digestion solution decreases by 116.0-181.0 g/L while the mass ratio of P and U increase 0.1%. When U content equals 62.5% and the influence of mass ratio of P and U is no considered, the maximum uranium concentration in digestion solution equals 1 578 g/L; while mass ratio of P and U equals 0.35%, the maximum uranium concentration decreases to 716 g/L, the decreased rate is 54.6%, so the mass ratio of P and U in U 3 O 8 type uranium ore concentrate is the main controlling factor. (authors)

  5. Impact of solute concentration on the electrocatalytic conversion of dissolved gases in buffered solutions

    KAUST Repository

    Shinagawa, Tatsuya

    2015-04-24

    To maintain local pH levels near the electrode during electrochemical reactions, the use of buffer solutions is effective. Nevertheless, the critical effects of the buffer concentration on electrocatalytic performances have not been discussed in detail. In this study, two fundamental electrochemical reactions, oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR), on a platinum rotating disk electrode are chosen as model gas-related aqueous electrochemical reactions at various phosphate concentrations. Our detailed investigations revealed that the kinetic and limiting diffusion current densities for both the ORR and HOR logarithmically decrease with increasing solute concentration (log|jORR|=-0.39c+0.92,log|jHOR|=-0.35c+0.73). To clarify the physical aspects of this phenomenon, the electrolyte characteristics are addressed: with increasing phosphate concentration, the gas solubility decrease, the kinematic viscosity of the solution increase and the diffusion coefficient of the dissolved gases decrease. The simulated limiting diffusion currents using the aforementioned parameters match the measured ones very well (log|jORR|=-0.43c+0.99,log|jHOR|=-0.40c+0.54), accurately describing the consequences of the electrolyte concentration. These alterations of the electrolyte properties associated with the solute concentration are universally applicable to other aqueous gas-related electrochemical reactions because the currents are purely determined by mass transfer of the dissolved gases. © 2015 The Authors.

  6. Influence of starch origin on rheological properties of concentrated aqueous solutions

    Directory of Open Access Journals (Sweden)

    Stojanović Željko P.

    2011-01-01

    Full Text Available The rheological properties of corn and potato starch concentrated aqueous solutions were investigated at 25ºC. The starches were previously dispersed in water and the solutions were obtained by heating of dispersions at 115-120ºC for 20 minutes. The solutions of potato starch were transparent, while the corn starch solutions were opalescent. The results of dynamic mechanical measurements showed that the values of viscosity, h, storage modulus, G′, and loss modulus, G″, of the corn starch solutions increased with the storage time. This phenomenon was not observed for the potato starch solutions. It was assumed that the increase of h, G′ and G″ is the result of starch solutions retrogradation. The potato starch solutions retrogradation did not occur probably because of the phosphates presence. The viscosity of 2 mass % corn starch solution is less than the viscosity of 2 mass % potato starch solution. By increasing the concentration of corn starch solution the gel with elastic behavior was formed. The corn starch solutions formed gel as early as at 4 mass % concentration, while potato starch solutions achieved the gel state at the concentration of 5 mass %. The value of exponent m (G′ and G″ µ wm during the transition of potato starch solutions to gel is 0.414, which gives the fractal dimensions for corn starch of 2.10. The obtained value of fractal dimension corresponds to slow aggregation. The corn starch solutions with the starch concentrations higher than 4 mass % form weak gels. For these solutions the values of modulus in rubber plateau were determined. It was found that the modulus in rubber plateau increased with the concentration by the exponent of 4.36. Such high exponent value was obtained in the case when the tridimensional network is formed, i.e. when supermolecular structures like associates or crystal domains are formed.

  7. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cochrane, T. T., E-mail: agteca@hotmail.com [AGTECA S.A., 230 Oceanbeach Road, Mount Maunganui, Tauranga 3116 (New Zealand); Cochrane, T. A., E-mail: tom.cochrane@canterbury.ac.nz [Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

    2016-01-15

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N{sub f

  8. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    International Nuclear Information System (INIS)

    Cochrane, T. T.; Cochrane, T. A.

    2016-01-01

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N f ,” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N f was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N f , the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N f using recorded

  9. Evanescent Wave Absorption Based Fiber Sensor for Measuring Glucose Solution Concentration

    Science.gov (United States)

    Marzuki, Ahmad; Candra Pratiwi, Arni; Suryanti, Venty

    2018-03-01

    An optical fiber sensor based on evanescent wave absorption designed for measuring glucose solution consentration was proposed. The sensor was made to detect absorbance of various wavelength in the glucose solution. The sensing element was fabricated by side polishing of multimode polymer optical fiber to form a D-shape. The sensing element was immersed in different concentration of glucoce solution. As light propagated through the optical fiber, the evanescent wave interacted with the glucose solution. Light was absorbed by the glucose solution. The larger concentration the glucose solution has, the more the evanescent wave was absorbed in particular wavelenght. Here in this paper, light absorbtion as function of glucose concentration was measured as function of wavelength (the color of LED). We have shown that the proposed sensor can demonstrated an increase of light absorption as function of glucose concentration.

  10. Automated assay of uranium solution concentration and enrichment

    International Nuclear Information System (INIS)

    Horley, E.C.; Gainer, K.; Hansen, W.J.; Kelley, T.A.; Parker, J.L.; Sampson, T.E.; Walton, G.; Jones, S.A.

    1992-01-01

    For the first time, the concentration and enrichment of uranium solutions can be measured in one step. We have developed a new instrument to automatically measure the concentration and enrichment of uranium solutions through the adaptation of a commercial robot. Two identical solution enrichment systems are being installed in the Portsmouth Gaseous Diffusion Plant. These automated systems will reduce radiation exposure to personnel and increase the reliability and repeatability of the measurements. Each robotic system can process up to 40 batch and 8 priority samples in an unattended mode. Both passive gamma-ray and x-ray fluorescence (XRF) analyses are performed to determine total uranium concentration and 235 U enrichment. Coded samples are read by a bar-code reader to determine measurement requirements, then assayed by either or both of the gamma-ray and XRF instruments. The robot moves the sample containers and operates all shield doors and shutters, reducing hardware complexity. If the robots is out of service, an operator can manually perform all operations

  11. Fabrication and optimisation of optical biosensor using alcohol oxidase enzyme to evaluate detection of formaldehyde

    Science.gov (United States)

    Rachim, A.; Sari, A. P.; Nurlely, Fauzia, V.

    2017-07-01

    In this study, a new and simple biosensor base on alcohol oxidase (AOX)-enzyme for detecting formaldehyde in aqueous solutions has been successfully fabricated. The alcohol oxidase (AOX) enzyme was immobilized on poly-n-butyl acrylic-co-N-acryloxysuccinimide (nBA-NAS) membrane containing chromoionophore. The chemical reaction between AOX and formaldehyde generates a colour change of chromoionophore detected by optical absorbance measured in UV Vis. This paper focuses on the concentration optimization of buffer phosphate solution, response time, the quantity of enzyme and the measurement of the detection range of biosensors. The result shows that the optimum concentration and pH of buffer phosphate solution is 0.05 M and pH 7, respectively. The optimum response time is 3 min, the optimum unit of enzyme for biosensor is 1 unit/sample and the detection range of biosensor is 0.264 mM with R2 = 0.9421.

  12. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  13. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Surface and enzyme effects.

    Science.gov (United States)

    Ward, Keeran; Xi, Jingshu; Stuckey, David C

    2015-12-01

    The use of non-ionic colloidal liquid aphrons (CLAs) as a support for enzyme immobilisation was investigated. Formulation required the mixing of an aqueous-surfactant solution with a relatively non-polar solvent-surfactant solution, forming a solvent droplet surrounded by a thin stabilised aqueous film (soapy shell). Studies utilising anionic surfactants have showed increased retention, however, very little have been understood about the forces governing immobilisation. This study seeks to determine the effects of enzyme properties on CLA immobilisation by examining a non-ionic/non-polar solvent system comprised of two non-ionic surfactants, Tween 20 and 80, mineral oil and the enzymes lipase, aprotinin and α-chymotrypsin. From these results it was deduced that hydrophobic interactions strongly governed immobilisation. Confocal Scanning Laser Microscopy (CSLM) revealed that immobilisation was predominantly achieved by surface adsorption attributed to hydrophobic interactions between the enzyme and the CLA surface. Enzyme surface affinity was found to increase when added directly to the formulation (pre-manufacture addition), as opposed to the bulk continuous phase (post-manufacture addition), with α-chymotrypsin and aprotinin being the most perturbed, while lipase was relatively unaffected. The effect of zeta potential on immobilisation showed that enzymes adsorbed better closer to their pI, indicating that charge minimisation was necessary for immobilisation. Finally, the effect of increasing enzyme concentration in the aqueous phase resulted in an increase in adsorption for all enzymes due to cooperativity between protein molecules, with saturation occurring faster at higher adsorption rates. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Plutonium solution in concentration range from 8 to 17 G/liter

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1997-06-01

    This paper very briefly discusses the need for a fundamental criticality study of low concentrations of plutonium solutions. Examples of the occurrence of such solutions, which are characteristic of waste, are cited. Due to the prevalence of decontaminating and decommissioning activities, low concentration solutions are expected to become an important concern. Technical deficiencies in previous calculations are also discussed as a reason for performing low concentration criticality studies. 3 refs.

  15. Plutonium solution in concentration range from 8 to 17 G/liter

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1997-01-01

    This paper very briefly discusses the need for a fundamental criticality study of low concentrations of plutonium solutions. Examples of the occurrence of such solutions, which are characteristic of waste, are cited. Due to the prevalence of decontaminating and decommissioning activities, low concentration solutions are expected to become an important concern. Technical deficiencies in previous calculations are also discussed as a reason for performing low concentration criticality studies. 3 refs

  16. Radiolysis of concentrated nitric acid solutions

    International Nuclear Information System (INIS)

    Nagaishi, R.; Jiang, P.Y.; Katsumura, Y.; Domae, M.; Ishigure, K.

    1995-01-01

    A study on electron pulse- and 60 Co γ-radiolysis of concentrated nitric acid and nitrate solutions has been carried out to elucidate the radiation induced reactions taking place in the solutions. Dissociation into NO 2 - and O( 3 P) was proposed as a direct action of the radiation on nitrate and gave the G-values were dependent on the chemical forms of nitrate: g s2 (-NO 3 - )=1.6 and g s2 (-HNO 3 )=2.2 (molecules/100eV). Based on the experimental yields of HNO 2 and reduced Ce IV , the primary yields of radiolysis products of water, g w , were evaluated to clarify the effects of nitrate on spur reactions of water in various nitrate solutions. (author)

  17. A Wavefront Division Polarimeter for the Measurements of Solute Concentrations in Solutions

    Directory of Open Access Journals (Sweden)

    Sergio Calixto

    2017-12-01

    Full Text Available Polarimeters are useful instruments that measure concentrations of optically active substances in a given solution. The conventional polarimetric principle consists of measuring the rotation angle of linearly polarized light. Here, we present a novel polarimeter based on the study of interference patterns. A Mach–Zehnder interferometer with linearly polarized light at the input is used. One beam passes through the liquid sample and the other is a reference beam. As the linearly polarized sample beam propagates through the optically active solution the vibration plane of the electric field will rotate. As a result, the visibility of the interference pattern at the interferometer output will decrease. Fringe contrast will be maximum when both beams present a polarization perpendicular to the plane of incidence. However, minimum visibility is obtained when, after propagation through the sample the polarization of the sample beam is oriented parallel to the plane of incidence. By using different solute concentrations, a calibration plot is obtained showing the behavior of visibility.

  18. Rheological properties of concentrated solutions of carboxymethyl starch

    Directory of Open Access Journals (Sweden)

    Stojanović Željko

    2003-01-01

    Full Text Available Carboxymethyl starch was synthesized by the esterification of starch with monochloroacetic acid in ethanol as a reaction medium. Three samples of carboxymethyl starch having different degrees of substitution were prepared. The influence of temperature on the viscosity of concentrated carboxymethyl starch solutions, as well as the dynamic-mechanical properties of the concentrated solutions were investigated. The activation energy of viscous flow was determined and it was found that it decreased with increasing degree of substitution. The results of the dynamic-mechanical measurements showed that solutions of starch and carboxymethyl starches with higher degrees of substitution behave as gels. Values of the storage modulus in the rubbery plateau were used to calculate the molar masses between two points of physical crosslinking, the density of crosslinking and the distance between two points of crosslinking.

  19. Analytical systems as a basis for immobilized enzymes. 3. Use of a glucose enzyme electrode to determine carbohydrates in biological solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kulys, J; Pesliakiene, M

    1981-01-01

    A method is described for determination of glucose, sucrose, and lactose in biological solutions using a glucose enzyme electrode characterized by high sensitivity and selectivity. The enzyme membrane (15 nm thick) is prepared from glucose oxidase isolated from Penicillium vitale. Glucose is determined in one minute (using static currents) or in 12 s (using registered current in a kinetic regime). Phosphate buffer (5-10 mM) is the only reagent required for analysis. Determination of sucrose and lactose require prior hydrolysis with 17.8% HCl at 70 degrees Celcius for O.5 and lO.7 minutes, respectively.

  20. A portable concentrator for processing plutonium containing solutions

    International Nuclear Information System (INIS)

    Chamberlain, D.B.; Conner, C.; Chen, L.

    1995-01-01

    This report describes a horizontal, compact agitated-film concentrator called a Rototherm, manufactured by Artisan Industries, Inc. which can be used to process aqueous solutions of radioactive wastes containing plutonium. The unit is designed to concentrate liquid streams to a high-solid content slurry

  1. Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations.

    Science.gov (United States)

    Zhu, Y-G; Huang, Y-Z; Hu, Y; Liu, Y-X

    2003-04-01

    A hydroponic experiment was carried out to investigate the effects of iodine species and solution concentrations on iodine uptake by spinach (Spinacia oleracea L.). Five iodine concentrations (0, 1, 10, 50 and 100 microM) for iodate (IO(3)(-)) and iodide (I(-)) were used. Results show that higher concentrations of I(-) (> or =10 microM) had some detrimental effect on plant growth, while IO(3)(-) had little effect on the biomass production of spinach plants. Increases in iodine concentration in the growth solution significantly enhanced I concentrations in plant tissues. The detrimental effect of I(-) on plant growth was probably due to the excessively high accumulation of I in plant tissues. The solution-to-spinach leaf transfer factors (TF(leaf), fresh weight basis) for plants treated with iodide were between 14.2 and 20.7 at different solution concentrations of iodide; TF(leaf) for plants treated with iodate decreased gradually from 23.7 to 2.2 with increasing solution concentrations of iodate. The distribution coefficients (DCs) of I between leaves and roots were constantly higher for plants treated with iodate than those treated with iodide. DCs for plants treated with iodide increased with increasing solution concentrations of iodide, while DCs for plants treated with iodate (around 5.5) were similar across the range of solution concentrations of iodate used in this experiment. The implications of iodine accumulation in leafy vegetables in human iodine nutrition are also discussed. Copyright 2002 Elsevier Science Ltd.

  2. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tingting; Sui, Xiaoyu, E-mail: suixiaoyu@outlook.com; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-15

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. - Highlights: • An ionic liquid based enzyme-assisted extraction method of natural product was explored. • ILEAE utilizes enzymatic treatment to improve permeability of ionic liquids solution. • Enzyme incubation and solvent extraction process were ongoing simultaneously. • ILEAE process simplified operating process and suitable for more complete extraction.

  3. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves

    International Nuclear Information System (INIS)

    Liu, Tingting; Sui, Xiaoyu; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-01

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. - Highlights: • An ionic liquid based enzyme-assisted extraction method of natural product was explored. • ILEAE utilizes enzymatic treatment to improve permeability of ionic liquids solution. • Enzyme incubation and solvent extraction process were ongoing simultaneously. • ILEAE process simplified operating process and suitable for more complete extraction.

  4. Isolated effects of external bath osmolality, solute concentration, and electrical charge on solute transport across articular cartilage.

    Science.gov (United States)

    Pouran, Behdad; Arbabi, Vahid; Zadpoor, Amir A; Weinans, Harrie

    2016-12-01

    The metabolic function of cartilage primarily depends on transport of solutes through diffusion mechanism. In the current study, we use contrast enhanced micro-computed tomography to determine equilibrium concentration of solutes through different cartilage zones and solute flux in the cartilage, using osteochondral plugs from equine femoral condyles. Diffusion experiments were performed with two solutes of different charge and approximately equal molecular weight, namely iodixanol (neutral) and ioxaglate (charge=-1) in order to isolate the effects of solute's charge on diffusion. Furthermore, solute concentrations as well as bath osmolality were changed to isolate the effects of steric hindrance on diffusion. Bath concentration and bath osmolality only had minor effects on the diffusion of the neutral solute through cartilage at the surface, middle and deep zones, indicating that the diffusion of the neutral solute was mainly Fickian. The negatively charged solute diffused considerably slower through cartilage than the neutral solute, indicating a large non-Fickian contribution in the diffusion of charged molecules. The numerical models determined maximum solute flux in the superficial zone up to a factor of 2.5 lower for the negatively charged solutes (charge=-1) as compared to the neutral solutes confirming the importance of charge-matrix interaction in diffusion of molecules across cartilage. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Methylparaben concentration in commercial Brazilian local anesthetics solutions

    Directory of Open Access Journals (Sweden)

    Gustavo Henrique Rodriguez da Silva

    2012-08-01

    Full Text Available OBJECTIVE: To detect the presence and concentration of methylparaben in cartridges of commercial Brazilian local anesthetics. MATERIAL AND METHODS: Twelve commercial brands (4 in glass and 8 in plastic cartridges of local anesthetic solutions for use in dentistry were purchased from the Brazilian market and analyzed. Different lots of the commercial brands were obtained in different Brazilian cities (Piracicaba, Campinas and São Paulo. Separation was performed using high performance liquid chromatography (HPLC with UV-Vis detector. The mobile phase used was acetonitrile:water (75:25 - v/v, pH 4.5, adjusted with acetic acid at a flow rate of 1.0 ml.min-1. RESULTS: When detected in the solutions, the methylparaben concentration ranged from 0.01% (m/v to 0.16% (m/v. One glass and all plastic cartridges presented methylparaben. CONCLUSION: 1. Methylparaben concentration varied among solutions from different manufacturers, and it was not indicated in the drug package inserts; 2. Since the presence of methylparaben in dental anesthetics is not regulated by the Brazilian National Health Surveillance Agency (ANVISA and this substance could cause allergic reactions, it is important to alert dentists about its possible presence.

  6. Hydrogen-bonded structure in highly concentrated aqueous LiBr solutions

    International Nuclear Information System (INIS)

    Imano, Masahiro; Kameda, Yasuo; Usuki, Takeshi; Uemura, Osamu

    2001-01-01

    Neutron diffraction measurements were carried out for H/D isotopically substituted aqueous 10, 25 and 33 mol% LiBr solutions in order to obtain structural information on the intermolecular hydrogen bonds among water molecules in highly concentrated aqueous solutions. Observed scattering cross sections for D 2 O (99.9 % D), 0 H 2 O(35.9 % D) and 0-2 H 2 O(68.0 % D) solutions were combined to deduce partial structure factors, a HH (Q), a XH (Q) and a XX (Q) (X: O, Br and Li). The least squares fitting analysis was applied to the observed partial structure factors to determine the nearest neighbor interatomic distance, root-mean-square amplitude and coordination number. Intermolecular distances, r OH =1.91(1) A, r HH =2.38(1) A and r OO =3.02(1) A, between the nearest neighbor water molecules, were obtained for the 10 mol% LiBr solution. On the other hand, the intermolecular O···H interaction was found to almost disappear in concentrated 25 and 33 mol% LiBr solutions. The result implies that the hydrogen-bonded network is completely broken in highly concentrated aqueous LiBr solutions. (author)

  7. Carbapenems and SHV-1 β-Lactamase Form Different Acyl-Enzyme Populations in Crystals and Solution

    Science.gov (United States)

    Kalp, Matthew; Carey, Paul R.

    2009-01-01

    The reactions between single crystals of the SHV-1 β-lactamase enzyme and the carbapenems, meropenem, imipenem and ertapenem, have been studied by Raman microscopy. Aided by quantum mechanical calculations, major populations of two acyl-enzyme species, a labile Δ2-pyrroline and a more tightly bound Δ1-pyrroline, have been identified for all three compounds. These isomers differ only in the position of the double bond about the carbapenem nucleus. This discovery is consonant with X-ray crystallographic findings that also identified two populations for meropenem bound in SHV-1: one with the acyl C=O group in the oxyanion hole and the second with the acyl group rotated 180 degrees compared to its expected position [Nukaga, M., Bethel, C. R., Thomson, J. M., Hujer, A. M., Distler, A. M., Anderson, V. E., Knox, J. R., and Bonomo, R. A. (2008) Journal of the American Chemical Society]. When crystals of the Δ1 and Δ2 containing acyl-enzymes were exposed to solutions with no carbapenem, rapid deacylation of the Δ2 species was observed by kinetic Raman experiments. However, no change in the Δ1 population was observed over 1 hour, the effective lifetime of the crystal. These observations lead to the hypothesis that the stable Δ1 species is due to the form seen by X-ray with the acyl carbonyl outside the oxyanion hole, while the Δ2 species corresponds to the form with the carbonyl inside the oxyanion hole. Soak-in and soak-out Raman experiments also demonstrated that tautomeric exchange between the Δ1 and Δ2 forms does not occur on the crystalline enzyme. When meropenem or ertapenem were reacted with SHV-1 in solution, the Raman difference spectra demonstrated that only a major population corresponding to the Δ1 acyl-enzyme could be detected. The 1003 cm-1 mode of the phenyl ring positioned on the C3 side chain of ertapenem acts as an effective internal Raman intensity standard and the ratio of its intensity to that of the 1600 cm-1 feature of Δ1 provides an

  8. Nanoparticle embedded enzymes for improved lateral flow sensors

    DEFF Research Database (Denmark)

    Özalp, Veli Cengiz; Zeydanlı, Uğur S.; Lunding, Anita

    2013-01-01

    -entrapped with Texas Red dextran inside porous polyacrylamide nanoparticles. In this system, enzymes are protected in the porous matrix of polyacrylamide which freely allows the diffusion of the analyte. The sensor is rapid and sensitive for quantification of hydrogen peroxide concentrations. A test solution...

  9. Concentration Fluctuations and Capacitive Response in Dense Ionic Solutions.

    Science.gov (United States)

    Uralcan, Betul; Aksay, Ilhan A; Debenedetti, Pablo G; Limmer, David T

    2016-07-07

    We use molecular dynamics simulations in a constant potential ensemble to study the effects of solution composition on the electrochemical response of a double layer capacitor. We find that the capacitance first increases with ion concentration following its expected ideal solution behavior but decreases upon approaching a pure ionic liquid in agreement with recent experimental observations. The nonmonotonic behavior of the capacitance as a function of ion concentration results from the competition between the independent motion of solvated ions in the dilute regime and solvation fluctuations in the concentrated regime. Mirroring the capacitance, we find that the characteristic decay length of charge density correlations away from the electrode is also nonmonotonic. The correlation length first decreases with ion concentration as a result of better electrostatic screening but increases with ion concentration as a result of enhanced steric interactions. When charge fluctuations induced by correlated ion-solvent fluctuations are large relative to those induced by the pure ionic liquid, such capacitive behavior is expected to be generic.

  10. Anomalous concentration gradient in NaI solutions inadvertently frozen in transit

    International Nuclear Information System (INIS)

    Billinghurst, M.W.; Abrams, D.N.; Coutts, A.D.

    1990-01-01

    Therapeutic doses of iodine-131 ( 131 I) are frequently dispensed volumetrically from a stock vial containing a solution of sodium iodide. During the winter months the authors have observed that initial aliquots do not always have the same radioactive concentration as that calculated for the bulk solution. In order to evaluate the cause and extent of this problem, they prepared a stock solution of low radioactive concentration sodium iodide with the same concentration of sodium thiosulfate and pH as that in the stock therapeutic iodine vial. Aliquots of this solution were transferred to plastic tubes and were stored at various temperatures. These results clearly show that when there is a risk of freezing during transportation of therapeutic solutions of sodium iodide it is essential to physically mix the liquid once thawing is complete if therapeutic doses are to be dispensed accurately on a volume basis

  11. Whispering Gallery Mode Based Optical Fiber Sensor for Measuring Concentration of Salt Solution

    Directory of Open Access Journals (Sweden)

    Chia-Chin Chiang

    2013-01-01

    Full Text Available An optical fiber solution-concentration sensor based on whispering gallery mode (WGM is proposed in this paper. The WGM solution-concentration sensors were used to measure salt solutions, in which the concentrations ranged from 1% to 25% and the wavelength drifted from the left to the right. The experimental results showed an average sensitivity of approximately 0.372 nm/% and an R2 linearity of 0.8835. The proposed WGM sensors are of low cost, feasible for mass production, and durable for solution-concentration sensing.

  12. Enzyme-lipid complex. Koso-shishitsu fukugotai

    Energy Technology Data Exchange (ETDEWEB)

    Okahata, Y; Ijiro, K [Tokyo Inst. of Technology., Tokyo (Japan)

    1990-08-01

    Enzyme, as unstable against organic solvent, being to be designed not to be quenched, organic solvent was tried to be made soluble by making enzyme-lipid complex. By mixing aqueous solution of enzyme with aqueous dispersion liquid of lipid, white powder was obtaind. Enzyme has monomolecular film through which reaction substance passes. Lipase-lipid complex, of which monomolecular film is qualified by hydrogen and other soft linkages, homogeneously dissolves in organic solvent and has a high activity, not given by the conventional qualification method. That activity being applied, asymmetrical esterificating reaction of alcohol could be done in organic solvent, containing high concentration reactive substance. While substance selectivity, not known in water, was obtained. Through reaction of amine with amino acid dielectrics in isooctane solvent by {alpha}-chymotrypsin-lipid complex, was indicated an exact substance selectivity. Enzyme-lipid complex dissolving in organic solvent, monomolecular film can be formed without being quenched on aqueous surface, which film can be utilized as sensor film. 10 refs., 5 figs. 1 tab.

  13. Effects of trace element concentration on enzyme controlled stable isotope fractionation during aerobic biodegradation of toluene.

    Science.gov (United States)

    Mancini, Silvia A; Hirschorn, Sarah K; Elsner, Martin; Lacrampe-Couloume, Georges; Sleep, Brent E; Edwards, Elizabeth A; Lollar, Barbara Sherwood

    2006-12-15

    The effects of iron concentration on carbon and hydrogen isotopic fractionation during aerobic biodegradation of toluene by Pseudomonas putida mt-2 were investigated using a low iron medium and two different high iron media. Mean carbon enrichment factors (epsilonc) determined using a Rayleigh isotopic model were smaller in culture grown under high iron conditions (epsilonc = -1.7+/-0.1%) compared to low iron conditions (epsilonc = -2.5+/-0.3%). Mean hydrogen enrichment factors (epsilonH) were also significantly smaller for culture grown under high iron conditions (epsilonH = -77 +/-4%) versus low iron conditions (EpsilonH = -159+/-11%). A mechanistic model for enzyme kinetics was used to relate differences in the magnitude of isotopic fractionation for low iron versus high iron cultures to the efficiency of the enzymatic transformation. The increase of carbon and hydrogen enrichment factors at low iron concentrations suggests a slower enzyme-catalyzed substrate conversion step (k2) relative to the enzyme-substrate binding step (k-l) at low iron concentration. While the observed differences were subtle and, hence, do not significantly impact the ability to use stable isotope analysis in the field, these results demonstrated that resolvable differences in carbon and hydrogen isotopic fractionation were related to low and high iron conditions. This novel result highlights the need to further investigate the effects of other trace elements known to be key components of biodegradative enzymes.

  14. Soil solution Ni concentrations over which Kd is constant in Japanese agricultural soils

    International Nuclear Information System (INIS)

    Kamei-Ishikawa, Nao; Uchida, Shigeo; Tagami, Keiko; Satta, Naoya

    2011-01-01

    The soil-soil solution distribution coefficient (K d ) is one of the most important parameters required by the models used for radioactive waste disposal environmental impact assessment. The models are generally based on the assumption that K d is independent of the element concentration in soil solution. However, at high soil solution concentrations, this assumption is not valid. Since the sorption of most radionuclides in soil is influenced by their stable isotope concentrations, it is necessary to consider if the range in the naturally occurring stable isotope concentrations in the soil solution is within the range over which K d is valid. The objective of this study was to determine if the K d for nickel (Ni) can be assumed to be constant over the ranges of stable Ni concentration in five main Japanese agricultural soil types. To obtain Ni sorption isotherms for five Japanese soils, two types of batch sorption tests were carried out using radioactive 63 Ni as a tracer. The concentration at which the relationship between soil and soil solution concentration became nonlinear was determined using the two types of sorption isotherms: the Langmuir and Henry isotherms. The result showed that the Ni concentration in the soil solution at which the assumption of a constant K d becomes valid is at least ten times higher than the natural Ni concentrations in solutions of Japanese agricultural soils. This value is sufficient to treat K d for Ni as constant for environmental impact assessment models for the disposal of radioactive waste. (author)

  15. Quantitative kinetics of proteolytic enzymes determined by a surface concentration-based assay using peptide arrays.

    Science.gov (United States)

    Jung, Se-Hui; Kong, Deok-Hoon; Park, Seoung-Woo; Kim, Young-Myeong; Ha, Kwon-Soo

    2012-08-21

    Peptide arrays have emerged as a key technology for drug discovery, diagnosis, and cell biology. Despite the promise of these arrays, applications of peptide arrays to quantitative analysis of enzyme kinetics have been limited due to the difficulty in obtaining quantitative information of enzymatic reaction products. In this study, we developed a new approach for the quantitative kinetics analysis of proteases using fluorescence-conjugated peptide arrays, a surface concentration-based assay with solid-phase peptide standards using dry-off measurements, and compared it with an applied concentration-based assay. For fabrication of the peptide arrays, substrate peptides of cMMP-3, caspase-3, caspase-9, and calpain-1 were functionalized with TAMRA and cysteine, and were immobilized onto amine-functionalized arrays using a heterobifunctional linker, N-[γ-maleimidobutyloxy]succinimide ester. The proteolytic activities of the four enzymes were quantitatively analyzed by calculating changes induced by enzymatic reactions in the concentrations of peptides bound to array surfaces. In addition, this assay was successfully applied for calculating the Michaelis constant (K(m,surf)) for the four enzymes. Thus, this new assay has a strong potential for use in the quantitative evaluation of proteases, and for drug discovery through kinetics studies including the determination of K(m) and V(max).

  16. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution.

    Science.gov (United States)

    Omelchenko, Marina V; Galperin, Michael Y; Wolf, Yuri I; Koonin, Eugene V

    2010-04-30

    Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity.

  17. Phenol Removal from Industrial Wastewater by HRP Enzyme

    Directory of Open Access Journals (Sweden)

    Iran Alemzadeh

    2009-01-01

    Full Text Available In this research, horseradish peroxidase for phenol removal was utilized. First, the process was studied at the laboratory scale using a synthetic phenol solution (1-10 mM. Results showed that horseradish peroxidase (HRP could effectively remove phenolic compounds from wastewater and that the catalytic capability of the enzyme was maintained for a wide range of pH, temperature, and aromatic concentration levels. The performance conditions were optimized for at lease 95% and 100% removal of phenolic compounds for both actual and synthetic wastewaters under high and low phenol concentrations (1 and 10 mM. The phenolic wastewater used was an olive mill effluent with a phenol concentration of 1221 mg/L (13 mM and a pH value of 3.5. At the end of the reaction, the phenolic compounds changed to insoluble polymers and precipitated. Each enzyme/wastewater system was optimized for the following chemical dosages: hydrogen peroxide, enzyme, polyethylene glycol (PEG, and buffer. Furthermore, the reaction time to achieve at least 95% phenol removal was determined. According to the results, COD and BOD reduced to 58% and 78%, respectively. Experimental results showed an increase in H2O2 concentration beyond the optimum dose resulting from enzyme inactivation, thus reducing the phenol removal efficiency. On the other hand, increasing the enzyme, PEG, and/or reaction time beyond the optimum values resulted in only a marginal increase in removal efficiency.

  18. Microrheology of concentrated DNA solutions using optical tweezers

    Indian Academy of Sciences (India)

    . In this work, we report the determination of microrheological properties of concentrated, double-stranded calf thymus DNA (CT-DNA) solutions using passive, laser-scattering based particle-tracking methodology. From power spectral analysis, ...

  19. PHYSICOCHEMICAL PROPERTIES OF THE PROTEOLYTIC ENZYME FROM THE LATEX OF THE MILKWEED, ASCLEPIAS SPECIOSA TORR. SOME COMPARISONS WITH OTHER PROTEASES

    Science.gov (United States)

    Winnick, Theodore; Davis, Alva R.; Greenberg, David M.

    1940-01-01

    1. The kinetics of milk clotting by asclepain, the protease of Asclepias speciosa, were investigated. At higher concentrations of enzyme, the clotting time was inversely proportional to the enzyme concentration. 2. The digestion of casein and hemoglobin in 6.6 M urea by asclepain follows the second order reaction rate. The rate was roughly second order for casein in water. 3. Evaluation of the nature of the enzyme-substrate intermediate indicates that one molecule of asclepain combines with one molecule of casein or hemoglobin in urea solution. 4. Inhibition by the reaction products was deduced from the fact that the digestion velocity of hemoglobin in urea solution varied with the asclepain concentration in agreement with the Schütz-Borissov rule. PMID:19873155

  20. Internal Diffusion-Controlled Enzyme Reaction: The Acetylcholinesterase Kinetics.

    Science.gov (United States)

    Lee, Sangyun; Kim, Ji-Hyun; Lee, Sangyoub

    2012-02-14

    Acetylcholinesterase is an enzyme with a very high turnover rate; it quenches the neurotransmitter, acetylcholine, at the synapse. We have investigated the kinetics of the enzyme reaction by calculating the diffusion rate of the substrate molecule along an active site channel inside the enzyme from atomic-level molecular dynamics simulations. In contrast to the previous works, we have found that the internal substrate diffusion is the determinant of the acetylcholinesterase kinetics in the low substrate concentration limit. Our estimate of the overall bimolecular reaction rate constant for the enzyme is in good agreement with the experimental data. In addition, the present calculation provides a reasonable explanation for the effects of the ionic strength of solution and the mutation of surface residues of the enzyme. The study suggests that internal diffusion of the substrate could be a key factor in understanding the kinetics of enzymes of similar characteristics.

  1. Problems of evaluating isotope analysis of concentrated salt solutions in potash mines

    International Nuclear Information System (INIS)

    Schmiedl, H.D.

    1980-01-01

    Three problems of quantitative evaluation of analytic D and 18 O isotope data of concentrated salt solutions are discussed: (1) Consideration of the influence of admixtures of hydrated salts in determining meteoric or marine water fractions in a concentrated salt solution, (2) analytic accuracy and detection limits in determining meteoric water in salt solutions, and (3) processes of isotopic exchange with reservoir rock and sample matrix

  2. Aqueous solutions that model the cytosol : studies on polarity, chemical reactivity and enzyme kinetics

    NARCIS (Netherlands)

    Asaad, N.; den Otter, M.J.; Engberts, J.B.F.N.

    2004-01-01

    Concentrated solutions of a series of organic compounds have been prepared and the effects of these solutes on the properties of the solvent system assessed as a function of their concentration and nature. Polarity, as measured by Reichardt's E-T(30) probe, exhibits a linear variation with both

  3. Effect of low concentrations of ozone on the enzymes catalase, peroxidase, papain and urease

    Energy Technology Data Exchange (ETDEWEB)

    Todd, G W

    1958-01-01

    The enzymes catalase, peroxidase, papain and urease were treated in vitro with low concentrations of ozone gas. Wide variations were found in the sensitivity of the enzymes to the inhibitory action of the gas. Papain showed the greatest sensitivity; the rest required a much greater amount of ozone for inactivation. Comparisons of ozone and hydrogen peroxide as inhibitors of papain and urease showed ozone to be 30 times as effective as hydrogen peroxide on papain and 3 times as effective on urease. 14 references, 2 figures, 3 tables.

  4. Contribution of the ''simple solutions'' concept to estimate density of actinides concentrated solutions

    International Nuclear Information System (INIS)

    Sorel, C.; Moisy, Ph.; Dinh, B.; Blanc, P.

    2000-01-01

    In order to calculate criticality parameters of nuclear fuel solution systems, number density of nuclides are needed and they are generally estimated from density equations. Most of the relations allowing the calculation of the density of aqueous solutions containing the electrolytes HNO 3 -UO 2 (NO 3 ) 2 -Pu(NO 3 ) 4 , usually called 'nitrate dilution laws' are strictly empirical. They are obtained from a fit of assumed polynomial expressions on experimental density data. Out of their interpolation range, such mathematical expressions show discrepancies between calculated and experimental data appearing in the high concentrations range. In this study, a physico-chemical approach based on the isopiestic mixtures rule is suggested. The behaviour followed by these mixtures was first observed in 1936 by Zdanovskii and expressed as: 'Binary solutions (i.e. one electrolyte in water) having a same water activity are mixed without variation of this water activity value'. With regards to this behaviour, a set of basic thermodynamic expressions has been pointed out by Ryazanov and Vdovenko in 1965 concerning enthalpy, entropy, volume of mixtures, activity and osmotic coefficient of the components. In particular, a very simple relation for the density is obtained from the volume mixture expression depending on only two physico-chemical variables: i) concentration of each component in the mixture and in their respectively binary solutions having the same water activity as the mixture and ii), density of each component respectively in the binary solution having the same water activity as the mixture. Therefore, the calculation needs the knowledge of binary data (water activity, density and concentration) of each component at the same temperature as the mixture. Such experimental data are largely published in the literature and are available for nitric acid and uranyl nitrate. Nevertheless, nitric acid binary data show large discrepancies between the authors and need to be

  5. Plackett-Burman Design for rGILCC1 Laccase Activity Enhancement in Pichia pastoris: Concentrated Enzyme Kinetic Characterization

    Directory of Open Access Journals (Sweden)

    Edwin D. Morales-Álvarez

    2017-01-01

    Full Text Available Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1 laccase production at low scale from Ganoderma lucidum containing the construct pGAPZαA-GlucPost-Stop in Pichia pastoris. Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL−1 at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a Vmax of 6.87 × 10−5 mM s−1, with an apparent Km of 5.36 × 10−2 mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges.

  6. Opalescence in monoclonal antibody solutions and its correlation with intermolecular interactions in dilute and concentrated solutions.

    Science.gov (United States)

    Raut, Ashlesha S; Kalonia, Devendra S

    2015-04-01

    Opalescence indicates physical instability of a formulation because of the presence of aggregates or liquid-liquid phase separation in solution and has been reported for monoclonal antibody (mAb) formulations. Increased solution opalescence can be attributed to attractive protein-protein interactions (PPIs). Techniques including light scattering, AUC, or membrane osmometry are routinely employed to measure PPIs in dilute solutions, whereas opalescence is seen at relatively higher concentrations, where both long- and short-range forces contribute to overall PPIs. The mAb molecule studied here shows a unique property of high opalescence because of liquid-liquid phase separation. In this study, opalescence measurements are correlated to PPIs measured in diluted and concentrated solutions using light scattering (kD ) and high-frequency rheology (G'), respectively. Charges on the molecules were calculated using zeta potential measurements. Results indicate that high opalescence and phase separation are a result of the attractive interactions in solution; however, the presence of attractive interactions do not always imply phase separation. Temperature dependence of opalescence suggests that thermodynamic contribution to opalescence is significant and Tcloud can be utilized as a potential tool to assess attractive interactions in solution. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Evaluation of the protein concentration in enzymes via the determination of sulphur by TXRF

    International Nuclear Information System (INIS)

    Mertens, M.; Rittmeyer, C.; Kolbesen, B.O.

    2000-01-01

    Total reflection x-ray fluorescence spectrometry (TXRF) offers many advantages for the identification of trace elements in biological samples like enzymes, tissues or plants. Without any preliminary treatment elements may be determined with high accuracy especially transition metals like Fe, Ni, Cu, Mo and the alkaline earth metal Ca. A further aspect of the investigation of enzymes is the simple and simultaneous determination of light elements. Especially sulphur is of interest. The element sulphur exists mainly in the two amino, acids methionine and cysteine as well as in iron-sulphur clusters and may be used for an easy and simultaneous calculation of the protein concentration. Hence the quantitative determination of sulphur by TXRF allows a cross-check regarding of the conventional quantitative determination of protein concentration by, for example, the Lowry method. On the basis of three enzymes of different origins and molecular weights the presentation will show the influence of the bio-organic matrix and different buffer media on element determination by TXRF. As is already known the influence of the matrix on the detection of light elements is stronger than on transition metals. It can be discussed whether layer thickness and layer effects of the drying residues (characterization by SEM and thickness profilometer (ALPHA-step)) and / or self absorption effects as well as the excitation are of significance. The results indicate that with enzymes of low molecular weight a reliable determination of sulphur is possible whereas those with higher molecular weights gave poorer results on account of the matrix effects described. (author)

  8. A new method to measure effective soil solution concentration predicts copper availability to plants.

    Science.gov (United States)

    Zhang, H; Zhao, F J; Sun, B; Davison, W; McGrath, S P

    2001-06-15

    Risk assessments of metal contaminated soils need to address metal bioavailability. To predict the bioavailability of metals to plants, it is necessary to understand both solution and solid phase supply processes in soils. In striving to find surrogate chemical measurements, scientists have focused either on soil solution chemistry, including free ion activities, or operationally defined fractions of metals. Here we introduce the new concept of effective concentration, CE, which includes both the soil solution concentration and an additional term, expressed as a concentration, that represents metal supplied from the solid phase. CE was measured using the technique of diffusive gradients in thin films (DGT) which, like a plant, locally lowers soil solution concentrations, inducing metal supply from the solid phase, as shown by a dynamic model of the DGT-soil system. Measurements of Cu as CE, soil solution concentration, by EDTA extraction and as free Cu2+ activity in soil solution were made on 29 different soils covering a large range of copper concentrations. Theywere compared to Cu concentrations in the plant material of Lepidium heterophyllum grown on the same soils. Plant concentrations were linearly related and highly correlated with CE but were more scattered and nonlinear with respect to free Cu2+ activity, EDTA extraction, or soil solution concentrations. These results demonstrate that the dominant supply processes in these soils are diffusion and labile metal release, which the DGT-soil system mimics. The quantity CE is shown to have promise as a quantitative measure of the bioavailable metal in soils.

  9. Ammonia complexes of metals in aqueous solutions with high concentrations of ammonia

    International Nuclear Information System (INIS)

    Padar, T.G.; Novikov, L.K.; Stupko, T.V.; Isaev, I.D.; Pashkov, G.L.; Mironov, V.E.

    1991-01-01

    Potentiometric method, glass electrodes and Bierrum function were used to study the formation of ammonia complexes of magnesium, calcium, cadmium, zinc, copper(2) and silver in 2.0 mol/dm 3 aqueous solutions of ammonia nitrate with 0-18 mol/dm 3 ammonia concentrations at 25.0 deg C. Step constants of stability of studied complexes were calculated and their compositions were determined with account of nonideal character of aqueous-salt solutions with ammonia concentrations above 1.0 mol/dm 3 . Values of correction effects on salting out ammonia action for Bierrum function in solutions with 1.0-18 mol/dm 3 ammonia concentrations were found

  10. A NOVEL INTERPRETATION OF CONCENTRATION DEPENDENCE OF VISCOSITY OF DILUTE POLYMER SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Yan Pan; Rong-shi Cheng

    2000-01-01

    The concentration dependence of the reduced viscosity of dilute polymer solution is interpreted in the light of a new concept of the self-association of polymer chains in dilute solution. The apparent self-association constant is defined as the molar association constant divided by the molar mass of individual polymer chain and is numerically interconvertible with the Huggins coefficient. The molar association constant is directly proportional to the effective hydrodynamic volume of the polymer chain in solution and is irrespective of the chain architecture. The effective hydrodynamic volume accounts for the non-spherical conformation of a short polymer chain in solution and is a product of a shape factor and hydrodynamic volume. The observed enhancement of Huggins coefficient for short chain and branched polymer is satisfactorily interpreted by the concept of self-association. The concept of self-association allows us to predict the existence of a boundary concentration Cs (dynamic contact concentration) which divides the dilute polymer solution into two regions.

  11. Densities concentrations of aqueous of uranyl nitrate solutions

    International Nuclear Information System (INIS)

    Rodrigo Otero, A.; Rodriguez Hernandez, B.; Fernandez Rodriguez, L.

    1966-01-01

    The ratio density-concentration of aqueous uranyl nitrate solutions expressed as U 3 O 8 grams/liter, U grams/liter and hexahydrate uranyl nitrate weight percent at different temperatures, are established. Experimental values are graphically correlated and compared whit some published data. (Author) 2 refs

  12. Impact of solute concentration on the electrocatalytic conversion of dissolved gases in buffered solutions

    KAUST Repository

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2015-01-01

    . These alterations of the electrolyte properties associated with the solute concentration are universally applicable to other aqueous gas-related electrochemical reactions because the currents are purely determined by mass transfer of the dissolved gases. © 2015

  13. Conductivity and electrochemical stability of concentrated aqueous choline chloride solutions

    Science.gov (United States)

    Grishina, E. P.; Kudryakova, N. O.

    2017-10-01

    The conductivity and electrochemical stability of choline chloride (ChCl) solutions with water contents ranging from 20 to 39 wt % are studied. Exposing ChCl to moist ambient air yields a highly concentrated aqueous solution that, as an electrolyte, exhibits the properties and variations in conductivity with temperature and concentration characteristic of other similar systems. Its electrochemical stability window, determined by cyclic voltammetry, is comparable to that of ChCl-based deep eutectic solvents (DESs). Products of the electrolysis of ChCl‒H2O mixtures seem to be less toxic than those of Reline, Ethaline, and Maline.

  14. The use of erbium fiber laser relaxation frequency for sensing refractive index and solute concentration of aqueous solutions

    International Nuclear Information System (INIS)

    Arellano-Sotelo, H; Barmenkov, Yu O; Kir'yanov, A V

    2008-01-01

    We report a novel-principle fiber-laser intra-cavity sensor for measuring refractive index and solute concentration of aqueous solutions. The sensor operation is based on a variation of the laser oscillation relaxation frequency (the measured parameter), sensitive to the intra-cavity loss change. The sensor capacity is demonstrated on the example of measurements of sugar concentration in water. A modeling of the sensor operation is presented, allowing its performance optimization

  15. Mercury Inhibits Soil Enzyme Activity in a Lower Concentration than the Guideline Value.

    Science.gov (United States)

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-01-01

    Three soil types - neutral, alkaline and acidic were experimentally contaminated with nine different concentrations of inorganic mercury (0, 5, 10, 50, 100, 150, 200, 250, 300 mg/kg) to derive effective concentrations of mercury that exert toxicity on soil quality. Bioavailability of mercury in terms of water solubility was lower in acidic soil with higher organic carbon. Dehydrogenase enzyme activity and nitrification rate were chosen as indicators to assess soil quality. Inorganic mercury significantly inhibited (p mercury contents (EC10) were found to be less than the available safe limits for inorganic mercury which demonstrated inadequacy of existing guideline values.

  16. EFFECTS OF CIGARETTE SMOKING ON ERYTHROCYTE ANTIOXIDATIVE ENZYME ACTIVITIES AND PLASMA CONCENTRATIONS OF THEIR COFACTORS

    Directory of Open Access Journals (Sweden)

    M. Zahraie

    2005-07-01

    Full Text Available Tobacco smoke contains numerous compounds, many ‎of which are oxidants and capable of producing free radical and enhancing ‎the oxidative stress. The aim of this study was to investigate the effect of cigarette smoking on the erythrocyte antioxidative enzyme activities and the plasma ‎concentration of their cofactors. ‎Sixty eight healthy men were enrolled, 32 of whom had never smoked and 36 had smoked at least 10 cigarettes per day for ‎at least one year. Hemolysate superoxide dismutase (Cu-Zn SOD, glutathione peroxidase (GSH-Px and ‎catalase (CAT activities were measured using spectrophotometer. Plasma copper, zinc and selenium concentrations were determined ‎using atomic absorption spectrophotometer. Plasma iron concentration was determined by colorimetric ‎method. We found that erythrocyte Cu-Zn SOD activity was significantly higher in tobacco smokers ‎compared with non-smokers (1294 ± 206.7 U/gHb in smokers vs. 1121.6 ± 237.8 U/gHb in non-‎smokers, P < 0.01. While plasma selenium concentration was significantly lower in tobacco ‎smokers (62.7±14.8 μg/L in smokers vs. 92.1 ± 17.5 μg/L in non-smokers, P < 0.01, there were no significant ‎differences in erythrocyte GSH-Px and CAT activities and plasma copper, zinc and iron concentrations between the two groups. ‎It seems that cigarette smoking can alter antioxidative enzymes activity and plasma concentration of some trace elements.

  17. Stability and Concentration Verification of Ammonium Perchlorate Dosing Solutions

    National Research Council Canada - National Science Library

    Tsui, David

    1998-01-01

    Stability and concentration verification was performed for the ammonium perchlorate dosing solutions used in the on-going 90-Day Oral Toxicity Study conducted by Springborn Laboratories, Inc. (SLI Study No. 3433.1...

  18. Effect of Sodium Fluoride Ingestion on Malondialdehyde Concentration and the Activity of Antioxidant Enzymes in Rat Erythrocytes

    Directory of Open Access Journals (Sweden)

    José A. Morales-González

    2010-06-01

    Full Text Available Fluoride intoxication has been shown to produce diverse deleterious metabolic alterations within the cell. To determine the effects of sodium fluoride (NaF treatment on malondialdehyde (MDA levels and on the activity of antioxidant enzymes in rat erythrocytes, Male Wistar rats were treated with 50 ppm of NaF or were untreated as controls. Erythrocytes were obtained from rats sacrificed weekly for up to eight weeks and the concentration of MDA in erythrocyte membrane was determined. In addition, the activity of the enzymes superoxide, dismutase, catalase, and glutathione peroxidase were determined. Treatment with NaF produces an increase in the concentration of malondialdehyde in the erythrocyte membrane only after the eight weeks of treatment. On the other hand, antioxidant enzyme activity was observed to increase after the fourth week of NaF treatment. In conclusion, intake of NaF produces alterations in the erythrocyte of the male rat, which indicates induction of oxidative stress.

  19. Passivation behavior of a ferritic stainless steel in concentrated alkaline solutions

    Directory of Open Access Journals (Sweden)

    Arash Fattah-alhosseini

    2015-10-01

    Full Text Available The passivation behavior of AISI 430 ferritic stainless steel was investigated in concentrated alkaline solutions in relation to several test parameters, using electrochemical techniques. Increasing solution pH (varying from 11.5 to 14.0 leads to an increase in the corrosion rate of the alloy. Mott–Schottky analysis revealed that passive films formed on AISI 430 ferritic stainless steel behave as n-type semiconductor and the donor densities increased with pH. Electrochemical impedance spectroscopy (EIS results showed that the reciprocal capacitance of the passive film is directly proportional to its thickness, which decreases with pH increase. The results revealed that for this ferritic stainless steel in concentrated alkaline solutions, decreasing the solution pH offers better conditions for forming passive films with higher protection behavior, due to the growth of a much thicker and less defective film.

  20. Acquisition and Analysis of Data from High Concentration Solutions

    KAUST Repository

    Besong, Tabot M.D.

    2016-05-13

    The problems associated with ultracentrifugal analysis of macromolecular solutions at high (>10 mg/ml) are reviewed. Especially for the case of solutes which are non-monodisperse, meaningful results are not readily achievable using sedimentation velocity approaches. It is shown however by both simulation and analysis of practical data that using a modified form of an algorithm (INVEQ) published in other contexts, sedimentation equilibrium (SE) profiles can be analysed successfully, enabling topics such as oligomer presence or formation to be defined.To achieve this, it is necessary to employ an approach in which the solution density, which in an SE profile is radius-dependent, is taken into consideration. Simulation suggests that any reasonable level of solute concentration can be analysed.

  1. Acquisition and Analysis of Data from High Concentration Solutions

    KAUST Repository

    Besong, Tabot M.D.; Rowe, Arthur J.

    2016-01-01

    The problems associated with ultracentrifugal analysis of macromolecular solutions at high (>10 mg/ml) are reviewed. Especially for the case of solutes which are non-monodisperse, meaningful results are not readily achievable using sedimentation velocity approaches. It is shown however by both simulation and analysis of practical data that using a modified form of an algorithm (INVEQ) published in other contexts, sedimentation equilibrium (SE) profiles can be analysed successfully, enabling topics such as oligomer presence or formation to be defined.To achieve this, it is necessary to employ an approach in which the solution density, which in an SE profile is radius-dependent, is taken into consideration. Simulation suggests that any reasonable level of solute concentration can be analysed.

  2. An isotherm-based thermodynamic model of multicomponent aqueous solutions, applicable over the entire concentration range.

    Science.gov (United States)

    Dutcher, Cari S; Ge, Xinlei; Wexler, Anthony S; Clegg, Simon L

    2013-04-18

    In previous studies (Dutcher et al. J. Phys. Chem. C 2011, 115, 16474-16487; 2012, 116, 1850-1864), we derived equations for the Gibbs energy, solvent and solute activities, and solute concentrations in multicomponent liquid mixtures, based upon expressions for adsorption isotherms that include arbitrary numbers of hydration layers on each solute. In this work, the long-range electrostatic interactions that dominate in dilute solutions are added to the Gibbs energy expression, thus extending the range of concentrations for which the model can be used from pure liquid solute(s) to infinite dilution in the solvent, water. An equation for the conversion of the reference state for solute activity coefficients to infinite dilution in water has been derived. A number of simplifications are identified, notably the equivalence of the sorption site parameters r and the stoichiometric coefficients of the solutes, resulting in a reduction in the number of model parameters. Solute concentrations in mixtures conform to a modified Zdanovskii-Stokes-Robinson mixing rule, and solute activity coefficients to a modified McKay-Perring relation, when the effects of the long-range (Debye-Hückel) term in the equations are taken into account. Practical applications of the equations to osmotic and activity coefficients of pure aqueous electrolyte solutions and mixtures show both satisfactory accuracy from low to high concentrations, together with a thermodynamically reasonable extrapolation (beyond the range of measurements) to extreme concentration and to the pure liquid solute(s).

  3. Small angle X-ray scattering on concentrated hemoglobin solutions

    International Nuclear Information System (INIS)

    Zinke, M.; Damaschun, G.; Mueller, J.J.; Ruckpaul, K.

    1978-01-01

    The small-angle X-ray scattering technique was used to determine the intermolecular structure and interaction potentials in oxi-and deoxi-hemoglobin solutions. The pair correlation function obtained by the ZERNICKE-PRINS equation characterizes the intermolecular structure of the hemoglobin molecules. The intermolecular structure is concentration dependent. The hemoglobin molecules have a 'short range order structure' with a range of about 4 molecule diameters at 324 g/l. The potential functions of the hemoglobin-hemoglobin interaction have been determined on the basis of fluid theories. Except for the deoxi-hemoglobin solution having the concentration 370 g/l, the pair interaction consists in a short repulsion and a weak short-range attraction against kT. The potential minimum is between 1.2 - 1.5 nm above the greatest hemoglobin diameter. (author)

  4. Post-irradiation inactivation, protection, and repair of the sulfhydryl enzyme malate synthase

    International Nuclear Information System (INIS)

    Durchschlag, H.; Zipper, P.

    1985-01-01

    Malate synthase from baker's yeast, a trimeric sulfhydryl enzyme with one essential sulfhydryl group per subunit, was inactivated by 2 kGy X-irradiation in air-saturated aqueous solution (enzyme concentration: 0.5 mg/ml). The radiation induced changes of enzymic activity were registered at about 0,30,60 h after irradiation. To elucidate the role of OH - , O 2 , and H 2 O 2 in the X-ray inactivation of the enzyme, experiments were performed in the absence of presence of different concentrations of specific additives (formate, superoxide dismutase, catalase). These additives were added to malate synthase solutions before or after X-irradiation. Moreover, repairs of inactivated malate synthase were initiated at about 0 or 30 h after irradiation by means of the sulfhydryl agent dithiothreitol. Experiments yielded the following results: 1. Irradiation of malate synthase in the absence of additives inactivated the enzyme immediately to a residual activity Asub(r)=3% (corresponding to a D 37 =0.6 kGy), and led to further slow inactivation in the post-irradiation phase. Repairs, initiated at different times after irradiation, restored enzymic activity considerably. The repair initiated at t=0 led to Asub(r)=21%; repairs started later on resulted in somewhat lower activities. The decay of reparability, however, was found to progress more slowly than post-irradiation inactivation itself. After completion of repair the activities of repaired samples did not decrease significantly. 2. The presence of specific additives during irradiation caused significant protective effects against primary inactivation. The protection by formate was very pronounced (e.g., Asub(r)=72% and D 37 =6 kGy for 100 mM formate). The presence of catalytic amounts of superoxide dismutase and/or catalase exhibited only minor effects, depending on the presence and concentration of formate. (orig.)

  5. The role of enzyme and substrate concentration in the evaluation of serum angiotensin converting enzyme (ACE) inhibition by enalaprilat in vitro.

    Science.gov (United States)

    Weisser, K; Schloos, J

    1991-10-09

    The relationship between serum angiotensin converting enzyme (ACE) activity and concentration of the ACE inhibitor enalaprilat was determined in vitro in the presence of different concentrations (S = 4-200 mM) of the substrate Hip-Gly-Gly. From Henderson plots, a competitive tight-binding relationship between enalaprilat and serum ACE was found yielding a value of approximately 5 nM for serum ACE concentration (Et) and an inhibition constant (Ki) for enalaprilat of approximately 0.1 nM. A plot of reaction velocity (Vi) versus total inhibitor concentration (It) exhibited a non-parallel shift of the inhibition curve to the right with increasing S. This was reflected by apparent Hill coefficients greater than 1 when the commonly used inhibitory sigmoid concentration-effect model (Emax model) was applied to the data. Slopes greater than 1 were obviously due to discrepancies between the free inhibitor concentration (If) present in the assay and It plotted on the abscissa and could, therefore, be indicators of tight-binding conditions. Thus, the sigmoid Emax model leads to an overestimation of Ki. Therefore, a modification of the inhibitory sigmoid Emax model (called "Emax tight model") was applied, which accounts for the depletion of If by binding, refers to It and allows estimation of the parameters Et and IC50f (free concentration of inhibitor when 50% inhibition occurs) using non-linear regression analysis. This model could describe the non-symmetrical shape of the inhibition curves and the results for Ki and Et correlated very well with those derived from the Henderson plots. The latter findings confirm that the degree of ACE inhibition measured in vitro is, in fact, dependent on the concentration of substrate and enzyme present in the assay. This is of importance not only for the correct evaluation of Ki but also for the interpretation of the time course of serum ACE inhibition measured ex vivo. The non-linear model has some advantages over the linear Henderson

  6. The inhibitory effect of convulsant agents on the enzyme in brain which inactivates nerveside.

    Science.gov (United States)

    Toh, C C

    1969-07-01

    1. An enzyme which can be extracted from brain inactivates nerveside in the optimum pH range 5.8-7.0.2. The polybasic acids trypan blue and its analogue trypan red, bromphenol blue and its analogue bromthymol blue at concentrations of 0.22 mM and ethylenediaminetetra-acetic acid (EDTA) at a concentration of 1 mM are strong inhibitors of the enzyme.3. Penicillin which is a monobasic carboxylic acid also inhibits the enzyme but only if concentrations as high as 3.6 mM are used. The antibiotic streptomycin which is a basic substance does not inhibit the enzyme.4. Caffeine at a concentration of 7.2 mM only weakly inhibits the enzyme.5. Chymotrypsin and wheat germ acid phosphatase also inactivate nerveside at pH 5.9 and are inhibited by the acidic dyes and penicillin. EDTA inhibits wheat germ phosphatase but activates chymotrypsin.6. Inactivation of nerveside by the brain enzyme and by wheat germ phosphatase is different from the action of chymotrypsin. Nerveside solutions incubated with chymotrypsin completely lose all biological activity whereas if incubation is carried out with either the brain enzyme or wheat germ acid phosphatase a residual biological activity remains even when the concentration of these two enzymes is increased. This residual biological activity is due to a peptide as it is destroyed by chymotrypsin.7. The manner in which nerveside is inactivated by the brain enzyme is uncertain as the preparation of the latter contained phosphodiesterase and protease activities which were similarly inhibited by the acid dyes, penicillin and EDTA.8. Pentylenetetrazole, picrotoxin, strychnine and tetanus toxin do not inhibit the brain enzyme.9. The nerveside-inactivating enzyme is not identical with the Substance P-inactivating enzyme in brain as the former is inhibited by EDTA while the latter is not.

  7. Isolation of transplutonium elements on ion exchangers from solutions of high salt concentration

    International Nuclear Information System (INIS)

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1985-01-01

    The behaviour of transplutonium elements (TPE) on cation and anion exchangers in aqueous alcoholic solutions of chlorides and nitrates of some alkali and alkaline earth metals depending on different factors: salt concentration, content of alcohol and of acid in the solution as well as the nature of a cation was studied. The data obtained were used to determine the optimal conditions of concentration of TPE on ion exchangers from solutions containing great quantities of salts. The advantages of the use of aqueous alcoholic solutions of nitric acid in the isolation of TPE are shown. (author)

  8. Stilbazolium Merocyanine Dye Determination in Different Solutions, Concentrations and Colloids Using SERS

    DEFF Research Database (Denmark)

    Pajchrowski, Grzegorz; Abdali, Salim; Nørbygaard, Thomas

    2006-01-01

    Surface Enhanced Raman Scattering (SERS) measurements were carried out on stilbazolium merocyanine dye in methanol and pyridine solvents. Both solutions were measured in series of concentrations, covering a range of 5·10-5 M to 5·10-8 M. In these measurements Ag and Au colloids were used and the ......Surface Enhanced Raman Scattering (SERS) measurements were carried out on stilbazolium merocyanine dye in methanol and pyridine solvents. Both solutions were measured in series of concentrations, covering a range of 5·10-5 M to 5·10-8 M. In these measurements Ag and Au colloids were used...... report here on the success of using SERS to obtain Raman spectra of merocyanine dye at very low concentration in an attempt of new approach, which can be used for further investigations of the dye. The SERS spectra will here be reported and the results from different solutions, colloids, concentrations...

  9. Intelligent fiber optic sensor for solution concentration examination

    Science.gov (United States)

    Borecki, Michal; Kruszewski, Jerzy

    2003-09-01

    This paper presents the working principles of intelligent fiber-optic intensity sensor used for solution concentration examination. The sensor head is the ending of the large core polymer optical fiber. The head works on the reflection intensity basis. The reflected signal level depends on Fresnel reflection and reflection on suspended matter when the head is submersed in solution. The sensor head is mounted on a lift. For detection purposes the signal includes head submerging, submersion, emerging and emergence is measured. This way the viscosity turbidity and refraction coefficient has an effect on measured signal. The signal forthcoming from head is processed electrically in opto-electronic interface. Then it is feed to neural network. The novelty of presented sensor is implementation of neural network that works in generalization mode. The sensor resolution depends on opto-electronic signal conversion precision and neural network learning accuracy. Therefore, the number and quality of points used for learning process is very important. The example sensor application for examination of liquid soap concentration in water is presented in the paper.

  10. Solute concentration affects bradykinin-mediated increases in renal prostaglandin E2

    International Nuclear Information System (INIS)

    Zenser, T.V.; Davis, E.S.; Rapp, N.S.; Davis, B.B.

    1981-01-01

    The effects of solute concentration on the bradykinin-mediated increase in inner medullary slice prostaglandin E2 (PGE2) synthesis were investigated. PG content was determined by specific RIA. Bradykinin stimulation was prevented by the addition of the following solutes to Krebs buffer: 1.0 M urea, 0.5 or 1.0 M NaCl, 0.5 or 1.0 M mannitol, 1.0 M urea plus 0.5 M NaCl, or 1.0 M mannitol plus 0.5 M NaCl. By contrast, basal PGE2 synthesis was increased by 1.0 M mannitol or by 1.0 M mannitol plus 0.5 M NaCl, but decreased by 1.0 M urea. Urea elicited a concentration-dependent, reversible inhibition of bradykinin stimulation, with 0.01 M urea being the lowest effective concentration. By contrast, basal PGE2 synthesis was only reduced at a urea concentration greater than 0.6 M. Arachidonic acid-mediated increases in both PGE2 and PGF2 alpha synthesis were not prevented by 1.0 M urea. The latter suggests that neither PG endoperoxide synthetase nor PG endoperoxide E isomerase are inhibited by urea. The data indicate that different hypertonic solutions have different effects on basal PG production, but all inhibit bradykinin stimulation

  11. Reverse micelles in organic solvents: a medium for the biotechnological use of extreme halophilic enzymes at low salt concentration

    Directory of Open Access Journals (Sweden)

    Frutos C. Marhuenda-Egea

    2002-01-01

    Full Text Available Alkaline p-nitrophenylphosphate phosphatase (pNPPase from the halophilic archaeobacterium Halobacterium salinarum (previously halobium was solubilized at low salt concentration in reverse micelles of hexadecyltrimethylammoniumbromide in cyclohexane with 1-butanol as cosurfactant. The enzyme maintained its catalytic properties under these conditions. The thermodynamic “solvation–stabilization hypothesis” has been used to explain the bell-shaped dependence of pNPPase activity on the water content of reverse micelles, in terms of protein–solvent interactions. According to this model, the stability of the folded protein depends on a network of hydrated ions associated with acidic residues at the protein surface. At low salt concentration and low water content (the ratio of water concentration to surfactant concentration; w0, the network of hydrated ions within the reverse micelles may involve the cationic heads of the surfactant. The bell-shaped profile of the relationship between enzyme activity and w0 varied depending on the concentrations of NaCl and Mn2+.

  12. Effect of Sulfide Concentration on Copper Corrosion in Anoxic Chloride-Containing Solutions

    Science.gov (United States)

    Kong, Decheng; Dong, Chaofang; Xu, Aoni; Man, Cheng; He, Chang; Li, Xiaogang

    2017-04-01

    The structure and property of passive film on copper are strongly dependent on the sulfide concentration; based on this, a series of electrochemical methods were applied to investigate the effect of sulfide concentration on copper corrosion in anaerobic chloride-containing solutions. The cyclic voltammetry and x-ray photoelectron spectroscopy analysis demonstrated that the corrosion products formed on copper in anaerobic sulfide solutions comprise Cu2S and CuS. And the corrosion resistance of copper decreased with increasing sulfide concentration and faster sulfide addition, owing to the various structures of the passive films observed by the atomic force microscope and scanning electron microscope. A p-type semiconductor character was obtained under all experimental conditions, and the defect concentration, which had a magnitude of 1022-1023 cm-3, increased with increasing sulfide concentration, resulting in a higher rate of both film growth and dissolution.

  13. Physical Property Modeling of Concentrated Cesium Eluate Solutions, Part I - Derivation of Models

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.; Pierce, R. A.; Edwards, T. B.; Calloway, T. B.

    2005-09-15

    Major analytes projected to be present in the Hanford Waste Treatment Plant cesium ion-exchange eluate solutions were identified from the available analytical data collected during radioactive bench-scale runs, and a test matrix of cesium eluate solutions was designed within the bounding concentrations of those analytes. A computer model simulating the semi-batch evaporation of cesium eluate solutions was run in conjunction with a multi-electrolyte aqueous system database to calculate the physical properties of each test matrix solution concentrated to the target endpoints of 80% and 100% saturation. The calculated physical properties were analyzed statistically and fitted into mathematical expressions for the bulk solubility, density, viscosity, heat capacity and volume reduction factor as a function of temperature and concentration of each major analyte in the eluate feed. The R{sup 2} of the resulting physical property models ranged from 0.89 to 0.99.

  14. Concentration and purification of plutonium solutions by means of ion-exchange columns

    Energy Technology Data Exchange (ETDEWEB)

    Durham, R W; Aikin, A M

    1953-02-15

    Equilibrium experiments using Dowex 50 ion-exchange resin and nitric acid solutions of Pu{sup 3+}, UO{sub 2}{sup 2+}, Fe{sup 2+} cations have yielded values for the absorption affinities for these ions. Trivalent plutonium was found to be far more strongly absorbed than UO{sub 2}{sup 2+} and Fe{sup 2+}. Column studies have shown that uranium can be completely separated from plutonium even when the initial concentration of uranium is very much greater than that of the plutonium. A plutonium concentration increase of about fifty-fold can be obtained from solutions about 10{sup -3} M in plutonium and 1.0M in nitric acid. The equation K{sub Pu}{sup 3+} = X{sub R} (1-X{sub S}){sup 3} C{sub S}{sup 2}/X{sub S} (1-X{sub R}){sup 3} C{sub R}{sup 2} for estimating the maximum amount of plutonium taken up by a column of resin of unit volume from a solution of total equivalent concentration, C{sub S} , has been shown to hold for values of C{sub S} up to 3 equivalents per litre. X{sub R}, the equivalent fraction of plutonium on the resin, is the number of equivalents of plutonium absorbed by the resin divided by the total capacity of the column. X{sub S}, the equivalent fraction of plutonium in solution, is the equivalent concentration of plutonium divided by the total equivalent concentration of cations in solution. C{sub R} is the total capacity of the resin in milli-equivalents per gram of dry resin. Recommendations have been made for the application and operation of ion-exchange columns in the Plutonium-Extraction Plant. (author)

  15. Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions

    Science.gov (United States)

    Turkoz, Emre; Perazzo, Antonio; Arnold, Craig B.; Stone, Howard A.

    2018-05-01

    The addition of small amounts of xanthan gum to water yields viscoelastic solutions. In this letter, we show that the viscoelasticity of aqueous xanthan gum solutions can be tuned by different types of salts. In particular, we find that the decrease in viscoelasticity not only depends, as is known, on the salt concentration, but also is affected by the counterion ionic radius and the valence of the salt.

  16. Effect of ion concentrations on uranium absorption from sodium carbonate solutions

    International Nuclear Information System (INIS)

    Traut, D.E.; El Hazek, N.M.T.; Palmer, G.R.; Nichols, I.L.

    1979-01-01

    The effect of various ion concentrations on uranium absorption from a sodium carbonate solution by a strong-base, anion resin was investigated in order to help assure an adequate uranium supply for future needs. The studies were conducted to improve the recovery of uranium from in situ leach solutions by ion exchange. The effects of carbonate, bicarbonate, chloride, and sulfate ions were examined. Relatively low (less than 5 g/l) concentrations of chloride, sulfate, and bicarbonate were found to be detrimental to the absorption of uranium. High (greater than 10 g/l) carbonate concentrations also adversely affected the uranium absorption. In addition, the effect of initial resin form was investigated in tests of the chloride, carbonate, and bicarbonate forms; resin form was shown to have no effect on the absorption of uranium

  17. Correlation of Endothelin-1 Concentration and Angiotensin-Converting Enzyme Activity with the Staging of Liver Fibrosis

    OpenAIRE

    Kardum, Duško; Fabijanić, Damir; Lukić, Anita; Romić, Željko; Petrovečki, Mladen; Bogdanović, Zoran; Jurić, Klara; Urek-Crnčević, Marija; Banić, Marko

    2012-01-01

    Increased serum angiotensin-converting enzyme (SACE) activity and serum concentration of endothelin-1 (ET-1) were found in liver cirrhosis. We investigated a correlation between the different stages of liver fibrosis and SACE activity and serum ET-1 concentration. Seventy patients with pathohistologically established chronic liver disease were divided in three groups according to Ishak criteria for liver fibrosis: minimal fibrosis (Ishak score 0–1, n=20), medium fibrosis (Ishak sc...

  18. Molecular Effects of Concentrated Solutes on Protein Hydration, Dynamics, and Electrostatics.

    Science.gov (United States)

    Abriata, Luciano A; Spiga, Enrico; Peraro, Matteo Dal

    2016-08-23

    Most studies of protein structure and function are performed in dilute conditions, but proteins typically experience high solute concentrations in their physiological scenarios and biotechnological applications. High solute concentrations have well-known effects on coarse protein traits like stability, diffusion, and shape, but likely also perturb other traits through finer effects pertinent at the residue and atomic levels. Here, NMR and molecular dynamics investigations on ubiquitin disclose variable interactions with concentrated solutes that lead to localized perturbations of the protein's surface, hydration, electrostatics, and dynamics, all dependent on solute size and chemical properties. Most strikingly, small polar uncharged molecules are sticky on the protein surface, whereas charged small molecules are not, but the latter still perturb the internal protein electrostatics as they diffuse nearby. Meanwhile, interactions with macromolecular crowders are favored mainly through hydrophobic, but not through polar, surface patches. All the tested small solutes strongly slow down water exchange at the protein surface, whereas macromolecular crowders do not exert such strong perturbation. Finally, molecular dynamics simulations predict that unspecific interactions slow down microsecond- to millisecond-timescale protein dynamics despite having only mild effects on pico- to nanosecond fluctuations as corroborated by NMR. We discuss our results in the light of recent advances in understanding proteins inside living cells, focusing on the physical chemistry of quinary structure and cellular organization, and we reinforce the idea that proteins should be studied in native-like media to achieve a faithful description of their function. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Investigation on the Metabolic Regulation of pgi gene knockout Escherichia coli by Enzyme Activities and Intracellular Metabolite Concentrations

    Directory of Open Access Journals (Sweden)

    Nor ‘Aini, A. R.

    2006-01-01

    Full Text Available An integrated analysis of the cell growth characteristics, enzyme activities, intracellular metabolite concentrations was made to investigate the metabolic regulation of pgi gene knockout Escherichia coli based on batch culture and continuous culture which was performed at the dilution rate of 0.2h-1. The enzymatic study identified that pathways of pentose phosphate, ED pathway and glyoxylate shunt were all active in pgi mutant. The glycolysis enzymes i.e glyceraldehyde-3-phosphate dehydrogenase, fructose diphosphatase, pyruvate kinase, triose phosphate isomerase were down regulated implying that the inactivation of pgi gene reduced the carbon flux through glycolytic pathway. Meanwhile, the pentose phosphate pathway was active as a major route for intermediary carbohydrate metabolism instead of glycolysis. The pentose phosphate pathway generates most of the major reducing co-factor NADPH as shown by the increased of NADPH/NADP+ ratio in the mutant when compared with the parent strain. The fermentative enzymes such as acetate kinase and lactate dehydrogenase were down regulated in the mutant. Knockout of pgi gene results in the significant increase in the intracellular concentration of glucose-6-phosphate and decrease in the concentration of oxaloacetate. The slow growth rate of the mutant was assumed to be affected by the accumulation of glucose-6-phosphate and imbalance of NADPH reoxidation.

  20. Multipoint attachment to a support protects enzyme from inactivation by organic solvents: alpha-Chymotrypsin in aqueous solutions of alcohols and diols.

    Science.gov (United States)

    Mozhaev, V V; Sergeeva, M V; Belova, A B; Khmelnitsky, Y L

    1990-03-25

    Inactivation of alpha-chymotrypsin in aqueous solutions of alcohols and diols proceeds both reversibly and irreversibly. Reversible loss of the specific enzyme activity results from conformational changes (unfolding) of the enzyme detected by fluorescence spectroscopy. Multipoint covalent attachment to the matrix of polyacryl-amide gel by copolymerization method stabilizes alpha-chymotrypsin from denaturation by alcohols, the stabilizing effect increasing with the number of bonds between the protein and the support. Immobilization protects the enzyme also from irreversible inactivation by organic solvents resulting from bimolecular aggregation and autolysis.

  1. Investigation into sorption of uranium fron its high-concentrated nitric acid solutions on resin AMP

    International Nuclear Information System (INIS)

    Savel'eva, V.I.; Sudarikov, B.N.; Kireeva, G.N.; Ryzhkova, V.N.; Kandaryuk, V.V.

    1976-01-01

    Sorption of uranium has been studied on strongly basic anion-exchange resin from nitric acid solutions with concentration in metal 10-150 g/l in presence of sodium, calcium, and aluminium nitrates. Sorption of uranium from solutions has been performed by the static method with the aid of contacting the initial solution with airdry resin for 4 hours, resin to solution ratio being 1:12.5. It has been established that sorption of uranium increases with a rise in concentration of salting out agents in the following order: Al(NO 3 ) 3 > Ca(NO 3 ) 2 > Na(NO 3 ). It has been shown spectrophotometricatly that in solutions of nitrates and HNO 3 with a concentration 3 exceeds 6 mol/l

  2. Sensing based on the motion of enzyme-modified nanorods

    DEFF Research Database (Denmark)

    Bunea, Ada-Ioana; Pavel, Ileana-Alexandra; David, Sorin

    2015-01-01

    of nanorods modified with the appropriate enzyme. Nanorods, with a Pt and a polypyrrole (PPy) segment, were fabricated. The PPy segment of such nanorods was then modified with glucose oxidase (GOx), glutamate oxidase (GluOx), or xanthine oxidase (XOD). Calibration curves, linking the diffusion coefficient...... of the oxidase-modified nanorods to the concentration of the oxidase substrate, were subsequently built. The oxidase-modified nanorods and their calibration curves were finally used to determine substrate concentrations both in simple aqueous solutions and in complex samples such as horse serum and cell culture...

  3. Separation and Concentration of Succinic Adic from Multicomponent Aqueous Solutions by Nanofiltration Technique

    Directory of Open Access Journals (Sweden)

    Antczak Jerzy

    2014-06-01

    Full Text Available This paper applies the determined suitability of nanofiltration (NF membrane separation for selective isolation and concentration of succinic acid from aqueous solutions which are post-fermentation multicomponent fluids. The study analyzed the influence of concentration and the pH of the separated solutions on the efficiency and selectivity of NF process that runs in a module equipped with a ceramic membrane. Moreover, the effect of applied trans-membrane pressure on the retention of succinic acid and sodium succinate has been studied. The investigations have shown that in the used NF module the retention of succinic acid salt is equal almost 50% in the case of a three-component model solution, although the degree of retention depends on both the transmembrane pressure and the initial concentration of separated salt.

  4. Stimulation of Escherichia coli DNA photoreactivating enzyme activity by adenosine 5'-triphosphate

    International Nuclear Information System (INIS)

    Koka, P.

    1984-01-01

    A purification procedure consisting of Biorex-70, single-stranded DNA-agarose, and ultraviolet (UV) light irradiated DNA-cellulose chromatography has been adopted for the Escherichia coli photoreactivating enzyme, to obtain enzyme preparations that are free of extraneous nucleic acid or nucleotides. The purification yields high specific activities (75 000 pmol h -1 mg -1 ) with a 50% recovery. Enzyme preparations have also been obtained from UV-irradiated DNA-cellulose by exposure to visible light. These enzyme preparations contain oligoribonucleotides, up to 26 nucleotides in length in relation to DNA size markers, but these are not essential for enzymatic activity. When the enzyme is preincubated with exogenous ATP a 10-fold stimulation in the enzyme activity has been observed. It has been determined by polyacrylamide gel electrophoresis and high-voltage diethylaminoethyl paper electrophoresis that the light-released enzyme samples from a preincubated and washed mixture of the enzyme, [γ- 32 P]ATP, and UV-irradiated DNA-cellulose contained exogenous [γ- 32 P], which eluted with the enzyme-containing fractions when subjected to Bio-Gel P-30 chromatography. GTP caused a slight enhancement of the enzyme activity while ADP strongly inhibited photoreactivation, at the same concentration and conditions. Higher (X5) concentrations of ADP and adenosine 5'-(β, γ-methylenetriphosphate) totally inhibited the enzyme activity. Dialysis of a photoreactivating enzyme preparation against a buffer solution containing 1 mM ATP caused a 9-fold stimulation of the enzyme activity. In addition, there is an apparent hydrolysis of ATP during photoreactivation as measured by the release of 32 P from [γ- 32 P]ATP

  5. Development of system on predicting uranium concentration from pregnant solution

    International Nuclear Information System (INIS)

    Yi Weiping

    2004-01-01

    Uranium concentration from pregnant solution is primary index of process for in-situ leaching of uranium, and the suitable method with which to predicate this index and effective means to solve it with were continuously studied hard. SPUC-system on predicting uranium concentration based on GM model of gray system theory is developed, and the mathematical model, constitution, function and theory foundation of this system are introduced. (authors)

  6. Effects of Organic Corrosion Inhibitor and Chloride Ion Concentration on Steel Depassivation and Repassivation in Solution

    Institute of Scientific and Technical Information of China (English)

    WANG Zixiao; YU Lei; LIU Zhiyong; SONG Ning

    2015-01-01

    Effect of an organic corrosion inhibitor (OCI) named PCI-2014 added in chloride solution on the critical chlo-ride concentration of mild steel depassivation and the critical OCI concentrations for repairing the steel in different chlo-ride solution were investigated. The results show that the critical chloride concentration increases exponentially with raises of PCI-2014 concentration in the solution. Within a certain chloride ion concentration range, the critical PCI-2014 concentration for repairing the corroded steel is also increases exponentially with enhancement of chloride content in the solution. Atomic force microscopy images display the molecular particles of inhibitor are adsorbed on the steel surface and formed a protective layer. Analysis of X-ray photoelectron spectroscopy shows the chloride ions at the surface of steel are displaced by atoms or molecules of the inhibitor in chloride condition.

  7. Methods to homogenize electrochemical concentration cell (ECC ozonesonde measurements across changes in sensing solution concentration or ozonesonde manufacturer

    Directory of Open Access Journals (Sweden)

    T. Deshler

    2017-06-01

    Full Text Available Ozone plays a significant role in the chemical and radiative state of the atmosphere. For this reason there are many instruments used to measure ozone from the ground, from space, and from balloons. Balloon-borne electrochemical cell ozonesondes provide some of the best measurements of the ozone profile up to the mid-stratosphere, providing high vertical resolution, high precision, and a wide geographic distribution. From the mid-1990s to the late 2000s the consistency of long-term records from balloon-borne ozonesondes has been compromised by differences in manufacturers, Science Pump (SP and ENSCI (EN, and differences in recommended sensor solution concentrations, 1.0 % potassium iodide (KI and the one-half dilution: 0.5 %. To investigate these differences, a number of organizations have independently undertaken comparisons of the various ozonesonde types and solution concentrations, resulting in 197 ozonesonde comparison profiles. The goal of this study is to derive transfer functions to allow measurements outside of standard recommendations, for sensor composition and ozonesonde type, to be converted to a standard measurement and thus homogenize the data to the expected accuracy of 5 % (10 % in the stratosphere (troposphere. Subsets of these data have been analyzed previously and intermediate transfer functions derived. Here all the comparison data are analyzed to compare (1 differences in sensor solution composition for a single ozonesonde type, (2 differences in ozonesonde type for a single sensor solution composition, and (3 the World Meteorological Organization's (WMO and manufacturers' recommendations of 1.0 % KI solution for Science Pump and 0.5 % KI for ENSCI. From the recommendations it is clear that ENSCI ozonesondes and 1.0 % KI solution result in higher amounts of ozone sensed. The results indicate that differences in solution composition and in ozonesonde type display little pressure dependence at pressures

  8. Determination of the unfrozen water content of maximally freeze-concentrated carbohydrate solutions.

    Science.gov (United States)

    Hatley, R H; Mant, A

    1993-08-01

    The heat capacity change at T'g has been studied in freeze-concentrated carbohydrate solutions. The values obtained have been compared with those found for high concentration solutions that do not undergo freezing above Tg. The analysis has indicated that the freezing process influences the degree of stress in the glassy phase. This results in a complex power-time curve when frozen solutions are heated in a differential scanning calorimeter. The endotherm produced by the stress relaxation can cause considerable error in W'g measurement obtained by any method that relies on the integration of the power-time curve. A more reliable method for W'g determination is via the intersection of T'g with a previously prepared Tg/Wg calibration curve.

  9. Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles.

    Science.gov (United States)

    Samaratunga, Ashani; Kudina, Olena; Nahar, Nurun; Zakharchenko, Andrey; Minko, Sergiy; Voronov, Andriy; Pryor, Scott W

    2015-03-01

    Cellulase and β-glucosidase were adsorbed on a polyacrylic acid polymer brush grafted on silica nanoparticles to produce enzymogels as a form of enzyme immobilization. Enzyme loading on the enzymogels was increased to a saturation level of approximately 110 μg (protein) mg(-1) (particle) for each enzyme. Enzymogels with varied enzyme loadings were then used to determine the impact on hydrolysis rate and enzyme recovery. Soluble sugar concentrations during the hydrolysis of filter paper and Solka-Floc with the enzymogels were 45 and 53%, respectively, of concentrations when using free cellulase. β-Glucosidase enzymogels showed lower performance; hydrolyzate glucose concentrations were just 38% of those using free enzymes. Increasing enzyme loading on the enzymogels did not reduce net efficacy for cellulase and improved efficacy for β-glucosidase. The use of free cellulases and cellulase enzymogels resulted in hydrolyzates with different proportions of cellobiose and glucose, suggesting differential attachment or efficacy of endoglucanases, exoglucanases, and β-glucosidases present in cellulase mixtures. When loading β-glucosidase individually, higher enzyme loadings on the enzymogels produced higher hydrolyzate glucose concentrations. Approximately 96% of cellulase and 66 % of β-glucosidase were recovered on the enzymogels, while enzyme loading level did not impact recovery for either enzyme.

  10. The clinical value of enzyme-multiplied immunoassay technique monitoring the plasma concentrations of cyclosporine A after renal transplantation

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Luo

    2011-05-01

    Full Text Available The feasibility and the clinical value of the enzyme-multiplied immunoassay technique (EMIT monitoring of blood concentrations of cyclosporine A (CsA in patients treated with CsA were investigated after kidney transplantation. The validation method was performed to the EMIT determination of CsA blood concentration, the CsA whole blood ‘trough concentrations (C0 of patients in different time periods after renal transplantation were monitored, and combined with the clinical complications, the statistical results were analyzed and compared. EMIT was precise, accurate and stable, also with a high quality control. The mean postoperative blood concentration of CsA was as follows: 12 months, (185.6 ± 28.1ng/mL. The toxic reaction rate of CsA blood concentration within the recommended therapeutic concentration was 14. 1%, significantly lower than that of the none-recommended dose group (37.2% (P < 0.05; the transplantation rejection rate was 4.4%, significantly lower than that of the none-recommended dose group (22.5% (P < 0.05. Using EMIT to monitor the blood concentration of CsA as the routine laboratory method is feasible, and is able to reduce the CsA toxicity and rejection significantly, leading to achieving the desired therapeutic effect. Keywords: enzyme-multiplied immunoassay technique, renal transplantation, cyclosporin A, blood concentration monitoring

  11. Physiological responses of sweet potato (Ipomoea batatas L. plants due to different copper concentrations

    Directory of Open Access Journals (Sweden)

    Cristina Copstein Cuchiara

    2015-12-01

    Full Text Available At low concentrations, Cu is considered as an essential micronutrient for plants and as a constituent and activator of several enzymes. However, when in excess, Cu can negatively affect plant growth and metabolism. Therefore, the aim of this study was to evaluate physiological responses of sweet potato plants at different Cu concentrations by measuring morphological parameters, antioxidant metabolism, stomatal characteristics, and mineral profile. For this purpose, sweet potato plants were grown hydroponically in complete nutrient solution for six days. Then, the plants were transferred to solutions containing different Cu concentrations, 0.041 (control, 0.082, and 0.164 mM, and maintained for nine days. The main effect of increased Cu concentration was observed in the roots. The sweet potato plants grown in 0.082 mM Cu solution showed increased activity of antioxidant enzymes and no changes in growth parameters. However, at a concentration of 0.164 mM, Cu was transported from the roots to the shoots. This concentration altered morpho-anatomical characteristics and activated the antioxidant system because of the stress generated by excess Cu. On the basis of the results, it can be concluded that the sweet potato plants were able to tolerate Cu toxicity until 0.082 mM.

  12. Effect of parenteral serum plant sterols on liver enzymes and cholesterol metabolism in a patient with short bowel syndrome.

    Science.gov (United States)

    Hallikainen, Maarit; Huikko, Laura; Kontra, Kirsi; Nissinen, Markku; Piironen, Vieno; Miettinen, Tatu; Gylling, Helena

    2008-01-01

    Hepatobiliary complications are common during parenteral nutrition. Lipid moiety in commercially available solutions contains plant sterols. It is not known whether plant sterols in parenteral nutrition interfere with hepatic function in adults. We detected how different amounts of plant sterols in parenteral nutrition solution affected serum plant sterol concentrations and liver enzymes during a 1.5-year follow-up in a patient with short bowel syndrome. Serum lipid, plant sterol, and liver enzyme levels were measured regularly during the transition from Intralipid (100% soy-based intravenous fat emulsion) to ClinOleic (an olive oil-based intravenous fat emulsion with 80% olive oil, 20% soy oil and lower plant sterols); the lipid supply was also gradually increased from 20 to 35 g/d. Plant sterols in parenteral nutrition solution and serum were measured with gas-liquid chromatography. During infusion of soy-based intravenous fat emulsion (30 g/d, total plant sterols 87 mg/d), the concentrations of sitosterol, campesterol, and stigmasterol were 4361, 1387, and 378 microg/dL, respectively, and serum liver enzyme values were >or= 2.5 times above upper limit of normal. After changing to olive oil-based intravenous fat emulsion (20-35 g/d, plant sterols 37-65 mg/d), concentrations decreased to 2148 to 2251 microg/dL for sitosterol, 569-297 microg/dL for campesterol, and 95-55 microg/dL for stigmasterol. Concomitantly, liver enzyme values decreased to 1.4 to 1.8 times above upper limit of normal at the end of follow-up. The nutrition status of the patient improved. The amount of plant sterols in lipid emulsion affects serum liver enzyme levels more than the amount of lipid.

  13. Further studies on the use of enzyme profiles to monitor residue accumulation in wildlife: Plasma enzymes in starlings fed graded concentrations of morsodren, DDE, Aroclor 1254, and malathion

    Science.gov (United States)

    Dieter, M.P.

    1975-01-01

    Wild-trapped starlings (Sturnus vulgaris) were fed concentrations of Morsodren (2, 4, and 8 ppm), DDE or Aroclor 1254 (5, 25, and 100 ppm), or malathion (8, 35, and 160 ppm) that were found to be sublethal in pen-reared Coturnix quail fed these amounts for 12 weeks. Plasma enzymes had to be measured earlier than planned in starlings fed Morsodren (at three weeks) or the organochlorine compounds (at seven weeks) because of unexpected, subsequent mortality. Variations in enzyme response were greater in wild than in pen-reared birds, but not enough to mask the toxicant-induced changes in enzyme activity. Cholinesterase activities decreased in birds fed Morsodren or malathion, and increased in those fed the organochlorine compounds. Lactate dehydrogenase activities increased two-fold in starlings fed Morsodren and two- to four-fold in those fed the organochlorine compounds, but only 50% in those fed malathion. Further examination of enzyme profiles showed that creatine kinase and aspartate aminotransferase activities increased two-to four-fold in birds fed Morsodren or the organochlorine compounds but not at all in those fed malathion. Thus the classes of environmental contaminants fed to starlings could be easily distinguished by these enzymatic parameters. Evaluation of enzymatic profiles appears to be a potentially valuable technique to monitor the presence of toxicants in wild populations, especially if used to complement standard chemical residue analyses. Here the residue analyses showed, after three weeks feeding, that mercury in the carcasses reflected the concentrations fed daily, whereas accumulation in the livers was two- to four-fold greater. After seven weeks feeding, liver residues of either organochlorine compound were about three-fold higher than the concentrations fed daily. However, four times as much DDE as Aroclor 1254 had accumulated in the carcasses.

  14. Erythrocyte 2,3-diphosphoglycerate and serum enzyme concentrations in trained and sedentary men.

    Science.gov (United States)

    Lijnen, P; Hespel, P; Van Oppens, S; Fiocchi, R; Goossens, W; Vanden Eynde, E; Amery, A

    1986-04-01

    The acute effect of exercise on the intraerythrocyte 2,3-diphosphoglycerate concentration and on various serum enzymes and some related variables was investigated in 14 male athletes before and after a 50-min cross-country run and compared at rest to 15 sedentary subjects. Compared to the sedentary subjects, the athletes had higher resting levels of serum creatine phosphokinase, plasma myoglobin, and renin substrate but had a lower plasma renin activity. The red blood cell 2,3-diphosphoglycerate concentration increased after exercise in the runners and was not different at rest between the athletes and the sedentary subjects. Our data therefore suggest that the resting plasma renin activity is reduced in athletes when compared to sedentary subjects. Training seems however not to alter the resting level of 2,3-diphosphoglycerate in the red blood cells.

  15. Enzyme-Powered Pumps: From Fundamentals to Applications

    Science.gov (United States)

    Ortiz-Rivera, Isamar

    , covering also the effect of the thermodynamics of the enzymatic reaction in the pumping behavior, and (3) the applicability of enzyme pumps as fluid flow-based inhibitor assays and as drug delivery devices. Our findings in each of these areas, gets us closer to our ultimate goal, where we aim to identify the optimal conditions needed for enzyme micropump operation, and construct a general model that could accurately predict enzyme micropump behavior for any enzyme-substrate combination. The information aforementioned has been divided in four chapters. Chapter 1 gives a quick glance into the development of enzyme-powered micropumps: from the systems and observed behaviors inspiring this work, to the first systems that were developed. The stability, duration, and extent of fluid pumping of enzyme pumps in general, are also discussed, along with the optimization of the enzyme-pump design. This chapter aims to provide a general idea of the motivation behind the concept of "enzyme-powered pumps", what are "enzyme-powered pumps", and which are the key features that characterize these systems. Chapter 2 is an extensive analysis of the mechanisms of actuation proposed for enzyme-powered micropumps. This chapter not only covers the first attempts to understand how enzyme pumps work, but also explores further the behavior of urease-powered pumps, which fluid flow patterns cannot be completely predicted only by considering thermal or solutal gradients. The findings of these studies could allow us to rationally control fluid flow for the directed delivery of payloads at designated locations. In Chapters 3 and 4, our focus was to highlight the potential application of enzyme-powered pumps for sensing and delivery. Chapter 3 explores the use of enzyme pumps as fluid flow-based inhibitor assays. At fixed concentrations of an enzyme and its substrate, the presence of an inhibitor can be detected by monitoring the decrease in fluid flow speed. Using this principle, sensors for toxic

  16. Global solution for a chemotactic haptotactic model of cancer invasion

    Science.gov (United States)

    Tao, Youshan; Wang, Mingjun

    2008-10-01

    This paper deals with a mathematical model of cancer invasion of tissue recently proposed by Chaplain and Lolas. The model consists of a reaction-diffusion-taxis partial differential equation (PDE) describing the evolution of tumour cell density, a reaction-diffusion PDE governing the evolution of the proteolytic enzyme concentration and an ordinary differential equation modelling the proteolysis of the extracellular matrix (ECM). In addition to random motion, the tumour cells are directed not only by haptotaxis (cellular locomotion directed in response to a concentration gradient of adhesive molecules along the ECM) but also by chemotaxis (cellular locomotion directed in response to a concentration gradient of the diffusible proteolytic enzyme). In one space dimension, the global existence and uniqueness of a classical solution to this combined chemotactic-haptotactic model is proved for any chemotactic coefficient χ > 0. In two and three space dimensions, the global existence is proved for small χ/μ (where μ is the logistic growth rate of the tumour cells). The fundamental point of proof is to raise the regularity of a solution from L1 to Lp (p > 1). Furthermore, the existence of blow-up solutions to a sub-model in two space dimensions for large χ shows, to some extent, that the condition that χ/μ is small is necessary for the global existence of a solution to the full model.

  17. DNA strand exchange catalyzed by molecular crowding in PEG solutions

    KAUST Repository

    Feng, Bobo; Frykholm, Karolin; Nordé n, Bengt; Westerlund, Fredrik

    2010-01-01

    DNA strand exchange is catalyzed by molecular crowding and hydrophobic interactions in concentrated aqueous solutions of polyethylene glycol, a discovery of relevance for understanding the function of recombination enzymes and with potential applications to DNA nanotechnology. © 2010 The Royal Society of Chemistry.

  18. Radiolysis of concentrated solutions. 2. Pulse and #betta#-radiolysis studies of direct and indirect effects in lithium iodide solutions

    International Nuclear Information System (INIS)

    Hadjadj, A.; Julien, R.; Pucheault, J.; Ferradini, C.; Hickel, B.

    1982-01-01

    In the preceding study of the radiolysis of concentrated aqueous LiCl solutions, one of the hypotheses used to explain the apparent inefficacy of Cl 2- formation by the direct effect was that molecular chlorine, not detectable by spectrophotometry, could be formed during the early stages of water radiolysis. Such an hypothesis is confirmed here for pulse and #betta#-radiolysis of concentrated aqueous neutral LiI solutions. Indeed, it is shown that, 10 ns after the pulse, molecular iodine, detected as I 3- , is formed with a yield that increases with the LiI concentration. The experimental results yields values of 4.8 and 7.3 respectively for the indirect and direct effects of total oxidation G/sub I 2- / + 2G/sub I 3- /. This last high value is discussed

  19. High Sensitivity Electrochemical Cholesterol Sensor Utilizing a Vertically Aligned Carbon Nanotube Electrode with Electropolymerized Enzyme Immobilization

    Directory of Open Access Journals (Sweden)

    Ditsayut Phokharatkul

    2009-10-01

    Full Text Available In this report, a new cholesterol sensor is developed based on a vertically aligned CNT electrode with two-step electrochemical polymerized enzyme immobilization. Vertically aligned CNTs are selectively grown on a 1 mm2 window of gold coated SiO2/Si substrate by thermal chemical vapor deposition (CVD with gravity effect and water-assisted etching. CNTs are then simultaneously functionalized and enzyme immobilized by electrochemical polymerization of polyaniline and cholesterol enzymes. Subsequently, ineffective enzymes are removed and new enzymes are electrochemically recharged. Scanning electron microscopic characterization indicates polymer-enzyme nanoparticle coating on CNT surface. Cyclic voltammogram (CV measurements in cholesterol solution show the oxidation and reduction peaks centered around 450 and −220 mV, respectively. An approximately linear relationship between the cholesterol concentration and the response current could be observed in the concentration range of 50–300 mg/dl with a sensitivity of approximately 0.22 μA/mg·dl−1, which is considerably higher compared to previously reported CNT bioprobe. In addition, good specificity toward glucose, uric acid acetaminophen and ascorbic acid have been obtained. Moreover, sensors have satisfactory stability, repeatability and life time. Therefore, the electropolymerized CNT bioprobe is promising for cholesterol detection in normal cholesterol concentration in human blood.

  20. Lead action on activity of some enzymes of plants

    International Nuclear Information System (INIS)

    Korolyov, A.N.; Koshkaryova, A.I.

    2008-01-01

    Lead action on activity of some enzymes of young plants of barley double-row (Hordeum distichon L.) families of cereals (Grominea). It is established that activity urease, catalase, ascorbatoxidase is in dependence as from a lead dose in a nutritious solution, and term ontogenesis. At later stages ontogenesis the increase in concentration of lead in an inhabitancy leads to sharp decrease in activity ascorbatoxidase. In the same conditions activity urease and catalase raises.

  1. A Kinetic Modelling of Enzyme Inhibitions in the Central Metabolism of Yeast Cells

    Science.gov (United States)

    Kasbawati; Kalondeng, A.; Aris, N.; Erawaty, N.; Azis, M. I.

    2018-03-01

    Metabolic regulation plays an important role in the metabolic engineering of a cellular process. It is conducted to improve the productivity of a microbial process by identifying the important regulatory nodes of a metabolic pathway such as fermentation pathway. Regulation of enzymes involved in a particular pathway can be held to improve the productivity of the system. In the central metabolism of yeast cell, some enzymes are known as regulating enzymes that can be inhibited to increase the production of ethanol. In this research we study the kinetic modelling of the enzymes in the central pathway of yeast metabolism by taking into consideration the enzyme inhibition effects to the ethanol production. The existence of positive steady state solution and the stability of the system are also analysed to study the property and dynamical behaviour of the system. One stable steady state of the system is produced if some conditions are fulfilled. The conditions concern to the restriction of the maximum reactions of the enzymes in the pyruvate and acetaldehyde branch points. There exists a certain time of fermentation reaction at which a maximum and a minimum ethanol productions are attained after regulating the system. Optimal ethanol concentration is also produced for a certain initial concentration of inhibitor.

  2. Two-dimensional analytical solutions for chemical transport in aquifers. Part 1. Simplified solutions for sources with constant concentration. Part 2. Exact solutions for sources with constant flux rate

    International Nuclear Information System (INIS)

    Shan, C.; Javandel, I.

    1996-05-01

    Analytical solutions are developed for modeling solute transport in a vertical section of a homogeneous aquifer. Part 1 of the series presents a simplified analytical solution for cases in which a constant-concentration source is located at the top (or the bottom) of the aquifer. The following transport mechanisms have been considered: advection (in the horizontal direction), transverse dispersion (in the vertical direction), adsorption, and biodegradation. In the simplified solution, however, longitudinal dispersion is assumed to be relatively insignificant with respect to advection, and has been neglected. Example calculations are given to show the movement of the contamination front, the development of concentration profiles, the mass transfer rate, and an application to determine the vertical dispersivity. The analytical solution developed in this study can be a useful tool in designing an appropriate monitoring system and an effective groundwater remediation method

  3. Chemically Regulated ROS Generation from Gold Nanoparticles for Enzyme-Free Electrochemiluminescent Immunosensing.

    Science.gov (United States)

    Higashi, Yui; Mazumder, Joyotu; Yoshikawa, Hiroyuki; Saito, Masato; Tamiya, Eiichi

    2018-04-17

    In the present work, we report on an enzyme-free electrochemiluminescent (ECL) immunosensing scheme utilizing the catalytic generation of reactive oxygen species (ROS) from gold nanoparticles (AuNPs) (diameter ≥5 nm) dispersed in aqueous solutions of trishydroxymethylaminomethane (Tris). First, to examine this catalytic pathway in detail, the effects of various factors such as the AuNP size and concentration, dispersant type and concentration, and dissolved oxygen were investigated using the electrochemiluminescence (ECL) of luminol. It was found that the catalytic generation of ROS from AuNPs can be regulated chemically by altering conditions such as the type, concentration, and pH of the solution that the AuNPs are dispersed in. Under the best conditions studied in this work, the AuNPs displayed high catalytic activity toward ROS generation, with an estimated apparent turnover number per AuNP of 0.1 s -1 , comparable to those of several common peroxide-producing enzymes. Following these studies, this phenomenon was applied to develop a one-step enzyme-free ECL immunosensor based on sandwiching the target analyte using antibody-conjugated magnetic beads (MB) and AuNPs. Using IgA as a model analyte, the developed immunosensor was able to detect the target in the range of 1 ng/mL to 10 μg/mL, with the lower detection limit being comparable to those of commercial assays for the same target. Altering the antibodies used to modify the MB and AuNPs could further improve the detection limit as well as expand the applicability of this immunoassay to the detection of other analytes.

  4. Interaction of Celestine Concentrate and Reagent Grade SrSO4 with Oxalate Solutions

    Directory of Open Access Journals (Sweden)

    Abdullah Obut

    2012-12-01

    Full Text Available The interaction of reagent grade strontium sulphate and celestine concentrate with aqueous solutions of oxalic acid, sodiumoxalate and ammonium oxalate for the production of strontium carbonate were investigated for different oxalate compound:SrSO4 moleratios and reaction times using x-ray diffraction analysis and dissolution tests. Under the same experimental conditions, it was foundthat aqueous oxalic acid and sodium oxalate solutions had no or little effect on reagent grade strontium sulphate or celestineconcentrate, but aqueous ammonium oxalate solution converted them into strontium oxalate hydrate. Strontium carbonate was obtainedat conversion ratios of 74.7% for the celestine concentrate and 84.6 % for the reagent grade strontium sulphate by the decompositionof the obtained strontium oxalate hydrate at 600 °C under air atmosphere.

  5. Solution-processed organic thermoelectric materials exhibiting doping-concentration-dependent polarity.

    Science.gov (United States)

    Hwang, Sunbin; Potscavage, William J; Yang, Yu Seok; Park, In Seob; Matsushima, Toshinori; Adachi, Chihaya

    2016-10-26

    Recent progress in conducting polymer-based organic thermoelectric generators (OTEGs) has resulted in high performance due to high Seebeck coefficient, high electrical conductivity (σ), and low thermal conductivity obtained by chemically controlling the materials's redox levels. In addition to improving the properties of individual OTEGs to obtain high performance, the development of solution processes for the fabrication of OTEG modules is necessary to realize large thermoelectric voltage and low-cost mass production. However, the scarcity of good candidates for soluble organic n-type materials limits the use of π-leg module structures consisting of complementary elements of p- and n-type materials because of unbalanced transport coefficients that lead to power losses. In particular, the extremely low σ of n-type materials compared with that of p-type materials is a serious challenge. In this study, poly(pyridinium phenylene) (P(PymPh)) was tested as an n-type semiconductor in solution-processed OTEGs, and the carrier density was controlled by a solution-based chemical doping process using the dopant sodium naphthalenide, a well-known reductant. The electronic structures and doping mechanism of P(PymPh) were explored based on the changes in UV-Vis-IR absorption, ultraviolet photoelectron, and X-ray photoelectron spectra. By controlling the dopant concentration, we demonstrate a maximum n-type power factor of 0.81 μW m -1 K -2 with high σ, and at higher doping concentrations, a switch from n-type to p-type TE operation. This is one of the first cases of a switch in polarity just by increasing the concentration of the reductant and may open a new route for simplified fabrication of complementary organic layers.

  6. Increase The Sugar Concentration of The Solution Sugar by Reverse Osmotic Membrane

    Science.gov (United States)

    Redjeki, S.; Hapsari, N.; Iriani

    2018-01-01

    Sugar is one of the basic needs of people and food and drink industry. As technology advances and the demand for efficient usage of sugar rises, crystal sugar is seen as less advantageous than liquid sugar. If sugar is always dissolved in water before use, then it will be more efficient and practical for consumers to use sugar in liquid form than in crystal form. Other than that, liquid sugar is also attractive to consumers because it is economical, hygienic, instantly soluble in hot and cold water, fresher and longer-lasting, able to thicken and enrich the texture of foods and drinks, and functions as sweetener, syrup, and flavor enhancer. Liquid sugar is also more beneficial for sugar producers because of simpler production process, cheaper production cost, and similar yield with no extra cost. In sugar production, separation process is found in most of its stages and therefore the use of membrane technology for separating solute and water content has a good potential. In this research, water content reduction of sugar solution was done in order to increase the sugar concentration of the solution. The parameters of this research were 4%, 5%, and 6% starting concentration of sugar solution; 20, 40, and 60 minutes of process time; and 85 and 60 PSI ΔP. The best result was acquired on 4% starting concentration, 60 PSI ΔP, and 60 minutes process time.

  7. Recrystallization of freezable bound water in aqueous solutions of medium concentrations

    Institute of Scientific and Technical Information of China (English)

    赵立山; 潘礼庆; 纪爱玲; 曹则贤; 王强

    2016-01-01

    For aqueous solutions with freezable bound water, vitrification and recrystallization are mingled, which brings diffi-culty to application and misleads the interpretation of relevant experiments. Here, we report a quantification scheme for the freezable bound water based on the water-content dependence of glass transition temperature, by which also the concentra-tion range for the solutions that may undergo recrystallization finds a clear definition. Furthermore, we find that depending on the amount of the freezable bound water, different temperature protocols should be devised to achieve a complete recrys-tallization. Our results may be helpful for understanding the dynamics of supercooled aqueous solutions and for improving their manipulation in various industries.

  8. Reversible tetramerization of human TK1 to the high catalytic efficient form is induced by pyrophosphate, in addition to tripolyphosphates, or high enzyme concentration

    DEFF Research Database (Denmark)

    Munch-Petersen, Birgitte

    2009-01-01

    of ATP is necessary for tetramerisation and how the reaction velocity is influenced by the enzyme concentration. The results show that only two or three of the phosphate groups of ATP are necessary for tetramerisation, and that kinetics and tetramerisation are closely related. Furthermore, enzyme...... concentration was found to have a pivotal effect on catalytic efficiency.......Thymidine kinase (TK1) is a key enzyme in the salvage pathway of deoxyribonucleotide metabolism catalyzing the first step in the synthesis of dTTP by the transfer of a gamma-phosphate group from a nucleoside triphosphate to the 5´-hydroxyl group of thymidine forming dTMP. Human TK1 is cytosolic...

  9. Physico-chemical stability of eribulin mesylate containing concentrate and ready-to-administer solutions.

    Science.gov (United States)

    Spindeldreier, Kirsten; Thiesen, Judith; Lipp, Hans-Peter; Krämer, Irene

    2014-06-01

    The aim of this study was to determine the stability of commercially available eribulin mesylate containing injection solution as well as diluted ready-to-administer solutions stored under refrigeration or at room temperature. Stability was studied by a novel developed stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) assay with ultraviolet detection (detection wavelength 200 nm). Triplicate test solutions of eribulin mesylate containing injection concentrate (0.5 mg/mL) and with 0.9% sodium chloride solution diluted ready-to-administer preparations (0.205 mg/mL eribulin mesylate in polypropylene (PP) syringes, 0.020 mg/mL eribulin mesylate in polypropylene/polyethylene (PE) bags) were stored protected from light either at room temperature (25) or under refrigeration (2-8). Samples were withdrawn on day 0 (initial), 1, 3, 5, 7, 14, 21 and 28 of storage and assayed. Physical stability was determined by measuring the pH value once a week and checking for visible precipitations or colour changes. The stability tests revealed that concentrations of eribulin mesylate remained unchanged over a period of 28 days irrespective of concentration, container material or storage temperature. Neither colour changes nor visible particles have been observed. The pH value varied slightly over time but remained in the stability favourable range of 5-9. Eribulin mesylate injection (0.5 mg/mL) is physico-chemically stable over a period of 28 days after first puncture of the vial. After dilution with 0.9% NaCl vehicle solution, ready-to-administer eribulin mesylate injection solutions (0.205 mg/mL in PP syringe) and infusion solutions (0.02 mg/mL in prefilled PP/PE bags) are physico-chemically stable for a period of at least four weeks either refrigerated or stored at room temperature. For microbiological reasons storage under refrigeration is recommended.

  10. Determination of the Influence of Substrate Concentration on Enzyme Selectivity Using Whey Protein Isolate and Bacillus licheniformis Protease

    NARCIS (Netherlands)

    Butré, C.I.; Sforza, S.; Gruppen, H.; Wierenga, P.A.

    2014-01-01

    Increasing substrate concentration during enzymatic protein hydrolysis results in a decrease in hydrolysis rate. To test if changes in the mechanism of hydrolysis also occur, the enzyme selectivity was determined. The selectivity is defined quantitatively as the relative rate of hydrolysis of each

  11. Unusual concentration-dependent microscopic dynamics of dendrimers in aqueous solution

    International Nuclear Information System (INIS)

    Wong, Kaikin; Wu, Chin Ming; Lam, Hak Fai; Chathoth, Suresh M.

    2016-01-01

    Dendrimers are novel three-dimensional, hyperbranched globular nanopolymeric macromolecules. The nanoscopic size, narrow polydispersity index, excellent control over molecular structure, availability of multiple functional groups at the periphery, and cavities in the interior made them very attractive candidate for drug delivery. In this communication, we have studied the microscopic dynamics of tetra-acid and pentaerythritol glycidyl ether dendrimers dissolved in aqueous solution with different concentrations. The effects of concentration and temperature to their long-range diffusion process are investigated by dynamic light scattering. Experimental results show a huge variation in the translational diffusion coefficient for the two dendrimers samples. Besides, the dependence of diffusion coefficients on concentration is unusually different in these dendrimer samples. Although the diffusion process follows Arrhenius relation with the temperature in both systems, the activation energy for the diffusion process has a distinct concentration dependence.

  12. Unusual concentration-dependent microscopic dynamics of dendrimers in aqueous solution

    Science.gov (United States)

    Wong, Kaikin; Wu, Chin Ming; Lam, Hak Fai; Chathoth, Suresh M.

    2016-05-01

    Dendrimers are novel three-dimensional, hyperbranched globular nanopolymeric macromolecules. The nanoscopic size, narrow polydispersity index, excellent control over molecular structure, availability of multiple functional groups at the periphery, and cavities in the interior made them very attractive candidate for drug delivery. In this communication, we have studied the microscopic dynamics of tetra-acid and pentaerythritol glycidyl ether dendrimers dissolved in aqueous solution with different concentrations. The effects of concentration and temperature to their long-range diffusion process are investigated by dynamic light scattering. Experimental results show a huge variation in the translational diffusion coefficient for the two dendrimers samples. Besides, the dependence of diffusion coefficients on concentration is unusually different in these dendrimer samples. Although the diffusion process follows Arrhenius relation with the temperature in both systems, the activation energy for the diffusion process has a distinct concentration dependence.

  13. Unusual concentration-dependent microscopic dynamics of dendrimers in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Kaikin; Wu, Chin Ming; Lam, Hak Fai; Chathoth, Suresh M., E-mail: smavilac@cityu.edu.hk [City University of Hong Kong, Department of Physics and Materials Science (Hong Kong, People’s Republic of China) (China)

    2016-05-15

    Dendrimers are novel three-dimensional, hyperbranched globular nanopolymeric macromolecules. The nanoscopic size, narrow polydispersity index, excellent control over molecular structure, availability of multiple functional groups at the periphery, and cavities in the interior made them very attractive candidate for drug delivery. In this communication, we have studied the microscopic dynamics of tetra-acid and pentaerythritol glycidyl ether dendrimers dissolved in aqueous solution with different concentrations. The effects of concentration and temperature to their long-range diffusion process are investigated by dynamic light scattering. Experimental results show a huge variation in the translational diffusion coefficient for the two dendrimers samples. Besides, the dependence of diffusion coefficients on concentration is unusually different in these dendrimer samples. Although the diffusion process follows Arrhenius relation with the temperature in both systems, the activation energy for the diffusion process has a distinct concentration dependence.

  14. Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors.

    Science.gov (United States)

    Dzyadevych, Sergei V; Soldatkin, Alexey P; Korpan, Yaroslav I; Arkhypova, Valentyna N; El'skaya, Anna V; Chovelon, Jean-Marc; Martelet, Claude; Jaffrezic-Renault, Nicole

    2003-10-01

    This paper is a review of the authors' publications concerning the development of biosensors based on enzyme field-effect transistors (ENFETs) for direct substrates or inhibitors analysis. Such biosensors were designed by using immobilised enzymes and ion-selective field-effect transistors (ISFETs). Highly specific, sensitive, simple, fast and cheap determination of different substances renders them as promising tools in medicine, biotechnology, environmental control, agriculture and the food industry. The biosensors based on ENFETs and direct enzyme analysis for determination of concentrations of different substrates (glucose, urea, penicillin, formaldehyde, creatinine, etc.) have been developed and their laboratory prototypes were fabricated. Improvement of the analytical characteristics of such biosensors may be achieved by using a differential mode of measurement, working solutions with different buffer concentrations and specific agents, negatively or positively charged additional membranes, or genetically modified enzymes. These approaches allow one to decrease the effect of the buffer capacity influence on the sensor response in an aim to increase the sensitivity of the biosensors and to extend their dynamic ranges. Biosensors for the determination of concentrations of different toxic substances (organophosphorous pesticides, heavy metal ions, hypochlorite, glycoalkaloids, etc.) were designed on the basis of reversible and/or irreversible enzyme inhibition effect(s). The conception of an enzymatic multibiosensor for the determination of different toxic substances based on the enzyme inhibition effect is also described. We will discuss the respective advantages and disadvantages of biosensors based on the ENFETs developed and also demonstrate their practical application.

  15. Are spontaneous conformational interconversions a molecular basis for long-period oscillations in enzyme activity?

    Science.gov (United States)

    Queiroz-Claret, C; Valon, C; Queiroz, O

    1988-01-01

    An unconventional hypothesis to the molecular basis of enzyme rhythms is that the intrinsic physical instability of the protein molecules which, in an aqueous medium, tend to move continuously from one conformational state to another could lead, in the population of enzyme molecules, to sizeable long-period oscillations in affinity for substrate and sensitivity to ligands and regulatory effects. To investigate this hypothesis, malate dehydrogenase was extracted and purified from leaves of the plant Kalanchoe blossfeldiana. The enzyme solutions were maintained under constant conditions and sampled at regular intervals for up to 40 or 70 h for measurements of activity as a function of substrate concentration, Km for oxaloacetic acid and sensitivity to the action of 2,3-butanedione, a modifier of active site arginyl residues. The results show that continuous slow oscillations in the catalytic capacity of the enzyme occur in all the extracts checked, together with fluctuations in Km. Apparent circadian periodicities were observed in accordance with previous data established during long run (100 h) experiments. The saturation curves for substrate showed multiple kinetic functions, with various pronounced intermediary plateaus and "bumps" depending on the time of sampling. Variation in the response to the effect of butanedione indicated fluctuation in the accessibility to the active site. Taken together, the results suggest that, under constant conditions, the enzyme in solution shifts continuously and reversibly between different configurations. This was confirmed by parallel studies on the proton-NMR spectrum of water aggregates in the enzyme solution and proton exchange rates.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. In vitro reduction of dental erosion by low-concentration TiF4 solutions

    NARCIS (Netherlands)

    Vieira, A.M.; Ruben, J.L.; Bronkhorst, E.M.; Huysmans, M.C.D.N.J.M.

    2011-01-01

    The aims of this study were to compare daily versus single applications of low-concentration TiF(4) solutions for reduction of enamel erosion and to evaluate the enamel surface loss due to application of these solutions. Sixty bovine enamel samples were randomly divided into 2 groups: single versus

  17. In vitro Reduction of Dental Erosion by Low-Concentration TiF4 Solutions

    NARCIS (Netherlands)

    Vieira, A. M.; Ruben, J. L.; Bronkhorst, E. M.; Huysmans, M. C. D. N. J. M.

    2011-01-01

    The aims of this study were to compare daily versus single applications of low-concentration TiF4 solutions for reduction of enamel erosion and to evaluate the enamel surface loss due to application of these solutions. Sixty bovine enamel samples were randomly divided into 2 groups: single versus

  18. Dependence of the concentrations of "1"3"7Cs and potassium in extracted soil solutions on soil humidity before centrifugation

    International Nuclear Information System (INIS)

    Prorok, V.V.; Datsenko, O.Yi.; Bulavyin, L.A.; Zlens'kij, S.Je.; Melnichenko, L.Yu.; Rozuvan, S.G.; Poperenko, L.V.; White, P.J.

    2017-01-01

    Concentrations of 137Cs and potassium in solutions extracted by centrifugation from soils selected at some experimental sites in the 10-km Exclusion Zone of Chornobyl Nuclear Plant were determined. The results showed that for the majority of investigated soils, the concentration of 137Cs in soil solution depends on the humidity of the soil before centrifugation. It is possible to explain the dependence of the concentration of 137Cs in the soil solution on soil humidity from the dependence of the concentrations of molecules of different molecular-gravimetric fractions in soil solution on soil humidity. Considerable amount of 137Cs in soil solution is associated with these molecules, that is why the concentration of 137Cs in the extracted soil solution changes with the humidity of soil. These dependences differ between soils. For the majority of investigated soils the concentration of 137Cs in the extracted soil solution increases with increasing humidity of the soil. By contrast, soil humidity had no effect on the potassium concentration in the extracted soil solution for any soil investigated. It is concluded, that potassium is practically not associated with molecules of different molecular-gravimetric fractions in the extracted soil solutions

  19. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C. Part 9: reference procedure for the measurement of catalytic concentration of alkaline phosphatase International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Scientific Division, Committee on Reference Systems of Enzymes (C-RSE) (1)).

    Science.gov (United States)

    Schumann, Gerhard; Klauke, Rainer; Canalias, Francesca; Bossert-Reuther, Steffen; Franck, Paul F H; Gella, F-Javier; Jørgensen, Poul J; Kang, Dongchon; Lessinger, Jean-Marc; Panteghini, Mauro; Ceriotti, Ferruccio

    2011-09-01

    Abstract This paper is the ninth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C and the certification of reference preparations. Other parts deal with: Part 1. The concept of reference procedures for the measurement of catalytic activity concentrations of enzymes; Part 2. Reference procedure for the measurement of catalytic concentration of creatine kinase; Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase; Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase; Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase; Part 6. Reference procedure for the measurement of catalytic concentration of γ-glutamyltransferase; Part 7. Certification of four reference materials for the determination of enzymatic activity of γ-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase at 37 °C; Part 8. Reference procedure for the measurement of catalytic concentration of α-amylase. The procedure described here is derived from the previously described 30 °C IFCC reference method. Differences are tabulated and commented on in Appendix 1.

  20. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Wagner, David; Nistelkas, Vasilios; Spieß, Antje C

    2017-01-01

    The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017. © 2016 American Institute of Chemical Engineers.

  1. Determination of the uranium concentration in soil solutions by the fission track registration technique

    International Nuclear Information System (INIS)

    Fernandes, G.P.

    1980-02-01

    The fission tracks registration technique was used to determine the uranium concentration in soil solutions. The Makrofol KG, a synthetic plastic manufactured by Bayer, was used as a detector and the wet method was applied. From the calibration curves obtained, it was possible to determine uranium concentrations in soil solutions, from 90 to 320 μg U/l, with an error between 9.4% and 4.0%, respectively. The method was applied to a few soil samples from Pocos de Caldas, Minas Gerais in Brazil. The uranium concentrations in the sample and residues were also determined by other methods to compare the results obtained; only one sample showed deviation from the results obtained by the fission tracks method. And this discrepancy was explained in a reasonable way. It was shown that the fission tracks technique can be used with sucess for application in soil solutions. (Author) [pt

  2. A virus-based single-enzyme nanoreactor

    NARCIS (Netherlands)

    Comellas Aragones, M.; Engelkamp, H.; Claessen, V.I.; Sommerdijk, N.A.J.M.; Rowan, A.E.; Christianen, P.C.M.; Maan, J.C.; Verduin, B.J.M.; Cornelissen, J.J.L.M.; Nolte, R.J.M.

    2007-01-01

    Most enzyme studies are carried out in bulk aqueous solution, at the so-called ensemble level, but more recently studies have appeared in which enzyme activity is measured at the level of a single molecule, revealing previously unseen properties. To this end, enzymes have been chemically or

  3. PROCESS FOR DUST-FREE ENZYME MANUFACTURE

    NARCIS (Netherlands)

    Andela, C.; Feijen, Jan; Dillissen, Marc

    1994-01-01

    New enzyme granules are provided with improved properties. The granules are based on core particles having a good pore size and pore size distribution to allow an enzyme solution to enter into the particle. Accordingly, the core material comprises the enzyme in liquid form, thus eliminating the

  4. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J J; Brand, J C

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  5. Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load.

    Directory of Open Access Journals (Sweden)

    Naama Tepper

    Full Text Available Steady-state metabolite concentrations in a microorganism typically span several orders of magnitude. The underlying principles governing these concentrations remain poorly understood. Here, we hypothesize that observed variation can be explained in terms of a compromise between factors that favor minimizing metabolite pool sizes (e.g. limited solvent capacity and the need to effectively utilize existing enzymes. The latter requires adequate thermodynamic driving force in metabolic reactions so that forward flux substantially exceeds reverse flux. To test this hypothesis, we developed a method, metabolic tug-of-war (mTOW, which computes steady-state metabolite concentrations in microorganisms on a genome-scale. mTOW is shown to explain up to 55% of the observed variation in measured metabolite concentrations in E. coli and C. acetobutylicum across various growth media. Our approach, based strictly on first thermodynamic principles, is the first method that successfully predicts high-throughput metabolite concentration data in bacteria across conditions.

  6. Computation of major solute concentrations and loads in German rivers using regression analysis.

    Science.gov (United States)

    Steele, T.D.

    1980-01-01

    Regression functions between concentrations of several inorganic solutes and specific conductance and between specific conductance and stream discharge were derived from intermittent samples collected for 2 rivers in West Germany. These functions, in conjunction with daily records of streamflow, were used to determine monthly and annual solute loadings. -from Author

  7. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    International Nuclear Information System (INIS)

    Cang Long; Zhou Dongmei; Wang Quanying; Wu Danya

    2009-01-01

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm -1 of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  8. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    Cang Long [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhou Dongmei, E-mail: dmzhou@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Wang Quanying; Wu Danya [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-30

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm{sup -1} of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  9. Study on the spectrum of photonic crystal cavity and its application in measuring the concentration of NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [Nanjing Agricultural Univ., Nanjing (China). Dept. of Physics; Wuxi Institute of Commerce, Wuxi (China). School of Electromechanical Technology; Xie, Xun; Hao, Jiong-Ju; Yang, Hong-Wei [Nanjing Agricultural Univ., Nanjing (China). Dept. of Physics; Yang, Ze-Kun [Lanzhou Univ. (China). School of Information Science and Engineering; Xu, Zhi-Gang [Nanjing Agricultural Univ., Nanjing (China). College of Agriculture

    2017-07-01

    In this article, we propose an approach to measure solution concentrations by using photonic crystal cavities. Based on the experimental data, the refractive index of a NaCl solution is proportional to the concentration. Filling the proposed photonic crystal cavity with a NaCl solution, we calculate the spectral transmission using the transfer matrix method. We found that the cavity transmittance was proportional to the refractive index of the NaCl solution, and thus we obtained a linear relationship between cavity transmittance and the concentration of the NaCl solution. The formula was found by fitting the simulation results with experimental data. Such a formula can be applied to the measurement of an unknown concentration of NaCl solution utilizing a photonic crystal cavity.

  10. Isolation and optimization of pectinase enzyme production one of useful industrial enzyme in Aspergillus niger, Rhizopus oryzae, Penicilium chrysogenum

    Directory of Open Access Journals (Sweden)

    akram songol

    2016-06-01

    Full Text Available Introduction: Pectinase enzyme is one of the most important industrial enzymes which isolated from a wide variety of microorganisms such as bacteria and filamentous fungi. This enzyme has been usually used in the fruit and textile industry. In this study, the isolation and optimization of pectinase-producing fungi on decaying rotten fruits were studied. Materials and methods: Isolation and screening of pectinase producing fungi performed through plate culture on pectin medium and staining with Lugol's iodine solution. The best strains were identified by ITS1, 4 sequencing as Aspergillus fumigatus, Rhizopus oryzae, Penicilium chrysogenum. The enzyme production was optimized by application of the five factorial design, each at three levels. These factors are carbon sources (whey, glucose and stevia, ammonium sulfate, manganese sulfate, temperature, and pH. Pectinase concentration was measured by the Miller method. Results: The results indicate that optimum condition for enzyme production for three fungi strains was obtained at 32 °C, pH = 6, 3g / L manganese sulfate, 2.75g / L of ammonium sulfate and 10g / L of each carbon source. The best experiment in obtaining the optimum enzyme contained 1.328 mg / ml of glucose for Aspergillus niger 1.284 and 1.039 mg / ml of whey for Rhizopus oryzae and Penicilium chrysogenum. Molecular weight of enzyme was about 40 and 37 kDa which was obtained by SDS- PAGE. Discussion and conclusion: The results indicate that three strains could grow in a wide range of carbon source, pH and temperature, which could be a good candidate for industrial application.

  11. Formation and stabilization of anionic metal complexes in concentrated aqueous quaternary ammonium salt solutions

    International Nuclear Information System (INIS)

    Aronson, F.L.; Hwang, L.L.Y.; Ronca, N.; Solomon, N.A.; Steigman, J.

    1985-01-01

    Anionic complexes of transition metals were stabilized in aqueous solutions containing high concentrations of various short-chain quaternary ammonium salts. Compounds with longer paraffin chains were effective in much less concentrated solution. Complex ions were detected spectrophotometrically. FeCl 4 - , which is usually formed in concentrated HCl, was the predominant Fe(III) complex in 30 m choline chloride containing only 0.12 M HCl. A yellow transitory Tc(VII) chloro-addition intermediate, formed in the reduction of TcO 4 - by concentrated HCl, was stabilized when the solution also contained 25 m choline chloride. Its spectrum, as well as the isolation of an already known Tc(VII) bipyridyl complex, is reported. Concentrated organic electrolytes also stabilized Tc(V) oxide halides against disproportionation and Tc(IV) hexahalides against hydrolysis. Halochromates of Cr(VI) were formed and stabilized in dilute acid containing quaternary ammonium salts. Their UV spectra showed the well-resolved vibronic fine structure associated with the symmetric chromium-to-oxygen charge-transfer band. It is known that these progressions are resolved in aprotic solvents, but not in aqueous acidic solution alone, and that the loss of fine structure in aqueous media is due to hydrogen bonding. The stabilization of anionic metal complexes and the resolution of vibronic structure in halochromates are probably consequences of water-structure-enforced ion paring. The present work suggests that the water molecules in immediate contact with the complex anions are more strongly hydrogen bonded to each other than to the complex. 21 references, 4 figures

  12. Low-Concentration Indium Doping in Solution-Processed Zinc Oxide Films for Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Xue Zhang

    2017-07-01

    Full Text Available We investigated the influence of low-concentration indium (In doping on the chemical and structural properties of solution-processed zinc oxide (ZnO films and the electrical characteristics of bottom-gate/top-contact In-doped ZnO thin-film transistors (TFTs. The thermogravimetry and differential scanning calorimetry analysis results showed that thermal annealing at 400 °C for 40 min produces In-doped ZnO films. As the In content of ZnO films was increased from 1% to 9%, the metal-oxygen bonding increased from 5.56% to 71.33%, while the metal-hydroxyl bonding decreased from 72.03% to 9.63%. The X-ray diffraction peaks and field-emission scanning microscope images of the ZnO films with different In concentrations revealed a better crystalline quality and reduced grain size of the solution-processed ZnO thin films. The thickness of the In-doped ZnO films also increased when the In content was increased up to 5%; however, the thickness decreased on further increasing the In content. The field-effect mobility and on/off current ratio of In-doped ZnO TFTs were notably affected by any change in the In concentration. Considering the overall TFT performance, the optimal In doping concentration in the solution-processed ZnO semiconductor was determined to be 5% in this study. These results suggest that low-concentration In incorporation is crucial for modulating the morphological characteristics of solution-processed ZnO thin films and the TFT performance.

  13. Effect of solution concentration on MEH-PPV thin films

    Science.gov (United States)

    Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    MEH-PPV thin films were prepared with a mixture of THF (tetrahydrofuran) solution deposited by spin coating method. The surface topology of MEH-PPV thin film were characterize by atomic force microscopy (AFM) and optical properties of absorption spectra were characterized by using Ultraviolet-visible-near-infrared (UV-Vis-NIR). The MEH-PPV concentration variation affects the surface and optical properties of the thin film where 0.5 mg/ml MEH-PPV concentration have a good surface topology provided the same film also gives the highest absorption coefficient were then deposited to a TiO2 thin film forming composite layer. The composite layer then shows low current flow of short circuit current of Isc = -5.313E-7 A.

  14. Spherezymes: A novel structured self-immobilisation enzyme technology

    Directory of Open Access Journals (Sweden)

    Arumugam Cherise

    2008-01-01

    Full Text Available Abstract Background Enzymes have found extensive and growing application in the field of chemical organic synthesis and resolution of chiral intermediates. In order to stabilise the enzymes and to facilitate their recovery and recycle, they are frequently immobilised. However, immobilisation onto solid supports greatly reduces the volumetric and specific activity of the biocatalysts. An alternative is to form self-immobilised enzyme particles. Results Through addition of protein cross-linking agents to a water-in-oil emulsion of an aqueous enzyme solution, structured self-immobilised spherical enzyme particles of Pseudomonas fluorescens lipase were formed. The particles could be recovered from the emulsion, and activity in aqueous and organic solvents was successfully demonstrated. Preliminary data indicates that the lipase tended to collect at the interface. Conclusion The immobilised particles provide a number of advantages. The individual spherical particles had a diameter of between 0.5–10 μm, but tended to form aggregates with an average particle volume distribution of 100 μm. The size could be controlled through addition of surfactant and variations in protein concentration. The particles were robust enough to be recovered by centrifugation and filtration, and to be recycled for further reactions. They present lipase enzymes with the active sites selectively orientated towards the exterior of the particle. Co-immobilisation with other enzymes, or other proteins such as albumin, was also demonstrated. Moreover, higher activity for small ester molecules could be achieved by the immobilised enzyme particles than for free enzyme, presumably because the lipase conformation required for catalysis had been locked in place during immobilisation. The immobilised enzymes also demonstrated superior activity in organic solvent compared to the original free enzyme. This type of self-immobilised enzyme particle has been named spherezymes.

  15. Effect of solute atom concentration on vacancy cluster formation in neutron-irradiated Ni alloys

    Science.gov (United States)

    Sato, Koichi; Itoh, Daiki; Yoshiie, Toshimasa; Xu, Qiu; Taniguchi, Akihiro; Toyama, Takeshi

    2011-10-01

    The dependence of microstructural evolution on solute atom concentration in Ni alloys was investigated by positron annihilation lifetime measurements. The positron annihilation lifetimes in pure Ni, Ni-0.05 at.%Si, Ni-0.05 at.%Sn, Ni-Cu, and Ni-Ge alloys were about 400 ps even at a low irradiation dose of 3 × 10 -4 dpa, indicating the presence of microvoids in these alloys. The size of vacancy clusters in Ni-Si and Ni-Sn alloys decreased with an increase in the solute atom concentration at irradiation doses less than 0.1 dpa; vacancy clusters started to grow at an irradiation dose of about 0.1 dpa. In Ni-2 at.%Si, irradiation-induced segregation was detected by positron annihilation coincidence Doppler broadening measurements. This segregation suppressed one-dimensional (1-D) motion of the interstitial clusters and promoted mutual annihilation of point defects. The frequency and mean free path of the 1-D motion depended on the solute atom concentration and the amount of segregation.

  16. Concentrated aqueous sodium chloride solution in clays at thermodynamic conditions of hydraulic fracturing: Insight from molecular dynamics simulations

    Science.gov (United States)

    Svoboda, Martin; Lísal, Martin

    2018-06-01

    To address a high salinity of flow-back water during hydraulic fracturing, we use molecular dynamics (MD) simulations and study the thermodynamics, structure, and diffusion of concentrated aqueous salt solution in clay nanopores. The concentrated solution results from the dissolution of a cubic NaCl nanocrystal, immersed in an aqueous NaCl solution of varying salt concentration and confined in clay pores of a width comparable to the crystal size. The size of the nanocrystal equals to about 18 Å which is above a critical nucleus size. We consider a typical shale gas reservoir condition of 365 K and 275 bar, and we represent the clay pores as pyrophyllite and Na-montmorillonite (Na-MMT) slits. We employ the Extended Simple Point Charge (SPC/E) model for water, Joung-Cheatham model for ions, and CLAYFF for the slit walls. We impose the pressure in the normal direction and the resulting slit width varies from about 20 to 25 Å when the salt concentration in the surrounding solution increased from zero to an oversaturated value. By varying the salt concentration, we observe two scenarios. First, the crystal dissolves and its dissolution time increases with increasing salt concentration. We describe the dissolution process in terms of the number of ions in the crystal, and the crystal size and shape. Second, when the salt concentration reaches a system solubility limit, the crystal grows and attains a new equilibrium size; the crystal comes into equilibrium with the surrounding saturated solution. After crystal dissolution, we carry out canonical MD simulations for the concentrated solution. We evaluate the hydration energy, density profiles, orientation distributions, hydrogen-bond network, radial distribution functions, and in-plane diffusion of water and ions to provide insight into the microscopic behaviour of the concentrated aqueous sodium chloride solution in interlayer galleries of the slightly hydrophobic pyrophyllite and hydrophilic Na-MMT pores.

  17. Effects of diets containing vegetable protein concentrates on performance and activity of digestive enzymes in silver catfish (Rhamdia quelen

    Directory of Open Access Journals (Sweden)

    Naglezi de Menezes Lovatto

    2014-02-01

    Full Text Available The purpose of study was to evaluate the effect of using protein concentrates crambe and sunflower meal in the diet of silver catfish juveniles, as substitute for animal protein source. A total of 300 silver catfish had been separate in 15 experimental units of 280 L, totaling five treatments with three replications. We evaluated two levels (25% and 50% replacement of the meat and bone meal by protein concentrates of crambe and sunflower meals. Evaluated growth parameters, biological index and digestive enzymes in fish. There was no statistical difference for mass (g and standard length (cm, but the fish diet CPFCr-25% had greater total length (cm. No difference in dry matter, crude protein and total protein deposited (calculated. However, there was a higher concentration of ash in the carcass of the animals fed the control diet and CPFCr-50% in relation to diet CPFG- 50%, in addition, higher levels of lipids in fish fed diet CPFG-50%. No significant differences for hepatosomatic index, digestive somatic index and intestinal quotient of animals subjected to different treatments. The activity of digestive enzymes trypsin and chymotrypsin did not change. There was increased activity of acid protease. The quantitative and qualitative increase in protein concentration from this fraction allows the use of bran protein concentrates crambe and sunflower as substitutes for animal protein source.

  18. Solute concentration dependence of the decay curves of the liquid scintillation

    International Nuclear Information System (INIS)

    Onishi, Masayoshi; Niki, Eiji.

    1976-01-01

    The decay curves of the liquid scintillation of 2,5-diphenyloxazole (PPO) in toluene by the irradiation of β ray from 14 C were measured. Solute concentration dependences of the decay times of the fast and slow components were studied. The decay time tau sub(f) of the fast component of the air saturated scintillator was the smallest at 1.8x10 -2 --4.5x10 -2 mol/l, and about (3.4--3.5)ns. When the concentration became less than 1.8x10 -2 mol/l, the peak of the decay curve became roundish and the pulse width became large. The increase of the necessary time for the energy transfer due to the difficulty of the nonradiative transfer from excited solvent molecules to the solute was the reason. When the concentration became less than about 2.26x10 -3 mol/l, tau sub(f) became larger and the energy transfer became radiative. The pulse width and tau sub(f) were very small because of oxygen quenching compared with oxygen free. At higher concentrations such as 1.6x10 -1 and 2.3x10 -1 mol/l, the effect of the PPO excimer was observed on the fast component, and tau sub(f) became larger apparently. This denied the presumption of the close relation between PPO molecular interaction and the slow component together with the fact that the decay time tau sub(s) of the slow component was independent of PPO concentration. (auth.)

  19. The influence of surface roughness and solution concentration on pool boiling process in Diethanolamine aqueous solution

    Science.gov (United States)

    Khoshechin, Mohsen; Salimi, Farhad; Jahangiri, Alireza

    2018-04-01

    In this research, the effect of surface roughness and concentration of solution on bubble departing frequency and nucleation site density for pool boiling of water/diethanolamine (DEA) binary solution were investigated experimentally. In this investigation, boiling heat transfer coefficient, bubble departing frequency and nucleation site density have been experimentally investigated in various concentrations and heat fluxes. Microstructured surfaces with a wide range of well-defined surface roughness were fabricated, and a heat flux between 1.5-86 kW/m2 was achieved under atmospheric conditions. The Results indicated that surface roughness and concentration of solution increase the bubble departing frequency and nucleation site density with increasing heat flux. The boiling heat transfer coefficient in mixtures of water/DEA increases with increasing concentration of DEA in water. The experimental results were compared with predictions of several used correlations in the literatures. Results showed that the boiling heat transfer coefficients of this case study are much higher than the predicted values by major existing correlations and models. The excellent agreement for bubble departing frequency found between the models of Jackob and Fritz (1966) and experimental data and also the nucleation site density were in close agreement with the model of Paul (1983) data. f bubble departure frequency, 1/s or Hz N Number of nucleation sites per area per time R c Minimum cavity size, m D c critical diameter, m g gravitational acceleration, m/s2 ρ density, kg/m3 T temperature, °c ΔT temperature difference, °c d d vapor bubble diameter, m h fg enthalpy of vaporization, J/kg R Roughness, μm Ja Jakob number cp specific heat, J/kg °c Pr Prandtl number Ar Archimedes number h Heat transfer coefficient, J/(m2 °c) tg time it takes to grow a bubble, s q/A heat flux (kW/m2) tw time required to heat the layer, s gc Correction coefficient of incompatible units R a Surface

  20. The influence of plutonium concentration and solution flow rate on the effective capacity of macroporous anion exchange resin

    International Nuclear Information System (INIS)

    Marsh, S.F.; Gallegos, T.D.

    1987-07-01

    The principal aqueous process used to recover and purify plutonium at the Los Alamos Plutonium Facility is anion exchange in nitric acid. Previous studies with gel-type anion exchange resin have shown an inverse relationship between plutonium concentration in the feed solution and the optimum flow rate for this process. Because gel-type resin has been replaced with macroporous resin at Los Alamos, the relationship between plutonium concentration and solution flow rate was reexamined with the selected Lewatit MP-500-FK resin using solutions of plutonium in nitric acid and in nitric acid with high levels of added nitrate salts. Our results with this resin differ significantly from previous data obtained with gel-type resin. Flow-rate variation from 10 to 80 liters per hour had essentially no effect on the measured quantities of plutonium sorbed by the macroporous resin. However, the effect of plutonium concentration in the feed solutions was pronounced, as feed solutions that contained the highest concentrations of plutonium also produced the highest resin loadings. The most notable effect of high concentrations of dissolved nitrate salts in these solutions was an increased resin capacity for plutonium at low flow rates. 16 refs., 7 figs., 2 tabs

  1. Ultrasound-assisted extraction and characterization of hydrolytic and oxidative enzymes produced by solid state fermentation.

    Science.gov (United States)

    Szabo, Orsolya Erzsebet; Csiszar, Emilia; Toth, Karolina; Szakacs, George; Koczka, Bela

    2015-01-01

    Ligninolytic and hydrolytic enzymes were produced with six selected fungi on flax substrate by solid state fermentation (SSF). The extracellular enzyme production of the organisms in two SSF media was evaluated by measuring the soluble protein concentration and the filter paper, endoxylanase, 1,4-β-d-glucosidase, 1,4-β-d-endoglucanase, polygalacturonase, lignin peroxidase, manganese peroxidase and laccase activities of the clear culture solutions produced by conventional extraction from the SSF materials. The SSF material of the best enzyme producer (Trichoderma virens TUB F-498) was further investigated to enhance the enzyme recovery by low frequency ultrasound treatment. Performance of both the original and ultrasound macerated crude enzyme mixtures was evaluated in degradation of the colored lignin-containing and waxy materials of raw linen fabric. Results proved that sonication (at 40%, 60% and 80% amplitudes, for 60min) did not result in reduction in the filter paper, lignin peroxidase and laccase activities of the crude enzyme solution, but has a significant positive effect on the efficiency of enzyme extraction from the SSF material. Depending on the parameters of sonication, the enzyme activities in the extracts obtained can be increased up to 129-413% of the original activities measured in the control extracts recovered by a common magnetic stirrer. Sonication also has an effect on both the enzymatic removal of the lignin-containing color materials and hydrophobic surface layer from the raw linen. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Ion-exchange concentration of inorganic anions from aqueous solution

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2016-01-01

    Full Text Available Monitoring of natural waters in the present time - consuming process, the accuracy of which is influenced by many factors: the composition of water, the presence of impurities and "interfering" components. The water sample preparation process includes the step of concentration and separation of ions determined. The most versatile, efficient, and frequently used method is the concentration of inorganic anions from aqueous solutions by ion exchanger, which can optimize the composition of water to the optimal for identification and quantitative determination of anions. The characteristics of sorption chloride, nitrate and sulfate ions of basic anion exchange resin AВ-17 and Purolite A430 were compared in the article. The constants of protolysis of ion exchangers both AB 17 and Purolite A430 are the same and equal 0.037 ± 0,002. The value of total capacity (POE Purolite A430 was 4.3 mmol/g, AB 17 – 3.4 mmol/g. The studied ion exchangers have the same type of ionic groups – quaternary ammonium, but their number and denotes differ. The number of quaternary ammonium groups is higher in Purolite A430, respectively the number of absorbed anions of these ion exchanger is higher. The values of dynamic exchange capacity (DOE of ion exchanger Purolite A430 is higher than these values of AB-17 and equal to 1.48 ± 0.03 mmol / dm3 for chloride ion, 1.50 ± 0.03 mmol / dm3 for nitrate ion, 1.62 ± 0.03 mmol / dm3 for sulfate ion. The values of the POE and DOE of anion-exchange resins Purolite A430 and AV-17 and the characteristics of the individual sorption of chloride, nitrate, sulfate ions showed an advantage of the Purolite for the concentrationing of anions. It is found that times of anions sorption from triple-anion solutions by Purolite A430 are significantly different for different anions, and these times are close for anion-exchanger AV-17. It proves the possibility of quantitative separation and concentration by anion-exchanger Purolite A430.

  3. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  4. Simulating Osmotic Equilibria: A New Tool for Calculating Activity Coefficients in Concentrated Aqueous Salt Solutions.

    Science.gov (United States)

    Bley, Michael; Duvail, Magali; Guilbaud, Philippe; Dufrêche, Jean-François

    2017-10-19

    Herein, a new theoretical method is presented for predicting osmotic equilibria and activities, where a bulk liquid and its corresponding vapor phase are simulated by means of molecular dynamics using explicit polarization. Calculated time-averaged number density profiles provide the amount of evaporated molecules present in the vapor phase and consequently the vapor-phase density. The activity of the solvent and the corresponding osmotic coefficient are determined by the vapor density at different solute concentrations with respect to the reference vapor density of the pure solvent. With the extended Debye-Hückel equation for the activity coefficient along with the corresponding Gibbs-Duhem relation, the activity coefficients of the solutes are calculated by fitting the osmotic coefficients. A simple model based on the combination of Poisson processes and Maxwell-Boltzmann velocity distributions is introduced to interpret statistical phenomena observed during the simulations, which are related to evaporation and recondensation. This method is applied to aqueous dysprosium nitrate [Dy(NO 3 ) 3 ] solutions at different concentrations. The obtained densities of the liquid bulk and the osmotic and activity coefficients are in good agreement with the experimental results for concentrated and saturated solutions. Density profiles of the liquid-vapor interface at different concentrations provide detailed insight into the spatial distributions of all compounds.

  5. The determination of hydroxide and carbonate in concentrated sodium chloride solutions

    NARCIS (Netherlands)

    Roolvink, W.B.; Bos, M.

    1980-01-01

    A computer method for the determination of carbonate and hydroxide in concentrated (2.89 M) sodium chloride solutions is described. The method is based on multiparametric curve-fitting and can also be applied to salts of dibasic acids with unknown equilibrium constants. The systematic error is not

  6. Thermodynamics of curium(III) in concentrated electrolyte solutions: formation of sulfate complexes in NaCl/Na2SO4 solutions

    International Nuclear Information System (INIS)

    Paviet, P.; Fanghaenel, T.; Klenze, R.; Kim, J.I.

    1996-01-01

    The formation of sulfate complexes of Curium in aqueous solutions is studied by time resolved laser fluorescence spectroscopy (TRLFS) at 25 C. The species Cm 3+ , Cm(SO 4 ) - , Cm(SO 4 ) - 2 and Cm(SO 4 ) 3- 3 are quantified spectroscopically in the trace concentration range by peak deconvolution of fluorescence emission spectra. The complex formation equilibria are measured in NaCl/ Na 2 SO 4 solutions of constant ionic strength (3 molal) as a function of the sulfate concentration. The stability constants of Cm(SO 4 ) + and Cm(SO 4 ) - 2 are determined to be log β 1 = 0.93±0.08 and log β 2 = 0.61±0.08, respectively. The complex Cm(SO 4 ) 3- 3 is found to be stable only at very high sulfate concentrations (above 1 molal) and therefore not considered for further evaluation. (orig.)

  7. Fissile materials in solution concentration measured by active neutron interrogation

    International Nuclear Information System (INIS)

    Romeyer Dherbey, J.; Passard, Ch.; Cloue, J.; Bignan, G.

    1993-01-01

    The use of the active neutron interrogation to measure the concentration of plutonium contained in flow solutions is particularly interesting for fuel reprocessing plants. Indeed, this method gives a signal which is in a direct relation with the fissile materials concentration. Moreover, it is less sensitive to the gamma dose rate than the other nondestructive methods. Two measure methods have been evolved in CEA. Their principles are given into details in this work. The first one consists to detect fission delayed neutrons induced by a 252 Cf source. In the second one fission prompt neutrons induced by a neutron generator of 14 MeV are detected. (O.M.)

  8. OLED-based biosensing platform with ZnO nanoparticles for enzyme immobilization

    Science.gov (United States)

    Cai, Yuankun; Shinar, Ruth; Shinar, Joseph

    2009-08-01

    Organic light-emitting diode (OLED)-based sensing platforms are attractive for photoluminescence (PL)-based monitoring of a variety of analytes. Among the promising OLED attributes for sensing applications is the thin and flexible size and design of the OLED pixel array that is used for PL excitation. To generate a compact, fielddeployable sensor, other major sensor components, such as the sensing probe and the photodetector, in addition to the thin excitation source, should be compact. To this end, the OLED-based sensing platform was tested with composite thin biosensing films, where oxidase enzymes were immobilized on ZnO nanoparticles, rather than dissolved in solution, to generate a more compact device. The analytes tested, glucose, cholesterol, and lactate, were monitored by following their oxidation reactions in the presence of oxygen and their respective oxidase enzymes. During such reactions, oxygen is consumed and its residual concentration, which is determined by the initial concentration of the above-mentioned analytes, is monitored. The sensors utilized the oxygen-sensitive dye Pt octaethylporphyrin, embedded in polystyrene. The enzymes were sandwiched between two thin ZnO layers, an approach that was found to improve the stability of the sensing probes.

  9. Absorption capacity and viscosity for CO_2 capture process using high concentrated PZ-DEAE aqueous solution

    International Nuclear Information System (INIS)

    Fu, Dong; Wang, LeMeng; Mi, ChenLu; Zhang, Pan

    2016-01-01

    Highlights: • Absorption of CO_2 in high concentrated DEAE-PZ aqueous solutions were measured. • Viscosities of CO_2-unloaded and CO_2-loaded DEAE-PZ aqueous solutions were measured. • Weiland equation was used to calculate the viscosities. • Effects of temperature, concentration and CO_2 loading on viscosity were demonstrated. - Abstract: The absorption capacity of CO_2 in piperazine (PZ) promoted 2-diethylaminoethanol (DEAE) aqueous solution was measured. The viscosities of both CO_2-unloaded and CO_2-loaded PZ-DEAE aqueous solutions were measured and then modelled. The temperatures ranged from 303.2 K to 323.2 K. The mass fraction of PZ and DEAE respectively ranged from 0 to 0.075 and 0.3 to 0.5. The temperature and concentration dependences of absorption capacity were determined. The effects of temperature, mass fraction and CO_2 loading on viscosities are demonstrated.

  10. Predicting the activity coefficients of free-solvent for concentrated globular protein solutions using independently determined physical parameters.

    Directory of Open Access Journals (Sweden)

    Devin W McBride

    Full Text Available The activity coefficient is largely considered an empirical parameter that was traditionally introduced to correct the non-ideality observed in thermodynamic systems such as osmotic pressure. Here, the activity coefficient of free-solvent is related to physically realistic parameters and a mathematical expression is developed to directly predict the activity coefficients of free-solvent, for aqueous protein solutions up to near-saturation concentrations. The model is based on the free-solvent model, which has previously been shown to provide excellent prediction of the osmotic pressure of concentrated and crowded globular proteins in aqueous solutions up to near-saturation concentrations. Thus, this model uses only the independently determined, physically realizable quantities: mole fraction, solvent accessible surface area, and ion binding, in its prediction. Predictions are presented for the activity coefficients of free-solvent for near-saturated protein solutions containing either bovine serum albumin or hemoglobin. As a verification step, the predictability of the model for the activity coefficient of sucrose solutions was evaluated. The predicted activity coefficients of free-solvent are compared to the calculated activity coefficients of free-solvent based on osmotic pressure data. It is observed that the predicted activity coefficients are increasingly dependent on the solute-solvent parameters as the protein concentration increases to near-saturation concentrations.

  11. Paper Microzone Plates as Analytical Tools for Studying Enzyme Stability: A Case Study on the Stabilization of Horseradish Peroxidase Using Trehalose and SU-8 Epoxy Novolac Resin.

    Science.gov (United States)

    Ganaja, Kirsten A; Chaplan, Cory A; Zhang, Jingyi; Martinez, Nathaniel W; Martinez, Andres W

    2017-05-16

    Paper microzone plates in combination with a noncontact liquid handling robot were demonstrated as tools for studying the stability of enzymes stored on paper. The effect of trehalose and SU-8 epoxy novolac resin (SU-8) on the stability of horseradish peroxidase (HRP) was studied in both a short-term experiment, where the activity of various concentrations of HRP dried on paper were measured after 1 h, and a long-term experiment, where the activity of a single concentration of HRP dried and stored on paper was monitored for 61 days. SU-8 was found to stabilize HRP up to 35 times more than trehalose in the short-term experiment for comparable concentrations of the two reagents, and a 1% SU-8 solution was found to stabilize HRP approximately 2 times more than a 34% trehalose solution in both short- and long-term experiments. The results suggest that SU-8 is a promising candidate for use as an enzyme-stabilizing reagent for paper-based diagnostic devices and that the short-term experiment could be used to quickly evaluate the capacity of various reagents for stabilizing enzymes to identify and characterize new enzyme-stabilizing reagents.

  12. Rheological and micro-Raman time-series characterization of enzyme sol–gel solution toward morphological control of electrospun fibers

    International Nuclear Information System (INIS)

    Oriero, Dennis A; Weakley, Andrew T; Aston, D Eric

    2012-01-01

    Rheological and micro-Raman time-series characterizations were used to investigate the chemical evolutionary changes of silica sol–gel mixtures for electrospinning fibers to immobilize an enzyme (tyrosinase). Results of dynamic rheological measurements agreed with the expected structural transitions associated with reacting sol–gel systems. The electrospinning sols exhibited shear-thinning behavior typical of a power law model. Ultrafine (200–300 nm diameter) fibers were produced at early and late times within the reaction window of approximately one hour from initial mixing of sol solutions with and without enzyme; diameter distributions of these fibers showed much smaller deviations than expected. The enzyme markedly increased magnitudes of both elastic and viscous moduli but had no significant impact on final fiber diameters, suggesting that the shear-thinning behavior of both sol–gel mixtures is dominant in the fiber elongation process. The time course and scale for the electrospinning batch fabrication show strong correlations between the magnitudes in rheological property changes over time and the chemical functional group evolution obtained from micro-Raman time-series analysis of the reacting sol–gel systems.

  13. Rheological and micro-Raman time-series characterization of enzyme sol–gel solution toward morphological control of electrospun fibers

    Science.gov (United States)

    Oriero, Dennis A; Weakley, Andrew T; Aston, D Eric

    2012-01-01

    Rheological and micro-Raman time-series characterizations were used to investigate the chemical evolutionary changes of silica sol–gel mixtures for electrospinning fibers to immobilize an enzyme (tyrosinase). Results of dynamic rheological measurements agreed with the expected structural transitions associated with reacting sol–gel systems. The electrospinning sols exhibited shear-thinning behavior typical of a power law model. Ultrafine (200–300 nm diameter) fibers were produced at early and late times within the reaction window of approximately one hour from initial mixing of sol solutions with and without enzyme; diameter distributions of these fibers showed much smaller deviations than expected. The enzyme markedly increased magnitudes of both elastic and viscous moduli but had no significant impact on final fiber diameters, suggesting that the shear-thinning behavior of both sol–gel mixtures is dominant in the fiber elongation process. The time course and scale for the electrospinning batch fabrication show strong correlations between the magnitudes in rheological property changes over time and the chemical functional group evolution obtained from micro-Raman time-series analysis of the reacting sol–gel systems. PMID:27877486

  14. Influence of a Modified Plant Extract on Activity of Antioxidant Enzymes and Concentration of Pigments in Gamma-Irradiated Plants of Maize and Wheat

    Directory of Open Access Journals (Sweden)

    Azizov Ibrahim

    2018-02-01

    Full Text Available The influence of a medicinal plant extract, immobilised by ligands, on the activity of antioxidant enzymes and photosynthetic pigment concentration of wheat and maize was studied. The object of study was seed of drought-resistant firm durum wheat (Triticum durum Desf. and maize (Zea mays L.. Seeds were subjected to general uniform γ-radiation from a 60Co source on a Rkhund installation at average dose power of MD = 0.306 Gy/sec. Before radiation seeds were treated in modified extract from medicinal plants. The treatment of seeds with 0.1 and 0.01% solution of modified extract from Hypericum, Dandelion, and Calendula caused significant reduction in processes initiated by radiation and in formation of free radicals. On the basis of the obtained results it was concluded that the used modified plant extract collection had a protective effect, reducing the amount of free radicals produced by γ-irradiation.

  15. Modelling trends in soil solution concentrations under five forest-soil combinations in the Netherlands

    NARCIS (Netherlands)

    Salm, van der C.; Vries, de W.; Kros, J.

    1996-01-01

    The influence of forest and soil properties on changes in soil solution concentration upon a reduction deposition was examined for five forest-soil combinations with the dynamic RESAM model. Predicted concentrations decreased in the direction Douglas fir - Scotch pine - oak, due to decreased

  16. Specific wavelength colorimeter. [for measuring given solute concentration in test sample

    Science.gov (United States)

    Brawner, C. C.; Mcdavid, L. S.; Walsh, J. M. (Inventor)

    1974-01-01

    A self contained, specific wavelength, single beam colorimeter is described for direct spectrophotometric measurement of the concentration of a given solute in a test sample. An electrical circuit employing a photoconductive cell converts the optical output into a linear, directly readable meter output. The colorimeter is simple to operate and is adapted for use in zero gravity conditions. In a specific application, the colorimeter is designed to analyze the concentration of iodine in potable water carried aboard a space vehicle such as the 4B stage of Skylab.

  17. Critical zone structure controls concentration-discharge relationships and solute generation in forested tropical montane watersheds

    Science.gov (United States)

    Wymore, Adam S.; Brereton, Richard L.; Ibarra, Daniel E.; Maher, Kate; McDowell, William H.

    2017-07-01

    Concentration-discharge (C-Q) relationships are poorly known for tropical watersheds, even though the tropics contribute a disproportionate amount of solutes to the global ocean. The Luquillo Mountains in Puerto Rico offer an ideal environment to examine C-Q relationships across a heterogeneous tropical landscape. We use 10-30 years of weekly stream chemistry data across 10 watersheds to examine C-Q relationships for weathering products (SiO2(aq), Ca2+, Mg2+, and Na+) and biologically controlled solutes (dissolved organic carbon [DOC], dissolved organic nitrogen [DON], NH4+, NO3-, PO43-, K+, and SO42-). We analyze C-Q relationships using power law equations and a solute production model and use principal component analysis to test hypotheses regarding how the structure of the critical zone controls solute generation. Volcaniclastic watersheds had higher concentrations of weathering solutes and smaller tributaries were approximately threefold more efficient at generating these solutes than larger rivers. Lithology and vegetation explained a significant amount of variation in the theoretical maximum concentrations of weathering solutes (r2 = 0.43-0.48) and in the C-Q relationships of PO43- (r2 = 0.63) and SiO2(aq) (r2 = 0.47). However, the direction and magnitude of these relationships varied. Across watersheds, various forms of N and P displayed variable C-Q relationships, while DOC was consistently enriched with increasing discharge. Results suggest that PO43- may be a useful indicator of watershed function. Relationships between C-Q and landscape characteristics indicate the extent to which the structure and function of the Critical zone controls watershed solute fluxes.

  18. Sodium concentration in home made salt – sugar – solution (sss ...

    African Journals Online (AJOL)

    In a cohort of 210 young mothers, selected through cluster sampling technique from Ogida health district of Egor Local Government Area of Edo State, the electrolyte concentration of prepared salt-sugar-solutions (SSS) were evaluated. This was predicated on the need to determine the effects of introduction of various ...

  19. Sandwich-type enzyme immunoassay for big endothelin-I in plasma: concentrations in healthy human subjects unaffected by sex or posture.

    Science.gov (United States)

    Aubin, P; Le Brun, G; Moldovan, F; Villette, J M; Créminon, C; Dumas, J; Homyrda, L; Soliman, H; Azizi, M; Fiet, J

    1997-01-01

    A sandwich-type enzyme immunoassay has been developed for measuring human big endothelin-1 (big ET-1) in human plasma and supernatant fluids from human cell cultures. Big ET-1 is the precursor of endothelin 1 (ET-1), the most potent vasoconstrictor known. A rabbit antibody raised against the big ET-1 COOH-terminus fragment was used as an immobilized antibody (anti-P16). The Fab' fragment of a monoclonal antibody (1B3) raised against the ET-1 loop fragment was used as the enzyme-labeled antibody, after being coupled to acetylcholinesterase. The lowest detectable value in the assay was 1.2 pg/mL (0.12 pg/well). The assay was highly specific for big ET-1, demonstrating no cross-reactivity with ET-1, big endothelin-2 (big ET-2), and big endothelin-3 (big ET-3). We used this assay to evaluate the effect of two different postural positions (supine and standing) on plasma big ET-1 concentrations in 11 male and 11 female healthy subjects. Data analysis revealed that neither sex nor body position influenced plasma big ET-1 concentrations. This assay should thus permit the detection of possible variations in plasma concentrations of big ET-1 in certain pathologies and, in association with ET-1 assay, make possible in vitro study of endothelin-converting enzyme activity in cell models. Such studies could clarify the physiological and clinical roles of this family of peptides.

  20. A path-independent integral for the characterization of solute concentration and flux at biofilm detachments

    Science.gov (United States)

    Moran, B.; Kulkarni, S.S.; Reeves, H.W.

    2007-01-01

    A path-independent (conservation) integral is developed for the characterization of solute concentration and flux in a biofilm in the vicinity of a detachment or other flux limiting boundary condition. Steady state conditions of solute diffusion are considered and biofilm kinetics are described by an uptake term which can be expressed in terms of a potential (Michaelis-Menten kinetics). An asymptotic solution for solute concentration at the tip of the detachment is obtained and shown to be analogous to that of antiplane crack problems in linear elasticity. It is shown that the amplitude of the asymptotic solution can be calculated by evaluating a path-independent integral. The special case of a semi-infinite detachment in an infinite strip is considered and the amplitude of the asymptotic field is related to the boundary conditions and problem parameters in closed form for zeroth and first order kinetics and numerically for Michaelis-Menten kinetics. ?? Springer Science+Business Media, Inc. 2007.

  1. Mesoscopic dynamics of diffusion-influenced enzyme kinetics.

    Science.gov (United States)

    Chen, Jiang-Xing; Kapral, Raymond

    2011-01-28

    A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t(-1/2) and t(-3/2) power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.

  2. Mesoscopic dynamics of diffusion-influenced enzyme kinetics

    Science.gov (United States)

    Chen, Jiang-Xing; Kapral, Raymond

    2011-01-01

    A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t^{-1/2} and t^{-3/2} power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.

  3. Metrological assessment of TDR performance for measurement of potassium concentration in soil solution

    Directory of Open Access Journals (Sweden)

    Isaac de M. Ponciano

    2016-04-01

    Full Text Available ABSTRACT Despite the growing use of the time domain reflectometry (TDR technique to monitoring ions in the soil solution, there are few studies that provide insight into measurement error. To overcome this lack of information, a methodology, based on the central limit theorem error, was used to quantify the uncertainty associated with using the technique to estimate potassium ion concentration in two soil types. Mathematical models based on electrical conductivity and soil moisture derived from TDR readings were used to estimate potassium concentration, and the results were compared to potassium concentration determined by flame spectrophotometry. It was possible to correct for random and systematic errors associated with TDR readings, significantly increasing the accuracy of the potassium estimation methodology. However, a single TDR reading can lead to an error of up to ± 18.84 mg L-1 K+ in soil solution (0 to 3 dS m-1, with a 95.42% degree of confidence, for a loamy sand soil; and an error of up to ± 12.50 mg L-1 of K+ (0 to 2.5 dS m-1 in soil solution, with a 95.06% degree of confidence, for a sandy clay soil.

  4. The relationship between 25-hydroxyvitamin D concentration and liver enzymes in overweight or obese adults: Cross-sectional and interventional outcomes.

    Science.gov (United States)

    Naderpoor, Negar; Mousa, Aya; de Courten, Maximilian; Scragg, Robert; de Courten, Barbora

    2018-03-01

    Vitamin D deficiency is prevalent in individuals with non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis. However, there is limited and inconsistent data on the effect of vitamin D supplementation on liver function. Hepatic enzymes have been used as surrogate markers for NAFLD and have been associated with metabolic syndrome. We examined the relationships between 25-hydroxyvitamin D (25(OH)D) and γ-glutamyl transferase (GGT), alanine aminotransferase (ALT), alkaline phosphatase (ALP) in 120 drug-naïve individuals with no history of liver disease. In addition, the effect of vitamin D supplementation (100,000 loading dose of cholecalciferol followed by 4000IU daily for 16 weeks) on hepatic enzymes was investigated in a subgroup of 54 vitamin D-deficient overweight or obese individuals (28 randomised to cholecalciferol and 26 to placebo). Hepatic enzymes, anthropometric parameters, lipid profile, insulin sensitivity (hyperinsulinaemic-euglycaemic clamp, M value) and high sensitivity C-reactive protein (hs-CRP) were measured before and after the intervention. In the cross-sectional study, levels of GGT and ALT were higher in men compared to women (both p=0.001). There were no significant differences in GGT, ALT and ALP between vitamin D categories (25(OH)D50nmol/L) and no relationships were found between the three enzymes and 25(OH)D before and after adjustment for age, sex, BMI, WHR, and insulin sensitivity (all p>0.5). In the randomised trial, 25(OH)D concentrations increased in the vitamin D group (mean change 57.0±21.3nmol/L) compared to the placebo group (mean change 1.9±15.1nmol/L). Mean changes in GGT, ALT and ALP were not significantly different between vitamin D and placebo groups (all p>0.2). Change in 25(OH)D concentration was not correlated with changes in GGT, ALT and ALP before and after adjustments for age and sex (all p>0.1). In summary, 25(OH)D concentrations were not related to hepatic enzymes in drug-naive adults with no

  5. ELECTRODIALYSIS IN THE CONVERSION STEP OF THE CONCENTRATED SALT SOLUTIONS IN THE PROCESS OF BATTERY SCRAP

    Directory of Open Access Journals (Sweden)

    S. I. Niftaliev

    2014-01-01

    Full Text Available Summary. The concentrated sodium sulfate solution is formed during the processing of waste battery scrap. A promising way to further treatment of the concentrated salt solution could be the conversion of these salts into acid and bases by electrodialysis, that can be reused in the same technical process cycle. For carrying out the process of conversion of salts into the corresponding acid and base several cells schemes with different combinations of cation, anion and bipolar membranes are used. At this article a comparative analysis of these cells is carried out. In the cells there were used the membranes МC-40, МА-41 and МB-2I. Acid and base solutions with higher concentration may be obtained during the process of electrodialysis in the circulation mode, when a predetermined amount of salt in the closed loop is run through a set of membranes to obtain the desired concentration of the product. The disadvantages of this method are the high cost of buffer tanks and the need to work with small volumes of treated solutions. In industrial applications it is advisable to use continuous electrodialysis with bipolar membranes, since this configuration allows to increase the number of repeating sections, which is necessary to reduce the energy costs. The increase of the removal rate of salts can be achieved by increasing the process steps, and to produce a more concentrated products after the conversion step can be applied electrodialysis-concentrator or evaporator.

  6. Nitrogen and potassium concentrations in the nutrients solution for melon plants growing in coconut fiber without drainage.

    Science.gov (United States)

    Gratieri, Luiz Augusto; Cecílio Filho, Arthur Bernardes; Barbosa, José Carlos; Pavani, Luiz Carlos

    2013-01-01

    With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The "Bonus no. 2" was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L(-1)) and four K concentrations (4, 6, 8, and 10 mmol L(-1)). The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO₃ and of K, and the electrical conductivity (CE) of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L(-1)) and K (10 mmol L(-1)) resulted in higher masses for the first (968 g) and the second (951 g) fruits and crop yield (4,425 gm(-2)).

  7. Determination of the thermodynamic state of concentrated hemoglobin solutions by means of small angle X-ray scattering

    International Nuclear Information System (INIS)

    Zinke, M.

    1979-01-01

    Exemplified by hemoglobin, the thermodynamic equilibrium properties of the dissolved macromolecular system could be determined solely from the small angle X-ray scattering of concentrated macromolecular solutions via the intermolecular structure of the dissolved macromolecules and their intermolecular potentials. From the scattering experiment on concentrated Hb solutions the concentration dependence of the following properties of the dissolved Hb system were determined: fluctuation, isothermic compressibility, internal energy, surface tension, and osmotic pressure. (author)

  8. Glacier Melting Increases the Solute Concentrations of Himalayan Glacial Lakes.

    Science.gov (United States)

    Salerno, Franco; Rogora, Michela; Balestrini, Raffaella; Lami, Andrea; Tartari, Gabriele A; Thakuri, Sudeep; Godone, Danilo; Freppaz, Michele; Tartari, Gianni

    2016-09-06

    Over the past two decades, we observed a substantial rise in ionic content that was mainly determined by the sulfate concentration at 20 remote high elevation lakes located in central southern Himalaya. At LCN9, which was monitored on an annual basis for the last 20 years, the sulfate concentrations increased over 4-fold. Among the main causes, we exclude a change in the composition of wet atmospheric deposition, as well as a possible influence of decrease in seasonal snow cover duration, which could have exposed larger basin surfaces to alteration processes. Glacier retreat likely was the main factor responsible for the observed increase of sulfate concentrations. We attribute this chemical changes mainly to the sulfide oxidation processes that occur in subglacial environments. Moreover, we observe that the weakened monsoon of the past two decades has only partially contributed to the lakes enrichment through runoff waters that are more concentrated in solutes or lowering the water table, resulting in more rock exposed to air and enhanced mineral oxidation.

  9. [Computer modeling the dependences of the membrane potential for polymeric membrane separated non-homogeneous electrolyte solutions on concentration Rayleigh number].

    Science.gov (United States)

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Bilewicz-Wyrozumska, Teresa; Slezak, Andrzej

    2006-01-01

    On the basis of model equation describing the membrane potential delta psi(s) on concentration Rayleigh number (R(C)), mechanical pressure difference (deltaP), concentration polarization coefficient (zeta s) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics delta psi(s) = f(Rc)(delta P, zeta s, Ch/Cl) for steady values of zeta s, R(C) and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, Rc and Zeta(s).

  10. Preparation of immobilized enzyme membrane by radiation-cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1989-01-01

    The preparation of immobilized enzyme membranes was studied by radiation cast-polymerization at low temperatures using cellulase enzyme, hydrophilic and hydrophobic monomers. The enzyme activity of the membranes was affected by monomer concentration, membrane thickness, and hydrophilicity of monomer, in which the membranes with 100 μm thickness from high monomer concentration (80%) had high enzyme activity, which was similar to that of the membranes with 1.0 mm thickness from low monomer concentration (20%). (author)

  11. Silica Sol-Gel Entrapment of the Enzyme Chloro peroxidase

    International Nuclear Information System (INIS)

    Le, T.; Chan, S.; Ebaid, B.; Sommerhalter, M.

    2015-01-01

    The enzyme chloro peroxidase (CPO) was immobilized in silica sol-gel beads prepared from tetramethoxysilane. The average pore diameter of the silica host structure (∼3 nm) was smaller than the globular CPO diameter (∼6 nm) and the enzyme remained entrapped after sol-gel maturation. The catalytic performance of the entrapped enzyme was assessed via the pyrogallol peroxidation reaction. Sol-gel beads loaded with 4 μg CPO per mL sol solution reached 9-12% relative activity compared to free CPO in solution. Enzyme kinetic analysis revealed a decrease in K_cat but no changes in K_M or K_I . Product release or enzyme damage might thus limit catalytic performance. Yet circular dichroism and visible absorption spectra of transparent CPO sol-gel sheets did not indicate enzyme damage. Activity decline due to methanol exposure was shown to be reversible in solution. To improve catalytic performance the sol-gel protocol was modified. The incorporation of 5, 20, or 40% methyltrimethoxysilane resulted in more brittle sol-gel beads but the catalytic performance increased to 14% relative to free CPO in solution. The use of more acidic casting buffers (ph 4.5 or 5.5 instead of 6.5) resulted in a more porous silica host reaching up to 18% relative activity

  12. High throughput, high resolution enzymatic lithography process: effect of crystallite size, moisture, and enzyme concentration.

    Science.gov (United States)

    Mao, Zhantong; Ganesh, Manoj; Bucaro, Michael; Smolianski, Igor; Gross, Richard A; Lyons, Alan M

    2014-12-08

    By bringing enzymes into contact with predefined regions of a surface, a polymer film can be selectively degraded to form desired patterns that find a variety of applications in biotechnology and electronics. This so-called "enzymatic lithography" is an environmentally friendly process as it does not require actinic radiation or synthetic chemicals to develop the patterns. A significant challenge to using enzymatic lithography has been the need to restrict the mobility of the enzyme in order to maintain control of feature sizes. Previous approaches have resulted in low throughput and were limited to polymer films only a few nanometers thick. In this paper, we demonstrate an enzymatic lithography system based on Candida antartica lipase B (CALB) and poly(ε-caprolactone) (PCL) that can resolve fine-scale features, (<1 μm across) in thick (0.1-2.0 μm) polymer films. A Polymer Pen Lithography (PPL) tool was developed to deposit an aqueous solution of CALB onto a spin-cast PCL film. Immobilization of the enzyme on the polymer surface was monitored using fluorescence microscopy by labeling CALB with FITC. The crystallite size in the PCL films was systematically varied; small crystallites resulted in significantly faster etch rates (20 nm/min) and the ability to resolve smaller features (as fine as 1 μm). The effect of printing conditions and relative humidity during incubation is also presented. Patterns formed in the PCL film were transferred to an underlying copper foil demonstrating a "Green" approach to the fabrication of printed circuit boards.

  13. Effect of uranyl nitrate and free acid concentration in feed solution of gelation on UO2 kernel quality

    International Nuclear Information System (INIS)

    Masduki, B.; Wardaya; Widarmoko, A.

    1996-01-01

    An investigation on the effect of uranium and free nitric acid concentration of uranyl nitrate as feed of gelation process on quality of UO 2 kernel was done.The investigation is to look for some concentration of uranyl nitrate solutions those are optimum as feed for preparation of gelled UO 3 . Uranyl nitrate solution of various concentration of uranium (450; 500; 550; 600; 650; 700 g/l) and free nitric acid of (0.9; 1.0; 1.1 N) was made into feed solutions by adding urea and HMTA with mole ratio of urea/uranium and HMTA/uranium 2.1 and 2.0. The feed solutions were changed into spherical gelled UO 3 by dropping was done to get the optimum concentrations of uranyl nitrate solutions. The gelled UO 3 was soaked and washed with 2.5% ammonia solution for 17 hours, dried at 70 o C, calcined at 350 o C for 3 hours then reduced at 850 o C for 3 hours. At every step of the steps process the colour and percentage of well product of gelled UO 3 were noticed. The density and O/U ratio of end product (UO 2 kernel) was determined, the percentage of well product of all steps process was also determined. The three factor were used to chose the optimum concentration of uranyl nitrate solution. From this investigation it was concluded that the optimum concentration of uranyl nitrate was 600 g/l uranium with free nitric acid 0,9 - 1,0 N, the percentage of well product was 97% density of 6.12 - 4.8 g/cc and O/U ratio of 2.15 - 2.06. (author)

  14. Experiment K-6-21. Effect of microgravity on 1) metabolic enzymes of type 1 and type 2 muscle fibers and on 2) metabolic enzymes, neutransmitter amino acids, and neurotransmitter associated enzymes in motor and somatosensory cerebral cortex. Part 1: Metabolic enzymes of individual muscle fibers; part 2: metabolic enzymes of hippocampus and spinal cord

    Science.gov (United States)

    Lowry, O.; Mcdougal, D., Jr.; Nemeth, Patti M.; Maggie, M.-Y. Chi; Pusateri, M.; Carter, J.; Manchester, J.; Norris, Beverly; Krasnov, I.

    1990-01-01

    The individual fibers of any individual muscle vary greatly in enzyme composition, a fact which is obscured when enzyme levels of a whole muscle are measured. The purpose of this study was therefore to assess the changes due to weightless on the enzyme patterns composed by the individual fibers within the flight muscles. In spite of the limitation in numbers of muscles examined, it is apparent that: (1) that the size of individual fibers (i.e., their dry weight) was reduced about a third, (2) that this loss in dry mass was accompanied by changes in the eight enzymes studied, and (3) that these changes were different for the two muscles, and different for the two enzyme groups. In the soleus muscle the absolute amounts of the three enzymes of oxidative metabolism decreased about in proportion to the dry weight loss, so that their concentration in the atrophic fibers was almost unchanged. In contrast, there was little loss among the four enzymes of glycogenolysis - glycolysis so that their concentrations were substantially increased in the atrophic fibers. In the TA muscle, these seven enzymes were affected in just the opposite direction. There appeared to be no absolute loss among the oxidative enzymes, whereas the glycogenolytic enzymes were reduced by nearly half, so that the concentrations of the first metabolic group were increased within the atrophic fibers and the concentrations of the second group were only marginally decreased. The behavior of hexokinase was exceptional in that it did not decrease in absolute terms in either type of muscle and probably increased as much as 50 percent in soleus. Thus, their was a large increase in concentration of this enzyme in the atrophied fibers of both muscles. Another clear-cut finding was the large increase in the range of activities of the glycolytic enzymes among individual fibers of TA muscles. This was due to the emergence of TA fibers with activities for enzymes of this group extending down to levels as low as

  15. In-core LOCA-s: analytical solution for the delayed mixing model for moderator poison concentration

    International Nuclear Information System (INIS)

    Firla, A.P.

    1995-01-01

    Solutions to dynamic moderator poison concentration model with delayed mixing under single pressure tube / calandria tube rupture scenario are discussed. Such a model is described by a delay differential equation, and for such equations the standard ways of solution are not directly applicable. In the paper an exact, direct time-domain analytical solution to the delayed mixing model is presented and discussed. The obtained solution has a 'marching' form and is easy to calculate numerically. Results of the numerical calculations based on the analytical solution indicate that for the expected range of mixing times the existing uniform mixing model is a good representation of the moderator poison mixing process for single PT/CT breaks. However, for postulated multi-pipe breaks ( which is very unlikely to occur ) the uniform mixing model is not adequate any more; at the same time an 'approximate' solution based on Laplace transform significantly overpredicts the rate of poison concentration decrease, resulting in excessive increase in the moderator dilution factor. In this situation the true, analytical solution must be used. The analytical solution presented in the paper may also serve as a bench-mark test for the accuracy of the existing poison mixing models. Moreover, because of the existing oscillatory tendency of the solution, special care must be taken in using delay differential models in other applications. (author). 3 refs., 3 tabs., 8 figs

  16. Enzyme Molecules in Solitary Confinement

    Directory of Open Access Journals (Sweden)

    Raphaela B. Liebherr

    2014-09-01

    Full Text Available Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  17. Simultaneous determination of nitric acid and uranium concentrations in aqueous solution from measurements of electrical conductivity, density, and temperature

    International Nuclear Information System (INIS)

    Spencer, B.B.

    1991-01-01

    Nuclear fuel reprocessing plants handle aqueous solutions of nitric acid and uranium in large quantities. Automatic control of process operations requires reliable measurements of these solutes concentration, but this is difficult to directly measure. Physical properties such as solution density and electrical conductivity vary with solute concentration and temperature. Conductivity, density and temperature can be measured accurately with relatively simple and inexpensive devices. These properties can be used to determine solute concentrations will good correlations. This paper provides the appropriate correlations for solutions containing 2 to 6 Molar (M) nitric acid and 0 to 300 g/L uranium metal at temperatures from 25--90 degrees C. The equations are most accurate below 5 M nitric acid, due to a broad maximum in the conductivity curve at 6 M. 12 refs., 9 figs., 6 tabs

  18. Effect of Na2CO3 degumming concentration on LiBr-formic acid-silk fibroin solution properties

    Directory of Open Access Journals (Sweden)

    Liu Zhi

    2016-01-01

    Full Text Available Salt-acid system has been proved to be of high efficiency for silk fibroin dissolution. Using salt-acid system to dissolve silk, native silk fibrils can be preserved in the regenerated solution. Increasing experiments indicate that acquirement of silk fibrils in solution is strongly associated with the degumming process. In this study, the effect of sodium carbonate degumming concentration on solution properties based on lithium bromide-formic acid dissolution system was systematically investigated. Results showed that the morphology transformation of silk fibroin in solution from nanospheres to nanofibrils is determined by sodium carbonate concentration during the degumming process. Solutions containing different silk fibroin structure exhibited different rheological behaviors and different electrospinnability, leading to different electrospun nanofibre properties. The results have guiding significance for preparation and application of silk fibroin solutions.

  19. Structure Manipulation of Carbon Aerogels by Managing Solution Concentration of Precursor and Its Application for CO2 Capture

    Directory of Open Access Journals (Sweden)

    Pingping He

    2018-04-01

    Full Text Available A series of carbon aerogels were synthesized by polycondensation of resorcinol and formaldehyde, and their structure was adjusted by managing solution concentration of precursors. Carbon aerogels were characterized by X-ray diffraction (XRD, Raman, Fourier transform infrared spectroscopy (FTIR, N2 adsorption/desorption and scanning electron microscope (SEM technologies. It was found that the pore structure and morphology of carbon aerogels can be efficiently manipulated by managing solution concentration. The relative micropore volume of carbon aerogels, defined by Vmicro/Vtol, first increased and then decreased with the increase of solution concentration, leading to the same trend of CO2 adsorption capacity. Specifically, the CA-45 (the solution concentration of precursors is 45 wt% sample had the highest CO2 adsorption capacity (83.71 cm3/g and the highest selectivity of CO2/N2 (53 at 1 bar and 0 °C.

  20. Structural study of concentrated micellar solutions

    International Nuclear Information System (INIS)

    Zemb, Thomas

    1985-01-01

    This research thesis reports the study of the structure of concentrated soap-water binary micelles with a comparison of measurements of light, neutrons and X-ray scattering, and the relaxation induced by paramagnetic ions adsorbed at the interface. In the first part, the author discusses the specific sensitivity ranges of different experimental techniques, outlines the resolution which can be obtained with scattering experiments, and proposes a critical analysis of results published in the relevant literature. In a second part, the author discusses the compared results of the application of various techniques (magnetic resonance, X-light and neutron scattering) on the two most used model systems: sodium octanoate and sodium dodecyl sulfate (SDS) in solution. Then, the author addresses the case of ternary systems: study of the influence of the presence of a co-surfactant on the structure, study of the effect of interfacial charge on the micellar structure, use of the same previous quantitative methods to study the disturbances brought to the structure due to the presence of reactants [fr

  1. Biocatalysis with thermostable enzymes: structure and properties of a thermophilic 'ene'-reductase related to old yellow enzyme.

    Science.gov (United States)

    Adalbjörnsson, Björn V; Toogood, Helen S; Fryszkowska, Anna; Pudney, Christopher R; Jowitt, Thomas A; Leys, David; Scrutton, Nigel S

    2010-01-25

    We report the crystal structure of a thermophilic "ene" reductase (TOYE) isolated from Thermoanaerobacter pseudethanolicus E39. The crystal structure reveals a tetrameric enzyme and an active site that is relatively large compared to most other structurally determined and related Old Yellow Enzymes. The enzyme adopts higher order oligomeric states (octamers and dodecamers) in solution, as revealed by sedimentation velocity and multiangle laser light scattering. Bead modelling indicates that the solution structure is consistent with the basic tetrameric structure observed in crystallographic studies and electron microscopy. TOYE is stable at high temperatures (T(m)>70 degrees C) and shows increased resistance to denaturation in water-miscible organic solvents compared to the mesophilic Old Yellow Enzyme family member, pentaerythritol tetranitrate reductase. TOYE has typical ene-reductase properties of the Old Yellow Enzyme family. There is currently major interest in using Old Yellow Enzyme family members in the preparative biocatalysis of a number of activated alkenes. The increased stability of TOYE in organic solvents is advantageous for biotransformations in which water-miscible organic solvents and biphasic reaction conditions are required to both deliver novel substrates and minimize product racemisation.

  2. Enzymic conversion of starch to glucose

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-19

    Corn is steeped in a SO/sub 2/ solution for 30 to 40 hours, coarsely ground, separated from the germ, and filtered. A 35% suspension of the germ-free corn, still containing fibers, hull, and gluten, is treated with Ca(OH)/sub 2/ to raise the pH to 6.5 to 7.0. A starch-liquifying enzyme is added and after a 2 hours treatment at 85/sup 0/ the liquefied starch is cooled to 60/sup 0/ and the pH is adjusted to 4.5 to 5.0 with H/sub 2/SO/sub 4/. A saccharifying enzyme is now added. After 40 to 81 hours, a raw glucose solution is obtained and is freed from fibers and gluten by filtration. The commercial starch-liquifying enzymes are designated HT-1000 and Neozyme 3 LC (liquid). The saccharifying enzymes are Diazyme or Diazyme L 30 (liquid). The solid enzymes are used at a level up to 0.1% by weight of the starch. Up to 100% conversion of starch into glucose is achieved.

  3. Nitrogen and Potassium Concentrations in the Nutrients Solution for Melon Plants Growing in Coconut Fiber without Drainage

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Gratieri

    2013-01-01

    Full Text Available With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The “Bonus no. 2” was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L−1 and four K concentrations (4, 6, 8, and 10 mmol L−1. The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO3 and of K, and the electrical conductivity (CE of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L−1 and K (10 mmol L−1 resulted in higher masses for the first (968 g and the second (951 g fruits and crop yield (4,425 gm−2.

  4. Correlation of high-temperature stability of alpha-chymotrypsin with 'salting-in' properties of solution.

    Science.gov (United States)

    Levitsky VYu; Panova, A A; Mozhaev, V V

    1994-01-15

    A correlation between the stability of alpha-chymotrypsin against irreversible thermal inactivation at high temperatures (long-term stability) and the coefficient of Setchenov equation as a measure of salting-in/out efficiency of solutes in the Hofmeister series has been found. An increase in the concentration of salting-in solutes (KSCN, urea, guanidinium chloride, formamide) leads to a many-fold decrease of the inactivation rate of the enzyme. In contrast, addition of salting-out solutes has a small effect on the long-term stability of alpha-chymotrypsin at high temperatures. The effects of solutes are additive with respect to their salting-in/out capacities; the stabilizing action of the solutes is determined by the calculated Setchenov coefficient of solution. The correlation is explained by a solute-driven shift of the conformational equilibrium between the 'low-temperature' native and the 'high-temperature' denatured forms of the enzyme within the range of the kinetic scheme put forward in the preceding paper in this journal: irreversible inactivation of the high-temperature form proceeds much more slowly compared with the low-temperature form.

  5. Extraction of soil solution by drainage centrifugation-effects of centrifugal force and time of centrifugation on soil moisture recovery and solute concentration in soil moisture of loess subsoils.

    Science.gov (United States)

    Fraters, Dico; Boom, Gerard J F L; Boumans, Leo J M; de Weerd, Henk; Wolters, Monique

    2017-02-01

    The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5-3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.

  6. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    methods. Protein engineering targets to improve cellulases include reducing enzyme inhibition, improving inter-enzyme synergy, and increasing enzyme thermotolerance. Ameliorating enzyme inhibition could improve catalytic activity and thus the speed of conversion from biomass to fermentable sugars. Improved enzyme synergy could reduce the enzyme loading required to achieve equivalent biomass conversion. Finally, thermostable enzymes could enable more biomass to be processed at a time, due to high temperatures decreasing the viscosity of biomass slurries. A high-temperature enzyme saccharification reaction could also decrease the risk of contamination in the resulting concentrated sugar solution. Throughout my PhD, I have explored research projects broadly across all of these topics, with the most success in addressing the issue of enzyme inhibition. Cellulase enzyme Cel7A is the most abundant cellulase employed by natural systems for cellulose hydrolysis. Cellobiohydrolase enzymes like Cel7A break down cellulose into cellobiose (two glucose molecules). Unfortunately, upon cleavage, this product molecule interferes with continued hydrolysis activity of Cel7A; the strong binding of cellobiose in the active site can obstruct the enzyme from processing down the cellulase chain. This phenomenon, known as product inhibition, is a bottleneck to efficient biomass breakdown. Using insights from computational protein modeling studies, I experimentally generated and tested mutant Cel7A enzymes for improved tolerance to cellobiose. Indeed, this strategy yielded Cel7A enzymes exhibiting reduced product inhibition, including some mutants completely impervious to cellobiose. The improvements in tolerance to cellobiose, however, resulted in an overall reduction of enzyme activity for the mutants tested. Nevertheless, my findings substantiated computational reports with experimental evidence and pinpointed an amino acid residue in the Cel7A product binding site that is of interest for

  7. Concentration Dependences of the Surface Tension and Density of Solutions of Acetone-Ethanol-Water Systems at 293 K

    Science.gov (United States)

    Dadashev, R. Kh.; Dzhambulatov, R. S.; Mezhidov, V. Kh.; Elimkhanov, D. Z.

    2018-05-01

    Concentration dependences of the surface tension and density of solutions of three-component acetone-ethanol-water systems and the bounding binary systems at 273 K are studied. The molar volume, adsorption, and composition of surface layers are calculated. Experimental data and calculations show that three-component solutions are close to ideal ones. The surface tensions of these solutions are calculated using semi-empirical and theoretical equations. Theoretical equations qualitatively convey the concentration dependence of surface tension. A semi-empirical method based on the Köhler equation allows us to predict the concentration dependence of surface tension within the experimental error.

  8. Methodological Considerations and Comparisons of Measurement Results for Extracellular Proteolytic Enzyme Activities in Seawater

    Directory of Open Access Journals (Sweden)

    Yumiko Obayashi

    2017-10-01

    Full Text Available Microbial extracellular hydrolytic enzymes that degrade organic matter in aquatic ecosystems play key roles in the biogeochemical carbon cycle. To provide linkages between hydrolytic enzyme activities and genomic or metabolomic studies in aquatic environments, reliable measurements are required for many samples at one time. Extracellular proteases are one of the most important classes of enzymes in aquatic microbial ecosystems, and protease activities in seawater are commonly measured using fluorogenic model substrates. Here, we examined several concerns for measurements of extracellular protease activities (aminopeptidases, and trypsin-type, and chymotrypsin-type activities in seawater. Using a fluorometric microplate reader with low protein binding, 96-well microplates produced reliable enzymatic activity readings, while use of regular polystyrene microplates produced readings that showed significant underestimation, especially for trypsin-type proteases. From the results of kinetic experiments, this underestimation was thought to be attributable to the adsorption of both enzymes and substrates onto the microplate. We also examined solvent type and concentration in the working solution of oligopeptide-analog fluorogenic substrates using dimethyl sulfoxide (DMSO and 2-methoxyethanol (MTXE. The results showed that both 2% (final concentration of solvent in the mixture of seawater sample and substrate working solution DMSO and 2% MTXE provide similarly reliable data for most of the tested substrates, except for some substrates which did not dissolve completely in these assay conditions. Sample containers are also important to maintain the level of enzyme activity in natural seawater samples. In a small polypropylene containers (e.g., standard 50-mL centrifugal tube, protease activities in seawater sample rapidly decreased, and it caused underestimation of natural activities, especially for trypsin-type and chymotrypsin-type proteases. In

  9. Equilibrium and Dynamic Osmotic Behaviour of Aqueous Solutions with Varied Concentration at Constant and Variable Volume

    Science.gov (United States)

    Minkov, Ivan L.; Manev, Emil D.; Sazdanova, Svetla V.; Kolikov, Kiril H.

    2013-01-01

    Osmosis is essential for the living organisms. In biological systems the process usually occurs in confined volumes and may express specific features. The osmotic pressure in aqueous solutions was studied here experimentally as a function of solute concentration (0.05–0.5 M) in two different regimes: of constant and variable solution volume. Sucrose, a biologically active substance, was chosen as a reference solute for the complex tests. A custom made osmotic cell was used. A novel operative experimental approach, employing limited variation of the solution volume, was developed and applied for the purpose. The established equilibrium values of the osmotic pressure are in agreement with the theoretical expectations and do not exhibit any evident differences for both regimes. In contrast, the obtained kinetic dependences reveal striking divergence in the rates of the process at constant and varied solution volume for the respective solute concentrations. The rise of pressure is much faster at constant solution volume, while the solvent influx is many times greater in the regime of variable volume. The results obtained suggest a feasible mechanism for the way in which the living cells rapidly achieve osmotic equilibrium upon changes in the environment. PMID:24459448

  10. Oxidative Pressure Leaching of Silver from Flotation Concentrates with Ammonium Thiocyanate Solution

    Science.gov (United States)

    Yang, Sheng-Hai; Yang, Jian-Guang; Liu, Wei; Chen, Geng-Tao; Tang, Mo-Tang; Qiu, Guan-Zhou

    2010-02-01

    The thermodynamics and technologies of the selective pressure leaching of silver from flotation concentrates were investigated in an ammonium thiocyanate medium. Thermodynamic analyses, which include silver solubility in NH4SCN solution and Eh-pH diagrams of the Me-MeS-NH4SCN-H2O system at 25 °C, were discussed. The effects of several factors, such as temperature, leaching time, oxidant, pH value, flotation concentrates concentration, surfactant concentration, and so on, on the extraction percentages of silver and zinc were investigated. The following optimal leaching conditions were obtained: NH4SCN concentration 1.5 M, lignin concentration 0.5 g/L, Fe3+ concentration 2 g/L, flotation concentrates addition 200 g/L, and oxygen pressure 1.2 MPa at 130 °C for 3 hours. Under these optimum conditions, the average extraction percentage of silver exceeded 94 pct, whereas the average extraction percentage of zinc was less than 3 pct. Only 7 pct of ammonium thiocyanate was consumed after 4 cycles, which indicated that ammonium thiocyanate hardly was oxidized under these oxidative pressure leaching conditions.

  11. Radiolysis of concentrated solutions. 1. Pulse and γ radiolysis studies of direct and indirect effects in LiCl solutions

    International Nuclear Information System (INIS)

    Pucheault, J.; Ferradini, C.; Julien, R.; Deysine, A.; Gilles, L.; Moreau, M.

    1979-01-01

    This study of the radiolysis of concentrated aqueous LiCl solutions enables the relative contributions of the direct and indirect effects to be evaluated as a function of Cl - concentration and also permits an evaluation of the role of Cl - in the early stages of water radiolysis. Radicalar and molecular yields G/sub Cl 2 - /, G/sub OH/, G//sub e//sub aq/ - / + G/sub H/, G/sub H 2 O 2 /, and G/sub H 2 / are determined for all concentrations employed, and the material balance is verified. The main conclusions concerning the apparent inefficacy of the direct effect and the importance of OH scavenging in spurs are discussed

  12. Influence of drainage and nutrient-solution nitrogen and potassium concentrations on the agronomic behavior of bell-pepper plants cultivated in a substrate.

    Science.gov (United States)

    Wamser, Anderson Fernando; Cecilio Filho, Arthur Bernardes; Nowaki, Rodrigo Hiyoshi Dalmazzo; Mendoza-Cortez, Juan Waldir; Urrestarazu, Miguel

    2017-01-01

    The interactive effects of N (6, 9, 12 and 15 mmol L-1) and K (3, 5, 7, and 9 mmol L-1) concentrations in nutrient solutions were evaluated on bell pepper grown in a coconut-coir substrate and fertilized without drainage. An additional treatment with drainage was evaluated using N and K concentrations of 12 and 7 mmol L-1, respectively. The hybrid Eppo cultivar of yellow bell pepper was cultivated for 252 days beginning 9 November 2012. Electrical conductivity (EC), the N and K concentrations in the substrate solution, marketable fruit yield, total dry weight and macronutrient concentrations in shoots were periodically evaluated. Fruit production was lower in the system without drainage, regardless of the N and K concentrations, compared to the recommended 10-20% drainage of the volume of nutrient solution applied. Higher K concentrations in the nutrient solution did not affect plant production in the system without drainage for the substrate with an initial K concentration of 331.3 mg L-1. Fruit yield was higher without drainage at a nutrient-solution N concentration of 10.7 mmol L-1. The upper EC limit of the substrate solution in the system without drainage was exceeded 181 days after planting. Either lower nutrient concentrations in the nutrient solution or a drainage system could thus control the EC in the substrate solution.

  13. Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes

    KAUST Repository

    Sevcenco, Ana-Maria

    2015-03-13

    Oxo-anion binding properties of the thermostable enzyme ferritin from Pyrococcus furiosus were characterized with radiography. Radioisotopes 32P and 76As present as oxoanions were used to measure the extent and the rate of their absorption by the ferritin. Thermostable ferritin proved to be an excellent system for rapid phosphate and arsenate removal from aqueous solutions down to residual concentrations at the picomolar level. These very low concentrations make thermostable ferritin a potential tool to considerably mitigate industrial biofouling by phosphate limitation or to remove arsenate from drinking water.

  14. [Influence of an infusion of 5- or 20% glucose solution on blood glucose and inorganic phosphate concentrations in dairy cows].

    Science.gov (United States)

    Aldaek, T A A; Failing, K; Wehrend, A; Klymiuk, M C

    2011-01-01

    The study was performed to evaluate the influence of an intravenous infusion of 5% and 20% dextrose solution on the plasma concentration of glucose and inorganic phosphate in healthy, dairy cows. Ten healthy, lactating, nonpregnant 3 to 6 year-old Holstein-Friesian cows were included in this investigation. The daily milk yield was 20.3±2.7 liters. Blood plasma concentrations of inorganic phosphate and glucose were determined before, during, immediately and 60 minutes after infusion of 0.9% physiological saline, 5% or 20% dextrose solution. A statistically significant influence of dextrose infusion on blood glucose concentration was observed. After 20% dextrose infusion (200 g dextrose) the blood glucose concentration increased by approximately 13.26 mmol/l. The administration of 5% dextrose solution (50 g dextrose) yielded an increase of blood glucose concentration by 3.31 mmol/l. There was no significant correlation between plasma inorganic phosphate concentrations and infusion of 0.9% saline, 5% or 20% dextrose solution. Intravenous administration of 1000 ml of 5% or 20% dextrose solution does not induce a lasting plasma phosphate reduction and is suitable for elevating the blood glucose concentration.

  15. Studies on the enzymes produced by Basidiomycetes. Part 1. The production of crude enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J. S.; Kim, D.H.

    1981-01-01

    Cellulase, protease, and xylanase, formation by the basidiomycetes, Pleurotus ostreatus 301 and Lentinus edodes 3-1 in growth on rice straw medium were studied. Cultural conditions adequate for enzyme production and effects of various materials and inorganic salts added to the rice straw media were investigated. Lentinus edodes 3-1 was an excellent producer of cellulase and xylanase, and Pleurotus ostreatus 301 of protease. The optimum conditions for enzyme production were 30 degrees for cellulase production and at 25 degrees for xylanase and protease production, with 75% moisture content and initial pH of 5.0-6.0. The appropriate incubation times for enzyme production were 30 days and 35 days for Pleurotus ostreatus 301 and Lentinus edodes 3-1, respectively. Among the various materials added, defatted soybean, defatted rape seed, or defatted sesame were all effective in enzyme production but reduced mycelial growth. Rice bran was also effective, particularly at a 30% concentration. The addition of inorganic salts enhanced enzyme production. Among inorganic salts, the optimum concentration of CaCO3 was 5%, and that of CaSO4 was 2%.

  16. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    Science.gov (United States)

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-05-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts () bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  17. Concentration of Rutin Model Solutions from Their Mixtures with Glucose Using Ultrafiltration

    Directory of Open Access Journals (Sweden)

    Zaid S. Saleh

    2010-02-01

    Full Text Available Separation of polyphenolic phytochemical compounds from their mixtures with sugars is necessary to produce an added-value sugar-reduced extract with high biological activity from fruit juice processing industry waste streams. The separation characteristics of a binary mixture of rutin and glucose using a Pellicon-2 regenerated cellulose ultrafiltration membrane with an area of 0.1 m2 having nominal MWCO of 1,000 Da were investigated, to demonstrate the separation of phenolic compounds from sugars. The effects of the operating variables–transmembrane pressure, feed solution temperature and pH, initial feed concentration and feed flow rate–on the permeate flux and enrichment of rutin, were determined. The permeate flux increased with the increase in transmembrane pressure up to a certain limit and after that the flux remained more or less constant. The optimum transmembrane pressure was within 4–5 bar. The flux increased with the increase in feed solution temperature because of reduced feed viscosity, and better solubility. The concentration of rutin was optimum at lower temperature (30ºC, with an enrichment factor of 1.3. The effect of pH on permeate flux was less obvious. Lowering the feed solution pH increased the retention of rutin and the optimum separation was obtained within pH 3–4. The permeate flux decreased with the increase in feed concentration of rutin (concentration range 0.1–0.5 g/L. The enrichment of rutin was significant in the glucose concentration range 0.35–0.5 g/L. The feed flow rate had a significant effect on the flux and separation characteristics. Higher cross-flow through the membrane reduced the fouling by providing a shear force to sweep away deposited materials from the membrane surface. At high feed flow rate, more rutin was retained by the membrane with less sugar permeating through. The optimum feed flow rate was 1.5 L/min. For the separation of rutin (in the retentate and glucose (in the permeate, the

  18. Morphological and Structural Analysis of Nano-hydroxyapatite (n-hap) Coatings Electrodeposited on Titanium Substrate : Effect of Deposition Solution Concentration

    International Nuclear Information System (INIS)

    Nik Norziehana Che Isa; Norjanah Yury; Yusairie Mohd

    2011-01-01

    Various concentration of deposition solutions containing CaCl 2 and NH 4 H 2 PO 4 (with Ca/P ratio equal to 1.67) were used to study the effect of deposition solution concentration on the surface morphology and structure of Hydroxyapatite (HAp) coatings. Each HAp coating was deposited onto Ti substrate by applying a constant potential of 1.5 V (vs Ag/ AgCl) at 80 degree Celsius. The formation of HAp coatings was confirmed by FTIR and XRD analyses. Various morphologies consisting of HAp nanoparticles were produced from different deposition solutions as observed by SEM. The concentration of deposition solution has significantly affected the morphology of n-HAp coatings. (author)

  19. Solid/solution Cu fractionations/speciation of a Cu contaminated soil after pilot-scale electrokinetic remediation and their relationships with soil microbial and enzyme activities

    International Nuclear Information System (INIS)

    Wang Quanying; Zhou Dongmei; Cang Long; Li Lianzhen; Wang Peng

    2009-01-01

    The aim of this study was to investigate the detailed metal speciation/fractionations of a Cu contaminated soil before and after electrokinetic remediation as well as their relationships with the soil microbial and enzyme activities. Significant changes in the exchangeable and adsorbed-Cu fractionations occurred after electrokinetic treatment, while labile soil Cu in the solution had a tendency to decrease from the anode to the cathode, and the soil free Cu 2+ ions were mainly accumulated in the sections close to the cathode. The results of regression analyses revealed that both the soil Cu speciation in solution phase and the Cu fractionations in solid phase could play important roles in the changes of the soil microbial and enzyme activities. Our findings suggest that the bioavailability of soil heavy metals and their ecotoxicological effects on the soil biota before and after electroremediation can be better understood in terms of their chemical speciation and fractionations. - The assessment of the roles of soil solution speciation and solid-phase fractionations in metal bioavailability after electrokinetic remediation deserves close attention.

  20. Photoluminescence Spectroscopy of Rhodamine 800 Aqueous Solution and Dye-Doped Polymer Thin-Film: Concentration and Solvent Effects

    Science.gov (United States)

    Le, Khai Q.; Dang, Ngo Hai

    2018-05-01

    This paper investigates solvent and concentration effects on photoluminescence (PL) or fluorescence properties of Rhodamine 800 (Rho800) dyes formed in aqueous solution and polymer thin-film. Various commonly used organic solvents including ethanol, methanol and cyclopentanol were studied at a constant dye concentration. There were small changes in the PL spectra for the different solvents in terms of PL intensity and peak wavelength. The highest PL intensity was observed for cyclopentanol and the lowest for ethanol. The longest peak wavelength was found in cyclopentanol (716 nm) and the shortest in methanol (708 nm). Dissolving the dye powder in the methanol solvent and varying the dye concentration in aqueous solution from the high concentrated solution to highly dilute states, the wavelength tunability was observed between about 700 nm in the dilute state and 730 nm at high concentration. Such a large shift may be attributed to the formation of dye aggregates. Rho800 dye-doped polyvinyl alcohol (PVA) polymer thin-film was further investigated. The PL intensity of the dye in the form of thin-film is lower than that of the aqueous solution form whereas the peak wavelength is redshifted due to the presence of PVA. This paper, to our best knowledge, reports the first study of spectroscopic properties of Rho800 dyes in various forms and provides useful guidelines for production of controllable organic luminescence sources.

  1. Blood selenium concentrations and enzyme activities related to glutathione metabolism in wild emperor geese

    Science.gov (United States)

    Franson, J. Christian; Hoffman, David J.; Schmutz, Joel A.

    2002-01-01

    In 1998, we collected blood samples from 63 emperor geese (Chen canagica) on their breeding grounds on the Yukon-Kuskokwim Delta (YKD) in western Alaska, USA. We studied the relationship between selenium concentrations in whole blood and the activities of glutathione peroxidase and glutathione reductase in plasma. Experimental studies have shown that plasma activities of these enzymes are useful biomarkers of selenium-induced oxidative stress, but little information is available on their relationship to selenium in the blood of wild birds. Adult female emperor geese incubating their eggs in mid-June had a higher mean concentration of selenium in their blood and a greater activity of glutathione peroxidase in their plasma than adult geese or goslings that were sampled during the adult flight feathermolting period in late July and early August. Glutathione peroxidase activity was positively correlated with the concentration of selenium in the blood of emperor geese, and the rate of increase relative to selenium was greater in goslings than in adults. The activity of glutathione reductase was greatest in the plasma of goslings and was greater in molting adults than incubating females but was not significantly correlated with selenium in the blood of adults or goslings. Incubating female emperor geese had high selenium concentrations in their blood, accompanied by increased glutathione peroxidase activity consistent with early oxidative stress. These findings indicate that further study of the effects of selenium exposure, particularly on reproductive success, is warranted in this species.

  2. On-line characterization using ultrasound of pectin hydrolysis catalyzed by the enzyme pectinmethylesterase

    Science.gov (United States)

    Aparicio, C.; Resa, P.; Sierra, C.; Elvira, L.

    2012-12-01

    The major problem in the fruit juice industry is associated with juice quality deterioration due to the cloud loss of juice concentrates by the enzymatic reaction of pectinmethylesterase enzyme (PME, EC 3.1.1.11). During pectin hydrolysis, pectin and water are transformed into polygalacturonic acid (pectate) and methanol by the action of PME. In this work, a low-intensity ultrasonic technique is used to monitor this enzymatic reaction, with PME both from orange peel and from Aspergillus niger. Changes in sound velocity during pectin hydrolysis (1% concentration of pectin, T = 30°C and pH = 4.5 and 7) with 0.25 ml of enzyme solution (PME) have been measured using a through-transmission technique. Sound velocity decreases as pectin is transformed into pectate and methanol and at the end of the process, the change in sound velocity reaches 0.3 m/s with PME from orange peel and 0.33 m/s with PME from Aspergillus niger.

  3. On-line characterization using ultrasound of pectin hydrolysis catalyzed by the enzyme pectinmethylesterase

    International Nuclear Information System (INIS)

    Aparicio, C; Resa, P; Sierra, C; Elvira, L

    2012-01-01

    The major problem in the fruit juice industry is associated with juice quality deterioration due to the cloud loss of juice concentrates by the enzymatic reaction of pectinmethylesterase enzyme (PME, EC 3.1.1.11). During pectin hydrolysis, pectin and water are transformed into polygalacturonic acid (pectate) and methanol by the action of PME. In this work, a low-intensity ultrasonic technique is used to monitor this enzymatic reaction, with PME both from orange peel and from Aspergillus niger. Changes in sound velocity during pectin hydrolysis (1% concentration of pectin, T = 30°C and pH = 4.5 and 7) with 0.25 ml of enzyme solution (PME) have been measured using a through-transmission technique. Sound velocity decreases as pectin is transformed into pectate and methanol and at the end of the process, the change in sound velocity reaches 0.3 m/s with PME from orange peel and 0.33 m/s with PME from Aspergillus niger.

  4. Catalytic oxidation of concentrated orange oil phase by synthetic metallic complexes biomimetic to MMO enzyme.

    Science.gov (United States)

    Fernandes, Ilizandra A; Esmelindro, Maria Carolina; Corazza, Marcos L; Franceschi, Elton; Treichel, Helen; de Oliveira, Debora; Frizzo, Caren D; Oliveira, J Vladimir

    2010-07-01

    This paper reports the catalytic oxidation of the concentrated orange oil phase using the complexes [Fe(III)(BMPP)Cl(micro-O)Fe(III)Cl(3)], [Cu(II)(BTMEA)(2)Cl]Cl and [Co(II)(BMPP)]Cl(2) biomimetic to methane monooxygenase enzyme as catalysts and hydrogen peroxide as oxidant. The reaction products of oil oxidation, mainly nootkatone, were identified by gas chromatography/mass spectrometry. A screening of catalysts was performed through a full 2(3) experimental design, varying the temperature from 30 to 70 degrees C, the catalyst concentration from 7.0 x 10(-4) to 1.5 x 10(-3) mol L(-1) and the oxidant/substrate molar ratio from 1:1 to 3:1. The results of reaction kinetics employing the most promising catalysts showed that conversions to nootkatone of up to 8% were achieved after 16 h at 70 degrees C. The results obtained in this study in terms of nootkatone production should be considered encouraging, since a real, industrially collected, raw material, instead of pure valencene, was employed in the reaction experiments, with a final content about ten times that present in the original concentrated oil.

  5. Seasonal dynamics of nitrate and ammonium ion concentrations in soil solutions collected using MacroRhizon suction cups.

    Science.gov (United States)

    Kabala, Cezary; Karczewska, Anna; Gałka, Bernard; Cuske, Mateusz; Sowiński, Józef

    2017-07-01

    The aims of the study were to analyse the concentration of nitrate and ammonium ions in soil solutions obtained using MacroRhizon miniaturized composite suction cups under field conditions and to determine potential nitrogen leaching from soil fertilized with three types of fertilizers (standard urea, slow-release urea, and ammonium nitrate) at the doses of 90 and 180 kg ha -1 , applied once or divided into two rates. During a 3-year growing experiment with sugar sorghum, the concentration of nitrate and ammonium ions in soil solutions was the highest with standard urea fertilization and the lowest in variants fertilized with slow-release urea for most of the months of the growing season. Higher concentrations of both nitrogen forms were noted at the fertilizer dose of 180 kg ha -1 . One-time fertilization, at both doses, resulted in higher nitrate concentrations in June and July, while dividing the dose into two rates resulted in higher nitrate concentrations between August and November. The highest potential for nitrate leaching during the growing season was in July. The tests confirmed that the miniaturized suction cups MacroRhizon are highly useful for routine monitoring the concentration of nitrate and ammonium ions in soil solutions under field conditions.

  6. [Analyze nanofiltration separation rule of chlorogenic acid from low concentration ethanol by Donnan effect and solution-diffusion effect].

    Science.gov (United States)

    Li, Cun-Yu; Liu, Li-Cheng; Jin, Li-Yang; Li, Hong-Yang; Peng, Guo-Ping

    2017-07-01

    To separate chlorogenic acid from low concentration ethanol and explore the influence of Donnan effect and solution-diffusion effect on the nanofiltration separation rule. The experiment showed that solution pH and ethanol volume percent had influences on the separation of chlorogenic acid. Within the pH values from 3 to 7 for chlorogenic acid in 30% ethanol, the rejection rate of chlorogenic acid was changed by 70.27%. Through the response surface method for quadratic regression model, an interaction had been found in molecule weight cut-off, pH and ethanol volume percent. In fixed nanofiltration apparatus, the existence states of chlorogenic acid determinedits separation rules. With the increase of ethanol concentration, the free form chlorogenic acid was easily adsorbed, dissolved on membrane surface and then caused high transmittance due to the solution-diffusion effect. However, at the same time, due to the double effects of Donnan effect and solution-diffusion effect, the ionic state of chlorogenic acid was hard to be adsorbed in membrane surface and thus caused high rejection rate. The combination of Box-Behnken design and response surface analysis can well optimize the concentrate process by nanofiltration, and the results showed that nanofiltration had several big advantages over the traditional vacuum concentrate technology, meanwhile, and solved the problems of low efficiency and serious component lossesin the Chinese medicines separation process for low concentration organic solvent-water solution. Copyright© by the Chinese Pharmaceutical Association.

  7. Correlation of endothelin-1 concentration and angiotensin-converting enzyme activity with the staging of liver fibrosis.

    Science.gov (United States)

    Kardum, Dusko; Fabijanić, Damir; Lukić, Anita; Romić, Zeljko; Petrovecki, Mladen; Bogdanović, Zoran; Jurić, Klara; Urek-Crncević, Marija; Banić, Marko

    2012-06-01

    Increased serum angiotensin-converting enzyme (SACE) activity and serum concentration of endothelin-1 (ET-1) were found in liver cirrhosis. We investigated a correlation between the different stages of liver fibrosis and SACE activity and serum ET-1 concentration. Seventy patients with pathohistologically established chronic liver disease were divided in three groups according to Ishak criteria for liver fibrosis: minimal fibrosis (Ishak score 0-1, n =20), medium fibrosis (Ishak score 2-5, n=20) and cirrhosis (Ishak score 6, n=30). SACE activity and ET-1 concentration were determined using commercial ELISA kits. SACE activity and ET-1 concentrations were proportional to the severity of disease, the highest being in patients with liver cirrhosis. Maximal increase in SACE activity was found between minimal and medium fibrosis while maximal increase in ET-1 concentration was revealed between medium fibrosis and cirrhosis. The analysis of the Receiver Operating Characteristic (ROC) curve for SACE activity suggested a cut-off value to separate minimal from medium fibrosis at 59.00 U/L (sensitivity 100%, specificity 64.7%). The cut-off value for serum ET-1 concentration to separate medium fibrosis from cirrhosis was 12.4 pg/mL (sensitivity 96.8%, specificity 94.4%). A positive correlation between SACE activity and ET-1 concentration was registered (Spearman's ñ = 0.438, p = 0.004). Both SACE activity and ET-1 concentration were increased in all stages of liver fibrosis. Cut-off points for SACE activity and ET-1 concentration could be a biochemical marker for the progression of fibrosis. Positive correlation between SACE activity and ET-1 concentration might indicate their interaction in the development of liver cirrhosis.

  8. Thermodynamic characteristics of solutions of Bu4NI in dimethylsulfoxide over a wide concentration range

    International Nuclear Information System (INIS)

    Safonova, L.P.; Shmukler, L.Eh.; Kolker, A.M.

    2008-01-01

    The integral heats of solution of Bu 4 NI in dimethylsulfoxide (DMSO) were measured at 298.15, 313.15, and 328.15 K and concentrations from dilute to saturation. The standard enthalpies and heat capacities of solution and solvation of Bu 4 NI in DMSO at various temperatures and the C-bar p 0 (Bu 4 N + ) value at 298.15 K were calculated. The obtained and literature data were used to consider the influence of the nature of solvents on Δ sol H m (Bu 4 NI) and of the electrolyte on Δ sol H m in dimethylsulfoxide at 298.15 K. The dynamic viscosity and density of the Bu 4 NI-DMSO system were determined at various concentrations and temperatures. The Eyring equation was used to calculate the activation energy of viscous flow at all the concentrations studied [ru

  9. Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes: Targeted quantification of functional enzyme dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Qian, Wei-Jun [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Shi, Liang [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nelson, William C. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nicora, Carrie D. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Resch, Charles T. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Thompson, Christopher [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Yan, Sen [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Fredrickson, James K. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Zachara, John M. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055 People' s Republic of China

    2017-07-13

    Microbially mediated biogeochemical processes are catalyzed by enzymes that control the transformation of carbon, nitrogen, and other elements in environment. The dynamic linkage between enzymes and biogeochemical species transformation has, however, rarely been investigated because of the lack of analytical approaches to efficiently and reliably quantify enzymes and their dynamics in soils and sediments. Herein, we developed a signature peptide-based technique for sensitively quantifying dissimilatory and assimilatory enzymes using nitrate-reducing enzymes in a hyporheic zone sediment as an example. Moreover, the measured changes in enzyme concentration were found to correlate with the nitrate reduction rate in a way different from that inferred from biogeochemical models based on biomass or functional genes as surrogates for functional enzymes. This phenomenon has important implications for understanding and modeling the dynamics of microbial community functions and biogeochemical processes in environments. Our results also demonstrate the importance of enzyme quantification for the identification and interrogation of those biogeochemical processes with low metabolite concentrations as a result of faster enzyme-catalyzed consumption of metabolites than their production. The dynamic enzyme behaviors provide a basis for the development of enzyme-based models to describe the relationship between the microbial community and biogeochemical processes.

  10. Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals.

    Science.gov (United States)

    Syshchyk, Olga; Skryshevsky, Valeriy A; Soldatkin, Oleksandr O; Soldatkin, Alexey P

    2015-04-15

    A phenomenon of changes in photoluminescence of porous silicon at variations in medium pH is proposed to be used as a basis for the biosensor system development. The method of conversion of a biochemical signal into an optical one is applied for direct determination of glucose and urea as well as for inhibitory analysis of heavy metal ions. Changes in the quantum yield of porous silicon photoluminescence occur at varying pH of the tested solution due to the enzyme-substrate reaction. When creating the biosensor systems, the enzymes urease and glucose oxidase (GOD) were used as a bioselective material; their optimal concentrations were experimentally determined. It was shown that the photoluminescence intensity of porous silicon increased by 1.7 times when increasing glucose concentration in the GOD-containing reaction medium from 0 to 3.0mM, and decreased by 1.45 times at the same increase in the urea concentration in the urease-containing reaction medium. The calibration curves of dependence of the biosensor system responses on the substrate concentrations are presented. It is shown that the presence of heavy metal ions (Cu(2+), Pb(2+), and Cd(2+)) in the tested solution causes an inhibition of the enzymatic reactions catalyzed by glucose oxidase and urease, which results in a restoration of the photoluminescence quantum yield of porous silicon. It is proposed to use this effect for the inhibitory analysis of heavy metal ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Enzyme-polyelectrolyte complexes in water-ethanol mixtures: negatively charged groups artificially introduced into alpha-chymotrypsin provide additional activation and stabilization effects.

    Science.gov (United States)

    Kudryashova, E V; Gladilin, A K; Vakurov, A V; Heitz, F; Levashov, A V; Mozhaev, V V

    1997-07-20

    Formation of noncovalent complexes between alpha-chymotrypsin (CT) and a polyelectrolyte, polybrene (PB), has been shown to produce two major effects on enzymatic reactions in binary mixtures of polar organic cosolvents with water. (i) At moderate concentrations of organic cosolvents (10% to 30% v/v), enzymatic activity of CT is higher than in aqueous solutions, and this activation effect is more significant for CT in complex with PB (5- to 7-fold) than for free enzyme (1.5- to 2.5-fold). (ii) The range of cosolvent concentrations that the enzyme tolerates without complete loss of catalytic activity is much broader. For enhancement of enzyme stability in the complex with the polycation, the number of negatively charged groups in the protein has been artificially increased by using chemical modification with pyromellitic and succinic anhydrides. Additional activation effect at moderate concentrations of ethanol and enhanced resistance of the enzyme toward inactivation at high concentrations of the organic solvent have been observed for the modified preparations of CT in the complex with PB as compared with an analogous complex of the native enzyme. Structural changes behind alterations in enzyme activity in water-ethanol mixtures have been studied by the method of circular dichroism (CD). Protein conformation of all CT preparations has not changed significantly up to 30% v/v of ethanol where activation effects in enzymatic catalysis were most pronounced. At higher concentrations of ethanol, structural changes in the protein have been observed for different forms of CT that were well correlated with a decrease in enzymatic activity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 267-277, 1997.

  12. The effect of growing media and concentration of nutrient solution on growth, flowering and macroelement content of media and leaves of Tymophylla tenuiloba Small

    Directory of Open Access Journals (Sweden)

    Joanna Nowak

    2013-12-01

    Full Text Available Effects of growing media and concentration of nutrient solution on growth, flowering, evapotranspiration and macroelement content of media and leaves of Tymophylla tenuiloba were evaluated under ebb-and-flow conditions. Two media: peat and peat + perlite (3:l, v/v, and four concentrations of nutrient solution: 1.0, 1.5, 2.0, 2.5 mS cm-1 were applied. High quality plants were produced in both media and all concentration of nutrient solution. The lowest evapotranspiration was measured at the highest concentration of nutrient solution. N concentration of leaves was high in all treatments. Concentrations of K, Ca, and Mg decreased with increasing concentration of nutrient solution. Opposite was found for P. At the end of cultivation the lowest pH was measured in the upper layer of growing media. The highest total soluble salt level was measured in the upper layers. Upper layers accumulated more N-NO3, P, Ca, and Mg. Mineral element content of both media was high in all concentrations of nutrient solution. Low concentration of nutrient solution at 1.0 mS cm-1 is recommended, although -1Tymophylla tenuiloba-1 can be also cultivated at higher concentrations of nutrient solution up to 2.5mS cm-1, if placed on the same bench with other bedding plants requiring more nutrients.

  13. sCD30, interleukin-1beta-converting enzyme and anti-Annexin V autoantibodies concentrations in heart transplant recipients.

    Science.gov (United States)

    Zeglen, Sławomir; Zakliczyński, Michał; Nozyński, Jerzy; Rogala, Barbara; Zembala, Marian

    2006-11-01

    sCD30 and ICE/caspase-1 as apoptosis-regulating factors are suspected to be involved in the survival rate of immunocompetent cells during immunosuppression after allotransplantation. Serum CD30 and ICE/caspase-1 concentrations were estimated and associated with unspecific serum apoptosis marker--anti-Annexin V antibodies and myocardial biopsies results. 28 clinically stabile patients--heart transplant recipients at least 3 months after cardiac transplantation performed due to heart failure caused by ischaemic and/or congestive cardiomyopathy or/and primary valvular heart disease (26 men and 2 women, mean age=36.8 years, S.D.=7.6) with normal heart function assessed by use of ultrasound scan--were involved in the trial. The patients were divided and analyzed in two ways: first according to the results of elective endomyocardial biopsies and second to main immunosuppressive agent used. The enzyme immunoassay (CD30, Dako; interleukin-1beta-converting enzyme (ICE)/Caspase-1 ELISA and anti-Annexin V BENDER MedSystem) for soluble CD30, caspase-1 and anti-Annexin V autoantibodies serum levels was used. sCD30 and caspase-1 concentrations were non-significantly up-regulated in all analysed groups--with or without rejection signs or immunosuppressed with cyclosporine or especially tacrolimus. In contrast anti-Annexin V autoantibodies concentration was non-significantly down-regulated also in all studied groups. Moreover in the group with signs of transplant rejection, strong negative correlation between anti-Annexin antibodies and rejection grade was observed (-0.65, psCD30 and caspase-1 as well as the decrease in anti-Annexin V autoantibodies concentrations in heart recipients could be the result of post-transplant apoptosis disturbances. This tendency seems to be inhibited in a greater degree by tacrolimus than by cyclosporine. Anti-Annexin V autoantibodies might be considered as negative rejection markers due to their strong negative correlation with the rejection grade.

  14. Effects of potential and concentration of bicarbonate solution on stress corrosion cracking of annealed carbon steel

    International Nuclear Information System (INIS)

    Haruna, Takumi; Zhu, Liehong; Murakami, Makoto; Shibata, Toshio

    2000-01-01

    Effects of potential and concentration of bicarbonate on stress corrosion cracking (SCC) of annealed SM 400 B carbon steel has been investigated in bicarbonate solutions at 343 K. The surface of annealed specimen had decarburized layer of about 0. 5 mm thickness. A potentiostatic slow strain rate testing apparatus equipped with a charge coupled device camera system was employed to evaluate SCC susceptibility from the viewpoint of the crack behavior. In a constant bicarbonate concentration of 1 M, cracks were observed in the potential range from -800 to 600 mV Ag/ A gCl . and especially, the initiation and the propagation of the cracks were accelerated at -600 mV. At a constant potential of -600 mV, cracks were observed in the concentration range from 0.001 to 1 M, and the initiation and the propagation of the cracks were suppressed as the concentration decreased. Polarization curves for the decarburized surface were measured with two different scan rates. High SCC susceptibility may be expected in the potential range where the difference between the two current densities is large. It was found in this system that the potential with the maximum difference in the current density was -600 mV for 1 M bicarbonate solution, and the potential increased with a decrease in the concentration of bicarbonate. This means that an applied potential of -600 mV provides the highest SCC susceptibility for 1 M bicarbonate solution, and that the SCC susceptibility decreases as the concentration decreases. These findings support the dependence of the actual SCC behavior on the potential and the concentration of bicarbonate. (author)

  15. Effects of nanoparticle heating on the structure of a concentrated aqueous salt solution.

    Science.gov (United States)

    Sindt, Julien O; Alexander, Andrew J; Camp, Philip J

    2017-12-07

    The effects of a rapidly heated nanoparticle on the structure of a concentrated aqueous salt solution are studied using molecular dynamics simulations. A diamond-like nanoparticle of radius 20 Å is immersed in a sodium-chloride solution at 20% above the experimental saturation concentration and equilibrated at T = 293 K and P = 1 atm. The nanoparticle is then rapidly heated to several thousand degrees Kelvin, and the system is held under isobaric-isoenthalpic conditions. It is observed that after 2-3 ns, the salt ions are depleted far more than water molecules from a proximal zone 15-25 Å from the nanoparticle surface. This leads to a transient reduction in molality in the proximal zone and an increase in ion clustering in the distal zone. At longer times, ions begin to diffuse back into the proximal zone. It is speculated that the formation of proximal and distal zones, and the increase in ion clustering, plays a role in the mechanism of nonphotochemical laser-induced nucleation.

  16. Effects of nanoparticle heating on the structure of a concentrated aqueous salt solution

    Science.gov (United States)

    Sindt, Julien O.; Alexander, Andrew J.; Camp, Philip J.

    2017-12-01

    The effects of a rapidly heated nanoparticle on the structure of a concentrated aqueous salt solution are studied using molecular dynamics simulations. A diamond-like nanoparticle of radius 20 Å is immersed in a sodium-chloride solution at 20% above the experimental saturation concentration and equilibrated at T = 293 K and P = 1 atm. The nanoparticle is then rapidly heated to several thousand degrees Kelvin, and the system is held under isobaric-isoenthalpic conditions. It is observed that after 2-3 ns, the salt ions are depleted far more than water molecules from a proximal zone 15-25 Å from the nanoparticle surface. This leads to a transient reduction in molality in the proximal zone and an increase in ion clustering in the distal zone. At longer times, ions begin to diffuse back into the proximal zone. It is speculated that the formation of proximal and distal zones, and the increase in ion clustering, plays a role in the mechanism of nonphotochemical laser-induced nucleation.

  17. Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution

    Science.gov (United States)

    Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun

    2013-10-01

    Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.

  18. [Optimization of benzalkonium chloride concentration in 0.0015% tafluprost ophthalmic solution from the points of ocular surface safety and preservative efficacy].

    Science.gov (United States)

    Asada, Hiroyuki; Takaoka-Shichijo, Yuko; Nakamura, Masatsugu; Kimura, Akio

    2010-06-01

    Optimization of benzalkonium chloride (alkyl dimethylbenzylammonium chloride: BAK) concentration as preservative in 0.0015% tafluprost ophthalmic solution (Tapros 0.0015% ophthalmic solution), an anti-glaucoma medicine, was examined from the points of ocular surface safety and preservative efficacy. BAKC(12), which is dodecyl dimethylbenzylammonium chloride, and BAKmix, which is the mixture of dodecyl, tetradecyl and hexadecyl dimethylbenzylammonium chloride were used in this study. The effects of BAKC(12) concentrations and the BAK types, BAKC(12) and BAKmix, in tafluprost ophthalmic solution on ocular surface safety were evaluated using the in vitro SV 40-immobilized human corneal epithelium cell line (HCE-T). Following treatments of Tafluprost ophthalmic solutions with BAKC(12), its concentration dependency was observed on cell viability of HCE-T. The cell viability of HCE-T after treatment of these solutions with 0.001% to 0.003% BAKC(12) for 5 minutes were the same level as that after treatment of the solution without BAK. Tafluprost ophthalmic solution with 0.01% BAKC(12) was safer for the ocular surface than the same solution with 0.01% BAKmix. Preservatives-effectiveness tests of tafluprost ophthalmic solutions with various concentrations of BAKC(12) were performed according to the Japanese Pharmacopoeia (JP), and solutions with more than 0.0005% BAKC(12) conformed to JP criteria. It was concluded that 0.0005% to 0.003% of BAKC(12) in tafluprost ophthalmic solution was optimal, namely, well-balanced from the points of ocular surface safety and preservative efficacy.

  19. Influence of Concentration and Agitation of Sodium Hypochlorite and Peracetic Acid Solutions on Tissue Dissolution.

    Science.gov (United States)

    Tanomaru-Filho, Mário; Silveira, Bruna Ramos Franco; Martelo, Roberta Bosso; Guerreiro-Tanomaru, Juliane Maria

    2015-11-01

    To evaluated the tissue dissolution of sodium hypochlorite (NaOCl) and peracetic acid (PA) solutions at different concentrations, with or without ultrasonic agitation. The following solutions were analyzed: 2.5% NaOCl, 0.5, 1 and 2% PA, 1% PA associated with 6.5% hydrogen peroxide (HP) and saline. Fragments of bovine pulp tissue with 25 ± 2g mg were immersed into test tubes containing 4 mL of the solutions for 10 minutes. In the groups with agitation, pulp tissues were submitted to 2 cycles of 1 minute of ultrasonic agitation. The specimens were weighed after the removal from the solutions. The percentage of mass loss was calculated according to the difference of mass before and after exposure to solutions. Data were submitted to ANOVA and Tukey tests (p Peracetic acid solution has pulp tissue dissolution. However, this ability is lower than 2.5% NaOCl solution. The sodium hypochlorite solution shows higher ability to dissolve tissue than PA.

  20. Bromfenac ophthalmic solution 0.09 %: human aqueous humor concentration detected by high-performance liquid chromatography.

    Science.gov (United States)

    Macrì, Angelo; Vagge, Aldo; Salis, Annalisa; Fucile, Carmen; Marini, Valeria; Martelli, Antonietta; Giuffrida, Sebastiano; Iester, Michele; Damonte, Gianluca; Mattioli, Francesca

    2017-04-01

    The purpose of this study was to evaluate the aqueous humor concentrations of bromfenac ophthalmic solution 0.09 % in patients undergoing phacoemulsification. Patients requiring cataract extraction received one drop (50 µL) of bromfenac 0.09 % solution in the eye to be operated, before bedtime the day before surgery or the morning of the surgery. The last administration was recorded. At the time of paracentesis, an aqueous humor sample was collected with a 30-gauge needle attached to a TB syringe and was later analyzed by high-performance liquid chromatography for drug concentration. 188 treated volunteers and 48 control, untreated, subjects were included in the study. The mean aqueous concentration of bromfenac in the treated group was 37.60 ± 68.86 and 0 nM (nmol/L) in the control group (p < 0.0001). Correlation coefficient in bromfenac group between time elapsed from instillation and drug concentration was -0.16 (p not significant). Bromfenac showed properties of good penetration and stable concentration in aqueous humor up to about 12 h after instillation.

  1. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Unknown

    dimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for enzyme activity. [Trehan K S ... The present study has been carried on acid phosphatase .... enzyme activity over mid parent value (table 3, col. 13),.

  2. Chemical Composition and Enzymes Inhibitory, Brine Shrimp Larvae Toxicity, Antimicrobial and Antioxidant Activities of Caloplaca biatorina

    Directory of Open Access Journals (Sweden)

    Tahereh Valadbeigi

    2016-10-01

    Full Text Available Background This study evaluated the brine shrimp larvae toxicity and enzymes inhibitory especially anti-diabetic potential of Caloplaca biatorina via in vitro inhibition of α-amylase and α-glucosidase using the methanol extracts. Also aldehyde oxidase and xanthine oxidase enzymes inhibitory, cytotoxicity, and antioxidant activities of the species were determined. Methods In this experimental study, different concentrations of the extracts (0.2, 5.0, 1 and 1.5 mg/mL were incubated with enzyme substrate solution and the percentage of enzyme inhibitory activity and IC50 was calculated. Folin- Ciocalteu reagent and aluminium chloride colorimetric methods were used to estimate total phenolic and flavonoid content of extracts. The toxicity of the extract was assessed using the brine shrimp lethality bioassay. The minimal inhibitory concentration (MIC and minimum bactericidal concentration (MBC were determined. High-performance liquid chromatography and Thin-layer chromatography analysis were evaluated. The data were analyzed by SPSS V.21 software. Results Parietin, Emodin, 1,8-Dihydroxy-3-(hydroxymethyl-6- methoxy-9.10-anthracenedione and Rhein were identified. The extract showed strong α-glucosidase, aldehyde oxidase and xanthine oxidase inhibitory activities with IC50 value of 17.12, 40.09 and 11.02 µg/mL respectively. Also methanol extract displayed the strongest DPPH radical scavenging and brine shrimp toxicity (IC50 = 91.11 properties. Conclusions The result obtained suggests that the C. biatorina extract can be classified as non-toxic. Also, it revealed the antioxidant and antidiabetic potential of the lichen.

  3. Sandwich enzyme-linked immunosorbent assay (ELISA) for measuring the concentration of, and detection of antibodies to, Aujeszky's disease virus.

    Science.gov (United States)

    Kardi, V; Szegletes, E; Perényi, T; Pergel, I; Smal, Z

    1990-01-01

    A double antibody sandwich enzyme-linked immunosorbent assay (ELISA) was developed for measuring Aujeszky's disease virus (ADV) antigen concentration and an inhibition technique based on the former was developed for detection of antibodies to ADV. The results were checked by determining the cytopathic and serum neutralization titres. The correlation was satisfactory in both cases, with correlation coefficients above 0.8. When measuring ADV antigen concentration, the lower limit of detection was 10(3) TCID 50/0.2 ml. The sensitivity of ELISA in detecting antibodies to ADV was found to be superior to that of the serum neutralization test and, thus, enabled the testing of rabbit and guinea-pig sera.

  4. Effect of sodium tripolyphosphate concentration and simulated gastrointestinal fluids on release profile of paracetamol from chitosan microsphere

    Science.gov (United States)

    Mulia, Kamarza; Andrie; Krisanti, Elsa A.

    2018-03-01

    The problem to overcome in oral drug administration is the significant pH changes present in the human digestive system. In this study, ionotropic gelation method employing 2-8% (w/v) tripolyphosphate solutions were used to crosslink chitosan microspheres for a controlled release of paracetamol as a model drug. The release profiles of paracetamol from chitosan microspheres were determined using simulated gastrointestinal fluids having pH values of 1.2, 6.8, and 7.4. The results showed that the paracetamol loading and the encapsulation efficiency values increased with increasing concentration of tripolyphosphate solutions used in the preparation step. Paracetamol released at pH 1.2 and 6.8 buffer solutions was significantly higher than that at pH 7.4; also, more paracetamol was released in the presence of α-amylase and β-glucosidase enzymes. The release profiles showed zero-order release behaviour up to 8 hours where the highest drug release was 39% of the paracetamol loaded in the chitosan microspheres, indicating a strong crosslinking between chitosan and TPP anions. The relatively low accumulated drug release could be compensated by employing suitable enzymes, lower TPP solution concentration, and addition of other biodegradable polymer to reduce the TPP crosslink.

  5. Andrographolide powder treatment as antifeedant decreased digestive enzyme activity from Plutella xylostella (L.) larvae midgut

    Science.gov (United States)

    Madihah, Malini, Desak Made; Roviani, Hana; Rani, Nessa Vidya; Hermawan, Wawan

    2018-02-01

    Andrographolide, an active compound of Andrographis paniculata, has shown antifeedant activity against Plutella xylostella larvae by disrupting the midgut histological structures. This study aims to determine the activity of andrographolide in crystallized powder form against several digestive enzymes from the midgut of 4th instar P. xylostella larvae. The concentrations used were 0 (control), 1000, 1600, 2500, 4000 and 6500 ppm with four replications each. No-choice antifeedant test with leaf disc method is used in a bioassay for 24 hours. The midgut was dissected from 2nd until 6th segment of 4th instar larvae and was homogenized in iced-buffer solution. Furthermore, larvae's midgut samples were centrifuged at 10,000 rpm, 4°C for 20 min and the supernatant is used as enzyme source. The results showed that andrographolide significantly reduces the amylase, invertase, protease and trypsin activity, as well as total protein concentration compared with control (p<0.05) in a dose-dependent manner. This study provides information about the mode of action of andrographolide in inhibiting feed activity by the reduced digestive enzyme activity of 4th instar P. xylostella larvae.

  6. Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Carlos Martín

    2012-01-01

    Full Text Available The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.

  7. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza

    2011-04-15

    enzymes on interactions in the oil/brine/solid system was studied. It was found that enzymes can change the adhesion behavior of the crude oil on glass surfaces from adhesion to non-adhesion when they are added to the brine solution. This was confirmed by contact angle measurements, which showed that contact angles became more water-wet (i.e. decreased) after exposure to enzyme solutions. Possible mechanisms giving rise to these observations, including catalysis of ester hydrolysis and enzyme adsorption, were discussed and tested. An experimental study of changes in oil-water interfacial properties by addition of enzymes and proteins, including measurements of interfacial tension and electrophoretic mobility, has been performed. It was found that the effect of enzymes on oil-water properties is minor compared to their effect on oil-water-solid properties. Their contribution to change interfacial tension between oil and water is not significant while they affect the electrophoretic mobility of emulsified oil in enzyme-brine solution to some extent. Attempts were also made to study changes in both oil and water phase composition after equilibration with enzymes. However, since the chemical composition of crude oil is highly complex, a model oil was used in some of the experiments. The model oil was chosen to be a water insoluble ester (ethyl decanoate) solved in mineral oil in an effort to verify the possible role of catalysis of ester hydrolysis. Dynamic core displacements using sandstone and carbonate rocks were conducted to show the potential of improved oil recovery by enzyme- and combined enzyme-surfactant flooding. Most of the core flooding experiments commenced with water flooding from initial water saturation, Swi, (established with synthetic sea water) which will be referred to as secondary mode displacements. Accordingly, tertiary oil recovery processes were used to describe injection of enzyme and/or enzyme-surfactant solutions from residual oil saturation, Sor

  8. Thermosolutal convection in saturated porous enclosure with concentrated energy and solute sources

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di; Zhao, Fu-Yun; Tang, Guang-Fa [College of Civil Engineering, Hunan University, Changsha (China)

    2008-01-15

    Double diffusive natural convection within a vertical porous enclosure with localized heating and salting from one side is numerically studied by the finite element based finite volume method. In the formulation of the problem, use is made of the Darcy model, which allows the slip boundary condition on a solid wall to be satisfied. Comparisons with benchmark solutions for natural convection in fluid saturated porous enclosures are first presented to validate the code. Following that, an extensive series of numerical simulations is conducted in the range of -55 {<=} N {<=} + 55 and 0.125 {<=} L {<=} 0.875, where N and L are the buoyancy ratio and the element location, respectively. Streamlines, heatlines, masslines, isotherms and iso-concentrations in the system are produced to illustrate the flow structure transition from solutal dominated opposing to thermal dominated and solutal dominated aiding flows, respectively. The computed average Nusselt and Sherwood numbers provide guidance for locating the heating and salting element. (author)

  9. Thermosolutal convection in saturated porous enclosure with concentrated energy and solute sources

    Energy Technology Data Exchange (ETDEWEB)

    Liu Di [College of Civil Engineering, Hunan University, Changsha (China)], E-mail: liudi66@163.com; Zhao Fuyun [College of Civil Engineering, Hunan University, Changsha (China)], E-mail: zfycfdnet@163.com; Tang Guangfa [College of Civil Engineering, Hunan University, Changsha (China)], E-mail: gftangcfd@163.com

    2008-01-15

    Double diffusive natural convection within a vertical porous enclosure with localized heating and salting from one side is numerically studied by the finite element based finite volume method. In the formulation of the problem, use is made of the Darcy model, which allows the slip boundary condition on a solid wall to be satisfied. Comparisons with benchmark solutions for natural convection in fluid saturated porous enclosures are first presented to validate the code. Following that, an extensive series of numerical simulations is conducted in the range of -55 {<=} N {<=} + 55 and 0.125 {<=} L {<=} 0.875, where N and L are the buoyancy ratio and the element location, respectively. Streamlines, heatlines, masslines, isotherms and iso-concentrations in the system are produced to illustrate the flow structure transition from solutal dominated opposing to thermal dominated and solutal dominated aiding flows, respectively. The computed average Nusselt and Sherwood numbers provide guidance for locating the heating and salting element.

  10. A study on prediction of uranium concentration in pregnant solution from in-situ leaching

    International Nuclear Information System (INIS)

    Yi Weiping; Zhou Quan; Yu Yunzhen; Wang Shude; Yang Yihan; Lei Qifeng

    2005-01-01

    The modeling course on prediction of uranium concentration in pregnant solution from in-situ leaching of uranium is described, a mathematical model based on grey system theory is put forward, and a set of computer application software is correspondingly developed. (authors)

  11. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  12. Activity of certain enzymes in cadmium-poisoned chicks

    Energy Technology Data Exchange (ETDEWEB)

    Kench, J E; Gubb, P J.D.

    1970-01-01

    Activities of a number of enzymes in the liver and other tissues of newly hatched cadmium poisoned chicks have been compared with those of normal controls before and after incubation with Cd/sup +2/ at a concentration similar to that present in vivo. Concentrations of Cd/sup +2/ in the various cellular fractions were determined, after wet oxidation, by atomic absorption spectrophotometry. Interaction of Cd/sup +2/ with enzymes may provide information on the localization of enzymes within mitochondria and other cellular structures. 7 references.

  13. Influence de la concentration de la solution nutritive sur la croissance et la nutrition minérale de la tomate

    OpenAIRE

    Morard, Philippe; Caumes, Edith; Silvestre, Jérôme

    2004-01-01

    L’influence de deux concentrations de solution nutritive a été étudiée sur la croissance et la nutrition minérale de la tomate en culture hydroponique sous serre au stade début floraison. La force ionique de la solution nutritive la plus concentrée était de 20.00 meq L–1 (SNC), valeur proche de celle qui est habituellement utilisée pour la culture de la tomate ; celle de la solution diluée (SND) était de 3.25 meq L–1. Pendant les deux semaines de l’expérimentation, la concentration du milieu ...

  14. The thermodynamic characteristics of solutions of Bu4NI in dimethylsulfoxide over a wide concentration range

    Science.gov (United States)

    Safonova, L. P.; Shmukler, L. E.; Kolker, A. M.

    2008-05-01

    The integral heats of solution of Bu4NI in dimethylsulfoxide (DMSO) were measured at 298.15, 313.15, and 328.15 K and concentrations from dilute to saturation. The standard enthalpies and heat capacities of solution and solvation of Bu4NI in DMSO at various temperatures and the bar C_p^o (Bu_4 N^ + ) value at 298.15 K were calculated. The obtained and literature data were used to consider the influence of the nature of solvents on Δsol H m (Bu4NI) and of the electrolyte on Δsol H m in dimethylsulfoxide at 298.15 K. The dynamic viscosity and density of the Bu4NI-DMSO system were determined at various concentrations and temperatures. The Eyring equation was used to calculate the activation energy of viscous flow at all the concentrations studied.

  15. The Effect of Potassium Concentration in Nutrient Solution on Lycopene, Vitamin C and Qualitative Characteristics of Cherry Tomato in Saline Conditions

    Directory of Open Access Journals (Sweden)

    E. Shabani Sangtarashani

    2013-06-01

    Full Text Available Potassium (K has a special place in improving the quality of agricultural products. To evaluate the effect of K concentration in nutrient solution on lycopene content, vitamin C and qualitative characteristics of cherry tomato in NaCl salinity conditions, an experiment was carried out as a completely randomized design with five treatments and three replications at university of Tabriz, Tabriz, Iran, in 2010. Treatments consisted of four concentrations of K (0.2, 2, 7 and 14 mM in nutrient solution with 60 mM NaCl concentration. A nutrient solution treatment without salinity was considered as control. The experiment was conducted in greenhouse, in a hydroponic system. The results indicated that increasing of K concentration increased lycopene content in fruit. Lycopene content in control treatment showed significant difference (P<0.01 in comparison with salinity treatments. With increasing the K concentration (except at 14 mM concentration, vitamin C content was increased, but indicated no statistically significant difference. Vitamin C content in saline conditions was more than control treatment, but showed no significant difference. Adding potassium concentration in nutrient solution improved yield and enhanced quality parameters such as percentage of dry matter, soluble solids and electrical conductivity of fruit extract. Since in saline conditions, the qualitative characteristics of tomato at 7 mM concentration were in the best situation, therefore using this concentration is recommended.

  16. In vitro dissolution of calcium oxalate stones with ethylenediaminetetraacetic acid and snake venom thrombin-like enzyme.

    Science.gov (United States)

    Zhou, Xiang-Jun; Zhang, Jie; Zhang, Ci; Xu, Chang-Geng

    2014-01-01

    The aim of this study was to determine the feasibility of using snake venom thrombin-like enzyme (SVTLE) and/or ethylenediaminetetraacetic acid (EDTA) to dissolve calcium oxalate stones in vitro. Seven calcium oxalate stones were incubated with various chemolytic agents [EDTA, Tris-HCl/EDTA (TE) buffer or SVTLE diluted in TE buffer]. The pH, calcium concentration, stone weight and stone surface integrity were recorded, as well as related pathological changes to bladder mucosae. Compared to all other solutions, those containing SVTLE and buffered EDTA had higher concentrations of mobilized calcium and caused significantly more stone weight loss, stone fragility and gaps in the calcium crystals. Also, there were no adverse pathological effects on rabbit bladder mucosae from any of the solutions. The data indicate that buffered EDTA and SVTLE can be used to dissolve calcium oxalate stones and, at the concentrations used here, do not damage tissue. 2013 S. Karger AG, Basel.

  17. STUDY OF CHEMICAL INTERACTION OF MAGNESIA CEMENT WITH HIGH CONCENTRATION MAGNESIUM CHLORIDE SOLUTIONS

    Directory of Open Access Journals (Sweden)

    DEREVIANKO V. N.

    2015-10-01

    Full Text Available Problem statement. In activating MgO by electrolyte salts, as a result of formation of non water-resist magnesium silicate hydrate are obtained the durable cement stone having the low water-resist. I. P. Vyrodov considers [9; 5], that magnesia cement curing in mixing with sufficiently concentrated (C > 20 % solutions MgCl2 is caused with the crystallization of oxyhydrochloride composition: 3MgO∙MgCl2∙11Н2О, 5MgO∙MgCl2∙13Н2О and 7MgO∙MgCl2∙15Н2О. In the lower concentration parts of MgCl2 solution is formed a transitional compound of Mg[(OHnCl2-n] with isomorphous Mg(OH2 structure. At very low Cl concentration only Mg(OH2 is practically formed. Purpose. The Formation of water-resist magnesium silicate hydrates for obtaining of fast curing and solid structure of the magnesia stone. Conclusion. The dependence of the formation of the magnesia stone from the ratio (MgO/MgCl2 of the magnesia cement (MgO and the magnesium chloride solution (MgCl2 of different density has been identified in order to obtain the best content for oxyhydrochloride 3MgO•MgCl2•11Н2О, 5MgO•MgCl2•13Н2О and magnesium hydroxide (Mg(OH2. In putting into the system MgO∙–∙H2О of the silicic acid or fine ground quartz grains with size of less than 20 – 30 microns, over 1 month for the magnesium silicate hydrates formation is needed, where from 2 to 5 % of the total number of newgrowths are created. The study is proved by the expert opinion, that magnesium silicate hydrates do not have binding properties, unlike calcium silicate hydrates, and the main role in the system curing is played with the Mg(OH2 gel recrystallization, which provides the acceptable stone strength (R ≈ 30MPa in a few years. It has been also established, that in mixing of cement with low concentration MgO solutions of less than 1,5 mol/l (or 13% 1,1g/sm3, the final product in the stone structure is Mg(OH2. With increasing the sealer (MgCl2 solution there is formed by turn in

  18. Green synthesis of highly concentrated aqueous colloidal solutions of large starch-stabilised silver nanoplatelets.

    Science.gov (United States)

    Cheng, Fei; Betts, Jonathan W; Kelly, Stephen M; Hector, Andrew L

    2015-01-01

    A simple, environmentally friendly and cost-effective method has been developed to prepare a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 and starch. The silver nanoparticles are also more uniform in shape the greater the diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton fibres, using a simple dip-coating process using water as the solvent, in order to study the dependence of the antibacterial properties of these nanoplatelets on their size. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Behaviour of solute and particle markers in the stomach of sheep given a concentrate diet

    International Nuclear Information System (INIS)

    Faichney, G.J.; Griffiths, D.A.

    1978-01-01

    Fistulated sheep given a concentrate diet were used to study the behaviour of solute ([ 51 Cr]EDTA) and particle ([ 103 Ru]phenanthroline) markers in the stomach under conditions of continuous feeding. An injection of a mixed dose of [ 51 Cr]EDTA and [ 103 Ru]phenanthroline was given into the rumen and the time course of marker concentrations in the rumen and the abomasum was recorded. The curves were analysed on the assumption that the stomach of the sheep could be represented as two mixing compartments (reticulo-rumen and abomasum) and a time delay (omasum). This model provided a very good description of the data. [ 103 Ru]-phenanthroline associated with small particles was retained in the rumen much longer than [ 51 Cr]EDTA. Although exchange of [ 103 Ru] phenanthroline occurred between large and small particle fractions, the results suggested that small particles may have been retained somewhat longer in the rumen than solutes. However, it was clear from the results that the mean retention times for particulate matter in the rumen could not be simply obtained using adsorbable markers. Cyclical fluctuations in the concentration of [ 51 Cr]EDTA in the rumen indicated that there were daily variations in net water flux in the rumen. The presence of protozoa was associated with much shorter retention times of both solutes and particles in the rumen. Protozoa were also associated with reduced rumen volumes. (author)

  20. Removing ferric ions from concentrated acid leaching solution of an uranium ore by jarosite

    International Nuclear Information System (INIS)

    Song Huanbi; Hu Yezang

    1997-01-01

    The author expounds the fundamental rules of removing ferric ions by jarosite and presents results of removing ferric ions from concentrated acid curing-trickle leaching solution of an uranium ore. It turns out that the method can be applied to uranium hydrometallurgical process effectively

  1. Membrane distillation with porous metal hollow fibers for the concentration of thermo-sensitive solutions

    NARCIS (Netherlands)

    Shukla, Sushumna

    2014-01-01

    This thesis presents an original approach for the concentration of thermo-sensitive solutions: the Sweep Gas Membrane Distillation (SGMD) process. A new membrane contactor with metallic hollow fibers has been designed and allows the distillation process to be operational at low temperature. Heat is

  2. Different nonideality relationships, different databases and their effects on modeling precipitation from concentrated solutions using numerical speciation codes

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.F.; Ebinger, M.H.

    1996-08-01

    Four simple precipitation problems are solved to examine the use of numerical equilibrium codes. The study emphasizes concentrated solutions, assumes both ideal and nonideal solutions, and employs different databases and different activity-coefficient relationships. The study uses the EQ3/6 numerical speciation codes. The results show satisfactory material balances and agreement between solubility products calculated from free-energy relationships and those calculated from concentrations and activity coefficients. Precipitates show slightly higher solubilities when the solutions are regarded as nonideal than when considered ideal, agreeing with theory. When a substance may precipitate from a solution dilute in the precipitating substance, a code may or may not predict precipitation, depending on the database or activity-coefficient relationship used. In a problem involving a two-component precipitation, there are only small differences in the precipitate mass and composition between the ideal and nonideal solution calculations. Analysis of this result indicates that this may be a frequent occurrence. An analytical approach is derived for judging whether this phenomenon will occur in any real or postulated precipitation situation. The discussion looks at applications of this approach. In the solutes remaining after the precipitations, there seems to be little consistency in the calculated concentrations and activity coefficients. They do not appear to depend in any coherent manner on the database or activity-coefficient relationship used. These results reinforce warnings in the literature about perfunctory or mechanical use of numerical speciation codes.

  3. Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration.

    Science.gov (United States)

    Vandenhove, H; Van Hees, M; Wouters, K; Wannijn, J

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.

  4. The prediction of concentration profiles for a NIMCIX column absorbing uranium from aqueous solution

    International Nuclear Information System (INIS)

    Wright, R.S.

    1979-01-01

    A procedure is proposed for the prediction of concentration profiles for a countercurrent ion-exchange absorption column, use being made of equilibrium and kinetic data derived from small-scale batch tests. A comparison is presented between the predictions and the measured performance of a column (2,5 m in diameter) absorbing uranium from solution. The method is shown to be adequate for design purposes provided that the data used are from tests in which the solution and resin conditions approximate those for which the plant is being designed [af

  5. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.

    Science.gov (United States)

    Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu

    2008-01-01

    A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.

  6. Effects of over-winter green cover on soil solution nitrate concentrations beneath tillage land.

    Science.gov (United States)

    Premrov, Alina; Coxon, Catherine E; Hackett, Richard; Kirwan, Laura; Richards, Karl G

    2014-02-01

    There is a growing need to reduce nitrogen losses from agricultural systems to increase food production while reducing negative environmental impacts. The efficacy of vegetation cover for reducing nitrate leaching in tillage systems during fallow periods has been widely investigated. Nitrate leaching reductions by natural regeneration (i.e. growth of weeds and crop volunteers) have been investigated to a lesser extent than reductions by planted cover crops. This study compares the efficacy of natural regeneration and a sown cover crop (mustard) relative to no vegetative cover under both a reduced tillage system and conventional plough-based system as potential mitigation measures for reducing over-winter soil solution nitrate concentrations. The study was conducted over three winter fallow seasons on well drained soil, highly susceptible to leaching, under temperate maritime climatic conditions. Mustard cover crop under both reduced tillage and conventional ploughing was observed to be an effective measure for significantly reducing nitrate concentrations. Natural regeneration under reduced tillage was found to significantly reduce the soil solution nitrate concentrations. This was not the case for the natural regeneration under conventional ploughing. The improved efficacy of natural regeneration under reduced tillage could be a consequence of potential stimulation of seedling germination by the autumn reduced tillage practices and improved over-winter plant growth. There was no significant effect of tillage practices on nitrate concentrations. This study shows that over winter covers of mustard and natural regeneration, under reduced tillage, are effective measures for reducing nitrate concentrations in free draining temperate soils. © 2013.

  7. Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc, and mercury in soil and soil solution in view of ecotoxicological effects.

    Science.gov (United States)

    de Vries, Wim; Lofts, Steve; Tipping, Ed; Meili, Markus; Groenenberg, Jan E; Schütze, Gudrun

    2007-01-01

    Risk assessment for metals in terrestrial ecosystems, including assessments of critical loads, requires appropriate critical limits for metal concentrations in soil and soil solution. This chapter presents an overview of methodologies used to derive critical (i) reactive and total metal concentrations in soils and (ii) free metal ion and total metal concentrations in soil solution for Cd, Pb, Cu, Zn, and Hg, taking into account the effect of soil properties related to ecotoxicological effects. Most emphasis is given to the derivation of critical free and total metal concentrations in soil solution, using available NOEC soil data and transfer functions relating solid-phase and dissolved metal concentrations. This approach is based on the assumption that impacts on test organisms (plants, microorganisms, and soil invertebrates) are mainly related to the soil solution concentration (activity) and not to the soil solid-phase content. Critical Cd, Pb, Cu, Zn, and Hg concentrations in soil solution vary with pH and DOC level. The results obtained are generally comparable to those derived for surface waters based on impacts to aquatic organisms. Critical soil metal concentrations, related to the derived soil solution limits, can be described as a function of pH and organic matter and clay content, and varying about one order of magnitude between different soil types.

  8. Changes in Enzyme Activities Involved in Starch Synthesis and Hormone Concentrations in Superior and Inferior Spikelets and Their Association with Grain Filling of Super Rice

    Directory of Open Access Journals (Sweden)

    Jing FU

    2013-03-01

    Full Text Available The changes in activities of key enzymes involved in sucrose-to-starch conversion and concentrations of hormones in superior and inferior spikelets of super rice were investigated and their association with grain filling was analyzed. Four super rice cultivars, Liangyoupeijiu, IIyou 084, Huaidao 9 and Wujing 15, and two high-yielding and elite check cultivars, Shanyou 63 and Yangfujing 8, were used. The activities of sucrose synthase (SuSase, adenosine diphosphoglucose pyrophosphorylase (AGPase, starch synthase (StSase and starch branching enzyme (SBE, and the concentrations of zeatin + zeatin riboside (Z + ZR, indole-3-acetic acid (IAA and abscisic acid (ABA in superior and inferior spikelets were determined during the grain filling period and their relationships with grain filling rate were analyzed. Maximum grain filling rate, the time reaching the maximum grain-filling rate, mean grain filling rate and brown rice weight for superior spikelets showed a slight difference between the super and check rice cultivars, but were significantly lower in the super rice than in the check rice for inferior spikelets. Changes of enzyme activities and hormone concentrations in grains exhibited single peak curves during the grain filling period. The peak values and the mean activities of SuSase, AGPase, StSase and SBE were lower in inferior spikelets than in superior ones, as well as the peak values and the mean concentrations of Z + ZR and IAA. However, the peak value and the mean concentration of ABA were significantly higher in inferior spikelets than in superior ones and greater in the super rice than in the check rice. The grain filling rate was positively and significantly correlated with the activities of SuSase, AGPase and StSase and the concentrations of Z + ZR and IAA. The results suggested that the low activities of SuSase, AGPase and StSase and the low concentrations of Z + ZR and IAA might be important physiological reasons for the slow grain

  9. Optimization of pectinase enzyme production in Aspergillus fumigatus isolated from rotten fruits

    Directory of Open Access Journals (Sweden)

    2015-12-01

    Full Text Available Introduction: Pectinase is one of the most important industrial enzymes which was isolated from a wide variety of microorganisms such as bacteria and filamentous fungi. This enzyme has been usually used in the juice and textile industry. In this study, the isolation and optimization of pectinase-producing fungi on decaying rotten fruits were studied. Materials and methods: Isolation and screening of pectinase producing fungi have been done by plate culture on pectin medium and staining with Lugol's iodine solution. The best strain was identified by method of Pitt and Hocking as Aspergillus fumigates. The enzyme production was optimized by application of the factorial design which involves five factors, each at three levels. Five factors were carbon sources (whey, sugar, stevia and ammonium sulfate, manganese sulfate, temperature, and pH. Pectinase concentration was measured by the Miller method. Results: The results showed that the optimum condition for enzyme production was at 32 °C, PH = 6 , 3g / L manganese sulfate, 2.75g / L of ammonium sulfate, 10g / L of each carbon source (whey, stevia, and glucose. Optimum of enzyme production was observed in the presence of 1.328 mg / ml of glucose. Molecular weight of enzyme was obtained about 40 kDa by SDS-PAGE. Discussion and conclusion: The results demonstrated that this strain could grow in a wide range of carbon sources, PH and temperature. This study indicates that this strain is a good candidate for use in industrial application.

  10. Dry matter and nitrogen accumulation are not affected by superoptimal concentration of ammonium in flowing solution culture with pH control

    Science.gov (United States)

    Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.

  11. Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration

    Directory of Open Access Journals (Sweden)

    Jefferson Luiz de Aguiar Paes

    2014-10-01

    Full Text Available Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.

  12. Optimising concentrations of antimicrobial agents in pharmaceutical preparations: Case of an oral solution of glycerol and an ophthalmic solution containing cysteamine.

    Science.gov (United States)

    Chan Hew Wai, A; Becasse, P; Tworski, S; Pradeau, D; Planas, V

    2014-11-01

    In the context of current distrust of antimicrobial preservatives, the quantities of these substances in two pharmaceutical formulas were studied: an ophthalmic solution of cysteamine preserved benzalkonium chloride at 1mg/5mL and Glycerotone(®) preserved with sorbic acid at 0.1g/100g. The purpose of this work was to verify that a reduction of the quantities of preservative continues to fulfil the requirements for antimicrobial preservation. The Test of efficacy of antimicrobial preservation, section 5.1.3 of the 8th edition of the European Pharmacopoeia, was carried out on each formulation prepared with decreasing quantities of preservative. The results show that formulations whose preservative concentration was reduced by a factor of four remained compliant with standards. It is to be noted that in formulas without preservative, fungal growth was observed in both the solution of Glycerotone(®) and the ophthalmic solution containing cysteamine. Although there is no question that an antimicrobial preservative is necessary, the quantity of preservative can be reduced without deteriorating the quality of the pharmaceutical product but the minimal effective concentration remains to be determined. The formulations of many pharmaceutical products should therefore be examined in order to limit the quantities of preservative while continuing to guarantee patient's safety. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Onset of local ordering in some copper-based alloys: critical solute concentration vis-a-vis various solutionhardening parameters

    Science.gov (United States)

    Butt, Muhammad Zakria; Noshi, Mozina; Bashir, Farooq

    2008-12-01

    The mode of planar distribution of solute atoms in Cu single crystals alloyed with 0.5 to 8.0 at.%Ge has been investigated via the temperature dependence of the critical resolved shear stress of these alloys. It is found that there exists a critical solute concentration c m ≈ 5 at.%Ge below which the distribution of solute atoms in the crystal is random, and above which some local ordering occurs. This together with such data available in the literature for Cu-Zn, Cu-Al and Cu-Mn alloys, i.e. c m ≈7 at. %Zn, 7 at.%Al and 1 at.%Mn, when examined as a function of the size-misfit factor δ = (1/ b)(d b/d c)of a given binary alloy system, shows that the value of c m strongly depends on δ; the smaller the magnitude of δ, the greater the value of c m and vice versa. Also, the value of c m is found to correlate well with the electron-to-atom ratio ( e/a)of the Cu-Zn, Cu-Al, Cu-Ge and Cu-Mn alloys with the solute concentration c = c m . However, no systematic correlation exists between the critical solute concentration c m for the onset of local ordering and the modulus-mismatch parameter η = (1/ G)(d G/d c).

  14. Structure and interaction of silk fibroin and graphene oxide in concentrated solution under shear.

    Science.gov (United States)

    Zhang, Chao; Shao, Huili; Luo, Jie; Hu, Xuechao; Zhang, Yaopeng

    2018-02-01

    Considering the high biocompatibility of regenerated silk fibroin (RSF) and the good enhancement effect of graphene oxide (GO), various RSF/GO composite materials have been previously investigated, and found that GO plays a vital role in the fabrication of high-performance RSF/GO materials. However, its effects on the structure of RSF solution are unclear. Therefore, in this work, we studied the rheological and optical properties, as well as the aggregation behavior of concentrated RSF/GO solution in response to applied shear. The results demonstrated that the presence of GO sheets in RSF solution increased the shear resistance, while delayed the sol-gel transition. Moreover, GO sheets were not favorable to the formation of the ordered structures of RSF. The results from small angle X-ray scattering (SAXS) of RSF/GO solution also showed that the shear process promoted the formation of RSF/GO interface. The data also provided insights into the structural evolution within the mixture solutions, which can be beneficial to the future design and fabrication of nanofiller-reinforced high-performance materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Concentrations, patterns and metabolites of organochlorine pesticides in relation to xenobiotic phase I and II enzyme activities in ringed seals (Phoca hispida) from Svalbard and the Baltic Sea

    International Nuclear Information System (INIS)

    Routti, Heli; Bavel, Bert van; Letcher, Robert J.; Arukwe, Augustine; Chu Shaogang; Gabrielsen, Geir W.

    2009-01-01

    The present study investigates the concentrations and patterns of organochlorine pesticides (OCPs) and their metabolites in liver and plasma of two ringed seal populations (Phoca hispida): lower contaminated Svalbard population and more contaminated Baltic Sea population. Among OCPs, p,p'-DDE and sum-chlordanes were the highest in concentration. With increasing hepatic contaminant concentrations and activities of xenobiotic-metabolizing enzymes, the concentrations of 3-methylsulfonyl-p,p'-DDE and the concentration ratios of pentachlorophenol/hexachlorobenzene increased, and the toxaphene pattern shifted more towards persistent Parlar-26 and -50 and less towards more biodegradable Parlar-44. Relative concentrations of the chlordane metabolites, oxychlordane and -heptachlorepoxide, to sum-chlordanes were higher in the seals from Svalbard compared to the seals from the Baltic, while the trend was opposite for cis- and trans-nonachlor. The observed differences in the OCP patterns in the seals from the two populations are probably related to the catalytic activity of xenobiotic-metabolizing enzymes, and also to differences in dietary exposure. - Contrasting patterns of organochlorine pesticides in two ringed seal populations.

  16. Concentrations, patterns and metabolites of organochlorine pesticides in relation to xenobiotic phase I and II enzyme activities in ringed seals (Phoca hispida) from Svalbard and the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Routti, Heli, E-mail: heli.routti@npolar.n [Norwegian Polar Institute, Polar Environmental Centre, 9296 Tromso (Norway); Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, 20014 Turku (Finland); Bavel, Bert van [MTM Research Centre, Orebro University, 70182 Orebro (Sweden); Letcher, Robert J. [Wildlife Toxicology and Disease Program, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3 (Canada); Arukwe, Augustine [Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Chu Shaogang [Wildlife Toxicology and Disease Program, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3 (Canada); Gabrielsen, Geir W. [Norwegian Polar Institute, Polar Environmental Centre, 9296 Tromso (Norway)

    2009-08-15

    The present study investigates the concentrations and patterns of organochlorine pesticides (OCPs) and their metabolites in liver and plasma of two ringed seal populations (Phoca hispida): lower contaminated Svalbard population and more contaminated Baltic Sea population. Among OCPs, p,p'-DDE and sum-chlordanes were the highest in concentration. With increasing hepatic contaminant concentrations and activities of xenobiotic-metabolizing enzymes, the concentrations of 3-methylsulfonyl-p,p'-DDE and the concentration ratios of pentachlorophenol/hexachlorobenzene increased, and the toxaphene pattern shifted more towards persistent Parlar-26 and -50 and less towards more biodegradable Parlar-44. Relative concentrations of the chlordane metabolites, oxychlordane and -heptachlorepoxide, to sum-chlordanes were higher in the seals from Svalbard compared to the seals from the Baltic, while the trend was opposite for cis- and trans-nonachlor. The observed differences in the OCP patterns in the seals from the two populations are probably related to the catalytic activity of xenobiotic-metabolizing enzymes, and also to differences in dietary exposure. - Contrasting patterns of organochlorine pesticides in two ringed seal populations.

  17. Relating soil solution Zn concentration to diffusive gradients in thin films measurements in contaminated soils.

    Science.gov (United States)

    Degryse, Fien; Smolders, Erik; Oliver, Ian; Zhang, Hao

    2003-09-01

    The technique of diffusive gradients in thin films (DGT) has been suggested to sample an available fraction of metals in soil. The objectives of this study were to compare DGT measurements with commonly measured fractions of Zn in soil, viz, the soil solution concentration and the total Zn concentration. The DGT technique was used to measure fluxes and interfacial concentrations of Zn in three series of field-contaminated soils collected in transects toward galvanized electricity pylons and in 15 soils amended with ZnCl2 at six rates. The ratio of DGT-measured concentration to pore water concentration of Zn, R, varied between 0.02 and 1.52 (mean 0.29). This ratio decreased with decreasing distribution coefficient, Kd, of Zn in the soil, which is in agreement with the predictions of the DGT-induced fluxes in soils (DIFS) model. The R values predicted with the DIFS model were generally larger than the observed values in the ZnCl2-amended soils at the higher Zn rates. A modification of the DIFS model indicated that saturation of the resin gel was approached in these soils, despite the short deployment times used (2 h). The saturation of the resin with Zn did not occur in the control soils (no Zn salt added) or the field-contaminated soils. Pore water concentration of Zn in these soils was predicted from the DGT-measured concentration and the total Zn content. Predicted values and observations were generally in good agreement. The pore water concentration was more than 5 times underpredicted for the most acid soil (pH = 3) and for six other soils, for which the underprediction was attributed to the presence of colloidal Zn in the soil solution.

  18. Effects of four additive solutions on canine leukoreduced red cell concentrate quality during storage.

    Science.gov (United States)

    Lacerda, Luciana A; Hlavac, Nicole R C; Terra, Silvia R; Back, Franciele P; Jane Wardrop, K; González, Félix H D

    2014-09-01

    Additive solutions (AS) and prestorage leukoreduction (LR) are important tools used to maintain erythrocyte viability during storage and avoid transfusion reactions in recipients, respectively. The purpose of the study was to determine the efficacy of a WBC filter (Immugard IIIRC) and compare the effect of 4 AS (phosphate-adenine-glucose-guanosine-gluconate-mannitol [PAGGGM], saline-adenine-glucose-mannitol [SAGM], Adsol, Optisol) on the in vitro quality of canine leukoreduced packed RBC units (pRBC) stored for 41 days. Five hundred milliliters of blood were collected from 8 healthy dogs each into 70 mL of citrate-phosphate-dextrose (CPD) solution, and were leukoreduced by a polyurethane filter. pRBC of each dog were divided equally into 4 bags containing a different AS. Bags were stored for 41 days at 4°C and evaluated every 10 days. Variables analyzed included pH, PCV, and% hemolysis, and lactate, glucose, potassium, sodium, ATP, and 2,3-diphosphoglycerate (2,3-DPG) concentrations. The LR resulted in residual WBC counts comparable to human standards. During storage, pH, and glucose, 2,3-DPG, and ATP concentrations decreased, and hemolysis, and lactate, sodium, and potassium concentrations increased (P 2,3-DPG concentrations. When compared with day 1 values, significant changes were seen in these variables by day 31 with all AS. © 2014 American Society for Veterinary Clinical Pathology and European Society for Veterinary Clinical Pathology.

  19. Bioelectronic sniffer for nicotine using enzyme inhibition.

    Science.gov (United States)

    Mitsubayashi, Kohji; Nakayama, Kazumi; Taniguchi, Midori; Saito, Hirokazu; Otsuka, Kimio; Kudo, Hiroyuki

    2006-07-28

    A novel bioelectronic sniffer for nicotine in the gas phase was developed with enzyme inhibition principle to butyrylcholinesterase activity. The bioelectronic devices for nicotine in the gas and liquid phases were constructed using a Clark-type dissolved oxygen electrode and a membrane immobilized butyrylcholinesterase and choline oxidase. After the assessment of the sensor performances to choline and butyrylcholine as pre-examinations, the characteristics of the biosensor and bio-sniffer for nicotine were evaluated in the liquid and gas phases, respectively. The sensor signal of the bio-devices with 300 micromol l(-1) of butyrylcholine decreased quickly following application of nicotine and reached to the steady-state current, thus relating the concentration of nicotine in the liquid and gas phases. The biosensor was used to measure nicotine solution from 10 to 300 micromol l(-1). In the gas-phase experiment, the current signal of the bio-sniffer was also found to be linearly to the nicotine concentration over the range of 10.0-1000 ppb including 75.0 ppb as threshold limit value (TLV) by American Conference of Governmental Industrial Hygienists (ACGIH).

  20. Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions

    NARCIS (Netherlands)

    Kort, de E.J.P.; Minor, M.; Snoeren, T.H.M.; Hooijdonk, van A.C.M.; Linden, van der E.

    2011-01-01

    The effect of calcium chelators on physical changes of casein micelles in concentrated micellar casein solutions was investigated by measuring calcium-ion activity, viscosity and turbidity, and performing ultracentrifugation. The highest viscosities were measured on addition of sodium

  1. Thermometric enzyme linked immunosorbent assay: TELISA.

    Science.gov (United States)

    Mattiasson, B; Borrebaeck, C; Sanfridson, B; Mosbach, K

    1977-08-11

    A new method, thermometric enzyme linked immunosorbent assay (TELISA), for the assay of endogenous and exogenous compounds in biological fluids is described. It is based on the previously described enzyme linked immunosorbent assay technique, ELISA, but utilizes enzymic heat formation which is measured in an enzyme thermistor unit. In the model system studied determination of human serum albumin down to a concentration of 10(-10) M (5 ng/ml) was achieved, with both normal and catalase labelled human serum albumin competing for the binding sites on the immunosorbent, which was rabbit antihuman serum albumin immobilized onto Sepharose CL-4B.

  2. Enzymatic surface hydrolysis of polyamide 6,6 with mixtures of proteolytic and lipolytic enzymes.

    Science.gov (United States)

    Parvinzadeh Gashti, Mazeyar; Assefipour, Reza; Kiumarsi, Amir; Parvinzadeh Gashti, Mahyar

    2013-01-01

    This study investigated the changes induced on nylon 6,6 fabric by a mixture of proteolytic and lipolytic enzymes. Technical measurements were studied including those of Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), weight loss (WL), bending lengths (BL), scanning electron microscopy (SEM), moisture absorbency (MA), and reflectance spectroscopy (RS). For this purpose, nylon 6,6 fabrics were treated separately with different concentrations of protease and lipase mixtures in solution. The dyeing process was then carried out on the treated fabrics with two reactive and acid dyes. The intensity of major peaks in the FTIR spectra of the protease-treated samples is in favor of chemical changes the polypeptide functional groups in the fabrics. Thermal studies also show a significant decrease in the thermal degradation temperature of the treated polymer at temperatures higher than 400°C. The protease and lipase mixtures decreased the sample weight, while lipase intensified the weight loss comparing with protease. It was observed that the concentration of lipase enzyme had a direct influence on the darkness of dyed samples.

  3. Toward new instruments for measurement of low concentration hydrogen sulfide in small-quantity aqueous solutions

    International Nuclear Information System (INIS)

    Wu, Xiao Chu; Wu, Dong Qing; Zhang, W J; Sammynaiken, R; Yang, Wei; Wang, Rui

    2008-01-01

    Endogenously generated hydrogen sulfide (H 2 S) has been found to play some important physiological roles in the nervous and cardiovascular systems, such as a neuromodulator and a vasorelaxant. These roles are in contrast to our common perception that H 2 S is toxic. However, whether H 2 S plays a positive or negative role is dependent on the H 2 S concentration levels in mammals. This further puts a high demand on the accurate measurement of H 2 S in mammals with a further desire to be real time, continuous and in vivo. Existing methods for H 2 S measurement require a large number of tissue samples with complex procedures, and these methods are extremely invasive. The development of new in vivo and real-time methods for measuring H 2 S is, however, a great challenge. In the present study, we proposed and examined five potential H 2 S measurement methods: (1) atomic force microscopy with coating materials, (2) Raman spectroscopy on the H 2 S solutions, (3) gas chromatography/mass spectroscopy (with the static headspace technique) on the H 2 S solutions, (4) mass spectroscopy on unfunctionalized carbon nanotubes treated with the H 2 S solutions and (5) Raman spectroscopy on unfunctionalized carbon nanotubes treated with the H 2 S solutions. Our study concluded that method (5) is the most promising one for detecting low concentration H 2 S in small-quantity aqueous solutions in terms of measurement resolution and non-invasiveness, but the method is not very robust

  4. Application of a novel enzymatic pretreatment using crude hydrolytic extracellular enzyme solution to microalgal biomass for dark fermentative hydrogen production.

    Science.gov (United States)

    Yun, Yeo-Myeong; Kim, Dong-Hoon; Oh, You-Kwan; Shin, Hang-Sik; Jung, Kyung-Won

    2014-05-01

    In this study, a novel enzymatic pretreatment of Chlorella vulgaris for dark fermentative hydrogen production (DFHP) was performed using crude hydrolytic extracellular enzyme solution (CHEES) extracted from the H2 fermented effluent of food waste. It was found that the enzyme extracted at 52 h had the highest hydrolysis efficiency of microalgal biomass, resulting in the highest H2 yield of 43.1 mL H2/g dry cell weight along with shorter lag periods. Even though a high amount of VFAs was accumulated in CHEES, especially butyrate, the fermentative bacteria on the DFHP was not affected from product inhibition. It also appears that the presence of organic acids, especially lactate and acetate, contained in the CHEES facilitated enhancement of H2 production acted as a co-substrate. Therefore, all of the experimental results suggest that the enhancement of DFHP performance caused by CHEES has a dual role as the hydrolysis enhancer and the co-substrate supplier. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Enzyme Characterization in Microreactors by UV-Vis Spectroscopy

    DEFF Research Database (Denmark)

    Ringborg, Rolf Hoffmeyer; Krühne, Ulrich; Woodley, John

    for selection can at this point be improved by characterization of the enzyme performance where also inhibition and toxicity effects are taken into account. Enzyme characterization is here defined as the effect on initial rate of reaction with respect to pH, enzyme, substrate, co-substrate, product and co......-product concentration [2]. From this investigation, it will be possible to determine whether the enzyme meets the criteria for process requirements or not. The development of the process will determine the requirements and this can also reach a state of maturity that resolves obstacles, lowers criteria and paves......, as the enzyme resource is scarce at this point of development. In the case where the reaction operates with UV active components, UV can be used to detect compounds with high sensitivity supplemented by multivariate data analysis. The spectra are here decorrelated and regressed to yield concentrations...

  6. Bacteriophage enzymes for the prevention and treatment of bacterial infections: Stability and stabilization of the enzyme lysing Streptococcus pyogenes cells

    Energy Technology Data Exchange (ETDEWEB)

    Klyachko, N. L.; Dmitrieva, N. F.; Eshchina, A. S.; Ignatenko, O. V.; Filatova, L. Y.; Rainina, Evguenia I.; Kazarov, A. K.; Levashov, A. V.

    2008-06-01

    Recombinant, phage associated lytic enzyme Ply C capable to lyse streptococci of groups A and C was stabilized in the variety of the micelles containing compositions to improve the stability of the enzyme for further application in medicine. It was shown that, in the micellar polyelectrolyte composition M16, the enzyme retained its activity for 2 months; while in a buffer solution under the same conditions ((pH 6.3, room temperature), it completely lost its activity in 2 days

  7. Scintillation detector with anticoincidence shield for determination of the radioactive concentration of standard solutions

    International Nuclear Information System (INIS)

    Broda, R.; Radoszewski, T.

    1982-01-01

    The construction and parameters of the prototype liquid scintillation detector for disintegration rate determination of standard solutions is described. The detector is equipped with a liquid scintillation anticoincidence shield with a volume of 40 l. The instrument is placed in the building of the Radioisotope Production and Distribution Centre in the Institute of Nuclear Research at Swierk. The results of instrument background reduction are described. The counting efficiency of several beta-emitters 3 H, 63 Ni, 14 C and 90 Sr + 90 Y is given, as well as the examples of a disintegration rate determination of low radioactivity concentration of standard solutions. (author)

  8. Extraction of soil solution by drainage centrifugation—effects of centrifugal force and time of centrifugation on soil moisture recovery and solute concentration in soil moisture of loess subsoils

    NARCIS (Netherlands)

    Fraters, D.; Boom, G.J.F.L.; Boumans, L.J.M.; Weerd, H. de; Wolters, M.

    2017-01-01

    The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this

  9. Can we predict uranium bioavailability based on soil parameters? Part 1: Effect of soil parameters on soil solution uranium concentration

    International Nuclear Information System (INIS)

    Vandenhove, H.; Hees, M. van; Wouters, K.; Wannijn, J.

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for 238 U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K d , L kg -1 ) and the organic matter content (R 2 = 0.70) and amorphous Fe content (R 2 = 0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH = 6, log(K d ) was linearly related with pH [log(K d ) = - 1.18 pH + 10.8, R 2 = 0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex. - Uranium solubility in soil can be predicted from organic matter or amorphous iron content and pH or with complex multilinear models considering several soil parameters

  10. Analytical solutions to compartmental indoor air quality models with application to environmental tobacco smoke concentrations measured in a house.

    Science.gov (United States)

    Ott, Wayne R; Klepeis, Neil E; Switzer, Paul

    2003-08-01

    This paper derives the analytical solutions to multi-compartment indoor air quality models for predicting indoor air pollutant concentrations in the home and evaluates the solutions using experimental measurements in the rooms of a single-story residence. The model uses Laplace transform methods to solve the mass balance equations for two interconnected compartments, obtaining analytical solutions that can be applied without a computer. Environmental tobacco smoke (ETS) sources such as the cigarette typically emit pollutants for relatively short times (7-11 min) and are represented mathematically by a "rectangular" source emission time function, or approximated by a short-duration source called an "impulse" time function. Other time-varying indoor sources also can be represented by Laplace transforms. The two-compartment model is more complicated than the single-compartment model and has more parameters, including the cigarette or combustion source emission rate as a function of time, room volumes, compartmental air change rates, and interzonal air flow factors expressed as dimensionless ratios. This paper provides analytical solutions for the impulse, step (Heaviside), and rectangular source emission time functions. It evaluates the indoor model in an unoccupied two-bedroom home using cigars and cigarettes as sources with continuous measurements of carbon monoxide (CO), respirable suspended particles (RSP), and particulate polycyclic aromatic hydrocarbons (PPAH). Fine particle mass concentrations (RSP or PM3.5) are measured using real-time monitors. In our experiments, simultaneous measurements of concentrations at three heights in a bedroom confirm an important assumption of the model-spatial uniformity of mixing. The parameter values of the two-compartment model were obtained using a "grid search" optimization method, and the predicted solutions agreed well with the measured concentration time series in the rooms of the home. The door and window positions in

  11. 21 CFR 184.1287 - Enzyme-modified fats.

    Science.gov (United States)

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... that are generally recognized as safe (GRAS). Enzyme-modified milk powder may be prepared with GRAS enzymes from reconstituted milk powder, whole milk, condensed or concentrated whole milk, evaporated milk...

  12. Modification of a Turbulent Boundary Layer within a Homogeneous Concentration of Drag reducing Polymer Solution

    Science.gov (United States)

    Farsiani, Yasaman; Elbing, Brian

    2017-11-01

    High molecular weight polymer solutions in wall-bounded flows can reduce the local skin friction by as much as 80%. External flow studies have typical focused on injection of polymer within a developing turbulent boundary layer (TBL), allowing the concentration and drag reduction level to evolve with downstream distance. Modification of the log-law region of the TBL is directly related to drag reduction, but recent results suggest that the exact behavior is dependent on flow and polymer properties. Weissenberg number and the viscosity ratio (ratio of solvent viscosity to the zero-shear viscosity) are concentration dependent, thus the current study uses a polymer ocean (i.e. a homogenous concentration of polymer solution) with a developing TBL to eliminate uncertainty related to polymer properties. The near-wall modified TBL velocity profiles are acquired with particle image velocimetry. In the current presentation the mean velocity profiles and the corresponding flow (Reynolds number) and polymer (Weissenberg number, viscosity ratio, and length ratio) properties are reported. Note that the impact of polymer degradation on molecular weight will also be quantified and accounted for when estimating polymer properties This work was supported by NSF Grant 1604978.

  13. Studies on the concentration dependence of specific rotation of Alpha lactose monohydrate (α-LM) aqueous solutions and growth of α-LM single crystals

    Science.gov (United States)

    Vinodhini, K.; Divya Bharathi, R.; Srinivasan, K.

    2018-02-01

    Lactose is an optically active substance. As it is one of the reducing sugars, exhibits mutarotation in solution when it dissolves in any solvent. In solution, lactose exists in two isomeric forms, alpha-Lactose (α-L) and beta-lactose (β-L) through the mutarotation reaction. Mutarotation produces a dynamic equilibrium between two isomers in a solution and kinetics of this process determines the growth rate of alpha lactose monohydrate (α-LM) crystals. Since no data were available on the specific rotation of aqueous α-LM solutions at different concentrations at 33 °C, the initial experiments were carried out on the specific rotation of aqueous α-LM solutions at different concentrations at 33 °C. The specific rotations of the solutions were decreased with increasing time through the mutarotation reaction. The initial and final (equilibrium) specific rotations of the solutions were determined by using automatic digital polarimeter. The compositions of α and β-L in all prepared solutions were calculated from initial and final optical rotations by the method of Sharp and Doob. The composition of α-L decreased whereas, the composition of β-L increased in solutions with increasing concentration of α-LM at 33 °C. Experimental results revealed that this method could be easily and safely employed to study the dependence of specific rotation of solutions on their concentration. The effect of β-lactose on the morphology of nucleated α-LM single crystals has been studied at different experimental conditions.

  14. Tomato root growth and phosphorus absorption kinetics by tomato plants as affected by phosphorus concentration in nutrient solution

    International Nuclear Information System (INIS)

    Fontes, P.C.R.; Barber, S.A.

    1984-01-01

    To evaluate the effects P concentrations in nutrient solution on root growth and on root physiological characteristics involved in P uptake by tomato Lycopersicon esculentum Mill plants, six seedlings were grown in nutrient solution at initial concentrations of 48.5, 97, 194 and 388 μMP until one day before harvest. They were then transferred to solutions with P at 20 μM and 30 μM, and the depletion curves and Michaelis-Menten parameters were determined. The conclusions were that as P supply increased and as the plant P contents are sufficient for maximum growth, the rate of P uptake tends to be lower. The results also indicate that total P uptake by tomato seedlings depends on the amount of root surface area exposed to P. (M.A.C.) [pt

  15. Behaviour of symmetric solutions of a nonlinear elliptic field equation in the semi-classical limit: Concentration around a circle

    Directory of Open Access Journals (Sweden)

    Teresa D'Aprile

    2000-11-01

    Full Text Available In this paper we study the existence of concentrated solutions of the nonlinear field equation $$ -h^{2}Delta v+V(xv-h^{p}Delta_{p}v+ W'(v=0,, $$ where $v:{mathbb R}^{N}o{mathbb R}^{N+1}$, $Ngeq 3$, $p>N$, the potential $V$ is positive and radial, and $W$ is an appropriate singular function satisfying a suitable symmetric property. Provided that $h$ is sufficiently small, we are able to find solutions with a certain spherical symmetry which exhibit a concentration behaviour near a circle centered at zero as $ho 0^{+}$. Such solutions are obtained as critical points for the associated energy functional; the proofs of the results are variational and the arguments rely on topological tools. Furthermore a penalization-type method is developed for the identification of the desired solutions.

  16. Evaluation of pressure tuning of enzymes

    DEFF Research Database (Denmark)

    Naghshineh, Mahsa

    and high energy consumption. Therefore, searching for an environmentally friendly method of pectin extraction is a task for science and industry. Employment of hydrolytic enzymes may represent a green approach to obtain intact pectin polymer. However, the low stability/activity of enzymes, and low polymer...... yield of enzymatic extraction limits the application of enzyme in pectin production. There is evidence that emerging technology of high hydrostatic pressure processing can result in stabilization and activation of some enzymes. Therefore, the use of high hydrostatic pressure in combination with enzyme...... (cellulase/xylanase: 50/0, 50/25, 50/50, 25/50, and 0/50 U/g lime peel) at ambient pressure, 100 and 200 MPa were used to extract pectin from dried lime peel waste. It was found that pressure level, type and concentration of enzyme significantly influenced pectin yield and degree of esterification (DE...

  17. Concentration of rhenium from dilute sodium chloride solutions

    Directory of Open Access Journals (Sweden)

    DRAGOLJUB M. LUKIC

    2008-03-01

    Full Text Available The conditions for the desorption of rhenium from the anion exchange resin Dowex 1-x8 by HNO3, HCl, H2SO4 and NaOH were determined. The solution (5.0´10-3 mol dm-3 Re in 0.15 mol dm-3 NaCl was passed through a column containing 0.10 g of the resin. The total sorbed amount of rhenium was 0.20 g/g of the resin. It was then eluted by the corresponding eluent in the concentration range up to about 3.0 mol dm-3. The highest elution efficiency and the most favourable elution profile were found with 3.0 mol dm-3 HNO3. Over 77 % of the sorbed rhenium was found in the first 5 ml of the eluate. Practically all the rhenium was recovered with 20 ml of the acid. Under the given experimental conditions, HCl and H2SO4 were less favourable while NaOH was not applicable, due to very low efficiency of rhenium elution.

  18. Optimizing Immobilized Enzyme Performance in Cell-Free Environments to Produce Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Belfort, Georges [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering; Grimaldi, Joseph J. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering

    2015-01-27

    Limitations on biofuel production using cell culture (Escherichia coli, Clostridium, Saccharomyces cerevisiae, brown microalgae, blue-green algae and others) include low product (alcohol) concentrations (≤0.2 vol%) due to feedback inhibition, instability of cells, and lack of economical product recovery processes. To overcome these challenges, an alternate simplified biofuel production scheme was tested based on a cell-free immobilized enzyme system. Using this cell free system, we were able to obtain about 2.6 times higher concentrations of iso-butanol using our non-optimized system as compared with live cell systems. This process involved two steps: (i) converts acid to aldehyde using keto-acid decarboxylase (KdcA), and (ii) produces alcohol from aldehyde using alcohol dehydrogenase (ADH) with a cofactor (NADH) conversion from inexpensive formate using a third enzyme, formate dehydrogenase (FDH). To increase stability and conversion efficiency with easy separations, the first two enzymes were immobilized onto methacrylate resin. Fusion proteins of labile KdcA (fKdcA) were expressed to stabilize the covalently immobilized KdcA. Covalently immobilized ADH exhibited long-term stability and efficient conversion of aldehyde to alcohol over multiple batch cycles without fusions. High conversion rates and low protein leaching were achieved by covalent immobilization of enzymes on methacrylate resin. The complete reaction scheme was demonstrated by immobilizing both ADH and fKdcA and using FDH free in solution. The new system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.5 % (v/v). Further increases in titer will require continuous removal of the isobutanol using our novel brush membrane system that exhibits a 1.5 fold increase in the separation factor of isobutanol from water versus that obtained for commercial silicone rubber membranes. These bio-inspired brush membranes are based on the

  19. Enzyme activity and kinetics in substrate-amended river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Duddridge, J E; Wainwright, M

    1982-01-01

    In determining the effects of heavy metals in microbial activity and litter degradation in river sediments, one approach is to determine the effects of these pollutants on sediment enzyme activity and synthesis. Methods to assay amylase, cellulase and urease activity in diverse river sediments are reported. Enzyme activity was low in non-amended sediments, but increased markedly when the appropriate substrate was added, paralleling both athropogenic and natural amendment. Linear relationships between enzyme activity, length of incubation, sample size and substrate concentration were established. Sediment enzyme activity generally obeyed Michaelis-Menton kinetics, but of the three enzymes, urease gave least significant correlation coefficients when the data for substrate concentration versus activity was applied to the Eadie-Hofstee transformation of the Michaelis-Menten equation. K/sub m/ and V/sub max/ for amylase, cellulase and urease in sediments are reported. (JMT)

  20. Temperature and concentration calibration of aqueous polyvinylpyrrolidone (PVP solutions for isotropic diffusion MRI phantoms.

    Directory of Open Access Journals (Sweden)

    Friedrich Wagner

    Full Text Available To use the "apparent diffusion coefficient" (Dapp as a quantitative imaging parameter, well-suited test fluids are essential. In this study, the previously proposed aqueous solutions of polyvinylpyrrolidone (PVP were examined and temperature calibrations were obtained. For example, at a temperature of 20°C, Dapp ranged from 1.594 (95% CI: 1.593, 1.595 μm2/ms to 0.3326 (95% CI: 0. 3304, 0.3348 μm2/ms for PVP-concentrations ranging from 10% (w/w to 50% (w/w using K30 polymer lengths. The temperature dependence of Dapp was found to be so strong that a negligence seems not advisable. The temperature dependence is descriptively modelled by an exponential function exp(c2 (T - 20°C and the determined c2 values are reported, which can be used for temperature calibration. For example, we find the value 0.02952 K-1 for 30% (w/w PVP-concentration and K30 polymer length. In general, aqueous PVP solutions were found to be suitable to produce easily applicable and reliable Dapp-phantoms.

  1. The effects of H2SO4 and NaOH solutions on irradiated sawdust for ethanol production

    International Nuclear Information System (INIS)

    Lina, M.R.; Susiana; Siagian, E.G.

    1988-01-01

    The research of gamma irradiated sawdust, which were added H2SO4 and NaOH solutions on fermentation process for ethanol production was investigated. Irradiation doses used were : 0 and 200 kGy, while H2SO4 and NaOH solutions had concentrations of 0,1 and 2% (v/v) and (b/v), with a ratio of sawdust weight and solution volume = 1:3. Fine powder of sawdust with a mesh of 60, was hydrolysed by enzyme (cellulase), S.cerevisiae was a yeast used for fermentation process and fermentation time was 4 hours. From the experimental results showed that irradiation doses up to 200 kGy, could increase the ethanol concentration from sawdust fermentation signivicantly (P= . Irradiation treatment, addition of the solutions and its interaction could not influence the total carbohydrate before and after fermentation. (author). 9 refs, 2 figs, 6 tabs

  2. Review of moxifloxacin hydrochloride ophthalmic solution in the treatment of bacterial eye infections

    Directory of Open Access Journals (Sweden)

    Darlene Miller

    2008-03-01

    Full Text Available Darlene MillerAbrams Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Anne Bates Leach Eye Hospital, Miller School of Medicine-University of Miami, FL, USAAbstract: Moxifloxacin hydrochloride ophthalmic solution 0.5% (Vigamox® is the ocular formulation/adaptation of moxifloxacin. Moxifloxacin is a broad spectrum 8-methoxyfluoroquinolone which terminates bacterial growth by binding to DNA gyrase (topoisomerase II and topoisomerase IV, essential bacterial enzymes involved in the replication, translation, repair and recombination of deoxyribonucleic acid. Affinity for both enzymes improves potency and reduces the probability of selecting resistant bacterial subpopulations. Vigamox is a bactericidal, concentration dependent, anti-infective. It is preservative free, and well tolerated with minimal ocular side effects. It provides increased penetration into ocular tissues and fluids with improved activity against Streptococci and Staphylococci species and moderate to excellent activity against clinically relevant, gram- negative ocular pathogens.Keywords: moxifloxacin, vigamox, pharmacodynamic indices, minimal inhibitory concentrations

  3. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution.

    Science.gov (United States)

    Liu, Yueqiang; Phenrat, Tanapon; Lowry, Gregory V

    2007-11-15

    Nanoscale zero-valent iron (NZVI) is used to remediate contaminated groundwater plumes and contaminant source zones. The target contaminant concentration and groundwater solutes (NO3-, Cl-, HCO3-, SO4(2-), and HPO4(2-)) should affect the NZVI longevity and reactivity with target contaminants, but these effects are not well understood. This study evaluates the effect of trichloroethylene (TCE) concentration and common dissolved groundwater solutes on the rates of NZVI-promoted TCE dechlorination and H2 evolution in batch reactors. Both model systems and real groundwater are evaluated. The TCE reaction rate constant was unaffected by TCE concentration for [TCE] TCE concentration up to water saturation (8.4 mM). For [TCE] > or = 0.46 mM, acetylene formation increased, and the total amount of H2 evolved at the end of the particle reactive lifetime decreased with increasing [TCE], indicating a higher Fe0 utilization efficiency for TCE dechlorination. Common groundwater anions (5mN) had a minor effect on H2 evolution but inhibited TCE reduction up to 7-fold in increasing order of Cl- TCE reduction but increased acetylene production and decreased H2 evolution. NO3- present at > 3 mM slowed TCE dechlorination due to surface passivation. NO3- present at 5 mM stopped TCE dechlorination and H2 evolution after 3 days. Dissolved solutes accounted for the observed decrease of NZVI reactivity for TCE dechlorination in natural groundwater when the total organic content was small (< 1 mg/L).

  4. Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy

    International Nuclear Information System (INIS)

    Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q.

    2007-01-01

    Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10 -5 -1x10 -2 dpa at KUR, and 8x10 -3 -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High concentration of alloying

  5. Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q. [Kyoto Univ., Research Reactor Institute, Osaka (Japan)

    2007-07-01

    Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10{sup -5}-1x10{sup -2} dpa at KUR, and 8x10{sup -3} -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High

  6. Method development for the enantiomeric purity determination of low concentrations of adrenaline in local anaesthetic solutions by capillary electrophoresis

    NARCIS (Netherlands)

    Sänger-Van De Griend, Cari E.; Ek, Anders G.; Widahl-Näsman, Monica E.; Andersson, E. K Margareta

    2006-01-01

    L-Adrenaline is often included in local anaesthetic (LA) solutions for injection to improve the quality of the anaesthetic block. The concentration of the LA is between 2.5 and 20 mg/ml and the concentration of adrenaline is typically ≤0.1% of the LA concentration. In order to follow the

  7. A different interpretation of Einstein's viscosity equation provides accurate representations of the behavior of hydrophilic solutes to high concentrations.

    Science.gov (United States)

    Zavitsas, Andreas A

    2012-08-23

    Viscosities of aqueous solutions of many highly soluble hydrophilic solutes with hydroxyl and amino groups are examined with a focus on improving the concentration range over which Einstein's relationship between solution viscosity and solute volume, V, is applicable accurately. V is the hydrodynamic effective volume of the solute, including any water strongly bound to it and acting as a single entity with it. The widespread practice is to relate the relative viscosity of solute to solvent, η/η(0), to V/V(tot), where V(tot) is the total volume of the solution. For solutions that are not infinitely dilute, it is shown that the volume ratio must be expressed as V/V(0), where V(0) = V(tot) - V. V(0) is the volume of water not bound to the solute, the "free" water solvent. At infinite dilution, V/V(0) = V/V(tot). For the solutions examined, the proportionality constant between the relative viscosity and volume ratio is shown to be 2.9, rather than the 2.5 commonly used. To understand the phenomena relating to viscosity, the hydrodynamic effective volume of water is important. It is estimated to be between 54 and 85 cm(3). With the above interpretations of Einstein's equation, which are consistent with his stated reasoning, the relation between the viscosity and volume ratio remains accurate to much higher concentrations than those attainable with any of the other relations examined that express the volume ratio as V/V(tot).

  8. [Treatment of burn surfaces by proteinases: mathematical description of an enzyme distribution].

    Science.gov (United States)

    Khalili, A S; Domogatskiĭ, S P; Blizniukov, O P; Ruuge, E K

    2003-01-01

    The process of penetration of a proteolytic enzyme applied to the surface of burn wound into the depth of necrotic tissue was considered. The model approximation describes three factors by a series of mathematical equations: inward-directed enzyme diffusion, counter-flow filtration of interstitial fluid (exudates), and irreversible inactivation of the enzyme by specific inhibitors present in exudates. According to the model, a quasi-stationary distribution of enzymatic activity through the thickness of the necrotic layer is achieved within 3 h and persists as long as the enzyme concentration on the wound surface is constant. The enzyme activity diminishes linearly from the wound surface to the mid-part of the necrotic layer. No enzyme activity is retained in the inner mid-part of the necrotic layer completely protected by the prevalent inhibitor. The ratio of enzyme concentration on the wound surface to inhibitor concentration in the interstitial fluid is the same as the ratio of the depth of active enzyme area to the depth of the inhibitor-protected area through the necrotic layer. The dynamics of accumulation of the active enzyme in the necrotic zone and the rate of enzyme inactivation in the wound by inhibitors were described by formulas applicable for practical purposes.

  9. Structural study of concentrated micelle-solutions of sodium octanoate by light scattering

    International Nuclear Information System (INIS)

    Hayoun, Marc

    1982-05-01

    Structural investigation of sodium octanoate (CH 3 -(CH 2 ) 6 -COONa) by light scattering has been made to study properties of concentrated aqueous micelle-solutions. From static light scattering data, the micellar weight and shape have been determined. The monomer aggregation number and the apparent micellar charge have been confirmed. Quasi-elastic light scattering, has been used to measure the effective diffusion coefficient as a function of the volume fraction. Extrapolation to the c.m.c. give the hydrodynamic radius of the micelles. At low micelle-concentration, strong exchange reaction between monomers and micelles affects the Brownian motion and resulting is an increase in the diffusion coefficient. The experimental data show a strong hydrodynamic contribution to S(q) (factor structure) and D(q) (effective diffusion coefficient) arising from hard spheres interactions with a large repulsive potential. (author) [fr

  10. Effect of solution concentration on sealing treatment of Mg-Al hydrotalcite film on AZ91D Mg alloy

    Directory of Open Access Journals (Sweden)

    Qiangsheng Dong

    2017-09-01

    Full Text Available Cerium-based sealing treatment was developed for Mg-Al hydrotalcite film on AZ91D Mg alloy, and the influence of cerium salt solution was investigated to modify the surface integrity and corrosion resistance. Scanning electron microscope (SEM and X-ray diffraction (XRD measurements were carried out to analyze the surface morphology and phase composition. The corrosion resistance of Mg-Al hydrotalcite film after sealing treatment was evaluated by the polarization curve and electrochemical impedance spectroscopy (EIS tests. The results showed that lower concentration of Ce-containing solution was beneficial to seal the micro-cracks on Mg-Al hydrotalcite film, and improve the surface integrity and corrosion resistance; higher concentration of Ce-containing solution could seal fewer micro-cracks, and the corrosion resistance was decreased owing to the disintegration of Mg-Al hydrotalcite film.

  11. Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration

    International Nuclear Information System (INIS)

    Chowdhury, Uttam K.; Zakharyan, Robert A.; Hernandez, Alba; Avram, Mihaela D.; Kopplin, Michael J.; Aposhian, H. Vasken

    2006-01-01

    Inorganic arsenic is a human carcinogen to which millions of people are exposed via their naturally contaminated drinking water. Its molecular mechanisms of carcinogenicity have remained an enigma, perhaps because arsenate is biochemically transformed to at least five other arsenic-containing metabolites. In the biotransformation of inorganic arsenic, GSTO1 catalyzes the reduction of arsenate, MMA(V), and DMA(V) to the more toxic + 3 arsenic species. MMA(V) reductase and human (hGSTO1-1) are identical proteins. The hypothesis that GST-Omega knockout mice biotransformed inorganic arsenic differently than wild-type mice has been tested. The livers of male knockout (KO) mice, in which 222 bp of Exon 3 of the GSTO1 gene were eliminated, were analyzed by PCR for mRNA. The level of transcripts of the GSTO1 gene in KO mice was 3.3-fold less than in DBA/1lacJ wild-type (WT) mice. The GSTO2 transcripts were about two-fold less in the KO mouse. When KO and WT mice were injected intramuscularly with Na arsenate (4.16 mg As/kg body weight); tissues removed at 0.5, 1, 2, 4, 8, and 12 h after arsenate injection; and the arsenic species measured by HPLC-ICP-MS, the results indicated that the highest concentration of the recently discovered and very toxic MMA(III), a key biotransformant, was in the kidneys of both KO and WT mice. The highest concentration of DMA(III) was in the urinary bladder tissue for both the KO and WT mice. The MMA(V) reducing activity of the liver cytosol of KO mice was only 20% of that found in wild-type mice. There appears to be another enzyme(s) other than GST-O able to reduce arsenic(V) species but to a lesser extent. This and other studies suggest that each step of the biotransformation of inorganic arsenic has an alternative enzyme to biotransform the arsenic substrate

  12. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    International Nuclear Information System (INIS)

    Zhang, Yanwen; Wang, Lumin; Caro, Alfredo; Weber, William J.; Univ. of Tennessee, Knoxville, TN

    2015-01-01

    A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel to binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys

  13. Enzyme activity, hormone concentration in tree shrew (Tupaia belangeri during cold acclimation

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2012-08-01

    Full Text Available Environmental factors play an important role in the seasonal adaptation of body mass and thermogenesis in wild small mammals. The tree shrew (Tupaia belangeri, is a unique species of small mammals which is origin of island in the Oriental realm. The present study was to test the hypothesis that ambient temperature was a cue to induce adjustments in body mass, energy intake, metabolism, uncoupling protein 1 (UCP1 in brown adipose tissue (BAT, and other biochemical characters of T. belangeri during cold exposure about 21 days. Our data demonstrate that cold acclimation induced a remarkable increase in body mass, a significant increase in energy intake and metabolic rate, and high expression of UCP1 in BAT of T. belangeri. Cold acclimation induced an increase in cytochrome c oxidase (COX and Thyroidhormones (T3/T4. These data supported that T. belangeri increased the body mass and increased energy intake and expenditure under cold acclimation. Increased expression of UCP1 was potentially involved in the regulation of energy metabolism and thermogenic capacity following cold acclimation. And it through changes in enzyme activity and hormone concentration under cold acclimation, and suggested temperature changes play an important role in the regulation of thermogenic capacity in tree shrew.

  14. Influence of Monomer Concentration on the Morphologies and Electrochemical Properties of PEDOT, PANI, and PPy Prepared from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Shalini Kulandaivalu

    2016-01-01

    Full Text Available Poly(3,4-ethylenedioxyhiophene (PEDOT, polyaniline (PANI, and polypyrrole (PPy were prepared on indium tin oxide (ITO substrate via potentiostatic from aqueous solutions containing monomer and lithium perchlorate. The concentration of monomers was varied between 1 and 10 mM. The effects of monomer concentration on the polymers formation were investigated and compared by using Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, scanning electron microscopy (SEM, cyclic voltammetry (CV, and electrochemical impedance spectroscopy (EIS measurements. FTIR and Raman spectra showed no changes in the peaks upon the increment of the concentration. Based on the SEM images, the increment in monomer concentration gives significant effect on morphologies and eventually affects the electrochemical properties. PEDOT electrodeposited from 10 mM solution showed excellent electrochemical properties with the highest specific capacitance value of 12.8 mF/cm2.

  15. Heparin interferes with the radioenzymatic and homogeneous enzyme immunoassays for aminoglycosides

    International Nuclear Information System (INIS)

    Krogstad, D.J.; Granich, G.G.; Murray, P.R.; Pfaller, M.A.; Valdes, R.

    1981-01-01

    Heparin interferes with measurement of aminoglycosides in serum by biological, radioenzymatic, and homogeneous enzyme immunoassay techniques, but not with radioimmunoassay. At concentrations greater than or equal to 10 5 and greater than or equal to 3 X 10 6 USP units/L, respectively, it interferes with the radioenzymatic assay by inhibiting the gentamicin 3-acetyltransferase and kanamycin 6'-acetyltransferase enzymes used in the assay. It interferes with the homogeneous enzyme immunoassays for gentamicin and tobramycin (at concentrations greater than or equal to 10 5 and greater than or equal to10 4 USP units/L, respectively), but not with the commercially available homogeneous enzyme immunoassays for other drugs. Heparin interference with the homogeneous enzyme immunoassay for aminoglycosides requires both the heparin polyanion and glucose-6-phosphate dehydrogenase bound to a cationic aminoglycoside. This interference can be reproduced with dextran sulfate (but not dextran), and does not occur with free enzyme (glucose-6-phosphate dehydrogenase) alone. Heparin interference with these two assays and at concentrations that may be present in intravenous infusions or in seriously underfilled blood-collection tubes is described

  16. Multisite Ion Model in Concentrated Solutions of Divalent Cations (MgCl2 and CaCl2): Osmotic Pressure Calculations

    Science.gov (United States)

    2015-01-01

    Accurate force field parameters for ions are essential for meaningful simulation studies of proteins and nucleic acids. Currently accepted models of ions, especially for divalent ions, do not necessarily reproduce the right physiological behavior of Ca2+ and Mg2+ ions. Saxena and Sept (J. Chem. Theor. Comput.2013, 9, 3538–3542) described a model, called the multisite-ion model, where instead of treating the ions as an isolated sphere, the charge was split into multiple sites with partial charge. This model provided accurate inner shell coordination of the ion with biomolecules and predicted better free energies for proteins and nucleic acids. Here, we expand and refine the multisite model to describe the behavior of divalent ions in concentrated MgCl2 and CaCl2 electrolyte solutions, eliminating the unusual ion–ion pairing and clustering of ions which occurred in the original model. We calibrate and improve the parameters of the multisite model by matching the osmotic pressure of concentrated solutions of MgCl2 to the experimental values and then use these parameters to test the behavior of CaCl2 solutions. We find that the concentrated solutions of both divalent ions exhibit the experimentally observed behavior with correct osmotic pressure, the presence of solvent separated ion pairs instead of direct ion pairs, and no aggregation of ions. The improved multisite model for (Mg2+ and Ca2+) can be used in classical simulations of biomolecules at physiologically relevant salt concentrations. PMID:25482831

  17. Eco-friendly luminescent solar concentrators with low reabsorption losses and resistance to concentration quenching based on aqueous-solution-processed thiolate-gold nanoclusters

    Science.gov (United States)

    Huang, H. Y.; Cai, K. B.; Chang, L. Y.; Chen, P. W.; Lin, T. N.; Lin, C. A. J.; Shen, J. L.; Talite, M. J.; Chou, W. C.; Yuan, C. T.

    2017-09-01

    Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in ‘green photonics’. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing ‘green’ LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for ‘green’ LSCs by further enhancing solid-state PL-QYs.

  18. Eco-friendly luminescent solar concentrators with low reabsorption losses and resistance to concentration quenching based on aqueous-solution-processed thiolate-gold nanoclusters.

    Science.gov (United States)

    Huang, H Y; Cai, K B; Chang, L Y; Chen, P W; Lin, T N; Lin, C A J; Shen, J L; Talite, M J; Chou, W C; Yuan, C T

    2017-09-15

    Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in 'green photonics'. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing 'green' LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for 'green' LSCs by further enhancing solid-state PL-QYs.

  19. Modelling LiBr-H2O solution concentration/crystallization of low thermal-powered absorption air conditioning system

    International Nuclear Information System (INIS)

    Abdullah, M.O.

    2000-01-01

    A computer model is developed to predict the concentration of lithium bromide - water (LiBr-H 2 O) solution for used in low thermal energy-driven absorption air conditioning plants design. The computer program is capable to alert the users from undesirable solidification or crystallization zones. Good agreements between simulated concentration and experimental data from standard chart/table have been obtained. (Author)

  20. Analysis methods and performance of an automated system for measuring both concentration and enrichment of uranium in solutions

    International Nuclear Information System (INIS)

    Kelley, T.A.; Parker, J.L.; Sampson, T.E.

    1993-01-01

    For the 1992 INNM meeting, the authors reported on the general characteristics of an automated system--then under development--for measuring both the concentration and enrichment of uranium in solutions. That paper emphasized the automated control capability, the measurement sequences, and safety features of the system. In this paper, the authors report in detail on the measurement methods, the analysis algorithms, and the performance of the delivered system. The uranium concentration is measured by a transmission-corrected X-ray fluorescence method. Cobalt-57 is the fluorescing source and a combined 153 Gd and 57 Co source is used for the transmission measurements. Corrections are made for both the absorption of the exciting 57 Co gamma rays and the excited uranium X-rays. The 235 U concentration is measured by a transmission-corrected method, which employs the 185.7-keV gamma ray of 235 U and a transmission source of 75 Se to make corrections for the self-absorption of the 235 U gamma rays in the solution samples. Both measurements employ high-resolution gamma-ray spectrometry and use the same 50ml sample contained in a custom-molded, flat-bottomed, polypropylene bottle. Both measurements are intended for uranium solutions with concentrations ≥0.1 g U/l, although at higher enrichments the passive measurement will be even more sensitive

  1. [Treatment of surface burns with proteolytic enzymes: mathematic description of lysis kinetics].

    Science.gov (United States)

    Domogatskaia, A S; Domogatskiĭ, S P; Ruuge, E K

    2003-01-01

    The lysis of necrotic tissue by a proteolytic enzyme applied to the surface of a burn wound was studied. A mathematical model was proposed, which describes changes in the thickness of necrotic tissue as a function of the proteolytic activity of the enzyme. The model takes into account the inward-directed diffusion of the enzyme, the counterflow of interstitial fluid (exudates) containing specific inhibitors, and the extracellular matrix proteolysis. It was shown in terms of the quasi-stationary approach that the thickness of the necrotic tissue layer decreases exponentially with time; i.e., the lysis slows down as the thickness of the necrotic tissue layer decreases. The dependence of the characteristic time of this decrease on enzyme concentration was obtained. It was shown that, at high enzyme concentrations (more than 5 mg/ml), the entire time of lysis (after the establishment of quasi-stationary equilibrium) is inversely proportional to the concentration of the enzyme.

  2. Resin bead-thermal ionization mass spectrometry for determination of plutonium concentration in irradiated fuel dissolver solution

    International Nuclear Information System (INIS)

    Paul, Sumana; Shah, R.V.; Aggarwal, S.K.; Pandey, A.K.

    2015-01-01

    Determination of isotopic composition (IC) and concentration of plutonium (Pu) is necessary at various stages of nuclear fuel cycle which involves analysis of complex matrices like dissolver solution of irradiated fuel, nuclear waste stream etc. Mass spectrometry, e.g. thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICP-MS) are commonly used for determination of IC and concentration of plutonium. However, to circumvent matrix interferences, efficient separation as well as preconcentration of Pu is required prior to mass spectrometric analysis. Purification steps employing ion-exchange resins are widely used for the separation of Pu from dissolver solution or from mixture of other actinides e.g. U, Am. However, an alternative way is to selectively preconcentrate Pu on a resin bead, followed by direct loading of the bead on the filament of thermal ionization mass spectrometer

  3. Molecular studies of Cs adsorption sites in inorganic layered materials: the influence of solution concentration.

    Science.gov (United States)

    Sato, Kiminori; Hunger, Michael

    2017-07-19

    Radioactive Cs released into a soil environment migrates along with groundwater in a manner dependent on Cs concentration. Data on the variation of Cs adsorption as a function of solution concentration are an essential prerequisite to successful decontamination work in Fukushima. To aid the ongoing decontamination work, the adsorption of Cs in aqueous solution across a wide Cs + molarity range is studied for the case of saponite clay as adsorbent, an inorganic layered material that is an abundant mineral in the soil environment. The local molecular structures, i.e. nanosheet surfaces, nanosheet edges, and oncoming hexagonal cavities, participating in Cs adsorption are qualitatively highlighted by means of a recently developed analytical method using data from a conventional elution test, 133 Cs magic-angle-spinning nuclear magnetic resonance (MAS NMR), and the radiocesium interception potential (RIP) [K. Sato, et al., J. Phys. Chem. C, 2016, 120, 1270]. The concentrations of nanosheet edges amount to between 100 and 400 mmol kg -1 , which are not substantially different from those of the nanosheet surfaces, generally regarded as the main decontamination sites. This unambiguously implies that the nanosheet edges should be targeted as the molecular sites for decontaminating radioactive Cs, in addition to the nanosheet surfaces.

  4. Stabilization of enzymes against thermal stress and freeze-drying by mannosylglycerate

    NARCIS (Netherlands)

    Ramos, A.; Raven, N.; Sharp, R.J.; Bartolucci, S.; Rossi, M.; Cannio, R.; Lebbink, J.; Oost, van der J.; Vos, de W.M.; Santos, H.

    1997-01-01

    2-O-(beta)-Mannosylglycerate, a solute that accumulates in some (hyper)thermophilic organisms, was purified from Pyrococcus furiosus cells, and its effect on enzyme stabilization in vitro was assessed. Enzymes from hyperthermophilic, thermophilic, and mesophilic sources were examined. The

  5. MEH-PPV and PCBM Solution Concentration Dependence of Inverted-Type Organic Solar Cells Based on Eosin-Y-Coated ZnO Nanorod Arrays

    Directory of Open Access Journals (Sweden)

    Riski Titian Ginting

    2013-01-01

    Full Text Available The influence of polymer solution concentration on the performance of chlorobenzene- (CB- and chloroform- (CF- based inverted-type organic solar cells has been investigated. The organic photoactive layers consisted of poly(2-methoxy-5-(2-ethyl hexyloxy-1,4-phenylenevinylene (MEH-PPV and (6,6-phenyl C61 butyric acid methyl ester (PCBM were spin coated from CF with concentrations of 4, 6, and 8 mg/mL and from CB with concentrations of 6, 8, and 10 mg/mL onto Eosin-Y-coated ZnO nanorod arrays (NRAs. Fluorine doped tin oxide (FTO and silver (Ag were used as electron collecting electrode and hole collecting electrode, respectively. Experimental results showed that the short circuit current density and power conversion efficiency increased with decrease of solution concentration for both CB and CF devices, which could be attributed to reducing charge recombination in thinner photoactive layer and larger contact area between the rougher photoactive layer and Ag contact. However, the open circuit voltage decreased with decreasing solution concentration due to increase of leakage current from ZnO NRAs to Ag as the ZnO NRAs were not fully covered by the polymer blend. The highest power conversion efficiencies of 0.54 ± 0.10% and 0.87 ± 0.15% were achieved at the respective lowest solution concentrations of CB and CF.

  6. Determination of the free ion concentration of trace metals in soil solution using a soil column Donnan membrane technique

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2001-01-01

    Accurate measurement of the free metal ion is difficult, especially for trace metals present in very small concentrations (less than micromolar) in natural systems. The recently developed Donnan membrane technique can measure the concentrations in solution in the presence of inorganic and organic

  7. [Serial change of perilymphatic potassium ion concentration in the scala tympani after introducing KCl-solution into the guinea pigs' tympanic cavity].

    Science.gov (United States)

    Ikeno, K

    1990-09-01

    Characteristic nystagmus similar to the Meniere's attack could be observed after introducing KCl solution into the tympanic cavity of guinea pigs. To confirm the fact that this nystagmus was provoked by the high perilymphatic potassium ion concentration, the K+ activity of perilymph was recorded serially through the K+ specific microelectrode inserted into the scala tympani. The rapid increment of K+ activity reached maximum at 120 minutes after introducing KCl solution, and then it decreased gradually to a half of the maximum activity. However, such change of perilymphatic potassium ion concentration was not observed by introducing sucrose solution as control.

  8. Pathway and mechanism of nitrogen transformation during composting: Functional enzymes and genes under different concentrations of PVP-AgNPs.

    Science.gov (United States)

    Zeng, Guangming; Zhang, Lihua; Dong, Haoran; Chen, Yaoning; Zhang, Jiachao; Zhu, Yuan; Yuan, Yujie; Xie, Yankai; Fang, Wei

    2018-04-01

    Polyvinylpyrrolidone coated silver nanoparticles (PVP-AgNPs) were applied at different concentrations to reduce total nitrogen (TN) losses and the mechanisms of nitrogen bio-transformation were investigated in terms of the nitrogen functional enzymes and genes. Results showed that mineral N in pile 3 which was treated with AgNPs at a concentration of 10 mg/kg compost was the highest (6.58 g/kg dry weight (DW) compost) and the TN loss (47.07%) was the lowest at the end of composting. Correlation analysis indicated that TN loss was significantly correlated with amoA abundance. High throughput sequencing showed that the dominant family of ammonia-oxidizing bacteria (AOB) was Nitrosomonadaceae, and the number of Operational Taxonomic Units (OTUs) reduced after the beginning of composting when compared with day 1. In summary, treatment with AgNPs at a concentration of 10 mg/kg compost was considerable to reduce TN losses and reserve more mineral N during composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Influence of pH, temperature, and concentration on stabilization of aqueous hornet silk solution and fabrication of salt-free materials.

    Science.gov (United States)

    Kameda, Tsunenori

    2015-01-01

    We found that an aqueous solution of silk from cocoons produced by hornet larvae (hornet silk) can be obtained when the solution is adjusted to basic conditions of pH > 9.2. It is known that native hornet cocoons can be dissolved in concentrated aqueous solution of salts, such as lithium bromide (LiBr) and calcium chloride (CaCl2). Upon the removal of these salts from solution by dialysis, solidification, gelation, or sedimentation of hornet silk is known to occur. In the present study, under basic conditions, however, no such solidification occurred, even after salt removal. In this study, ammonia was used for alkalization of solution because it is volatilized during the casting process and pure hornet silk materials can be obtained after drying. The effects of the concentrations of hornet silk and ammonia, as well as dialysis temperature, on preventing gelation during dialysis were investigated. Dialysis conditions that limit the degradation of hornet silk by hydrolysis in alkali solution were identified. Moreover, casting conditions to prepare flexible and transparent hornet silk film from aqueous ammonia solution were optimized. Molecular structural analysis of hornet silk in aqueous ammonia solution and cast film indicated the formation of α-helix conformations. © 2014 Wiley Periodicals, Inc.

  10. Limiting Concentrate during Growing Period Affect Performance and Gene Expression of Hepatic Gluconeogenic Enzymes and Visfatin in Korean Native Beef Calves

    Directory of Open Access Journals (Sweden)

    S. S. Chang

    2013-02-01

    Full Text Available This study elucidated the effects of limited concentrate feeding on growth, plasma profile, and gene expression of gluconeogenic enzymes and visfatin in the liver of Hanwoo beef calves. The purpose of this study was to test that reducing the amount of concentrate would partially be compensated by increasing the intake of forage and by altering the metabolic status. The study utilized 20 Korean native beef calves (Hanwoo; 60 to 70 d of age divided into two groups of 10 calves each for 158 d. Control group calves received the amount of concentrate as per the established Korean feeding standards for Hanwoo, whereas calves in the restricted group only received half the amount of concentrate as per standard requirements. Good quality forage (Timothy hay was available for ad libitum consumption to both groups. Since calves were with their dam until 4 months of age in breeding pens before weaning, the intake of milk before weaning was not recorded, however, the concentrate and forage intakes were recorded daily. Body weights (BW were recorded at start and on 10 d interval. Blood samples were collected at start and at 50 d interval. On the final day of the experiment, liver biopsies were collected from all animals in each group. The BW was not different between the groups at all times, but tended to be higher (p = 0.061 only at final BW in control than restricted group. Total BW gain in the control group was 116.2 kg as opposed to 84.1 kg in restricted group that led to average BW gain of 736 g/d and 532 g/d in respective groups, and the differences were significant (p<0.01. As planned, the calves in the control group had higher concentrate and lower forage intake than the restricted group. The plasma variables like total protein and urea were higher (p<0.05 in control than restricted group. The mRNA expressions for the gluconeogenic enzymes such as cytosolic phosphoenol pyruvate carboxykinase (EC 4.1.1.32 and pyruvate carboxylase (EC 6.4.1.1, and

  11. K-edge x-ray fluorescence analysis for actinide and heavy elements solution concentration measurements

    International Nuclear Information System (INIS)

    Camp, D.C.

    1984-07-01

    Advantages of using Co-57 as an exciter for K XRFA include: a compact design that requires no x-ray tubes; the exciter-detector assembly locates remote from support electronics; on-line, at-line, or off-line configurations for monitor/measurements; systems that can be run by semi-skilled technicians, once programmed; and operated via remote terminals with results sent to control rooms; heavy element concentrations that are measurable thru industrial pipes; independent of minor changes in solution matrix or source half life with concentration results reported in near-real-time; a dynamic range of measurable concentrations that is greater than 10 4 ; measurement times that are reasonable even at 1 gram/liter; and for nuclear safeguards, it provides the <0.5% accuracy required by DOE for the accountability of U, Pu, or both, once the system is calibrated

  12. Enzyme-functionalized thin-cladding long-period fiber grating in transition mode at dispersion turning point for sugar-level and glucose detection

    Science.gov (United States)

    Badmos, Abdulyezir A.; Sun, Qizhen; Sun, Zhongyuan; Zhang, Junxi; Yan, Zhijun; Lutsyk, Petro; Rozhin, Alex; Zhang, Lin

    2017-02-01

    Enzyme-functionalized dual-peak long-period fiber grating (LPFG) inscribed in 80-μm-cladding B/Ge codoped single-mode fiber is presented for sugar-level and specific glucose detection. Before enzyme functionalization, the dual-peak LPFG was employed for refractive index sensing and sugar-level detection and high sensitivities of ˜4298.20 nm/RIU and 4.6696 nm/% were obtained, respectively. Glucose detection probe was attained by surface functionalization of the dual-peak LPFG via covalent binding with aminopropyl triethoxysilane used as a binding site. Optical micrographs confirmed the presence of enzyme. The surface-functionalized dual-peak LPFG was tested with D-(+)-glucose solution of different concentrations. While the peak 2 at the longer wavelength was suitable only to measure lower glucose concentration (0.1 to 1.6 mg/ml) recording a high sensitivity of 12.21±0.19 nm/(mg/ml), the peak 1 at the shorter wavelength was able to measure a wider range of glucose concentrations (0.1 to 3.2 mg/ml) exhibiting a maximum resonance wavelength shift of 7.12±0.12 nm/mg/ml. The enzyme-functionalized dual-peak LPFG has the advantage of direct inscription of highly sensitive grating structures in thin-cladding fibre without etching, and most significantly, its sensitivity improvement of approximately one order of magnitude higher than previously reported LPFG and excessively tilted fibre grating (Ex-TFG) for glucose detection.

  13. Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.

    Science.gov (United States)

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H

    2011-02-17

    Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.

  14. Existence and concentration of positive solutions for a quasilinear elliptic equation in R

    Directory of Open Access Journals (Sweden)

    Elisandra Gloss

    2010-05-01

    Full Text Available We study the existence and concentration of positive solutions for the quasilinear elliptic equation $$ -varepsilon^2u'' -varepsilon^2(u^2''u+V(x u = h(u $$ in $mathbb{R}$ as $varepsilono 0$, where the potential $V:mathbb{R}o mathbb{R}$ has a positive infimum and $inf_{partial Omega}V>inf_{ Omega}V$ for some bounded domain $Omega$ in $mathbb{R}$, and $h$ is a nonlinearity without having growth conditions such as Ambrosetti-Rabinowitz.

  15. Radiation inactivation of angiotensin-converting enzyme in solutions. Communication 3. The effect of NaCl

    International Nuclear Information System (INIS)

    Orlova, M.A.; Kost, O.A.; Nikol'skaya, I.I.; Troshina, N.N.; Binevskij, P.V.

    1999-01-01

    The effect of 0-0.15 M NaCl on the dose response of angiotensin-converting enzyme is described. The data represented at three-dimensional surfaces demonstrate the existence of special areas where definite mechanisms of dose response are predominant. In acidic and alkaline media, the regions of high values of enzyme activation can be emphasized; moreover, the oscillations of enzyme activity can also be detected. At pH 7.5, when angiotensin-converting enzyme conformation is less rigid, activation peaks on the three-dimensional surface are less pronounced indicating the decreasing effect of NaCl on dose response at this pH value [ru

  16. Concentration dependence of the partial volume, viscosity, and electric conductivity of solutions of lithium salts in aliphatic alcohols

    International Nuclear Information System (INIS)

    Eliseeva, O.V.; Golubev, V.V.

    2003-01-01

    Concentration dependence of partial volumes, electric conductivity and viscosity of lithium nitrate and chloride solutions in methanol, propanol, isopropanol, butanol, isobutanol, pentanol and isopentanol at 298.15 K were studied by the methods of densimetry, conductometry and viscosimetry. Structural specific features of the solutions studied are discussed on the basis of the calculated volumetric characteristics of the substance dissolved and solvent [ru

  17. Representing Rate Equations for Enzyme-Catalyzed Reactions

    Science.gov (United States)

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  18. Equilibrium solubility of CO{sub 2} in aqueous solutions of 1-amino-2-propanol as function of concentration, temperature, and pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rebolledo-Morales, Miguel Angel; Rebolledo-Libreros, Maria Esther [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion de Termofisica, Eje Central Lazaro Cardenas Norte 152, 07730 Mexico, D.F. (Mexico); Trejo, Arturo, E-mail: atrejo@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion de Termofisica, Eje Central Lazaro Cardenas Norte 152, 07730 Mexico, D.F. (Mexico)

    2011-05-15

    Research highlights: Gas solubility of CO{sub 2} in aqueous solutions of 1-amino-2-propanol was measured. Solubility increases as pressure and concentration of 1-amino-2-propanol increase. The Kent-Eisenberg model was used to correlate all the experimental results. Aqueous solutions of MIPA are an excellent alternative to use in gas purification. - Abstract: Using a dynamic method with recirculation of the vapour phase, experimental values for the gas solubility of carbon dioxide in aqueous solutions of 1-amino-2-propanol (MIPA) were measured at T = (313.15 and 393.15) K, over the pressure range of (0.2 to 2436.4) kPa. The concentrations of the studied aqueous MIPA solutions were (0.20, 0.30, 0.40, and 0.50) mass fraction. The results of gas solubility are given as the partial pressure of CO{sub 2}, p{sub CO{sub 2}}, against its mole ratio, {alpha}{sub CO{sub 2}} (mol CO{sub 2} {center_dot} mol{sup -1} MIPA), and its mole fraction, x{sub CO{sub 2}}. It is observed that the solubility of CO{sub 2} increases as the concentration of MIPA in solution increases, at a given temperature throughout the pressure range considered; also the solubility values increase, under constant temperature, as the pressure increases in the studied concentration range of MIPA. The physicochemical model of Kent and Eisenberg was used to correlate simultaneously all the experimental results of the solubility of CO{sub 2} in the studied aqueous solutions of MIPA. The model correlates satisfactorily the experimental results. The deviation for pressure was 96.9 kPa using 62 experimental solubility points. The solubility results of carbon dioxide presented in this work are compared with those reported in the literature for aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), diisopropanolamine (DIPA), and N-methyldiethanolamine (MDEA) and it is possible to conclude that the aqueous solutions of MIPA are an excellent alternative to use in gas purification processes, since the

  19. Measurement of properties of a lithium bromide aqueous solution for the determination of the concentration for a prototype absorption machine

    International Nuclear Information System (INIS)

    Labra, L.; Juárez-Romero, D.; Siqueiros, J.; Coronas, A.; Salavera, D.

    2017-01-01

    Highlights: • Determination of concentration of absorption mixture for absorption heat transformers. • Measurement of physical properties for heat transformer assessment. • Comparative behavior of Electric conductivity, Refractive index, and density of LiBr-H_2O. - Abstract: An electrolyte solution of Lithium Bromide (LiBr) water was chosen for study because of its wide use in prototype absorption machines. The LiBr must be operated close to the temperature and mass fraction at which lithium bromide achieves the highest efficiency. For the purpose of establishing the concentration in a prototype absorption machines, measurements were made of the properties that vary with temperature and concentration. The selected properties are electrical conductivity, density, refractive indexes and sound velocity. The resulting measured properties values were compared with some values found in previous works. The properties of aqueous lithium bromide solutions were measured at the concentration range of 45–65% of LiBr and temperatures range of 20–80 °C. Semi-empirical correlations that determine the properties of lithium bromide are also proposed. The methods for measuring the properties of aqueous solutions were considered taking into account their reliability, simplicity and sampling time.

  20. Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel

    International Nuclear Information System (INIS)

    Mitala, J.J.; Michael, A.C.

    2006-01-01

    Microsensors based on carbon fiber microelectrodes coated with enzyme-entrapping redox hydrogels facilitate the in vivo detection of substances of interest within the central nervous system, including hydrogen peroxide, glucose, choline and glutamate. The hydrogel, formed by cross-linking a redox polymer, entraps the enzymes and mediates electron transfer between the enzymes and the electrode. It is important that the enzymes are entrapped in their enzymatically active state. Should entrapment cause enzyme denaturation, the sensitivity and the selectivity of the sensor may be compromised. Synthesis of the redox polymer according to published procedures may yield a product that precipitates when added to aqueous enzyme solutions. Casting hydrogels from solutions that contain the precipitate produces microsensors with low sensitivity and selectivity, suggesting that the precipitation disrupts the structure of the enzymes. Herein, we show that a surfactant, sodium dodecyl sulfate (SDS), can prevent the precipitation and improve the sensitivity and selectivity of the sensors

  1. Head to head comparison of the formulation and stability of concentrated solutions of HESylated versus PEGylated anakinra.

    Science.gov (United States)

    Liebner, Robert; Meyer, Martin; Hey, Thomas; Winter, Gerhard; Besheer, Ahmed

    2015-02-01

    Although PEGylation of biologics is currently the gold standard for half-life extension, the technology has a number of limitations, most importantly the non-biodegradability of PEG and the extremely high viscosity at high concentrations. HESylation is a promising alternative based on coupling to the biodegradable polymer hydroxyethyl starch (HES). In this study, we are comparing HESylation with PEGylation regarding the effect on the protein's physicochemical properties, as well as on formulation at high concentrations, where protein stability and viscosity can be compromised. For this purpose, the model protein anakinra is coupled to HES or PEG by reductive amination. Results show that coupling of HES or PEG had practically no effect on the protein's secondary structure, and that it reduced protein affinity by one order of magnitude, with HESylated anakinra more affine than the PEGylated protein. The viscosity of HESylated anakinra at protein concentrations up to 75 mg/mL was approximately 40% lower than that of PEG-anakinra. Both conjugates increased the apparent melting temperature of anakinra in concentrated solutions. Finally, HESylated anakinra was superior to PEG-anakinra regarding monomer recovery after 8 weeks of storage at 40°C. These results show that HESylating anakinra offers formulation advantages compared with PEGylation, especially for concentrated protein solutions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Measurement of enzyme activity.

    Science.gov (United States)

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  3. Continuous recycling of enzymes during production of lignocellulosic bioethanol in demonstration scale

    International Nuclear Information System (INIS)

    Haven, Mai Østergaard; Lindedam, Jane; Jeppesen, Martin Dan; Elleskov, Michael; Rodrigues, Ana Cristina; Gama, Miguel; Jørgensen, Henning; Felby, Claus

    2015-01-01

    Highlights: • Results from continuous experiments in demonstration scale for a total of 16 days. • Reuse of enzymes is possible through recycling fermentation broth. • Recycling fermentation broth can increase ethanol concentration with lower dry matter. - Abstract: Recycling of enzymes in production of lignocellulosic bioethanol has been tried for more than 30 years. So far, the successes have been few and the experiments have been carried out at conditions far from those in an industrially feasible process. Here we have tested continuous enzyme recycling at demonstration scale using industrial process conditions (high dry matter content and low enzyme dosage) for a period of eight days. The experiment was performed at the Inbicon demonstration plant (Kalundborg, Denmark) capable of converting four tonnes of wheat straw per hour. 20% of the fermentation broth was recycled to the hydrolysis reactor while enzyme dosage was reduced by 5%. The results demonstrate that recycling enzymes by this method can reduce overall enzyme consumption and may also increase the ethanol concentrations in the fermentation broth. Our results further show that recycling fermentation broth also opens up the possibility of lowering the dry matter content in hydrolysis and fermentation while still maintaining high ethanol concentrations.

  4. The relation between temperature and concentration gradients in superfluid sup 3 He- sup 4 He solutions

    CERN Document Server

    Zadorozhko, A A; Rudavskij, E Y; Chagovets, V K; Sheshin, G A

    2003-01-01

    The temperature and concentration gradients nabla T and nabla x in a superfluid sup 3 He- sup 4 He mixture with an initial concentration 9,8 % of sup 3 He are measured in a temperature range 70-500 mK. The gradients are produced by a steady thermal flow with heating from below. It is shown that the value of nabla x/nabla T observed in the experiment is in good agreement with the theoretical model derived from the temperature and concentration dependences of osmotic pressure. The experimental data permitted us to obtain a thermal diffusion ratio of the solution responsible for the thermal diffusion coefficient.

  5. Enzyme activity measurement via spectral evolution profiling and PARAFAC

    DEFF Research Database (Denmark)

    Baum, Andreas; Meyer, Anne S.; Garcia, Javier Lopez

    2013-01-01

    The recent advances in multi-way analysis provide new solutions to traditional enzyme activity assessment. In the present study enzyme activity has been determined by monitoring spectral changes of substrates and products in real time. The method relies on measurement of distinct spectral...... fingerprints of the reaction mixture at specific time points during the course of the whole enzyme catalyzed reaction and employs multi-way analysis to detect the spectral changes. The methodology is demonstrated by spectral evolution profiling of Fourier Transform Infrared (FTIR) spectral fingerprints using...

  6. Thermodynamic Activity-Based Progress Curve Analysis in Enzyme Kinetics.

    Science.gov (United States)

    Pleiss, Jürgen

    2018-03-01

    Macrokinetic Michaelis-Menten models based on thermodynamic activity provide insights into enzyme kinetics because they separate substrate-enzyme from substrate-solvent interactions. Kinetic parameters are estimated from experimental progress curves of enzyme-catalyzed reactions. Three pitfalls are discussed: deviations between thermodynamic and concentration-based models, product effects on the substrate activity coefficient, and product inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Plant induced changes in concentrations of caesium, strontium and uranium in soil solution with reference to major ions and dissolved organic matter

    International Nuclear Information System (INIS)

    Takeda, Akira; Tsukada, Hirofumi; Takaku, Yuichi; Akata, Naofumi; Hisamatsu, Shun'ichi

    2008-01-01

    For a better understanding of the soil-to-plant transfer of radionuclides, their behavior in the soil solution should be elucidated, especially at the interface between plant roots and soil particles, where conditions differ greatly from the bulk soil because of plant activity. This study determined the concentration of stable Cs and Sr, and U in the soil solution, under plant growing conditions. The leafy vegetable komatsuna (Brassica rapa L.) was cultivated for 26 days in pots, where the rhizosphere soil was separated from the non-rhizosphere soil by a nylon net screen. The concentrations of Cs and Sr in the rhizosphere soil solution decreased with time, and were controlled by K + NH 4 + and Ca, respectively. On the other hand, the concentration of U in the rhizosphere soil solution increased with time, and was related to the changes of DOC; however, this relationship was different between the rhizosphere and non-rhizosphere soil

  8. Plant induced changes in concentrations of caesium, strontium and uranium in soil solution with reference to major ions and dissolved organic matter.

    Science.gov (United States)

    Takeda, Akira; Tsukada, Hirofumi; Takaku, Yuichi; Akata, Naofumi; Hisamatsu, Shun'ichi

    2008-06-01

    For a better understanding of the soil-to-plant transfer of radionuclides, their behavior in the soil solution should be elucidated, especially at the interface between plant roots and soil particles, where conditions differ greatly from the bulk soil because of plant activity. This study determined the concentration of stable Cs and Sr, and U in the soil solution, under plant growing conditions. The leafy vegetable komatsuna (Brassica rapa L.) was cultivated for 26 days in pots, where the rhizosphere soil was separated from the non-rhizosphere soil by a nylon net screen. The concentrations of Cs and Sr in the rhizosphere soil solution decreased with time, and were controlled by K+NH(4)(+) and Ca, respectively. On the other hand, the concentration of U in the rhizosphere soil solution increased with time, and was related to the changes of DOC; however, this relationship was different between the rhizosphere and non-rhizosphere soil.

  9. Enzyme-enhanced fluorescence detection of DNA on etched optical fibers.

    Science.gov (United States)

    Niu, Shu-yan; Li, Quan-yi; Ren, Rui; Zhang, Shu-sheng

    2009-05-15

    A novel DNA biosensor based on enzyme-enhanced fluorescence detection on etched optical fibers was developed. The hybridization complex of DNA probe and biotinylated target was formed on the etched optical fiber, and was then bound with streptavidin labeled horseradish peroxidase (streptavidin-HRP). The target DNA was quantified through the fluorescent detection of bi-p,p'-4-hydroxyphenylacetic acid (DBDA) generated from the substrate 4-hydroxyphenylacetic acid (p-HPA) under the catalysis of HRP, with a detection limit of 1 pM and a linear range from 1.69 pM to 169 pM. It is facile to regenerate this sensor through surface treatment with concentrated urea solution. It was discovered that the sensor can retain 70% of its original activity after three detection-regeneration cycles.

  10. Radiation sterilization of enzyme hybrids with biodegradable polymers

    International Nuclear Information System (INIS)

    Furuta, Masakazu; Oka, Masahito; Hayashi, Toshio

    2002-01-01

    Ionizing radiations, which have already been utilized for the sterilization of medical supplies as well as gas fumigation, should be the final candidate to decontaminate 'hybrid' biomaterials containing bio-active materials including enzymes because irradiation induces neither heat nor substances affecting the quality of the materials and our health. In order to check the feasibility of 60 Co-gamma rays on these materials, we selected commercial proteases including papain and bromelain hybridized with commercial activated chitosan beads and demonstrated that these enzyme-hybrids suspended in water showed the significant radiation durability of more than twice as much as free enzyme solution at 25-kGy irradiation. Enhanced thermal and storage stability of the enzyme hybrids were not affected by the same dose level of irradiation, either, indicating that commercial irradiation sterilization method is applicable to enzyme hybrids without modification

  11. Plant-Scale Concentration Column Designs for SHINE Target Solution Utilizing AG 1 Anion Exchange Resin

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Dominique C. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    Argonne is assisting SHINE Medical Technologies (SHINE) in their efforts to develop SHINE, an accelerator-driven process that will utilize a uranyl-sulfate solution for the production of fission product Mo-99. An integral part of the process is the development of a column for the separation and recovery of Mo-99, followed by a concentration column to reduce the product volume from 15-25 L to <1 L. Argonne has collected data from batch studies and breakthrough column experiments to utilize the VERSE (Versatile Reaction Separation) simulation program (Purdue University) to design plant-scale product recovery and concentration processes.

  12. Activity enhancement of ligninolytic enzymes of Trametes versicolor ...

    African Journals Online (AJOL)

    Suspended cultures of white-rot fungus, Trametes versicolor, supplemented with bagasse powder showed a concentration dependent enhancement in the ligninolytic enzymes activity in liquid shake cultures. 2% (w/v) bagasse powder improved greater stability to the enzymes. The optimum pH is 3.5 and the optimum ...

  13. Physicochemical Properties and Enzymes Activity Studies in a ...

    African Journals Online (AJOL)

    Soil Physicochemical properties and enzyme concentration were evaluated in soil from a refined-oil contaminated community in Isiukwuato, Abia State three years after the spill. The soil enzymes examined were urease, lipase, oxidase, alkaline and acid phosphatases. Results show a significant (P< 0.05) decrease in the ...

  14. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  15. Study of cellulase enzymes self-assembly in aqueous-acetonitrile solvent: Viscosity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ghaouar, N., E-mail: naoufel-ghaouar@lycos.co [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Institut National des Sciences Appliquees et de Technologie, INSAT, Centre Urbain Nord, BP. 676, Tunis (Tunisia); Aschi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Belbahri, L. [School of Engineering of Lullier, University of Applied Sciences of Western Switzerland, 150, Route de Presinge, 1254 Jussy (Switzerland); Trabelsi, S.; Gharbi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia)

    2009-11-15

    The present study extends the viscosity measurements performed by Ghaouar et al. [Physica B, submitted for publication.] to study the conformational change of the cellulase enzymes in aqueous-acetonitrile mixture. We aim to investigate: (i) the denaturation process by measuring the specific viscosity for temperatures varying between 25 and 65 deg. C and acetonitrile concentrations between 0% and 50%, (ii) the enzyme-enzyme interaction by calculating the Huggins coefficient and (iii) the enzyme sizes by following the hydrodynamic radius for various temperatures. The precipitation of cellulases versus acetonitrile concentration is also considered. We show from all physical quantities measured in this work that the precipitation and the denaturation processes of cellulase enzymes exist together.

  16. Study of cellulase enzymes self-assembly in aqueous-acetonitrile solvent: Viscosity measurements

    International Nuclear Information System (INIS)

    Ghaouar, N.; Aschi, A.; Belbahri, L.; Trabelsi, S.; Gharbi, A.

    2009-01-01

    The present study extends the viscosity measurements performed by Ghaouar et al. [Physica B, submitted for publication.] to study the conformational change of the cellulase enzymes in aqueous-acetonitrile mixture. We aim to investigate: (i) the denaturation process by measuring the specific viscosity for temperatures varying between 25 and 65 deg. C and acetonitrile concentrations between 0% and 50%, (ii) the enzyme-enzyme interaction by calculating the Huggins coefficient and (iii) the enzyme sizes by following the hydrodynamic radius for various temperatures. The precipitation of cellulases versus acetonitrile concentration is also considered. We show from all physical quantities measured in this work that the precipitation and the denaturation processes of cellulase enzymes exist together.

  17. PHYSICOCHEMICAL PROPERTIES OF THE PROTEOLYTIC ENZYME FROM THE LATEX OF THE MILKWEED, ASCLEPIAS SPECIOSA TORR. SOME COMPARISONS WITH OTHER PROTEASES

    Science.gov (United States)

    Winnick, Theodore; Davis, Alva R.; Greenberg, David M.

    1940-01-01

    1. A study has been made of the properties of a hitherto unreported proteolytic enzyme from the latex of the milkweed, Asclepias speciosa. The new protease has been named asclepain by the authors. 2. The results of chemical, diffusion, and denaturation tests indicate that asclepain is a protein. 3. Like papain, asclepain dots milk and digests most proteins, particularly if they are dissolved in concentrated urea solution. Unlike papain, asclepain did not clot blood. 4. The activation and inhibition phenomena of asclepain resemble those of papain, and seem best explained on the assumption that free sulfhydryl in the enzyme is necessary for proteolytic activity. The sulfhydryl of asclepain appears more labile than that of papain. 5. The measurement of pH-activity curves of asclepain on casein, ovalbumin, hemoglobin, edestin, and ovovitellin showed no definite digestion maxima for most of the undenatured proteins, while in urea solution there were well defined maxima near pH 7.0. Native hemoglobin and ovovitellin were especially undigestible, while native casein was rapidly attacked. 6. Temperature-activity curves were determined for asclepain on hemoglobin, casein, and milk solutions. The optimum temperature was shown to increase with decreasing time of digestion. PMID:19873154

  18. Increased saccharification of kallar grass using ultrafiltrated enzyme from sporrotrichum thermophile

    International Nuclear Information System (INIS)

    Latif, F.; Rajoka, M.I.; Malik, K.A.

    1991-01-01

    The local wild type strain of sporotrichum thermophile when grown on untreated lingo cellulose was found to produce a greater level of B-glucosidase component along with other cellulase/xylanase components than most of the reported wild type potent strains. Culture filtrate obtained, when grown on 4% leptochloa fusca (kallar grass) was used as such and after concentration by ultrafiltration technique for saccharification purpose. Concentrated enzymes titre was increased to 1.2 and 4.0 U/ml for Fp-ase and B-glucosidase, respectively. There were losses in the enzyme titre obtained through ultrafiltration possibly due to adsorption on to the ultrafiltration membrane. Enzyme preparations used, saccharifide 5% kallar grass to 70, 55, 75 and 60% (theoretical basis) from cellulases of S. thermophile concentrate, dilute, T. reesei alone and in supplementation with B-glucosidase from A. niger, respectively. Analysis by HPLC revealed slightly higher glucose yield from S. thermophile enzyme preparations, whereas higher level of xylose was attained from T. reesei preparations. Rest of the sugars pooled as Oligo-sugars were found in almost similar concentrations. (author)

  19. Limiting Concentrate during Growing Period Affect Performance and Gene Expression of Hepatic Gluconeogenic Enzymes and Visfatin in Korean Native Beef Calves.

    Science.gov (United States)

    Chang, S S; Lohakare, J D; Singh, N K; Kwon, E G; Nejad, J G; Sung, K I; Hong, S K

    2013-02-01

    This study elucidated the effects of limited concentrate feeding on growth, plasma profile, and gene expression of gluconeogenic enzymes and visfatin in the liver of Hanwoo beef calves. The purpose of this study was to test that reducing the amount of concentrate would partially be compensated by increasing the intake of forage and by altering the metabolic status. The study utilized 20 Korean native beef calves (Hanwoo; 60 to 70 d of age) divided into two groups of 10 calves each for 158 d. Control group calves received the amount of concentrate as per the established Korean feeding standards for Hanwoo, whereas calves in the restricted group only received half the amount of concentrate as per standard requirements. Good quality forage (Timothy hay) was available for ad libitum consumption to both groups. Since calves were with their dam until 4 months of age in breeding pens before weaning, the intake of milk before weaning was not recorded, however, the concentrate and forage intakes were recorded daily. Body weights (BW) were recorded at start and on 10 d interval. Blood samples were collected at start and at 50 d interval. On the final day of the experiment, liver biopsies were collected from all animals in each group. The BW was not different between the groups at all times, but tended to be higher (p = 0.061) only at final BW in control than restricted group. Total BW gain in the control group was 116.2 kg as opposed to 84.1 kg in restricted group that led to average BW gain of 736 g/d and 532 g/d in respective groups, and the differences were significant (pforage intake than the restricted group. The plasma variables like total protein and urea were higher (p<0.05) in control than restricted group. The mRNA expressions for the gluconeogenic enzymes such as cytosolic phosphoenol pyruvate carboxykinase (EC 4.1.1.32) and pyruvate carboxylase (EC 6.4.1.1), and visfatin measured by quantitative real-time PCR in liver biopsies showed higher expression (p<0.05) in

  20. Assessment of colour changes during storage of elderberry juice concentrate solutions using the optimization method.

    Science.gov (United States)

    Walkowiak-Tomczak, Dorota; Czapski, Janusz; Młynarczyk, Karolina

    2016-01-01

    Elderberries are a source of dietary supplements and bioactive compounds, such as anthocyanins. These dyes are used in food technology. The aim of the study was to assess the changes in colour parameters, anthocyanin contents and sensory attributes in solutions of elderberry juice concentrates during storage in a model system and to determine predictability of sensory attributes of colour in solutions based on regression equations using the response surface methodology. The experiment was carried out according to the 3-level factorial design for three factors. Independent variables included pH, storage time and temperature. Dependent variables were assumed to be the components and colour parameters in the CIE L*a*b* system, pigment contents and sensory attributes. Changes in colour components X, Y, Z and colour parameters L*, a*, b*, C* and h* were most dependent on pH values. Colour lightness L* and tone h* increased with an increase in experimental factors, while the share of the red colour a* and colour saturation C* decreased. The greatest effect on the anthocyanin concentration was recorded for storage time. Sensory attributes deteriorated during storage. The highest correlation coefficients were found between the value of colour tone h* and anthocyanin contents in relation to the assessment of the naturalness and desirability of colour. A high goodness-of-fit of the model to data and high values of R2 for regression equations were obtained for all responses. The response surface method facilitates optimization of experimental factor values in order to obtain a specific attribute of the product, but not in all cases of the experiment. Within the tested range of factors, it is possible to predict changes in anthocyanin content and the sensory attributes of elderberry juice concentrate solutions as food dye, on the basis of the lack of a fit test. The highest stability of dyes and colour of elderberry solutions was found in the samples at pH 3.0, which confirms

  1. Conformational Analysis of Proteins in Highly Concentrated Solutions by Dialysis-Coupled Hydrogen/Deuterium Exchange Mass Spectrometry

    DEFF Research Database (Denmark)

    Houde, Damian; Esmail Nazari, Zeinab; Bou-Assaf, George M

    2016-01-01

    When highly concentrated, an antibody solution can exhibit unusual behaviors, which can lead to unwanted properties, such as increased levels of protein aggregation and unusually high viscosity. Molecular modeling, along with many indirect biophysical measurements, has suggested that the cause fo...... in industry. Graphical Abstract ᅟ....

  2. Preparation by irradiation of a solid support for enzyme immunoassay

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    Reagents (immobilized anti-α-fetoprotein discs) having a porous structure were prepared for enzyme immunoassay of α-fetoprotein by radiation polymerization at low temperatures. Discs were attached to sticks for easy handling. The activity (determined by absorbance at 492 nm) of the discs varied with the hydrophilic properties and size of the discs. The discs are sufficiently sensitive and precise for enzyme immunoassay of α-fetoprotein. Anti-AFP dissolved in PBS solution was mixed with a monomer solution of hydroxyethyl methacrylate and hydroxypropyl methacrylate. The mixture was frozen to -78 0 C and gamma irradiated. (Auth.)

  3. Fissile materials in solution concentration measured by active neutron interrogation; Mesure de concentration en matiere fissile dans les liquides par interrogation neutronique active

    Energy Technology Data Exchange (ETDEWEB)

    Romeyer Dherbey, J.; Passard, Ch.; Cloue, J.; Bignan, G.

    1993-12-31

    The use of the active neutron interrogation to measure the concentration of plutonium contained in flow solutions is particularly interesting for fuel reprocessing plants. Indeed, this method gives a signal which is in a direct relation with the fissile materials concentration. Moreover, it is less sensitive to the gamma dose rate than the other nondestructive methods. Two measure methods have been evolved in CEA. Their principles are given into details in this work. The first one consists to detect fission delayed neutrons induced by a {sup 252} Cf source. In the second one fission prompt neutrons induced by a neutron generator of 14 MeV are detected. (O.M.). 6 refs.

  4. A stochastic model of enzyme kinetics

    Science.gov (United States)

    Stefanini, Marianne; Newman, Timothy; McKane, Alan

    2003-10-01

    Enzyme kinetics is generally modeled by deterministic rate equations, and in the simplest case leads to the well-known Michaelis-Menten equation. It is plausible that stochastic effects will play an important role at low enzyme concentrations. We have addressed this by constructing a simple stochastic model which can be exactly solved in the steady-state. Throughout a wide range of parameter values Michaelis-Menten dynamics is replaced by a new and simple theoretical result.

  5. Alcohol--Induced Polyelectrolyte-Surfactant Complex Coacervate Systems: Characterization and Applications in Enzyme and Protein Extraction

    Science.gov (United States)

    Nejati Moshtaghin, Mahboubeh

    The focus of this thesis is to achieve a better understanding of the newly discovered surfactant-polyelectrolyte complex coacervate (SPCC) systems induced by fluoroalcohol/acid as well as short chain aliphatic alcohol; and to elucidate their applications in extraction and enrichment of proteins and enzyme. We have discovered that fluoroalcohols and --acids induce complex coacervation and phase separation in the aqueous mixtures of oppositely charged anionic polyelectrolytes; specifically, sodium salts of polyacrylic acid and polymethacrylic acid and cationic surfactant (cetyltrimethylammonium bromide, CTAB) over a broad range of concentrations of mole fractions of the oppositely charged amphiphiles. Accordingly, these new classes of coacervators will significantly broaden the scope and facilitate engineering of new coacervate phases. Toward these goals, we have inspected the formation of surfactant-polyelectrolyte complex coacervates in the presence of fluoroalcohols namely hexafluoroisopropanol (HFIP) and Trifluoroethanol (TFE). Furthermore, the extent of coacervation as a function of concentrations the system components, and charge ratios of the oppositely charged amphiphiles has been investigated. Polyelectrolytes are considered to be milder reagents, as compared to surfactants, regarding proteins denaturation. This highlights the importance of a detailed investigation of the efficiency of our coacervate systems for extraction and preconcentration of proteins and enzymes, especially, when the biological activity of the extracted proteins needs to be maintained based on the objectives mentioned above, the results of the investigations have been organized in four chapters. In Chapter II, the phase behavior of the FA-SPCC will be investigated. The objective is to examine the phase behavior and phase properties with respect to the extent of coacervation in different solution conditions. In particular, the effects of different solution variables such as concentration

  6. A novel method of non-violent dissolution of sodium metal in a concentrated aqueous solution of Epsom salt

    International Nuclear Information System (INIS)

    Lakshmanan, A.R.; Prasad, M.V.R.; Ponraju, D.; Krishnan, H.

    2004-01-01

    A new technique of non-violent and fast dissolution of sodium metal in a concentrated aqueous solution of Epsom salt (MgSO 4 .7H 2 O) at room temperature (RT) has been developed. The dissolution process is mildly exothermic but could be carried out even in a glass beaker in air under swift stirring condition. The reaction products consist of mixed salts of MgSO 4 and Na 2 SO 4 as well as Mg(OH) 2 which are only mildly alkaline and hence are non-corrosive and non-hazardous unlike NaOH. A 50 mL solution having Epsom salt concentration of 2 M was found to give the optimal composition for disposal of 1 g of sodium. Supersaturated (>2.7 M), as well as dilute (<1.1 M) solutions, however, cause violent reactions and hence should be avoided. Repeated sodium dissolution in Epsom solution produced a solid waste of 4.7 g per g of sodium dissolved which is comparable with the waste (4 g) produced in 8 M NaOH solution. A 1.4 M Epsom solution sprayed with a high-pressure jet cleaner at RT in air easily removed the sodium blocked inside a metal pipe made of mild steel. The above jet also dissolved peacefully residual sodium collected on the metal tray after a sodium fire experiment. No sodium fire or explosion was observed during this campaign. The Epsom solution spray effectively neutralized the minor quantity of sodium aerosol produced during this campaign. This novel technique would hence be quite useful for draining sodium from fast breeder reactor components and bulk processing of sodium as well as for sodium fire fighting

  7. Molecular Dynamics Investigation of the Effects of Concentration on Hydrogen Bonding in Aqueous Solutions of Methanol, Ethylene Glycol and Glycerol

    International Nuclear Information System (INIS)

    Zhang, Ning; Li, Weizhong; Chen, Cong; Zuo, Jianguo; Weng, Lindong

    2013-01-01

    Hydrogen bonding interaction between alcohols and water molecules is an important characteristic in the aqueous solutions of alcohols. In this paper, a series of molecular dynamics simulations have been performed to investigate the aqueous solutions of low molecular weight alcohols (methanol, ethylene glycol and glycerol) at the concentrations covering a broad range from 1 to 90 mol %. The work focuses on studying the effect of the alcohols molecules on the hydrogen bonding of water molecules in binary mixtures. By analyzing the hydrogen bonding ability of the hydroxyl (-OH) groups for the three alcohols, it is found that the hydroxyl group of methanol prefers to form more hydrogen bonds than that of ethylene glycol and glycerol due to the intra-and intermolecular effects. It is also shown that concentration has significant effect on the ability of alcohol molecule to hydrogen bond water molecules. Understanding the hydrogen bonding characteristics of the aqueous solutions is helpful to reveal the cryoprotective mechanisms of methanol, ethylene glycol and glycerol in aqueous solutions

  8. Determination of semi-empirical relationship between the manganese and hydrogen atoms ratio, physical density and concentration in an aqueous solution of manganese sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Bittencourt, Guilherme, E-mail: bittencourt@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Souza Patrao, Karla Cristina de, E-mail: karla@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Passos Leite, Sandro, E-mail: sandro@ird.gov.b [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Wagner Pereira, Walsan, E-mail: walsan@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Simoes da Fonseca, Evaldo, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil)

    2010-12-15

    The Manganese sulphate solution has been used for neutron metrology through the method of Manganese Bath. This method uses physical parameters of manganese sulphate solution to obtain its corrections. This work established a functional relationship, using the gravimetric method, between those physical parameters: density, concentration and hydrogen to manganese ratio. Comparisons were done between manganese sulphate solution concentration from the Manganese Bath system of Laboratory of Metrology of Ionising Radiation and estimated values from the functional relationship obtained, showing percentage difference of less than 0.1%. This result demonstrates the usefulness in the correlation of the physical values of the solution to the MB.

  9. Directing filtration to optimize enzyme immobilization in reactive membranes

    DEFF Research Database (Denmark)

    Luo, Jianquan; Marpani, Fauziah; Brites, Rita

    2014-01-01

    enzymatic reaction efficiency were evaluated in terms of enzyme loading, conversion rate and biocatalytic stability. Alcohol dehydrogenase (ADH) was selected as a model enzyme. Lower pressure, higher enzyme concentration and lower pH resulted in higher irreversible fouling resistance and lower permeate flux....... High pH during immobilization produced increased permeate flux but declines in conversion rates, likely because of the weak immobilization resulting from strong electrostatic repulsion between enzymes and membrane. The results showed that pore blocking as a fouling mechanism permitted a higher enzyme...... loading but generated more permeability loss, while cake layer formation increased enzyme stability but resulted in low loading rate. Low pH (near isoelectric point) favored hydrophobic and electrostatic adsorption of enzymes on the membrane, which reduced the enzyme stability. Neutral pH, however...

  10. The effect of aluminium on enzyme activities in two wheat cultivars ...

    African Journals Online (AJOL)

    The effect of aluminium on enzyme activities in two wheat cultivars. ... African Journal of Biotechnology ... and Maroon (Al-tolerant) were grown on hydroponic solution (non modified Hoagland solution) containing AlCl3 (0-100-200-300 M).

  11. Corrosion of dissimilar metal crevices in simulated concentrated ground water solutions at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, B.M.; Quinn, M.J

    2003-01-01

    The disposal of high-level nuclear waste in the Yucca Mountain, Nevada is under consideration by the US Department of Energy. The proposed facility will be located in the unsaturated zone approximately 300 m below the surface and 300 m above the water table. The proposed waste container consists of an outer corrosion-resistant Alloy 22 shell surrounding a 316 NG stainless steel structural inner container that encapsulates the used nuclear fuel waste. A titanium drip shield is proposed to protect the waste container from ground water seepage arid rock-fail. A cycle of dripping/evaporation could result in the generation of concentrated aggressive solutions, which could contact the waste container. The waste container material could be susceptible to crevice corrosion from such solutions. The experiments described in this report support the modeling of waste package degradation processes. The intent was to provide parameter values that are required to model crevice corrosion chemistry, as it relates to hydrogen pick-up, and stress corrosion cracking for selected candidate waste package materials. The purpose of the experiments was to study the crevice corrosion behavior of various candidate materials under near freely corroding conditions and to determine the pH developed in crevice solutions. Experimental results of crevice corrosion of dissimilar metal pairs (Alloy 22, Grade-7 and -16 titanium and 316 stainless steel) immersed in a simulated concentrated ground water at {approx}90{sup o}C are reported. The corrosion potential was measured during exposure periods of between 330 and 630 h. Following the experiments, the pH of the crevice solution was measured. The results indicate that a limited degree of crevice acidification occurred during the experiment. The values for corrosion potential suggest that crevice corrosion may have initiated. The total corrosion was limited, with little visible evidence for crevice corrosion being observed on the sample coupon faces

  12. Corrosion of dissimilar metal crevices in simulated concentrated ground water solutions at elevated temperature

    International Nuclear Information System (INIS)

    Ikeda, B.M.; Quinn, M.J.

    2003-01-01

    The disposal of high-level nuclear waste in the Yucca Mountain, Nevada is under consideration by the US Department of Energy. The proposed facility will be located in the unsaturated zone approximately 300 m below the surface and 300 m above the water table. The proposed waste container consists of an outer corrosion-resistant Alloy 22 shell surrounding a 316 NG stainless steel structural inner container that encapsulates the used nuclear fuel waste. A titanium drip shield is proposed to protect the waste container from ground water seepage arid rock-fail. A cycle of dripping/evaporation could result in the generation of concentrated aggressive solutions, which could contact the waste container. The waste container material could be susceptible to crevice corrosion from such solutions. The experiments described in this report support the modeling of waste package degradation processes. The intent was to provide parameter values that are required to model crevice corrosion chemistry, as it relates to hydrogen pick-up, and stress corrosion cracking for selected candidate waste package materials. The purpose of the experiments was to study the crevice corrosion behavior of various candidate materials under near freely corroding conditions and to determine the pH developed in crevice solutions. Experimental results of crevice corrosion of dissimilar metal pairs (Alloy 22, Grade-7 and -16 titanium and 316 stainless steel) immersed in a simulated concentrated ground water at ∼90 o C are reported. The corrosion potential was measured during exposure periods of between 330 and 630 h. Following the experiments, the pH of the crevice solution was measured. The results indicate that a limited degree of crevice acidification occurred during the experiment. The values for corrosion potential suggest that crevice corrosion may have initiated. The total corrosion was limited, with little visible evidence for crevice corrosion being observed on the sample coupon faces. The

  13. Concentration of electrolyte reserves of the juvenile african catfish clarias gariepinus (burchell, 1822) exposed to sublethal concentrations of portland cement powder in solution

    International Nuclear Information System (INIS)

    Adamu, M.K.; Francis, O.A.

    2008-01-01

    The study investigated the effect of sublethal concentrations (39.10, 19.55, 9.87 and 0.00 mg/l) of Portland cement powder in solution on the electrolyte reserves (sodium, potassium, calcium, chloride and inorganic phosphorus) in the serum, liver and kidney of the juvenile African catfish Clarias gariepinus after a 15 day exposure period. The basic function of the determined electrolyte reserves in the body lies in controlling fluid distribution, intra and extra cellular acidobasic equilibrium, maintaining osmotic pressure of body fluid and normal neuro-muscular irritability. The result revealed significant (P 0.05) changes in inorganic phosphorus. Sodium, calcium, chloride and inorganic phosphorus and potassium were significantly (P 0.05) different in liver and kidney, respectively. Ipso-facto, the effector organs viz: liver and kidney of teleost species - Clarias gariepinus which are primarily responsible for regulating water and ionic movement between external and internal milieu of fishes are susceptible to deleterious effects of Portland cement powder thus sublethal concentration (39.10 mg/l) of Portland cement powder in solution after a 15 day exposure has been most toxic and debilitating to the test fish. (author)

  14. Feasibility of Topical Applications of Natural High-Concentration Capsaicinoid Solutions in Patients with Peripheral Neuropathic Pain: A Retrospective Analysis

    Directory of Open Access Journals (Sweden)

    Fanny Bauchy

    2016-01-01

    Full Text Available Background. Capsaicin, one of several capsaicinoid compounds, is a potent TRPV1 agonist. Topical application at high concentration (high concentration, >1% induces a reversible disappearance of epidermal free nerve endings and is used to treat peripheral neuropathic pain (PNP. While the benefit of low-concentration capsaicin remains controversial, the 8%-capsaicin patch (Qutenza®, 2010, Astellas, Netherlands has shown its effectiveness. This patch is, however, costly and natural high-concentration capsaicinoid solutions may represent a cheaper alternative to pure capsaicin. Methods. In this retrospective study, 149 patients were screened, 132 were included with a diagnosis of neuropathic pain, and eighty-four were retained in the final analyses (median age: 57.5 years [IQR25–75: 44.7–67.1], male/female: 30/54 with PNP who were treated with topical applications of natural high-concentration capsaicinoid solutions (total number of applications: 137. Indications were postsurgical PNP (85.7% and nonsurgical PNP (14.3% (posttraumatic, HIV-related, postherpetic, and radicular PNP. Objectives. To assess the feasibility of topical applications of natural high-concentration capsaicinoid solutions for the treatment of PNP. Results. The median treated area was 250 cm2 [IQR25–75: 144–531]. The median amount of capsaicinoids was 55.1 mg [IQR25–75: 28.7–76.5] per plaster and the median concentration was 172.3 μg/cm2 [IQR25–75: 127.6–255.2]. Most patients had local adverse effects on the day of treatment, such as mild to moderate burning pain and erythema. 13.6–19.4% of the patients experienced severe pain or erythema. Following treatment, 62.5% of patients reported a lower pain intensity or a smaller pain surface, and 35% reported a sustained pain relief lasting for at least 4 weeks. Conclusion. Analgesic topical treatment with natural high-concentration capsaicinoid is feasible and may represent a low cost alternative to alleviate

  15. Exact Solution of Fractional Diffusion Model with Source Term used in Study of Concentration of Fission Product in Uranium Dioxide Particle

    International Nuclear Information System (INIS)

    Fang Chao; Cao Jianzhu; Sun Lifeng

    2011-01-01

    The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (UO 2 ) particle is built. The adsorption effect of the fission product on the surface of the UO 2 particle and the delayed decay effect are also considered. The solution is given in terms of Mittag-Leffler function with finite Hankel integral transformation and Laplace transformation. At last, the reduced forms of the solution under some special physical conditions, which is used in nuclear engineering, are obtained and corresponding remarks are given to provide significant exact results to the concentration analysis of nuclear fission products in nuclear reactor. (nuclear physics)

  16. assessment of concentration of air pollutants using analytical and numerical solution of the atmospheric diffusion equation

    International Nuclear Information System (INIS)

    Esmail, S.F.H.

    2011-01-01

    The mathematical formulation of numerous physical problems a results in differential equations actually partial or ordinary differential equations.In our study we are interested in solutions of partial differential equations.The aim of this work is to calculate the concentrations of the pollution, by solving the atmospheric diffusion equation(ADE) using different mathematical methods of solution. It is difficult to solve the general form of ADE analytically, so we use some assumptions to get its solution.The solutions of it depend on the eddy diffusivity profiles(k) and the wind speed u. We use some physical assumptions to simplify its formula and solve it. In the present work, we solve the ADE analytically in three dimensions using Green's function method, Laplace transform method, normal mode method and these separation of variables method. Also, we use ADM as a numerical method. Finally, comparisons are made with the results predicted by the previous methods and the observed data.

  17. The Non-Linear Child: Ontogeny, Isoniazid Concentration, and NAT2 Genotype Modulate Enzyme Reaction Kinetics and Metabolism

    Directory of Open Access Journals (Sweden)

    Zoe Rogers

    2016-09-01

    Full Text Available N-acetyltransferase 2 (NAT2 catalyzes the acetylation of isoniazid to N-acetylisoniazid. NAT2 polymorphism explains 88% of isoniazid clearance variability in adults. We examined the effects of clinical and genetic factors on Michaelis-Menten reaction kinetic constants of maximum velocity (Vmax and affinity (Km in children 0–10 years old. We measured the rates of isoniazid elimination and N-acetylisoniazid production in the blood of 30 children. Since maturation effects could be non-linear, we utilized a pharmacometric approach and the artificial intelligence method, multivariate adaptive regression splines (MARS, to identify factors predicting NAT2 Vmax and Km by examining clinical, genetic, and laboratory factors in toto. Isoniazid concentration predicted both Vmax and Km and superseded the contribution of NAT2 genotype. Age non-linearly modified the NAT2 genotype contribution until maturation at ≥5.3 years. Thus, enzyme efficiency was constrained by substrate concentration, genes, and age. Since MARS output is in the form of basis functions and equations, it allows multiscale systems modeling from the level of cellular chemical reactions to whole body physiological parameters, by automatic selection of significant predictors by the algorithm.

  18. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    Science.gov (United States)

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  19. Angiotensin-converting enzyme and its clinical significance--a review.

    OpenAIRE

    Studdy, P R; Lapworth, R; Bird, R

    1983-01-01

    There have been considerable advances in understanding the metabolic role of the endothelial lining cells of the blood vessels. Angiotensin-converting enzyme activity is concentrated in these cells, especially those lining the pulmonary circulation. The enzyme exerts control over systemic vascular tone indirectly through the powerful pressor effect of angiotensin II. A number of therapeutic agents are now available which directly inhibit converting enzyme activity and thereby effect a reducti...

  20. Effects of fulvic acid concentration and origin on photodegradation of polycyclic aromatic hydrocarbons in aqueous solution: Importance of active oxygen

    International Nuclear Information System (INIS)

    Xia Xinghui; Li Gongchen; Yang Zhifeng; Chen Yumin; Huang, Gordon H.

    2009-01-01

    With an Xe arc lamp house as simulated sunlight, the influences of fulvic acid (FA) concentration and origins on photodegradation of acenaphthene, fluorine, phenanthrene, fluoranthene and pyrene in aqueous solution have been studied. Similar effects of FAs, collected from five places around China, on polycyclic aromatic hydrocarbon (PAH) photodegradation have been observed. Active oxygen was of significance in PAH photodegradation with the presence of FAs. For systems with 1.25 mg L -1 FAs, the contributions of ·OH to PAH photodegradation rates were from 33% to 69%. FAs had two opposite effects, i.e., stimulating the generation of active oxygen and advancing PAH photodegradation; competing with PAHs for energy and photons and restraining PAH photodegradation. Generally, photodegradation rates of the 5 PAHs decreased with the increase of FAs concentration; except fluoranthene and pyrene were advanced in solutions with low FA concentration. The influences of FA concentration on PAH photodegradation were more significant than FA origin. - Influences of fulvic acid (FA) concentration on PAH photodegradation were more significant than FA origin, and active oxygen played an important role in PAH photodegradation

  1. A model of extracellular enzymes in free-living microbes: which strategy pays off?

    Science.gov (United States)

    Traving, Sachia J; Thygesen, Uffe H; Riemann, Lasse; Stedmon, Colin A

    2015-11-01

    An initial modeling approach was applied to analyze how a single, nonmotile, free-living, heterotrophic bacterial cell may optimize the deployment of its extracellular enzymes. Free-living cells live in a dilute and complex substrate field, and to gain enough substrate, their extracellular enzymes must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help explain the persistence and apparent refractory state of oceanic dissolved organic matter (DOM). Microbial extracellular enzyme strategies, therefore, have important implications for larger-scale processes, such as shaping the role of DOM in ocean carbon sequestration. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Enthalpies of solution of methylcalix[4]resorcinarene in non-aqueous solvents as a function of concentration and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Riveros, Diana C. [Laboratorio de Termodinamica de Soluciones, Departamento de Quimica, Facultad de Ciencias, Universidad de los Andes, Bogota D.C. (Colombia); Martinez, Fleming [Grupo de Investigaciones Farmaceutico-Fisicoquimicas, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota D.C. (Colombia); Vargas, Edgar F., E-mail: edvargas@uniandes.edu.co [Laboratorio de Termodinamica de Soluciones, Departamento de Quimica, Facultad de Ciencias, Universidad de los Andes, Bogota D.C. (Colombia)

    2012-11-20

    Highlights: Black-Right-Pointing-Pointer The solution enthalpies of methylcalix[4]resorcinarene in alcohols have been measured. Black-Right-Pointing-Pointer The solution enthalpies of methylcalix[4]resorcinarene in alcohols are endothermic. Black-Right-Pointing-Pointer Enthalpies of transference are interpreted in terms of proton donor capacity of alcohols. - Abstract: Enthalpies of solution of 2,8,14,20-tetramethyl-4,6,10,12,16,18,22,24-octahydroxyresorci[4]arene in methanol, ethanol and propanol as a function of molal concentration at (288.15, 298.15 and 308.15) K were measured calorimetrically. The enthalpies of solvation were estimated. Using propanol as the referent solvent, transfer properties to other alcohols were also calculated. In addition, temperature dependence of the enthalpy of solution at infinite dilution was also obtained. The data were interpreted in terms of solute-solvent interactions.

  3. Electrochemical behaviour of brass in chloride solution concentrations found in eccrine fingerprint sweat

    Energy Technology Data Exchange (ETDEWEB)

    Bond, John W., E-mail: jwb13@le.ac.uk [Department of Chemistry, George Porter Building, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Lieu, Elaine [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2014-09-15

    Highlights: • Corrosion of brass in NaCl concentrations found in eccrine sweat was investigated. • Concentrations < 0.2 M produce a layer of mainly zinc oxide after 24 h. • A concentration of 0.2 M enables active corrosion of brass at room temperature. • 0.2 M NaCl gives both zinc and copper dissolution. • 24-h immersion of brass in 0.2 M NaCl gives an oxide film thickness of 1.3 nm. - Abstract: In this work, the corrosion properties of α phase brass immersed in concentrations of aqueous NaCl solutions that are typically found in eccrine fingerprint sweat and range between 0.01 M and 0.2 M have been analysed. Analysis methods employed were electrochemical techniques, X-ray photoelectron spectroscopy and optical profiling. For NaCl concentrations <0.2 M, active corrosion did not occur although, after a period of 24 h, a passivating layer of mainly zinc oxide formed. At a concentration of 0.2 M active corrosion did occur, with measured corrosion potentials consistent with both brass and copper dissolution. A 1 h contact time at this concentration (0.2 M) resulted in the formation of a zinc oxide passivating layer with the surface ratio of zinc oxide to copper oxide increasing with time. Film thickness was calculated to be of the order of 1.3 nm after 24 h contact. Formation of oxide layers on brass by fingerprint sweat as observed here may well have implications for the successful investigation of crime by the visualisation of corrosion fingerprint ridge patterns or the reduction of hospital environmental contamination by hand contact with brass objects such as door handles or taps.

  4. Biological and analytical studies of peritoneal dialysis solutions

    Directory of Open Access Journals (Sweden)

    N. Hudz

    2018-04-01

    viability and increased glucose concentration in the NR test and MTT test. These experimental data indicate that pH is the dominating factor, which determines almost all of the established correlations. However, the character of the correlations is quite different: the higher the pH, the greater was the cell viability in the MTT test, and conversely, the higher the pH, the lower was the cell viability in the NR test. Secondly, the unexpected correlation coefficient was determined as -0.473 between decreased cell viability in the MTT test and increased cell viability in the NR test. Moreover, this phenomenon indicates that the mitochondrial enzyme succinate dehydrogenase is more vulnerable to the action of PD solutions than membrane permeability. Finally, we conclude that the NR test is not suitable for comparative studies of PD solutions which differ in pH, as it is pH dependent and does not enable the comparison of plausible cell viability.

  5. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts

    Science.gov (United States)

    Yadav, Sushma; Chandra, Amalendu

    2017-12-01

    We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 lead to the presence of substantial dynamical heterogeneity in these solutions of strongly interacting ions. The current study helps us to understand the molecular details of hydration structure, ion pairing, and dynamics of water in the solvation shells and also of ion diffusion in aqueous solutions of divalent metal nitrate salts.

  6. The development, characterization, and application of biomimetic nanoscale enzyme immobilization

    Science.gov (United States)

    Haase, Nicholas R.

    The utilization of enzymes is of interest for applications such as biosensors and biofuel cells. Immobilizing enzymes provides a means to develop these applications. Previous immobilization efforts have been accomplished by exposing surfaces on which silica-forming molecules are present to solutions containing an enzyme and a silica precursor. This approach leads to the enzyme being entrapped in a matrix three orders of magnitude larger than the enzyme itself, resulting in low retention of enzyme activity. The research herein introduces a method for the immobilization of enzymes during the layer-by-layer buildup of Si-O and Ti-O coatings which are nanoscale in thickness. This approach is an application of a peptide-induced mineral deposition method developed in the Sandhage and Kroger groups, and it involves the alternating exposure of a surface to solutions containing the peptide protamine and then an aqueous precursor solution of silicon- or titanium-oxide at near-neutral pH. A method has been developed that enables in situ immobilization of enzymes in the protamine/mineral oxide coatings. Depending on the layer and mineral (silica or titania) within which the enzyme is incorporated, the resulting multilayer biocatalytic hybrid materials retain 20 -- 100% of the enzyme activity. Analyses of kinetic properties of the immobilized enzyme, coupled with characterization of physical properties of the mineral-bearing layers (thickness, porosity, pore size distribution), indicates that the catalytic activities of the enzymes immobilized in the different layers are largely determined by substrate diffusion. The enzyme was also found to be substantially stabilized against heat-induced denaturation and largely protected from proteolytic attack. These functional coatings are then developed for use as antimicrobial materials. Glucose oxidase, which catalyzes production of the cytotoxic agent hydrogen peroxide, was immobilized with silver nanoparticles, can release

  7. Expression of androgen-producing enzyme genes and testosterone concentration in Angus and Nellore heifers with high and low ovarian follicle count.

    Science.gov (United States)

    Loureiro, Bárbara; Ereno, Ronaldo L; Favoreto, Mauricio G; Barros, Ciro M

    2016-07-15

    Follicle population is important when animals are used in assisted reproductive programs. Bos indicus animals have more follicles per follicular wave than Bos taurus animals. On the other hand, B taurus animals present better fertility when compared with B indicus animals. Androgens are positively related with the number of antral follicles; moreover, they increase growth factor expression in granulose cells and oocytes. Experimentation was designed to compare testosterone concentration in plasma, and follicular fluid and androgen enzymes mRNA expression (CYP11A1, CYP17A1, 3BHSD, and 17BHSD) in follicles from Angus and Nellore heifers. Heifers were assigned into two groups according to the number of follicles: low and high follicle count groups. Increased testosterone concentration was measured in both plasma and follicular fluid of Angus heifers. However, there was no difference within groups. Expression of CYP11A1 gene was higher in follicles from Angus heifers; however, there was no difference within groups. Expression of CYP17A1, 3BHSD, and 17BHSD genes was higher in follicles from Nellore heifers, and expression of CYP17A1 and 3BHSD genes was also higher in HFC groups from both breeds. It was found that Nellore heifers have more antral follicles than Angus heifers. Testosterone concentration was higher in Angus heifers; this increase could be associated with the increased mRNA expression of CYP11A1. Increased expression of androgen-producing enzyme genes (CYP17A1, 3BHSD, and 17BHSD) was detected in Nellore heifers. It can be suggested that testosterone is acting through different mechanisms to increase follicle development in Nellore and improve fertility in Angus heifers. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide

    Directory of Open Access Journals (Sweden)

    Martin Winter

    2013-08-01

    Full Text Available We report on studies of an inorganic electrolyte: LiAlCl4 in liquid sulfur dioxide. Concentrated solutions show a very high conductivity when compared with typical electrolytes for lithium ion batteries that are based on organic solvents. Our investigations include conductivity measurements and measurements of transference numbers via nuclear magnetic resonance (NMR and by a classical direct method, Hittorf’s method. For the use of Hittorf’s method, it is necessary to measure the concentration of the electrolyte in a selected cell compartment before and after electrochemical polarization very precisely. This task was finally performed by potentiometric titration after hydrolysis of the salt. The Haven ratio was determined to estimate the association behavior of this very concentrated electrolyte solution. The measured unusually high transference number of the lithium cation of the studied most concentrated solution, a molten solvate LiAlCl4 × 1.6SO2, makes this electrolyte a promising alternative for lithium ion cells with high power ability.

  9. Ceramic membrane microfilter as an immobilized enzyme reactor.

    Science.gov (United States)

    Harrington, T J; Gainer, J L; Kirwan, D J

    1992-10-01

    This study investigated the use of a ceramic microfilter as an immobilized enzyme reactor. In this type of reactor, the substrate solution permeates the ceramic membrane and reacts with an enzyme that has been immobilized within its porous interior. The objective of this study was to examine the effect of permeation rate on the observed kinetic parameters for the immobilized enzyme in order to assess possible mass transfer influences or shear effects. Kinetic parameters were found to be independent of flow rate for immobilized penicillinase and lactate dehydrogenase. Therefore, neither mass transfer nor shear effects were observed for enzymes immobilized within the ceramic membrane. Both the residence time and the conversion in the microfilter reactor could be controlled simply by regulating the transmembrane pressure drop. This study suggests that a ceramic microfilter reactor can be a desirable alternative to a packed bed of porous particles, especially when an immobilized enzyme has high activity and a low Michaelis constant.

  10. Self-powered enzyme micropumps

    Science.gov (United States)

    Sengupta, Samudra; Patra, Debabrata; Ortiz-Rivera, Isamar; Agrawal, Arjun; Shklyaev, Sergey; Dey, Krishna K.; Córdova-Figueroa, Ubaldo; Mallouk, Thomas E.; Sen, Ayusman

    2014-05-01

    Non-mechanical nano- and microscale pumps that function without the aid of an external power source and provide precise control over the flow rate in response to specific signals are needed for the development of new autonomous nano- and microscale systems. Here we show that surface-immobilized enzymes that are independent of adenosine triphosphate function as self-powered micropumps in the presence of their respective substrates. In the four cases studied (catalase, lipase, urease and glucose oxidase), the flow is driven by a gradient in fluid density generated by the enzymatic reaction. The pumping velocity increases with increasing substrate concentration and reaction rate. These rechargeable pumps can be triggered by the presence of specific analytes, which enables the design of enzyme-based devices that act both as sensor and pump. Finally, we show proof-of-concept enzyme-powered devices that autonomously deliver small molecules and proteins in response to specific chemical stimuli, including the release of insulin in response to glucose.

  11. Cross-validation of commercial enzyme-linked immunosorbent assay and radioimmunoassay for porcine C-peptide concentration measurements in non-human primate serum.

    Science.gov (United States)

    Gresch, Sarah C; Mutch, Lucas A; Janecek, Jody L; Hegstad-Davies, Rebecca L; Graham, Melanie L

    2017-09-01

    C-peptide concentration is widely used as a marker of insulin secretion and is especially relevant in evaluating islet graft function following transplantation, because its measurement is not confounded by the presence of exogenous insulin. To address the shortage of human islet donors, the use of porcine islets has been proposed as a possible solution and the stringent pig-to-non-human primate (NHP) model is often the most relevant for pre-clinical evaluation of the potential for diabetes reversal resulting from an islet xenograft. The Millipore radioimmunoassay (RIA) was exclusively used to measure porcine C-peptide (PCP) until 2013 when the assay was discontinued and subsequently a commercially available enzyme-linked immunosorbent assay (ELISA) from Mercodia has been widely adopted. Both assays have been used in pre-clinical trials evaluating the therapeutic potential of xenograft products in reversing diabetes in the pig-to-NHP model, to interpret data in a comparable way it may be useful to perform a harmonization of C-peptide measurements. We performed a method comparison by determining the PCP concentration in 620 serum samples collected from 20 diabetic cynomolgus macaques transplanted with adult porcine islets. All analyses were performed according to manufacturer instructions. With both assays, we demonstrated an acceptable detection limit, precision, and recovery. Linearity of the ELISA met acceptance criteria at all concentrations tested while linearity of the RIA only met acceptance criteria at five of the eight concentrations tested. The RIA had a detection limit of 0.16 ng/mL, and recovery ranged from 82% to 96% and met linearity acceptance criteria at 0.35 ng/mL and from 0.78 to 2.33 ng/mL. The ELISA had a detection limit of 0.03 ng/mL, and recovery ranged from 81% to 115% and met linearity acceptance criteria from 0.08 to 0.85 ng/mL. Both assays had intra-assay precision assay precision ELISA demonstrated a significant correlation with RIA (R

  12. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  13. [Effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter in soil solution in a young Cunninghamia lanceolata plantation.

    Science.gov (United States)

    Yuan, Xiao Chun; Chen, Yue Min; Yuan, Shuo; Zheng, Wei; Si, You Tao; Yuan, Zhi Peng; Lin, Wei Sheng; Yang, Yu Sheng

    2017-01-01

    To study the effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter (DOM) in the forest soil solution from the subtropical Cunninghamia lanceolata plantation, using negative pressure sampling method, the dynamics of DOM in soil solutions from 0-15 and 15-30 cm soil layer was monitored for two years and the spectroscopic features of DOM were analyzed. The results showed that nitrogen deposition significantly reduced the concentration of dissolved organic carbon (DOC), and increased the aromatic index (AI) and the humic index (HIX), but had no significant effect on dissolved organic nitrogen (DON) concentration in both soil layers. There was obvious seasonal variation in DOM concentration of the soil solution, which was prominently higher in summer and autumn than in spring and winter.Fourier-transform infrared (FTIR) absorption spectrometry indicated that the DOM in forest soil solution had absorption peaks in the similar position of six regions, being the highest in wave number of 1145-1149 cm -1 . Three-dimensional fluorescence spectra indicated that DOM was mainly consisted of protein-like substances (Ex/Em=230 nm/300 nm) and microbial degradation products (Ex/Em=275 nm/300 nm). The availability of protein-like substances from 0-15 cm soil layer was reduced in the nitrogen treatments. Nitrogen deposition significantly reduced the concentration of DOC in soil solution, maybe largely by reducing soil pH, inhibiting soil carbon mineralization and stimulating plant growth. In particular, the decline of DOC concentration in the surface layer was due to the production inhibition of the protein-like substances and carboxylic acids. Short-term nitrogen deposition might be beneficial to the maintenance of soil fertility, while the long-term accumulation of nitrogen deposition might lead to the hard utilization of soil nutrients.

  14. Concentration in the European electricity industry: The internal market as solution?

    International Nuclear Information System (INIS)

    Domanico, Fabio

    2007-01-01

    This article offers an analysis of the present competitive and regulatory framework of the European electricity sector and the results achieved with the liberalisation process. Considering the reactions of incumbents to the liberalisation, the focus in this work is mainly on the problem of market concentration in the sector. The new trends toward the creation of 'national champions' as well as recent mergers between gas suppliers and electricity producers raise serious concerns about abuses of market power and risk of future collusion. In particular, the strategic linkage of existing markets and the expansion into new ones are analyzed in the light of the multimarket contact theory. Considering investment in interconnection among Member States, the internal market issue is investigated as a solution to the 'risks' coming from liberalisation

  15. Concentration in the European electricity industry: The internal market as solution?

    Energy Technology Data Exchange (ETDEWEB)

    Domanico, Fabio [Department of Economics, Luiss Guido Carli University, 1, Via O. Tommasini, 00162 Roma (Italy)

    2007-10-15

    This article offers an analysis of the present competitive and regulatory framework of the European electricity sector and the results achieved with the liberalisation process. Considering the reactions of incumbents to the liberalisation, the focus in this work is mainly on the problem of market concentration in the sector. The new trends toward the creation of 'national champions' as well as recent mergers between gas suppliers and electricity producers raise serious concerns about abuses of market power and risk of future collusion. In particular, the strategic linkage of existing markets and the expansion into new ones are analyzed in the light of the multimarket contact theory. Considering investment in interconnection among Member States, the internal market issue is investigated as a solution to the 'risks' coming from liberalisation. (author)

  16. Proteolysis of Sardine (Sardina pilchardus and Anchovy (Stolephorus commersonii by Commercial Enzymes in Saline Solutions

    Directory of Open Access Journals (Sweden)

    Chau Minh Le

    2015-01-01

    Full Text Available Fish sauce production is a very long process and there is a great interest in shortening it. Among the different strategies to speed up this process, the addition of external proteases could be a solution. This study focuses on the eff ect of two commercial enzymes (Protamex and Protex 51FP on the proteolysis of two fish species traditionally converted into fish sauce: sardine and anchovy, by comparison with classical autolysis. Hydrolysis reactions were conducted with fresh fish at a temperature of 30 °C and under different saline conditions (from 0 to 30 % NaCl. Hydrolysis degree and liquefaction of the raw material were used to follow the process. As expected, the proteolysis decreased with increasing amount of salt. Regarding the fi sh species, higher rate of liquefaction and higher hydrolysis degree were obtained with anchovy. Between the two proteases, Protex 51FP gave better results with both fi sh types. This study demonstrates that the addition of commercial proteases could be helpful for the liquefaction of fi sh and cleavage of peptide bonds that occur during fi sh sauce production and thus speed up the production process.

  17. Minerals Masquerading As Enzymes: Abiotic Oxidation Of Soil Organic Matter In An Iron-Rich Humid Tropical Forest Soil

    Science.gov (United States)

    Hall, S. J.; Silver, W. L.

    2010-12-01

    Oxidative reactions play an important role in decomposing soil organic matter fractions that resist hydrolytic degradation, and fundamentally affect the cycling of recalcitrant soil carbon across ecosystems. Microbial extracellular oxidative enzymes (e.g. lignin peroxidases and laccases) have been assumed to provide a dominant role in catalyzing soil organic matter oxidation, while other potential oxidative mechanisms remain poorly explored. Here, we show that abiotic reactions mediated by the oxidation of ferrous iron (Fe(II)) could explain high potential oxidation rates in humid tropical forest soils, which often contain high concentrations of Fe(II) and experience rapid redox fluctuations between anaerobic and aerobic conditions. These abiotic reactions could provide an additional mechanism to explain high rates of decomposition in these ecosystems, despite frequent oxygen deficits. We sampled humid tropical forest soils in Puerto Rico, USA from various topographic positions, ranging from well-drained ridges to riparian valleys that experience broad fluctuations in redox potential. We measured oxidative activity by adding the model humic compound L-DOPA to soil slurries, followed by colorimetric measurements of the supernatant solution over time. Dilute hydrogen peroxide was added to a subset of slurries to measure peroxidative activity. We found that oxidative and peroxidative activity correlated positively with soil Fe(II) concentrations, counter to prevailing theory that low redox potential should suppress oxidative enzymes. Boiling or autoclaving sub-samples of soil slurries to denature any enzymes present typically increased peroxidative activity and did not eliminate oxidative activity, further suggesting the importance of an abiotic mechanism. We found substantial differences in the oxidation products of the L-DOPA substrate generated by our soil slurries in comparison with oxidation products generated by a purified enzyme (mushroom tyrosinase

  18. Aggregation in concentrated protein solutions: Insights from rheology, neutron scattering and molecular simulations

    Science.gov (United States)

    Castellanos, Maria Monica

    Aggregation of therapeutic proteins is currently one of the major challenges in the bio-pharmaceutical industry, because aggregates could induce immunogenic responses and compromise the quality of the product. Current scientific efforts, both in industry and academia, are focused on developing rational approaches to screen different drug candidates and predict their stability under different conditions. Moreover, aggregation is promoted in highly concentrated protein solutions, which are typically required for subcutaneous injection. In order to gain further understanding about the mechanisms that lead to aggregation, an approach that combined rheology, neutron scattering, and molecular simulations was undertaken. Two model systems were studied in this work: Bovine Serum Albumin in surfactant-free Phosphate Buffered Saline at pH = 7.4 at concentrations from 11 mg/mL up to ˜519 mg/mL, and a monoclonal antibody in 20 mM Histidine/Histidine Hydrochloride at pH = 6.0 with 60 mg/mL trehalose and 0.2 mg/mL polysorbate-80 at concentrations from 53 mg/mL up to ˜220 mg/mL. The antibody used here has three mutations in the CH2 domain, which result in lower stability upon incubation at 40 °C with respect to the wild-type protein, based on size-exclusion chromatography assays. This temperature is below 49 °C, where unfolding of the least stable, CH2 domain occurs, according to differential scanning calorimetry. This dissertation focuses on identifying the role of aggregation on the viscosity of protein solutions. The protein solutions of this work show an increase in the low shear viscosity in the absence of surfactants, because proteins adsorb at the air/water interface forming a viscoelastic film that affects the measured rheology. Stable surfactant-laden protein solutions behave as simple Newtonian fluids. However, the surfactant-laden antibody solution also shows an increase in the low shear viscosity from bulk aggregation, after prolonged incubation at 40 °C. Small

  19. Lowering of the critical concentration for micelle formation in aqueous soap solutions by action of truly dissolved hydrocarbon at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Markina, Z.N.; Kostova, N.Z.; Rebinder, P.A.

    1970-03-01

    The effect of dissolved hydrocarbons (octane, benzene, and ethylbenzene) on critical micelle concentration of aqueous solutions of sodium salts of fatty acids from caproate to sodium myristate at various temperatures was studied. Experimental results showed that formation of micelles is promoted by presence of hydrocarbons dissolved in the water phase. Such solutions have below normal critical micelle concentration. The change in critical micelle concentration decreases with increase in length of hydrocarbon chain in the soap molecule and with decrease of hydrocarbon solubility in pure water. The nature of the hydrocarbon also affects the forms and dimension of the micelle. Aromatic hydrocarbons increase micelle volume and greatly decrease C.M.C., while aliphatic hydrocarbons decrease C.M.C. slightly. (12 refs.)

  20. Use of Tethered Enzymes as a Platform Technology for Rapid Analyte Detection.

    Directory of Open Access Journals (Sweden)

    Roy Cohen

    Full Text Available Rapid diagnosis for time-sensitive illnesses such as stroke, cardiac arrest, and septic shock is essential for successful treatment. Much attention has therefore focused on new strategies for rapid and objective diagnosis, such as Point-of-Care Tests (PoCT for blood biomarkers. Here we use a biomimicry-based approach to demonstrate a new diagnostic platform, based on enzymes tethered to nanoparticles (NPs. As proof of principle, we use oriented immobilization of pyruvate kinase (PK and luciferase (Luc on silica NPs to achieve rapid and sensitive detection of neuron-specific enolase (NSE, a clinically relevant biomarker for multiple diseases ranging from acute brain injuries to lung cancer. We hypothesize that an approach capitalizing on the speed and catalytic nature of enzymatic reactions would enable fast and sensitive biomarker detection, suitable for PoCT devices.We performed in-vitro, animal model, and human subject studies. First, the efficiency of coupled enzyme activities when tethered to NPs versus when in solution was tested, demonstrating a highly sensitive and rapid detection of physiological and pathological concentrations of NSE. Next, in rat stroke models the enzyme-based assay was able in minutes to show a statistically significant increase in NSE levels in samples taken 1 hour before and 0, 1, 3 and 6 hours after occlusion of the distal middle cerebral artery. Finally, using the tethered enzyme assay for detection of NSE in samples from 20 geriatric human patients, we show that our data match well (r = 0.815 with the current gold standard for biomarker detection, ELISA-with a major difference being that we achieve detection in 10 minutes as opposed to the several hours required for traditional ELISA.Oriented enzyme immobilization conferred more efficient coupled activity, and thus higher assay sensitivity, than non-tethered enzymes. Together, our findings provide proof of concept for using oriented immobilization of active

  1. Enthalpies of solution of methylcalix[4]resorcinarene in non-aqueous solvents as a function of concentration and temperature

    International Nuclear Information System (INIS)

    Riveros, Diana C.; Martínez, Fleming; Vargas, Edgar F.

    2012-01-01

    Highlights: ► The solution enthalpies of methylcalix[4]resorcinarene in alcohols have been measured. ► The solution enthalpies of methylcalix[4]resorcinarene in alcohols are endothermic. ► Enthalpies of transference are interpreted in terms of proton donor capacity of alcohols. - Abstract: Enthalpies of solution of 2,8,14,20-tetramethyl-4,6,10,12,16,18,22,24-octahydroxyresorci[4]arene in methanol, ethanol and propanol as a function of molal concentration at (288.15, 298.15 and 308.15) K were measured calorimetrically. The enthalpies of solvation were estimated. Using propanol as the referent solvent, transfer properties to other alcohols were also calculated. In addition, temperature dependence of the enthalpy of solution at infinite dilution was also obtained. The data were interpreted in terms of solute–solvent interactions.

  2. Bioethanol from lignocellulose - pretreatment, enzyme immobilization and hydrolysis kinetics

    DEFF Research Database (Denmark)

    Tsai, Chien Tai

    , the cost of enzyme is still the bottle neck, re-using the enzyme is apossible way to reduce the input of enzyme in the process. In the point view of engineering, the prediction of enzymatic hydrolysis kinetics under different substrate loading, enzyme combination is usful for process design. Therefore...... lignocellulose is the required high cellulase enzyme dosages that increase the processing costs. One method to decrease the enzyme dosage is to re-use BG, which hydrolyze the soluble substrate cellobiose. Based on the hypothesis that immobilized BG can be re-used, how many times the enzyme could be recycled...... liquid and pretreatment time can be reduced, the influence of substrate concentration, pretreatment time and temperature were investigated and optimized. Pretreatment of barley straw by [EMIM]Ac, correlative models were constructed using 3 different pretreatment parameters (temperature, time...

  3. Comparison of Drug Concentrations in Human Aqueous Humor after the Administration of 0.3% Gatifloxacin Ophthalmic Gel, 0.3% Gatifloxacin and 0.5% Levofloxacin Ophthalmic Solutions.

    Science.gov (United States)

    Ding, Wenting; Ni, Weiling; Chen, Huilian; Yuan, Jingqun; Huang, Xiaodan; Zhang, Zheng; Wang, Yao; Yu, Yibo; Yao, Ke

    2015-01-01

    To investigate the penetration of 0.3% gatifloxacin ophthalmic gel, 0.3% gatifloxacin ophthalmic solution and 0.5% levofloxacin ophthalmic solution into aqueous humor after topical application. Age-related cataract patients (150 eyes in 150 cases) receiving phacoemulsification were randomly divided into three groups: a 0.3% gatifloxacin gel group (n=50), a 0.3% gatifloxacin solution group (n=50), and a 0.5% levofloxacin solution group (n=50). Each group was administered one drop of gel or solution every 15 minutes for four doses. Aqueous samples were collected at different time points after the last drop. High pressure liquid chromatography (HPLC) was applied to determine the concentrations. The one-way ANOVA analysis was performed. Our data indicated that the concentration of the gatifloxacin gel group was higher than that of the gatifloxacin solution group at all time points (P solution group at 120.0 min and 180.0 min (Psolutions reached their peak values at 60.0 min. 0.3% gatifloxacin ophthalmic gel application produced highest aqueous humor drug concentration, maintained the longest time, had the best penetration and bioavailability.

  4. Continuous recycling of enzymes during production of lignocellulosic bioethanol in demonstration scale

    DEFF Research Database (Denmark)

    Haven, Mai Østergaard; Lindedam, Jane; Jeppesen, Martin D.

    2015-01-01

    Recycling of enzymes in production of lignocellulosic bioethanol has been tried for more than 30 years. So far, the successes have been few and the experiments have been carried out at conditions far from those in an industrially feasible process. Here we have tested continuous enzyme recycling a...... broth also opens up the possibility of lowering the dry matter content in hydrolysis and fermentation while still maintaining high ethanol concentrations....... at demonstration scale using industrial process conditions (high dry matter content and low enzyme dosage) for a period of eight days. The experiment was performed at the Inbicon demonstration plant (Kalundborg, Denmark) capable of converting four tonnes of wheat straw per hour. 20% of the fermentation broth...... was recycled to the hydrolysis reactor while enzyme dosage was reduced by 5%. The results demonstrate that recycling enzymes by this method can reduce overall enzyme consumption and may also increase the ethanol concentrations in the fermentation broth. Our results further show that recycling fermentation...

  5. Performance of optical biosensor using alcohol oxidase enzyme for formaldehyde detection

    Science.gov (United States)

    Sari, A. P.; Rachim, A.; Nurlely, Fauzia, V.

    2017-07-01

    The recent issue in the world is the long exposure of formaldehyde which is can increase the risk of human health, therefore, that is very important to develop a device and method that can be optimized to detect the formaldehyde elements accurately, have a long lifetime and can be fabricated and produced in large quantities. A new and simple prepared optical biosensor for detection of formaldehyde in aqueous solutions using alcohol oxidase (AOX) enzyme was successfully fabricated. The poly-n-butyl acrylic-co-N-acryloxysuccinimide (nBA-NAS) membranes containing chromoionophore ETH5294 were used for immobilization of alcohol oxidase enzyme (AOX). Biosensor response was based on the colour change of chromoionophore as a result of enzymatic oxidation of formaldehyde and correlated with the detection concentration of formaldehyde. The performance of biosensor parameters were measured through the optical absorption value using UV-Vis spectrophotometer including the repeatability, reproducibility, selectivity and lifetime. The results showed that the prepared biosensor has good repeatability (RSD = 1.9 %) and good reproducibility (RSD = 2.1 %). The biosensor was selective formaldehyde with no disturbance by methanol, ethanol, and acetaldehyde, and also stable before 49 days and decrease by 41.77 % after 49 days.

  6. Influence of diphenylhydantoin on lysosomal enzyme release during bone resorption in vitro

    International Nuclear Information System (INIS)

    Lerner, U.; Haenstroem, L.

    1980-01-01

    The effect of diphenylhydantoin (DPH) on the release of lysosomal enzymes during resorption of cultured mouse calvarial bone was studied. The enzyme activities of β-glucuronidase and β-galactosidase in the culture medium was taken as indicators for lysosomal enzyme release. In concentrations 50 μg/ml or higher, DPH inhibited the release of β-glucuronidase and β-galactosidase in parallel with bone resorption as indicated by reduced release of 4 Ca, Ca 2 , Psub(i) and hydroxyproline. The release of the cytosolic enzyme lactate dehydrogenase was not influenced by concentrations of DPH up to 50 μg/ml but higher concentrations caused an increased release indicating cell injury. When bone resorption was stimulated by prostaglandin E 2 , DPH(50 μg/ml) also reduced the mobilization of bone mineral and the release of β- glucuronidase without influencing the release of lactate dehydrogenase. It is suggested that DPH by interfering with cellular release processes reduces the resorption on bone. (author)

  7. The Non-Linear Child: Ontogeny, Isoniazid Concentration, and NAT2 Genotype Modulate Enzyme Reaction Kinetics and Metabolism.

    Science.gov (United States)

    Rogers, Zoe; Hiruy, Hiwot; Pasipanodya, Jotam G; Mbowane, Chris; Adamson, John; Ngotho, Lihle; Karim, Farina; Jeena, Prakash; Bishai, William; Gumbo, Tawanda

    2016-09-01

    N-acetyltransferase 2 (NAT2) catalyzes the acetylation of isoniazid to N-acetylisoniazid. NAT2 polymorphism explains 88% of isoniazid clearance variability in adults. We examined the effects of clinical and genetic factors on Michaelis-Menten reaction kinetic constants of maximum velocity (V max ) and affinity (K m ) in children 0-10years old. We measured the rates of isoniazid elimination and N-acetylisoniazid production in the blood of 30 children. Since maturation effects could be non-linear, we utilized a pharmacometric approach and the artificial intelligence method, multivariate adaptive regression splines (MARS), to identify factors predicting NAT2 V max and K m by examining clinical, genetic, and laboratory factors in toto. Isoniazid concentration predicted both V max and K m and superseded the contribution of NAT2 genotype. Age non-linearly modified the NAT2 genotype contribution until maturation at ≥5.3years. Thus, enzyme efficiency was constrained by substrate concentration, genes, and age. Since MARS output is in the form of basis functions and equations, it allows multiscale systems modeling from the level of cellular chemical reactions to whole body physiological parameters, by automatic selection of significant predictors by the algorithm. Copyright © 2016 Forschungsgesellschaft für Arbeitsphysiologie und Arbeitschutz e.V. Published by Elsevier B.V. All rights reserved.

  8. Enzyme-assisted extraction of stabilized chlorophyll from spinach.

    Science.gov (United States)

    Özkan, Gülay; Ersus Bilek, Seda

    2015-06-01

    Zinc complex formation with chlorophyll derivatives in spinach pulp was studied by adding 300ppm Zn(2+) for production of stable food colorant, followed by the heating at 110°C for 15min. Zinc complex formation increased at pH values of 7.0 or greater. Pectinex Ultra SP-L was selected for enzyme-assisted release of zinc-chlorophyll derivatives from spinach pulp. Effect of enzyme concentration (1-9%), treatment temperature (30-60°C), and time (30-210min) on total chlorophyll content (TCC) were optimized using response surface methodology. A quadratic regression model (R(2)=0.9486) was obtained from the experimental design. Optimum treatment conditions were 8% enzyme concentration, 45°C, and 30min, which yielded a 50.747mgTCC/100g spinach pulp. Enzymatic treatment was followed by solvent extraction with ethanol at a solvent-to-sample ratio of 2.5:1 at 60°C for 45min for the highest TCC recovery. Pretreatment with enzyme and extraction in ethanol resulted in 39% increase in Zn-chlorophyll derivative yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Volumetric interpretation of protein adsorption: interfacial packing of protein adsorbed to hydrophobic surfaces from surface-saturating solution concentrations.

    Science.gov (United States)

    Kao, Ping; Parhi, Purnendu; Krishnan, Anandi; Noh, Hyeran; Haider, Waseem; Tadigadapa, Srinivas; Allara, David L; Vogler, Erwin A

    2011-02-01

    The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g. mg/mL) surface-region (interphase) concentration and not molar concentration. Nearly analytical agreement between the packing models and experiment suggests that, at surface saturation, above-mentioned proteins assemble within the interphase in a manner that approximates a well-ordered array. HSA saturates a hydrophobic adsorbent with the equivalent of a single square or hexagonally-packed layer of hydrated molecules whereas the larger proteins occupy two-or-more layers, depending on the specific protein under consideration and analytical method used to measure adsorbate mass (solution depletion or QCM). Square or hexagonal (cubic and FCC) packing models cannot be clearly distinguished by comparison to experimental data. QCM measurement of adsorbent capacity is shown to be significantly different than that measured by solution depletion for similar hydrophobic adsorbents. The underlying reason is traced to the fact that QCM measures contribution of both core protein, water of hydration, and interphase water whereas solution depletion measures only the contribution of core protein. It is further shown that thickness of the interphase directly measured by QCM systematically exceeds that inferred from solution-depletion measurements, presumably because the static model used to interpret solution depletion does not accurately capture the complexities of the viscoelastic interfacial environment probed by QCM. Copyright © 2010

  10. A Review on the Effects of Supercritical Carbon Dioxide on Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Marie Zarevúcka

    2010-01-01

    Full Text Available Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO2. The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability.

  11. Stable preparations of tyrosine hydroxylase provide the solution structure of the full-length enzyme

    Science.gov (United States)

    Bezem, Maria T.; Baumann, Anne; Skjærven, Lars; Meyer, Romain; Kursula, Petri; Martinez, Aurora; Flydal, Marte I.

    2016-01-01

    Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of catecholamine neurotransmitters. TH is a highly complex enzyme at mechanistic, structural, and regulatory levels, and the preparation of kinetically and conformationally stable enzyme for structural characterization has been challenging. Here, we report on improved protocols for purification of recombinant human TH isoform 1 (TH1), which provide large amounts of pure, stable, active TH1 with an intact N-terminus. TH1 purified through fusion with a His-tagged maltose-binding protein on amylose resin was representative of the iron-bound functional enzyme, showing high activity and stabilization by the natural feedback inhibitor dopamine. TH1 purified through fusion with a His-tagged ZZ domain on TALON is remarkably stable, as it was partially inhibited by resin-derived cobalt. This more stable enzyme preparation provided high-quality small-angle X-ray scattering (SAXS) data and reliable structural models of full-length tetrameric TH1. The SAXS-derived model reveals an elongated conformation (Dmax = 20 nm) for TH1, different arrangement of the catalytic domains compared with the crystal structure of truncated forms, and an N-terminal region with an unstructured tail that hosts the phosphorylation sites and a separated Ala-rich helical motif that may have a role in regulation of TH by interacting with binding partners. PMID:27462005

  12. Gamma radiation and osmotic potential of the nutrient solution differentially affect macronutrient concentrations, pH and EC in chilhuacle pepper fruits

    International Nuclear Information System (INIS)

    Victor Garcia-Gaytan, Libia Iris Trejo-Tellez; Olga Tejeda-Sartorius; Maribel Ramirez-Martinez; Julian Delgadillo-Martinez; Fernando Carlos Gomez-Merino; Soledad Garcia-Morales

    2018-01-01

    Chilhuacle pepper (Capsicum annuum L.) seeds were exposed to gamma radiation (GR) doses (0, 10, 80 and 120 Gy), and plants were grown in hydroponics with different osmotic potentials (OP) (- 0.036, - 0.072, - 0.092, and - 0.108 MPa) in the nutrient solution. We measured the nutrient concentrations, pH and electrical conductivity (EC) in fruits at different time points after transplanting (70, 90 and 130 dat), and found the GR, nutrient solution OP and their interactions differentially affected N, P, K, Ca, and Mg concentrations, as well as pH and EC in chilhuacle peppers. (author)

  13. Molar concentration-depth profiles at the solution surface of a cationic surfactant reconstructed with angle resolved X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Wang Chuangye; Morgner, Harald

    2011-01-01

    In the current work, we first reconstructed the molar fraction-depth profiles of cation and anion near the surface of tetrabutylammonium iodide dissolved in formamide by a refined calculation procedure, based on angle resolved X-ray photoelectron spectroscopy experiments. In this calculation procedure, both the transmission functions of the core levels and the inelastic mean free paths of the photoelectrons have been taken into account. We have evaluated the partial molar volumes of surfactant and solvent by the densities of such solutions with different bulk concentrations. With those partial molar volumes, the molar concentration-depth profiles of tetrabutylammonium ion and iodide ion were determined. The surface excesses of both surfactant ions were then achieved directly by integrating these depth profiles. The anionic molar concentration-depth profiles and surface excesses have been compared with their counterparts determined by neutral impact ion scattering spectroscopy. The comparisons exhibit good agreements. Being capable of determining molar concentration-depth profiles of surfactant ions by core levels with different kinetic energies may extend the applicable range of ARXPS in investigating solution surfaces.

  14. Attractive interactions between reverse aggregates and phase separation in concentrated malonamide extractant solutions

    International Nuclear Information System (INIS)

    Erlinger, C.; Belloni, L.; Zemb, T.; Madic, C.

    1999-01-01

    Using small angle X-ray scattering, conductivity, and phase behavior determination, the authors show that concentrated solutions of malonamide extractants, dimethyldibutyltetradecylmalonamide (DMDBTDMA), are organized in reverse oligomeric aggregates which have many features in common with reverse micelles. The aggregation numbers of these reverse globular aggregates as well as their interaction potential are determined from absolute scattering curves. An attractive interaction is responsible for the demixing of the oil phase when in equilibrium with excess oil. Prediction of conductivity as well as the formation conditions for the third phase is possible using standard liquid theory applied to the extractant aggregates. The interactions, modeled with the sticky sphere model proposed by Baster, are shown to be due to steric interactions resulting from the hydrophobic tails of the extractant molecule and van der Waals forces between the highly polarizable water core of the reverse micelles. The attractive interaction in the oil phase, equilibrated with water, is determined as a function of temperature, extractant molecule concentration, and proton and neodynium(III) cation concentration. It is shown that van der Waals interactions, with an effective Hamaker constant of 3kT, quantitatively explain the behavior of DMDBTDMA in n-dodecane in terms of scattering as well as phase stability limits

  15. Convective flow reversal in self-powered enzyme micropumps.

    Science.gov (United States)

    Ortiz-Rivera, Isamar; Shum, Henry; Agrawal, Arjun; Sen, Ayusman; Balazs, Anna C

    2016-03-08

    Surface-bound enzymes can act as pumps that drive large-scale fluid flows in the presence of their substrates or promoters. Thus, enzymatic catalysis can be harnessed for “on demand” pumping in nano- and microfluidic devices powered by an intrinsic energy source. The mechanisms controlling the pumping have not, however, been completely elucidated. Herein, we combine theory and experiments to demonstrate a previously unreported spatiotemporal variation in pumping behavior in urease-based pumps and uncover the mechanisms behind these dynamics. We developed a theoretical model for the transduction of chemical energy into mechanical fluid flow in these systems, capturing buoyancy effects due to the solution containing nonuniform concentrations of substrate and product. We find that the qualitative features of the flow depend on the ratios of diffusivities δ=D(P)/D(S) and expansion coefficients β=β(P)/β(S) of the reaction substrate (S) and product (P). If δ>1 and δ>β (or if δself-powered fluidic devices.

  16. Immobilized enzyme reactor chromatography: Optimization of protein retention and enzyme activity in monolithic silica stationary phases

    International Nuclear Information System (INIS)

    Besanger, Travis R.; Hodgson, Richard J.; Green, James R.A.; Brennan, John D.

    2006-01-01

    Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low μL/min range. Using the enzyme γ-glutamyl transpeptidase (γ-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by ∼2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in k cat and decreases in K M , switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography

  17. Dependence of aggregation behavior on concentration in triblock copolymer solutions: The effect of chain architecture

    International Nuclear Information System (INIS)

    Han, Xiang-Gang; Zhang, Xue-Feng

    2015-01-01

    Using the self-consistent field lattice technique, the effects of concentration and hydrophobic middle block length (where the chain length remains constant) on aggregation behavior are studied in amphiphilic symmetric triblock copolymer solutions. The heat capacity peak for the unimer-micelle transition and the distribution peaks for the different degrees of aggregation for micelles and small aggregates (submicelles) are calculated. Analysis of the conducted computer simulations shows that the transition broadness dependence on concentration is determined by the hydrophobic middle block length, and this dependence is distinctly different when the length of the hydrophobic middle block changes. Different size for small aggregates simultaneously appear in the transition region. As temperature decreases, the number of different size small aggregates for the large hydrophobic middle block length first ascends and then descends in aggregation degree order. These results indicate that any transition broadness change with concentration is related to the mechanism of fragmentation and fusion. These results are helpful for interpreting the aggregation process of amphiphilic copolymers at equilibrium

  18. Preparation of immobilized glucose oxidase wafer enzyme on calcium-bentonite modified by surfactant

    Science.gov (United States)

    Widi, R. K.; Trisulo, D. C.; Budhyantoro, A.; Chrisnasari, R.

    2017-07-01

    Wafer glucose oxidase (GOx) enzymes was produced by addition of PAH (Poly-Allyamine Hydrochloride) polymer into immobilized GOx enzyme on modified-Tetramethylammonium Hydroxide (TMAH) 5%-calsium-bentonite. The use of surfactant molecul (TMAH) is to modify the surface properties and pore size distribution of the Ca-bentonite. These properties are very important to ensure GOx molecules can be bound on the Ca-bentonit surface to be immobilized. The addition of the polymer (PAH) is expected to lead the substrates to be adsorbed onto the enzyme. In this study, wafer enzymes were made in various concentration ratio (Ca-bentonite : PAH) which are 1:0, 1:1, 1:2 and 1:3. The effect of PAH (Poly-Allyamine Hydrochloride) polymer added with various ratios of concentrations can be shown from the capacitance value on LCR meter and enzyme activity using DNS method. The addition of the polymer (PAH) showed effect on the activity of GOx, it can be shown from the decreasing of capacitance value by increasing of PAH concentration.

  19. Immediate Effect of 3% Diquafosol Ophthalmic Solution on Tear MUC5AC Concentration and Corneal Wetting Ability in Normal and Experimental Keratoconjunctivitis Sicca Rat Models.

    Science.gov (United States)

    Choi, Kwang-Eon; Song, Jong-Suk; Kang, Boram; Eom, Youngsub; Kim, Hyo-Myung

    2017-05-01

    To evaluate the immediate effect of 3% diquafosol ophthalmic solution on tear MUC5AC concentration, periodic acid-Schiff (PAS)-positive goblet cells, and tear film stability in normal and keratoconjunctivitis sicca (KCS) rat models. Rats were divided into normal and KCS groups. 3% of diquafosol solution was instilled into the right eye and normal saline into the left eye in both groups. To determine the peak time of tear MUC5AC concentration, tears were collected after 3% diquafosol instillation every 5 min up to 20 min. The tear film stability and the numbers of PAS-positive goblet cells were compared in both models. After diquafosol instillation, tear MUC5AC concentration increased steadily for 15 min, at which point the MUC5AC concentration reached its peak. In both normal and KCS groups, the MUC5AC concentration at 15 min was higher after instillation of 3% diquafosol solution (17.77 ± 2.09 ng/ml in the normal group, 9.65 ± 3.51 ng/ml in the KCS group) than that after saline instillation (13.74 ± 2.87 ng/ml in the normal group, 8.19 ± 3.99 ng/ml in the KCS group) (p = 0.018 for both). The corneal wetting ability was significantly longer after instillation of 3% diquafosol solution compared with that after instillation of normal saline in the normal group (p = 0.018). The percentage of PAS-positive goblet cells after the instillation of 3% diquafosol solution was significantly lower than that after instillation of normal saline in both models (p = 0.018 for both). Diquafosol ophthalmic solution was effective in stimulating mucin secretion in both normal and KCS rat models, and the peak time of tear MUC5AC concentration was 15 min after diquafosol instillation. The increased tear MUC5AC concentration was accompanied by improved tear film stability and a decreased percentage of PAS-positive goblet cells.

  20. An Enzyme Switch Employing Direct Electrochemical Communication between Horseradish Peroxidase and a Poly(aniline) Film.

    Science.gov (United States)

    Bartlett, P N; Birkin, P R; Wang, J H; Palmisano, F; De Benedetto, G

    1998-09-01

    An enzyme switch, or microelectrochemical enzyme transistor, responsive to hydrogen peroxide was made by connecting two carbon band electrodes (∼10 μm wide, 4.5 mm long separated by a 20-μm gap) with an anodically grown film of poly(aniline). Horseradish peroxidase (EC 1.11.1.7) was either adsorbed onto the poly(aniline) film or immobilized in an insulating poly(1,2-diaminobenzene) polymer grown electrochemically on top of the poly(aniline) film to complete the device. In the completed device, the conductivity of the poly(aniline) film changes from conducting (between - 0.05 and + 0.3 V vs SCE at pH 5) to insulating (>+0.3 V vs SCE at pH 5) on addition of hydrogen peroxide. The change in conductivity is brought about by oxidation of the poly(aniline) film by direct electrochemical communication between the enzyme and the conducting polymer. This was confirmed by measuring the potential of the poly(aniline) film during switching of the conductivity in the presence of hydrogen peroxide. The devices can be reused by rereducing the poly(aniline) electrochemically to a potential below +0.3 V vs SCE. A blind test showed that the device can be used to determine unknown concentrations of H(2)O(2) in solution and that, when used with hydrogen peroxide concentrations below 0.5 mmol dm(-)(3), the same device maybe reused several times. The possible development of devices of this type for use in applications requiring the measurement of low levels of hydrogen peroxide or horseradish peroxidase is discussed.

  1. An intercomparison experiment on isotope dilution thermal ionisation mass spectrometry using plutonium-239 spike for the determination of plutonium concentration in dissolver solution of irradiated fuel

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Shah, P.M.; Saxena, M.K.; Jain, H.C.; Gurba, P.B.; Babbar, R.K.; Udagatti, S.V.; Moorthy, A.D.; Singh, R.K.; Bajpai, D.D.

    1996-01-01

    Determination of plutonium concentration in the dissolver solution of irradiated fuel is one of the key measurements in the nuclear fuel cycle. This report presents the results of an intercomparison experiment performed between Fuel Chemistry Division (FCD) at BARC and PREFRE, Tarapur for determining plutonium concentration in dissolver solution of irradiated fuel using 239 Pu spike in isotope dilution thermal ionisation mass spectrometry (ID-TIMS). The 239 Pu spike method was previously established at FCD as viable alternative to the imported enriched 242 Pu or 244 Pu; the spike used internationally for plutonium concentration determination by IDMS in dissolver solution of irradiated fuel. Precision and accuracy achievable for determining plutonium concentration are compared under the laboratory and the plant conditions using 239 Pu spike in IDMS. For this purpose, two different dissolver solutions with 240 Pu/ 239 Pu atom ratios of about 0.3 and 0.07 corresponding, respectively, to high and low burn-up fuels, were used. The results of the intercomparison experiment demonstrate that there is no difference in the precision values obtained under the laboratory and the plant conditions; with mean precision values of better than 0.2%. Further, the plutonium concentration values determined by the two laboratories agreed within 0.3%. This exercise, therefore, demonstrates that ID-TIMS method using 239 Pu spike can be used for determining plutonium concentration in dissolver solution of irradiated fuel, under the plant conditions. 7 refs., 8 tabs

  2. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes*

    Science.gov (United States)

    Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo

    2009-01-01

    The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 °C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production. PMID:19946955

  3. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes.

    Science.gov (United States)

    Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo

    2009-12-01

    The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 degrees C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production.

  4. Efficient Enzyme-Free Biomimetic Sensors for Natural Phenol Detection

    Directory of Open Access Journals (Sweden)

    Luane Ferreira Garcia

    2016-08-01

    Full Text Available The development of sensors and biosensors based on copper enzymes and/or copper oxides for phenol sensing is disclosed in this work. The electrochemical properties were studied by cyclic and differential pulse voltammetry using standard solutions of potassium ferrocyanide, phosphate/acetate buffers and representative natural phenols in a wide pH range (3.0 to 9.0. Among the natural phenols herein investigated, the highest sensitivity was observed for rutin, a powerful antioxidant widespread in functional foods and ubiquitous in the plant kingdom. The calibration curve for rutin performed at optimum pH (7.0 was linear in a broad concentration range, 1 to 120 µM (r = 0.99, showing detection limits of 0.4 µM. The optimized biomimetic sensor was also applied in total phenol determination in natural samples, exhibiting higher stability and sensitivity as well as distinct selectivity for antioxidant compounds.

  5. Efficient Enzyme-Free Biomimetic Sensors for Natural Phenol Detection.

    Science.gov (United States)

    Ferreira Garcia, Luane; Ribeiro Souza, Aparecido; Sanz Lobón, Germán; Dos Santos, Wallans Torres Pio; Alecrim, Morgana Fernandes; Fontes Santiago, Mariângela; de Sotomayor, Rafael Luque Álvarez; de Souza Gil, Eric

    2016-08-13

    The development of sensors and biosensors based on copper enzymes and/or copper oxides for phenol sensing is disclosed in this work. The electrochemical properties were studied by cyclic and differential pulse voltammetry using standard solutions of potassium ferrocyanide, phosphate/acetate buffers and representative natural phenols in a wide pH range (3.0 to 9.0). Among the natural phenols herein investigated, the highest sensitivity was observed for rutin, a powerful antioxidant widespread in functional foods and ubiquitous in the plant kingdom. The calibration curve for rutin performed at optimum pH (7.0) was linear in a broad concentration range, 1 to 120 µM (r = 0.99), showing detection limits of 0.4 µM. The optimized biomimetic sensor was also applied in total phenol determination in natural samples, exhibiting higher stability and sensitivity as well as distinct selectivity for antioxidant compounds.

  6. Optimization of parameters for enhanced oil recovery from enzyme treated wild apricot kernels.

    Science.gov (United States)

    Rajaram, Mahatre R; Kumbhar, Baburao K; Singh, Anupama; Lohani, Umesh Chandra; Shahi, Navin C

    2012-08-01

    Present investigation was undertaken with the overall objective of optimizing the enzymatic parameters i.e. moisture content during hydrolysis, enzyme concentration, enzyme ratio and incubation period on wild apricot kernel processing for better oil extractability and increased oil recovery. Response surface methodology was adopted in the experimental design. A central composite rotatable design of four variables at five levels was chosen. The parameters and their range for the experiments were moisture content during hydrolysis (20-32%, w.b.), enzyme concentration (12-16% v/w of sample), combination of pectolytic and cellulolytic enzyme i.e. enzyme ratio (30:70-70:30) and incubation period (12-16 h). Aspergillus foetidus and Trichoderma viride was used for production of crude enzyme i.e. pectolytic and cellulolytic enzyme respectively. A complete second order model for increased oil recovery as the function of enzymatic parameters fitted the data well. The best fit model for oil recovery was also developed. The effect of various parameters on increased oil recovery was determined at linear, quadric and interaction level. The increased oil recovery ranged from 0.14 to 2.53%. The corresponding conditions for maximum oil recovery were 23% (w.b.), 15 v/w of the sample, 60:40 (pectolytic:cellulolytic), 13 h. Results of the study indicated that incubation period during enzymatic hydrolysis is the most important factor affecting oil yield followed by enzyme ratio, moisture content and enzyme concentration in the decreasing order. Enzyme ratio, incubation period and moisture content had insignificant effect on oil recovery. Second order model for increased oil recovery as a function of enzymatic hydrolysis parameters predicted the data adequately.

  7. Rapid Chondrocyte Isolation for Tissue Engineering Applications: The Effect of Enzyme Concentration and Temporal Exposure on the Matrix Forming Capacity of Nasal Derived Chondrocytes

    Directory of Open Access Journals (Sweden)

    Srujana Vedicherla

    2017-01-01

    Full Text Available Laboratory based processing and expansion to yield adequate cell numbers had been the standard in Autologous Disc Chondrocyte Transplantation (ADCT, Allogeneic Juvenile Chondrocyte Implantation (NuQu®, and Matrix-Induced Autologous Chondrocyte Implantation (MACI. Optimizing cell isolation is a key challenge in terms of obtaining adequate cell numbers while maintaining a vibrant cell population capable of subsequent proliferation and matrix elaboration. However, typical cell yields from a cartilage digest are highly variable between donors and based on user competency. The overall objective of this study was to optimize chondrocyte isolation from cartilaginous nasal tissue through modulation of enzyme concentration exposure (750 and 3000 U/ml and incubation time (1 and 12 h, combined with physical agitation cycles, and to assess subsequent cell viability and matrix forming capacity. Overall, increasing enzyme exposure time was found to be more detrimental than collagenase concentration for subsequent viability, proliferation, and matrix forming capacity (sGAG and collagen of these cells resulting in nonuniform cartilaginous matrix deposition. Taken together, consolidating a 3000 U/ml collagenase digest of 1 h at a ratio of 10 ml/g of cartilage tissue with physical agitation cycles can improve efficiency of chondrocyte isolation, yielding robust, more uniform matrix formation.

  8. Prediction of ore fluid metal concentrations from solid solution concentrations in ore-stage calcite: Application to the Illinois-Kentucky and Central Tennessee Mississippi Valley-type districts

    Science.gov (United States)

    Smith-Schmitz, Sarah E.; Appold, Martin S.

    2018-03-01

    Knowledge of the concentrations of Zn and Pb in Mississippi Valley-type (MVT) ore fluids is fundamental to understanding MVT deposit origin. Most previous attempts to quantify the concentrations of Zn and Pb in MVT ore fluids have focused on the analysis of fluid inclusions. However, these attempts have yielded ambiguous results due to possible contamination from secondary fluid inclusions, interferences from Zn and Pb in the host mineral matrix, and uncertainties about whether the measured Zn and Pb signals represent aqueous solute or accidental solid inclusions entrained within the fluid inclusions. The purpose of the present study, therefore, was to try to determine Zn and Pb concentrations in MVT ore fluids using an alternate method that avoids these ambiguities by calculating Zn and Pb concentrations in MVT ore fluids theoretically based on their solid solution concentrations in calcite. This method was applied to the Illinois-Kentucky and Central Tennessee districts, which both contain ore-stage calcite. Experimental partition coefficient (D) values from Rimstidt et al. (1998) and Tsusue and Holland (1966), and theoretical thermodynamic distribution coefficient (KD) values were employed in the present study. Ore fluid concentrations of Zn were likely most accurately predicted by Rimstidt et al. (1998) D values, based on their success in predicting known fluid inclusion concentrations of Mg and Mn, and likely also most accurately predicted ore fluid concentrations of Fe. All four of these elements have a divalent ionic radius smaller than that of Ca2+ and form carbonate minerals with the calcite structure. For both the Illinois-Kentucky and the Central Tennessee district, predicted ore fluid Zn and Fe concentrations were on the order of up to 10's of ppm. Ore fluid concentrations of Pb could only be predicted using Rimstidt et al. (1998) D values. However, these concentrations are unlikely to be reliable, as predicted ore fluid concentrations of Sr and Ba

  9. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    International Nuclear Information System (INIS)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-01-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  10. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti, E-mail: arti@iitm.ac.in [Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036 (India)

    2016-08-28

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  11. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Science.gov (United States)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-08-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  12. Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego.

    Science.gov (United States)

    Dodhia, Vikash Rajnikant; Fantuzzi, Andrea; Gilardi, Gianfranco

    2006-10-01

    The membrane-bound human cytochrome P450s have essential roles in the metabolism of endogenous compounds and drugs. Presented here are the results on the construction and characterization of three fusion proteins containing the N-terminally modified human cytochrome P450s CYP2C9, CY2C19 and CYP3A4 fused to the soluble NADPH-dependent oxidoreductase domain of CYP102A1 from Bacillus megaterium. The constructs, CYP2C9/BMR, CYP2C19/BMR and CYP3A4/BMR are well expressed in Escherichia coli as holo proteins. The chimeras can be purified in the absence of detergent and the purified enzymes are both active and correctly folded in the absence of detergent, as demonstrated by circular dichroism and functional studies. Additionally, in comparison with the parent P450 enzyme, these chimeras have greatly improved solubility properties. The chimeras are catalytically self-sufficient and present turnover rates similar to those reported for the native enzymes in reconstituted systems, unlike previously reported mammalian cytochrome P450 fusion proteins. Furthermore the specific activities of these chimeras are not dependent on the enzyme concentration present in the reaction buffer and they do not require the addition of accessory proteins, detergents or phospholipids to be fully active. The solubility, catalytic self-sufficiency and wild-type like activities of these chimeras would greatly simplify the studies of cytochrome P450 mediated drug metabolism in solution.

  13. Enzyme hydration, activity and flexibility : A neutron scattering approach

    International Nuclear Information System (INIS)

    Kurkal-Siebert, V.; Finney, J.L.; Daniel, R.M.; Smith, Jeremy C.

    2006-01-01

    Recent measurements have demonstrated enzyme activity at hydrations as low as 3%. The question of whether the hydration-induced enzyme flexibility is important for activity is addressed by performing picosecond dynamic neutron scattering experiments on pig liver esterase powders at various temperatures as well as solutions. At all temperatures and hydrations investigated here, significant quasielastic scattering intensity is found in the protein, indicating the presence of anharmonic, diffusive motion. As the hydration increases a temperature-dependent dynamical transition appears and strengthens involving additional diffusive motion. At low temperature, increasing hydration resulted in lower flexibility of the enzyme. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The implication of these results is that, although the additional hydration-induced diffusive motion and flexibility at high temperatures in the enzyme detected here may be related to increased activity, they are not required for the enzyme to function

  14. Quantitation of pulmonary surfactant protein SP-B in the absence or presence of phospholipids by enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Oviedo, J M; Valiño, F; Plasencia, I

    2001-01-01

    We have developed an enzyme-linked immunosorbent assay (ELISA) that uses polyclonal or monoclonal anti-surfactant protein SP-B antibodies to quantitate purified SP-B in chloroform/methanol and in chloroform/methanol extracts of whole pulmonary surfactant at nanogram levels. This method has been...... used to explore the effect of the presence of different phospholipids on the immunoreactivity of SP-B. Both polyclonal and monoclonal antibodies produced reproducible ELISA calibration curves for methanolic SP-B solutions with protein concentrations in the range of 20-1000 ng/mL. At these protein...

  15. In situ monitoring of myenteric neuron activity using acetylcholinesterase-modified AlGaN/GaN solution-gate field-effect transistors.

    Science.gov (United States)

    Müntze, Gesche Mareike; Pouokam, Ervice; Steidle, Julia; Schäfer, Wladimir; Sasse, Alexander; Röth, Kai; Diener, Martin; Eickhoff, Martin

    2016-03-15

    The response characteristics of acetylcholinesterase-modified AlGaN/GaN solution-gate field-effect transistors (AcFETs) are quantitatively analyzed by means of a kinetic model. The characterization shows that the covalent enzyme immobilization process yields reproducible AcFET characteristics with a Michaelis constant KM of (122 ± 4) μM for the immobilized enzyme layer. The increase of KM by a factor of 2.4 during the first four measurement cycles is attributed to partial denaturation of the enzyme. The AcFETs were used to record the release of acetylcholine (ACh) by neuronal tissue cultivated on the gate area upon stimulation by rising the extracellular K(+) concentration. The neuronal tissue constituted of isolated myenteric neurons from four to 12 days old Wistar rats, or sections from the muscularis propria containing the myenteric plexus from adult rats. For both cases the AcFET response was demonstrated to be related to the activity of the immobilized acetylcholinesterase using the reversible acetylcholinesterase blocker donepezil. A concentration response curve of this blocking agent revealed a half maximal inhibitory concentration of 40 nM which is comparable to values measured by complementary in vitro methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Monitoring and control of enzymic sucrose hydrolysis using on-line biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Mandenius, C F; Buelow, L; Danielsson, B; Mosbach, K

    1985-02-01

    Previously reported flow microcalorimeter devices for enzymic reaction heat measurement, enzyme thermistors, have here been extended with systems for on-line sample treatment. Glucose analysis was performed by intermittent flow injection of 50 ..mu..l samples through such an enzyme thermistor device containing immobilized glucose oxidase and catalase. Sucrose analysis was performed by allowing diluted samples to continuously pass through an additional enzyme thermistor containing immobilized invertase. The reaction heats were recorded as temperature changes in the order of 10-50 m degrees C for concentration of 0.05-0.30 M glucose or sucrose present in the original non-diluted samples. The performance of this system was investigated by its ability to follow concentration changes obtained from a gradient mixer. The system was applied to monitoring and controlling the hydrolysis of sucrose to glucose and fructose in a plug-flow reactor with immobilized invertase. The reactor was continuously fed by a flow of sucrose of up to 0.3 M (100 g/l). Glucose and remaining sucrose were monitored in the effluent of the column. By using flow rate controlled feed pumps for sucrose and diluent the influent concentration of sucrose was varied while the overall flow rate remained constant. On-line control of the effluent concentration of glucose and sucrose was achieved by a proportional and integral regulator implemented on a microcomputer. Present concentration of glucose in the effluent could be maintained over an extended period of time despite changes in the overall capacity of the invertase reactor. Long delay times in the sensor system and the enzyme column made it necessary to carefully tune the control parameters. Changes of set-point value and temperature disturbances were used to verify accuracy of controlling performance. 32 references.

  17. Screening of Enzyme Biomarker for Nanotoxicity of Zinc Oxide in OREOCHROMIS MOSSAMBICUS

    Science.gov (United States)

    Subramanian, Periasamy; Bupesh, Giridharan

    2011-06-01

    Experiments were conducted to determine the effects of Zinc oxide (ZnO) nanoparticles (NPs) on fish models. Oreochromis mossambicus was orally administered with ZnO NPs (50-100 nm) once and its effects at five different concentrations (60 ppm-100 ppm) were observed for 12 days. Enzymatic assays were performed at every three days interval in the vital tissues of liver, gill, muscle and kidney. The defense enzymes, ethoxyresorufin O-deethylase (EROD) and glutathione S transferase (GST) exerted a dose dependent elevation up to 6 days. This hike then declines in higher concentrations and extended duration. Whereas the tissue damaging enzymes, glutamate oxaloacetic transaminase (GOT), glutamate pyruvic transaminase (GPT) and alkaline phosphatase (ALP) as well as the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) exhibited a dose and duration dependent increase until the end of the experiment. Among these enzymes, the antioxidant enzymes response to ZnO NP toxicity on fish showed notable continuous induction. This study demonstrates that antioxidant enzymes responses in O. mossambicus could be used as a biomarker for the early detection of nanotoxicity.

  18. The pH-static enzyme sensor: design of the pH control system

    NARCIS (Netherlands)

    van der Schoot, B.H.; van der Schoot, Bart H.; Voorthuijzen, Hans; Voorthuyzen, J.A.; Bergveld, Piet

    1990-01-01

    The pH-static enzyme sensor offers a solution to the buffer dependency of ISFET-based enzyme sensors. A continuous coulometric titration of the reaction products keeps the pH in the enzymatic membrane at a constant level. This paper presents an automatic system to control the compensating current

  19. Enzymic saccharification of some pretreated agricultural wastes

    Energy Technology Data Exchange (ETDEWEB)

    El-Gammal, S.M.A.; Sadek, M.A.

    1988-01-01

    Cellulosie wastes, artichoke leaves and stalks, sugar-cane bagasse and fennel seeds after extraction of essential oils were treated with various concentrations of peracetic acid at 100/sup 0/C, 60/sup 0/C and room temperature several times, washed with water and ethanol and air dried. The degree of enzymatic solubilization of each treated cellulosic waste was measured with Aspergillus niger cellulase (Endo-1,4-B-Glucanase; 1,4-(1,3; 1,4)-..beta..-D-glucan 4-glucanohydrolase; EC 3. 2.1.4). Artichoke waste and sugar-cane bagasse were solubilized more efectively by the enzymethan fennel waste. Data are presented describing the effect of time, enzyme and substrate concentration on the rate of enzymic hydrolysis. Infrared spectra of the treated and untreated cellulosic materials were recorded.

  20. Synthesis and biological studies of highly concentrated lisinopril-capped gold nanoparticles for CT tracking of angiotensin converting enzyme (ACE)

    Science.gov (United States)

    Ghann, William E.; Aras, Omer; Fleiter, Thorsten; Daniel, Marie-Christine

    2011-05-01

    For patients with a history of heart attack or stroke, the prevention of another cardiovascular or cerebrovascular event is crucial. The development of cardiac and pulmonary fibrosis has been associated with overexpression of tissue angiotensin-converting enzyme (ACE). Recently, gold nanoparticles (GNPs) have shown great potential as X-ray computed tomography (CT) contrast agents. Since lisinopril is an ACE inhibitor, it has been used as coating on GNPs for targeted imaging of tissue ACE in prevention of fibrosis. Herein, lisinopril-capped gold nanoparticles (LIS-GNPs) were synthesized up to a concentration of 55 mgAu/mL. Their contrast was measured using CT and the results were compared to Omnipaque, a commonly used iodine-based contrast agent. The targeting ability of these LIS-GNPs was also assessed.

  1. Activation and thermostabilization effects of cyclic 2, 3-diphosphoglycerate on enzymes from the hyperthermophilic Methanopyrus kandleri.

    Science.gov (United States)

    Shima, S; Hérault, D A; Berkessel, A; Thauer, R K

    1998-11-01

    Enzymes involved in methane formation from carbon dioxide and dihydrogen in Methanopyrus kandleri require high concentrations (> 1 M) of lyotropic salts such as K2HPO4/KH2PO4 or (NH4)2SO4 for activity and for thermostability. The requirement correlates with high intracellular concentrations of cyclic 2,3-diphosphoglycerate (cDPG; approximately 1 M) in this hyperthermophilic organism. We report here on the effects of potassium cDPG on the activity and thermostability of the two methanogenic enzymes cyclohydrolase and formyltransferase and show that at cDPG concentrations prevailing in the cells the investigated enzymes are highly active and completely thermostable. At molar concentrations also the potassium salts of phosphate and of 2,3-bisphosphoglycerate, the biosynthetic precursor of cDPG, were found to confer activity and thermostability to the enzymes. Thermodynamic arguments are discussed as to why cDPG, rather than these salts, is present in high concentrations in the cells of Mp. kandleri.

  2. Effect of Concentration on the Electrochemistry and Speciation of the Magnesium Aluminum Chloride Complex Electrolyte Solution.

    Science.gov (United States)

    See, Kimberly A; Liu, Yao-Min; Ha, Yeyoung; Barile, Christopher J; Gewirth, Andrew A

    2017-10-18

    Magnesium batteries offer an opportunity to use naturally abundant Mg and achieve large volumetric capacities reaching over four times that of conventional Li-based intercalation anodes. High volumetric capacity is enabled by the use of a Mg metal anode in which charge is stored via electrodeposition and stripping processes, however, electrolytes that support efficient Mg electrodeposition and stripping are few and are often prepared from highly reactive compounds. One interesting electrolyte solution that supports Mg deposition and stripping without the use of highly reactive reagents is the magnesium aluminum chloride complex (MACC) electrolyte. The MACC exhibits high Coulombic efficiencies and low deposition overpotentials following an electrolytic conditioning protocol that stabilizes species necessary for such behavior. Here, we discuss the effect of the MgCl 2 and AlCl 3 concentrations on the deposition overpotential, current density, and the conditioning process. Higher concentrations of MACC exhibit enhanced Mg electrodeposition current density and much faster conditioning. An increase in the salt concentrations causes a shift in the complex equilibria involving both cations. The conditioning process is strongly dependent on the concentration suggesting that the electrolyte is activated through a change in speciation of electrolyte complexes and is not simply due to the annihilation of electrolyte impurities. Additionally, the presence of the [Mg 2 (μ-Cl) 3 ·6THF] + in the electrolyte solution is again confirmed through careful analysis of experimental Raman spectra coupled with simulation and direct observation of the complex in sonic spray ionization mass spectrometry. Importantly, we suggest that the ∼210 cm -1 mode commonly observed in the Raman spectra of many Mg electrolytes is indicative of the C 3v symmetric [Mg 2 (μ-Cl) 3 ·6THF] + . The 210 cm -1 mode is present in many electrolytes containing MgCl 2 , so its assignment is of broad interest

  3. Measuring Intracellular Enzyme Concentrations: Assessing the Effect of Oxidative Stress on the Amount of Glyoxalase I

    Science.gov (United States)

    Miranda, Hugo Vicente; Ferreira, Antonio E. N.; Quintas, Alexandre; Cordeiro, Carlos; Freire, Ana Ponces

    2008-01-01

    Enzymology is one of the fundamental areas of biochemistry and involves the study of the structure, kinetics, and regulation of enzyme activity. Research in this area is often conducted with purified enzymes and extrapolated to "in vivo" conditions. The specificity constant, k[subscript S], is the ratio between k[subscript cat] (the catalytic…

  4. Some reactions of oxidizing radicals with enzymes in aqueous solution

    International Nuclear Information System (INIS)

    Cundall, R.B.; Bisby, R.H.; Hoe, S.T.; Sims, H.E.; Anderson, R.F.

    1979-01-01

    A range of oxidizing radicals including some inorganic radical anions and the superoxide radical, can be generated by radiolysis of aqueous solutions. These radicals are more selective in their reactions with amino acids than the hydroxyl radical. Factors controlling the apparent reactivity of radical anions with proteins, such as free radical equilibria and ion-binding, are described. The superoxide radical inactivates papain by reaction with the cysteine residue. This reaction has been studied in solutions subjected to radiations of varying linear energy transfer. (Auth.)

  5. Empirical evaluation of inhibitory product, substrate, and enzyme effects during the enzymatic saccharification of lignocellulosic biomass.

    Science.gov (United States)

    Smith, Benjamin T; Knutsen, Jeffrey S; Davis, Robert H

    2010-05-01

    The cellulose hydrolysis kinetics during batch enzymatic saccharification are typified by a rapid initial rate that subsequently decays, resulting in incomplete conversion. Previous studies suggest that changes associated with the solution, substrate, or enzymes may be responsible. In this work, kinetic experiments were conducted to determine the relative magnitude of these effects. Pretreated corn stover (PCS) was used as a lignocellulosic substrate likely to be found in a commercial saccharification process, while Avicel and Kraft lignin were used to create model substrates. Glucose inhibition was observed by spiking the reaction slurry with glucose during initial-rate experiments. Increasing the glucose concentration from 7 to 48 g/L reduced the cellulose conversion rate by 94%. When product sugars were removed using ultrafiltration with a 10 kDa membrane, the glucose-based conversion increased by 9.5%. Reductions in substrate reactivity with conversion were compared directly by saccharifying PCS and Avicel substrates that had been pre-reacted to different conversions. Reaction of substrate with a pre-conversion of 40% resulted in about 40% reduction in the initial rate of saccharification, relative to fresh substrate with identical cellulose concentration. Overall, glucose inhibition and reduced substrate reactivity appear to be dominant factors, whereas minimal reductions of enzyme activity were observed.

  6. [Effects of different types and concentration of oral sweet solution on reducing neonatal pain during heel lance procedures].

    Science.gov (United States)

    Leng, Hong-yao; Zheng, Xian-lan; Yan, Li; Zhang, Xian-hong; He, Hua-yun; Xiang, Ming

    2013-09-01

    To compare the effect of different types and concentrations of sweet solutions on neonatal pain during heel lance procedure. Totally 560 full term neonates (male 295, female 265) were randomized into 7 groups:placebo group (plain water), 10% glucose, 25% glucose, 50% glucose, 12% sucrose, 24% sucrose and 30% sucrose groups.In each group, 2 ml corresponding oral solutions were administered through a syringe by dripping into the neonate's mouth 2 minute before heel lance. The procedure process was recorded by videos, from which to collect heart rate, oxygen saturation and pain score 1 min before puncture, 3, 5 and 10 min after puncture. The average heart rate increase 3, 5 and 10 min after procedure in the 25% and 50% glucose groups, 12% and 24% and 30% sucrose groups was significantly lower than those in the placebo group (P lance (both P lance, but the best concentration of sucrose for pain relief needs further study.

  7. Light-addressable amperometric electrodes for enzyme sensors based on direct quantum dot-electrode contacts

    Science.gov (United States)

    Riedel, M.; Göbel, G.; Parak, W. J.; Lisdat, F.

    2014-03-01

    Quantum dots allow the generation of charge carriers upon illumination. When these particles are attached to an electrode a photocurrent can be generated. This allows their use as a light-switchable layer on the surface. The QDs can not only exchange electronics with the electrode, but can also interact with donor or acceptor compounds in solution providing access to the construction of signal chains starting from an analytic molecule. The magnitude and the direction of the photocurrent depend on several factors such as electrode polarization, solution pH and composition. These defined dependencies have been evaluated with respect to the combination of QD-electrodes with enzyme reactions for sensorial purpose. CdSe/ZnS-QD-modified electrodes can be used to follow enzymatic reactions in solution based on the oxygen sensitivity. In order to develop a photoelectrochemical biosensor, e.g. glucose oxidase is immobilized on the CdSe/ZnS-electrode. One immobilization strategy applies the layer-by-layer-technique of GOD and a polyelectrolyte. Photocurrent measurements of such a sensor show a clear concentration dependent behavior. The principle of combing QD oxidase. The sensitivity of quantum dot electrodes can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be demonstrated that direct electron transfer from excited quantum dots can be achieved with the redox protein cytochrome c. This allows the detection of the protein, but also interaction partners such as a enzymes or superoxide.

  8. Construction of an integrated enzyme system consisting azoreductase and glucose 1-dehydrogenase for dye removal.

    Science.gov (United States)

    Yang, Yuyi; Wei, Buqing; Zhao, Yuhua; Wang, Jun

    2013-02-01

    Azo dyes are toxic and carcinogenic and are often present in industrial effluents. In this research, azoreductase and glucose 1-dehydrogenase were coupled for both continuous generation of the cofactor NADH and azo dye removal. The results show that 85% maximum relative activity of azoreductase in an integrated enzyme system was obtained at the conditions: 1U azoreductase:10U glucose 1-dehydrogenase, 250mM glucose, 1.0mM NAD(+) and 150μM methyl red. Sensitivity analysis of the factors in the enzyme system affecting dye removal examined by an artificial neural network model shows that the relative importance of enzyme ratio between azoreductase and glucose 1-dehydrogenase was 22%, followed by dye concentration (27%), NAD(+) concentration (23%) and glucose concentration (22%), indicating none of the variables could be ignored in the enzyme system. Batch results show that the enzyme system has application potential for dye removal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Process control of an ethanol fermentation with an enzyme thermistor as a sucrose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Mandenius, C F; Danielsson, B; Mattiasson, B

    1981-01-01

    An enzyme thermistor was used to monitor and control the sucrose concentration in a conversion of sucrose to EtOH with immobilized yeast. A continuous stirred tank reactor containing Ca alginate-immobilized Saccharomyces cerevisiae was used. The enzyme thermistor continuously measured the sucrose concentration in the fermentor with an online arrangement giving stable and reproducible heat signals. The control of the sucrose concentration level was performed with an analog P1-controller.

  10. Measuring a 10,000-fold enhancement of singlet molecular oxygen (1O2*) concentration on illuminated ice relative to the corresponding liquid solution

    Science.gov (United States)

    Bower, Jonathan P.; Anastasio, Cort

    2013-08-01

    Much attention has focused on the highly reactive hydroxyl radical in the oxidation of trace organic compounds on snow and ice (and subsequent release of volatile organics to the atmospheric boundary layer) but other oxidants are likely also important in this processing. Here we examine the ice chemistry of singlet molecular oxygen (1O2*), which can be significant in atmospheric water drops but has not been examined in ice or snow. To examine 1O2* on ice we illuminate laboratory ices containing Rose Bengal (RB) as the source of 1O2*, furfuryl alcohol (FFA) as the probe, and Na2SO4 to control the total solute concentration. We find that the 1O2*-mediated loss of FFA (and, thus, the 1O2* concentration) is up to 11,000 times greater on ice than in the equivalent liquid sample at the same photon flux. We attribute this large increase in the 1O2* steady-state concentration to the freeze-concentration of solutes into liquid-like regions (LLRs) in/on ice: compared to the initial solution, in the LLRs of ice the sources for 1O2* are highly concentrated, while the concentration of the dominant sink for 1O2* (i.e., water) remains largely unchanged. Similar to results expected in liquid solution, rates of FFA loss in ice depend on both the initial sensitizer concentration and temperature, providing evidence that these reactions occur in LLRs. However, we find that the enhancement in 1O2* concentrations on ice does not follow predictions from freezing-point depression, likely because experiments were conducted below the eutectic temperature for sodium sulfate, where all of the salt should have precipitated. We also explore a method for separating 1O2* and rad OH contributions to FFA oxidation in laboratory ices and show its application to two natural snow samples. We find that 1O2* concentrations in these snows are approximately 100 times higher than observed in polluted, mid-latitude fog waters, showing that the enhancement of 1O2* on ice is environmentally relevant and that

  11. Effect of Concentration on the Interfacial and Bulk Structure of Ionic Liquids in Aqueous Solution.

    Science.gov (United States)

    Cheng, H-W; Weiss, H; Stock, P; Chen, Y-J; Reinecke, C R; Dienemann, J-N; Mezger, M; Valtiner, M

    2018-02-27

    Bio and aqueous applications of ionic liquids (IL) such as catalysis in micelles formed in aqueous IL solutions or extraction of chemicals from biologic materials rely on surface-active and self-assembly properties of ILs. Here, we discuss qualitative relations of the interfacial and bulk structuring of a water-soluble surface-active IL ([C 8 MIm][Cl]) on chemically controlled surfaces over a wide range of water concentrations using both force probe and X-ray scattering experiments. Our data indicate that IL structuring evolves from surfactant-like surface adsorption at low IL concentrations, to micellar bulk structure adsorption above the critical micelle concentration, to planar bilayer formation in ILs with Interfacial structuring is controlled by mesoscopic bulk structuring at high water concentrations. Surface chemistry and surface charges decisively steer interfacial ordering of ions if the water concentration is low and/or the surface charge is high. We also demonstrate that controlling the interfacial forces by using self-assembled monolayer chemistry allows tuning of interfacial structures. Both the ratio of the head group size to the hydrophobic tail volume as well as the surface charging trigger the bulk structure and offer a tool for predicting interfacial structures. Based on the applied techniques and analyses, a qualitative prediction of molecular layering of ILs in aqueous systems is possible.

  12. Clean synthesis of biolubricant range esters using novel liquid lipase enzyme in solvent free medium.

    Science.gov (United States)

    Trivedi, Jayati; Aila, Mounika; Sharma, Chandra Dutt; Gupta, Piyush; Kaul, Savita

    2015-01-01

    In view of the rising global problems of environment pollution and degradation, the present process provides a 'green solution' to the synthesis of higher esters of lubricant range, more specifically in the range C12-C36, using different combinations of acids and alcohols, in a single step reaction. The esters produced are biodegradable in nature and have a plethora of uses, such as in additives, as lubricating oils and other hydraulic fluids. The enzymatic esterification was performed using liquid (non-immobilized or free) lipase enzyme, without any additional organic solvent. Soluble lipase proves to be superior to immobilized enzymes as it is more cost effective and provides a faster process for the production of higher esters of lubricant range. An interesting finding was, that the lipase enzyme showed higher conversion rates with increasing carbon number of straight chain alcohols and acids. Reactions were carried out for the optimization of initial water concentration, temperature, pH of the substrate mixture and the chain length of the substrates. Under optimized conditions, the method was suitable to achieve ~ 99% conversion. Thus, the process provides an environment friendly, enzymatic alternative to the chemical route which is currently used in the industrial synthesis of lubricant components.

  13. Study of thermal and chemical effects on cellulase enzymes: Viscosity measurements

    International Nuclear Information System (INIS)

    Ghaouar, N.; Aschi, A.; Belbahri, L.; Trabelsi, S.; Gharbi, A.

    2009-01-01

    The behaviour of cellulase enzymes in phosphate saline buffer has been studied over a wide range of temperatures and enzyme concentrations by using viscosity measurements. To characterize the conformation change of cellulase versus temperature and chemical denaturants, such as guanidinium chloride (GdmCl) and urea, the information about the intrinsic viscosity and the hydrodynamic radius are necessary. The dependence of the intrinsic viscosity and the hydrodynamic radius in its random coil conformation on temperature and denaturant concentration were studied. Our results and discussions are limited to the dilute regime of concentration because of abnormalities in conformation observed in the very dilute regime due to the presence of capillary absorption effects.

  14. Study of thermal and chemical effects on cellulase enzymes: Viscosity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ghaouar, N., E-mail: naoufel-ghaouar@lycos.co [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Institut National des Sciences Appliquees et de Technologie, INSAT, Centre Urbain Nord, BP. 676, Tunis (Tunisia); Aschi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Belbahri, L. [Agronomy Department, School of Engineering of Lullier, University of Applied Sciences of Western Switzerland, 150, Route de Presinge, 1254 Jussy (Switzerland); Trabelsi, S.; Gharbi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia)

    2009-11-15

    The behaviour of cellulase enzymes in phosphate saline buffer has been studied over a wide range of temperatures and enzyme concentrations by using viscosity measurements. To characterize the conformation change of cellulase versus temperature and chemical denaturants, such as guanidinium chloride (GdmCl) and urea, the information about the intrinsic viscosity and the hydrodynamic radius are necessary. The dependence of the intrinsic viscosity and the hydrodynamic radius in its random coil conformation on temperature and denaturant concentration were studied. Our results and discussions are limited to the dilute regime of concentration because of abnormalities in conformation observed in the very dilute regime due to the presence of capillary absorption effects.

  15. Synergism between ultrasonic pretreatment and white rot fungal enzymes on biodegradation of wheat chaff.

    Science.gov (United States)

    Sabarez, Henry; Oliver, Christine Maree; Mawson, Raymond; Dumsday, Geoff; Singh, Tanoj; Bitto, Natalie; McSweeney, Chris; Augustin, Mary Ann

    2014-11-01

    Lignocellulosic biomass samples (wheat chaff) were pretreated by ultrasound (US) (40kHz/0.5Wcm(-2)/10min and 400kHz/0.5Wcm(-2)/10min applied sequentially) prior to digestion by enzyme extracts obtained from fermentation of the biomass with white rot fungi (Phanerochaete chrysosporium or Trametes sp.). The accessibility of the cellulosic components in wheat chaff was increased, as demonstrated by the increased concentration of sugars produced by exposure to the ultrasound treatment prior to enzyme addition. Pretreatment with ultrasound increased the concentration of lignin degradation products (guaiacol and syringol) obtained from wheat chaff after enzyme addition. In vitro digestibility of wheat chaff was also enhanced by the ultrasonics pretreatment in combination with treatment with enzyme extracts. Degradation was enhanced with the use of a mixture of the enzyme extracts compared to that for a single enzyme extract. Copyright © 2014. Published by Elsevier B.V.

  16. Size determination of an equilibrium enzymic system by radiation inactivation

    International Nuclear Information System (INIS)

    Simon, P.; Swillens, S.; Dumont, J.E.

    1982-01-01

    Radiation inactivation of complex enzymic systems is currently used to determine the enzyme size and the molecular organization of the components in the system. An equilibrium model was simulated describing the regulation of enzyme activity by association of the enzyme with a regulatory unit. It is assumed that, after irradiation, the system equilibrates before the enzyme activity is assayed. The theoretical results show that the target-size analysis of these numerical data leads to a bad estimate of the enzyme size. Moreover, some implicit assumptions such as the transfer of radiation energy between non-covalently bound molecules should be verified before interpretation of target-size analysis. It is demonstrated that the apparent target size depends on the parameters of the system, namely the size and the concentration of the components, the equilibrium constant, the relative activities of free enzyme and enzymic complex, the existence of energy transfer, and the distribution of the components between free and bound forms during the irradiation. (author)

  17. The Use of Plasma-Derived Complement C1-Esterase Inhibitor Concentrate (Berinert®) in the Treatment of Angiotensin Converting Enzyme-Inhibitor Related Angioedema

    DEFF Research Database (Denmark)

    Hermanrud, Thorbjørn; Duus, Nicolaj; Bygum, Anette

    2016-01-01

    Angioedema of the upper airways is a severe and potentially life-threatening condition. The incidence has been increasing in the past two decades, primarily due to pharmaceuticals influencing the generation or degradation of the vasoactive molecule bradykinin. Plasma-derived C1-esterase inhibitor...... concentrate is a well-established treatment option of hereditary and acquired complement C1-esterase inhibitor deficiency, which are also mediated by an increased level of bradykinin resulting in recurrent angioedema. We here present a case of severe angiotensin converting enzyme-inhibitor related angioedema...

  18. Study on the Changes in Enzyme and Insulin-like Growth Factor-1 Concentrations in Blood Serum and Growth Characteristics of Velvet Antler during the Antler Growth Period in Sika Deer (

    Directory of Open Access Journals (Sweden)

    Jaehyun Park

    2015-09-01

    Full Text Available This study was conducted to investigate changes in blood enzyme parameters and to evaluate the relationship between insulin-like growth factor-1 (IGF-1, antler growth and body weight during the antler growth of sika deer (Cervus nippon. Serum enzyme activity and IGF-1 concentrations were measured in blood samples collected from the jugular and femoral veins at regular intervals during the antler growth period. Blood samples were taken in the morning from fasted stags (n = 12 which were healthy and showed no clinical signs of disease. Alfalfa was available ad libitum and concentrates were given at 1% of body weight to all stags. The experimental diet was provided at 9 am with water available at all times. There were no significant differences in alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase during antler growth, but alkaline phosphatase concentrations increased with antler growth progression, and the highest alkaline phosphatase concentration was obtained 55 days after antler casting. Serum IGF-1 concentrations measured from blood samples taken from the jugular vein during antler growth, determined that levels of IGF-1 was associated with body weight and antler growth patterns. Serum IGF-1 concentrations were higher at the antler cutting date than other sampling dates. Antler length increased significantly during antler growth (p<0.001, and there was a similar trend to between right and left beams. Body weight increased with antler growth but was not significant. Consequently it appeared that serum alkaline phosphatase concentration was related to antler growth and both antler growth and body weight were associated positively with IGF-1 concentrations during antler growth.

  19. Effect of applied voltage and initial concentration to desalting NaCl solution using electrodialysis

    International Nuclear Information System (INIS)

    Boubakri, Ali; Gzara, Lassaad; Dhahbi, Mahmoud; Bouguecha, Salah

    2009-01-01

    The desalination process of electrodialysis is one of membrane separation that competes with reverse osmosis for desalination of brackish water and seawater. In this work water desalination using a laboratory electrodialysis was performed and evaluated to desalting aqueous solutions containing 5000, 10000 and 20000 mg/L NaCl at different applied potential (10, 15 and 20 V) and at a constant flow rate of 3 L/min. Nine electrodialysis runs were performed. The results showed that the increasing of applied potential and decreasing of NaCl concentration have an important effect to enhance the electrodialysis performance. The efficiencies of each experiment were evaluated as function of specific power consumption with the electrical energy consumed in electrodialysis stack. It was obtained that the specific power consumption increased when the salt concentration and applied voltage increased. A laboratory electrodialysis stack containing fifteen cation exchange membranes and fifteen anion exchange membranes of 0,716 m 2 total effective area was used.

  20. PENGARUH DEGRADASI ENZIM PROTEOLITIK TERHADAP AKTIVITAS ANGIOTENSIN CONVERTING ENZYME INHIBITOR BEKASAM DENGAN Lactobacillus plantarum B1765 (The Effect of Degradation of Proteolitic Enzyme on Angiotensin Converting Enzyme Inhibitor Activity of Bekasam with Lactobacillus plantarum B1765

    Directory of Open Access Journals (Sweden)

    Prima Retno Wikandari

    2016-10-01

    Full Text Available This research studied the effect of digestive enzyme degradation on the Angiotensin Converting Enzyme Inhibitor (ACEI activity and the stability of bekasam peptide and ACEI activity. Water extract of bekasam was subjected to pepsin and trypsin. The stability of peptide was measured from the changes of peptide concentration before and after treatment by those enzymes. The stability of ACEI activity was measured by hypuric acid liberated from Hip-His-Leu as ACE substrate and determined by spectrophotometer. The results showed that proteolytic enzyme degradation did not affect the concentration of peptide (p>0,05 and the mean concentration 36.72. It was closely related with the ACEI activity that did not change significantly before and after digestion by pepsin and trypsin (p>0,05 and the mean ACEI activity was 70.73. It showed that ACEI activity of bekasam did not change by the degradation of digestive enzyme. Keywords: bekasam, fermented fish, peptides, ACEI activity ABSTRAK Penelitian ini bertujuan untuk mengkaji pengaruh degradasi enzim pencernaan proteolitik terhadap stabilitas peptida dan aktivitas Angiotensin Converting Enzyme Inhibitor (ACEI bekasam yang difermentasi dengan kultur starter Lactobacillus plantarum B1765. Terhadap ekstrak bekasam diberi perlakuan enzim proteolitik pepsin dan tripsin. Pengujian stabilitas peptida diukur dengan ada tidaknya perubahan jumlah peptida setelah perlakuan enzim menggunakan metode formol, sedangkan aktivitas ACEI dilakukan dengan mengetahui jumlah asam hipurat dari substrat Hip-His-Leu yang dibebaskan oleh ACE diukur dengan spektrofotometer. Hasil pengujian menunjukkan perlakuan enzim proteolitik tidak berpengaruh pada konsentrasi peptida dengan p>0,05 dengan nilai rata-rata konsentrasi peptida sebesar 36,72. Hal ini berkorelasi dengan aktivitas ACEI yang juga menunjukkan tidak ada pengaruh antara perlakuan sebelum dan setelah degradasi enzim (p>0,05 dengan rata-rata aktivitas ACEI sebesar 70,73. Hasil

  1. On using rational enzyme redesign to improve enzyme-mediated microbial dehalogenation of recalcitrant substances in deep-subsurface environments

    International Nuclear Information System (INIS)

    Ornstein, R.L.

    1993-06-01

    Heavily halogenated hydrocarbons are one of the most prevalent classes of man-made recalcitrant environmental contaminants and often make their way into subsurface environments. Biodegradation of heavily chlorinated compounds in the deep subsurface often occurs at extremely slow rates because native enzymes of indigenous microbes are unable to efficiently metabolize such synthetic substances. Cost-effective engineering solutions do not exist for dealing with disperse and recalcitrant pollutants in the deep subsurface (i.e., ground water, soils, and sediments). Timely biodegradation of heavily chlorinated compounds in the deep subsurface may be best accomplished by rational redesign of appropriate enzymes that enhance the ability of indigenous microbes to metabolize these substances. The isozyme family cytochromes P450 are catalytically very robust and are found in all aerobic life forms and may be active in may anaerobes as well. The author is attempting to demonstrate proof-of-principle rational enzyme redesign of cytochromes P450 to enhance biodehalogenation

  2. Interaction of Thermus thermophilus ArsC enzyme and gold nanoparticles naked-eye assays speciation between As(III) and As(V)

    International Nuclear Information System (INIS)

    Politi, Jane; De Stefano, Luca; Spadavecchia, Jolanda; Casale, Sandra; Fiorentino, Gabriella; Antonucci, Immacolata

    2015-01-01

    The thermophilic bacterium Thermus thermophilus HB27 encodes chromosomal arsenate reductase (TtArsC), the enzyme responsible for resistance to the harmful effects of arsenic. We report on adsorption of TtArsC onto gold nanoparticles for naked-eye monitoring of biomolecular interaction between the enzyme and arsenic species. Synthesis of hybrid biological–metallic nanoparticles has been characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV–vis), dynamic light scattering (DLS) and phase modulated infrared reflection absorption (PM-IRRAS) spectroscopies. Molecular interactions have been monitored by UV–vis and Fourier transform-surface plasmon resonance (FT-SPR). Due to the nanoparticles’ aggregation on exposure to metal salts, pentavalent and trivalent arsenic solutions can be clearly distinguished by naked-eye assay, even at 85 μM concentration. Moreover, the assay shows partial selectivity against other heavy metals. (paper)

  3. Properties of concentrated plutonium nitrate solutions

    International Nuclear Information System (INIS)

    Gray, J.H.; Swanson, J.L.

    1978-01-01

    Selected properties were measured for solutions containing about 500 and 700 g/l plutonium (IV) in 4--5M nitric acid: density, viscosity, vapor pressure, boiling point, radiolytic gas (H 2 ) evolution rates, and corrosion rate on Ti and 304L stainless steel. Pu solubility was determined to be 550 to 800 g/l in 2.5 to 7M HNO 3 at ambient temperature and 820 to 860 g/l in 3M HNO 3 at 50 0 C

  4. Process for treatment of pyrochlore concentrates

    International Nuclear Information System (INIS)

    Charlot, G.

    1976-01-01

    A continuous process is described for extraction of niobium, rare earths and thorium from niobium ore concentrates which includes digesting the ore with a hot solution containing 13 to 16 moles of sulphuric acid per liter, diluting the solution to a concentration of 10 to 13 moles of sulphuric acid per liter, separating the insolubles from the solution which includes alkaline earth sulphates and the sulphates of thorium and rare earths that are present, reducing titanium in solution to the trivalent state and diluting the solution to a concentration of 5 to 7 moles of sulphuric acid per liter, separating the precipitated niobium oxide and sulphates of thorium and rare earths, and then concentrating the resulting solution to the level desired for recycle to the digestion stage. 10 Claims, No Drawings

  5. Use of Tethered Enzymes as a Platform Technology for Rapid Analyte Detection

    Science.gov (United States)

    Cohen, Roy; Lata, James P.; Lee, Yurim; Hernández, Jean C. Cruz; Nishimura, Nozomi; Schaffer, Chris B.; Mukai, Chinatsu; Nelson, Jacquelyn L.; Brangman, Sharon A.; Agrawal, Yash; Travis, Alexander J.

    2015-01-01

    Background Rapid diagnosis for time-sensitive illnesses such as stroke, cardiac arrest, and septic shock is essential for successful treatment. Much attention has therefore focused on new strategies for rapid and objective diagnosis, such as Point-of-Care Tests (PoCT) for blood biomarkers. Here we use a biomimicry-based approach to demonstrate a new diagnostic platform, based on enzymes tethered to nanoparticles (NPs). As proof of principle, we use oriented immobilization of pyruvate kinase (PK) and luciferase (Luc) on silica NPs to achieve rapid and sensitive detection of neuron-specific enolase (NSE), a clinically relevant biomarker for multiple diseases ranging from acute brain injuries to lung cancer. We hypothesize that an approach capitalizing on the speed and catalytic nature of enzymatic reactions would enable fast and sensitive biomarker detection, suitable for PoCT devices. Methods and findings We performed in-vitro, animal model, and human subject studies. First, the efficiency of coupled enzyme activities when tethered to NPs versus when in solution was tested, demonstrating a highly sensitive and rapid detection of physiological and pathological concentrations of NSE. Next, in rat stroke models the enzyme-based assay was able in minutes to show a statistically significant increase in NSE levels in samples taken 1 hour before and 0, 1, 3 and 6 hours after occlusion of the distal middle cerebral artery. Finally, using the tethered enzyme assay for detection of NSE in samples from 20 geriatric human patients, we show that our data match well (r = 0.815) with the current gold standard for biomarker detection, ELISA—with a major difference being that we achieve detection in 10 minutes as opposed to the several hours required for traditional ELISA. Conclusions Oriented enzyme immobilization conferred more efficient coupled activity, and thus higher assay sensitivity, than non-tethered enzymes. Together, our findings provide proof of concept for using

  6. Stress corrosion cracking of X80 pipeline steel exposed to high pH solutions with different concentrations of bicarbonate

    Science.gov (United States)

    Fan, Lin; Du, Cui-wei; Liu, Zhi-yong; Li, Xiao-gang

    2013-07-01

    Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HCO{3/-} at a passive potential of -0.2 V vs. SCE were investigated by slow strain rate tensile (SSRT) test. The SCC mechanism and the effect of HCO{3/-} were discussed with the aid of electrochemical techniques. It is indicated that X80 steel shows enhanced susceptibility to SCC with the concentration of HCO{3/-} increasing from 0.15 to 1.00 mol/L, and the susceptibility can be evaluated in terms of current density at -0.2 V vs. SCE. The SCC behavior is controlled by the dissolution-based mechanism in these circumstances. Increasing the concentration of HCO{3/-} not only increases the risk of rupture of passive films but also promotes the anodic dissolution of crack tips. Besides, little susceptibility to SCC is found in dilute solution containing 0.05 mol/L HCO{3/-} for X80 steel. This can be attributed to the inhibited repassivation of passive films, manifesting as a more intensive dissolution in the non-crack tip areas than at the crack tips.

  7. Chemical concentration of a new natural spontaneously fissionable nuclide from solutions with low salt background

    International Nuclear Information System (INIS)

    Korotkin, Yu.S.; Ter-Akop'yan, G.M.; Popeko, A.G.; Drobina, T.P.; Zhuravleva, E.L.

    1982-01-01

    The results of experiments on further concentration of a new natural spontaneously fissionable nuclide, the concentrates of which form the Cheleken geothermal brines have been obtained, are presented. The conclusions are drown about the chemical nature of a new spontaneously fissionable nuclide. It is a chalcophile element which copreipitates with sulphides of copper, lead, arsenic and mercury from weakly acid solutions. The behaviour of the new nuclide in sulphide systems in many respects is similar to the behaviour of polonium, astatine and probably of bismuth. The most probable stable valence of the new nuclide varies from +1 up to +3. The data available on the chemical behaviour of the new nuclide as well as the analysis over contamination by spontaneously fissionable isotopes permit to state that the new natural spontaneously fissionable nuclide does not relate to the known isotopes

  8. A simple model for predicting solute concentration in agricultural tile lines shortly after application

    Directory of Open Access Journals (Sweden)

    T. S. Steenhuis

    1997-01-01

    Full Text Available Agricultural tile drainage lines have been implicated as a source of pesticide contamination of surface waters. Field experiments were conducted and a simple model was developed to examine preferential transport of applied chemicals to agricultural tile lines. The conceptual model consists of two linear reservoirs, one near the soil surface and one near the tile drain. The connection between the two reservoirs is via preferential flow paths with very little interaction with the soil matrix. The model assumes that only part of the field contributes solutes to the tile drain. The model was evaluated with data from the field experiments in which chloride, 2,4-D, and atrazine concentrations were measured on eight tile-drained plots that were irrigated twice. Atrazine was applied two months prior to the experiment, 2,4-D was sprayed just before the first irrigation, and chloride before the second irrigation. All three chemicals were found in the tile effluent shortly after the rainfall began. Generally, the concentration increased with increased flow rates and decreased exponentially after the rainfall ceased. Although the simple model could simulate the observed chloride concentration patterns in the tile outflow for six of the eight plots, strict validation was not possible because of the difficulty with independent measurement of the data needed for a preferential flow model applied to field conditions. The results show that, to simulate pesticide concentration in tile lines, methods that can measure field averaged preferential flow characteristics need to be developed.

  9. Applying neural networks as software sensors for enzyme engineering.

    Science.gov (United States)

    Linko, S; Zhu, Y H; Linko, P

    1999-04-01

    The on-line control of enzyme-production processes is difficult, owing to the uncertainties typical of biological systems and to the lack of suitable on-line sensors for key process variables. For example, intelligent methods to predict the end point of fermentation could be of great economic value. Computer-assisted control based on artificial-neural-network models offers a novel solution in such situations. Well-trained feedforward-backpropagation neural networks can be used as software sensors in enzyme-process control; their performance can be affected by a number of factors.

  10. Dense medium ore concentrates of Bois-Noirs; Minerais des bois noirs, concentres de milieu dense

    Energy Technology Data Exchange (ETDEWEB)

    Le Bris, J; Leduc, M

    1959-01-20

    The chemical treatment of uranium concentrates of Bois-Noirs ore obtained by heavy medium are discussed. The first part deals with sulfuric acid attack on the concentrate, and the second part with the separation of the solution from residues by filtration. A third part deals with this separation by decantation. The fourth part deals with the carbonation of the pickling solutions obtained. (author) [French] Le present rapport est relatif a l'etude du traitement chimique de concentres uraniferes de minerais des Bois-Noirs obtenus par milieu dense. Une premiere partie est consacree a l'attaque sulfurique des concentres, une deuxieme partie a Ia separation de Ia solution d'attaque des residus par decantation. Une quatrieme partie a la carbonatation des solutions d'attaque obtenues. (auteur)

  11. Enzyme-assisted peeling of cold water shrimps (Pandalus borealis)

    DEFF Research Database (Denmark)

    Dang, Tem Thi; Gringer, Nina; Jessen, Flemming

    2018-01-01

    An enzymatic method to facilitate the peeling of cold water shrimps (Pandalus borealis) was developed. The protease solutions were used to mature the shrimps to promote shell-loosening prior to peeling. The efficiency of peeling enzyme-treated shrimps was evaluated by a new quantitative measurement......L and 0.25% Exocut-A0 for 20 h resulted in the best peeling of shrimps (100% completely peeled shrimps, 3 mJ/g work and 89% meat yield). Reuse of the enzyme solution was possible due to a 95% retention rate of proteolytic activity after two 20-h cycles of maturation. The studied enzymatic maturation...... of shrimp. This approach would benefit the shrimp processing industry by 1) enhancing peeling efficiency that includes least efforts to remove the shell, high rate of completely peeled shrimps and high meat yield; 2) shortening the duration of maturation but still sufficiently loosening the shell...

  12. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    Science.gov (United States)

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Photobiodegradation of chlorinated water pollutants by a combined TiO2-polyaniline-enzyme catalytic system

    Science.gov (United States)

    Campanella, Luigi; Crescentini, G.; Militerno, S.

    1995-10-01

    The removal of xenobiotic compounds, such as chlorophenols and pesticides, from municipal and industrial wastewaters is an important task because of the toxicity and the tendency to bioaccumulation of these compounds. Among the several methods proposed, photodegradation catalyzed by suspended inorganic semiconductors (i.e. TiO2) has lately received wide attention because this process is fast, leads to non-toxic final products and shows a high degradation efficiency. In this work, the results obtained in the photodegradation of monochlorophenols using a new catalyst, made of TiO2 and polyaniline both immobilized on a polyvinylchloride (PVC) membrane, in presence (and in absence) of an enzyme are presented. Different enzymes have been tested by adding 5, 10 or 15 U/mL to 50 mL of aqueous solution (1 multiplied by 10-4 mol/L) of o-chloro-phenol containing the catalytic membrane. The samples were irradiated using a QUV panel accelerated weathering tester, which simulates very well the solar radiation up to lambda equals 400 nm and HPLC was used to measure the variation of the compound's concentration with the time. While some enzymes (i.e., peroxidase) do not improve the photodegradation process since they do not survive under the irradiation conditions used, some of them show marked effect both in terms of rate degradation and time required to reach the total degradation of the compound examined. For example, the addition of Laccase reduces the 100% degradation time from 35 hrs to about 20 hrs. Attempts to immobilize the enzyme on the catalytic membrane (by adsorption) have been carried out and the performance of the catalyst with non-immobilized and immobilized enzyme has been studied.

  14. Enhancement of Biogas Production from Rice Husk by NaOH and Enzyme Pretreatment

    Directory of Open Access Journals (Sweden)

    Syafrudin

    2018-01-01

    Full Text Available Biogas is a renewable energy source that can be used as an alternative fuel to replace fossil fuel such as oil and natural gas. This research aims to analyze the impact of NaOH (Sodium hydroxide and enzyme usage on the production of rice husk biogas using Solid State Anaerobic Digestion (SS-AD. Generally, SS-AD occurs at solid concentrations higher than 15%. The waste of rice husk are used as substrate with a C/N ratio of 25% and the total of solid that are used is 21%. Rice husk contains high lignin, therefore it is handled with chemical and biological treatment. The chemical preliminary treatment was using NaOH with various concentrations from 3%, 6% and 9% while the biological preliminary treatment was using enzyme with various concentration from 5%, 8%, and 11%. The biogas that is produced then measured every two days during 60 days of research with the biogas volume as a parameter observed. The result of the research shows that preliminary treatment with NaOH and enzyme can increase the production of biogas. The highest biogas production was obtained by the NaOH pretreatment using 6% NaOH which was 497 ml and by enzyme pretreatment using 11% enzyme which was 667,5 ml.

  15. Enhancement of Biogas Production from Rice Husk by NaOH and Enzyme Pretreatment

    Science.gov (United States)

    Syafrudin; Nugraha, Winardi Dwi; Agnesia, Shandy Sarima; Matin, Hashfi Hawali Abdul; Budiyono

    2018-02-01

    Biogas is a renewable energy source that can be used as an alternative fuel to replace fossil fuel such as oil and natural gas. This research aims to analyze the impact of NaOH (Sodium hydroxide) and enzyme usage on the production of rice husk biogas using Solid State Anaerobic Digestion (SS-AD). Generally, SS-AD occurs at solid concentrations higher than 15%. The waste of rice husk are used as substrate with a C/N ratio of 25% and the total of solid that are used is 21%. Rice husk contains high lignin, therefore it is handled with chemical and biological treatment. The chemical preliminary treatment was using NaOH with various concentrations from 3%, 6% and 9% while the biological preliminary treatment was using enzyme with various concentration from 5%, 8%, and 11%. The biogas that is produced then measured every two days during 60 days of research with the biogas volume as a parameter observed. The result of the research shows that preliminary treatment with NaOH and enzyme can increase the production of biogas. The highest biogas production was obtained by the NaOH pretreatment using 6% NaOH which was 497 ml and by enzyme pretreatment using 11% enzyme which was 667,5 ml.

  16. δ- and δ'-shock wave types of singular solutions of systems of conservation laws and transport and concentration processes

    International Nuclear Information System (INIS)

    Shelkovich, V M

    2008-01-01

    This is a survey of some results and problems connected with the theory of generalized solutions of quasi-linear conservation law systems which can admit delta-shaped singularities. They are the so-called δ-shock wave type solutions and the recently introduced δ (n) -shock wave type solutions, n=1,2,..., which cannot be included in the classical Lax-Glimm theory. The case of δ- and δ'-shock waves is analyzed in detail. A specific analytical technique is developed to deal with such solutions. In order to define them, some special integral identities are introduced which extend the concept of weak solution, and the Rankine-Hugoniot conditions are derived. Solutions of Cauchy problems are constructed for some typical systems of conservation laws. Also investigated are multidimensional systems of conservation laws (in particular, zero-pressure gas dynamics systems) which admit δ-shock wave type solutions. A geometric aspect of such solutions is considered: they are connected with transport and concentration processes, and the balance laws of transport of 'volume' and 'area' to δ- and δ'-shock fronts are derived for them. For a 'zero-pressure gas dynamics' system these laws are the mass and momentum transport laws. An algebraic aspect of these solutions is also considered: flux-functions are constructed for them which, being non-linear, are nevertheless uniquely defined Schwartz distributions. Thus, a singular solution of the Cauchy problem generates algebraic relations between its components (distributions).

  17. Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Sayali; Ballal, Anand; Apte, Shree Kumar, E-mail: aptesk@barc.gov.in

    2013-11-15

    Highlights: • Deinococcus radiodurans was genetically engineered to overexpress alkaline phosphatase (PhoK). • Deino-PhoK bioprecipitated U efficiently over a wide range of input U concentration. • A maximal loading of 10.7 g U/g of biomass at 10 mM input U was observed. • Radioresistance and U precipitation by Deino-PhoK remained unaffected by γ radiation. • Immobilization of Deino-PhoK facilitated easy separation of precipitated U. -- Abstract: Bioremediation of uranium (U) from alkaline waste solutions remains inadequately explored. We engineered the phoK gene (encoding a novel alkaline phosphatase, PhoK) from Sphingomonas sp. for overexpression in the radioresistant bacterium Deinococcus radiodurans. The recombinant strain thus obtained (Deino-PhoK) exhibited remarkably high alkaline phosphatase activity as evidenced by zymographic and enzyme activity assays. Deino-PhoK cells could efficiently precipitate uranium over a wide range of input U concentrations. At low uranyl concentrations (1 mM), the strain precipitated >90% of uranium within 2 h while a high loading capacity of around 10.7 g U/g of dry weight of cells was achieved at 10 mM U concentration. Uranium bioprecipitation by Deino-PhoK cells was not affected in the presence of Cs and Sr, commonly present in intermediate and low level liquid radioactive waste, or after exposure to very high doses of ionizing radiation. Transmission electron micrographs revealed the extracellular nature of bioprecipitated U, while X-ray diffraction and fluorescence analysis identified the precipitated uranyl phosphate species as chernikovite. When immobilized into calcium alginate beads, Deino-PhoK cells efficiently removed uranium, which remained trapped in beads, thus accomplishing physical separation of precipitated uranyl phosphate from solutions. The data demonstrate superior ability of Deino-PhoK, over earlier reported strains, in removal of uranium from alkaline solutions and its potential use in

  18. Lead and PCB's in canvasback ducks: Relationship between enzyme levels and residues in blood

    Science.gov (United States)

    Dieter, M.P.; Perry, M.C.; Mulhern, B.M.

    1976-01-01

    Blood samples were taken for two successive years from canvasback ducks trapped in the Chesapeake Bay. The first winter (1972?1973) five plasma enzymes known to respond to organochlorine poisoning were examined. Abnormal enzyme elevations suggested that 20% of the population sampled (23/115 ducks) might contain organochlorine contaminants, but no residue analyses were performed. The second winter (1974) two of the same enzymes, aspartate aminotransferase and lactate dehydrogenase, and a third enzyme known to be specifically inhibited by lead, delta-aminolevulinic acid dehydratase, were assayed in 95 blood samples. Blood residues of organochlorine compounds and of lead were determined in representative samples, and the correlations between residue levels and enzyme changes were examined. The enzyme bioassays in 1974 indicated that lead was a more prevalent environmental contaminant than organochlorine compounds in canvasback ducks; 17% of the blood samples had less than one-half of the normal delta-aminolevulinic acid dehydratase activity, but only 11% exhibited abnormal aspartate aminotransferase or lactate dehydrogenase activities. These findings were confirmed by residue analyses that demonstrated lead concentrations four times higher than background levels, but only relatively low organochlorine concentrations. There was a highly significant inverse correlation between delta-aminolevulinic acid dehydratase activity and blood lead concentrations (Pcontamination in waterfowl. In canvasback ducks 200 ppb of lead in the blood caused a 75% decrease in delta-aminolevulinic acid dehydratase activity, a magnitude of enzyme inhibition that disturbs heme synthesis and is regarded as detrimental in humans.

  19. Comparison of multi-enzyme and thermophilic bacteria on the hydrolysis of mariculture organic waste (MOW).

    Science.gov (United States)

    Guo, Liang; Sun, Mei; Zong, Yan; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2016-01-01

    Mariculture organic waste (MOW) is rich in organic matter, which is a potential energy resource for anaerobic digestion. In order to enhance the anaerobic fermentation, the MOW was hydrolyzed by multi-enzyme and thermophilic bacteria. It was advantageous for soluble chemical oxygen demand (SCOD) release at MOW concentrations of 6 and 10 g/L with multi-enzyme and thermophilic bacteria pretreatments. For multi-enzyme, the hydrolysis was not obvious at substrate concentrations of 1 and 3 g/L, and the protein and carbohydrate increased with hydrolysis time at substrate concentrations of 6 and 10 g/L. For thermophilic bacteria, the carbohydrate was first released at 2-4 h and then consumed, and the protein increased with hydrolysis time. The optimal enzyme hydrolysis for MOW was determined by measuring the changes of SCOD, protein, carbohydrate, ammonia and total phosphorus, and comparing with acid and alkaline pretreatments.

  20. Modeling of pharmacokinetics of cocaine in human reveals the feasibility for development of enzyme therapies for drugs of abuse.

    Directory of Open Access Journals (Sweden)

    Fang Zheng

    Full Text Available A promising strategy for drug abuse treatment is to accelerate the drug metabolism by administration of a drug-metabolizing enzyme. The question is how effectively an enzyme can actually prevent the drug from entering brain and producing physiological effects. In the present study, we have developed a pharmacokinetic model through a combined use of in vitro kinetic parameters and positron emission tomography data in human to examine the effects of a cocaine-metabolizing enzyme in plasma on the time course of cocaine in plasma and brain of human. Without an exogenous enzyme, cocaine half-lives in both brain and plasma are almost linearly dependent on the initial cocaine concentration in plasma. The threshold concentration of cocaine in brain required to produce physiological effects has been estimated to be 0.22±0.07 µM, and the threshold area under the cocaine concentration versus time curve (AUC value in brain (denoted by AUC2(∞ required to produce physiological effects has been estimated to be 7.9±2.7 µM·min. It has been demonstrated that administration of a cocaine hydrolase/esterase (CocH/CocE can considerably decrease the cocaine half-lives in both brain and plasma, the peak cocaine concentration in brain, and the AUC2(∞. The estimated maximum cocaine plasma concentration which a given concentration of drug-metabolizing enzyme can effectively prevent from entering brain and producing physiological effects can be used to guide future preclinical/clinical studies on cocaine-metabolizing enzymes. Understanding of drug-metabolizing enzymes is key to the science of pharmacokinetics. The general insights into the effects of a drug-metabolizing enzyme on drug kinetics in human should be valuable also in future development of enzyme therapies for other drugs of abuse.