WorldWideScience

Sample records for solution deposition technique

  1. Chemical solution deposition techniques for epitaxial growth of complex oxides

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Koster, G.; Huijben, Mark; Rijnders, G.

    2015-01-01

    The chemical solution deposition (CSD) process is a wet-chemical process that is employed to fabricate a wide variety of amorphous and crystalline oxide thin films. This chapter describes the typical steps in a CSD process and their influence on the final microstructure and properties of films, and

  2. Uranium solution mining cost estimating technique: means for rapid comparative analysis of deposits

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Twelve graphs provide a technique for determining relative cost ranges for uranium solution mining projects. The use of the technique can provide a consistent framework for rapid comparative analysis of various properties of mining situations. The technique is also useful to determine the sensitivities of cost figures to incremental changes in mining factors or deposit characteristics

  3. Influence of solution deposition rate on properties of V_2O_5 thin films deposited by spray pyrolysis technique

    International Nuclear Information System (INIS)

    Abd–Alghafour, N. M.; Ahmed, Naser M.; Hassan, Zai; Mohammad, Sabah M.

    2016-01-01

    Vanadium oxide (V_2O_5) thin films were deposited on glass substrates by using a cost-efficient spray pyrolysis technique. The films were grown at 350° through thermal decomposition of VCl_3 in deionized water with different solution spray rates. The high resolution X-ray diffraction results revealed the formation of nanocrystalline films having orthorhombic structures with preferential orientation along (101) direction. The spray rate influenced the surface morphology and crystallite size of the films. The crystallite size was found to increase whereas the micro-strain was decreased by increasing the spray deposition rates. The increase in crystallite size and decrease in the macrostrain resulted in an improvement in the films’ crystallinity. The UV-Visible spectroscopy analysis indicated that the average transmittance of all films lies in the range 75-80 %. The band gap of V_2O_5 film was decreased from 2.65 to 2.46 eV with increase of the spray deposition rate from 5 ml/min to 10 ml/min. first, second, and third level headings (first level heading).

  4. Growth, structural, optical and electrical study of ZnS thin films deposited by solution growth technique (SGT)

    International Nuclear Information System (INIS)

    Sadekar, H.K.; Deshpande, N.G.; Gudage, Y.G.; Ghosh, A.; Chavhan, S.D.; Gosavi, S.R.; Sharma, Ramphal

    2008-01-01

    ZnS thin films have been deposited onto glass substrates at temperature 90 deg. C by solution growth technique (SGT). The deposition parameters were optimized. Triethanolamine (TEA) was used as a complexing agent for uniform deposition of the thin films. The elemental composition of the film was confirmed by energy dispersive analysis by X-ray (EDAX) technique. Structure and surface morphology of as-deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), atomic force microscopy (AFM), respectively. XRD patterns reveal that as-deposited thin films were amorphous in nature; while the obtained precipitate powder was polycrystalline in nature. SEM results revealed that deposited ZnS material has ∼120 ± 20 nm average grain size and the spherical grains are distributed over the entire glass substrate. Low surface roughness was found to be 2.7 nm from AFM studies. Transmission spectra indicate a high transmission coefficient (∼75%) with direct band gap energy equal to 3.72 eV while indirect band gap was found to be 3.45 eV. A photoluminescence (PL) study of the ZnS at room temperature (300 K) indicates a strong luminescence band at energy 2.02 eV

  5. Growth, structural, optical and electrical study of ZnS thin films deposited by solution growth technique (SGT)

    Energy Technology Data Exchange (ETDEWEB)

    Sadekar, H K [Arts, Commerce and Science college, Sonai 414105 (M.S.) (India); Thin film and Nanotechnology Laboratory, Department of Physics, Dr. B.A.M. University, Aurangabad 431004 (M.S.) (India); Deshpande, N G; Gudage, Y G; Ghosh, A; Chavhan, S D; Gosavi, S R [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. B.A.M. University, Aurangabad 431004 (M.S.) (India); Sharma, Ramphal [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. B.A.M. University, Aurangabad 431004 (M.S.) (India)

    2008-04-03

    ZnS thin films have been deposited onto glass substrates at temperature 90 deg. C by solution growth technique (SGT). The deposition parameters were optimized. Triethanolamine (TEA) was used as a complexing agent for uniform deposition of the thin films. The elemental composition of the film was confirmed by energy dispersive analysis by X-ray (EDAX) technique. Structure and surface morphology of as-deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), atomic force microscopy (AFM), respectively. XRD patterns reveal that as-deposited thin films were amorphous in nature; while the obtained precipitate powder was polycrystalline in nature. SEM results revealed that deposited ZnS material has {approx}120 {+-} 20 nm average grain size and the spherical grains are distributed over the entire glass substrate. Low surface roughness was found to be 2.7 nm from AFM studies. Transmission spectra indicate a high transmission coefficient ({approx}75%) with direct band gap energy equal to 3.72 eV while indirect band gap was found to be 3.45 eV. A photoluminescence (PL) study of the ZnS at room temperature (300 K) indicates a strong luminescence band at energy 2.02 eV.

  6. Modeling drain current of indium zinc oxide thin film transistors prepared by solution deposition technique

    Science.gov (United States)

    Qiang, Lei; Liang, Xiaoci; Cai, Guangshuo; Pei, Yanli; Yao, Ruohe; Wang, Gang

    2018-06-01

    Indium zinc oxide (IZO) thin film transistor (TFT) deposited by solution method is of considerable technological interest as it is a key component for the fabrication of flexible and cheap transparent electronic devices. To obtain a principal understanding of physical properties of solution-processed IZO TFT, a new drain current model that account for the charge transport is proposed. The formulation is developed by incorporating the effect of gate voltage on mobility and threshold voltage with the carrier charges. It is demonstrated that in IZO TFTs the below threshold regime should be divided into two sections: EC - EF > 3kT and EC - EF ≤ 3kT, where kT is the thermal energy, EF and EC represent the Fermi level and the conduction band edge, respectively. Additionally, in order to describe conduction mechanisms more accurately, the extended mobility edge model is conjoined, which can also get rid of the complicated and lengthy computations. The good agreement between measured and calculated results confirms the efficiency of this model for the design of integrated large-area thin film circuits.

  7. Growth and characterization of yttrium iron garnet films on Si substrates by Chemical Solution Deposition (CSD) technique

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xin; Chen, Ying; Wang, Genshui [Key Laboratory of Inorganic Function Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 1295 Dingxi Rd., Shanghai 200050 (China); Zhang, Yuanyuan [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, 500 Dongchuan Rd., Shanghai 200241 (China); Ge, Jun [Key Laboratory of Inorganic Function Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 1295 Dingxi Rd., Shanghai 200050 (China); Tang, Xiaodong [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, 500 Dongchuan Rd., Shanghai 200241 (China); Ponchel, Freddy; Rémiens, Denis [Institute of Electronics, Microelectronics and Nanotechnology (IEMN)–DOAE, UMR CNRS 8520, Université des Sciences et Technologies de Lille, 59652 Villeneuve d’Ascq Cedex (France); Dong, Xianlin, E-mail: xldong@mail.sic.ac.cn [Key Laboratory of Inorganic Function Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 1295 Dingxi Rd., Shanghai 200050 (China)

    2016-06-25

    Yttrium Iron Garnet (YIG) films were prepared on Si substrates by Chemical Solution Deposition (CSD) technique using acetic acid and deionized water as solvents. Well-crystallized and crack-free YIG films were obtained when annealed at 750 °C and 850 °C respectively, showing a low surface roughness of several nanometers. When annealed at 750 °C for 30 min, the saturated magnetization (Ms) and coercive field (Hc) of YIG films were 0.121 emu/mm{sup 3} (4πMs = 1.52 kGs) and 7 Oe respectively, which were similar to that prepared by PLD technique. The peak-to-peak linewidth of ferromagnetic resonance (FMR) was 220 Oe at 9.10 GHz. The results demonstrated that CSD was an excellent technique to prepare high quality yttrium iron garnet (YIG) films on silicon, which could provide a lower-cost way for large-scale production on Si-based integrated devices. - Highlights: • The preparation of YIG films by Chemical Solution Deposition are demonstrated. • Well-crystallized and crack-free YIG films can be obtained on Si substrate by CSD. • YIG films can be crystallized in 750 °C with good magnetic performances. • It's beneficial to large-scale production of YIG films on Si integrated devices.

  8. Influence of solution deposition rate on properties of V{sub 2}O{sub 5} thin films deposited by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Abd–Alghafour, N. M., E-mail: na2013bil@gmail.com [Iraqi Ministry of Education, Anbar (Iraq); Ahmed, Naser M.; Hassan, Zai; Mohammad, Sabah M. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, University Sains Malaysia,11800 Penang (Malaysia)

    2016-07-19

    Vanadium oxide (V{sub 2}O{sub 5}) thin films were deposited on glass substrates by using a cost-efficient spray pyrolysis technique. The films were grown at 350° through thermal decomposition of VCl{sub 3} in deionized water with different solution spray rates. The high resolution X-ray diffraction results revealed the formation of nanocrystalline films having orthorhombic structures with preferential orientation along (101) direction. The spray rate influenced the surface morphology and crystallite size of the films. The crystallite size was found to increase whereas the micro-strain was decreased by increasing the spray deposition rates. The increase in crystallite size and decrease in the macrostrain resulted in an improvement in the films’ crystallinity. The UV-Visible spectroscopy analysis indicated that the average transmittance of all films lies in the range 75-80 %. The band gap of V{sub 2}O{sub 5} film was decreased from 2.65 to 2.46 eV with increase of the spray deposition rate from 5 ml/min to 10 ml/min. first, second, and third level headings (first level heading).

  9. Evaporation-Driven Deposition of ITO Thin Films from Aqueous Solutions with Low-Speed Dip-Coating Technique.

    Science.gov (United States)

    Ito, Takashi; Uchiyama, Hiroaki; Kozuka, Hiromitsu

    2017-05-30

    We suggest a novel wet coating process for preparing indium tin oxide (ITO) films from simple solutions containing only metal salts and water via evaporation-driven film deposition during low-speed dip coating. Homogeneous ITO precursor films were deposited on silica glass substrates from the aqueous solutions containing In(NO 3 ) 3 ·3H 2 O and SnCl 4 ·5H 2 O by dip coating at substrate withdrawal speeds of 0.20-0.50 cm min -1 and then crystallized by the heat treatment at 500-800 °C for 10-60 min under N 2 gas flow of 0.5 L min -1 . The ITO films heated at 600 °C for 30 min had a high optical transparency in the visible range and a good electrical conductivity. Multiple-coating ITO films obtained with five-times dip coating exhibited the lowest sheet (ρ S ) and volume (ρ V ) resistivities of 188 Ω sq -1 and 4.23 × 10 -3 Ω cm, respectively.

  10. Restoration of uranium solution mining deposits

    International Nuclear Information System (INIS)

    Devries, F.W.; Lawes, B.C.

    1982-01-01

    A process is provided for restoring an ore deposit after uranium solution mining using ammonium carbonate leaching solutions has ceased. The process involves flushing the deposit with an aqueous solution of a potassium salt during which potassium ions exchange with ammonium ions remaining in the deposit. The ammonium containing flushing solution is withdrawn from the deposit for disposal

  11. Restoration of uranium solution mining deposits

    Energy Technology Data Exchange (ETDEWEB)

    Devries, F.W.; Lawes, B.C.

    1982-01-19

    A process is provided for restoring an ore deposit after uranium solution mining using ammonium carbonate leaching solutions has ceased. The process involves flushing the deposit with an aqueous solution of a potassium salt during which potassium ions exchange with ammonium ions remaining in the deposit. The ammonium containing flushing solution is withdrawn from the deposit for disposal.

  12. Physical, optical and electrical properties of copper selenide (CuSe) thin films deposited by solution growth technique at room temperature

    International Nuclear Information System (INIS)

    Gosavi, S.R.; Deshpande, N.G.; Gudage, Y.G.; Sharma, Ramphal

    2008-01-01

    Copper selenide (CuSe) thin films are grown onto amorphous glass substrate from an aqueous alkaline medium using solution growth technique (SGT) at room temperature. The preparative parameters were optimized to obtain good quality of thin films. The as-deposited films were characterized for physical, optical and electrical properties. X-ray diffraction (XRD) pattern reveals that the films are polycrystalline in nature. Energy dispersive analysis by X-ray (EDAX) shows formation of stoichiometric CuSe compound. Uniform deposition of CuSe thin films on glass substrate was observed from scanning electron microscopy (SEM) and atomic force microscopy (AFM) micrographs. Average grain size was determined to 144.53 ± 10 nm using atomic force microscopy. The band gap was found to be 2.03 eV with direct band-to-band transition. Semi-conducting behaviour was observed from resistivity measurements. Ohmic behaviour was seen from I-V curve with good electrical conductivity

  13. Chemical solution deposition of functional oxide thin films

    CERN Document Server

    Schneller, Theodor; Kosec, Marija

    2014-01-01

    Chemical Solution Deposition (CSD) is a highly-flexible and inexpensive technique for the fabrication of functional oxide thin films. Featuring nearly 400 illustrations, this text covers all aspects of the technique.

  14. Restoration of uranium solution mining deposits

    International Nuclear Information System (INIS)

    DeVries, F.W.; Lawes, B.C.

    1981-01-01

    Ammonium carbonates are commonly used as the lixiviant for in-situ leaching of uranium ores. However this leads to the deposition of ammonium ions in the uranium ore formation and the problem of ammonia contamination of ground water which may find its way into the drinking water supply. The ammonia contamination of the ore deposit may be reduced by injecting an aqueous solution of a potassium salt (carbonate, bicarbonate, halide, sulfate, bisulfate, persulfate, or monopersulfate) into the deposit after mining has ceased

  15. High Tc superconductors using solution techniques

    International Nuclear Information System (INIS)

    Barboux, P.; Valente, I.; Henry, M.; Morineau, R.; Tarascon, J.M.; Khan, S.; Shokoohi, F.; Bagley, B.G.

    1989-01-01

    The authors have investigated different solution techniques to synthesize the Cu-based superconductors in the thick film form. Thick films of YBa 2 Cu 3 O 7 have been produced using controlled precipitation techniques. Bi-based and Tl-based materials have been deposited by spraying of ionic solutions. The numerous difficulties encountered during each process are analyzed in order to propose new synthesis procedures such as a new method, based on the precipitation of hydroxides only, which is described as a prospective for lowering the synthesis temperature and shortening the reaction time

  16. Spray deposition using impulse atomization technique

    International Nuclear Information System (INIS)

    Ellendt, N.; Schmidt, R.; Knabe, J.; Henein, H.; Uhlenwinkel, V.

    2004-01-01

    A novel technique, impulse atomization, has been used for spray deposition. This single fluid atomization technique leads to different spray characteristics and impact conditions of the droplets compared to gas atomization technique which is the common technique used for spray deposition. Deposition experiments with a Cu-6Sn alloy were conducted to evaluate the appropriateness of impulse atomization to produce dense material. Based on these experiments, a model has been developed to simulate the thermal history and the local solidification rates of the deposited material. A numerical study shows how different cooling conditions affect the solidification rate of the material

  17. Development and application of a green-chemistry solution deposition technique for buffer layer coating on cube-textured metal substrates in view of further deposition of rare-earth based superconductors

    DEFF Research Database (Denmark)

    Pallewatta, Pallewatta G A P

    which consist of YBCO superconducting coatings on cube-textured Ni based alloy tapes.  Before the epitaxial deposition this superconducting layer, a buffer layer is applied on the metal substrate as a diffusion barrier which is also required to transfer the strong texture of the underlying substrate......, allowing the epitaxial growth of the superconducting layer. State-of-the-art coated conductor hetero structures are mainly based on CeO2 based buffer stacks that consist of a sequence of several different buffer layers. Buffer layers deposited by continuous chemical deposition techniques, which...... is expected to be very advantageous in reel-to-reel applications. The thickness of these SrTiO3 monolayers was large enough to stop the nickel and copper diffusion from the Cu/Ni substrate. Hence, the developed high quality buffer layers are expected to be acting as efficient diffusion barriers and also...

  18. Effects of deposition time in chemically deposited ZnS films in acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, H.; Chelouche, A., E-mail: azeddinechelouche@gmail.com; Talantikite, D.; Merzouk, H.; Boudjouan, F.; Djouadi, D.

    2015-08-31

    We report an experimental study on the synthesis and characterization of zinc sulfide (ZnS) single layer thin films deposited on glass substrates by chemical bath deposition technique in acidic solution. The effect of deposition time on the microstructure, surface morphology, optical absorption, transmittance, and photoluminescence (PL) was investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), UV-Vis–NIR spectrophotometry and photoluminescence (PL) spectroscopy. The results showed that the samples exhibit wurtzite structure and their crystal quality is improved by increasing deposition time. The latter, was found to affect the morphology of the thin films as showed by SEM micrographs. The optical measurements revealed a high transparency in the visible range and a dependence of absorption edge and band gap on deposition time. The room temperature PL spectra indicated that all ZnS grown thin films emit a UV and blue light, while the band intensities are found to be dependent on deposition times. - Highlights: • Single layer ZnS thin films were deposited by CBD in acidic solution at 95 °C. • The effect of deposition time was investigated. • Coexistence of ZnS and ZnO hexagonal structures for time deposition below 2 h • Thicker ZnS films were achieved after monolayer deposition for 5 h. • The highest UV-blue emission observed in thin film deposited at 5 h.

  19. Chemical deposition methods using supercritical fluid solutions

    Science.gov (United States)

    Sievers, Robert E.; Hansen, Brian N.

    1990-01-01

    A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.

  20. Magnetic filtered plasma deposition and implantation technique

    CERN Document Server

    Zhang Hui Xing; Wu Xian Ying

    2002-01-01

    A high dense metal plasma can be produced by using cathodic vacuum arc discharge technique. The microparticles emitted from the cathode in the metal plasma can be removed when the metal plasma passes through the magnetic filter. It is a new technique for making high quality, fine and close thin films which have very widespread applications. The authors describe the applications of cathodic vacuum arc technique, and then a filtered plasma deposition and ion implantation system as well as its applications

  1. Chemical solution deposition: a path towards low cost coated conductors

    International Nuclear Information System (INIS)

    Obradors, X; Puig, T; Pomar, A; Sandiumenge, F; Pinol, S; Mestres, N; Castano, O; Coll, M; Cavallaro, A; Palau, A; Gazquez, J; Gonzalez, J C; Gutierrez, J; Roma, N; Ricart, S; Moreto, J M; Rossell, M D; Tendeloo, G van

    2004-01-01

    The achievement of low cost deposition techniques for high critical current YBa 2 Cu 3 O 7 coated conductors is one of the major objectives to achieve a widespread use of superconductivity in power applications. Chemical solution deposition techniques are appearing as a very promising methodology to achieve epitaxial oxide thin films at a low cost, so an intense effort is being carried out to develop routes for all chemical coated conductor tapes. In this work recent achievements will be presented towards the goal of combining the deposition of different type of buffer layers on metallic substrates based on metal-organic decomposition with the growth of YBa 2 Cu 3 O 7 layers using the trifluoroacetate route. The influence of processing parameters on the microstructure and superconducting properties will be stressed. High critical currents are demonstrated in 'all chemical' multilayers

  2. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    International Nuclear Information System (INIS)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R.M.

    2015-01-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence

  3. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  4. Sputtering. [as deposition technique in mechanical engineering

    Science.gov (United States)

    Spalvins, T.

    1976-01-01

    This paper primarily reviews the potential of using the sputtering process as a deposition technique; however, the manufacturing and sputter etching aspects are also discussed. Since sputtering is not regulated by classical thermodynamics, new multicomponent materials can be developed in any possible chemical composition. The basic mechanism for dc and rf sputtering is described. Sputter-deposition is described in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter-etching, target geometry (coating complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also described are some of the specific industrial areas which are turning to sputter-deposition techniques.

  5. Metal Deposition from Organic Solutions for Microelectronic Applications

    National Research Council Canada - National Science Library

    Dahlgren, E

    2001-01-01

    ... plating in aqueous solutions. This process was also shown to be capable of producing selectively deposited seed layers only on exposed reactive metal surfaces for subsequent electroless and electrolytic metal depositions...

  6. Solution precursor plasma deposition of nanostructured ZnO coatings

    International Nuclear Information System (INIS)

    Tummala, Raghavender; Guduru, Ramesh K.; Mohanty, Pravansu S.

    2011-01-01

    Highlights: → The solution precursor route employed is an inexpensive process with capability to produce large scale coatings at fast rates on mass scale production. → It is highly capable of developing tailorable nanostructures. → This technique can be employed to spray the coatings on any kind of substrates including polymers. → The ZnO coatings developed via solution precursor plasma spray process have good electrical conductivity and reflectivity properties in spite of possessing large amount of particulate boundaries, porosity and nanostructured grains. -- Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material that has various applications including optical, electronic, biomedical and corrosion protection. It is usually synthesized via processing routes, such as vapor deposition techniques, sol-gel, spray pyrolysis and thermal spray of pre-synthesized ZnO powders. Cheaper and faster synthesis techniques are of technological importance due to increased demand in alternative energy applications. Here, we report synthesis of nanostructured ZnO coatings directly from a solution precursor in a single step using plasma spray technique. Nanostructured ZnO coatings were deposited from the solution precursor prepared using zinc acetate and water/isopropanol. An axial liquid atomizer was employed in a DC plasma spray torch to create fine droplets of precursor for faster thermal treatment in the plasma plume to form ZnO. Microstructures of coatings revealed ultrafine particulate agglomerates. X-ray diffraction confirmed polycrystalline nature and hexagonal Wurtzite crystal structure of the coatings. Transmission electron microscopy studies showed fine grains in the range of 10-40 nm. Observed optical transmittance (∼65-80%) and reflectivity (∼65-70%) in the visible spectrum, and electrical resistivity (48.5-50.1 mΩ cm) of ZnO coatings are attributed to ultrafine particulate morphology of the coatings.

  7. Solution precursor plasma deposition of nanostructured ZnO coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tummala, Raghavender [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States); Guduru, Ramesh K., E-mail: rkguduru@umich.edu [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States); Mohanty, Pravansu S. [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States)

    2011-08-15

    Highlights: {yields} The solution precursor route employed is an inexpensive process with capability to produce large scale coatings at fast rates on mass scale production. {yields} It is highly capable of developing tailorable nanostructures. {yields} This technique can be employed to spray the coatings on any kind of substrates including polymers. {yields} The ZnO coatings developed via solution precursor plasma spray process have good electrical conductivity and reflectivity properties in spite of possessing large amount of particulate boundaries, porosity and nanostructured grains. -- Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material that has various applications including optical, electronic, biomedical and corrosion protection. It is usually synthesized via processing routes, such as vapor deposition techniques, sol-gel, spray pyrolysis and thermal spray of pre-synthesized ZnO powders. Cheaper and faster synthesis techniques are of technological importance due to increased demand in alternative energy applications. Here, we report synthesis of nanostructured ZnO coatings directly from a solution precursor in a single step using plasma spray technique. Nanostructured ZnO coatings were deposited from the solution precursor prepared using zinc acetate and water/isopropanol. An axial liquid atomizer was employed in a DC plasma spray torch to create fine droplets of precursor for faster thermal treatment in the plasma plume to form ZnO. Microstructures of coatings revealed ultrafine particulate agglomerates. X-ray diffraction confirmed polycrystalline nature and hexagonal Wurtzite crystal structure of the coatings. Transmission electron microscopy studies showed fine grains in the range of 10-40 nm. Observed optical transmittance ({approx}65-80%) and reflectivity ({approx}65-70%) in the visible spectrum, and electrical resistivity (48.5-50.1 m{Omega} cm) of ZnO coatings are attributed to ultrafine particulate morphology of the coatings.

  8. A new technique for the deposition of standard solutions in total reflection X-ray fluorescence spectrometry (TXRF) using pico-droplets generated by inkjet printers and its applicability for aerosol analysis with SR-TXRF

    International Nuclear Information System (INIS)

    Fittschen, U.E.A.; Hauschild, S.; Amberger, M.A.; Lammel, G.; Streli, C.; Foerster, S.; Wobrauschek, P.; Jokubonis, C.; Pepponi, G.; Falkenberg, G.; Broekaert, J.A.C.

    2006-01-01

    A new technique for the deposition of standard solutions on particulate aerosol samples using pico-droplets for elemental determinations with total reflection X-ray fluorescence spectrometry (TXRF) is described. It enables short analysis times without influencing the sample structure and avoids time consuming scanning of the sample with the exciting beam in SR-TXRF analysis. Droplets of picoliter volume (∼ 5-130 pL) were generated with commercially available and slightly modified inkjet printers operated with popular image processing software. The size of the dried droplets on surfaces of different polarity namely silicone coated and untreated quartz reflectors, was determined for five different printer types and ten different cartridge types. The results show that droplets generated by inkjet printers are between 50 and 200 μm in diameter (corresponding to volumes of 5 to 130 pL) depending on the cartridge type, which is smaller than the width of the synchrotron beam used in the experiments (< 1 mm at an energy of 17 keV at the beamline L at HASYLAB, Hamburg). The precision of the printing of a certain amount of a single element standard solution was found to be comparable to aliquoting with micropipettes in TXRF, where for 2.5 ng of cobalt relative standard deviations of 12% are found. However, it could be shown that the printing of simple patterns is possible, which is important when structured samples have to be analysed

  9. In situ solution mining technique

    International Nuclear Information System (INIS)

    Learmont, R.P.

    1978-01-01

    A method of in situ solution mining is disclosed in which a primary leaching process employing an array of 5-spot leaching patterns of production and injection wells is converted to a different pattern by converting to injection wells all the production wells in alternate rows

  10. Techniques for freeing deposited canisters. Final report

    International Nuclear Information System (INIS)

    Kalbantner, P.; Sjoeblom, R.

    2000-06-01

    Four different techniques for removal of the bentonite buffer around a deposited canister have been identified, studied and evaluated: mechanical, hydrodynamical, thermal, and electrical techniques. Different techniques to determine the position of the canister in the buffer have also been studied: mechanical, electromagnetic, thermal and acoustic techniques. The mechanical techniques studied are full-face boring, milling and core-drilling. It is expected that the bentonite can be machined relatively easily. It is assessed that cooling by means of flushing water over the outer surfaces of the tools is not feasible in view of the tendency of bentonite to form a gel. The mechanical techniques are characterized by the potential of damaging the canister, a high degree of complexity, and high requirements of energy/power input. The generated byproduct is solid and cannot be removed by means of flushing. Removal is assessed to be simplest in conjunction with full-face boring and most difficult when coredrilling is applied. The hydrodynamical techniques comprise high-pressure hydrodynamic techniques, where pressures above and below 100 bar, and low pressure hydrodynamical techniques (< 10 bar) are separated. At pressures above 100 bar, a water jet with a diameter of approximately a millimetre cuts through the material. If desired, sand can be added to the jet. At pressures below 100 bar the jet has a diameter of one or a few centimetres. The liquid contains a few percent of salt, which is essential for the efficiency of the process. The flushing is important not only because it removes the modified bentonite but also because it frees previously unaffected bentonite and thereby makes it accessible to chemical modification. All of the hydrodynamical techniques are applicable for freeing the end surface as well as the mantle surface. The degree of complexity and the requirement on energy/power decrease with a decrease in pressure. A significant potential for damaging the

  11. Si substrate by chemical solution deposition

    Indian Academy of Sciences (India)

    ZnMn2O4 active layer for resistance random access memory (RRAM) was ... The bipolar resistive switching behaviours of the Ag/ZnMn2O4/p+-Si capacitor ... nal electric field were first proposed by Chua (1971). In ... In this work, the spinel ZnMn2O4 films were deposited .... The typical I–V curves plotted in double logarithmic.

  12. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Majumder, M.; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-01-01

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu 2 O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  13. clay nanocomposite by solution intercalation technique

    Indian Academy of Sciences (India)

    Polymer–clay nanocomposites of commercial polystyrene (PS) and clay laponite were prepared via solution intercalation technique. Laponite was modified suitably with the well known cationic surfactant cetyltrimethyl ammonium bromide by ion-exchange reaction to render laponite miscible with hydrophobic PS.

  14. Solution chemistry techniques in SYNROC preparation

    International Nuclear Information System (INIS)

    Dosch, R.G.; Lynch, A.W.

    1981-07-01

    Investigations of titanate-based ceramic forms for radioactive waste immobilization are underway at Sandia National Laboratories (SNLA) and at Lawrence Livermore National Laboratory (LLNL). Although the waste forms differ as to overall product composition, the waste-containing phases in both ceramic products have similar crystalline structure types. These include metallic phases along with oxides with structure types of the mineral analogues perovskite, zirconolite, and hollandite. Significant differences also exist in the area of processing. More conventional ceramic processing methods are used at LLNL to produce SYNROC while solution chemistry techniques involving metal alkoxide chemistry and ion exchange have been developed at SNLA to prepare calcium titanate-based waste ceramics. The SNLA techniques were recently modified and applied to producing SYNROC (compositions C and D) as part of an interlaboratory information exchange between SNLA and LLNL. This report describes the methods used in preparing SYNROC including the solution interaction, and hot-pressing methods used to obtain fully dense SYNROC monoliths

  15. Solid on liquid deposition, a review of technological solutions

    OpenAIRE

    Homsy, Alexandra; Laux, Edith; Jeandupeux, Laure; Charmet, Jérôme; Bitterli, Roland; Botta, Chiara; Rebetez, Yves; Banakh, Oksana; Keppner, Herbert

    2015-01-01

    Solid-on-liquid deposition (SOLID) techniques are of great interest to the MEMS and NEMS (Micro- and Nano Electro Mechanical Systems) community because of potential applications in biomedical engineering, on-chip liquid trapping, tunable micro-lenses, and replacements of gate oxides. However, depositing solids on liquid with subsequent hermetic sealing is difficult because liquids tend to have a lower density than solids. Furthermore, current systems seen in nature lack thermal, mechanical or...

  16. Active control of evaporative solution deposition by means of modulated gas phase convection

    NARCIS (Netherlands)

    Wedershoven, H.M.J.M.; Deuss, K.R.M.; Fantin, C.; Zeegers, J.C.H.; Darhuber, A.A.

    2018-01-01

    In solution processing, functional materials are dissolved or dispersed in a solvent and deposited typically as a thin liquid film on a substrate. After evaporation of the solvent, a dry layer remains. We propose an ‘active’, non-contact technique for evaporative pattern formation that does not

  17. Chemical vapor deposition: A technique for applying protective coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, T.C. Sr.; Bowman, M.G.

    1979-01-01

    Chemical vapor deposition is discussed as a technique for applying coatings for materials protection in energy systems. The fundamentals of the process are emphasized in order to establish a basis for understanding the relative advantages and limitations of the technique. Several examples of the successful application of CVD coating are described. 31 refs., and 18 figs.

  18. The study of metal sulphide nanomaterials obtained by chemical bath deposition and hot-injection technique

    Science.gov (United States)

    Maraeva, E. V.; Alexandrova, O. A.; Forostyanaya, N. A.; Levitskiy, V. S.; Mazing, D. S.; Maskaeva, L. N.; Markov, V. Ph; Moshnikov, V. A.; Shupta, A. A.; Spivak, Yu M.; Tulenin, S. S.

    2015-11-01

    In this study lead sulphide - cadmium sulphide based layers were obtained through chemical deposition of water solutions and cadmium sulphide quantum dots were formed through hot-injection technique. The article discusses the results of surface investigations with the use of atomic force microscopy, Raman spectroscopy and photoluminescence measurements.

  19. The study of metal sulphide nanomaterials obtained by chemical bath deposition and hot-injection technique

    International Nuclear Information System (INIS)

    Maraeva, E V; Alexandrova, O A; Levitskiy, V S; Mazing, D S; Moshnikov, V A; Shupta, A A; Spivak, Yu M; Forostyanaya, N A; Maskaeva, L N; Markov, V Ph; Tulenin, S S

    2015-01-01

    In this study lead sulphide – cadmium sulphide based layers were obtained through chemical deposition of water solutions and cadmium sulphide quantum dots were formed through hot-injection technique. The article discusses the results of surface investigations with the use of atomic force microscopy, Raman spectroscopy and photoluminescence measurements. (paper)

  20. SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques

    Science.gov (United States)

    Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.

    2016-05-01

    The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.

  1. Metallization on FDM Parts Using the Chemical Deposition Technique

    Directory of Open Access Journals (Sweden)

    Azhar Equbal

    2014-08-01

    Full Text Available Metallization of ABS (acrylonitrile-butadiene-styrene parts has been studied on flat part surfaces. These parts are fabricated on an FDM (fused deposition modeling machine using the layer-wise deposition principle using ABS as a part material. Electroless copper deposition on ABS parts was performed using two different surface preparation processes, namely ABS parts prepared using chromic acid for etching and ABS parts prepared using a solution mixture of sulphuric acid and hydrogen peroxide (H2SO4/H2O2 for etching. After surface preparations using these routes, copper (Cu is deposited electrolessly using four different acidic baths. The acidic baths used are 5 wt% CuSO4 (copper sulfate with 15 wt% of individual acids, namely HF (hydrofluoric acid, H2SO4 (sulphuric acid, H3PO4 (phosphoric acid and CH3COOH (acetic acid. Cu deposition under different acidic baths used for both the routes is presented and compared based on their electrical performance, scanning electron microscopy (SEM and energy dispersive X-ray spectrometry (EDS. The result shows that chromic acid etched samples show better electrical performance and Cu deposition in comparison to samples etched via H2SO4/H2O2.

  2. Obtention of thin depositions by the vacuum evaporation technique

    International Nuclear Information System (INIS)

    Gonzalez Mateu, D.; Labrada, A.; Voronin, A.

    1991-01-01

    The vacuum evaporating technique used to prepare thin depositions, and the technical characteristics of the constructed installation are described. 235 U y 238 U nuclear target for the fission researches were obtained. Aluminium and gold self-supporting foils were obtained too

  3. Thermionic vacuum arc (TVA) technique for magnesium thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Balbag, M.Z., E-mail: zbalbag@ogu.edu.t [Eskisehir Osmangazi University, Education Faculty, Primary Education, Meselik Campus, Eskisehir 26480 (Turkey); Pat, S.; Ozkan, M.; Ekem, N. [Eskisehir Osmangazi University, Art and Science Faculty, Physics Department, Eskisehir 26480 (Turkey); Musa, G. [Ovidius University, Physics Department, Constanta (Romania)

    2010-08-15

    In this study, magnesium thin films were deposited on glass substrate by the Thermionic Vacuum Arc (TVA) technique for the first time. We present a different technique for deposition of high-quality magnesium thin films. By means of this technique, the production of films is achieved by condensing the plasma of anode material generated using Thermionic Vacuum Arc (TVA) under high vacuum conditions onto the surface to be coated. The crystal orientation and morphology of the deposited films were investigated by using XRD, EDX, SEM and AFM. The aim of this study is to search the use of TVA technique to coat magnesium thin films and to determine some of the physical properties of the films generated. Furthermore, this study will contribute to the scientific studies which search the thin films of magnesium or the compounds containing magnesium. In future, this study will be preliminary work to entirely produce magnesium diboride (MgB{sub 2}) superconductor thin film with the TVA technique.

  4. Solution processed deposition of electron transport layers on perovskite crystal surface—A modeling based study

    Energy Technology Data Exchange (ETDEWEB)

    Mortuza, S.M.; Taufique, M.F.N.; Banerjee, Soumik, E-mail: soumik.banerjee@wsu.edu

    2017-02-01

    Highlights: • The model determined the surface coverage of solution-processed film on perovskite. • Calculated surface density map provides insight into morphology of the monolayer. • Carbonyl oxygen atom of PCBM strongly attaches to the (110) surface of perovskite. • Uniform distribution of clusters on perovskite surface at lower PCBM concentration. • Deposition rate of PCBM on the surface is very high at initial stage of film growth. - Abstract: The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  5. Solution processed deposition of electron transport layers on perovskite crystal surface—A modeling based study

    International Nuclear Information System (INIS)

    Mortuza, S.M.; Taufique, M.F.N.; Banerjee, Soumik

    2017-01-01

    Highlights: • The model determined the surface coverage of solution-processed film on perovskite. • Calculated surface density map provides insight into morphology of the monolayer. • Carbonyl oxygen atom of PCBM strongly attaches to the (110) surface of perovskite. • Uniform distribution of clusters on perovskite surface at lower PCBM concentration. • Deposition rate of PCBM on the surface is very high at initial stage of film growth. - Abstract: The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  6. Fabrication of SERS Substrate by Multilayered Nanosphere Deposition Technique

    International Nuclear Information System (INIS)

    Fu, Chit Yaw; Dinish, U. S.; Praveen, Thoniyot; Koh, Zhen Yu; Kho, Khiang Wei; Malini, Olivo

    2010-01-01

    Metal film over nanosphere (MFON) has been employed as a reproducible and predictable SERS-active device in biosensing applications. In addition to its economic fabrication process, such substrate can be further processed to a prism-structure with increased SERS enhancement and wider Plasmon tunability. In this work, we investigate an alternative coating method to deposit a larger area of well-ordered PS beads with different sizes (oe = 100nm and 400 nm) onto a glass. The result suggests that the proposed well-coating technique can be suitably used to form closely-packed PS beads with diameter less than 100 nm for developing MFON substrates.

  7. The Effects of Postprocessing on Physical and Solution Deposition of Complex Oxide Thin Films for Tunable Applications

    Science.gov (United States)

    2016-02-01

    BST film capacitor devices were fabricated using physical and chemical solution deposition techniques. The typical dielectric constant of the...electrode loss, and the parallel resistor- capacitor circuit represents the capacitance and the dielectric loss, assuming lead inductance is...Thin barium strontium titanate (BST) films are being developed as dielectric film for use in tunable radio frequency (RF)/microwave applications. Thin

  8. Deposition barium titanate (BaTiO3) doped lanthanum with chemical solution deposition

    International Nuclear Information System (INIS)

    Iriani, Y.; Nurhadi, N.; Jamaludin, A.

    2016-01-01

    Deposition of Barium Titanate (BaTiO 3 ) thin films used Chemical Solution Deposition (CSD) method and prepared with spin coater. BaTiO 3 is doped with lanthanum, 1%, 2%, and 3%. The thermal process use annealing temperature 900°C and holding time for 3 hours. The result of characterization with x-ray diffraction (XRD) equipment show that the addition of La 3+ doped on Barium Titanate caused the change of angle diffraction.The result of refine with GSAS software shows that lanthanum have been included in the structure of BaTiO 3 . Increasing mol dopant La 3+ cause lattice parameter and crystal volume become smaller. Characterization result using Scanning Electron Microscopy (SEM) equipment show that grain size (grain size) become smaller with increasing mole dopant (x) La 3+ . The result of characterization using Sawyer Tower methods show that all the samples (Barium Titanante and Barium Titanate doped lanthanum) are ferroelectric material. Increasing of mole dopant La 3+ cause smaller coercive field and remanent polarization increases. (paper)

  9. Innovative health solutions using nuclear techniques

    International Nuclear Information System (INIS)

    Bailey, Dale

    2013-01-01

    Australian nuclear medicine is currently amongst the highest standard of anywhere in the world. Its origins here are firmly entrenched in Internal Medicine, with its emphasis on physiology and function, unlike many other countries such as the USA where a Radiology orientation dominates. In addition, Australia has been well served by extremely competent and innovative physical scientists working in universities, government research facilities (e.g., AAEC, ANSTO) and tertiary referral hospitals who have established their main affiliations as being within the highly multidisciplinary nuclear medicine community. Nuclear medicine in the past 10-15 years has experienced a massive shift towards 'hybrid' imaging - where two (or more) complementary imaging modalities, such as X-ray CT and a Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) scanner, are combined into a functionally single device which provides high resolution spatial anatomical (form, or structure) and radionuclide distribution (function) images. In addition, the nuclear imaging techniques maintain their quantitative characteristics and thus combined structure-function imaging results in a significant improvement in diagnostic capability - looking beyond simple forms to quantifying degree of disease, e.g., malignancy of a cancer. Recently, PET scanners have been combined with NMR Imaging (MRI) and these will provide new areas of application, especially in magnetic resonance spectroscopy and radionuclide imaging. The techniques are extremely valuable in monitoring response to treatment, allowing treatments to be changed if proving ineffective. In addition, new techniques are emerging using radionuclides for therapy, combined with the improvements in imaging. This permits exquisite targeting and optimal patient selection. This talk will highlight a number of these achievements and ask the question as to what is holding back developments in Australia at present.

  10. Geochemical Exploration Techniques Applicable in the Search for Copper Deposits

    Science.gov (United States)

    Chaffee, Maurice A.

    1975-01-01

    Geochemical exploration is an important part of copper-resource evaluation. A large number of geochemical exploration techniques, both proved and untried, are available to the geochemist to use in the search for new copper deposits. Analyses of whole-rock samples have been used in both regional and local geochemical exploration surveys in the search for copper. Analyses of mineral separates, such as biotite, magnetite, and sulfides, have also been used. Analyses of soil samples are widely used in geochemical exploration, especially for localized surveys. It is important to distinguish between residual and transported soil types. Orientation studies should always be conducted prior to a geochemical investigation in a given area in order to determine the best soil horizon and the best size of soil material for sampling in that area. Silty frost boils, caliche, and desert varnish are specialized types of soil samples that might be useful sampling media. Soil gas is a new and potentially valuable geochemical sampling medium, especially in exploring for buried mineral deposits in arid regions. Gaseous products in samples of soil may be related to base-metal deposits and include mercury vapor, sulfur dioxide, hydrogen sulfide, carbon oxysulfide, carbon dioxide, hydrogen, oxygen, nitrogen, the noble gases, the halogens, and many hydrocarbon compounds. Transported materials that have been used in geochemical sampling programs include glacial float boulders, glacial till, esker gravels, stream sediments, stream-sediment concentrates, and lake sediments. Stream-sediment sampling is probably the most widely used and most successful geochemical exploration technique. Hydrogeochemical exploration programs have utilized hot- and cold-spring waters and their precipitates as well as waters from lakes, streams, and wells. Organic gel found in lakes and at stream mouths is an unproved sampling medium. Suspended material and dissolved gases in any type of water may also be useful

  11. Topography evolution of rough-surface metallic substrates by solution deposition planarization method

    Science.gov (United States)

    Chu, Jingyuan; Zhao, Yue; Liu, Linfei; Wu, Wei; Zhang, Zhiwei; Hong, Zhiyong; Li, Yijie; Jin, Zhijian

    2018-01-01

    As an emerging technique for surface smoothing, solution deposition planarization (SDP) has recently drawn more attention on the fabrication of the second generation high temperature superconducting (2G-HTS) tapes. In our work, a number of amorphous oxide layers were deposited on electro-polished or mirror-rolled metallic substrates by chemical solution route. Topography evolution of surface defects on these two types of metallic substrates was thoroughly investigated by atomic force microscopy (AFM). It was showed that root mean square roughness values (at 50 × 50 μm2 scanning scale) on both rough substrates reduced to ∼5 nm after coating with SDP-layer. The smoothing effect was mainly attributed to decrease of the depth at grain boundary grooving on the electro-polished metallic substrate. On the mirror-rolled metallic substrates, the amplitude and frequency of the height fluctuation perpendicular to the rolling direction were gradually reduced as depositing more numbers of SDP-layer. A high Jc value of 4.17 MA cm-2 (at 77 K, s.f.) was achieved on a full stack of YBCO/CeO2/IBAD-MgO/SDP-layer/C276 sample. This study enhanced understanding of the topography evolution on the surface defects covered by the SDP-layer, and demonstrated a low-cost route for fabricating IBAD-MgO based YBCO templates with a simplified architecture.

  12. Chemical solution deposition of CaCu 3 Ti 4 O 12 thin film

    Indian Academy of Sciences (India)

    CaCu3Ti4O12 (CCTO) thin film was successfully deposited on boron doped silica substrate by chemical solution deposition and rapid thermal processing. The phase and microstructure of the deposited films were studied as a function of sintering temperature, employing X-ray diffractometry and scanning electron ...

  13. An improved technique for oral administration of solutions of test ...

    African Journals Online (AJOL)

    Medicut intravenous cannula as an improvised oral cannula to administer solutions of drugs and test substances to experimental rats. Techniques of handling and manipulating the rat with the goal of having the eosophagus as straight as possible ...

  14. Effect of different solutions on electrochemical deposition of ZnO

    International Nuclear Information System (INIS)

    Asil, H.; Chinar, K.; Gur, E.; Tuzemen, S.

    2010-01-01

    ZnO thin films were grown by electrochemical deposition (ECD) onto indium tin oxide using different compounds such as Zn(NO 3 ) 2 , Zn(C 2 H 3 O 2 ) 2 , ZnCl 2 , Zn(ClO 4 ) 2 and different solvents such as dimethylsulfoxide (DMSO) and 18 M deionized water. Furthermore, solutions were prepared using different electrolytes and concentrations in order to determine the optimum deposition parameters of ZnO. All the grown films were characterized by X-ray diffraction, optical absorption and photoluminescence measurement techniques. It is indicated that films grown by using Zn(ClO 4 ) 2 show high crystallinity and optical quality. The X-ray diffraction analysis showed that ZnO thin films which were grown electrochemically in a non-aqueous solution (DMSO) prepared by Zn(ClO 4 ) 2 have highly c-axis preferential orientation. PL measurements showed that ZnO thin films grown in Zn(ClO 4 ) 2 indicates high quality emission characteristics compared to the thin films grown by other solutions

  15. Deposit-refund on labor : a solution to equilibrium unemployment?

    NARCIS (Netherlands)

    Heijdra, Ben J.; Ligthart, Jenny E.

    1999-01-01

    The paper studies the employment effects of a deposit-refund scheme on labor in a simple search-theoretic model of the labor market. It is shown that if a firm pays a deposit when it fires a worker to be refunded when it employs the same or another worker, the vacancy rate increases and the

  16. Elaboration of strontium ruthenium oxide thin films on metal substrates by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Seveno, R. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France)]. E-mail: raynald.seveno@univ-nantes.fr; Braud, A. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France); Gundel, H.W. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France)

    2005-12-22

    In order to improve the structural interface between a metal substrate and a lead zirconate titanate (Pb(ZrTi)O{sub 3}, PZT) ferroelectric thin film, the elaboration of strontium ruthenium oxide (SrRuO{sub 3}) by chemical solution deposition is studied. The SrRuO{sub 3} thin films were realized by multiple spin-coating technique and the temperature of the rapid thermal annealing process was optimized. The crystallization behavior was examined by X-ray diffraction; surface analyses using scanning electron microscope and atomic force microscope techniques showed the influence of the SrRuO{sub 3} layer at the interface PZT/metal on the morphology of the ferroelectric thin film. From the electrical measurements, a coercive electric field around 25 kV/cm and a remanent polarization of approximately 30 {mu}C/cm were found.

  17. Elaboration of strontium ruthenium oxide thin films on metal substrates by chemical solution deposition

    International Nuclear Information System (INIS)

    Seveno, R.; Braud, A.; Gundel, H.W.

    2005-01-01

    In order to improve the structural interface between a metal substrate and a lead zirconate titanate (Pb(ZrTi)O 3 , PZT) ferroelectric thin film, the elaboration of strontium ruthenium oxide (SrRuO 3 ) by chemical solution deposition is studied. The SrRuO 3 thin films were realized by multiple spin-coating technique and the temperature of the rapid thermal annealing process was optimized. The crystallization behavior was examined by X-ray diffraction; surface analyses using scanning electron microscope and atomic force microscope techniques showed the influence of the SrRuO 3 layer at the interface PZT/metal on the morphology of the ferroelectric thin film. From the electrical measurements, a coercive electric field around 25 kV/cm and a remanent polarization of approximately 30 μC/cm were found

  18. The Effects of Electroless Nickel Plating Bath Conditions on Stability of Solution and Properties of Deposit

    International Nuclear Information System (INIS)

    Huh, Jin; Lee, Jae Ho

    2000-01-01

    Electroless depositions of nickel were conducted in different bath conditions to find optimum conditions of electroless nickel plating at low operating temperature and pH. The effect of complexing reagent on stability of plating solution was investigated. Sodium citrate complexed plating solution is more stable than sodium pyrophosphate complexed solution. The effects of nickel salt concentration, reducing agent, complexing agent and inhibitor on deposition rate was investigated. The effects of pH on deposition rate and content of phosphorous in deposited nickel were also analyzed. Electroless deposited nickel become crystallized with increasing pH due to lower phosphorous content. In optimum operating bath condition, deposition rate was 7 μm/hr at 60 .deg. C and pH 10.0 without stabilizer. The rate was decreased with stabilizer concentration

  19. Hydrazine-Free Solution-Deposited CuIn(S,Se)2 Solar Cells by Spray Deposition of Metal Chalcogenides.

    Science.gov (United States)

    Arnou, Panagiota; van Hest, Maikel F A M; Cooper, Carl S; Malkov, Andrei V; Walls, John M; Bowers, Jake W

    2016-05-18

    Solution processing of semiconductors, such as CuInSe2 and its alloys (CIGS), can significantly reduce the manufacturing costs of thin film solar cells. Despite the recent success of solution deposition approaches for CIGS, toxic reagents such as hydrazine are usually involved, which introduce health and safety concerns. Here, we present a simple and safer methodology for the preparation of high-quality CuIn(S, Se)2 absorbers from metal sulfide solutions in a diamine/dithiol mixture. The solutions are sprayed in air, using a chromatography atomizer, followed by a postdeposition selenization step. Two different selenization methods are explored resulting in power conversion efficiencies of up to 8%.

  20. Finding a solution to internal diesel injector deposits

    Energy Technology Data Exchange (ETDEWEB)

    Barbour, Robert; Quigley, Robert; Panesar, Avtar; Payne, James [Lubrizol Limited, Derby (United Kingdom); Arters, David; Bush, Jim; Stevens, Andrew [Lubrizol Corporation, Wickliffe, OH (United States)

    2013-06-01

    Internal diesel injector deposits (IDIDs) have caused widespread problems in the automotive industry since around 2005. Modem injectors that have been precisely engineered to operate highly controlled injection strategies are experiencing problems in the field due to deposits that have formed on their critical moving parts, such as the needle and control valve. Problems range from rough idling to a failure to start, when the moving parts become stuck. Early studies showed that the composition of these deposits is variable. In some cases the deposit contained noticeable amounts of sodium carboxylate; these are now generally referred to as 'sodium soaps'. In other incidences the dominant chemical functionality observed was an amide group, and hence these deposits are referred to as 'amide lacquers'. A combination of both types has been observed in many cases and other metals, like calcium, have also been detected. Further studies have shown that the sodium soap type can be formed from specific types of corrosion inhibitors. The source of the amide lacquers is less certain, but there are indications that they originate from specific fuel additives that contain critical levels of low molecular weight species. This paper broadly explores this area of high interest. It will report results on the analysis of deposits and the conditions needed to reproduce both types of IDID in bench engine testing. It will also investigate the types of contaminants that are likely to form IDIDs and explore difference in chemical structure that can lead to pro-fouling, non-fouling and anti-fouling behaviour. It will then show that a deposit control additive, specifically designed to control nozzle tip deposits in modem direct injection diesels, is equally effective in controlling IDIDs; both in terms of prevention and removal. Since IDIDS are formed from multiple sources, some of which are difficult to control in today' s market, the use of a broadly acting fuel

  1. Cathodic deposition of CdSe films from dimethyl formamide solution at optimized temperature

    Energy Technology Data Exchange (ETDEWEB)

    Datta, J. [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, West Bengal (India)]. E-mail: jayati_datta@rediffmail.com; Bhattacharya, C. [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, West Bengal (India); Visiting Research Associate, School of Materials Science and Engineering, UNSW (Australia); Bandyopadhyay, S. [School of Materials Science and Engineering, UNSW, Sydney 2052 (Australia)

    2006-12-15

    In the present paper, thin film CdSe compound semiconductors have been electroplated on transparent conducting oxide coated glass substrates from nonaqueous dimethyl formamide bath containing CdCl{sub 2}, KI and Se under controlled temperature ranging from 100 to 140 deg. C. Thickness of the deposited films as obtained through focussed ion beam technique as well as their microstructural and photoelectrochemical properties have been found to depend on temperature. The film growth was therefore optimized at a bath temperature {approx}125 deg. C. The formation of crystallites in the range of 100-150 nm size has been ascertained through atomic force microscopy and scanning electron microscopy. Energy dispersive analysis of X-rays for the as deposited film confirmed the 1:1 composition of CdSe compound in the matrix exhibiting band-gap energy of 1.74 eV. Microstructural properties of the deposited films have been determined through X-ray diffraction studies, high-resolution transmission electron microscopy and electron diffraction pattern analysis. Electrochemical impedance spectroscopy and current-potential measurements have been performed to characterize the electrochemical behavior of the semiconductor-electrolyte interface. The photo-activity of the films have been recorded in polysulphide solution under illumination and solar conversion efficiency {>=}1% was achieved.

  2. Morphology evolution in spinel manganite films deposited from an aqueous solution

    International Nuclear Information System (INIS)

    Ko, Song Won; Li, Jing; Trolier-McKinstry, Susan

    2012-01-01

    Spinel manganite films were deposited by the spin spray technique at low deposition temperatures ( 1000, agglomeration of small particles was dominant, which suggests that homogeneous nucleation is dominant during deposition. Heterogeneous nucleation was critical to obtain dense films. - Highlights: ► Film microstructure depends on supersaturation. ► Heterogeneous nucleation induces dense and continuous films. ► The spin spray technique enables use of a variety of substrates.

  3. Synthesis of Colloidal ZnO Nanoparticles and Deposit of Thin Films by Spin Coating Technique

    Directory of Open Access Journals (Sweden)

    Jose Alberto Alvarado

    2013-01-01

    Full Text Available ZnO colloidal nanoparticles were synthesized, the average size of these nanoparticles is around 25 nm with hexagonal form. It was noted that stabilization depends directly on the purifying process; in this work we do not change the nature of the solution as a difference from Meulekamp's method, and we do not use any alkanes to remove the byproducts; only a centrifuge to remove those ones was used, thereby the stabilization increases up to 24 days. It is observed from the results that only three times of washing is enough to prevent the rapid aging process. The effect of annealing process on the composition, size, and geometrical shape of ZnO nanoparticles was studied in order to know whether the annealing process affects the crystallization and growth of the nanoparticles. After the synthesis, the colloidal nanoparticles were deposited by spin coating technique showing that the formed nanoparticles have no uniformly deposition pattern. But is possible to deposit those ones in glass substrates. A possible deposition process of the nanoparticles is proposed.

  4. Solution precursor plasma deposition of nanostructured CdS thin films

    International Nuclear Information System (INIS)

    Tummala, Raghavender; Guduru, Ramesh K.; Mohanty, Pravansu S.

    2012-01-01

    Highlights: ► Inexpensive process with capability to produce large scale nanostructured coatings. ► Technique can be employed to spray the coatings on any kind of substrates including polymers. ► The CdS coatings developed have good electrical conductivity and optical properties. ► Coatings possess large amount of particulate boundaries and nanostructured grains. -- Abstract: Cadmium sulfide (CdS) films are used in solar cells, sensors and microelectronics. A variety of techniques, such as vapor based techniques, wet chemical methods and spray pyrolysis are frequently employed to develop adherent CdS films. In the present study, rapid deposition of CdS thin films via plasma spray route using a solution precursor was investigated, for the first time. Solution precursor comprising cadmium chloride, thiourea and distilled water was fed into a DC plasma jet via an axial atomizer to create ultrafine droplets for instantaneous and accelerated thermal decomposition in the plasma plume. The resulting molten/semi-molten ultrafine/nanoparticles of CdS eventually propel toward the substrate to form continuous CdS films. The chemistry of the solution precursor was found to be critical in plasma pyrolysis to control the stoichiometry and composition of the films. X-ray diffraction studies confirmed hexagonal α-CdS structure. Surface morphology and microstructures were investigated to compare with other synthesis techniques in terms of process mechanism and structural features. Transmission electron microscopy studies revealed nanostructures in the atomized particulates. Optical measurements indicated a decreasing transmittance in the visible light with increasing the film thickness and band gap was calculated to be ∼2.5 eV. The electrical resistivity of the films (0.243 ± 0.188 × 10 5 Ω cm) was comparable with the literature values. These nanostructured polycrystalline CdS films could be useful in sensing and solar applications.

  5. Solution precursor plasma deposition of nanostructured CdS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tummala, Raghavender [Department of Mechanical Engineering, University of Michigan, Dearborn, MI 48128 (United States); Guduru, Ramesh K., E-mail: rkguduru@umich.edu [Department of Mechanical Engineering, University of Michigan, Dearborn, MI 48128 (United States); Mohanty, Pravansu S. [Department of Mechanical Engineering, University of Michigan, Dearborn, MI 48128 (United States)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Inexpensive process with capability to produce large scale nanostructured coatings. Black-Right-Pointing-Pointer Technique can be employed to spray the coatings on any kind of substrates including polymers. Black-Right-Pointing-Pointer The CdS coatings developed have good electrical conductivity and optical properties. Black-Right-Pointing-Pointer Coatings possess large amount of particulate boundaries and nanostructured grains. -- Abstract: Cadmium sulfide (CdS) films are used in solar cells, sensors and microelectronics. A variety of techniques, such as vapor based techniques, wet chemical methods and spray pyrolysis are frequently employed to develop adherent CdS films. In the present study, rapid deposition of CdS thin films via plasma spray route using a solution precursor was investigated, for the first time. Solution precursor comprising cadmium chloride, thiourea and distilled water was fed into a DC plasma jet via an axial atomizer to create ultrafine droplets for instantaneous and accelerated thermal decomposition in the plasma plume. The resulting molten/semi-molten ultrafine/nanoparticles of CdS eventually propel toward the substrate to form continuous CdS films. The chemistry of the solution precursor was found to be critical in plasma pyrolysis to control the stoichiometry and composition of the films. X-ray diffraction studies confirmed hexagonal {alpha}-CdS structure. Surface morphology and microstructures were investigated to compare with other synthesis techniques in terms of process mechanism and structural features. Transmission electron microscopy studies revealed nanostructures in the atomized particulates. Optical measurements indicated a decreasing transmittance in the visible light with increasing the film thickness and band gap was calculated to be {approx}2.5 eV. The electrical resistivity of the films (0.243 {+-} 0.188 Multiplication-Sign 10{sup 5} {Omega} cm) was comparable with the literature

  6. ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques

    Energy Technology Data Exchange (ETDEWEB)

    Purandare, Yashodhan, E-mail: Y.Purandare@shu.ac.uk; Ehiasarian, Arutiun; Hovsepian, Papken [Nanotechnology Centre for PVD Research, Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom); Santana, Antonio [Ionbond AG Olten, Industriestrasse 211, CH-4600 Olten (Switzerland)

    2014-05-15

    Zirconium nitride (ZrN) coatings were deposited on 1 μm finish high speed steel and 316L stainless steel test coupons. Cathodic Arc (CA) and High Power Impulse Magnetron Sputtering (HIPIMS) + Unbalanced Magnetron Sputtering (UBM) techniques were utilized to deposit coatings. CA plasmas are known to be rich in metal and gas ions of the depositing species as well as macroparticles (droplets) emitted from the arc sports. Combining HIPIMS technique with UBM in the same deposition process facilitated increased ion bombardment on the depositing species during coating growth maintaining high deposition rate. Prior to coating deposition, substrates were pretreated with Zr{sup +} rich plasma, for both arc deposited and HIPIMS deposited coatings, which led to a very high scratch adhesion value (L{sub C2}) of 100 N. Characterization results revealed the overall thickness of the coatings in the range of 2.5 μm with hardness in the range of 30–40 GPa depending on the deposition technique. Cross-sectional transmission electron microscopy and tribological experiments such as dry sliding wear tests and corrosion studies have been utilized to study the effects of ion bombardment on the structure and properties of these coatings. In all the cases, HIPIMS assisted UBM deposited coating fared equal or better than the arc deposited coatings, the reasons being discussed in this paper. Thus H+U coatings provide a good alternative to arc deposited where smooth, dense coatings are required and macrodroplets cannot be tolerated.

  7. YBa2Cu3O7-x thin films prepared by chemical solution deposition

    International Nuclear Information System (INIS)

    Apetrii, Claudia

    2009-01-01

    The discovery of superconductivity in ceramic materials by Bednorz and Mueller in early 1987, immediately followed by Wu et al., who showed that YBa 2 Cu 3 O 7-x (YBCO) becomes superconducting (92 K) well above the boiling point of nitrogen (77 K) created a great excitement in superconductivity research. Potential applications of high T c -superconductors require large critical currents and high-applied magnetic fields. Effective ways to increase the critical current density at high magnetic fields in YBCO are the introduction of nanoparticles and chemical substitution of yttrium by other rare earth elements. Since low costs and environmental compatibility are essential conditions for the preparation of long length YBCO films, the cost effective chemical solution deposition (CSD) procedure was selected, given that no vacuum technology is required. To reveal the flexibility and the good optimization possibilities of the CSD approach two main processes were chosen for comparison: a fluorine-free method, namely the polymer-metal precursor technique, and a fluorine-based method, the metalorganic deposition (MOD) using the trifluoroacetates (TFA) technique. Sharp transition temperature widths ΔT c of 1.1 K for the polymer metal method, 0.8 K for TFA method and critical current densities J c of ∼3.5 MA/cm 2 shows that high quality YBCO thin films can be produced using both techniques. Especially interesting is the magnetic field dependence of the critical current density J c (B) of the Y(Dy)BCO (80 %) films showing that for the lower magnetic fields the critical current density J c (B) is higher for a standard YBCO film, but at fields higher than 4.5 T the critical current density J c (B) of Y(Dy)BCO is larger than that for the YBCO. Above 8 T, J c (B) of the Y(Dy)BCO film is more than one order of magnitude higher than in pure YBCO film. (orig.)

  8. Rapid processing method for solution deposited YBa2Cu3O7-δ thin films

    International Nuclear Information System (INIS)

    Dawley, J.T.; Clem, P.G.; Boyle, T.J.; Ottley, L.M.; Overmyer, D.L.; Siegal, M.P.

    2004-01-01

    YBa 2 Cu 3 O 7-δ (YBCO) films, deposited on buffered metal substrates, are the primary candidate for second-generation superconducting (SC) wires, with applications including expanded power grid transmission capability, compact motors, and enhanced sensitivity magnetic resonance imaging. Feasibility of manufacturing such superconducting wires is dependent on high processing speed, often a limitation of vapor and solution-based YBCO deposition processes. In this work, YBCO films were fabricated via a new diethanolamine-modified trifluoroacetic film solution deposition method. Modifying the copper chemistry of the YBCO precursor solution with diethanolamine enables a hundredfold decrease in the organic pyrolysis time required for MA/cm 2 current density (J c ) YBCO films, from multiple hours to ∼20 s in atmospheric pressure air. High quality, ∼0.2 μm thick YBCO films with J c (77 K) values ≥2 MA/cm 2 at 77 K are routinely crystallized from these rapidly pyrolyzed films deposited on LaAlO 3 . This process has also enabled J c (77 K)=1.1 MA/cm 2 YBCO films via 90 m/h dip-coating on Oak Ridge National Laboratory RABiTS textured metal tape substrates. This new YBCO solution deposition method suggests a route toward inexpensive and commercializable ∼$10/kA m solution deposited YBCO coated conductor wires

  9. Temperature dependence of InN film deposition by an RF plasma-assisted reactive ion beam sputtering deposition technique

    International Nuclear Information System (INIS)

    Shinoda, Hiroyuki; Mutsukura, Nobuki

    2005-01-01

    Indium nitride (InN) films were deposited on Si(100) substrates using a radiofrequency (RF) plasma-assisted reactive ion beam sputtering deposition technique at various substrate temperatures. The X-ray diffraction patterns of the InN films suggest that the InN films deposited at substrate temperatures up to 370 deg C were cubic crystalline InN; and at 500 deg C, the InN film was hexagonal crystalline InN. In a scanning electron microscope image of the InN film surface, facets of cubic single-crystalline InN grains were clearly observed on the InN film deposited at 370 deg C. The inclusion of metallic indium appeared on the InN film deposited at 500 deg C

  10. Electrochemical Deposition and Dissolution of Thallium from Sulfate Solutions

    Directory of Open Access Journals (Sweden)

    Ye. Zh. Ussipbekova

    2015-01-01

    Full Text Available The electrochemical behavior of thallium was studied on glassy carbon electrodes in sulfate solutions. Cyclic voltammetry was used to study the kinetics of the electrode processes and to determine the nature of the limiting step of the cathodic reduction of thallium ions. According to the dependence of current on stirring rate and scan rate, this process is diffusion limited. Chronocoulometry showed that the electrodeposition can be performed with a current efficiency of up to 96% in the absence of oxygen.

  11. On the deposition parameters of indium oxide (IO) and tin oxide (TO) by reactive evaporation technique

    International Nuclear Information System (INIS)

    Hassan, F.; Abdullah, A.H.; Salam, R.

    1990-01-01

    Thin films of tin oxide (TO) and indium oxide (IO) are prepared by the reactive evaporation technique, where indium or tin sources are evaporated and made to react with oxygen gas injected close to the substrate. In both depositions a substrate temperature of 380 0 C and a chamber pressure of 2x10 -5 mbar are utilized, but however different oxygen flow rates has been maintained. For TO, the deposition rate is found to be constant up to about 55 minutes of deposition time with a deposition rate of about 0.10 A/s, but for longer deposition time the deposition rate increases rapidly up to about 0.30 A/s. The IO displays a higher deposition rate of about 0.80 A/s over a deposition time 30 minutes, beyond which the deposition rate increases gradually

  12. Deposition and Characterization of Silver Oxide from Solution of Silver, Cassava and Sugarcane Juice Effects

    Directory of Open Access Journals (Sweden)

    Uche E. Ekpunobi

    2013-06-01

    Full Text Available Silver oxide was deposited on metallic substrates (zinc and lead from silver solution with different additives at a pH of 5, dc current of 0.2A, 4V for 20seconds at 25°C. The additives were cassava solution and sugarcane juice. The metallic substrates served as cathode while a copper electrode serves as the anode. Compositions of the electrolytes were 50ml AgNO3, 50ml AgNO3 and 50ml of cassava solution or 50ml of sugarcane juice. Structural and textural characterizations were carried out on the deposits. The result showed that deposition using zinc substrate gave a better result than that of lead in that the deposits were pure without impurities. Using cassava solution as additive, a pure Ag2O3 deposit was obtained while sugarcane juice gave a pure intergrowth of Ag2O3 and Ag3O4 deposits both on zinc substrates.

  13. Epitaxial solution deposition of YBa2Cu3O7-6 coated conductors.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Clem, Paul Gilbert; Siegal, Michael P.; Holesinger, Terry A. (Los Alamos National Laboratory, Los Alamos, NM); Voigt, James A.; Richardson, Jacob J.; Dawley, Jeffrey Todd

    2004-11-01

    A variety of solution deposition routes have been reported for processing complex perovskite-based materials such as ferroelectric oxides and conductive electrode oxides, due to ease of incorporating multiple elements, control of chemical stoichiometry, and feasibility for large area deposition. Here, we report an extension of these methods toward long length, epitaxial film solution deposition routes to enable biaxially oriented YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO)-coated conductors for superconducting transmission wires. Recent results are presented detailing an all-solution deposition approach to YBCO-coated conductors with critical current densities J{sub c} (77 K) > 1 MA/cm{sup 2} on rolling-assisted, biaxially textured, (200)-oriented Ni-W alloy tapes. Solution-deposition methods such as this approach and those of other research groups appear to have promise to compete with vapor phase methods for superconductor electrical properties, with potential advantages for large area deposition and low cost/kA {center_dot} m of wire.

  14. Seasonal atmospheric deposition variations of polychlorinated biphenyls (PCBs) and comparison of some deposition sampling techniques.

    Science.gov (United States)

    Birgül, Askın; Tasdemir, Yücel

    2011-03-01

    Ambient air and bulk deposition samples were collected between June 2008 and June 2009. Eighty-three polychlorinated biphenyl (PCB) congeners were targeted in the samples. The average gas and particle PCB concentrations were found as 393 ± 278 and 70 ± 102 pg/m(3), respectively, and 85% of the atmospheric PCBs were in the gas phase. Bulk deposition samples were collected by using a sampler made of stainless steel. The average PCB bulk deposition flux value was determined as 6,020 ± 4,350 pg/m(2) day. The seasonal bulk deposition fluxes were not statistically different from each other, but the summer flux had higher values. Flux values differed depending on the precipitation levels. The average flux value in the rainy periods was 7,480 ± 4,080 pg/m(2) day while the average flux value in dry periods was 5,550 ± 4,420 pg/m(2) day. The obtained deposition values were lower than the reported values given for the urban and industrialized areas, yet close to the ones for the rural sites. The reported deposition values were also influenced by the type of the instruments used. The average dry deposition and total deposition velocity values calculated based on deposition and concentration values were found as 0.23 ± 0.21 and 0.13 ± 0.13 cm/s, respectively.

  15. Hybrid vapor phase-solution phase growth techniques for improved CZT(S,Se) photovoltaic device performance

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liang-Yi; Gershon, Talia S.; Haight, Richard A.; Lee, Yun Seog

    2016-12-27

    A hybrid vapor phase-solution phase CZT(S,Se) growth technique is provided. In one aspect, a method of forming a kesterite absorber material on a substrate includes the steps of: depositing a layer of a first kesterite material on the substrate using a vapor phase deposition process, wherein the first kesterite material includes Cu, Zn, Sn, and at least one of S and Se; annealing the first kesterite material to crystallize the first kesterite material; and depositing a layer of a second kesterite material on a side of the first kesterite material opposite the substrate using a solution phase deposition process, wherein the second kesterite material includes Cu, Zn, Sn, and at least one of S and Se, wherein the first kesterite material and the second kesterite material form a multi-layer stack of the absorber material on the substrate. A photovoltaic device and method of formation thereof are also provided.

  16. Textured indium tin oxide thin films by chemical solution deposition and rapid thermal processing

    International Nuclear Information System (INIS)

    Mottern, Matthew L.; Tyholdt, Frode; Ulyashin, Alexander; Helvoort, Antonius T.J. van; Verweij, Henk; Bredesen, Rune

    2007-01-01

    The microstructure of state-of-the-art chemical solution deposited indium tin oxide thin films typically consists of small randomly oriented grains, high porosity and poor homogeneity. The present study demonstrates how the thin film microstructure can be improved significantly by tailoring the precursor solutions and deposition conditions to be kinetically and thermodynamically favorable for generation of homogeneous textured thin films. This is explained by the occurrence of a single heterogeneous nucleation mechanism. The as-deposited thin films, crystallized at 800 deg. C, have a high apparent density, based on a refractive index of ∼ 1.98 determined by single wavelength ellipsometry at 633 nm. The microstructure of the films consists of columnar grains with preferred orientation as determined by X-ray diffraction and transmission electron microscopy. The resistivity, measured by the four point probe method, is ∼ 2 x 10 -3 Ω cm prior to post-deposition treatments

  17. Superhydrophobic polytetrafluoroethylene thin films with hierarchical roughness deposited using a single step vapor phase technique

    International Nuclear Information System (INIS)

    Gupta, Sushant; Arjunan, Arul Chakkaravarthi; Deshpande, Sameer; Seal, Sudipta; Singh, Deepika; Singh, Rajiv K.

    2009-01-01

    Superhydrophobic polytetrafluoroethylene films with hierarchical surface roughness were deposited using pulse electron deposition technique. We were able to modulate roughness of the deposited films by controlling the beam energy and hence the electron penetration depth. The films deposited at higher beam energy showed contact angle as high as 166 o . The scanning electron and atomic force microscope studies revealed clustered growth and two level sub-micron asperities on films deposited at higher energies. Such dual-scale hierarchical roughness and heterogeneities at the water-surface interface was attributed to the observed contact angle and thus its superhydrophobic nature.

  18. Superhydrophobic polytetrafluoroethylene thin films with hierarchical roughness deposited using a single step vapor phase technique

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sushant, E-mail: sushant3@ufl.ed [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Arjunan, Arul Chakkaravarthi [Sinmat Incorporated, 2153 SE Hawthorne Road, 129, Gainesville, Florida 32641 (United States); Deshpande, Sameer; Seal, Sudipta [Advanced Material Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816 (United States); Singh, Deepika [Sinmat Incorporated, 2153 SE Hawthorne Road, 129, Gainesville, Florida 32641 (United States); Singh, Rajiv K. [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2009-06-30

    Superhydrophobic polytetrafluoroethylene films with hierarchical surface roughness were deposited using pulse electron deposition technique. We were able to modulate roughness of the deposited films by controlling the beam energy and hence the electron penetration depth. The films deposited at higher beam energy showed contact angle as high as 166{sup o}. The scanning electron and atomic force microscope studies revealed clustered growth and two level sub-micron asperities on films deposited at higher energies. Such dual-scale hierarchical roughness and heterogeneities at the water-surface interface was attributed to the observed contact angle and thus its superhydrophobic nature.

  19. A high-efficiency solution-deposited thin-film photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Mitzi, David B; Yuan, Min; Liu, Wei; Chey, S Jay; Schrott, Alex G [IBM T. J. Watson Research Center, Yorktown Heights, NY (United States); Kellock, Andrew J; Deline, Vaughn [IBM Almaden Research Center, San Jose, CA (United States)

    2008-10-02

    High-quality Cu(In,Ga)Se{sub 2} (CIGS) films are deposited from hydrazine-based solutions and are employed as absorber layers in thin-film photovoltaic devices. The CIGS films exhibit tunable stoichiometry and well-formed grain structure without requiring post-deposition high-temperature selenium treatment. Devices based on these films offer power conversion efficiencies of 10% (AM1.5 illumination). (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  20. Characterization of amorphous yttria layers deposited by aqueous solutions of Y-chelate alkoxides complex

    Science.gov (United States)

    Kim, Young-Soon; Lee, Yu-Ri; Kim, Byeong-Joo; Lee, Jae-Hun; Moon, Seung-Hyun; Lee, Hunju

    2015-01-01

    Crack-free amorphous yttria layers were deposited by dip coating in solutions of different Y-chelate alkoxides complex. Three Y-chelate solutions of different concentrations were prepared using yttrium acetate tetrahydrate, yttrium stearic acid as Y source materials. PEG, diethanolamine were used as chelating agents, while ethanol, methanol and tetradecane were used as solvent. Three different combinations of chelating and solvents were used to prepare solutions for Y2O3 dip coating on SUS, electropolished and non-electropolished Hastelloy C-276 substrates. The thickness of the films was varied by changing the number of dipping cycles. At an optimized condition, the substrate surface roughness (rms) value was reduced from ∼50 nm to ∼1 nm over a 10 × 10 μm2 area. After Y2O3 deposition, MgO was deposited using ion-beam assisted deposition (IBAD), then LaMnO3 (LMO) was deposited using sputtering and GdBCO was deposited using reactive co-evaporation by deposition and reaction (RCE-DR). Detailed X-ray study indicates that LMO/MgO/Y2O3 and GdBCO/LMO/MgO/Y2O3 stack films have good out-of-plane and in-plane textures with strong c-axis alignment. The critical current (Ic) of GdBCO/LMO/MgO/Y2O3 multilayer structure varied from 190 to 420 A/cm with different solutions, when measured at 77 K. These results demonstrated that amorphous yttria can be easily deposited by dip coating using Y-chelates complex as a diffusion barrier and nucleation layer.

  1. Photometric estimation of plutonium in product solutions and acid waste solutions using flow injection analysis technique

    International Nuclear Information System (INIS)

    Dhas, A.J.A.; Dharmapurikar, G.R.; Kumaraguru, K.; Vijayan, K.; Kapoor, S.C.; Ramanujam, A.

    1995-01-01

    Flow injection analysis technique is employed for the measurement of plutonium concentrations in product nitrate solutions by measuring the absorbance of Pu(III) at 565 nm and of Pu(IV) at 470 nm, using a Metrohm 662 photometer, with a pyrex glass tube of 2 nm (ID) inserted in the light path of the detector serving as a flow cell. The photometer detector never comes in contact with radioactive solution. In the case of acid waste solutions Pu is first purified by extraction chromatography with 2-ethyl hexyl hydrogen 2 ethyl hexyl phosphonate (KSM 17)- chromosorb and the Pu in the eluate in complexed with Arsenazo III followed by the measured of absorbance at 665 nm. Absorbance of reference solutions in the desired concentration ranges are measured to calibrate the system. The results obtained agree with the reference values within ±2.0%. (author). 3 refs., 1 tab

  2. Monitoring Approach to Evaluate the Performances of a New Deposition Nozzle Solution for DED Systems

    Directory of Open Access Journals (Sweden)

    Federico Mazzucato

    2017-05-01

    Full Text Available Abstract: In order to improve the process efficiency of a direct energy deposition (DED system, closed loop control systems can be considered for monitoring the deposition and melting processes and adjusting the process parameters in real-time. In this paper, the monitoring of a new deposition nozzle solution for DED systems is approached through a simulation-experimental comparison. The shape of the powder flow at the exit of the nozzle outlet and the spread of the powder particles on the deposition plane are analyzed through 2D images of the powder flow obtained by monitoring the powder depositions with a high-speed camera. These experimental results are then compared with data obtained through a Computational Fluid Dynamics model. Preliminary tests are carried out by varying powder, carrier, and shielding mass flow, demonstrating that the last parameter has a significant influence on the powder distribution and powder flow geometry.

  3. Electrochemical deposition of coatings of highly entropic alloys from non-aqueous solutions

    Directory of Open Access Journals (Sweden)

    Jeníček V.

    2016-03-01

    Full Text Available The paper deals with electrochemical deposition of coatings of highly entropic alloys. These relatively new materials have been recently intensively studied. The paper describes the first results of electrochemical coating with highly entropic alloys by deposition from non-aqueous solutions. An electrochemical device was designed and coatings were deposited. The coatings were characterised with electronic microscopy scanning, atomic absorption spectrometry and X-ray diffraction methods and the combination of methods of thermic analysis of differential scanning calorimetry and thermogravimetry.

  4. A comparative study of two advanced spraying techniques for the deposition of biologically active enzyme coatings onto bone-substituting implants

    International Nuclear Information System (INIS)

    Jonge, Lise T. de; Ju, J.; Leeuwenburgh, S.C.G.; Yamagata, Y.; Higuchi, T.; Wolke, J.G.C.; Inoue, K.; Jansen, J.A.

    2010-01-01

    Surface modification of implant materials with biomolecule coatings is of high importance to improve implant fixation in bone tissue. In the current study, we present two techniques for the deposition of biologically active enzyme coatings onto implant materials. The well-established thin film ElectroSpray Deposition (ESD) technique was compared with the SAW-ED technique that combines high-frequency Surface Acoustic Wave atomization with Electrostatic Deposition. By immobilizing the enzyme alkaline phosphatase (ALP) onto implant surfaces, the influence of both SAW-ED and ESD deposition parameters on ALP deposition efficiency and ALP biological activity was investigated. ALP coatings with preserved enzyme activity were deposited by means of both the SAW-ED and ESD technique. The advantages of SAW-ED over ESD include the possibility to spray highly conductive protein solutions, and the 60-times faster deposition rate. Furthermore, significantly higher deposition efficiencies were observed for the SAW-ED technique compared to ESD. Generally, it was shown that protein inactivation is highly dependent on both droplet dehydration and the applied electrical field strength. The current study shows that SAW-ED is a versatile and flexible technique for the fabrication of functionally active biomolecule coatings.

  5. Effect of Different Catalyst Deposition Technique on Aligned Multiwalled Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Mohamed Shuaib Mohamed Saheed

    2014-01-01

    Full Text Available The paper reported the investigation of the substrate preparation technique involving deposition of iron catalyst by electron beam evaporation and ferrocene vaporization in order to produce vertically aligned multiwalled carbon nanotubes array needed for fabrication of tailored devices. Prior to the growth at 700°C in ethylene, silicon dioxide coated silicon substrate was prepared by depositing alumina followed by iron using two different methods as described earlier. Characterization analysis revealed that aligned multiwalled carbon nanotubes array of 107.9 µm thickness grown by thermal chemical vapor deposition technique can only be achieved for the sample with iron deposited using ferrocene vaporization. The thick layer of partially oxidized iron film can prevent the deactivation of catalyst and thus is able to sustain the growth. It also increases the rate of permeation of the hydrocarbon gas into the catalyst particles and prevents agglomeration at the growth temperature. Combination of alumina-iron layer provides an efficient growth of high density multiwalled carbon nanotubes array with the steady growth rate of 3.6 µm per minute for the first 12 minutes and dropped by half after 40 minutes. Thicker and uniform iron catalyst film obtained from ferrocene vaporization is attributed to the multidirectional deposition of particles in the gaseous form.

  6. Deposition and post-processing techniques for transparent conductive films

    Energy Technology Data Exchange (ETDEWEB)

    Christoforo, Mark Greyson; Mehra, Saahil; Salleo, Alberto; Peumans, Peter

    2017-07-04

    In one embodiment, a method is provided for fabrication of a semitransparent conductive mesh. A first solution having conductive nanowires suspended therein and a second solution having nanoparticles suspended therein are sprayed toward a substrate, the spraying forming a mist. The mist is processed, while on the substrate, to provide a semitransparent conductive material in the form of a mesh having the conductive nanowires and nanoparticles. The nanoparticles are configured and arranged to direct light passing through the mesh. Connections between the nanowires provide conductivity through the mesh.

  7. Coating of ceramic powders by chemical vapor deposition techniques (CVD)

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    New ceramic materials with selected advanced properties can be designed by coating of ceramic powders prior to sintering. By variation of the core and coating material a large number of various powders and ceramic materials can be produced. Powders which react with the binder phase during sintering can be coated with stable materials. Thermal expansion of the ceramic materials can be adjusted by varying the coating thickness (ratio core/layer). Electrical and wear resistant properties can be optimized for electrical contacts. A fluidized bed reactor will be designed which allow the deposition of various coatings on ceramic powders. (author)

  8. Obesity prevention: Comparison of techniques and potential solution

    Science.gov (United States)

    Zulkepli, Jafri; Abidin, Norhaslinda Zainal; Zaibidi, Nerda Zura

    2014-12-01

    Over the years, obesity prevention has been a broadly studied subject by both academicians and practitioners. It is one of the most serious public health issue as it can cause numerous chronic health and psychosocial problems. Research is needed to suggest a population-based strategy for obesity prevention. In the academic environment, the importance of obesity prevention has triggered various problem solving approaches. A good obesity prevention model, should comprehend and cater all complex and dynamics issues. Hence, the main purpose of this paper is to discuss the qualitative and quantitative approaches on obesity prevention study and to provide an extensive literature review on various recent modelling techniques for obesity prevention. Based on these literatures, the comparison of both quantitative and qualitative approahes are highlighted and the justification on the used of system dynamics technique to solve the population of obesity is discussed. Lastly, a potential framework solution based on system dynamics modelling is proposed.

  9. HPAT: A nondestructive analysis technique for plutonium and uranium solutions

    International Nuclear Information System (INIS)

    Aparo, M.; Mattia, B.; Zeppa, P.; Pagliai, V.; Frazzoli, F.V.

    1989-03-01

    Two experimental approaches for the nondestructive characterization of mixed solutions of plutonium and uranium, developed at BNEA - C.R.E. Casaccia, with the goal of measuring low plutonium concentration (<50 g/l) even in presence of high uranium content, are described in the following. Both methods are referred to as HPAT (Hybrid Passive-Active Technique) since they rely on the measurement of plutonium spontaneous emission in the LX-rays energy region as well as the transmission of KX photons from the fluorescence induced by a radioisotopic source on a suitable target. Experimental campaigns for the characterization of both techniques have been carried out at EUREX Plant Laboratories (C.R.E. Saluggia) and at Plutonium Plant Laboratories (C.R.E. Casaccia). Experimental results and theoretical value of the errors are reported. (author)

  10. Industrially relevant Al2O3 deposition techniques for the surface passivation of Si solar cells

    NARCIS (Netherlands)

    Schmidt, J.; Werner, F.; Veith, B.; Zielke, D.; Bock, R.; Tiba, M.V.; Poodt, P.; Roozeboom, F.; Li, A.; Cuevas, A.; Brendel, R.

    2010-01-01

    We present independently confirmed efficiencies of 21.4% for PERC cells with plasma-assisted atom-ic-layer-deposited (plasma ALD) Al2O3 rear passivation and 20.7% for cells with thermal ALD-Al2O3. Additionally, we evaluate three different industrially relevant techniques for the deposition of

  11. The Development of a Differential Deposition Technique for Figure Correction in Grazing Incidence Optics

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a physical-vapor-deposition coating technique to correct residual figure errors in grazing-incidence optics. The process involves...

  12. Characterization of amorphous yttria layers deposited by aqueous solutions of Y-chelate alkoxides complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Soon, E-mail: kyscjb@i-sunam.com; Lee, Yu-Ri; Kim, Byeong-Joo; Lee, Jae-Hun; Moon, Seung-Hyun; Lee, Hunju

    2015-01-15

    Highlights: • Economical method for crack-free amorphous yttria layer deposition by dip coating. • Simpler process for planar yttria film as a diffusion barrier and nucleation layer. • Easy control over the film properties with better characteristics. • Easy control over the thickness of the deposited films. • A feasible process that can be easily adopted by HTSCC industries. - Abstract: Crack-free amorphous yttria layers were deposited by dip coating in solutions of different Y-chelate alkoxides complex. Three Y-chelate solutions of different concentrations were prepared using yttrium acetate tetrahydrate, yttrium stearic acid as Y source materials. PEG, diethanolamine were used as chelating agents, while ethanol, methanol and tetradecane were used as solvent. Three different combinations of chelating and solvents were used to prepare solutions for Y{sub 2}O{sub 3} dip coating on SUS, electropolished and non-electropolished Hastelloy C-276 substrates. The thickness of the films was varied by changing the number of dipping cycles. At an optimized condition, the substrate surface roughness (rms) value was reduced from ∼50 nm to ∼1 nm over a 10 × 10 μm{sup 2} area. After Y{sub 2}O{sub 3} deposition, MgO was deposited using ion-beam assisted deposition (IBAD), then LaMnO{sub 3} (LMO) was deposited using sputtering and GdBCO was deposited using reactive co-evaporation by deposition and reaction (RCE-DR). Detailed X-ray study indicates that LMO/MgO/Y{sub 2}O{sub 3} and GdBCO/LMO/MgO/Y{sub 2}O{sub 3} stack films have good out-of-plane and in-plane textures with strong c-axis alignment. The critical current (Ic) of GdBCO/LMO/MgO/Y{sub 2}O{sub 3} multilayer structure varied from 190 to 420 A/cm with different solutions, when measured at 77 K. These results demonstrated that amorphous yttria can be easily deposited by dip coating using Y-chelates complex as a diffusion barrier and nucleation layer.

  13. Influence of Ce 0.68 Zr 0.32 O 2 solid solution on depositing ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 1. Influence of Ce0.68Zr0.32O2 solid solution on depositing -alumina washcoat on FeCrAl foils. Mei-Qing Shen Li-Wei Jia Wen-Long Zhou Jun Wang Ying Huang. Composites Volume 29 Issue 1 February 2006 pp 73-76 ...

  14. Chemical solution deposition of CaCu3Ti4O12 thin film

    Indian Academy of Sciences (India)

    Administrator

    CaCu3Ti4O12; thin film; chemical solution deposition; dielectric properties. 1. Introduction. The CaCu3Ti4O12. (CCTO) compound has recently attracted considerable ... and Kelvin probe force microscopy (Chung et al 2004). Intrinsic .... SEM images of CCTO thin films as a function of sintering temperature. silicon based ...

  15. Transport Properties of LCMO Granular Films Deposited by the Pulsed Electron Deposition Technique

    Institute of Scientific and Technical Information of China (English)

    CHEN Leiming; XU Bin; ZHANG Yan; CHEN Zhenping

    2011-01-01

    By finely controlling the deposition parameters in the pulsed electron deposition process,granular La2/3Ca1/3MnO3 (LCMO) film was grown on silicon substrates.The substrate temperature,ambient pressure in the deposition chamber and acceleration potential for the electron beam were all found to affect the grain size of the film,resulting in different morphologies of the samples.Transport properties of the obtained granular films,especially the magnetoresistance (MR),were studied.Prominent low-field MR was observed in all samples,indicating the forming of grain boundaries in the sample.The low-field MR show great sensitive to the morphology evolution,which reaches the highest value of about 40% for the sample with the grain size of about 250 nm.More interestingly,positive-MR (p-MR) was also detected above 300 K when low magnetic field applying,whereas it disappeared with higher magnetic field applied up to 1.5 and 2 Tesla.Instead of the spinpolarized tunneling process being commonly regarded as a responsible reason,lattice mismatch between LCMO film and silicon substrate appears to be the origin of the p-MR

  16. Silicon doping techniques using chemical vapor dopant deposition

    NARCIS (Netherlands)

    Popadic, M.

    2009-01-01

    Ultrashallow junctions are essential for the achievement of superior transistor performance, both in MOSFET and bipolar transistors. The stringent demands require state-of-the-art fabrication techniques. At the same time, in a different context, the accurate fabrication of various n type doping

  17. Structural characterization of the nickel thin film deposited by glad technique

    Directory of Open Access Journals (Sweden)

    Potočnik J.

    2013-01-01

    Full Text Available In this work, a columnar structure of nickel thin film has been obtained using an advanced deposition technique known as Glancing Angle Deposition. Nickel thin film was deposited on glass sample at the constant emission current of 100 mA. Glass sample was positioned 15 degrees with respect to the nickel vapor flux. The obtained nickel thin film was characterized by Force Modulation Atomic Force Microscopy and by Scanning Electron Microscopy. Analysis indicated that the formation of the columnar structure occurred at the film thickness of 1 μm, which was achieved for the deposition time of 3 hours. [Projekat Ministarstva nauke Republike Srbije, br. III45005

  18. Nucleation and growth of copper phthalocyanine aggregates deposited from solution on planar surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Fatemeh [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany); Gojzewski, Hubert, E-mail: hubert.gojzewski@put.poznan.pl [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany); Institute of Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan (Poland); Riegler, Hans [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany)

    2015-10-01

    Graphical abstract: - Highlights: • Copper phthalocyanine deposited on planar surfaces by 3 solution process methods. • Aggregate morphology examined for coverage extending over 3 orders of magnitude. • Morphologies vary from small individual domains to mesh-like multilayers. • Nucleation and growth model explains the observed deposit morphologies. - Abstract: Copper phthalocyanine (CuPc) dissolved in trifluoroacetic acid (TFA) is deposited on solid SiO{sub 2} surfaces by solvent evaporation. The deposited CuPc aggregates are investigated by atomic force microscopy (AFM). The CuPc deposits were prepared by spin casting, dip coating, and spray deposition. Depending on the amount of deposited CuPc the aggregate morphology ranges from small individual domains to mesh-like multilayers. Each domain/layer consists of many parallel stacks of CuPc molecules with the square, plate-like molecules piled face-wise within each stack. The parallel stacks are attached sideways (i.e., edgewise attachment molecularly) to the substrate forming “nanoribbons” with uniform thickness of about 1 nm and varying width. The thickness reflects the length of a molecular edge, the width the number of stacks. A nucleation and growth model is presented that explains the observed aggregate and multilayer morphologies as result of the combination of nucleation, transport processes and a consequence of the anisotropic intermolecular interactions due to the shape of the CuPc molecule.

  19. Low-temperature transport properties of chemical solution deposited polycrystalline La0.7Sr0.3MnO3 ferromagnetic films under a magnetic field

    International Nuclear Information System (INIS)

    Zhu, Junyu; Chen, Ying; Xu, Wenfei; Yang, Jing; Bai, Wei; Wang, Genshui; Duan, Chungang; Tang, Zheng; Tang, Xiaodong

    2011-01-01

    Polycrystalline La 0.7 Sr 0.3 MnO 3 (LSMO) films were prepared on SiO 2 /Si (001) substrates by chemical solution deposition technique. Electrical and magnetic properties of LSMO were investigated. A minimum phenomenon in resistivity is found at the low temperature ( 0.7 Sr 0.3 MnO 3 films were grown by a modified chemical solution deposition route. → High quality LSMO thin films were prepared directly onto SiO 2 /Si substrates. → Abnormality in resistivity of LSMO films at low temperatures was studied in detail. → The abnormality was mainly attributed to Kondo-like spin dependent scattering.

  20. Geochemical prospecting techniques for ore deposits in periglacial regions

    International Nuclear Information System (INIS)

    Pitul'ko, V.M.

    1977-01-01

    Necessity and prospects of the implementation of geochemical methods of search in periglacial regions are discussed. The behaviour of chemical elements under the conditions of oxide and sulphate cryogenic topographies whose development has common regularities is analyzed. According to the specificity of migration the observed elements have been divided into four groups: active, mobile, low-mobile and inert migrants. Uranium which is present in ores in the form of pitchblende in oxide zones of the oxidation is actively redistributed. In zones of the oxidation of rare metal metasomatites connected with alkalic ultrabasic rocks only that part of U is mobile which being released from pyrochlore forms the regenerated uranium black and the partial enrichment of the iron gossan. Th like other elements of the 4-th group in all oxidation zones is observed to accumulate in minerals - concentrators: thorite, pyrochlore and so on. A diagram is plotted which characterizes the migration of elements whithin aureole landscapes as well as in automonous and dependent topographies of ore-free areas. The complex nature of secondary aureoles displays the most complete anomalous spectrum of elements - indicators of mineralization. The table of the most typical elements - indicators of the secondary scattering of some endogenic deposits of the cryolitic zone is given

  1. Biomaterial thin film deposition and characterization by means of MAPLE technique

    International Nuclear Information System (INIS)

    Bloisi, F.; Vicari, L.; Papa, R.; Califano, V.; Pedrazzani, R.; Bontempi, E.; Depero, L.E.

    2007-01-01

    Polyethylene glycol (PEG) is a polymer with technologically important applications, especially as a biomaterial. Several biomedical applications (such as tissue engineering, spatial patterning of cells, anti-biofouling and biocompatible coatings) require the application of high quality PEG thin films. In order to have a good adhesion to substrate chemically modified polymer molecules have been used, but for some 'in vivo' applications it is essential to deposit a film with the same chemical and structural properties of bulk PEG. Pulsed laser deposition (PLD) technique is generally able to produce high quality thin films but it is inadequate for polymer/organic molecules. MAPLE (Matrix Assisted Pulsed Laser Evaporation) is a recently developed PLD based thin film deposition technique, particularly well suited for organic/polymer thin film deposition. Up to now MAPLE depositions have been carried out mainly by means of modified PLD systems, using excimer lasers operating in UV, but the use of less energetic radiations can minimize the photochemical decomposition of the polymer molecules. We have used a deposition system explicitly designed for MAPLE technique connected to a Q-switched Ng:YAG pulsed laser which can be operated at different wavelength ranging from IR to UV in order to optimise the deposition parameters. The capability of MAPLE technique to deposit PEG has been confirmed and preliminary results show that visible (532 nm wavelength) radiation gives better results with respect to UV (355 nm) radiation. Despite usually UV wavelengths have been used and even if more systematic tests must be performed, it is important to underline that the choice of laser wavelength plays an important role in the application of MAPLE thin film deposition technique

  2. Effects of atmospheric deposition nitrogen flux and its composition on soil solution chemistry from a red soil farmland, southeast China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; Chan, Andrew; Mao, Jingdong

    2015-12-01

    A detailed study on the solution chemistry of red soil in South China is presented. Data are collected from two simulated column-leaching experiments with an improved setup to evaluate the effects of atmospheric N deposition (ADN) composition and ADN flux on agricultural soil acidification using a (15)N tracer technique and an in situ soil solution sampler. The results show that solution pH values decline regardless of the increase of the NH4(+)/NO3(-) ratio in the ADN composition or ADN flux, while exchangeable Al(3+), Ca(2+), Mg(2+), and K(+) concentrations increase at different soil depths (20, 40, and 60 cm). Compared with the control, ADN (60 kg per ha per year N, NH4(+)/NO3(-) ratio of 2 : 1) decreases solution pH values, increases solution concentrations of NO3(-)-N, Al(3+), Ca(2+) and Mg(2+) at the middle and lower soil depths, and promotes their removal. NH4(+)-N was not detected in red soil solutions of all the three soil layers, which might be attributed to effects of nitrification, absorption and fixation in farmland red soil. Some of the NO3(-)-N concentrations at 40-60 cm soil depth exceed the safe drinking level of 10 mg L(-1), especially when the ADN flux is beyond 60 kg ha(-1) N. These features are critical for understanding the ADN agro-ecological effects, and for future assessment of ecological critical loads of ADN in red soil farmlands.

  3. Solution of the fully fuzzy linear systems using iterative techniques

    International Nuclear Information System (INIS)

    Dehghan, Mehdi; Hashemi, Behnam; Ghatee, Mehdi

    2007-01-01

    This paper mainly intends to discuss the iterative solution of fully fuzzy linear systems which we call FFLS. We employ Dubois and Prade's approximate arithmetic operators on LR fuzzy numbers for finding a positive fuzzy vector x-tilde which satisfies A-tildex-tilde=b, where A-tilde and b-tilde are a fuzzy matrix and a fuzzy vector, respectively. Please note that the positivity assumption is not so restrictive in applied problems. We transform FFLS and propose iterative techniques such as Richardson, Jacobi, Jacobi overrelaxation (JOR), Gauss-Seidel, successive overrelaxation (SOR), accelerated overrelaxation (AOR), symmetric and unsymmetric SOR (SSOR and USSOR) and extrapolated modified Aitken (EMA) for solving FFLS. In addition, the methods of Newton, quasi-Newton and conjugate gradient are proposed from nonlinear programming for solving a fully fuzzy linear system. Various numerical examples are also given to show the efficiency of the proposed schemes

  4. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    International Nuclear Information System (INIS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-01-01

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  5. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Petala, M., E-mail: petala@civil.auth.gr [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Tsiridis, V. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Mintsouli, I. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Pliatsikas, N. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Spanos, Th. [Department of Petroleum and Mechanical Engineering Sciences, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 (Greece); Rebeyre, P. [ESA/ESTEC, P.O.Box 299, 2200 AG, Noordwijk (Netherlands); Darakas, E. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Patsalas, P.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece)

    2017-02-28

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  6. Deposition of nanostructured photocatalytic zinc ferrite films using solution precursor plasma spraying

    International Nuclear Information System (INIS)

    Dom, Rekha; Sivakumar, G.; Hebalkar, Neha Y.; Joshi, Shrikant V.; Borse, Pramod H.

    2012-01-01

    Highlights: ► Highly economic solution precursor route capable of producing films/coating even for mass scale production. ► Pure spinel phase ZnFe 2 O 4 porous, immobilized films deposited in single step. ► Parameter optimization yields access to nanostructuring in SPPS method. ► The ecofriendly immobilized ferrite films were active under solar radiation. ► Such magnetic system display advantage w.r.t. recyclability after photocatalyst extraction. -- Abstract: Deposition of pure spinel phase, photocatalytic zinc ferrite films on SS-304 substrates by solution precursor plasma spraying (SPPS) has been demonstrated for the first time. Deposition parameters such as precursor solution pH, concentration, film thickness, plasma power and gun-substrate distance were found to control physico-chemical properties of the film, with respect to their crystallinity, phase purity, and morphology. Alkaline precursor conditions (7 2 O 4 film. Very high/low precursor concentrations yielded mixed phase, less adherent, and highly inhomogeneous thin films. Desired spinel phase was achieved in as-deposited condition under appropriately controlled spray conditions and exhibited a band gap of ∼1.9 eV. The highly porous nature of the films favored its photocatalytic performance as indicated by methylene blue de-coloration under solar radiation. These immobilized films display good potential for visible light photocatalytic applications.

  7. Improved parallel solution techniques for the integral transport matrix method

    Energy Technology Data Exchange (ETDEWEB)

    Zerr, R. Joseph, E-mail: rjz116@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA (United States); Azmy, Yousry Y., E-mail: yyazmy@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Burlington Engineering Laboratories, Raleigh, NC (United States)

    2011-07-01

    Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution time by up to 10´ when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing cases are optically thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block pre conditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient pre conditioner. (author)

  8. Improved parallel solution techniques for the integral transport matrix method

    International Nuclear Information System (INIS)

    Zerr, R. Joseph; Azmy, Yousry Y.

    2011-01-01

    Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution time by up to 10´ when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing cases are optically thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block pre conditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient pre conditioner. (author)

  9. Deposition techniques for the preparation of thin film nuclear targets

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1987-07-01

    This review commences with a brief description of the basic principles that regulate vacuum evaporation and the physical processes involved in thin film formation, followed by a description of the experimental methods used. The principle methods of heating the evaporant are detailed and the means of measuring and controlling the film thickness are elucidated. Types of thin film nuclear targets are considered and various film release agents are listed. Thin film nuclear target behaviour under ion-bombardment is described and the dependence of nuclear experimental results upon target thickness and uniformity is outlined. Special problems associated with preparing suitable targets for lifetime measurements are discussed. The causes of stripper-foil thickening and breaking under heavy-ion bombardment are considered. A comparison is made between foils manufactured by a glow discharge process and those produced by vacuum sublimation. Consideration is given to the methods of carbon stripper-foil manufacture and to the characteristics of stripper-foil lifetimes are considered. Techniques are described that have been developed for the fabrication of special targets, both from natural and isotopically enriched material, and also of elements that are either chemically unstable, or thermally unstable under irradiation. The reduction of metal oxides by the use of hydrogen or by utilising a metallothermic technique, and the simultaneous evaporation of reduced rare earth elements is described. A comprehensive list of the common targets is presented

  10. A review of basic phenomena and techniques for sputter-deposition of high temperature superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Auciello, O. (Microelectronics Center of North Carolina, Research Triangle Park, NC (USA) North Carolina State Univ., Raleigh, NC (USA). Dept. of Materials Science and Engineering); Ameen, M.S.; Kingon, A.I.; Lichtenwalner, D.J. (North Carolina State Univ., Raleigh, NC (USA). Dept. of Materials Science and Engineering); Krauss, A.R. (Argonne National Lab., IL (USA))

    1990-01-01

    The processes involved in plasma and ion beam sputter-deposition of high temperature superconducting thin films are critically reviewed. Recent advances in the development of these techniques are discussed in relation to basic physical phenomena, specific to each technique, which must be understood before high quality films can be produced. Control of film composition is a major issue in sputter-deposition of multicomponent materials. Low temperature processing of films is a common goal for each technique, particularly in relation to integrating high temperature superconducting films with the current microelectronics technology. It has been understood for some time that for Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} deposition, the most intensely studied high-{Tc} compound, incorporation of sufficient oxygen into the film during deposition is necessary to produce as-deposited superconducting films at relatively substrate temperatures. Recent results have shown that with the use of suitable buffer layers, high quality Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} sputtered films can be obtained on Si substrates without the need for post-deposition anneal processing. This review is mainly focussed on issues related to sputter-deposition of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} thin films, although representative results concerning the bismuth and thallium based compounds are included. 143 refs., 11 figs.

  11. Analytic solutions to linear, time-dependent fission product deposition models for isothermal laminar, slug, or multiregion flow conditions

    International Nuclear Information System (INIS)

    Durkee, J.W. Jr.

    1983-01-01

    The time-dependent convective-diffusion equation with radioactive decay is solved analytically in axisymmetric cylindrical geometry for laminar and slug velocity profiles under isothermal conditions. Concentration dependent diffusion is neglected. The laminar flow solution is derived using the method of separation of variables and Frobenius' technique for constructing a series expansion about a regular singular point. The slug flow multiregion solution is obtained using the method of separation of variables. The Davidon Variable Metric Minimization algorithm is used to compute the coupling coefficients. These solutions, which describe the transport of fission products in a flowing stream, are then used to determine the concentration of radioactive material deposited on a conduit wall using a standard mass transfer model. Fission product deposition measurements for five diffusion tubes in a Fort St. Vrain High-Temperature Gas-Cooled reactor plateout probe are analyzed. Using single region slug and laminar models, the wall mass transfer coefficients, diffusion coefficients, and inlet concentrations are determined using least squares analysis. The diffusion coefficients and inlet concentrations are consistent between tubes. The derived diffusion coefficients and wall mass transfer coefficients are in relative agreement with known literature values

  12. Novel geochemical techniques integrated in exploration for uranium deposits at depth

    International Nuclear Information System (INIS)

    Kyser, K.

    2014-01-01

    Mineral deposits are in fact geochemical anomalies, and as such their detection and assessment of their impact on the environment should be facilitated using geochemical techniques. Although geochemistry has been used directly in the discovery of uranium deposits and more indirectly in shaping deposit models, the novel applications of geochemistry and integration with other data can be more effective in formulating exploration and remediation strategies. Recent research on the use of geochemistry in detecting uranium deposits at depth include: (1) more effective integration of geochemical with geophysical data to refine targets, (2) revealing element distributions in and around deposits to adequately assess the total chemical environment associated with the deposit, (3) the use of element tracing using elemental concentrations and isotopic compositions in the near surface environment to detect specific components that have migrated to the surface from uranium deposits at depth, (4) understand the effects of both macro- and micro-environments on element mobility across the geosphere-biosphere interface to enhance exploration using select media for uranium at depth. Geophysical data used in exploration can identify areas of conductors where redox contrasts may host mineralization, structures that act to focus fluids during formation of the deposits and act as conduits for element migration to the surface, and contrasts in geology that are required for the deposits. However, precision of these data is greatly diminished with depth, but geochemical data from drill core or surface media can enhance target identification when integrated with geophysical data. Geochemical orientation surveys over known unconformity-related deposits at depth clearly identify mineralization 900m deep. Drill core near the deposit, clay-size fractions separated from soil horizons and vegetation over and far from the deposit record element migration from the deposit as radiogenic He, Rn and Pb

  13. Comparison of chemical solution deposition systems for the fabrication of lead zirconate titanate thin films

    International Nuclear Information System (INIS)

    Lecarpentier, F.; Daglish, M.; Kemmitt, T.

    2001-01-01

    Ferroelectric thin films of lead zirconate titanate Pb(Zr x Ti 1-x )O 3 (PZT) were prepared from five chemical solution deposition (CSD) systems, namely methoxyethanol, citrate, diol, acetic acid and triethanolamine. Physical characteristics of the solutions, processing parameters and physical and electrical properties of the films were used to assess the relative advantages and disadvantages of the different chemical systems. All the CSD systems decomposed to produce single phase perovskite PZT at temperatures above 650 deg C. Thin film deposition was influenced by the specific characteristics of each system such as wetting on the substrate and viscosity. Distinct precursor effects on the thin film crystallinity and electrical performance were revealed. The diol route yielded films with the highest crystallite size, highest permittivity and lowest loss tangent. The relative permittivity exhibited by films made by the other routes were 25% to 35% lower at equivalent thicknesses. Copyright (2001) The Australian Ceramic Society

  14. Photocatalysis of zinc oxide nanotip array/titanium oxide film heterojunction prepared by aqueous solution deposition

    Science.gov (United States)

    Lee, Ming-Kwei; Lee, Bo-Wei; Kao, Chen-Yu

    2017-05-01

    A TiO2 film was prepared on indium tin oxide (ITO)/glass by aqueous solution deposition (ASD) with precursors of ammonium hexafluoro-titanate and boric acid at 40 °C. The photocatalysis of annealed TiO2 film increases with increasing growth time and decreases with increasing growth times longer than 60 min. A ZnO nanotip array was prepared on ZnO seed layer/TiO2 film/glass by aqueous solution deposition with precursors of zinc nitrate and ammonium hydroxide at 70 °C. The photocatalysis of ASD-ZnO/ASD-TiO2 film/ITO glass can be better than that of P25.

  15. Characteristics of zinc oxide nanorod array/titanium oxide film heterojunction prepared by aqueous solution deposition

    Science.gov (United States)

    Lee, Ming-Kwei; Hong, Min-Hsuan; Li, Bo-Wei

    2016-07-01

    The characteristics of a ZnO nanorod array/TiO2 film heterojunction were investigated. A TiO2 film was prepared on glass by aqueous solution deposition with precursors of ammonium hexafluorotitanate and boric acid at 40 °C. Then, a ZnO seed layer was prepared on a TiO2 film/glass substrate by RF sputtering. A vertically oriented ZnO nanorod array was grown on a ZnO seed layer/TiO2 film/glass substrate by aqueous solution deposition with precursors of zinc nitrate and hexamethylenetetramine (HMT) at 70 °C. After thermal annealing in N2O ambient at 300 °C, this heterojunction used as an oxygen gas sensor shows much better rise time, decay time, and on/off current ratio than as-grown and annealed ZnO nanorods.

  16. Chemical solution deposition of YBCO thin film by different polymer additives

    International Nuclear Information System (INIS)

    Wang, W.T.; Li, G.; Pu, M.H.; Sun, R.P.; Zhou, H.M.; Zhang, Y.; Zhang, H.; Yang, Y.; Cheng, C.H.; Zhao, Y.

    2008-01-01

    A polymer-assisted chemical solution deposition approach has been proposed for the preparation of YBCO thin film. Different additives like PVB (polyvinyl butyral), PEG (polyethylene glycol) and PVP (polyvinylpyrrolidone) have been used to adjust the final viscosity of the precursor solution and thus the film formation. In this fluorine-free approach, YBCO has been deposited on single crystal substrates with metal acetates being starting materials. Biaxially textured YBCO thin films have been obtained. However, different additives lead to different microstructure. Dense, smooth and crack-free YBCO film prepared with PVB as additive yields sharp superconducting transition around T c = 90 K as well as high J c (0 T, 77 K) over 3 MA/cm 2

  17. Chemical solution deposition of YBCO thin film by different polymer additives

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.T.; Li, G.; Pu, M.H.; Sun, R.P.; Zhou, H.M.; Zhang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, H. [Department of Physics, Peking University, Beijing 100871 (China); Yang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia); Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia)], E-mail: yzhao@swjtu.edu.cn

    2008-09-15

    A polymer-assisted chemical solution deposition approach has been proposed for the preparation of YBCO thin film. Different additives like PVB (polyvinyl butyral), PEG (polyethylene glycol) and PVP (polyvinylpyrrolidone) have been used to adjust the final viscosity of the precursor solution and thus the film formation. In this fluorine-free approach, YBCO has been deposited on single crystal substrates with metal acetates being starting materials. Biaxially textured YBCO thin films have been obtained. However, different additives lead to different microstructure. Dense, smooth and crack-free YBCO film prepared with PVB as additive yields sharp superconducting transition around T{sub c} = 90 K as well as high J{sub c} (0 T, 77 K) over 3 MA/cm{sup 2}.

  18. Orientation control of chemical solution deposited LaNiO3 thin films

    International Nuclear Information System (INIS)

    Ueno, Kengo; Yamaguchi, Toshiaki; Sakamoto, Wataru; Yogo, Toshinobu; Kikuta, Koichi; Hirano, Shin-ichi

    2005-01-01

    High quality LaNiO 3 (LNO) thin films with preferred orientation could be synthesized on Pt/Ti/SiO 2 /Si substrates at 700 deg. C using the chemical solution deposition method. The homogeneous and stable LNO precursor solutions were prepared using lanthanum isopropoxide and nickel (II) acetylacetonate in a mixed solvent of absolute ethanol and 2-methoxyethanol. The oriented LNO thin films exhibit metallic electro-conduction, and their resistivity at room temperature is sufficiently low for making them an alternative electrode material for functional ceramic thin films

  19. Rubidium-strontium isotoppe study of Muruntan deposit. 1.Ore vien dating by isochrone technique

    International Nuclear Information System (INIS)

    Kostitsyn, Yu.A.

    1993-01-01

    Hydrothermal viens of Muruntau gold-ore deposit (Central Kyzylkum) have been studies by the isochrone technique. The ages obtained for the quartz-tourmaline (257+13 Ma), quartz-arsenopyrite (230.3+-3.5 Ma) and quartz-adularia (219.4+-4.2 Ma) hydrothermal viens reflect the different stages of the deposit evolution: gold-ore and gold-silver one. Strontium isotope analysis reveals that the matter of hydrothermal viens is originated from the surrounding black schists

  20. Metalorganic solution deposition of lead zirconate titanate films onto an additively manufactured Ni-based superalloy

    International Nuclear Information System (INIS)

    Patel, T.; Khassaf, H.; Vijayan, S.; Bassiri-Gharb, N.; Aindow, M.; Alpay, S.P.; Hebert, R.J.

    2017-01-01

    Recent advances in additive manufacturing of high-temperature alloys for structural aerospace applications has led to interest in integrating additional functionality into such parts. Lead zirconate titanate (PZT) is a prototypical ferroelectric ceramic used as the electro-active material in many piezoelectric sensors and actuators. In this study, 300 nm thick PbZr_0_._2Ti_0_._8O_3 (PZT 20/80) films were grown using metalorganic solution deposition onto additively manufactured substrates of Inconel 718. The microstructures of the films and the nature of the film/substrate interfaces were characterized using a combination of X-ray diffraction and electron microscopy techniques. Electrical measurements were performed to determine the ferroelectric, dielectric, and conductive responses of the PZT films. Our findings show that the PZT films exhibit robust ferroelectricity characterized by well-defined polarization-applied electric field (P-E) hysteresis loops. The samples display internal bias of up to ∼40 kV/cm. The room temperature remnant polarization and the small signal dielectric permittivity are ∼70 μC/cm"2 and 205, respectively. The dielectric loss (tan δ) and the leakage current at 1 kHz are 9% and 1 nA at 1 V, respectively. We attribute the internal bias observed in the hysteresis loops and the overall large dielectric losses to the presence of an intermediate oxide layer at the PZT/Inconel interface, which forms during the high temperature crystallization of the ferroelectric film. These results show that it is possible to grow functional oxides with promising electrical properties onto additively manufactured metallic substrates.

  1. Preparation of potassium tantalate niobate thin films by chemical solution deposition and their characterization

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Železný, Vladimír; Vaněk, Přemysl

    2005-01-01

    Roč. 25, č. 12 (2005), s. 2151-2154 ISSN 0955-2219 R&D Projects: GA ČR GA202/02/0238; GA MŠk(CZ) LN00A028; GA MŠk OC 528.001 Institutional research plan: CEZ:AV0Z40320502 Keywords : films * tantalates * chemical solution deposition Subject RIV: CA - Inorganic Chemistry Impact factor: 1.567, year: 2005

  2. Overlayer structure of subphthalocyanine derivative deposited on Au (111) surface by a spray-jet technique

    International Nuclear Information System (INIS)

    Suzuki, Hitoshi; Yamada, Toshiki; Miki, Hideki; Mashiko, Shinro

    2006-01-01

    A new spray-jet technique was used to deposit subphthalocyanine derivative (chloro[tri-tert-butyl subphthalocyaninato]boron (TBSubPc)) on Au (111) surface in an ultra-high vacuum (UHV) chamber. The deposited molecular overlayer was observed with UHV scanning tunneling microscopy (STM) at 77 K. The STM images showed that TBSubPc molecules formed a stripe pattern with regular spacing, indicating that they preferentially adsorbed along the herringbone structure of the Au (111) surface. This behavior was very similar to that of TBSubPc molecules deposited by thermal evaporation

  3. Transparent conducting oxide films of group V doped titania prepared by aqueous chemical solution deposition

    International Nuclear Information System (INIS)

    Elen, Ken; Capon, Boris; De Dobbelaere, Christopher; Dewulf, Daan; Peys, Nick; Detavernier, Christophe; Hardy, An; Van Bael, Marlies K.

    2014-01-01

    Transparent conducting oxide (TCO) films of titania doped with vanadium (V), niobium (Nb) and tantalum (Ta) are obtained by aqueous Chemical Solution Deposition (CSD). The effect of the dopant on the crystallization and microstructure of the resulting films is examined by means of X-ray diffraction and electron microscopy. During annealing of the thin films, in-situ characterization of the crystal structure and sheet resistance is carried out. Niobium doped anatase films, obtained after annealing in forming gas, show a resistivity of 0,28 Ohm cm, which is the lowest resistivity reported for a solution deposited anatase-based TCO so far. Here, we demonstrate that aqueous CSD may provide a strategy for scalable TCO production in the future. - Highlights: • Aqueous chemical solution deposition of doped titanium dioxide • Doping delays the phase transition from anatase to rutile • Lowest resistivity after doping with niobium and annealing in Forming Gas • Transparency higher than 80% in the visible range of optical spectrum

  4. Transparent conducting oxide films of group V doped titania prepared by aqueous chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Elen, Ken [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Strategisch Initiatief Materialen (SIM), SoPPoM Program (Belgium); Capon, Boris [Strategisch Initiatief Materialen (SIM), SoPPoM Programm (Belgium); Coating and Contacting of Nanostructures, Ghent University, Krijgslaan 281 S1, B-9000 Ghent (Belgium); De Dobbelaere, Christopher [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Dewulf, Daan [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Peys, Nick [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw, Kapeldreef 75, B-3001 Heverlee (Belgium); Detavernier, Christophe [Coating and Contacting of Nanostructures, Ghent University, Krijgslaan 281 S1, B-9000 Ghent (Belgium); Hardy, An [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Van Bael, Marlies K., E-mail: marlies.vanbael@uhasselt.be [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium)

    2014-03-31

    Transparent conducting oxide (TCO) films of titania doped with vanadium (V), niobium (Nb) and tantalum (Ta) are obtained by aqueous Chemical Solution Deposition (CSD). The effect of the dopant on the crystallization and microstructure of the resulting films is examined by means of X-ray diffraction and electron microscopy. During annealing of the thin films, in-situ characterization of the crystal structure and sheet resistance is carried out. Niobium doped anatase films, obtained after annealing in forming gas, show a resistivity of 0,28 Ohm cm, which is the lowest resistivity reported for a solution deposited anatase-based TCO so far. Here, we demonstrate that aqueous CSD may provide a strategy for scalable TCO production in the future. - Highlights: • Aqueous chemical solution deposition of doped titanium dioxide • Doping delays the phase transition from anatase to rutile • Lowest resistivity after doping with niobium and annealing in Forming Gas • Transparency higher than 80% in the visible range of optical spectrum.

  5. Heart rate effects of intraosseous injections using slow and fast rates of anesthetic solution deposition.

    Science.gov (United States)

    Susi, Louis; Reader, Al; Nusstein, John; Beck, Mike; Weaver, Joel; Drum, Melissa

    2008-01-01

    The authors, using a crossover design, randomly administered, in a single-blind manner, 3 primary intraosseous injections to 61 subjects using: the Wand local anesthetic system at a deposition rate of 45 seconds (fast injection); the Wand local anesthetic system at a deposition rate of 4 minutes and 45 seconds (slow injection); a conventional syringe injection at a deposition rate of 4 minutes and 45 seconds (slow injection), in 3 separate appointments spaced at least 3 weeks apart. A pulse oximeter measured heart rate (pulse). The results demonstrated the mean maximum heart rate was statistically higher with the fast intraosseous injection (average 21 to 28 beats/min increase) than either of the 2 slow intraosseous injections (average 10 to 12 beats/min increase). There was no statistically significant difference between the 2 slow injections. We concluded that an intraosseous injection of 1.4 mL of 2% lidocaine with 1 : 100,000 epinephrine with the Wand at a 45-second rate of anesthetic deposition resulted in a significantly higher heart rate when compared with a 4-minute and 45-second anesthetic solution deposition using either the Wand or traditional syringe.

  6. Layer-by-layer deposition of superconducting Sr-Ca-Cu-O films by the spray pyrolysis technique

    International Nuclear Information System (INIS)

    Pawar, S.H.; Pawaskar, P.N.; Ubale, M.J.; Kulkarni, S.B.

    1995-01-01

    Layer-by-layer deposition of Sr-Ca-Cu-O films has been carried out using the spray pyrolysis technique. Reagent-grade nitrates of strontium, calcium and copper were used to prepare starting solutions for spray pyrolysis. A two-step procedure was used for every layer of the constituents in the sequence Sr-Cu-Ca-Cu-Sr: first, deposition onto silver substrate at 350 C, then firing at T≥450 C, both at atmospheric pressure. The films were 2-3 μm thick and showed adequate adhesion to the substrate. The films were then characterised by studying their electron micrographs, X-ray diffraction patterns and electrical resistivity. The films showed superconductivity below 104 K. ((orig.))

  7. Solidification of radioactive waste solutions by pelletization technique

    International Nuclear Information System (INIS)

    Akbar, A.H.; Koester, R.; Rudolph, G.

    1980-04-01

    A possible way of performing the cement fixation of radioactive wastes is the incorporation into cement pellets on a pan pelletizer, followed by embedding the pellets into an inactive cement matrix. This procedure is suitable for various types of waste, particularly for medium level liquid wastes, and can be used both at drum disposal and at in-situ solidification. This report describes some initial studies on the pelletization technique using a laboratory pelletizer. Formation and size of the pellets have been found to be determined by speed, angle, and load of the pan, ratio and mode of addition of the liquid and solid components, ect. Pellets in various compositions have been produced from cement and water or simulated waste solution, in some cases with the addition of bentonite for improving cesium retention. Some mechanical properties of the pellets such as fall height of fresh pellets, development of hardness (crush test), impact and abrasion resistance, have been determined. Some preliminary experiments were done on backfilling the void space between the pellets - about 40 per cent of the bulk volume - with cement grouts of appropriate compositions. (orig.) [de

  8. Preliminary evaluation of uranium deposits. A geostatistical study of drilling density in Wyoming solution fronts

    International Nuclear Information System (INIS)

    Sandefur, R.L.; Grant, D.C.

    1976-01-01

    Studies of a roll-front uranium deposit in Shirley Basin Wyoming indicate that preliminary evaluation of the reserve potential of an ore body is possible with less drilling than currently practiced in industry. Estimating ore reserves from sparse drilling is difficult because most reserve calculation techniques do not give the accuracy of the estimate. A study of several deposits with a variety of drilling densities shows that geostatistics consistently provides a method of assessing the accuracy of an ore reserve estimate. Geostatistics provides the geologist with an additional descriptive technique - one which is valuable in the economic assessment of a uranium deposit. Closely spaced drilling on past properties provides both geological and geometric insight into the occurrence of uranium in roll-front type deposits. Just as the geological insight assists in locating new ore bodies and siting preferential drill locations, the geometric insight can be applied mathematically to evaluate the accuracy of a new ore reserve estimate. By expressing the geometry in numerical terms, geostatistics extracts important geological characteristics and uses this information to aid in describing the unknown characteristics of a property. (author)

  9. Solution deposited and modified iron oxide for enhanced solar water splitting

    Science.gov (United States)

    Abel, Anthony J.

    Growing worldwide energy demand coupled with an increasing awareness of anthropogenic climate change has driven research into carbon-neutral and solar-derived energy sources. One attractive strategy is the storage of solar energy in the bonds of H2 formed by photoelectrochemical (PEC) water splitting. Hematite, an iron oxide, has been widely investigated as a candidate material for PEC water splitting due to its stability, non-toxicity, earth abundance and consequent low cost, and a theoretical 15% solar-to-hydrogen conversion efficiency. However, poor electrical properties and slow rates of the water oxidation reaction have limited its potential as an economical water splitting catalyst. Additionally, the most efficient hematite-based devices are fabricated via expensive, vacuum-phase techniques, limiting scalability to broad integration into the energy supply. In this thesis, I develop a new, solution-based deposition method for high quality, planar hematite thin films using successive ionic layer adsorption and reaction (SILAR). The constant geometry and tight control over layer thickness possible with SILAR makes these films ideal model systems to understand the two key steps of PEC water oxidation: charge separation and interfacial hole transfer. In Chapter 3, I report on facile annealing treatments to dope hematite with Ti and Sn, and I show that these impurity atoms at the hematite/electrolyte interface increase hole transfer efficiency from nearly 0 to above 60%. However, charge separation remains below 15% with these dopants incorporated via solid state diffusion, mainly due to low hole mobility. To overcome this associated small transport length, extremely thin hematite coatings were deposited on Sb:SnO2 monolayer inverse opal scaffolds. With this modified substrate, photocurrent increased proportionately to the surface area of the scaffold. While Chapter 3 discusses incorporation of dopants via solid state diffusion, Chapter 4 examines methods to

  10. Handbook of thin film deposition processes and techniques principles, methods, equipment and applications

    CERN Document Server

    Seshan, Krishna

    2002-01-01

    New second edition of the popular book on deposition (first edition by Klaus Schruegraf) for engineers, technicians, and plant personnel in the semiconductor and related industries. This book traces the technology behind the spectacular growth in the silicon semiconductor industry and the continued trend in miniaturization over the last 20 years. This growth has been fueled in large part by improved thin film deposition techniques and the development of highly specialized equipment to enable this deposition. The book includes much cutting-edge material. Entirely new chapters on contamination and contamination control describe the basics and the issues-as feature sizes shrink to sub-micron dimensions, cleanliness and particle elimination has to keep pace. A new chapter on metrology explains the growth of sophisticated, automatic tools capable of measuring thickness and spacing of sub-micron dimensions. The book also covers PVD, laser and e-beam assisted deposition, MBE, and ion beam methods to bring together a...

  11. Improvement of the inlet system for the spray-jet technique for use in spectroscopic studies and molecular deposition

    International Nuclear Information System (INIS)

    Yamada, Toshiki; Shinohara, Hidenori; Mashiko, Shinro

    2006-01-01

    We previously developed a molecular beam apparatus with a spray-jet technique in order to produce a molecular beam of non-volatile molecules in vacuum from the sprayed mist of a sample solution. The apparatus is for use in spectroscopic studies or a means of molecular deposition. The spray-jet inlet system consisted of an ultrasonic nebulizer, an inlet chamber and a pulsed nozzle. In the present paper, further improvements to the spray-jet inlet system are reported. The main improvement is the introduction of a pneumatic nebulizer to replace the previous ultrasonic nebulizer. The efficiency of molecular beam generation was evaluated on the basis of the signal intensity of the resonantly enhanced multiphoton ionization time-of-flight mass (REMPI-TOFMS) spectra for a Rhodamine B/methanol solution and the amount of sample consumed. The introduction of the pneumatic nebulizer increased the efficiency by a factor of 20

  12. Growth Assisted by Glancing Angle Deposition: A New Technique to Fabricate Highly Porous Anisotropic Thin Films.

    Science.gov (United States)

    Sanchez-Valencia, Juan Ramon; Longtin, Remi; Rossell, Marta D; Gröning, Pierangelo

    2016-04-06

    We report a new methodology based on glancing angle deposition (GLAD) of an organic molecule in combination with perpendicular growth of a second inorganic material. The resulting thin films retain a very well-defined tilted columnar microstructure characteristic of GLAD with the inorganic material embedded inside the columns. We refer to this new methodology as growth assisted by glancing angle deposition or GAGLAD, since the material of interest (here, the inorganic) grows in the form of tilted columns, though it is deposited under a nonglancing configuration. As a "proof of concept", we have used silver and zinc oxide as the perpendicularly deposited material since they usually form ill-defined columnar microstructures at room temperature by GLAD. By means of our GAGLAD methodology, the typical tilted columnar microstructure can be developed for materials that otherwise do not form ordered structures under conventional GLAD. This simple methodology broadens significantly the range of materials where control of the microstructure can be achieved by tuning the geometrical deposition parameters. The two examples presented here, Ag/Alq3 and ZnO/Alq3, have been deposited by physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD), respectively: two different vacuum techniques that illustrate the generality of the proposed technique. The two type of hybrid samples present very interesting properties that demonstrate the potentiality of GAGLAD. On one hand, the Ag/Alq3 samples present highly optical anisotropic properties when they are analyzed with linearly polarized light. To our knowledge, these Ag/Alq3 samples present the highest angular selectivity reported in the visible range. On the other hand, ZnO/Alq3 samples are used to develop highly porous ZnO thin films by using Alq3 as sacrificial material. In this way, antireflective ZnO samples with very low refractive index and extinction coefficient have been obtained.

  13. An economic CVD technique for pure SnO2 thin films deposition ...

    Indian Academy of Sciences (India)

    An economic CVD technique for pure SnO2 thin films deposition: Temperature effects ..... C are depicted in figure 7. It is observed that the cut-off wave- ... cating that the energy gap of the SnO2 films varies among. 3·54, 3·35 and 1·8 eV.

  14. Deposition of Coating to Protect Waste Water Reservoir in Acidic Solution by Arc Thermal Spray Process

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2018-01-01

    Full Text Available The corrosion characteristics of 304 stainless steel (SS and titanium (Ti coatings deposited by the arc thermal spray process in pH 4 solution were assessed. The Ti-sprayed coating exhibits uniform, less porous, and adherent coating morphology compared to the SS-sprayed coating. The electrochemical study, that is, electrochemical impedance spectroscopy (EIS, revealed that as exposure periods to solution were increased, the polarization resistance (Rp decreased and the charge transfer resistance (Rct increased owing to corrosion of the metallic surface and simultaneously at the same time the deposition of oxide films/corrosion on the SS-sprayed surface, while Ti coating transformed unstable oxides into the stable phase. Potentiodynamic studies confirmed that both sprayed coatings exhibited passive tendency attributed due to the deposition of corrosion products on SS samples, whereas the Ti-sprayed sample formed passive oxide films. The Ti coating reduced the corrosion rate by more than six times compared to the SS coating after 312 h of exposure to sulfuric acid- (H2SO4- contaminated water solution, that is, pH 4. Scanning electron microscope (SEM results confirmed the uniform and globular morphology of the passive film on the Ti coating resulting in reduced corrosion. On the other hand, the corrosion products formed on SS-sprayed coating exhibit micropores with a net-like microstructure. X-ray diffraction (XRD revealed the presence of the composite oxide film on Ti-sprayed samples and lepidocrocite (γ-FeOOH on the SS-coated surface. The transformation of TiO and Ti3O into TiO2 (rutile and anatase and Ti3O5 after 312 h of exposure to H2SO4 acid reveals the improved corrosion resistance properties of Ti-sprayed coating.

  15. A comparative study of CdS thin films deposited by different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Hernández, G., E-mail: german.perez@ujat.mx [Universidad Juárez Autónoma de Tabasco, Avenida Universidad s/n, Col. Magisterial, Villahermosa, Tabasco 86040 (Mexico); Pantoja-Enríquez, J. [Centro de Investigación y Desarrollo Tecnológico en Energías Renovables, UNICACH, Libramiento Norte No 1150, Tuxtla Gutiérrez, Chiapas 29039 (Mexico); Escobar-Morales, B. [Instituto Tecnológico de Cancún, Avenida Kábah Km 3, Cancún, Quintana Roo 77500 (Mexico); Martinez-Hernández, D.; Díaz-Flores, L.L.; Ricardez-Jiménez, C. [Universidad Juárez Autónoma de Tabasco, Avenida Universidad s/n, Col. Magisterial, Villahermosa, Tabasco 86040 (Mexico); Mathews, N.R.; Mathew, X. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico)

    2013-05-01

    Cadmium sulfide thin-films were deposited on glass slides and SnO{sub 2}:F coated glass substrates by chemical bath deposition, sputtering and close-spaced sublimation techniques. The films were studied for the structural and opto-electronic properties after annealing in an ambient identical to that employed in the fabrication of CdTe/CdS devices. Quantum efficiency of the CdTe/CdS solar cells fabricated with CdS buffer films prepared by the three methods were investigated to understand the role of CdS film preparation method on the blue response of the devices. The higher blue response observed for the devices fabricated with chemical bath deposited CdS film is discussed. - Highlights: ► CdS films were prepared by different techniques. ► Role of CdS on the blue response of device was studied. ► Structural and optical properties of CdS were analyzed. ► Chemically deposited CdS has high blue transmittance. ► CdS deposition method influences diffusion of S and Te.

  16. Electrochemical deposition of silver nanostructures from aqueous solutions in the presence of sodium polyacrylate

    OpenAIRE

    Topchak, Roman; Okhremchuk, Yevhen; Kuntyi, Orest

    2013-01-01

    The silver nanostructures obtaining was investigated by electrochemical deposition from aqueous solutions ((1?10) mM AgNO3 + 50 m? NaPA) onto graphite substrate. The influence of the concentration of silver ions and cathodic potential values in the range E = -0,2 ... -1,0 V on surface filling degree and geometry of silver particles was (had been) studied. It is shown, the discrete silver particles ranging in size from 50 to 400 nm with a uniform distribution on the surface of the substrate...

  17. Synthesis of carbon nanotubes using the cobalt nanocatalyst by thermal chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Madani, S.S. [Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Zare, K. [Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Department of Chemistry, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Ghoranneviss, M. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Salar Elahi, A., E-mail: Salari_phy@yahoo.com [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-11-05

    The three main synthesis methods of Carbon nanotubes (CNTs) are the arc discharge, the laser ablation and the chemical vapour deposition (CVD) with a special regard to the latter one. CNTs were produced on a silicon wafer by Thermal Chemical Vapor Deposition (TCVD) using acetylene as a carbon source, cobalt as a catalyst and ammonia as a reactive gas. The DC-sputtering system was used to prepare cobalt thin films on Si substrates. A series of experiments was carried out to investigate the effects of reaction temperature and deposition time on the synthesis of the nanotubes. The deposition time was selected as 15 and 25 min for all growth temperatures. Energy Dispersive X-ray (EDX) measurements were used to investigate the elemental composition of the Co nanocatalyst deposited on Si substrates. Atomic Force Microscopy (AFM) was used to characterize the surface topography of the Co nanocatalyst deposited on Si substrates. The as-grown CNTs were characterized under Field Emission Scanning Electron Microscopy (FESEM) to study the morphological properties of CNTs. Also, the grown CNTs have been investigated by High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. The results demonstrated that increasing the temperature leads to increasing the diameter of CNTs. The ideal reaction temperature was 850 °C and the deposition time was 15 min. - Graphical abstract: FESEM images of CNTs grown on the cobalt catalyst at growth temperatures of (a) 850 °C, (b) 900 °C, (c) 950 °C and (d) 1000 °C during the deposition time of 15 min. - Highlights: • Carbon nanotubes (CNTs) were produced on a silicon wafer by TCVD technique. • EDX and AFM were used to investigate the elemental composition and surface topography. • FESEM was used to study the morphological properties of CNTs. • The grown CNTs have been investigated by HRTEM and Raman spectroscopy.

  18. Deposition and characteristics of PbS thin films by an in-situ solution chemical reaction process

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Junna; Ji, Huiming; Wang, Jian; Zheng, Xuerong; Lai, Junyun; Liu, Weiyan; Li, Tongfei [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Ma, Yuanliang; Li, Haiqin; Zhao, Suqin [College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining 810007 (China); Jin, Zhengguo, E-mail: zhgjin@tju.edu.cn [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2015-09-01

    Preferential oriented and uniform PbS thin films were deposited by a room temperature in-situ solution chemical reaction process, in which the lead nitrate as precursor in a form of thin solid films from lead precursor solution was used to react with ammonium sulfide ethanol solution. Influence of 1-butanol addition in the lead precursor solution, Pb:S molar ratios in the separate cationic and anionic solutions, deposition cycle numbers and annealing treatment in Ar atmosphere on structure, morphology, chemical composition and optical absorption properties of the deposited PbS films were investigated based on X-ray diffraction, field emission scanning electron microscopy, energy dispersive spectrometer, atomic force microscopy, selected area electron diffraction, UV–vis, near infrared ray and fourier transform infrared spectroscopy measurements. The results showed that the deposited PbS thin films had a cubic structure and highly preferred orientation along with the plane (100). The deposition rate of single-layer was stable, about 30 nm in thickness per deposition cycle. - Highlights: • Time-efficiency synthetic method for the preparation of lead sulfide (PbS) films • Effect of 1-butanol addition into cationic precursor solution is discussed. • Growth rate of the PbS films is stable at about 30 nm per cycle.

  19. HF treatment effect for carbon deposition on silicon (111) by DC sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Aji, A. S., E-mail: aji.ravazes70@gmail.com; Darma, Y., E-mail: aji.ravazes70@gmail.com [Quantum Semiconductor and Devices Lab., Physics of Material Electronics Research Division, Department of Physics, Institut Teknologi Bandung (Indonesia)

    2014-03-24

    Surface modifications of Si (111) substrate by HF solution for thin film carbon deposition have been systematically studied. Thin film carbon on Si (111) has been deposited using DC Unbalanced Magnetron Sputtering with carbon pellet doped by 5% Fe as the target. EDAX characterization confirmed that the carbon fraction on Si substrate much higher by dipping a clean Si substrate by HF solution before sputtering process in comparison with carbon fraction on Si substrate just after conventional RCA. Moreover, SEM and AFM images show the uniform thin film carbon on Si with HF treatment, in contrast to the Si without HF solution treatment. These experimental results suggest that HF treatment of Si surface provide Si-H bonds on top Si surface that useful to enhance the carbon deposition during sputtering process. Furthermore, we investigate the thermal stability of thin film carbon on Si by thermal annealing process up to 900 °C. Atomic arrangements during annealing process were characterized by Raman spectroscopy. Raman spectra indicate that thin film carbon on Si is remaining unchanged until 600 °C and carbon atoms start to diffuse toward Si substrate after annealing at 900 °C.

  20. Chemical solution deposition of LaMnO3-based films for coated conductors

    International Nuclear Information System (INIS)

    Shi, D Q; Zhu, X B; Kim, J H; Wang, L; Zeng, R; Dou, S X; Lei, H C; Sun, Y P

    2008-01-01

    LaMnO 3 -based films were prepared using the chemical solution deposition method. It was found that the films on perovskite oxide single crystal substrates are highly (h00)-oriented when the annealing atmosphere is oxygen or air; however, when the substrate is yttrium-stabilized ZrO 2 , only the La 1-x Na x MnO 3 films are highly (h00)-oriented, and other LaMnO 3 -based films are (110)-oriented. Under a reducing annealing atmosphere, the atmosphere must be wet in order to create a suitable oxygen partial pressure to crystallize the LaMnO 3 -based films. After annealing under a wet reducing atmosphere the LaMnO 3 -based films are (110)-oriented when the films are directly deposited on Ni tapes; however, when SrTiO 3 -buffered Ni tapes are used, the LaMnO 3 films are (h00)-oriented, which is suitable for subsequent growth of YBCO. The results suggest that it is possible to tune the orientation of buffer layers using suitable templates, which can widen the selection of buffer layers for coated conductors in the all metallorganic deposition approach

  1. Characterization of defects in hydrogenated amorphous silicon deposited on different substrates by capacitance techniques

    International Nuclear Information System (INIS)

    Darwich, R.; Roca i Cabarrocas, P.

    2011-01-01

    Hydrogenated amorphous silicon (a-Si:H) thin films deposited on crystalline silicon and Corning glass substrate were analyzed using different capacitance techniques. The distribution of localized states and some electronic properties were studied using the temperature, frequency and bias dependence of the Schottky barrier capacitance and deep level transient spectroscopy. Our results show that the distribution of the gap states depends on the type of substrate. We have found that the films deposited on c-Si substrate represent only one positively charged or prerelaxed neutral deep state and one interface state, while the films deposited on glass substrate have one interface state and three types of deep defect states, positively or prerelaxed neutral, neutral and negatively charged.

  2. Effect of indium doping level on certain physical properties of CdS films deposited using an improved SILAR technique

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, K., E-mail: kkr1365@yahoo.com [P.G. and Research Department of Physics, AVVM Sri Pushpam College (Autonomous), Poondi, Thanjavur-613 503, Tamil Nadu (India); Senthamilselvi, V. [P.G. and Research Department of Physics, AVVM Sri Pushpam College (Autonomous), Poondi, Thanjavur-613 503, Tamil Nadu (India); Department of Physics, Kunthavai Naachiyaar Government College for Women (Autonomous), Thanjavur-613 007, Tamil Nadu (India)

    2013-04-01

    The influence of indium (In) doping levels (0, 2, …, 8 at.%) on certain physical properties of cadmium sulphide (CdS) thin films deposited using an improved successive ionic layer adsorption and reaction (ISILAR) method has been studied. In this improved SILAR technique, a fresh anionic solution was introduced after a particular number of dipping cycles in order to achieve good stoichiometry. All the deposited films exhibited cubic phase with (1 1 1) plane as preferential orientation. The calculated crystallite size values are found to be decreased from 54.80 nm to 23.65 nm with the increase in In doping level. The optical study confirmed the good transparency (80%) of the film. A most compact and pinhole free smooth surface was observed for the CdS films with 8 at.% of In doping level. The perceived photoluminescence (PL) bands endorsed the lesser defect crystalline nature of the obtained CdS:In films. The chemical composition analysis (EDAX) showed the near stoichiometric nature of this ISILAR deposited CdS:In films.

  3. Effect of indium doping level on certain physical properties of CdS films deposited using an improved SILAR technique

    International Nuclear Information System (INIS)

    Ravichandran, K.; Senthamilselvi, V.

    2013-01-01

    The influence of indium (In) doping levels (0, 2, …, 8 at.%) on certain physical properties of cadmium sulphide (CdS) thin films deposited using an improved successive ionic layer adsorption and reaction (ISILAR) method has been studied. In this improved SILAR technique, a fresh anionic solution was introduced after a particular number of dipping cycles in order to achieve good stoichiometry. All the deposited films exhibited cubic phase with (1 1 1) plane as preferential orientation. The calculated crystallite size values are found to be decreased from 54.80 nm to 23.65 nm with the increase in In doping level. The optical study confirmed the good transparency (80%) of the film. A most compact and pinhole free smooth surface was observed for the CdS films with 8 at.% of In doping level. The perceived photoluminescence (PL) bands endorsed the lesser defect crystalline nature of the obtained CdS:In films. The chemical composition analysis (EDAX) showed the near stoichiometric nature of this ISILAR deposited CdS:In films.

  4. Novel precipitation technique for uranium recovery from carbonate leach solutions

    International Nuclear Information System (INIS)

    Sujoy Biswas; Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.; Chakravartty, J.K.

    2015-01-01

    The recovery of uranium from carbonate ore leach solution was studied using novel precipitation method. The uranium from leach liquor was recovered as magnesium diuranate with NaOH in presence of trace amount of Mg 2+ . Effects of various parameters such as addition of H 2 SO 4 , MgO, MgSO 4 as well as NaOH were investigated for maximum uranium recovery. Overall uranium recovery of the process was 97 % with improved particle size (∼57 µm). Based on the experimental findings, a process flow-sheet was developed for uranium recovery from carbonate ore leach solution with a uranium concentration of <1 g/L. (author)

  5. Deposition of porous cathodes using plasma spray technique for reduced-temperature SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Jankovic, J.; Hui, S.; Roller, J.; Kesler, O.; Xie, Y.; Maric, R.; Ghosh, D. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2005-07-01

    Current techniques for Solid Oxide Fuel Cell (SOFC) materials deposition are often expensive and time-consuming. Plasma-spraying techniques provide higher deposition rates, short processing times and control over porosity and composition during deposition. Optimum plasma spraying for lanthanum based cathode materials were discussed. Plasma-spraying was used to deposit cathode materials onto ceramic and stainless steel substrates to obtain highly porous structures. Lanthanum cathode materials with composition of La{sub 0.6}Sr{sub 0.4}C{sub 0.2}Fe{sub 0.8}O{sub 3} were employed in the powder form. The powder was prepared from powder precursors with different power formers and binder levels, or from produced single-phase lanthanum powders. The (La{sub 0.8}Sr{sub 0.2}){sub 0.98}MnO{sub 3} cathode material was also processed for comparison purposes. The deposition process was developed to obtain coatings with good bond strength, porosity, film thickness and residual stresses. The phase and microstructure of deposited materials were characterized using X-Ray Diffraction and Scanning Electron Microscopy (SEM). It was concluded that good flow of the powder precursors is achieved by spraying 50-100 um particle size powders and using vibrating feeders. Further processing of the spraying powders was recommended. It was noted that oxide precursors showed greater reactivity among the precursors. The best precursor reactivity and coating morphology was obtained using 40 volume per cent of graphite pore former, incorporated into the precursor mixture during wet ball milling. It was concluded that higher power levels and larger distances between the plasma gun and the substrate result in coatings with the highest porosities and best phase compositions. 5 refs., 1 tab., 6 figs.

  6. The response of soil solution chemistry in European forests to decreasing acid deposition.

    Science.gov (United States)

    Johnson, James; Graf Pannatier, Elisabeth; Carnicelli, Stefano; Cecchini, Guia; Clarke, Nicholas; Cools, Nathalie; Hansen, Karin; Meesenburg, Henning; Nieminen, Tiina M; Pihl-Karlsson, Gunilla; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Jonard, Mathieu

    2018-03-31

    Acid deposition arising from sulphur (S) and nitrogen (N) emissions from fossil fuel combustion and agriculture has contributed to the acidification of terrestrial ecosystems in many regions globally. However, in Europe and North America, S deposition has greatly decreased in recent decades due to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Al tot ) and dissolved organic carbon were determined for the period 1995-2012. Plots with at least 10 years of observations from the ICP Forests monitoring network were used. Trends were assessed for the upper mineral soil (10-20 cm, 104 plots) and subsoil (40-80 cm, 162 plots). There was a large decrease in the concentration of sulphate (SO42-) in soil solution; over a 10-year period (2000-2010), SO42- decreased by 52% at 10-20 cm and 40% at 40-80 cm. Nitrate was unchanged at 10-20 cm but decreased at 40-80 cm. The decrease in acid anions was accompanied by a large and significant decrease in the concentration of the nutrient base cations: calcium, magnesium and potassium (Bc = Ca 2+  + Mg 2+  + K + ) and Al tot over the entire dataset. The response of soil solution acidity was nonuniform. At 10-20 cm, ANC increased in acid-sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40-80 cm, ANC remained unchanged in acid-sensitive soils (base saturation ≤20%, pHCaCl2 ≤ 4.5) and decreased in better-buffered soils (base saturation >20%, pHCaCl2 > 4.5). In addition, the molar ratio of Bc to Al tot either did not change or decreased. The results suggest a long-time lag between emission abatement and changes in soil solution acidity and underline the importance of long-term monitoring in evaluating ecosystem response to decreases in deposition. © 2018 John Wiley & Sons

  7. Tailoring properties of lossy-mode resonance optical fiber sensors with atomic layer deposition technique

    Science.gov (United States)

    Kosiel, Kamil; Koba, Marcin; Masiewicz, Marcin; Śmietana, Mateusz

    2018-06-01

    The paper shows application of atomic layer deposition (ALD) technique as a tool for tailoring sensorial properties of lossy-mode-resonance (LMR)-based optical fiber sensors. Hafnium dioxide (HfO2), zirconium dioxide (ZrO2), and tantalum oxide (TaxOy), as high-refractive-index dielectrics that are particularly convenient for LMR-sensor fabrication, were deposited by low-temperature (100 °C) ALD ensuring safe conditions for thermally vulnerable fibers. Applicability of HfO2 and ZrO2 overlays, deposited with ALD-related atomic level thickness accuracy for fabrication of LMR-sensors with controlled sensorial properties was presented. Additionally, for the first time according to our best knowledge, the double-layer overlay composed of two different materials - silicon nitride (SixNy) and TaxOy - is presented for the LMR fiber sensors. The thin films of such overlay were deposited by two different techniques - PECVD (the SixNy) and ALD (the TaxOy). Such approach ensures fast overlay fabrication and at the same time facility for resonant wavelength tuning, yielding devices with satisfactory sensorial properties.

  8. Solution-deposited CIGS thin films for ultra-low-cost photovoltaics

    Science.gov (United States)

    Eldada, Louay A.; Hersh, Peter; Stanbery, Billy J.

    2010-09-01

    We describe the production of photovoltaic modules with high-quality large-grain copper indium gallium selenide (CIGS) thin films obtained with the unique combination of low-cost ink-based precursors and a reactive transfer printing method. The proprietary metal-organic inks contain a variety of soluble Cu-, In- and Ga- multinary selenide materials; they are called metal-organic decomposition (MOD) precursors, as they are designed to decompose into the desired precursors. Reactive transfer is a two-stage process that produces CIGS through the chemical reaction between two separate precursor films, one deposited on the substrate and the other on a printing plate in the first stage. In the second stage, these precursors are rapidly reacted together under pressure in the presence of heat. The use of two independent thin films provides the benefits of independent composition and flexible deposition technique optimization, and eliminates pre-reaction prior to the synthesis of CIGS. In a few minutes, the process produces high quality CIGS films, with large grains on the order of several microns, and preferred crystallographic orientation, as confirmed by compositional and structural analysis by XRF, SIMS, SEM and XRD. Cell efficiencies of 14% and module efficiencies of 12% were achieved using this method. The atmospheric deposition processes include slot die extrusion coating, ultrasonic atomization spraying, pneumatic atomization spraying, inkjet printing, direct writing, and screen printing, and provide low capital equipment cost, low thermal budget, and high throughput.

  9. Layer-by-layer deposition of zirconium oxide films from aqueous solutions for friction reduction in silicon-based microelectromechanical system devices

    International Nuclear Information System (INIS)

    Liu Junfu; Nistorica, Corina; Gory, Igor; Skidmore, George; Mantiziba, Fadziso M.; Gnade, Bruce E.

    2005-01-01

    This work reports layer-by-layer deposition of zirconium oxide on a Si surface from aqueous solutions using the successive ionic layer adsorption and reaction technique. The process consists of repeated cycles of adsorption of zirconium precursors, water rinse, and hydrolysis. The film composition was determined by X-ray photoelectron spectroscopy. The film thickness was determined by Rutherford backscattering spectrometry, by measuring the Zr atom concentration. The average deposition rate from a 0.1 M Zr(SO 4 ) 2 solution on a SiO 2 /Si surface is 0.62 nm per cycle. Increasing the acidity of the zirconium precursor solution inhibits the deposition of the zirconium oxide film. Atomic force microscopy shows that the zirconium oxide film consists of nanoparticles of 10-50 nm in the lateral dimension. The surface roughness increased with increasing number of deposition cycles. Friction measurements made with a microelectromechanical system device reveal a reduction of 45% in the friction coefficient of zirconium oxide-coated surfaces vs. uncoated surfaces in air

  10. The Influence of Various Deposition Techniques on the Photoelectrochemical Properties of the Titanium Dioxide Thin Fil

    Czech Academy of Sciences Publication Activity Database

    Morozová, Magdalena; Klusoň, Petr; Dzik, P.; Veselý, M.; Baudyš, M.; Krýsa, J.; Šolcová, Olga

    2013-01-01

    Roč. 65, č. 3 (2013), s. 452-458 ISSN 0928-0707 R&D Projects: GA TA ČR TA01020804 Grant - others:GA ČR(CZ) GP104/09/P165 Institutional support: RVO:67985858 Keywords : titanium dioxide * photoelectrochemical properties * deposition techniques Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.547, year: 2013

  11. Complicated problem solution techniques in optimal parameter searching

    International Nuclear Information System (INIS)

    Gergel', V.P.; Grishagin, V.A.; Rogatneva, E.A.; Strongin, R.G.; Vysotskaya, I.N.; Kukhtin, V.V.

    1992-01-01

    An algorithm is presented of a global search for numerical solution of multidimentional multiextremal multicriteria optimization problems with complicated constraints. A boundedness of object characteristic changes is assumed at restricted changes of its parameters (Lipschitz condition). The algorithm was realized as a computer code. The algorithm was realized as a computer code. The programme was used to solve in practice the different applied optimization problems. 10 refs.; 3 figs

  12. The influence of inhalation technique on Technegas particle deposition and image appearance in normal volunteers

    International Nuclear Information System (INIS)

    Lloyd, J.J.; James, J.M.; Shields, R.A.; Testa, H.J.

    1994-01-01

    The aim of this work was to investigate the influence of inhalation technique on Technegas image quality and on fractional particle deposition. This was investigated in six normal volunteers using three different types of breathing pattern. Fractional deposition was determined by analysis of dynamic gamma camera images acquired during Technegas administration. Static lung images were subsequently acquired and assessed independently by three experienced observers. High-quality images were obtained in all cases although slight differences were noted. The images produced using a slow deep inspiration with a breath hold (i.e. the standard method) were of more uniform texture and also had the least gradient in activity from apex to base. The converse was true for a rapid inhalation technique. The average fractional deposition per breath was 55%, but this varied between individuals and with breathing pattern, being most influenced by the total duration of a breath. We conclude that for patient studies the standard inhalation technique is best, although variation to suit individual patients would be acceptable. (orig./MG)

  13. Soil solution extraction techniques for microbial ecotoxicity testing: a comparative evaluation.

    Science.gov (United States)

    Tiensing, T; Preston, S; Strachan, N; Paton, G I

    2001-02-01

    The suitability of two different techniques (centrifugation and Rhizon sampler) for obtaining the interstitial pore water of soil (soil solution), integral to the ecotoxicity assessment of metal contaminated soil, were investigated by combining chemical analyses and a luminescence-based microbial biosensor. Two different techniques, centrifugation and Rhizon sampler, were used to extract the soil solution from Insch (a loamy sand) and Boyndie (a sandy loam) soils, which had been amended with different concentrations of Zn and Cd. The concentrations of dissolved organic carbon (DOC), major anions (F- , CI-, NO3, SO4(2-)) and major cations (K+, Mg2+, Ca2+) in the soil solutions varied depending on the extraction technique used. Overall, the concentrations of Zn and Cd were significantly higher in the soil solution extracted using the centrifugation technique compared with that extracted using the Rhizon sampler technique. Furthermore, the differences observed between the two extraction techniques depended on the type of soil from which the solution was being extracted. The luminescence-based biosensor Escherichia coli HB101 pUCD607 was shown to respond to the free metal concentrations in the soil solutions and showed that different toxicities were associated with each soil, depending on the technique used to extract the soil solution. This study highlights the need to characterise the type of extraction technique used to obtain the soil solution for ecotoxicity testing in order that a representative ecotoxicity assessment can be carried out.

  14. HfO2 as gate dielectric on Ge: Interfaces and deposition techniques

    International Nuclear Information System (INIS)

    Caymax, M.; Van Elshocht, S.; Houssa, M.; Delabie, A.; Conard, T.; Meuris, M.; Heyns, M.M.; Dimoulas, A.; Spiga, S.; Fanciulli, M.; Seo, J.W.; Goncharova, L.V.

    2006-01-01

    To fabricate MOS gate stacks on Ge, one can choose from a multitude of metal oxides as dielectric material which can be deposited by many chemical or physical vapor deposition techniques. As a few typical examples, we will discuss here the results from atomic layer deposition (ALD), metal organic CVD (MOCVD) and molecular beam deposition (MBD) using HfO 2 /Ge as materials model system. It appears that a completely interface layer free HfO 2 /Ge combination can be made in MBD, but this results in very bad capacitors. The same bad result we find if HfGe y (Hf germanides) are formed like in the case of MOCVD on HF-dipped Ge. A GeO x interfacial layer appears to be indispensable (if no other passivating materials are applied), but the composition of this interfacial layer (as determined by XPS, TOFSIMS and MEIS) is determining for the C/V quality. On the other hand, the presence of Ge in the HfO 2 layer is not the most important factor that can be responsible for poor C/V, although it can still induce bumps in C/V curves, especially in the form of germanates (Hf-O-Ge). We find that most of these interfacial GeO x layers are in fact sub-oxides, and that this could be (part of) the explanation for the high interfacial state densities. In conclusion, we find that the Ge surface preparation is determining for the gate stack quality, but it needs to be adapted to the specific deposition technique

  15. A nuclear waste deposit in space - the ultimate solution for low-cost and safe disposal

    International Nuclear Information System (INIS)

    Ruppe, H.O.; Hayn, D.; Braitinger, M.; Schmucker, R.H.

    1980-01-01

    The disposal of nuclear high-active waste (HAW) is representative for the problem of burdening the environment with highly active or toxic waste products at present and in the future. Safe disposal methods on Earth are technically very difficult to achieve and the costs of establishment and maintenance of such plants are extremely high. Furthermore the emotionally based rejection by a wide sector of the population gives sufficient reason to look for new solutions. Here, space technology can offer a real alternative - a waste deposit in space. With the Space Transportation System, which shall soon be operative, and the resulting high flight frequencies it will be possible to transport all future HAW into space at economical casts. (orig.) [de

  16. Organic semiconductor rubrene thin films deposited by pulsed laser evaporation of solidified solutions

    Science.gov (United States)

    Majewska, N.; Gazda, M.; Jendrzejewski, R.; Majumdar, S.; Sawczak, M.; Śliwiński, G.

    2017-08-01

    Organic semiconductor rubrene (C42H28) belongs to most preferred spintronic materials because of the high charge carrier mobility up to 40 cm2(V·s)-1. However, the fabrication of a defect-free, polycrystalline rubrene for spintronic applications represents a difficult task. We report preparation and properties of rubrene thin films deposited by pulsed laser evaporation of solidified solutions. Samples of rubrene dissolved in aromatic solvents toluene, xylene, dichloromethane and 1,1-dichloroethane (0.23-1% wt) were cooled to temperatures in the range of 16.5-163 K and served as targets. The target ablation was provided by a pulsed 1064 nm or 266 nm laser. For films of thickness up to 100 nm deposited on Si, glass and ITO glass substrates, the Raman and AFM data show presence of the mixed crystalline and amorphous rubrene phases. Agglomerates of rubrene crystals are revealed by SEM observation too, and presence of oxide/peroxide (C42H28O2) in the films is concluded from matrix-assisted laser desorption/ionization time-of-flight spectroscopic analysis.

  17. Optimisation of chemical solution deposition of indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Tor Olav Løveng; Einarsrud, Mari-Ann; Grande, Tor, E-mail: grande@ntnu.no

    2014-12-31

    An environmentally friendly aqueous sol–gel process has been optimised to deposit indium tin oxide (ITO) thin films, aiming to improve the film properties and reduce the deposition costs. It was demonstrated how parameters such as cation concentration and viscosity could be applied to modify the physical properties of the sol and thereby reduce the need for multiple coatings to yield films with sufficient conductivity. The conductivity of the thin films was enhanced by adjusting the heat treatment temperature and atmosphere. Both increasing the heat treatment temperature of the films from 530 to 800 °C and annealing in reducing atmosphere significantly improved the electrical conductivity, and conductivities close to the state of the art sputtered ITO films were obtained. A pronounced decreased conductivity was observed after exposing the thin films to air and the thermal reduction and ageing of the film was studied by in situ conductivity measurements. - Highlights: • Spin coating of indium tin oxide using an aqueous solution was optimised. • The conductivity was enhanced by thermal annealing in reducing atmosphere. • The conductivity of is comparable to the conductivity of sputtered films. • A relaxation process in the reduced thin film was observed after exposure in air.

  18. Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables.

    Science.gov (United States)

    Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David

    2012-03-01

    The present study compared entomopathogenic nematode delivery at the base of savoy cabbage and cauliflower, at the lower side of savoy cabbage and cauliflower leaves and in leek stems and the ground deposition using a five-nozzle spray boom equipped with an ISO 08 flat fan, an air induction flat fan and Twinjet spray nozzles. Additionally, an air support system and a row application system were evaluated. Approximately 40% of the applied nematodes did not reach the foot of the cabbage plants. The use of an air support system or a row application system improved nematode deposition at the savoy cabbage base. Relative nematode deposition on the lower side of savoy cabbage leaves was 27.20%, while only 2.64% of the applied nematodes reached the lower side of cauliflower leaves. After spraying leek with a standard boom, a low relative nematode deposition (26.64%) was measured in the leek stem. Nozzle type affected the distribution of nematodes in droplet spots. Nozzle type has a minor effect on the number of entomopathogenic nematodes delivered on difficult-to-reach targets. The use of modified spray application techniques directing the spray to the target site are necessary to increase the chances of contact of entomopathogenic nematodes with their target. Copyright © 2011 Society of Chemical Industry.

  19. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.

    Science.gov (United States)

    Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David

    2010-02-01

    Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.

  20. Existence of solutions for Hamiltonian field theories by the Hamilton-Jacobi technique

    International Nuclear Information System (INIS)

    Bruno, Danilo

    2011-01-01

    The paper is devoted to prove the existence of a local solution of the Hamilton-Jacobi equation in field theory, whence the general solution of the field equations can be obtained. The solution is adapted to the choice of the submanifold where the initial data of the field equations are assigned. Finally, a technique to obtain the general solution of the field equations, starting from the given initial manifold, is deduced.

  1. The effect of the solution flow rate on the properties of zinc oxide (ZnO) thin films deposited by ultrasonic spray

    International Nuclear Information System (INIS)

    Attaf, A.; Benkhetta, Y.; Saidi, H.; Bouhdjar, A.; Bendjedidi, H.; Nouadji, M.; Lehraki, N.

    2015-01-01

    In this work, we used a system based on ultrasonic spray pyrolysis technique. By witch, we have deposited thin films of zinc oxide (ZnO) with the variation of solution flow rate from 50 ml / h to 150 ml / h, and set other parameters such as the concentration of the solution, the deposition time, substrate temperature and the nozzel -substrate distance. In order to study the influence of the solution flow rate on the properties of the films produced, we have several characterization techniques such as X-ray diffraction to determine the films structure, the scanning electron microscopy SEM for the morphology of the surfaces, EDS spectroscopy for the chemical composition, UV-Visible-Nir spectroscopy for determination the optical proprieties of thin films.The experimental results show that: the films have hexagonal structure at the type (wurtzite), the average size of grains varies from 20.11 to 32.45 nm, the transmittance of the films equals 80% in visible rang and the band gap is varied between 3.274 and 3.282 eV, when the solution flow rate increases from 50 to 150 ml/h

  2. The effect of the solution flow rate on the properties of zinc oxide (ZnO) thin films deposited by ultrasonic spray

    Science.gov (United States)

    Attaf, A.; Benkhetta, Y.; Saidi, H.; Bouhdjar, A.; Bendjedidi, H.; Nouadji, M.; Lehraki, N.

    2015-03-01

    In this work, we used a system based on ultrasonic spray pyrolysis technique. By witch, we have deposited thin films of zinc oxide (ZnO) with the variation of solution flow rate from 50 ml / h to 150 ml / h, and set other parameters such as the concentration of the solution, the deposition time, substrate temperature and the nozzel -substrate distance. In order to study the influence of the solution flow rate on the properties of the films produced, we have several characterization techniques such as X-ray diffraction to determine the films structure, the scanning electron microscopy SEM for the morphology of the surfaces, EDS spectroscopy for the chemical composition, UV-Visible-Nir spectroscopy for determination the optical proprieties of thin films.The experimental results show that: the films have hexagonal structure at the type (wurtzite), the average size of grains varies from 20.11 to 32.45 nm, the transmittance of the films equals 80% in visible rang and the band gap is varied between 3.274 and 3.282 eV, when the solution flow rate increases from 50 to 150 ml/h.

  3. Metallographic techniques for evaluation of Thermal Barrier Coatings produced by Electron Beam Physical Vapor Deposition

    International Nuclear Information System (INIS)

    Kelly, Matthew; Singh, Jogender; Todd, Judith; Copley, Steven; Wolfe, Douglas

    2008-01-01

    Thermal Barrier Coatings (TBC) produced by Electron Beam Physical Vapor Deposition (EB-PVD) are primarily applied to critical hot section turbine components. EB-PVD TBC for turbine applications exhibit a complicated structure of porous ceramic columns separated by voids that offers mechanical compliance. Currently there are no standard evaluation methods for evaluating EB-PVD TBC structure quantitatively. This paper proposes a metallographic method for preparing samples and evaluating techniques to quantitatively measure structure. TBC samples were produced and evaluated with the proposed metallographic technique and digital image analysis for columnar grain size and relative intercolumnar porosity. Incorporation of the proposed evaluation technique will increase knowledge of the relation between processing parameters and material properties by incorporating a structural link. Application of this evaluation method will directly benefit areas of quality control, microstructural model development, and reduced development time for process scaling

  4. Modulating the Optoelectronic Properties of Silver Nanowires Films: Effect of Capping Agent and Deposition Technique.

    Science.gov (United States)

    Lopez-Diaz, D; Merino, C; Velázquez, M M

    2015-11-11

    Silver nanowires 90 nm in diameter and 9 µm in length have been synthesized using different capping agents: polyvinyl pyrrolidone (PVP) and alkyl thiol of different chain lengths. The nanowire structure is not influenced by the displacement of PVP by alkyl thiols, although alkyl thiols modify the lateral aggregation of nanowires. We examined the effect of the capping agent and the deposition method on the optical and electrical properties of films prepared by Spray and the Langmuir-Schaefer methodologies. Our results revealed that nanowires capped with PVP and C8-thiol present the best optoelectronic properties. By using different deposition techniques and by modifying the nanowire surface density, we can modulate the optoelectronic properties of films. This strategy allows obtaining films with the optoelectronic properties required to manufacture touch screens and electromagnetic shielding.

  5. Modulating the Optoelectronic Properties of Silver Nanowires Films: Effect of Capping Agent and Deposition Technique

    Directory of Open Access Journals (Sweden)

    D. Lopez-Diaz

    2015-11-01

    Full Text Available Silver nanowires 90 nm in diameter and 9 µm in length have been synthesized using different capping agents: polyvinyl pyrrolidone (PVP and alkyl thiol of different chain lengths. The nanowire structure is not influenced by the displacement of PVP by alkyl thiols, although alkyl thiols modify the lateral aggregation of nanowires. We examined the effect of the capping agent and the deposition method on the optical and electrical properties of films prepared by Spray and the Langmuir-Schaefer methodologies. Our results revealed that nanowires capped with PVP and C8-thiol present the best optoelectronic properties. By using different deposition techniques and by modifying the nanowire surface density, we can modulate the optoelectronic properties of films. This strategy allows obtaining films with the optoelectronic properties required to manufacture touch screens and electromagnetic shielding.

  6. Synthesis of conductive semi-transparent silver films deposited by a Pneumatically-Assisted Ultrasonic Spray Pyrolysis Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zaleta-Alejandre, E.; Balderas-Xicoténcatl, R. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Arrieta, M.L. Pérez [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, C.P. 98060, Zacatecas, México (Mexico); Meza-Rocha, A.N.; Rivera-Álvarez, Z. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Falcony, C., E-mail: cfalcony@fis.cinvestav.mx [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico)

    2013-10-01

    Highlights: • We deposited metallic silver films without post-deposition annealing. • The spray pyrolysis technique is of low cost and scalable for industrial applications. • We obtained deposition rate of 60 nm min{sup −1} at 300 °C. • The average resistivity was 1E−7 Ω m. • Semi-transparent silver films were obtained at 350 °C and deposition time of 45 s. -- Abstract: The synthesis and characterization of nanostructured silver films deposited on corning glass by a deposition technique called Pneumatically-Assisted Ultrasonic Spray Pyrolysis are reported. Silver nitrate and triethanolamine were used as silver precursor and reducer agent, respectively. The substrate temperatures during deposition were in the range of 300–450 °C and the deposition times from 30 to 240 s. The deposited films are polycrystalline with cubic face-centered structure, and crystalline grain size less than 30 nm. Deposition rates up to 600 Å min{sup −1} were obtained at substrate temperature as low as 300 °C. The electrical, optical, and morphological properties of these films are also reported. Semi-transparent conductive silver films were obtained at 350 °C with a deposition time of 45 s.

  7. Synthesis of conductive semi-transparent silver films deposited by a Pneumatically-Assisted Ultrasonic Spray Pyrolysis Technique

    International Nuclear Information System (INIS)

    Zaleta-Alejandre, E.; Balderas-Xicoténcatl, R.; Arrieta, M.L. Pérez; Meza-Rocha, A.N.; Rivera-Álvarez, Z.; Falcony, C.

    2013-01-01

    Highlights: • We deposited metallic silver films without post-deposition annealing. • The spray pyrolysis technique is of low cost and scalable for industrial applications. • We obtained deposition rate of 60 nm min −1 at 300 °C. • The average resistivity was 1E−7 Ω m. • Semi-transparent silver films were obtained at 350 °C and deposition time of 45 s. -- Abstract: The synthesis and characterization of nanostructured silver films deposited on corning glass by a deposition technique called Pneumatically-Assisted Ultrasonic Spray Pyrolysis are reported. Silver nitrate and triethanolamine were used as silver precursor and reducer agent, respectively. The substrate temperatures during deposition were in the range of 300–450 °C and the deposition times from 30 to 240 s. The deposited films are polycrystalline with cubic face-centered structure, and crystalline grain size less than 30 nm. Deposition rates up to 600 Å min −1 were obtained at substrate temperature as low as 300 °C. The electrical, optical, and morphological properties of these films are also reported. Semi-transparent conductive silver films were obtained at 350 °C with a deposition time of 45 s

  8. Determination of Redistribution of Erosion/Deposition Rate in Cultivated Area Using 137Cs Technique

    International Nuclear Information System (INIS)

    Nita Suhartini; Syamsul Abbas RAS; Barokah A; Ali Arman L

    2004-01-01

    The aim of the research is to determine the rate of redistribution of erosion/deposition in cultivated area. The application of 137 Cs technique was carried out at cultivated area in Bojong - Ciawi, with slope less than 10 o and slope length of about 2 km. A reference site was selected at the top of the slope, and this site is flat, open and covered with grass. Two sites in the cultivated area were selected as study site namely LU-I ( 15 x 25 ) m with the distance of 1000 m from the top, and LU-II (17.5 x 20) m with the distance of 1300 m from the top. Sampling of soil at reference site was done by using scraper (20 x 50) cm, while sampling at study site by using core sampling (di = 7 cm). Soil samples were brought to the laboratorium for preparation and analysis of 137 Cs content. Preparation are including of drying, weighing the total dry, sieving and crushing. Analysis of 137 Cs content was done using multi channel analyzer (MCA) that connected to high purity germanium (HPGe), at 661 keV, and the minimum counting time of 16 hours. To estimate the erosion/deposit rate, two mathematical model were used, namely Proportional Model (PM) and Mass Balance Model 1 (MBM1). The result for application of 137 Cs technique showed that MBM1 gives somewhat higher value for deposit rate and somewhat lower value for erosion than PM. Land use - I (LU-I) of Bojong - Ciawi was suffering from erosion with the erosion rate from 1 t/(ha.y) to 13 t/(ha.y), and LU-II has deposit rate from 1 t/(ha.y) to 50 t/(ha.y). (author)

  9. Nanocomposite metal amorphous-carbon thin films deposited by hybrid PVD and PECVD technique.

    Science.gov (United States)

    Teixeira, V; Soares, P; Martins, A J; Carneiro, J; Cerqueira, F

    2009-07-01

    Carbon based films can combine the properties of solid lubricating graphite structure and hard diamond crystal structure, i.e., high hardness, chemical inertness, high thermal conductivity and optical transparency without the crystalline structure of diamond. Issues of fundamental importance associated with nanocarbon coatings are reducing stress, improving adhesion and compatibility with substrates. In this work new nanocomposite coatings with improved toughness based in nanocrystalline phases of metals and ceramics embedded in amorphous carbon matrix are being developed within the frame of a research project: nc-MeNxCy/a-C(Me) with Me = Mo, Si, Al, Ti, etc. Carbide forming metal/carbon (Me/C) composite films with Me = Mo, W or Ti possess appropriate properties to overcome the limitation of pure DLC films. These novel coating architectures will be adopted with the objective to decrease residual stress, improve adherence and fracture toughness, obtain low friction coefficient and high wear-resistance. Nanocomposite DLC's films were deposited by hybrid technique using a PVD-Physically Vapor Deposition (magnetron sputtering) and Plasma Enhanced Chemical Vapor Deposition (PECVD), by the use of CH4 gas. The parameters varied were: deposition time, substrate temperature (180 degrees C) and dopant (Si + Mo) of the amorphous carbon matrix. All the depositions were made on silicon wafers and steel substrates precoated with a silicon inter-layer. The characterisation of the film's physico-mechanical properties will be presented in order to understand the influence of the deposition parameters and metal content used within the a-C matrix in the thin film properties. Film microstructure and film hybridization state was characterized by Raman Spectroscopy. In order to characterize morphology SEM and AFM will be used. Film composition was measured by Energy-Dispersive X-ray analysis (EDS) and by X-ray photoelectron spectroscopy (XPS). The contact angle for the produced DLC's on

  10. Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval-Paz, M.G., E-mail: myrnasandoval@udec.cl [Departament of Physics, Faculty of Physical Sciences and Mathematics, University of Concepcion, Box 160-C, Concepción (Chile); Rodríguez, C.A. [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile); Porcile-Saavedra, P.F. [Departament of Physics, Faculty of Physical Sciences and Mathematics, University of Concepcion, Box 160-C, Concepción (Chile); Trejo-Cruz, C. [Department of Physics, Faculty of Science, University of Biobío, Avenue Collao 1202, Box 5C, Concepción 4051381 (Chile)

    2016-07-15

    Copper (I) selenide thin films with orthorhombic and cubic structure were deposited on glass substrates by using the chemical bath deposition technique. The effects of the solution pH on the films growth and subsequently the structural, optical and electrical properties of the films were studied. Films with orthorhombic structure were obtained from baths wherein both metal complex and hydroxide coexist; while films with cubic structure were obtained from baths where the metal hydroxide there is no present. The structural modifications are accompanied by changes in bandgap energy, morphology and electrical resistivity of the films. - Graphical abstract: “Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution” by M. G. Sandoval-Paz, C. A. Rodríguez, P. F. Porcile-Saavedra, C. Trejo-Cruz. Display Omitted - Highlights: • Copper (I) selenide thin films were obtained by chemical bath deposition. • Orthorhombic to cubic phase change was induced by varying the reaction solution pH. • Orthorhombic phase is obtained mainly from a hydroxides cluster mechanism. • Cubic phase is obtained mainly from an ion by ion mechanism. • Structural, optical and electrical properties are presented as a function of pH.

  11. Deposit heterogeneity and the dynamics of the organic semiconductors P3HT and PCBM solution under evaporation

    Science.gov (United States)

    Yu, H. P.; Luo, H.; Liu, T. T.; Jing, G. Y.

    2015-04-01

    The formation of organic semiconductor layer is the key procedure in the manufacture of organic photovoltaic solar cell, in which the natural evaporation of the solvent from the polymer solution plays the essential role for the conversion efficiency. Here, poly(3-hexylthiophene) (P3HT) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), as two types of semiconductor polymers, were selected as the active layer to form the deposit by drying the blend solution drops on the substrate. We explored the influences of droplet size and solute concentration on the homogeneity of the deposit. Additionally, the spatial distribution of molecular chains and grains and the instability of the droplet morphology during the drying were investigated. The results showed that the "coffee-ring" phenomenon occurred forming an annular deposit at the outermost edge and the width of the annular ring increased linearly with the concentration of the P3HT solution, until a saturation plateau is approached. On the other hand, the PCBM deposition presented a circular disk at low concentration, but displayed a sudden instability for an irregular perimeter at a critical concentration and there existed a second critical concentration above which the deposit exhibited the return of the stable circular shape. The results have an instructive impact on the performance of the device and the formation of fine structures during the process of printing, film preparation and painting.

  12. Comparison of multiple support excitation solution techniques for piping systems

    International Nuclear Information System (INIS)

    Sterkel, H.P.; Leimbach, K.R.

    1980-01-01

    Design and analysis of nuclear power plant piping systems exposed to a variety of dynamic loads often require multiple support excitation analysis by modal or direct time integration methods. Both methods have recently been implemented in the computer program KWUROHR for static and dynamic analysis of piping systems, following the previous implementation of the multiple support excitation response spectrum method (see papers K 6/15 and K 6/15a of the SMiRT-4 Conference). The results of multiple support excitation response spectrum analyses can be examined by carrying out the equivalent time history analyses which do not distort the time phase relationship between the excitations at different support points. A frequent point of discussion is multiple versus single support excitation. A single support excitation analysis is computationally straightforward and tends to be on the conservative side, as the numerical results show. A multiple support excitation analysis, however, does not incur much more additional computer cost than the expenditure for an initial static solution involving three times the number, L, of excitation levels, i.e. 3L static load cases. The results are more realistic than those from a single support excitation analysis. A number of typical nuclear plant piping systems have been analyzed using single and multiple support excitation algorithms for: (1) the response spectrum method, (2) the modal time history method via the Wilson, Newmark and Goldberg integration operators and (3) the direct time history method via the Wilson integration operator. Characteristic results are presented to compare the computational quality of all three methods. (orig.)

  13. Optimization of cathodic arc deposition and pulsed plasma melting techniques for growing smooth superconducting Pb photoemissive films for SRF injectors

    Science.gov (United States)

    Nietubyć, Robert; Lorkiewicz, Jerzy; Sekutowicz, Jacek; Smedley, John; Kosińska, Anna

    2018-05-01

    Superconducting photoinjectors have a potential to be the optimal solution for moderate and high current cw operating free electron lasers. For this application, a superconducting lead (Pb) cathode has been proposed to simplify the cathode integration into a 1.3 GHz, TESLA-type, 1.6-cell long purely superconducting gun cavity. In the proposed design, a lead film several micrometres thick is deposited onto a niobium plug attached to the cavity back wall. Traditional lead deposition techniques usually produce very non-uniform emission surfaces and often result in a poor adhesion of the layer. A pulsed plasma melting procedure reducing the non-uniformity of the lead photocathodes is presented. In order to determine the parameters optimal for this procedure, heat transfer from plasma to the film was first modelled to evaluate melting front penetration range and liquid state duration. The obtained results were verified by surface inspection of witness samples. The optimal procedure was used to prepare a photocathode plug, which was then tested in an electron gun. The quantum efficiency and the value of cavity quality factor have been found to satisfy the requirements for an injector of the European-XFEL facility.

  14. Synthesis of nanostructured SiC using the pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Zhang, H.X.; Feng, P.X.; Makarov, V.; Weiner, B.R.; Morell, G.

    2009-01-01

    We report the new results on the direct synthesis of nanostructured silicon carbide (SiC) materials using the pulsed laser deposition technique. Scanning electron microscopy images revealed that SiC nanoholes, nanosprouts, nanowires, and nanoneedles were obtained. The crystallographic structure, chemical composition, and bond structure of the nanoscale SiC materials were investigated using X-ray diffraction, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Raman scattering spectroscopy. The transverse optical mode and longitudinal optical mode in Raman spectra were found to become sharper as the substrate temperature was increased, while the material structure evolved from amorphous to crystalline

  15. Site control technique for quantum dots using electron beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, Kanji; Jung, JaeHun; Yokota, Hiroshi [Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro, Minami-saitama, Saitama 3458501 (Japan)

    2014-05-15

    To develop simple and high throughput sit definition technique for quantum dots (QDs), the electron beam induced deposition (EBID) method was used as desorption guide of phosphorus atoms form InP substrate. As the results one or a few indium (In) droplets (DLs) were created in the carbon grid pattern by thermal annealing at a temperature of 450°C for 10 min in the ultra high vacuum condition. The size of In DLs was larger than QDs, but arsenide DLs by molecular beam in growth chamber emitted wavelength of 1.028μm at 50K by photoluminescence measurement.

  16. Site control technique for quantum dots using electron beam induced deposition

    International Nuclear Information System (INIS)

    Iizuka, Kanji; Jung, JaeHun; Yokota, Hiroshi

    2014-01-01

    To develop simple and high throughput sit definition technique for quantum dots (QDs), the electron beam induced deposition (EBID) method was used as desorption guide of phosphorus atoms form InP substrate. As the results one or a few indium (In) droplets (DLs) were created in the carbon grid pattern by thermal annealing at a temperature of 450°C for 10 min in the ultra high vacuum condition. The size of In DLs was larger than QDs, but arsenide DLs by molecular beam in growth chamber emitted wavelength of 1.028μm at 50K by photoluminescence measurement

  17. ZnO nanowall network grown by chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Amrita, E-mail: but.then.perhaps@gmail.com; Dhar, Subhabrata [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2015-06-24

    Network of wedge shaped ZnO nanowalls are grown on c-sapphire by Chemical Vapor Deposition (CVD) technique. Structural studies using x-ray diffraction show much better crystallinity in the nanowall sample as compared to the continuous film. Moreover, the defect related broad green luminescence is found to be suppressed in the nanowall sample. The low temperature photoluminescence study also suggests the quantum confinement of carriers in nanowall sample. Electrical studies performed on the nanowalls show higher conductivity, which has been explained in terms of the reduction of scattering cross-section as a result of 1D quantum confinement of carriers on the tip of the nanowalls.

  18. Preparation of SmBiO{sub 3} buffer layer on YSZ substrate by an improved chemical solution deposition route

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaolei [Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Superconductivity and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Pu, Minghua, E-mail: mhpu@home.swjtu.edu.cn [Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Superconductivity and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Yong [Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Superconductivity and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wale, Sydney, NSW 2052 (Australia)

    2016-12-15

    Highlights: • The proper conditions for SBO growth are 794 °C for 60 min in flowing Ar gas, the temperature of epitaxial growth is relatively low. • The total time by SSD technique for organic solvent removing, salts decomposition and layer growth is not up to 2 h, which are much less than that needed for traditional CSD of over 10 h. • SBO layer on YSZ prepared by SSD technique are suitable for the growth of YBCO, The results may be the usable reference for continuous preparation of SBO buffer layer on IBAD-YSZ/Ni-based alloy tapes. - Abstract: A quick route for chemical solution deposition (CSD) has been developed to prepare SmBiO{sub 3} (SBO) layers on yttria stabilized zirconia (YSZ) substrates rapidly by using of solid state decomposition (SSD) technique. The proper conditions for volatilization of lactic acid, which as solvent in precursor coated layer, and SBO growth are 115°C for 30 min and 794°C for 60 min in flowing Ar gas. The coated layers are amorphous structure of mixture oxides and quasi-crystal structure of SBO before and after growth, respectively. The total time by this quick CSD route for organic solvent volatilization, salts decomposed and layer growth is not up to 2 h, which are much less than that needed for traditional CSD of over 10 h. SBO layer is directly epitaxial growth on YSZ substrate without any lattice rotation. SBO layer prepared by this quick route as well as that by traditional route are suitable for the growth of YBCO. The superconducting transition temperature and critical current density of the coated YBCO layer on SBO/YSZ obtained by this quick route are up to 90 K and 1.66 MA/cm{sup 2}. These results may be the usable reference for continuous preparation of SBO buffer layer on IBAD-YSZ/Ni-based alloy tapes.

  19. Effect of thermal treatment on solid–solid interface of hematite thin film synthesized by spin-coating deposition solution

    International Nuclear Information System (INIS)

    Bellido-Aguilar, Daniel Angel; Tofanello, Aryane; Souza, Flavio L.; Furini, Leonardo Negri; Constantino, Carlos José Leopoldo

    2016-01-01

    This work describes hematite films prepared by a spin-coating deposition solution (SCDS) method that is a sol–gel method derived technique. Hematite films were prepared at two heat treatment temperatures (500 °C and 800 °C) and the influence of thermal treatment on the photoelectrochemical performance was studied. In addition, since the SCDS method allows an optimal control of stoichiometry and impurity incorporation, hematite films modified with Zn 2+ and Sn 4+ were also prepared. The 800 °C-treated hematite films had a higher wettability and roughness that enabled them to have a better photocatalytic response in comparison with that of 500 °C-treated hematite films. Moreover, modified hematite films demonstrated to have a performance slightly better than that of undoped hematite film as shown in linear sweep voltammetry and chronoamperometry results. Although an improvement in the performance of hematite films was achieved by annealing at higher temperatures and incorporating Zn 2+ or Sn 4+ , the general photocatalytic response of the films was poor. Two plausible hypotheses were discussed related to the (i) dopant segregation at grain boundary, and (ii) poor contact between the hematite and fluorine doped tin oxide layer (from the glass substrate), which was experimentally confirmed by a cross-sectional analysis conducted using scanning electron microscopy (SEM). In fact, additional experiments need to be done in order to improve the hematite deposition and make the SCDS a promise method for industrial application. - Highlights: • High temperature of annealing decreases the hematite adherence and performance. • Zn 2+ and Sn 4+ dopants affected differently the photocurrent onset potentials. • Dopants affected the grain size due to their segregation at grain boundaries.

  20. Effect of thermal treatment on solid–solid interface of hematite thin film synthesized by spin-coating deposition solution

    Energy Technology Data Exchange (ETDEWEB)

    Bellido-Aguilar, Daniel Angel; Tofanello, Aryane [Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Av. dos Estados N°5001, Bangu, Santo André, São Paulo CEP 09210-580 (Brazil); Souza, Flavio L., E-mail: flavio.souza@ufabc.edu.br [Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Av. dos Estados N°5001, Bangu, Santo André, São Paulo CEP 09210-580 (Brazil); Furini, Leonardo Negri; Constantino, Carlos José Leopoldo [Faculdade de Ciências e Tecnologia (FCT), UNESP Univ Estadual Paulista, Presidente Prudente, São Paulo, 19060-900 (Brazil)

    2016-04-01

    This work describes hematite films prepared by a spin-coating deposition solution (SCDS) method that is a sol–gel method derived technique. Hematite films were prepared at two heat treatment temperatures (500 °C and 800 °C) and the influence of thermal treatment on the photoelectrochemical performance was studied. In addition, since the SCDS method allows an optimal control of stoichiometry and impurity incorporation, hematite films modified with Zn{sup 2+} and Sn{sup 4+} were also prepared. The 800 °C-treated hematite films had a higher wettability and roughness that enabled them to have a better photocatalytic response in comparison with that of 500 °C-treated hematite films. Moreover, modified hematite films demonstrated to have a performance slightly better than that of undoped hematite film as shown in linear sweep voltammetry and chronoamperometry results. Although an improvement in the performance of hematite films was achieved by annealing at higher temperatures and incorporating Zn{sup 2+} or Sn{sup 4+}, the general photocatalytic response of the films was poor. Two plausible hypotheses were discussed related to the (i) dopant segregation at grain boundary, and (ii) poor contact between the hematite and fluorine doped tin oxide layer (from the glass substrate), which was experimentally confirmed by a cross-sectional analysis conducted using scanning electron microscopy (SEM). In fact, additional experiments need to be done in order to improve the hematite deposition and make the SCDS a promise method for industrial application. - Highlights: • High temperature of annealing decreases the hematite adherence and performance. • Zn{sup 2+} and Sn{sup 4+} dopants affected differently the photocurrent onset potentials. • Dopants affected the grain size due to their segregation at grain boundaries.

  1. Microstructure and surface morphology of YSZ thin films deposited by e-beam technique

    International Nuclear Information System (INIS)

    Laukaitis, G.; Dudonis, J.; Milcius, D.

    2008-01-01

    In present study yttrium-stabilized zirconia (YSZ) thin films were deposited on optical quartz (amorphous SiO 2 ), porous Ni-YSZ and crystalline Alloy 600 (Fe-Ni-Cr) substrates using e-beam deposition technique and controlling technological parameters: substrate temperature and electron gun power which influence thin-film deposition mechanism. X-ray diffraction, scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to investigate how thin-film structure and surface morphology depend on these parameters. It was found that the crystallite size, roughness and growth mechanism of YSZ thin films are influenced by electron gun power. To clarify the experimental results, YSZ thin-film formation as well evolution of surface roughness at its initial growing stages were analyzed. The evolution of surface roughness could be explained by the processes of surface mobility of adatoms and coalescence of islands. The analysis of these experimental results explain that surface roughness dependence on substrate temperature and electron gun power non-monotonous which could result from diffusivity of adatoms and the amount of atomic clusters in the gas stream of evaporated material

  2. YBa{sub 2}Cu{sub 3}O{sub 7-x} thin films prepared by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Apetrii, Claudia

    2009-11-25

    The discovery of superconductivity in ceramic materials by Bednorz and Mueller in early 1987, immediately followed by Wu et al., who showed that YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) becomes superconducting (92 K) well above the boiling point of nitrogen (77 K) created a great excitement in superconductivity research. Potential applications of high T{sub c}-superconductors require large critical currents and high-applied magnetic fields. Effective ways to increase the critical current density at high magnetic fields in YBCO are the introduction of nanoparticles and chemical substitution of yttrium by other rare earth elements. Since low costs and environmental compatibility are essential conditions for the preparation of long length YBCO films, the cost effective chemical solution deposition (CSD) procedure was selected, given that no vacuum technology is required. To reveal the flexibility and the good optimization possibilities of the CSD approach two main processes were chosen for comparison: a fluorine-free method, namely the polymer-metal precursor technique, and a fluorine-based method, the metalorganic deposition (MOD) using the trifluoroacetates (TFA) technique. Sharp transition temperature widths {delta}T{sub c} of 1.1 K for the polymer metal method, 0.8 K for TFA method and critical current densities J{sub c} of {approx}3.5 MA/cm{sup 2} shows that high quality YBCO thin films can be produced using both techniques. Especially interesting is the magnetic field dependence of the critical current density J{sub c}(B) of the Y(Dy)BCO (80 %) films showing that for the lower magnetic fields the critical current density J{sub c}(B) is higher for a standard YBCO film, but at fields higher than 4.5 T the critical current density J{sub c}(B) of Y(Dy)BCO is larger than that for the YBCO. Above 8 T, J{sub c}(B) of the Y(Dy)BCO film is more than one order of magnitude higher than in pure YBCO film. (orig.)

  3. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  4. Effects of pH and temperature on the deposition properties of stannate chemical conversion coatings formed by the potentiostatic technique on AZ91 D magnesium alloy

    International Nuclear Information System (INIS)

    Elsentriecy, Hassan H.; Azumi, Kazuhisa; Konno, Hidetaka

    2008-01-01

    The effects of pH and temperature of a stannate bath on the quality of stannate chemical conversion coatings formed on AZ91 D magnesium alloy by using the potentiostatic polarization technique at E = -1.1 V were investigated in order to improve uniformity and corrosion protection performance of the coating films. It was found that the uniformity and corrosion resistance of coating films deposited by potentiostatic polarization were closely associated with pH and temperature of the coating bath. The pH and temperature to obtain the best coating film were investigated as a function of corrosion protection performance evaluated by curves of potentiodynamic anodic polarization conducted in borate buffer solution. Scanning electron microscope observation and electrochemical corrosion tests of the stannate-coated samples confirmed significant improvement in uniformity and corrosion resistivity of coating films deposited by the potentiostatic technique by modifying the pH and temperature of the coating bath. It was also found that uniformity and corrosion resistivity of the coating films deposited by the potentiostatic technique were considerably improved compared to those of coatings deposited by the simple immersion method at the best conditions of pH and temperature of the coating bath

  5. Investigation of Non-Vacuum Deposition Techniques in Fabrication of Chalcogenide-Based Solar Cell Absorbers

    KAUST Repository

    Alsaggaf, Ahmed

    2015-07-01

    The environmental challenges are increasing, and so is the need for renewable energy. For photovoltaic applications, thin film Cu(In,Ga)(S,Se)2 (CIGS) and CuIn(S,Se)2 (CIS) solar cells are attractive with conversion efficiencies of more than 20%. However, the high-efficiency cells are fabricated using vacuum technologies such as sputtering or thermal co-evaporation, which are very costly and unfeasible at industrial level. The fabrication involves the uses of highly toxic gases such as H2Se, adding complexity to the fabrication process. The work described here focused on non-vacuum deposition methods such as printing. Special attention has been given to printing designed in a moving Roll-to-Roll (R2R) fashion. The results show potential of such technology to replace the vacuum processes. Conversion efficiencies for such non-vacuum deposition of Cu(In,Ga)(S,Se)2 solar cells have exceeded 15% using hazardous chemicals such as hydrazine, which is unsuitable for industrial scale up. In an effort to simplify the process, non-toxic suspensions of Cu(In,Ga)S2 molecular-based precursors achieved efficiencies of ~7-15%. Attempts to further simplify the selenization step, deposition of CuIn(S,Se)2 particulate solutions without the Ga doping and non-toxic suspensions of Cu(In,Ga)Se2 quaternary precursors achieved efficiencies (~1-8%). The contribution of this research was to provide a new method to monitor printed structures through spectral-domain optical coherence tomography SD-OCT in a moving fashion simulating R2R process design at speeds up to 1.05 m/min. The research clarified morphological and compositional impacts of Nd:YAG laser heat-treatment on Cu(In,Ga)Se2 absorber layer to simplify the annealing step in non-vacuum environment compatible to R2R. Finally, the research further simplified development methods for CIGS solar cells based on suspensions of quaternary Cu(In,Ga)Se2 precursors and ternary CuInS2 precursors. The methods consisted of post deposition reactive

  6. Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review.

    Science.gov (United States)

    Graziani, Gabriela; Bianchi, Michele; Sassoni, Enrico; Russo, Alessandro; Marcacci, Maurilio

    2017-05-01

    One of the main critical aspects behind the failure or success of an implant resides in its ability to fast bond with the surrounding bone. To boost osseointegration, the ideal implant material should exhibit composition and structure similar to those of biological apatite. To this aim, the most common approach is to coat the implant surface with a coating of hydroxyapatite (HA), resembling the main component of mineralized tissues. However, bone apatite is a non-stoichiometric, multi-substituted poorly-crystalline apatite, containing significant amounts of foreign ions, with high biological relevance. Ion-substituted HAs can be deposited by so called "wet methods", which are however poorly reproducible and hardly industrially feasible; at the same time bioactive coatings realized by plasma assisted method, interesting for industrial applications, are generally made of stoichiometric (i.e. un-substituted) HA. In this work, the literature concerning plasma-assisted deposition methods used to deposit ion-substituted HA was reviewed and the last advances in this field discussed. The ions taken into exam are those present in mineralized tissues and possibly having biological relevance. Notably, literature about this topic is scarce, especially relating to in vivo animal and clinical trials; further on, available studies evaluate the performance of substituted coatings from different points of view (mechanical properties, bone growth, coating dissolution, etc.) which hinders a proper evaluation of the real efficacy of ion-doped HA in promoting bone regeneration, compared to stoichiometric HA. Moreover, results obtained for plasma sprayed coatings (which is the only method currently employed for deposition at the industrial scale) were collected and compared to those of novel plasma-assisted techniques, that are expected to overcome its limitations. Data so far available on the topic were discussed to highlight advantages, limitations and possible perspectives of these

  7. Microdroplet deposition through a film-free laser forward printing technique

    Energy Technology Data Exchange (ETDEWEB)

    Patrascioiu, A.; Fernandez-Pradas, J.M.; Morenza, J.L. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Serra, P., E-mail: pserra@ub.edu [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Circular droplets are obtained for a wide range of focusing depths at fixed energy. Black-Right-Pointing-Pointer Focusing depth variation study reveals two abrupt transitions in droplet diameter. Black-Right-Pointing-Pointer Liquid ejection mechanism is mediated by two types of jets of different origin. Black-Right-Pointing-Pointer Evolution of jets depends on the focusing depth accounting for the seen transitions. - Abstract: A recently developed film-free laser forward microprinting technique allows printing transparent and weakly absorbing liquids with high resolution and reproducibility. Its operating principle consists in the tight focusing of ultrashort laser pulses inside the liquid, and near its free surface, such that all the laser energy is absorbed in a small region around the beam waist. A cavitation bubble is then created inside the liquid, whose subsequent expansion results into the ejection of liquid. The collection of the ejected liquid on a substrate leads to the deposition of micron-sized droplets. In this work, we investigate a relevant process parameter of the technique, namely the laser focusing depth, and its influence on the morphology of the deposited droplets. The study reveals that for a fixed laser pulse energy there exists a relatively wide range of focusing depths at which circular and uniform droplets can be printed. The process of liquid ejection is also investigated. Time-resolved images reveal that liquid ejection proceeds through the formation of two kinds of jets which display clearly differentiated dynamics, and which could provide an interpretation for the dependence observed between the morphology of the deposited droplets and the laser focusing depth.

  8. Microdroplet deposition through a film-free laser forward printing technique

    International Nuclear Information System (INIS)

    Patrascioiu, A.; Fernández-Pradas, J.M.; Morenza, J.L.; Serra, P.

    2012-01-01

    Highlights: ► Circular droplets are obtained for a wide range of focusing depths at fixed energy. ► Focusing depth variation study reveals two abrupt transitions in droplet diameter. ► Liquid ejection mechanism is mediated by two types of jets of different origin. ► Evolution of jets depends on the focusing depth accounting for the seen transitions. - Abstract: A recently developed film-free laser forward microprinting technique allows printing transparent and weakly absorbing liquids with high resolution and reproducibility. Its operating principle consists in the tight focusing of ultrashort laser pulses inside the liquid, and near its free surface, such that all the laser energy is absorbed in a small region around the beam waist. A cavitation bubble is then created inside the liquid, whose subsequent expansion results into the ejection of liquid. The collection of the ejected liquid on a substrate leads to the deposition of micron-sized droplets. In this work, we investigate a relevant process parameter of the technique, namely the laser focusing depth, and its influence on the morphology of the deposited droplets. The study reveals that for a fixed laser pulse energy there exists a relatively wide range of focusing depths at which circular and uniform droplets can be printed. The process of liquid ejection is also investigated. Time-resolved images reveal that liquid ejection proceeds through the formation of two kinds of jets which display clearly differentiated dynamics, and which could provide an interpretation for the dependence observed between the morphology of the deposited droplets and the laser focusing depth.

  9. Comparative study of layer-by-layer deposition techniques for poly(sodium phosphate) and poly(allylamine hydrochloride).

    Science.gov (United States)

    Elosua, Cesar; Lopez-Torres, Diego; Hernaez, Miguel; Matias, Ignacio R; Arregui, Francisco J

    2013-12-20

    An inorganic short chain polymer, poly(sodium phosphate), PSP, together with poly(allylamine hydrochloride), PAH, is used to fabricate layer-by-layer (LbL) films. The thickness, roughness, contact angle, and optical transmittance of these films are studied depending on three parameters: the precursor solution concentrations (10-3 and 10-4 M), the number of bilayers deposited (20, 40, 60, 80, and 100 bilayers), and the specific technique used for the LbL fabrication (dipping or spraying). In most cases of this experimental study, the roughness of the nanofilms increases with the number of bilayers. This contradicts the basic observations made in standard LbL assemblies where the roughness decreases for thicker coatings. In fact, a wide range of thickness and roughness was achieved by means of adjusting the three parameters mentioned above. For instance, a roughness of 1.23 or 205 nm root mean square was measured for 100 bilayer coatings. Contact angles close to 0 were observed. Moreover, high optical transmittance is also reported, above 90%, for 80 bilayer films fabricated with the 10-4 M solutions. Therefore, these multilayer structures can be used to obtain transparent superhydrophilic surfaces.

  10. Solution of the diffusion equation in the GPT theory by the Laplace transform technique

    International Nuclear Information System (INIS)

    Lemos, R.S.M.; Vilhena, M.T.; Segatto, C.F.; Silva, M.T.

    2003-01-01

    In this work we present a analytical solution to the auxiliary and importance functions attained from the solution of a multigroup diffusion problem in a multilayered slab by the Laplace Transform technique. We also obtain the the transcendental equation for the effective multiplication factor, resulting from the application of the boundary and interface conditions. (author)

  11. A simple method to deposit palladium doped SnO2 thin films using plasma enhanced chemical vapor deposition technique

    International Nuclear Information System (INIS)

    Kim, Young Soon; Wahab, Rizwan; Shin, Hyung-Shik; Ansari, S. G.; Ansari, Z. A.

    2010-01-01

    This work presents a simple method to deposit palladium doped tin oxide (SnO 2 ) thin films using modified plasma enhanced chemical vapor deposition as a function of deposition temperature at a radio frequency plasma power of 150 W. Stannic chloride (SnCl 4 ) was used as precursor and oxygen (O 2 , 100 SCCM) (SCCM denotes cubic centimeter per minute at STP) as reactant gas. Palladium hexafluroacetyleacetonate (Pd(C 5 HF 6 O 2 ) 2 ) was used as a precursor for palladium. Fine granular morphology was observed with tetragonal rutile structure. A peak related to Pd 2 Sn is observed, whose intensity increases slightly with deposition temperature. Electrical resistivity value decreased from 8.6 to 0.9 mΩ cm as a function of deposition temperature from 400 to 600 deg. C. Photoelectron peaks related to Sn 3d, Sn 3p3, Sn 4d, O 1s, and C 1s were detected with varying intensities as a function of deposition temperature.

  12. Facile Deposition of Ultrafine Silver Particles on Silicon Surface Not Submerged in Precursor Solutions for Applications in Antireflective Layer

    Directory of Open Access Journals (Sweden)

    Bing Jiang

    2014-01-01

    Full Text Available Using a facile deposition method, the ultrafine silver particles are successfully deposited on the Si surface that is not submerged in precursor solutions. The ultrafine silver particles have many advantages, such as quasiround shape, uniformity in size, monodisperse distribution, and reduction of agglomeration. The internal physical procedure in the deposition is also investigated. The results show that there are more particles on the rough Si surface due to the wetting effect of solid-liquid interface. The higher concentration of ethanol solvent can induce the increase of quantity and size of particles on Si surface not in solutions. The ultrafine particles can be used to prepare porous Si antireflective layer in solar cell applications.

  13. Thick Fe2O3, Fe3O4 films prepared by the chemical solution deposition method

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Košovan, P.; Šubrt, Jan

    2006-01-01

    Roč. 39, č. 2 (2006), s. 85-94 ISSN 0928-0707 R&D Projects: GA ČR GA203/01/0408 Institutional research plan: CEZ:AV0Z40320502 Keywords : chemical solution deposition * thick films * alpha-Fe2O3 Subject RIV: CA - Inorganic Chemistry Impact factor: 1.009, year: 2006

  14. Chemical solution deposited BaPbO3 buffer layers for lead zirconate titanate ferroelectric films

    International Nuclear Information System (INIS)

    Tseng, T.-K.; Wu, J.-M.

    2005-01-01

    Conductive perovskite BaPbO 3 (BPO) films have been prepared successfully by chemical solution deposition method through spin-coating on Pt/Ti/SiO 2 /Si substrates. The choice of baking temperature is a key factor on the development of conducting BPO perovskite phase. When the baking temperature is higher than 350 deg. C, the BPO films contain a high content of BaCO 3 phase after annealing at temperatures higher than 500 deg. C. If the baking temperature is chosen lower than 300 deg. C, such as 200 deg. C, the annealed BPO films consist mostly of perovskite with only traces of BaCO 3 . Choosing 200 deg. C as the baking temperature, the BPO films developed single perovskite phase at temperatures as low as 550 deg. C. The perovskite BPO phase is stable in the range of 550-650 deg. C and the measured sheet resistance of the BPO films is about 2-3 Ω/square. The perovskite BPO film as a buffer layer provides improvement in electric properties of lead zirconate titanate films

  15. Role of the buffer solution in the chemical deposition of CdS films for CIGS solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sooho; Kim, Donguk; Baek, Dohyun; Hong, Byoungyou; Yi, Junsin; Lee, Jaehyeong [Sungkyunkwan University, Suwon (Korea, Republic of); Park, Yongseob [Chosun College of Science and and Technology, Gwangju (Korea, Republic of); Choi, Wonseok [Hanbat National University, Daejeon (Korea, Republic of)

    2014-05-15

    In this work, the effects of NH{sub 4}Ac on the structural and the electro-optical properties of CdS films were investigated. CdS thin films were deposited on soda-lime glass and indium-tin-oxide (ITO) coated glass from a chemical bath containing 0.025 M cadmium acetate, 0 M ∼ 0.2 M ammonium acetate, 0.5 M thiourea, and ammonia. Cadmium acetate was the cadmium source, ammonium acetate served as a buffer, ammonia was the complexing agent, and thiourea was the source of sulfur. A commonly- available chemical bath deposition system was successfully modified to obtain precise control over the pH of the solution at 75 .deg. C during the deposition. Chemically deposited CdS films were studied by using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), optical transmittance, and electrical resistivity measurements.

  16. A Framework to Implement IoT Network Performance Modelling Techniques for Network Solution Selection

    Directory of Open Access Journals (Sweden)

    Declan T. Delaney

    2016-12-01

    Full Text Available No single network solution for Internet of Things (IoT networks can provide the required level of Quality of Service (QoS for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks.

  17. A Framework to Implement IoT Network Performance Modelling Techniques for Network Solution Selection.

    Science.gov (United States)

    Delaney, Declan T; O'Hare, Gregory M P

    2016-12-01

    No single network solution for Internet of Things (IoT) networks can provide the required level of Quality of Service (QoS) for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks.

  18. Modeling of Filament Deposition Rapid Prototyping Process with a Closed form Solution

    Science.gov (United States)

    Devlin, Steven Leon

    Fused Deposition Modeling (FDM(TM)) or fused filament fabrication (FFF) systems are extrusion-based technologies used to produce functional or near functional parts from a wide variety of plastic materials. First patented by S. Scott Crump and commercialized by Stratasys, Ltd in the early 1990s, this technology, like many additive manufacturing systems, offers significant opportunities for the design and production of complex part structures that are difficult if not impossible to produce using traditional manufacturing methods. Standing on the shoulders of a twenty-five year old invention, a rapidly growing open-source development community has exponentially driven interest in FFF technology. However, part quality often limits use in final product commercial markets. Development of accurate and repeatable methods for determining material strength in FFF produced parts is essential for wide adoption into mainstream manufacturing. This study builds on the empirical, squeeze flow and intermolecular diffusion model research conducted by David Grewell and Avraham Benatar, applying a combined model to predict auto adhesion or healing to FFF part samples. In this research, an experimental study and numerical modeling were performed in order to drive and validate a closed form heat transfer solution for extrusion processes to develop temperature field models. An extrusion-based 3D printing system, with the capacity to vary deposition speeds and temperatures, was used to fabricate the samples. Standardized specimens of Polylactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) filament were used to fabricate the samples with different speeds and temperatures. Micro-scanning of cut and lapped specimens, using an optical microscope, was performed to find the effect of the speed and the temperature on the geometry of the cross-sections. It was found that by increasing the speed of the extrusion printing, the area of the cross-section and the maximum thickness decrease

  19. Multiple Solutions of Nonlinear Boundary Value Problems of Fractional Order: A New Analytic Iterative Technique

    Directory of Open Access Journals (Sweden)

    Omar Abu Arqub

    2014-01-01

    Full Text Available The purpose of this paper is to present a new kind of analytical method, the so-called residual power series, to predict and represent the multiplicity of solutions to nonlinear boundary value problems of fractional order. The present method is capable of calculating all branches of solutions simultaneously, even if these multiple solutions are very close and thus rather difficult to distinguish even by numerical techniques. To verify the computational efficiency of the designed proposed technique, two nonlinear models are performed, one of them arises in mixed convection flows and the other one arises in heat transfer, which both admit multiple solutions. The results reveal that the method is very effective, straightforward, and powerful for formulating these multiple solutions.

  20. Effect of Solution Molarity, Substrate Temperature and Spray Time on The Structural and Optical Properties Of ZnO Thin Films Deposited By Spray Pyrolysis

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Hashem, H. M.; El-Sayed, S. M.; Ashour, A.H.; Abdel-Haleem, S.M.

    2013-01-01

    Zinc oxide thin films were deposited on a glass substrate by spray pyrolysis technique using solution of zinc acetate and air as the carrier gas. Effects of solution molarity, substrate temperature and spray time on films properties were investigated. All films deposited were characterized using X-ray diffraction for structural characterization and UV-VIS transmission spectrophotometry for optical properties. According to the analytical method, the type of crystal lattice was found to be hexagonal and X-ray diffraction (XRD) patterns showed that the films deposited were polycrystalline with (002) plane as preferential orientation. The values of lattice constant, grain size, micro strain and dislocation density of all samples were calculated. In addition, Optical behaviors of film samples were analyzed by obtaining transmission spectra, in the wavelength range of 350-800 nm. The UV-VIS spectroscopy shows the high transparency of ZnO films in the UV region. An optimization of the films has been carried out to determine the best preparation conditions.

  1. Growth of thick La2Zr2O7 buffer layers for coated conductors by polymer-assisted chemical solution deposition

    International Nuclear Information System (INIS)

    Zhang, Xin; Zhao, Yong; Xia, Yudong; Guo, Chunsheng; Cheng, C.H.; Zhang, Yong; Zhang, Han

    2015-01-01

    Highlights: • We develops a low-cost and high-efficient technology of fabricating LZO buffer layers. • Sufficient thickness LZO buffer layers have been obtained on NiW (2 0 0) alloy substrate. • Highly biaxially textured YBCO thin film has been deposited on LZO/NiW. - Abstract: La 2 Zr 2 O 7 (LZO) epitaxial films have been deposited on LaAlO 3 (LAO) (1 0 0) single-crystal surface and bi-axially textured NiW (2 0 0) alloy substrate by polymer-assisted chemical solution deposition, and afterwards studied with XRD, SEM and AFM approaches. Highly in-plane and out-of-plane oriented, dense, smooth, crack free and with a sufficient thickness (>240 nm) LZO buffer layers have been obtained on LAO (1 0 0) single-crystal surface; The films deposited on NiW (2 0 0) alloy substrate are also found with high degree in-plane and out-of-plane texturing, good density with pin-hole-free, micro-crack-free nature and a thickness of 300 nm. Highly epitaxial 500 nm thick YBa 2 Cu 3 O 7−x (YBCO) thin film exhibits the self-field critical current density (Jc) reached 1.3 MA/cm 2 at 77 K .These results demonstrate the LZO epi-films obtained with current techniques have potential to be a buffer layer for REBCO coated conductors

  2. Preparation and characterization of VOx nanorods using pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Rama, N.; Senthil Kumar, E.; Ramachandra Rao, M.S.

    2009-01-01

    Full text: Vanadium oxide (VO x ) is one of the most functional oxides of the transition metal oxide family. This versatility comes because of the ability of Vanadium to exist as both monovalent and multivalent in these oxides. These oxides find potential usage in the field of thermochromism electrochromism catalysts, electrochemistry etc. especially in their nano-form because of their increased sensitivity to these applications. These nano-forms are usually prepared using conventional techniques such as solgel techniques, vapour phase transport, hydrothermal synthesis etc. In this work we have used pulsed laser deposition technique to fabricate vanadium oxide nanorods for the first time. The grown nanorods has a predominant VO 2 phase with a secondary phase of V 3 O 7 . The diameters of the rods were around 300 nm with Raman spectra showing all the group vibrations corresponding to VO x phase. The nanorods exhibited photoluminescence in the visible range due to the presence of oxygen defects. These results, including the mechanism of growth of these nanorods, will be discussed in detail. The existence of multivalence in these rods finds potential applications in electrochemistry while the visible photoluminescence in optical applications

  3. The deposition of highly uniform and adhesive nanocrystalline PbS film from solution

    International Nuclear Information System (INIS)

    Yang Yujun; Hu Shengshui

    2008-01-01

    Mirror-like PbS films have been deposited by chemical deposition on glass substrates from alkaline chemical bath containing lead nitrate, sodium thiosulfate and 1-thioglycerol, which was used to catalyze the hydrolysis of thiosulfate. Nanostructure characterization was carried out by x-ray diffraction and scanning electron microscopy in order to determine the average crystallite size (61 nm) and study the surface morphologies of the as-deposited films

  4. Tight comparison of Mg and Y thin film photocathodes obtained by the pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, A. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Gontad, F., E-mail: francisco.gontad@le.infn.it [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Solombrino, L. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Chiadroni, E. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, 00044 Frascati (Italy); Broitman, E. [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping (Sweden); Perrone, A. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy)

    2016-11-11

    In this work Magnesium (Mg) and Yttrium (Y) thin films have been deposited on Copper (Cu) polycrystalline substrates by the pulsed laser ablation technique for photocathode application. Such metallic materials are studied for their interesting photoemission properties and are proposed as a good alternative to the Cu photocathode, which is generally used in radio-frequency guns. Mg and Y films were uniform with no substantial differences in morphology; a polycrystalline structure was found for both of them. Photoemission measurements of such cathodes based on thin films were performed, revealing a quantum efficiency higher than Cu bulk. Photoemission theory according to the three-step model of Spicer is invoked to explain the superior photoemission performance of Mg with respect to Y. - Highlights: • Mg and Y thin film photocathodes were successfully prepared by pulsed laser deposition. • Mg quantum efficiency is higher than Y, despite its higher work function. • The three-step model of Spicer justify the difference in quantum efficiency.

  5. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques

    KAUST Repository

    Shi, Yumeng; Li, Henan; Li, Lain-Jong

    2014-01-01

    In recent years there have been many breakthroughs in two-dimensional (2D) nanomaterials, among which the transition metal dichalcogenides (TMDs) attract significant attention owing to their unusual properties associated with their strictly defined dimensionalities. TMD materials with a generalized formula of MX2, where M is a transition metal and X is a chalcogen, represent a diverse and largely untapped source of 2D systems. Semiconducting TMD monolayers such as MoS2, MoSe2, WSe2 and WS2 have been demonstrated to be feasible for future electronics and optoelectronics. The exotic electronic properties and high specific surface areas of 2D TMDs offer unlimited potential in various fields including sensing, catalysis, and energy storage applications. Very recently, the chemical vapour deposition technique (CVD) has shown great promise to generate high-quality TMD layers with a scalable size, controllable thickness and excellent electronic properties. Wafer-scale deposition of mono to few layer TMD films has been obtained. Despite the initial success in the CVD synthesis of TMDs, substantial research studies on extending the methodology open up a new way for substitution doping, formation of monolayer alloys and producing TMD stacking structures or superlattices. In this tutorial review, we will introduce the latest development of the synthesis of monolayer TMDs by CVD approaches.

  6. Transparent conducting ZnO-CdO thin films deposited by e-beam evaporation technique

    Science.gov (United States)

    Mohamed, H. A.; Ali, H. M.; Mohamed, S. H.; Abd El-Raheem, M. M.

    2006-04-01

    Thin films of Zn{1-x} Cd{x}O with x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5 at.% were deposited by electron-beam evaporation technique. It has been found that, for as-deposited films, both the transmittance and electrical resistivity decreased with increasing the Cd content. To improve the optical and electrical properties of these films, the effect of annealing temperature and time were taken into consideration for Zn{1-x} Cd{x}O film with x = 0.2. It was found that, the optical transmittance and the electrical conductivity were improved significantly with increasing the time of annealing. At fixed temperature of 300 °C, the transmittance increased with increasing the time of annealing and reached its maximum values of 81% in the visible region and 94% in the NIR region at annealing time of 120 min. The low electrical resistivity of 3.6 × 10-3 Ω cm was achieved at the same conditions. Other parameters named free carrier concentrations, refractive index, extinction coefficient, plasma frequency, and relaxation time were studied as a function of annealing temperature and time for 20% Cd content.

  7. CuFeO2 formation using fused deposition modeling 3D printing and sintering technique

    Science.gov (United States)

    Salea, A.; Dasaesamoh, A.; Prathumwan, R.; Kongkaew, T.; Subannajui, K.

    2017-09-01

    CuFeO2 is a metal oxide mineral material which is called delafossite. It can potentially be used as a chemical catalyst, and gas sensing material. There are methods to fabricate CuFeO2 such as chemical synthesis, sintering, sputtering, and chemical vapor deposition. In our work, CuFeO2 is prepared by Fused Deposition Modeling (FDM) 3D printing. The composite filament which composed of Cu and Fe elements is printed in three dimensions, and then sintered and annealed at high temperature to obtain CuFeO2. Suitable polymer blend and maximum percent volume of metal powder are studied. When percent volume of metal powder is increased, melt flow rate of polymer blend is also increased. The most suitable printing condition is reported and the properties of CuFeO2 are observed by Scanning Electron Microscopy, and Dynamic Scanning Calorimeter, X-ray diffraction. As a new method to produce semiconductor, this technique has a potential to allow any scientist or students to design and print a catalyst or sensing material by the most conventional 3D printing machine which is commonly used around the world.

  8. Tuning the morphology of metastable MnS films by simple chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Dhandayuthapani, T. [Directorate of Distance Education, Alagappa University, Karaikudi 630004 (India); Girish, M. [Department of Physics, Alagappa University, Karaikudi 630004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi 630004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi 630004 (India); Gopalakrishnan, R. [Department of Physics, Anna University, Chennai 600025 (India)

    2015-10-30

    Graphical abstract: - Highlights: • MnS films with diverse morphological features were prepared without any complexing agent. • The change in morphology of MnS films may be due to the “oriented aggregation”. • The dual role (as sulfur source and structure directing agent) of thiourea was observed. • Sulfur source concentration induced enhancement in the crystallization of films. - Abstract: In the present investigation, we have prepared the spherical particles, almond-like, and cauliflower-like morphological structures of metastable MnS films on glass substrate by chemical bath deposition technique at low temperature without using any complexing or chelating agent. The morphological change of MnS films with molar ratio may be due to the oriented aggregation of adjacent particles. The compositional purity of deposited film was confirmed by the EDAX study. X-ray diffraction and micro-Raman studies confirm the sulfur source concentration induced enhancement in the crystallization of films with metastable MnS phase (zinc-blende β-MnS, and wurtzite γ-MnS). The shift in PL emission peak with molar ratio may be due to the change in optical energy band gap of the MnS, which was further confirmed by the optical absorbance study. The paramagnetic behavior of the sample was confirmed by the M–H plot.

  9. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques

    KAUST Repository

    Shi, Yumeng

    2014-10-20

    In recent years there have been many breakthroughs in two-dimensional (2D) nanomaterials, among which the transition metal dichalcogenides (TMDs) attract significant attention owing to their unusual properties associated with their strictly defined dimensionalities. TMD materials with a generalized formula of MX2, where M is a transition metal and X is a chalcogen, represent a diverse and largely untapped source of 2D systems. Semiconducting TMD monolayers such as MoS2, MoSe2, WSe2 and WS2 have been demonstrated to be feasible for future electronics and optoelectronics. The exotic electronic properties and high specific surface areas of 2D TMDs offer unlimited potential in various fields including sensing, catalysis, and energy storage applications. Very recently, the chemical vapour deposition technique (CVD) has shown great promise to generate high-quality TMD layers with a scalable size, controllable thickness and excellent electronic properties. Wafer-scale deposition of mono to few layer TMD films has been obtained. Despite the initial success in the CVD synthesis of TMDs, substantial research studies on extending the methodology open up a new way for substitution doping, formation of monolayer alloys and producing TMD stacking structures or superlattices. In this tutorial review, we will introduce the latest development of the synthesis of monolayer TMDs by CVD approaches.

  10. Properties of antimony doped ZnO thin films deposited by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Sadananda Kumar, N., E-mail: sadanthara@gmail.com; Bangera, Kasturi V.; Shivakumar, G. K. [National Institute of Technology Karnataka, Surathkal, Thin Films Laboratory, Department of Physics (India)

    2015-07-15

    Antimony (Sb) doped zinc oxide (ZnO) thin films were deposited on the glass substrate at 450°C using spray pyrolysis technique. Effect of Sb doping on surface morphology structural, optical and electrical properties were studied. X-ray diffraction (XRD) analysis showed that both the undoped and doped ZnO thin films are polycrystalline in nature with (101) preferred orientation. SEM analysis showed a change in surface morphology of Sb doped ZnO thin films. Doping results in a marked increase in conductivity without affecting the transmittance of the films. ZnO films prepared with 3 at % Sb shows the lowest resistivity of 0.185 Ohm cm with a Hall mobility of 54.05 cm{sup 2} V{sup –1} s{sup –1}, and a hole concentration of 6.25 × 10{sup 17} cm{sup –3}.

  11. Geophysical techniques for reconnaissance investigations of soils and surficial deposits in mountainous terrain

    Science.gov (United States)

    Olson, C.G.; Doolittle, J.A.

    1985-01-01

    Two techniques were assessed for their capabilities in reconnaissance studies of soil characteristics: depth to the water table and depth to bedrock beneath surficial deposits in mountainous terrain. Ground-penetrating radar had the best near-surface resolution in the upper 2 m of the profile and provided continuous interpretable imagery of soil profiles and bedrock surfaces. Where thick colluvium blankets side slopes, the GPR could not consistently define the bedrock interface. In areas with clayey or shaley sediments, the GPR is also more limited in defining depth and is less reliable. Seismic refraction proved useful in determining the elevation of the water table and depth to bedrock, regardless of thickness of overlying material, but could not distinguish soil-profile characteristics.-from Authors

  12. Zn Thin Film Deposition for Fe Layer Shielding Use the Sputtering Technique on Cylindrical Form

    International Nuclear Information System (INIS)

    Yunanto; Tjipto Sujitno, BA; Suprapto; Simbolon, Sahat

    2002-01-01

    Deposition of thin film on Fe substrate use sputtering technique on cylindrical form was carried out. The purpose of this research is to protect Fe due to the corrosion with Zn thin film. Sputtering method was proposed to protect a component of complex form. Substrate has functioned as anode, meanwhile target in cylindrical form as a cathode. Argon ion from anode bombard Zn with enough energy for releasing Zn. Zn atom would scatter and some of then was focused on the anode. For testing Zn atom on Fe by using XRF and corrosion rate with potentiostat. It was found that corrosion rate was decreased from 0.051 mpy to 0.031 mpy on 0.63 % of Fe substrate. (author)

  13. Amorphous indium gallium zinc oxide thin film grown by pulse laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, Bhaumik V., E-mail: bhaumik-phy@yahoo.co.in; Joshi, U. S. [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad-380 009 (India)

    2016-05-23

    Highly electrically conducting and transparent in visible light IGZO thin film were grown on glass substrate at substrate temperature of 400 C by a pulse laser deposition techniques. Structural, surface, electrical, and optical properties of IGZO thin films were investigated at room temperature. Smooth surface morphology and amorphous nature of the film has been confirmed from the AFM and GIXRD analysis. A resistivity down to 7.7×10{sup −3} V cm was reproducibly obtained while maintaining optical transmission exceeding 70% at wavelengths from 340 to 780 nm. The carrier densities of the film was obtain to the value 1.9×10{sup 18} cm{sup 3}, while the Hall mobility of the IGZO thin film was 16 cm{sup 2} V{sup −1}S{sup −1}.

  14. Diameter Tuning of β-Ga2O3 Nanowires Using Chemical Vapor Deposition Technique.

    Science.gov (United States)

    Kumar, Mukesh; Kumar, Vikram; Singh, R

    2017-12-01

    Diameter tuning of [Formula: see text]-Ga 2 O 3 nanowires using chemical vapor deposition technique have been investigated under various experimental conditions. Diameter of root grown [Formula: see text]-Ga 2 O 3 nanowires having monoclinic crystal structure is tuned by varying separation distance between metal source and substrate. Effect of gas flow rate and mixer ratio on the morphology and diameter of nanowires has been studied. Nanowire diameter depends on growth temperature, and it is independent of catalyst nanoparticle size at higher growth temperature (850-900 °C) as compared to lower growth temperature (800 °C). These nanowires show changes in structural strain value with change in diameter. Band-gap of nanowires increases with decrease in the diameter.

  15. Development of Functional Thin Polymer Films Using a Layer-by-Layer Deposition Technique.

    Science.gov (United States)

    Yoshida, Kentaro

    2017-01-01

    Functional thin films containing insulin were prepared using layer-by-layer (LbL) deposition of insulin and negatively- or positively-charged polymers on the surface of solid substrates. LbL films composed of insulin and negatively-charged polymers such as poly(acrylic acid) (PAA), poly(vinylsulfate) (PVS), and dextran sulfate (DS) were prepared through electrostatic affinity between the materials. The insulin/PAA, insulin/PVS, and insulin/DS films were stable in acidic solutions, whereas they decomposed under physiological conditions as a result of a change in the net electric charge of insulin from positive to negative. Interestingly, the insulin-containing LbL films were stable even in the presence of a digestive-enzyme (pepcin) at pH 1.4 (stomach pH). In contrast, LbL films consisting of insulin and positively-charged polymers such as poly(allylamine hydrochloride) (PAH) decomposed in acidic solutions due to the positive charges of insulin generated in acidic media. The insulin-containing LbL films can be prepared not only on the surface of flat substrates, such as quartz slides, but also on the surface of microparticles, such as poly(lactic acid) (PLA) microbeads. Thus, insulin-containing LbL film-coated PLA microbeads can be handled as a powder. In addition, insulin-containing microcapsules were prepared by coating LbL films on the surface of insulin-doped calcium carbonate (CaCO 3 ) microparticles, followed by dissolution of the CaCO 3 core. The release of insulin from the microcapsules was accelerated at pH 7.4, whereas it was suppressed in acidic solutions. These results suggest the potential use of insulin-containing microcapsules in the development of oral formulations of insulin.

  16. Physical and Chemical Characterization of Fat and Oil Deposits in Mashhad City Sewer Lines and the Solutions Developed

    Directory of Open Access Journals (Sweden)

    Mahdi kamali

    2017-01-01

    Full Text Available Formation of oil, fat, and grease deposits in sewer pipelines is a major concern as they result in sewage overflow and pose health problems. Analysis of two sample deposits collected from the sewer lines of Imam Reza Street in the city of Mashhad suggested that the chemical reactions promoted by edible oils in the sewer lines lead to the formation of insoluble soap and deposits. Being sticky, the deposits accumulate over time to eventually block the lines. The analysis also showed that the moisture content of the samples ranged between 50‒62%, indicating that water does not play a main role in their formation. The samples were also found to contain 61.78% and 84.35% saturated fatty acids, with palmitic acid being the dominant one. Calcium was the main metal in the samples, which is due to both water hardness and corrosion of the sewer lines. Based on the results obtained, the origin of these deposits, and the relevant protocols for the management of oil and fat wastes, solutions were proposed to prevent deposit formation and sewer line clogging that suit the special cultural and environmental conditions of the city. These proposals are under consideration for implementation in the region.

  17. Experimental investigation of ash deposits characteristics of co-combustion of coal and rice hull using a digital image technique

    International Nuclear Information System (INIS)

    Qiu, Kunzan; Zhang, Hailong; Zhou, Hao; Zhou, Bin; Li, Letian; Cen, Kefa

    2014-01-01

    This paper investigated the ash deposit characteristics during the co-firing Da Tong (DA) coal with different proportions of rice hull (0%, 5%, 10%, and 20%, based on weight) in a pilot-scale furnace. The growth of ash deposit with a four-stage mode was presented. The stable thickness values of DA coal, 5% rice hull, 10% rice hull, and 20% rice hull were 0.5, 1.4, 2.9, 5.7 cm, with stable heat flux values of 230, 200, 175, and 125 kW/m 2 , respectively. According to the results of scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), the amount of Si in the deposits increased with the increasing proportion of rice hull rich in SiO 2 . The X-ray diffraction (XRD) analysis results indicated that most elements except Si were in the amorphous state because of the formation of eutectics. The stable thicknesses of deposits increased exponentially with the proportion of rice hull. The deposit was loose, easy removable but it reduced the heat transfer significantly. Consequently, sootblowing timely was necessary when co-firing DA coal with rice hull. - Highlights: • Digital image technique was used to monitor deposits growth process. • A type of four stages mode of ash deposit growth was presented. • The heat flux of ash deposits fit a three-stage mode. • The addition of rice hull increased the porosity of deposits

  18. Tungsten oxide coatings deposited by plasma spray using powder and solution precursor for detection of nitrogen dioxide gas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangc@yzu.edu.cn [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Wang, Jie [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Geng, Xin [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China)

    2016-05-25

    Increasing attention has been paid on preparation methods for resistive-type gas sensors based on semiconductor metal oxides. In this work, tungsten oxide (WO{sub 3}) coatings were prepared on alumina substrates and used as gas sensitive layers. The coatings were deposited by atmospheric plasma spray using powder, solution precursor, or a combination of both. Tungsten oxide powder through a powder port and ammonium tungstate aqueous solution through a liquid port were injected into plasma stream respectively or together to deposit WO{sub 3} coatings. Phase structures in the coatings were characterized by X-ray diffraction analyzer. The field-emission scanning electron microscopy images confirmed that the coatings were in microstructure, nanostructure or micro-nanostructure. The sensing properties of the sensors based on the coatings exposed to 1 ppm nitrogen dioxide gas were characterized in a home-made instrument. Sensing properties of the coatings were compared and discussed. The influences of gas humidity and working temperature on the sensor responses were further studied. - Highlights: • Porous gas sensitive coatings were deposited by plasma spray using powder and solution precursor. • Crystallized WO{sub 3} were obtained through hybrid plasma spray plus a pre-conditioned step. • Plasma power had an important influence on coating microstructure. • The particle size of atmospheric plasma-sprayed microstructured coating was stable. • Solution precursor plasma-sprayed WO{sub 3} coatings had nanostructure and showed good responses to 1 ppm NO{sub 2}.

  19. Thin film composites in the BiFeO3–Bi4Ti3O12 system obtained by an aqueous solution-gel deposition methodology

    Directory of Open Access Journals (Sweden)

    Carlos Gumiel

    2018-01-01

    Full Text Available Thin film multiferroic composites, with a high quantity of interfaces between the different materials, represent a more feasible alternative to single phase systems in which the multifunctional response is usually hampered due to intrinsic physical constraints. Nowadays some of these composites can be produced by applying deposition techniques such as PLD, CVD, MBE or the like, which allow a high degree of crystallographic control. However, despite their effectiveness, all these techniques also involve a high consumption of energy in terms of temperature and/or vacuum. Within this frame, the present contribution proposes a sustainable chemical solution deposition process to prepare thin films of the multiferroic BiFeO3–Bi4Ti3O12 composite system. More specifically an aqueous solution-gel plus spin-coating methodology is employed which also avoids the organic solvents typically used in a conventional sol–gel method, so further keeping an eye on the environmentally friendly conditions. Attempts are conducted that demonstrate how by systematically controlling the processing parameters it is possible to obtain thin film composites with a promising 3-3 type connectivity at temperatures as low as 600 °C.

  20. Thin film composites in the BiFeO3–Bi4Ti3O12 system obtained by an aqueous solution-gel deposition methodology

    International Nuclear Information System (INIS)

    Gumiel, C.; Vranken, T.; Bernardo, M.S.; Jardiel, T.; Hardy, A.; Van Bael, M.K.; Peiteado, M.

    2018-01-01

    Thin film multiferroic composites, with a high quantity of interfaces between the different materials, represent a more feasible alternative to single phase systems in which the multifunctional response is usually hampered due to intrinsic physical constraints. Nowadays some of these composites can be produced by applying deposition techniques such as PLD, CVD, MBE or the like, which allow a high degree of crystallographic control. However, despite their effectiveness, all these techniques also involve a high consumption of energy in terms of temperature and/or vacuum. Within this frame, the present contribution proposes a sustainable chemical solution deposition process to prepare thin films of the multiferroic BiFeO3–Bi4Ti3O12 composite system. More specifically an aqueous solution-gel plus spin-coating methodology is employed which also avoids the organic solvents typically used in a conventional sol–gel method, so further keeping an eye on the environmentally friendly conditions. Attempts are conducted that demonstrate how by systematically controlling the processing parameters it is possible to obtain thin film composites with a promising 3-3 type connectivity at temperatures as low as 600°C. [es

  1. Development of One Meter Long Double-Sided CeO2 Buffered Ni-5at.%W Templates by Reel-to-Reel Chemical Solution Deposition Route

    DEFF Research Database (Denmark)

    Yue, Zhao; Konstantopoulou, K.; Wulff, Anders Christian

    2013-01-01

    High performance long-length coated conductors fabricated using various techniques have attracted a lot of interest recently. In this work, a reel-to-reel design for depositing double-sided coatings on long-length flexible metallic tapes via a chemical solution method is proposed and realized...... layer are 7.2◦ and 5.8◦ with standard deviation of 0.26◦ and 0.34◦, respectively, being indicative of the high quality epitaxial growth of the films prepared in the continuous manner. An all chemical solution derived YBCOLow−TFA/Ce0.9La0.1O2/Gd2Zr2O7/CeO2 structure is obtained on a short sample...

  2. A comparison of biological effect and spray liquid distribution and deposition for different spray application techniques in different crops

    OpenAIRE

    Larsolle, Anders; Wretblad, Per; Westberg, Carl

    2002-01-01

    The objective of this study was to compare a selection of spray application techniques with different application volumes, with respect to the spray liquid distribution on flat surfaces, the deposition in fully developed crops and the biological effect. The spray application techniques in this study were conventional spray technique with three different nozzles: Teelet XR, Lechler ID and Lurmark DriftBeta, and also AirTec, Danfoil, Hardi Twin, Kyndestoit and Släpduk. The dynamic spray liquid ...

  3. Techniques for the research on mass deposition effects in the bio-materials induced by heavy ion implantation

    International Nuclear Information System (INIS)

    Yuan Shibin; Wei Zengquan; Li Qiang

    2002-01-01

    Researchers have used heavy ion beams to implant small biomolecules, followed by advanced instrumental analysis to make preliminary studies on mass deposition induced by ion implantation. But research reports on the biological effects, i.e. mass deposition effects induced by mass deposition in living tissues, cells and macro-biomolecules have not been delivered hitherto. In the near future radioactive heavy ion beams will be possible to implant living cells and biomolecules, and auto-radiography, radioactive measurements and molecular biological techniques will be employed to further studies on the effects

  4. Analyzing the LiF thin films deposited at different substrate temperatures using multifractal technique

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, R.P. [Department of Physics, University of Allahabad, Allahabad, UP 211002 (India); Dwivedi, S., E-mail: suneetdwivedi@gmail.com [K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Mittal, A.K. [Department of Physics, University of Allahabad, Allahabad, UP 211002 (India); K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Kumar, Manvendra [Nanotechnology Application Centre, University of Allahabad, Allahabad, UP 211002 (India); Pandey, A.C. [K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Nanotechnology Application Centre, University of Allahabad, Allahabad, UP 211002 (India)

    2014-07-01

    The Atomic Force Microscopy technique is used to characterize the surface morphology of LiF thin films deposited at substrate temperatures 77 K, 300 K and 500 K, respectively. It is found that the surface roughness of thin film increases with substrate temperature. The multifractal nature of the LiF thin film at each substrate temperature is investigated using the backward two-dimensional multifractal detrended moving average analysis. The strength of multifractility and the non-uniformity of the height probabilities of the thin films increase as the substrate temperature increases. Both the width of the multifractal spectrum and the difference of fractal dimensions of the thin films increase sharply as the temperature reaches 500 K, indicating that the multifractility of the thin films becomes more pronounced at the higher substrate temperatures with greater cluster size. - Highlights: • Analyzing LiF thin films using multifractal detrended moving average technique • Surface roughness of LiF thin film increases with substrate temperature. • LiF thin films at each substrate temperature exhibit multifractality. • Multifractility becomes more pronounced at the higher substrate temperatures.

  5. Heavy Metals and Trace Elements Atmospheric Deposition Studies in Tula Region Using Moss Biomonitors Technique

    CERN Document Server

    Ermakova, E V; Steinnes, E

    2002-01-01

    For the first time the moss biomonitors technique was used in air pollution studies in Tula Region (Central Russia), applying NAA, AAS. Moss samples were collected at 83 sites in accordance with the sampling strategy adopted in European projects on biomonitoring atmospheric deposition. A wide set of trace elements in mosses was determined. The method of epithermal neutron activation at IBR-2 reactor of FLNP JINR has made it possible to identify 33 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Br, Rb, Sr, Mo, Sb, I, Cs, Ba, La, Ce, Sm, Tb, Yb, Hf, Ta, W, Th, U) in the large-scale concentration range - from 10000 ppm for K to 0,001 ppm for Tb and Ta. Cu, Cd and Pb were determined by the flame AAS in the Norwegian Institute of Science and Technology. Using the graphical technique and principal component analysis allowed to separate plant, crustal and general pollution components in the moss. The obtained data will be used for constructing coloured maps of the distribution of elements over t...

  6. Plasma processing techniques for deposition of carbonic thin protective coatings on structural nuclear materials

    International Nuclear Information System (INIS)

    Andrei, V.; Oncioiu, G.; Coaca, E.; Rusu, O.; Lungu, C.

    2009-01-01

    Full text of publication follows: The production of nano-structured surface films with controlled properties is crucial for the development of materials necessary for the Advanced Systems for Nuclear Energy. Since the surface of materials is the zone through which materials interact with the environment, the surface science and surface engineering techniques plays an essential role in the understanding and control of the processes involved. Complex surface structures were developed on stainless steels used as structural nuclear materials: austenitic stainless steels based on Fe, austenitic steels with high content of Cr, ferrites resistant to corrosion, by various Plasma Processing methods which include: - Plasma Electrolytic (PE) treatments: the steel substrates were modified by nitriding and nitro-carburizing plasma diffusion treatments; - carbonic films deposition in Thermionic Vacuum Arc Plasma. The results of the characterization of surface structures obtained in various experimental conditions for improvement of the properties (corrosion resistance, hardness, wear properties) are reported: the processes and structures were characterized by correlation of the results of the complementary techniques: XPS, 'depth profiling', SEM, XRD, EIS. An overall description of the processes involved in the surface properties improvement, and some consideration about the new materials development for energy technologies are presented

  7. A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals.

    Science.gov (United States)

    Asri, R I M; Harun, W S W; Hassan, M A; Ghani, S A C; Buyong, Z

    2016-04-01

    New promising techniques for depositing biocompatible hydroxyapatite-based coatings on biocompatible metal substrates for biomedical applications have continuously been exploited for more than two decades. Currently, various experimental deposition processes have been employed. In this review, the two most frequently used deposition processes will be discussed: a sol-gel dip coating and an electrochemical deposition. This study deliberates the surface morphologies and chemical composition, mechanical performance and biological responses of sol-gel dip coating as well as the electrochemical deposition for two different sample conditions, with and without coating. The review shows that sol-gel dip coatings and electrochemical deposition were able to obtain the uniform and homogeneous coating thickness and high adherent biocompatible coatings even in complex shapes. It has been accepted that both coating techniques improve bone strength and initial osseointegration rate. The main advantages and limitations of those techniques of hydroxyapatite-based coatings are presented. Furthermore, the most significant challenges and critical issues are also highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment

    KAUST Repository

    Nayak, Pradipta K.

    2012-05-16

    Solution-deposited amorphous indium gallium zinc oxide (a-IGZO) thin film transistors(TFTs) with high performance were fabricated using O2-plasma treatment of the films prior to high temperature annealing. The O2-plasma treatment resulted in a decrease in oxygen vacancy and residual hydrocarbon concentration in the a-IGZO films, as well as an improvement in the dielectric/channel interfacial roughness. As a result, the TFTs with O2-plasma treated a-IGZO channel layers showed three times higher linear field-effect mobility compared to the untreated a-IGZO over a range of processing temperatures. The O2-plasma treatment effectively reduces the required processing temperature of solution-deposited a-IGZO films to achieve the required performance.

  9. A numerical technique for enhanced efficiency and stability for the solution of the nuclear reactor equation

    International Nuclear Information System (INIS)

    Khotylev, V.A.; Hoogenboom, J.E.

    1996-01-01

    The paper presents new techniques for the solution of the nuclear reactor equation in diffusion approximation, that has enhanced efficiency and stability. The code system based on the new technique solves a number of steady-state and/or transient problems with coupled thermal hydraulics in one-, two-, or three dimensional geometry with reduced CPU time as compared to similar code systems of previous generations if well-posed neutronics problems are considered. Automated detection of ill-posed problem and selection of the appropriate numerical method makes the new code system capable of yielding a correct solution for wider range of problems without user intervention. (author)

  10. A numerical technique for enhanced efficiency and stability for the solution of the nuclear reactor equation

    Energy Technology Data Exchange (ETDEWEB)

    Khotylev, V.A.; Hoogenboom, J.E. [Delft Univ. of Technology, Interfaculty Reactor Inst., Delft (Netherlands)

    1996-07-01

    The paper presents new techniques for the solution of the nuclear reactor equation in diffusion approximation, that has enhanced efficiency and stability. The code system based on the new technique solves a number of steady-state and/or transient problems with coupled thermal hydraulics in one-, two-, or three dimensional geometry with reduced CPU time as compared to similar code systems of previous generations if well-posed neutronics problems are considered. Automated detection of ill-posed problem and selection of the appropriate numerical method makes the new code system capable of yielding a correct solution for wider range of problems without user intervention. (author)

  11. Structural and magnetic properties of nickel nanowires grown in porous anodic aluminium oxide template by electrochemical deposition technique

    Science.gov (United States)

    Nugraha Pratama, Sendi; Kurniawan, Yudhi; Muhammady, Shibghatullah; Takase, Kouichi; Darma, Yudi

    2018-03-01

    We study the formation of nickel nanowires (Ni NWs) grown in porous anodic aluminium oxide (AAO) template by the electrochemical deposition technique. Here, the initial AAO template was grown by anodization of aluminium substrate in sulphuric acid solution. The cross-section, crystal structure, and magnetic properties of Ni NWs system were characterized by field-emission SEM, XRD, and SQUID. As a result, the highly-ordered Ni NWs are observed with the uniform diameter of 27 nm and the length from 31 to 163 nm. Based on XRD spectra analysis, Ni NWs have the face-centered cubic structure with the lattice parameter of 0.35 nm and average crystallite size of 17.19 nm. From SQUID measurement at room temperature, by maintaining the magnetic field perpendicular to Ni NWs axis, the magnetic hysteresis of Ni NWs system show the strong ferromagnetism with the coercivity and remanence ratio of ∼148 Oe and ∼0.23, respectively. The magnetic properties are also calculated by means of generalized gradient approximation methods. From the calculation result, we show that the ferromagnetism behavior comes from Ni NWs without any contribution from AAO template or the substrate. This study opens the potential application of Ni NWs system for novel functional magnetic devices.

  12. Manufacture of Bi-cuprate thin films on MgO single crystal substrates by chemical solution deposition

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Bertelsen, Christian Vinther; Andersen, Niels Hessel

    2014-01-01

    Bi2Sr2CaCu2O8 thin films have been deposited on MgO single crystal substrates by spin-coating a solution based on 2-ethylhexanoate precursors dissolved in xylene. Pyrolysis takes place between 200°C and 450°C and is accompanied by the release of 2-ethylhexanoic acid, CO2 and H2O vapour. Highly c...

  13. Optimal properties for coated titanium implants with the hydroxyapatite layer formed by the pulsed laser deposition technique

    Science.gov (United States)

    Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.

    1999-02-01

    Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.

  14. Prototyping of radially oriented piezoelectric ceramic-polymer tube composites using fused deposition and lost mold processing techniques

    Science.gov (United States)

    McNulty, Thomas Francis

    Piezoelectric tube composite hydrophones of 3-1, 3-2, and 2-2 connectivity were developed using Fused Deposition (FD) and lost mold processing (LMP). In this work, a new series of thermoplastic binder formulations, named the ECG series, were developed for the FD process. The ECG-9 formulation exhibits mechanical, thermal, and rheological properties suitable for the Fused Deposition of functional lead zirconate titanate ceramic devices. This binder consists of 100 parts (by weight) Vestoplast 408, 20 parts Escorez 2520, 15 parts Vestowax A-227, and 5 parts Indopol H-1500. Oleic acid, oleyl alcohol, stearic acid, and stearyl alcohol (in toluene) were tested for use as a dispersant in the PZT/ECG-9 system. It was found that stearic acid adsorbs the most onto PZT powder, adsorbing 8.1 mg/m2. Using stearic acid, solutions of increasing concentration (5.0--50.0 g/l) were measured for adsorption. It was found that 30.0 g/l is the minimum concentration necessary for optimum surface coverage. The surfactant-coated powder was compounded with ECG-9 binder to create a 54 vol.% mix. The mix was extruded using a single screw extrusion apparatus into continuous lengths (>30 m) of 1.78 mm diameter filament. Fused Deposition was used to create composite designs of 3-1, 3-2, and 2-2 connectivity. After sintering, samples exhibit a sintered density greater than 97%. Sanders Prototyping (SPI) was used to manufacture molds for use with LMP techniques. Molds of 3-1, 3-2, and 2-2 connectivity were developed. The molds were infiltrated with a 55 vol.% aqueous based PZT slurry. The parts were subjected to a binder decomposition cycle, followed by sintering. Resultant samples were highly variable due to random macro-pores present in the samples after sintering. The resultant preforms were embedded in epoxy, and polished to dimensions of 8.0 mm inside diameter (ID), 14.0 mm outside diameter (OD), and 10.0 mm length (l) the OD and l dimensions are accurate to +/--2%, while the ID is accurate

  15. Laboratory model study of newly deposited dredger fills using improved multiple-vacuum preloading technique

    Directory of Open Access Journals (Sweden)

    Jingjin Liu

    2017-10-01

    Full Text Available Problems continue to be encountered concerning the traditional vacuum preloading method in field during the treatment of newly deposited dredger fills. In this paper, an improved multiple-vacuum preloading method was developed to consolidate newly dredger fills that are hydraulically placed in seawater for land reclamation in Lingang Industrial Zone of Tianjin City, China. With this multiple-vacuum preloading method, the newly deposited dredger fills could be treated effectively by adopting a novel moisture separator and a rapid improvement technique without sand cushion. A series of model tests was conducted in the laboratory for comparing the results from the multiple-vacuum preloading method and the traditional one. Ten piezometers and settlement plates were installed to measure the variations in excess pore water pressures and moisture content, and vane shear strength was measured at different positions. The testing results indicate that water discharge–time curves obtained by the traditional vacuum preloading method can be divided into three phases: rapid growth phase, slow growth phase, and steady phase. According to the process of fluid flow concentrated along tiny ripples and building of larger channels inside soils during the whole vacuum loading process, the fluctuations of pore water pressure during each loading step are divided into three phases: steady phase, rapid dissipation phase, and slow dissipation phase. An optimal loading pattern which could have a best treatment effect was proposed for calculating the water discharge and pore water pressure of soil using the improved multiple-vacuum preloading method. For the newly deposited dredger fills at Lingang Industrial Zone of Tianjin City, the best loading step was 20 kPa and the loading of 40–50 kPa produced the highest drainage consolidation. The measured moisture content and vane shear strength were discussed in terms of the effect of reinforcement, both of which indicate

  16. A decade of monitoring at Swiss Long-Term Forest Ecosystem Research (LWF) sites: can we observe trends in atmospheric acid deposition and in soil solution acidity?

    Science.gov (United States)

    Pannatier, Elisabeth Graf; Thimonier, Anne; Schmitt, Maria; Walthert, Lorenz; Waldner, Peter

    2011-03-01

    Trends in atmospheric acid deposition and in soil solution acidity from 1995 or later until 2007 were investigated at several forest sites throughout Switzerland to assess the effects of air pollution abatements on deposition and the response of the soil solution chemistry. Deposition of the major elements was estimated from throughfall and bulk deposition measurements at nine sites of the Swiss Long-Term Forest Ecosystem Research network (LWF) since 1995 or later. Soil solution was measured at seven plots at four soil depths since 1998 or later. Trends in the molar ratio of base cations to aluminum (BC/Al) in soil solutions and in concentrations and fluxes of inorganic N (NO(3)-N + NH(4)-N), sulfate (SO(4)-S), and base cations (BC) were used to detect changes in soil solution chemistry. Acid deposition significantly decreased at three out of the nine study sites due to a decrease in total N deposition. Total SO(4)-S deposition decreased at the nine sites, but due to the relatively low amount of SO(4)-S load compared to N deposition, it did not contribute to decrease acid deposition significantly. No trend in total BC deposition was detected. In the soil solution, no trend in concentrations and fluxes of BC, SO(4)-S, and inorganic N were found at most soil depths at five out of the seven sites. This suggests that the soil solution reacted very little to the changes in atmospheric deposition. A stronger reduction in base cations compared to aluminum was detected at two sites, which might indicate that acidification of the soil solution was proceeding faster at these sites.

  17. Iron Oxide Deposition from Aqueous Solution and Iron Formations on Mars

    Science.gov (United States)

    Catling, David; Moore, Jeff

    2000-01-01

    Iron formations are ancient, laminated chemical sediments containing at least 15 wt% Fe. We discuss possible mechanisms for their formation in aqueous environments on early Mars. Such iron oxide deposits may be detectable today.

  18. Modelling the response of soil and soil solution chemistry upon roofing a forest in an area with high nitrogen deposition

    Directory of Open Access Journals (Sweden)

    C. van der Salm

    1998-01-01

    Full Text Available In the Speuld forest, the Netherlands, the dynamic soil acidification model NuCSAM has been applied to a manipulation experiment in which part of the forest was roofed to control nitrogen (N and sulphur (S deposition. The roofed area was divided into two subplots watered artificially; one received ambient N and S deposition and one with pristine N and S deposition. Concentration measurements on each plots showed a high (time-dependent spatial variability. Statistical analyses of the concentrations on both subplots showed small but significant effects of the reduction in deposition on nitrate (NO3 sulphate (SO4 and aluminum (Al concentrations. The statistical significance of the effects was minimised by the large spatial variability within the plots. Despite these shortcomings, simulated concentrations were generally within the 95% confidence interval of the measurements although the effect of a reduction in N deposition on soil solution chemistry was underestimated due to a marked decline in N-uptake by the vegetation.

  19. Structure and Properties of Diamond-Like Carbon Films Deposited by PACVD Technique on Light Alloys

    Directory of Open Access Journals (Sweden)

    Tański T.

    2016-09-01

    Full Text Available The investigations presented in this paper describe surface treatment performed on samples of heat-treated cast magnesium and aluminium alloy. The structure and chemical composition as well as the functional and mechanical properties of the obtained gradient/monolithic films were analysed by high resolution transmission electron microscopy and scanning electron microscopy, Raman spectroscopy, the ball-on-disk tribotester and scratch testing. Moreover, investigation of the electrochemical corrosion behaviour of the samples was carried out by means of potentiodynamic polarisation curves in 1-M NaCl solution. The coatings produced by chemical vapour deposition did not reveal any delamination or defects and they adhere closely to the substrate. The coating thickness was in a range of up to 2.5 microns. Investigations using Raman spectra of the DLC films confirmed a multiphase character of the diamond-like carbon layer, revealing the sp2 and sp3 electron hybridisation responsible for both the hardness and the friction coefficient. The best wear resistance test results were obtained for the magnesium alloy substrate - AZ61, for which the measured value of the friction path length was equal to 630 m.

  20. Summary and presentation of the international workshop on beam induced energy deposition (issues, concerns, solutions)

    International Nuclear Information System (INIS)

    Soundranayagam, R.

    1991-11-01

    This report discusses: energy deposition and radiation shielding in antriproton source at FNAL; radiation issues/problems at RHIC; radiation damage to polymers; radiation effects on optical fibre in the SSC tunnel; capabilities of the Brookhaven Radiation Effects Facility; the SSC interaction region; the FLUKA code system, modifications, recent extension and experimental verification; energy particle transport calculations and comparisons with experimental data; Los Alamos High Energy Transport code system; MCNP features and applications; intercomparison of Monte Carlo codes designed for simulation of high energy hadronic cascades; event generator, DTUJET-90 and DTUNUC; Preliminary hydrodynamic calculations of beam energy deposition; MESA code calculations of material response to explosive energy deposition; Smooth particle hydrodynamic; hydrodynamic effects and mass depletion phenomena in targets; beam dump: Beam sweeping and spoilers; Design considerations to mitigate effects of accidental beam dump; SSC beam abort and absorbed; beam abort system of SSC options; unconventional scheme for beam spoilers; low β quadrupoles: Energy deposition and radioactivation; beam induces energy deposition in the SSC components; extension of SSC-SR-1033 approach to radioactivation in LHC and SSC detectors; energy deposition in the SSC low-β IR-quads; beam losses and collimation in the LHC; and radiation shielding around scrapers

  1. A Effect discussion of transient electromagnetic sounding technique in paleochannel-type sandstone-hosted uranium deposit

    International Nuclear Information System (INIS)

    Yang Jianchun; Fang Genxian; Yang Yaxin

    2003-01-01

    On the base of the application of transient electromagnetic technique of paleochannel-type sandstone-hosted uranium deposits in Tengchong region of Yunan Province, this paper analyses the detect example. It discusses the theory foundation of TEM, fieldwork means, data processing and interpret. By contrast with routine electricity farad, the transient electromagnetic technique have the special merit and favorable space resolve gender under conditions of intricacy terrain. This means can get good effect in detecting paleochannel-type sandstone-hosted uranium deposits space position. It is a good reference for other prospecting and exploration work

  2. Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques

    International Nuclear Information System (INIS)

    Chaki, Sunil H.; Deshpande, M.P.; Tailor, Jiten P.

    2014-01-01

    CuS thin films were synthesized by chemical bath deposition and dip coating techniques at ambient temperature. The energy dispersive analysis of X-rays of the thin films confirmed that both the as synthesized thin films are stoichiometric. The X-ray diffraction of the chemical bath deposited and dip coating deposited thin films showed that the films possess hexagonal structure having lattice parameters, a = b = 3.79 A and c = 16.34 A. The crystallite sizes determined from the X-ray diffraction data using Scherrer's formula for the chemical bath deposition and dip coating deposition thin films came out to be nearly 11 nm and 13 nm, respectively. The optical microscopy of the as deposited thin films surfaces showed that the substrates are well covered in both the deposited films. The scanning electron microscopy of the thin films clearly showed that in chemical bath deposited thin films the grain size varies from few μm to nm, while in dip coating deposited films the grain size ranges in nm. The optical bandgap determined from the optical absorbance spectrum analysis showed, chemical bath deposited thin films possess direct bandgap of 2.2 eV and indirect bandgap of 1.8 eV. In the case of dip coating deposited thin films, the direct bandgap is 2.5 eV and indirect bandgap is 1.9 eV. The d.c. electrical resistivity variation with temperature for both the deposited films showed that the resistivity decreases with temperature thus confirming the semiconducting nature. The thermoelectric power variations with temperature and the room temperature Hall Effect study of both the synthesized CuS thin films showed them to be of p-type conductivity. The obtained results are discussed in details. - Highlights: • CuS thin films were synthesized by chemical bath deposition and dip coating techniques. • The films possessed hexagonal structure. • The optical absorption showed that the films had direct and indirect bandgap. • Study of electrical transport properties

  3. Investigation of Different Colloidal Porous Silicon Solutions and Their Composite Solid Matrix Rods by Optical Techniques

    Science.gov (United States)

    Khan, M. Naziruddin; Aldalbahi, Ali; Almohammedi, Abdullah

    2018-03-01

    Colloidal porous silicon (PSi) in different solvents was synthesized by simple chemical etching. Colloidal solutions were then prepared using different quantities of silicon wafer pieces (Pcs) and chloroplatinic (Pt) acid in catalyst solution. The effect on the properties of the colloidal solutions and composite rods were investigated using various optical characterization techniques. Absorption and photoluminescence (PL) intensity of the colloidal PSi solutions are observed to depend on the quantity of wafer Pcs, the Pt-solution, and the porosity formation on the wafer surface. The morphological structure of the PSi in a solvent and the solid-rod environments were studied using field-emission scanning electron microscopy (FE-SEM) and were observed to have different structures. A mono-oriented structure of PSi exists in tetrahydrofuran, which has stereo orientation in dioxane and dimethylsulfoxide (approximately 5-8 nm as confirmed using high resolution transmission electron microscopy). Subsequently, some colloidal PSi solutions were directly embedded in three types of sol-gel-based matrices, silica, ormosils (or organically modified silica) and polymer, which easily generated solid rods. Spontaneous emission (SE) of the PSi solutions and their composite rods were examined using a high power picosecond 355 nm laser source. The emitted PL and SE signals of the colloidal PSi solutions were dependent on the Pt volume, nature of the solvent, quantity of Si wafer piece, and pumping energy. The response of SE signals from the PSi composites rods is an interesting phenomenon, and such nanocomposites may be used for future research on light amplification.

  4. Investigation of defects in ultra-thin Al{sub 2}O{sub 3} films deposited on pure copper by the atomic layer deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Chang, M.L.; Wang, L.C. [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Lin, H.C., E-mail: hclinntu@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Chen, M.J., E-mail: mjchen@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Lin, K.M. [Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan (China)

    2015-12-30

    Graphical abstract: Some residual OH ligands originating from incomplete reaction between TMA and surface species of OH* during ALD process induce the defects in deposited Al{sub 2}O{sub 3} films. Three possible types of defects are suggested. The analytic results indicate the defects are Type-I and/or Type-II but do not directly expose the substrate, like pinholes (Type-III). - Highlights: • Oxidation trials were conducted to investigate the defects in ultra-thin Al{sub 2}O{sub 3} films deposited ALD technique on pure copper. • The residual OH ligands in the deposited Al{sub 2}O{sub 3} films induce looser micro-structure which has worse oxidation resistance. • Superficial contamination particles on substrate surface are confirmed to be one of nucleation sites of the defects. - Abstract: Al{sub 2}O{sub 3} films with various thicknesses were deposited by the atomic layer deposition (ALD) technique on pure copper at temperatures of 100–200 °C. Oxidation trials were conducted in air at 200 °C to investigate the defects in these films. The analytic results show that the defects have a looser micro-structure compared to their surroundings, but do not directly expose the substrate, like pinholes. The film's crystallinity, mechanical properties and oxidation resistance could also be affected by these defects. Superficial contamination particles on the substrate surface are confirmed to be nucleation sites of the defects. A model for the mechanism of defect formation is proposed in this study.

  5. Morphological and Structural Analysis of Nano-hydroxyapatite (n-hap) Coatings Electrodeposited on Titanium Substrate : Effect of Deposition Solution Concentration

    International Nuclear Information System (INIS)

    Nik Norziehana Che Isa; Norjanah Yury; Yusairie Mohd

    2011-01-01

    Various concentration of deposition solutions containing CaCl 2 and NH 4 H 2 PO 4 (with Ca/P ratio equal to 1.67) were used to study the effect of deposition solution concentration on the surface morphology and structure of Hydroxyapatite (HAp) coatings. Each HAp coating was deposited onto Ti substrate by applying a constant potential of 1.5 V (vs Ag/ AgCl) at 80 degree Celsius. The formation of HAp coatings was confirmed by FTIR and XRD analyses. Various morphologies consisting of HAp nanoparticles were produced from different deposition solutions as observed by SEM. The concentration of deposition solution has significantly affected the morphology of n-HAp coatings. (author)

  6. On an asymptotic technique of solution of the inverse problem of helioseismology

    International Nuclear Information System (INIS)

    Brodskij, M.A.; Vorontsov, S.V.

    1987-01-01

    The technique for the solution of the universe problem for the solar 5-min. oscillations is proposed, which provides an independent determination of the second speed as a function of depth in solar interior and the frequency dependence of the effective phase shift for the reflection of the trapped acoustic waves from the outer layers. The preliminary numerical results are presented

  7. The solution of linear and nonlinear systems of Volterra functional equations using Adomian-Pade technique

    International Nuclear Information System (INIS)

    Dehghan, Mehdi; Shakourifar, Mohammad; Hamidi, Asgar

    2009-01-01

    The purpose of this study is to implement Adomian-Pade (Modified Adomian-Pade) technique, which is a combination of Adomian decomposition method (Modified Adomian decomposition method) and Pade approximation, for solving linear and nonlinear systems of Volterra functional equations. The results obtained by using Adomian-Pade (Modified Adomian-Pade) technique, are compared to those obtained by using Adomian decomposition method (Modified Adomian decomposition method) alone. The numerical results, demonstrate that ADM-PADE (MADM-PADE) technique, gives the approximate solution with faster convergence rate and higher accuracy than using the standard ADM (MADM).

  8. Higher-order Solution of Stochastic Diffusion equation with Nonlinear Losses Using WHEP technique

    KAUST Repository

    El-Beltagy, Mohamed A.; Al-Mulla, Noah

    2014-01-01

    Using Wiener-Hermite expansion with perturbation (WHEP) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The Wiener-Hermite expansion is the only known expansion that handles the white/colored noise exactly. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In this poster, the WHEP technique is used to solve the 2D diffusion equation with nonlinear losses and excited with white noise. The solution will be obtained numerically and will be validated and compared with the analytical solution that can be obtained from any symbolic mathematics package such as Mathematica.

  9. Higher-order Solution of Stochastic Diffusion equation with Nonlinear Losses Using WHEP technique

    KAUST Repository

    El-Beltagy, Mohamed A.

    2014-01-06

    Using Wiener-Hermite expansion with perturbation (WHEP) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The Wiener-Hermite expansion is the only known expansion that handles the white/colored noise exactly. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In this poster, the WHEP technique is used to solve the 2D diffusion equation with nonlinear losses and excited with white noise. The solution will be obtained numerically and will be validated and compared with the analytical solution that can be obtained from any symbolic mathematics package such as Mathematica.

  10. Determination of the uranium concentration in soil solutions by the fission track registration technique

    International Nuclear Information System (INIS)

    Fernandes, G.P.

    1980-02-01

    The fission tracks registration technique was used to determine the uranium concentration in soil solutions. The Makrofol KG, a synthetic plastic manufactured by Bayer, was used as a detector and the wet method was applied. From the calibration curves obtained, it was possible to determine uranium concentrations in soil solutions, from 90 to 320 μg U/l, with an error between 9.4% and 4.0%, respectively. The method was applied to a few soil samples from Pocos de Caldas, Minas Gerais in Brazil. The uranium concentrations in the sample and residues were also determined by other methods to compare the results obtained; only one sample showed deviation from the results obtained by the fission tracks method. And this discrepancy was explained in a reasonable way. It was shown that the fission tracks technique can be used with sucess for application in soil solutions. (Author) [pt

  11. CdTe deposition by successive ionic layer adsorption and reaction (SILAR) technique onto ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Raul; Delamoreanu, Alexandru; Saidi, Bilel; Ivanova, Valentina [CEA, LETI, MINATEC Campus, 17 Rue des Martyrs, 38054, Grenoble (France); Levy-Clement, Claude [CNRS, Institut de Chimie et des Materiaux de Paris-Est, 94320, Thiais (France)

    2014-09-15

    In this study is reported CdTe deposition by Successive Ionic Layer Adsorption and reaction (SILAR) at room temperature onto ZnO nanowires (NWs). The as-deposited CdTe layer exhibits poor crystalline quality and not well defined optical transition which is probably result of its amorphous nature. The implementation of an annealing step and chemical treatment by CdCl{sub 2} to the classical SILAR technique improved significantly the CdTe film quality. The XRD analysis showed that the as treated layers are crystallized in the cubic zinc blende structure. The full coverage of ZnO nanowires and thickness of the CdTe shell, composed of small crystallites, was confirmed by STEM and TEM analysis. The layer thickness could be controlled by the number of SILAR cycles. The sharper optical transitions for the annealed and CdCl{sub 2} treated heterostructures additionally proves the enhancement of the layer crystalline quality. For comparison CdTe was also deposited by close space sublimation (CSS) method onto ZnO nanowires. It is shown that the SILAR deposited CdTe exhibits equal crystalline and optical properties to that prepared by CSS. These results demonstrate that SILAR technique is more suitable for conformal thin film deposition on nanostructures. CdTe extremely thin film deposited by SILAR method onto ZnO nanowire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. CdTe deposition by successive ionic layer adsorption and reaction (SILAR) technique onto ZnO nanowires

    International Nuclear Information System (INIS)

    Salazar, Raul; Delamoreanu, Alexandru; Saidi, Bilel; Ivanova, Valentina; Levy-Clement, Claude

    2014-01-01

    In this study is reported CdTe deposition by Successive Ionic Layer Adsorption and reaction (SILAR) at room temperature onto ZnO nanowires (NWs). The as-deposited CdTe layer exhibits poor crystalline quality and not well defined optical transition which is probably result of its amorphous nature. The implementation of an annealing step and chemical treatment by CdCl 2 to the classical SILAR technique improved significantly the CdTe film quality. The XRD analysis showed that the as treated layers are crystallized in the cubic zinc blende structure. The full coverage of ZnO nanowires and thickness of the CdTe shell, composed of small crystallites, was confirmed by STEM and TEM analysis. The layer thickness could be controlled by the number of SILAR cycles. The sharper optical transitions for the annealed and CdCl 2 treated heterostructures additionally proves the enhancement of the layer crystalline quality. For comparison CdTe was also deposited by close space sublimation (CSS) method onto ZnO nanowires. It is shown that the SILAR deposited CdTe exhibits equal crystalline and optical properties to that prepared by CSS. These results demonstrate that SILAR technique is more suitable for conformal thin film deposition on nanostructures. CdTe extremely thin film deposited by SILAR method onto ZnO nanowire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique

    International Nuclear Information System (INIS)

    Banerjee, A.N.; Ghosh, C.K.; Chattopadhyay, K.K.; Minoura, Hideki; Sarkar, Ajay K.; Akiba, Atsuya; Kamiya, Atsushi; Endo, Tamio

    2006-01-01

    The structural, optical and electrical properties of ZnO thin films (260 - 490 nm thick) deposited by direct-current sputtering technique, at a relatively low-substrate temperature (363 K), onto polyethylene terephthalate and glass substrates have been investigated. X-ray diffraction patterns confirm the proper phase formation of the material. Optical transmittance data show high transparency (80% to more than 98%) of the films in the visible portion of solar radiation. Slight variation in the transparency of the films is observed with a variation in the deposition time. Electrical characterizations show the room-temperature conductivity of the films deposited onto polyethylene terephthalate substrates for 4 and 5 h around 0.05 and 0.25 S cm -1 , respectively. On the other hand, for the films deposited on glass substrates, these values are 8.5 and 9.6 S cm -1 for similar variation in the deposition time. Room-temperature conductivity of the ZnO films deposited on glass substrates is at least two orders of magnitude higher than that of ZnO films deposited onto polyethylene terephthalate substrates under identical conditions. Hall-measurements show the maximum carrier concentration of the films on PET and glass substrate around 2.8 x 10 16 and 3.1 x 10 2 cm -3 , respectively. This report will provide newer applications of ZnO thin films in flexible display technology

  14. Magnetic properties of nickel nanowires decorated with cobalt nanoparticles fabricated by two step electrochemical deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Maaz, K., E-mail: maaz@impcas.ac.cn [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Nanomaterials Research Group, Physics Division, PINSTECH, Nilore, 45650, Islamabad (Pakistan); Duan, J.L. [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Karim, S. [Nanomaterials Research Group, Physics Division, PINSTECH, Nilore, 45650, Islamabad (Pakistan); Chen, Y.H.; Yao, H.J.; Mo, D.; Sun, Y.M. [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Liu, J., E-mail: j.liu@impcas.ac.cn [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)

    2016-10-01

    We demonstrate fabrication and magnetic characterization of novel nanostructures composed of Ni nanowires decorated with Co nanoparticles by two step etching and electrochemical deposition in polycarbonate template. Structural analysis confirmed the formation of nickel nanowires with diameter of 62 nm which are surrounded by cobalt nanoparticles of about 15 nm in diameter. By electron microscopy analyses it is evident that the nanoparticles are distributed on the surface of the nanowires. Analysis of magnetization data indicates that ferromagnetic Ni nanowires exhibit an easy axis of magnetization parallel to the wire long-axis while the angular dependence of coercivity indicates that magnetization reversal occurs through the curling process in these nanowires. An exchange bias accompanied by vertical shift in magnetization was observed below ∼20 K, measured under a cooling field of 1 kOe, which is attributed to the spin interactions between the spin-glass like surface layer and ferromagnetic core of the nanowires and nanoparticles. - Highlights: • Co-decorated Ni nanowires were fabricated by two-step electrodeposition technique. • The nanoparticles are distributed on the surface of nanowires. • Magnetization reversal occurs through the curling process in the nanowires. • Temperature dependent coercivity follows thermal activation model.

  15. Uniaxial Magnetization Performance of Textured Fe Nanowire Arrays Electrodeposited by a Pulsed Potential Deposition Technique

    Science.gov (United States)

    Neetzel, C.; Ohgai, T.; Yanai, T.; Nakano, M.; Fukunaga, H.

    2017-11-01

    Textured ferromagnetic Fe nanowire arrays were electrodeposited using a rectangular-pulsed potential deposition technique into anodized aluminum oxide nanochannels. During the electrodeposition of Fe nanowire arrays at a cathodic potential of - 1.2 V, the growth rate of the nanowires was ca. 200 nm s-1. The aspect ratio of Fe nanowires with a diameter of 30 ± 5 nm reached ca. 2000. The long axis of Fe nanowires corresponded with the direction when a large overpotential during the on-time pulse was applied, whereas it orientated to the direction under the potentiostatic condition with a small overpotential. By shifting the on-time cathode potential up to - 1.8 V, the texture coefficient for the (200) plane, TC200, reached up to 1.94. Perpendicular magnetization performance was observed in Fe nanowire arrays. With increasing TC200, the squareness of Fe nanowire arrays increased up to 0.95 with the coercivity maintained at 1.4 kOe at room temperature. This research result has opened a novel possibility of Fe nanowire arrays that can be applied for a new permanent magnetic material without rare-earth metals.

  16. Organo-layered double hydroxides composite thin films deposited by laser techniques

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Vlad, A., E-mail: angela.vlad@gmail.com [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Matei, A.; Dumitru, M.; Stokker-Cheregi, F.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Zavoianu, R. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest 030018 (Romania); Raditoiu, V.; Corobea, M.C. [National R.& D. Institute for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul Independentei Str., CP-35-274, 060021 Bucharest (Romania)

    2016-06-30

    Highlights: • PLD and MAPLE was successfully used to produce organo-layered double hydroxides. • The organic anions (dodecyl sulfate-DS) were intercalated in co-precipitation step. • Zn2.5Al-LDH (Zn/Al = 2.5) and Zn2.5Al-DS thin films obtained in this work could be suitable for further applications as hydrophobic surfaces. - Abstract: We used laser techniques to create hydrophobic thin films of layered double hydroxides (LDHs) and organo-modified LDHs. A LDH based on Zn-Al with Zn{sup 2+}/Al{sup 3+} ratio of 2.5 was used as host material, while dodecyl sulfate (DS), which is an organic surfactant, acted as guest material. Pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) were employed for the growth of the films. The organic anions were intercalated in co-precipitation step. The powders were subsequently used either as materials for MAPLE, or they were pressed and used as targets for PLD. The surface topography of the thin films was investigated by atomic force microscopy (AFM), the crystallographic structure of the powders and films was checked by X-ray diffraction. FTIR spectroscopy was used to evidence DS interlayer intercalation, both for powders and the derived films. Contact angle measurements were performed in order to establish the wettability properties of the as-prepared thin films, in view of functionalization applications as hydrophobic surfaces, owing to the effect of DS intercalation.

  17. Improved Understanding of Implosion Symmetry through New Experimental Techniques Connecting Hohlraum Dynamics with Laser Beam Deposition

    Science.gov (United States)

    Ralph, Joseph; Salmonson, Jay; Dewald, Eduard; Bachmann, Benjamin; Edwards, John; Graziani, Frank; Hurricane, Omar; Landen, Otto; Ma, Tammy; Masse, Laurent; MacLaren, Stephen; Meezan, Nathan; Moody, John; Parrilla, Nicholas; Pino, Jesse; Sacks, Ryan; Tipton, Robert

    2017-10-01

    Understanding what affects implosion symmetry has been a challenge for scientists designing indirect drive inertial confinement fusion experiments on the National Ignition Facility (NIF). New experimental techniques and data analysis have been employed aimed at improving our understanding of the relationship between hohlraum dynamics and implosion symmetry. Thin wall imaging data allows for time-resolved imaging of 10 keV Au l-band x-rays providing for the first time on the NIF, a spatially resolved measurement of laser deposition with time. In the work described here, we combine measurements from the thin wall imaging with time resolved views of the interior of the hohlraum. The measurements presented are compared to hydrodynamic simulations as well as simplified physics models. The goal of this work is to form a physical picture that better explains the relationship of the hohlraum dynamics and capsule ablator on laser beam propagation and implosion symmetry. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  18. Al2O3 Coatings on Magnesium Alloy Deposited by the Fluidized Bed (FB Technique

    Directory of Open Access Journals (Sweden)

    Gabriele Baiocco

    2018-01-01

    Full Text Available Magnesium alloys are widely employed in several industrial domains for their outstanding properties. They have a high strength-weight ratio, with a density that is lower than aluminum (33% less, and feature good thermal properties, dimensional stability, and damping characteristics. However, they are vulnerable to oxidation and erosion-corrosion phenomena when applied in harsh service conditions. To avoid the degradation of magnesium, several coating methods have been presented in the literature; however, all of them deal with drawbacks that limit their application in an industrial environment, such as environmental pollution, toxicity of the coating materials, and high cost of the necessary machinery. In this work, a plating of Al2O3 film on a magnesium alloy realized by the fluidized bed (FB technique and using alumina powder is proposed. The film growth obtained through this cold deposition process is analyzed, investigating the morphology as well as tribological and mechanical features and corrosion behavior of the plated samples. The resulting Al2O3 coatings show consistent improvement of the tribological and anti-corrosive performance of the magnesium alloy.

  19. Al₂O₃ Coatings on Magnesium Alloy Deposited by the Fluidized Bed (FB) Technique.

    Science.gov (United States)

    Baiocco, Gabriele; Rubino, Gianluca; Tagliaferri, Vincenzo; Ucciardello, Nadia

    2018-01-09

    Magnesium alloys are widely employed in several industrial domains for their outstanding properties. They have a high strength-weight ratio, with a density that is lower than aluminum (33% less), and feature good thermal properties, dimensional stability, and damping characteristics. However, they are vulnerable to oxidation and erosion-corrosion phenomena when applied in harsh service conditions. To avoid the degradation of magnesium, several coating methods have been presented in the literature; however, all of them deal with drawbacks that limit their application in an industrial environment, such as environmental pollution, toxicity of the coating materials, and high cost of the necessary machinery. In this work, a plating of Al₂O₃ film on a magnesium alloy realized by the fluidized bed (FB) technique and using alumina powder is proposed. The film growth obtained through this cold deposition process is analyzed, investigating the morphology as well as tribological and mechanical features and corrosion behavior of the plated samples. The resulting Al₂O₃ coatings show consistent improvement of the tribological and anti-corrosive performance of the magnesium alloy.

  20. Characterizations of multilayer ZnO thin films deposited by sol-gel spin coating technique

    Directory of Open Access Journals (Sweden)

    M.I. Khan

    Full Text Available In this work, zinc oxide (ZnO multilayer thin films are deposited on glass substrate using sol-gel spin coating technique and the effect of these multilayer films on optical, electrical and structural properties are investigated. It is observed that these multilayer films have great impact on the properties of ZnO. X-ray Diffraction (XRD confirms that ZnO has hexagonal wurtzite structure. Scanning Electron Microscopy (SEM showed the crack-free films which have uniformly distributed grains structures. Both micro and nano particles of ZnO are present on thin films. Four point probe measured the electrical properties showed the decreasing trend between the average resistivity and the number of layers. The optical absorption spectra measured using UV–Vis. showed the average transmittance in the visible region of all films is 80% which is good for solar spectra. The performance of the multilayer as transparent conducting material is better than the single layer of ZnO. This work provides a low cost, environment friendly and well abandoned material for solar cells applications. Keywords: Multilayer films, Semiconductor, ZnO, XRD, SEM, Optoelectronic properties

  1. Deposition of corrosion products from dowels on human dental root surfaces measured with proton microprobe technique

    International Nuclear Information System (INIS)

    Brune, D.; Brunell, G.; Lindh, U.

    1982-01-01

    Distribution of copper, mercury and zinc on human teeth root surfaces adjacent to dowels of gold alloy or brass as well as dowels of brass in conjunction with an amalgam crown has been measured with a proton microprobe using PIXE techniques. Upper limits of the contents of gold and silver on the root surfaces were established. Pronounced concentration profiles of copper and zinc were observed on the root surfaces of teeth prepared with dowels of brass. The dowel of gold alloy revealed only zinc deposition. The major part of copper on the root surfaces is assumed to arise from corrosion of the dowels, and has been transported to the surface by diffusion through the dential tubuli. Zinc in the volume analysed is a constituent of dentin tissue as well as a corrosion product of the brass dowel. Part of the zinc level could also be ascribed to erosion of the zinc phosphate cement matrix. The volumes analysed were (25 x 25 x 25)μm 3 . The levels of copper, mercury and zinc on the tooth root surfaces attained values up to about 200, 20 and 600 ppm, respectively. (orig.)

  2. Deposition of corrosion products from dowels on human dental root surfaces measured with proton microprobe technique

    Science.gov (United States)

    Brune, D.; Brunell, G.; Lindh, U.

    1982-06-01

    Distribution of copper, mercury and zinc on human teeth root surfaces adjacent to dowels of gold alloy or brass as well as dowels of brass in conjunction with an amalgam crown has been measured with a proton microprobe using PIXE techniques. Upper limits of the contents of gold and silver on the root surfaces were established. Pronounced concentration profiles of copper and zinc were observed on the root surfaces of teeth prepared with dowels of brass. The dowel of gold alloy revealed only zinc deposition. The major part of copper on the root surfaces is assumed to arise from corrosion of the dowels, and has been transported to the surface by diffusion through the dential tubuli. Zinc in the volume analysed is a constituent of dentin tissue as well as a corrosion product of the brass dowel. Part of the zinc level could also be ascribed to erosion of the zinc phosphate cement matrix. The volumes analysed were (25×25×25)μm 3. The levels of copper, mercury and zinc on the tooth root surfaces attained values up to about 200, 20 and 600 ppm, respectively.

  3. Comparing the Titrations of Mixed-Acid Solutions Using Dropwise and Constant-Flow Techniques

    Science.gov (United States)

    Charlesworth, Paul; Seguin, Matthew J.; Chesney, David J.

    2003-11-01

    A mixed-acid solution containing hydrochloric and phosphoric acids was used to determine the error associated with performing a real-time titration. The results were compared against those obtained by performing the titration in a more traditional dropwise addition of titrant near the equivalence points. It was found that the real-time techniques resulted in significantly decreased analysis times while maintaining a low experimental error. The constant-flow techniques were implemented into two different levels of chemistry. It was found that students could successfully utilize the modified experiments. Problems associated with the techniques, major sources of error, and their solutions are discussed. In both cases, the use of the constant-flow setup has increased student recollection of key concepts, such as pKa determination, proper indicator choice, and recognizing the shape of specific titration curves by increasing student interest in the experiment.

  4. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    International Nuclear Information System (INIS)

    He, Y.Y.; Zhang, G.F.; Zhao, Y.; Liu, D.D.; Cong, Y.; Buck, V.

    2015-01-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect

  5. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.Y. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Zhang, G.F. [School of Materials Science and Engineering, Dalian University of Technology, 116024, Dalian China (China); Zhao, Y.; Liu, D.D. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Cong, Y., E-mail: congyan@ciomp.ac.cn [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Buck, V. [Thin Film Technology Group, Faculty of Physics, University Duisburg-Essen and CeNIDE, 47057 Duisburg (Germany)

    2015-09-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect.

  6. Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study

    Science.gov (United States)

    Bakan, Emine; Marcano, Diana; Zhou, Dapeng; Sohn, Yoo Jung; Mauer, Georg; Vaßen, Robert

    2017-08-01

    Dense, crack-free, uniform, and well-adhered environmental barrier coatings (EBCs) are required to enhance the environmental durability of silicon (Si)-based ceramic matrix composites in high pressure, high gas velocity combustion atmospheres. This paper represents an assessment of different thermal spray techniques for the deposition of Yb2Si2O7 EBCs. The Yb2Si2O7 coatings were deposited by means of atmospheric plasma spraying (APS), high-velocity oxygen fuel spraying (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) techniques. The initial feedstock, as well as the deposited coatings, were characterized and compared in terms of their phase composition. The as-sprayed amorphous content, microstructure, and porosity of the coatings were further analyzed. Based on this preliminary investigation, the HVOF process stood out from the other techniques as it enabled the production of vertical crack-free coatings with higher crystallinity in comparison with the APS and SPS techniques in atmospheric conditions. Nevertheless, VLPPS was found to be the preferred process for the deposition of Yb2Si2O7 coatings with desired characteristics in a controlled-atmosphere chamber.

  7. Novel Geochemical Techniques Integrated In Exploration for Uranium Deposits at Depth

    International Nuclear Information System (INIS)

    Kyser, Kurt

    2014-01-01

    Recent results in the use of geochemistry in detecting deep uranium deposits: (1) Map element distributions in and around deposits to assess the total chemical environment associated with the deposit, (2) Use element tracing with isotopic compositions in surface media to detect specific components from uranium deposits at depth, (3) Capitalize on element mobility across the geosphere-biosphere interface to enhance exploration using select media, (4) Geochemical data from drill core or surface media can enhance target identification when integrated with geophysical data.

  8. Photocatalytic efficiency of reusable ZnO thin films deposited by sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ahumada-Lazo, R.; Torres-Martínez, L.M. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450, México (Mexico); Ruíz-Gómez, M.A. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450, México (Mexico); Departmento de Física Aplicada, CINVESTAV-IPN, Antigua Carretera a Progreso km 6, Mérida, Yucatán 97310, México (Mexico); Vega-Becerra, O.E. [Centro de Investigación en Materiales Avanzados S.C, Alianza norte 202, Parque de Investigación e Innovación Tecnológica, C.P. 66600 Apodaca Nuevo León, México (Mexico); and others

    2014-12-15

    Graphical abstract: - Highlights: • Decolorization of Orange G dye using highly c-axis-oriented ZnO thin films. • The flake-shaped film shows superior and stable photoactivity at a wide range of pH. • The highest photodecolorization was achieved at pH of 7. • The exposure of (101) and (100) facets enhanced the photoactivity. • ZnO thin films exhibit a promising performance as recyclable photocatalysts. - Abstract: The photocatalytic activity of ZnO thin films with different physicochemical characteristics deposited by RF magnetron sputtering on glass substrate was tested for the decolorization of orange G dye aqueous solution (OG). The crystalline phase, surface morphology, surface roughness and the optical properties of these ZnO films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV–visible spectroscopy (UV–Vis), respectively. The dye photodecolorization process was studied at acid, neutral and basic pH media under UV irradiation of 365 nm. Results showed that ZnO films grow with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a (002) preferential crystalline orientation. A clear relationship between surface morphology and photocatalytic activity was observed for ZnO films. Additionally, the recycling photocatalytic abilities of the films were also evaluated. A promising photocatalytic performance has been found with a very low variation of the decolorization degree after five consecutive cycles at a wide range of pH media.

  9. Photocatalytic efficiency of reusable ZnO thin films deposited by sputtering technique

    International Nuclear Information System (INIS)

    Ahumada-Lazo, R.; Torres-Martínez, L.M.; Ruíz-Gómez, M.A.; Vega-Becerra, O.E.

    2014-01-01

    Graphical abstract: - Highlights: • Decolorization of Orange G dye using highly c-axis-oriented ZnO thin films. • The flake-shaped film shows superior and stable photoactivity at a wide range of pH. • The highest photodecolorization was achieved at pH of 7. • The exposure of (101) and (100) facets enhanced the photoactivity. • ZnO thin films exhibit a promising performance as recyclable photocatalysts. - Abstract: The photocatalytic activity of ZnO thin films with different physicochemical characteristics deposited by RF magnetron sputtering on glass substrate was tested for the decolorization of orange G dye aqueous solution (OG). The crystalline phase, surface morphology, surface roughness and the optical properties of these ZnO films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV–visible spectroscopy (UV–Vis), respectively. The dye photodecolorization process was studied at acid, neutral and basic pH media under UV irradiation of 365 nm. Results showed that ZnO films grow with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a (002) preferential crystalline orientation. A clear relationship between surface morphology and photocatalytic activity was observed for ZnO films. Additionally, the recycling photocatalytic abilities of the films were also evaluated. A promising photocatalytic performance has been found with a very low variation of the decolorization degree after five consecutive cycles at a wide range of pH media

  10. Finding p-Hub Median Locations: An Empirical Study on Problems and Solution Techniques

    Directory of Open Access Journals (Sweden)

    Xiaoqian Sun

    2017-01-01

    Full Text Available Hub location problems have been studied by many researchers for almost 30 years, and, accordingly, various solution methods have been proposed. In this paper, we implement and evaluate several widely used methods for solving five standard hub location problems. To assess the scalability and solution qualities of these methods, three well-known datasets are used as case studies: Turkish Postal System, Australia Post, and Civil Aeronautics Board. Classical problems in small networks can be solved efficiently using CPLEX because of their low complexity. Genetic algorithms perform well for solving three types of single allocation problems, since the problem formulations can be neatly encoded with chromosomes of reasonable size. Lagrangian relaxation is the only technique that solves reliable multiple allocation problems in large networks. We believe that our work helps other researchers to get an overview on the best solution techniques for the problems investigated in our study and also stipulates further interest on cross-comparing solution techniques for more expressive problem formulations.

  11. Polyaniline (PANI) modified bentonite by plasma technique for U(VI) removal from aqueous solution

    International Nuclear Information System (INIS)

    Liu, Xinghao; Cheng, Cheng; Xiao, Chengjian; Shao, Dadong; Xu, Zimu; Wang, Jiaquan; Hu, Shuheng; Li, Xiaolong; Wang, Weijuan

    2017-01-01

    Highlights: • PANI/bentonie can be synthesized by simple plasma technique. • PANI/bentonie has an excellent adsorption capacity for trace uranium in solution. • U(VI) adsorption on PANI/bentonite is a spontaneous and endothermic process. - Abstract: Polyaniline (PANI) modified bentonite (PANI/bentonie) was synthesized by plasma induced polymerization of aniline on bentonite surface, and applied to uptake of uranium(VI) ions from aqueous solution. The as-synthesized PANI/bentonie was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). Batch adsorption technique was utilized to investigate the adsorption of U(VI) on bentonite and PANI/bentonite. The adsorption of U(VI) (10 mg/L) on PANI/bentonite surface is fairly depend on solution pH, ionic strength, and temperature in solution. The modified PANI on PANI/bentonite surface significantly enhances its adsorption capability for U(VI). The presence of humic acid (HA) can sound enhance U(VI) adsorption on PANI/bentonite at pH 6.5. According to the thermodynamic parameters, the adsorption of U(VI) on PANI/bentonite surface is a spontaneous and endothermic process. The results highlight the application of PANI/bentonite composites as candidate material for the uptake of trace U(VI) from aqueous solution.

  12. Polyaniline (PANI) modified bentonite by plasma technique for U(VI) removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinghao [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Intelligent Manufacturing Technology Research Institute, Hefei University of Technology, Hefei 230088 (China); Cheng, Cheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xiao, Chengjian, E-mail: xiaocj@caep.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Shao, Dadong, E-mail: shaodadong@126.com [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xu, Zimu, E-mail: xzm@mail.ustc.edu.cn [Intelligent Manufacturing Technology Research Institute, Hefei University of Technology, Hefei 230088 (China); Wang, Jiaquan; Hu, Shuheng [Intelligent Manufacturing Technology Research Institute, Hefei University of Technology, Hefei 230088 (China); Li, Xiaolong; Wang, Weijuan [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2017-07-31

    Highlights: • PANI/bentonie can be synthesized by simple plasma technique. • PANI/bentonie has an excellent adsorption capacity for trace uranium in solution. • U(VI) adsorption on PANI/bentonite is a spontaneous and endothermic process. - Abstract: Polyaniline (PANI) modified bentonite (PANI/bentonie) was synthesized by plasma induced polymerization of aniline on bentonite surface, and applied to uptake of uranium(VI) ions from aqueous solution. The as-synthesized PANI/bentonie was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). Batch adsorption technique was utilized to investigate the adsorption of U(VI) on bentonite and PANI/bentonite. The adsorption of U(VI) (10 mg/L) on PANI/bentonite surface is fairly depend on solution pH, ionic strength, and temperature in solution. The modified PANI on PANI/bentonite surface significantly enhances its adsorption capability for U(VI). The presence of humic acid (HA) can sound enhance U(VI) adsorption on PANI/bentonite at pH < 6.5 because of the strong complexation, and inhibits U(VI) adsorption at pH > 6.5. According to the thermodynamic parameters, the adsorption of U(VI) on PANI/bentonite surface is a spontaneous and endothermic process. The results highlight the application of PANI/bentonite composites as candidate material for the uptake of trace U(VI) from aqueous solution.

  13. Studies of CdS/CdTe interface: Comparison of CdS films deposited by close space sublimation and chemical bath deposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun-feng, E-mail: pkuhjf@bit.edu.cn [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Fu, Gan-hua; Krishnakumar, V.; Schimper, Hermann-Josef [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Liao, Cheng [Department of Physics, Peking University, Beijing 100871 (China); Jaegermann, Wolfram [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Besland, M.P. [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2015-05-01

    The CdS layers were deposited by two different methods, close space sublimation (CSS) and chemical bath deposition (CBD) technique. The CdS/CdTe interface properties were investigated by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The TEM images showed a large CSS-CdS grain size in the range of 70-80 nm. The interface between CSS-CdS and CdTe were clear and sharp, indicating an abrupt hetero-junction. On the other hand, CBD-CdS layer had much smaller grain size in the 5-10 nm range. The interface between CBD-CdS and CdTe was not as clear as CSS-CdS. With the stepwise coverage of CdTe layer, the XPS core levels of Cd 3d and S 2p in CSS-CdS had a sudden shift to lower binding energies, while those core levels shifted gradually in CBD-CdS. In addition, XPS depth profile analyses indicated a strong diffusion in the interface between CBD-CdS and CdTe. The solar cells prepared using CSS-CdS yielded better device performance than the CBD-CdS layer. The relationships between the solar cell performances and properties of CdS/CdTe interfaces were discussed. - Highlights: • Studies of CdS deposited by close space sublimation and chemical bath deposition • An observation of CdS/CdTe interface by transmission electron microscope • A careful investigation of CdS/CdTe interface by X ray photoelectron spectra • An easier diffusion at the chemical bath deposition CdS and CdTe interface.

  14. Industrial implementation of plasma deposition using the expanding thermal plasma technique

    NARCIS (Netherlands)

    Sanden, van de M.C.M.; Oever, van den P.J.; Creatore, M.; Schaepkens, M.; Miebach, T.; Iacovangelo, C.D.; Bosch, R.C.M.; Bijker, M.D.; Evers, M.F.J.; Schram, D.C.; Kessels, W.M.M.

    2004-01-01

    Two successful industrial implementations of the expanding thermal plasma setup, a novel plasma source, obtaining high deposition rate are discussed. The Ar/O2/hexamethyldisiloxane and Ar/O2/octamethyl-cyclosiloxane-fed expanding thermal plasma setup is used to deposit scratch resistant silicone

  15. OPTICAL PROPERTIES OF Al:ZnO THIN FILM DEPOSITED BY DIFFERENT SOL-GEL TECHNIQUES: ULTRASONIC SPRAY PYROLYSIS AND DIP-COATING

    Directory of Open Access Journals (Sweden)

    Ebru Gungor

    2016-08-01

    Full Text Available Undoped and Al-doped ZnO polycrystalline thin films have been fabricated on glass substrates by using a computer-controlled dip coating (DC and ultrasonic spray pyrolysis (USP systems. The film deposition parameters of DC process were optimized for the samples. In this technique, the substrate was exposed to temperature gradient using a tube furnace. In the study, the other solvent-based technique was conventional USP. The zinc salt and Al salt concentrations in the solution were kept constant as 0.1 M and 2% of Zn salt’s molarity, respectively. The optical properties were compared for the films deposited two different techniques. The optical transmission of Al:ZnO/Glass/Al:ZnO sample dip coated and  the optical transmission of Al:ZnO/Glass sample ultrasonically sprayed were determined higher than 80% in the visible and near infrared region. Experimental optical transmittance spectra of the films in the forms of FilmA/Glass/FilmA and FilmA/glass were used to determine the optical constants. It was observed that the optical band gaps of Al doped ZnO films onto glass substrate were increases with increase of Al content and the absorption edge shifted to the shorter wavelength (blue shift compared with the undoped ZnO thin film.

  16. Simultaneous PIV and pulsed shadow technique in slug flow: a solution for optical problems

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, S. [Karman Institute for Fluid Dynamics, Chaussee de Waterloo 72, B-1640, Rhode Saint Genese (Belgium); Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); Sousa, R.G.; Pinto, A.M.F.R.; Campos, J.B.L.M. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); Riethmuller, M.L. [Karman Institute for Fluid Dynamics, Chaussee de Waterloo 72, B-1640, Rhode Saint Genese (Belgium)

    2003-12-01

    A recent technique of simultaneous particle image velocimetry (PIV) and pulsed shadow technique (PST) measurements, using only one black and white CCD camera, is successfully applied to the study of slug flow. The experimental facility and the operating principle are described. The technique is applied to study the liquid flow pattern around individual Taylor bubbles rising in an aqueous solution of glycerol with a dynamic viscosity of 113 x 10{sup -3} Pa s. With this technique the optical perturbations found in PIV measurements at the bubble interface are completely solved in the nose and in annular liquid film regions as well as in the rear of the bubble for cases in which the bottom is flat. However, for Taylor bubbles with concave oblate bottoms, some optical distortions appear and are discussed. The measurements achieved a spatial resolution of 0.0022 tube diameters. The results reported show high precision and are in agreement with theoretical and experimental published data. (orig.)

  17. Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands.

    Science.gov (United States)

    Boxman, Andries W; Peters, Roy C J H; Roelofs, Jan G M

    2008-12-01

    In a Scots pine forest the throughfall deposition and the chemical composition of the soil solution was monitored since 1984. (Inter)national legislation measures led to a reduction of the deposition of nitrogen and sulphur. The deposition of sulphur has decreased by approximately 65%. The total mineral-nitrogen deposition has decreased by ca. 25%, which is mainly due to a reduction in ammonium-N deposition (-40%), since nitrate-N deposition has increased (+50%). The nitrogen concentration in the upper mineral soil solution at 10 cm depth has decreased, leading to an improved nutritional balance, which may result in improved tree vitality. In the drainage water at 90 cm depth the fluxes of NO3(-) and SO4(2-) have decreased, resulting in a reduced leeching of accompanying base cations, thus preserving nutrients in the ecosystem. It may take still several years, however, before this will meet the prerequisite of a sustainable ecosystem.

  18. Growth of thick La{sub 2}Zr{sub 2}O{sub 7} buffer layers for coated conductors by polymer-assisted chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin, E-mail: xzhang@my.swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Yong, E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Xia, Yudong [State Key Lab of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Guo, Chunsheng [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Zhang, Yong [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhang, Han [Department of Physics, Peking University, Beijing 100871 (China)

    2015-06-15

    Highlights: • We develops a low-cost and high-efficient technology of fabricating LZO buffer layers. • Sufficient thickness LZO buffer layers have been obtained on NiW (2 0 0) alloy substrate. • Highly biaxially textured YBCO thin film has been deposited on LZO/NiW. - Abstract: La{sub 2}Zr{sub 2}O{sub 7} (LZO) epitaxial films have been deposited on LaAlO{sub 3} (LAO) (1 0 0) single-crystal surface and bi-axially textured NiW (2 0 0) alloy substrate by polymer-assisted chemical solution deposition, and afterwards studied with XRD, SEM and AFM approaches. Highly in-plane and out-of-plane oriented, dense, smooth, crack free and with a sufficient thickness (>240 nm) LZO buffer layers have been obtained on LAO (1 0 0) single-crystal surface; The films deposited on NiW (2 0 0) alloy substrate are also found with high degree in-plane and out-of-plane texturing, good density with pin-hole-free, micro-crack-free nature and a thickness of 300 nm. Highly epitaxial 500 nm thick YBa{sub 2}Cu{sub 3}O{sub 7−x} (YBCO) thin film exhibits the self-field critical current density (Jc) reached 1.3 MA/cm{sup 2} at 77 K .These results demonstrate the LZO epi-films obtained with current techniques have potential to be a buffer layer for REBCO coated conductors.

  19. Ac conductivity and dielectric spectroscopy studies on tin oxide thin films formed by spray deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barış, Behzad, E-mail: behzadbaris@gmail.com

    2014-04-01

    Au/tin oxide/n-Si (1 0 0) structure has been created by forming a tin oxide (SnO{sub 2}) on n-type Si by using the spray deposition technique. The ac electrical conductivity (σ{sub ac}) and dielectric properties of the structure have been investigated between 30 kHz and 1 MHz at room temperature. The values of ε', ε″, tanδ, σ{sub ac}, M' and M″ were determined as 1.404, 0.357, 0.253, 1.99×10{sup −7} S/cm, 0.665 and 0.168 for 1 MHz and 6.377, 6.411, 1.005, 1.07×10{sup −7} S/cm, 0.077 and 0.078 for 30 kHz at zero bias, respectively. These changes were attributed to variation of the charge carriers from the interface traps located between semiconductor and metal in the band gap. It is concluded that the values of the ε', ε″ and tanδ increase with decreasing frequency while a decrease is seen in σ{sub ac} and the real (M') and imaginary (M″) components of the electrical modulus. The M″ parameter of the structure has a relaxation peak as a function of frequency for each examined voltage. The relaxation time of M″(τ{sub M″}) varies from 0.053 ns to 0.018 ns with increasing voltage. The variation of Cole–Cole plots of the sample shows that there is one relaxation.

  20. Microwave Plasma Enhanced Chemical Vapor Deposition of Diamond in Vapor of Methanol-Based Liquid Solutions

    National Research Council Canada - National Science Library

    Tzeng, Yonhua

    2000-01-01

    .... Liquid solutions are prepared by mixing methanol with other carbon containing liquid compounds which contain a greater than one ratio of carbon to oxygen such as acetone, ethanol, and iso-propanol...

  1. Occurrence forms of uranium in the production solutions in the areas of underground leaching of epigenetic uranium deposits

    International Nuclear Information System (INIS)

    Serebrennikov, V.S.; Dorofeeva, V.A.

    1980-01-01

    Redox, acid-basic features of solutions (Eh changes from + 50 to 650 mV, pH from 7.5 to 1.5) and their chemical composition are studied in the process of hydrogeochemical investigations at the areas of underground leaching (UL) of epigenetic uranium deposits. It is shown that at studied areas of UL under neutral and weakly acidic conditions up to (pH 6.0-5.8), carbonate complexes of uranyl are the prevailing form of uranium existence in the solution, and sulfate complexes prevail under more acidic conditions. A supposition is made that it is expedient to process separate ore blocks with increased carbonate contents, particularly with oxidant additions under near-neutral acid-basic conditions (pH 7.2-6.8) with the use of weakly acid pumping solutions, which act (at the expense of their interaction with carbonates of ore-containing rocks) for enrichment of working solutions with HCO 3 - and CO 3 2- ions, promoting uranium transfer into solution

  2. CRACK2. Modelling calcium carbonate deposition from bicarbonate solutions in cracks in concrete

    DEFF Research Database (Denmark)

    Brodersen, Knud Erik

    2003-01-01

    . The produced thin layers of low porositycalcite act as a diffusion barrier limiting contact between cement and solution. Pore closure mechanisms in such layers are discussed. Implications for safety assessment of radioactive waste disposal are shortly mentioned. The model is also relevant forconventional uses...... dissolved in the pore solution. Diffusive migration of cesium as radioactive isotope is also considered. Electrical interaction of the migratingions is taken into account. Example calculations demonstrate effects of parameter variations on distribution of precipitated calcite in the crack...

  3. Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films

    Science.gov (United States)

    Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    2000-01-01

    A colloidal suspension comprising metal chalcogenide nanoparticles and a volatile capping agent. The colloidal suspension is made by reacting a metal salt with a chalcogenide salt in an organic solvent to precipitate a metal chalcogenide, recovering the metal chalcogenide, and admixing the metal chalcogenide with a volatile capping agent. The colloidal suspension is spray deposited onto a substrate to produce a semiconductor precursor film which is substantially free of impurities.

  4. P-type thin films transistors with solution-deposited lead sulfide films as semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo-Castillo, A.; Salas-Villasenor, A.; Mejia, I. [Department of Materials Science and Engineering, The University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Aguirre-Tostado, S. [Centro de Investigacion en Materiales Avanzados, S. C. Alianza Norte 202, Parque de Investigacion e Innovacion Tecnologica, Apodaca, Nuevo Leon, C.P. 666000 (Mexico); Gnade, B.E. [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Quevedo-Lopez, M.A., E-mail: mxq071000@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States)

    2012-01-31

    In this paper we demonstrate p-type thin film transistors fabricated with lead sulfide (PbS) as semiconductor deposited by chemical bath deposition methods. Crystallinity and morphology of the resulting PbS films were characterized using X-ray diffraction, atomic force microscopy and scanning electron microscopy. Devices were fabricated using photolithographic processes in a bottom gate configuration with Au as source and drain top contacts. Field effect mobility for as-fabricated devices was {approx} 0.09 cm{sup 2} V{sup -1} s{sup -1} whereas the mobility for devices annealed at 150 Degree-Sign C/h in forming gas increased up to {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Besides the thermal annealing, the entire fabrications process was maintained below 100 Degree-Sign C. The electrical performance of the PbS-thin film transistors was studied before and after the 150 Degree-Sign C anneal as well as a function of the PbS active layer thicknesses. - Highlights: Black-Right-Pointing-Pointer Thin film transistors with PbS as semiconductor deposited by chemical bath deposition. Black-Right-Pointing-Pointer Photolithography-based thin film transistors with PbS films at low temperatures. Black-Right-Pointing-Pointer Electron mobility for anneal-PbS devices of {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Black-Right-Pointing-Pointer Highest mobility reported in thin film transistors with PbS as the semiconductor.

  5. Enhanced magnetic properties of chemical solution deposited BiFeO3 thin film with ZnO buffer layer

    International Nuclear Information System (INIS)

    Rajalakshmi, R.; Kambhala, Nagaiah; Angappane, S.

    2012-01-01

    Highlights: ► Enhanced magnetization of BiFeO 3 is important for strong magnetoelectric coupling. ► BiFeO 3 film with ZnO buffer layer was successfully synthesized by chemical method. ► Magnetization of BiFeO 3 has increased by more than 10 times with ZnO buffer layer. ► A mechanism for enhancement in ferromagnetism of BiFeO 3 film is proposed. - Abstract: Magnetic properties of BiFeO 3 films deposited on Si substrates with and without ZnO buffer layer have been studied in this work. We adopted the chemical solution deposition method for the deposition of BiFeO 3 as well as ZnO films. The x-ray diffraction measurements on the deposited films confirm the formation of crystalline phase of BiFeO 3 and ZnO films, while our electron microscopy measurements help to understand the morphology of few micrometers thick films. It is found that the deposited ZnO film exhibit a hexagonal particulate surface morphology, whereas BiFeO 3 film fully covers the ZnO surface. Our magnetic measurements reveal that the magnetization of BiFeO 3 has increased by more than ten times in BiFeO 3 /ZnO/Si film compared to BiFeO 3 /Si film, indicating the major role played by ZnO buffer layer in enhancing the magnetic properties of BiFeO 3 , a technologically important multiferroic material.

  6. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis?

    Science.gov (United States)

    Emsbo, Poul; McLaughlin, Patrick I.; Breit, George N.; du Bray, Edward A.; Koenig, Alan E.

    2015-01-01

    The critical role of rare earth elements (REEs), particularly heavy REEs (HREEs), in high-tech industries has created a surge in demand that is quickly outstripping known global supply and has triggered a worldwide scramble to discover new sources. The chemical analysis of 23 sedimentary phosphate deposits (phosphorites) in the United States demonstrates that they are significantly enriched in REEs. Leaching experiments using dilute H2SO4 and HCl, extracted nearly 100% of their total REE content and show that the extraction of REEs from phosphorites is not subject to the many technological and environmental challenges that vex the exploitation of many identified REE deposits. Our data suggest that phosphate rock currently mined in the United States has the potential to produce a significant proportion of the world's REE demand as a byproduct. Importantly, the size and concentration of HREEs in some unmined phosphorites dwarf the world's richest REE deposits. Secular variation in phosphate REE contents identifies geologic time periods favorable for the formation of currently unrecognized high-REE phosphates. The extraordinary endowment, combined with the ease of REE extraction, indicates that such phosphorites might be considered as a primary source of REEs with the potential to resolve the global REE (particularly for HREE) supply shortage.

  7. A comparative study of ultraviolet photoconductivity relaxation in zinc oxide (ZnO) thin films deposited by different techniques

    International Nuclear Information System (INIS)

    Yadav, Harish Kumar; Gupta, Vinay

    2012-01-01

    Photoresponse characteristics of ZnO thin films deposited by three different techniques namely rf diode sputtering, rf magnetron sputtering, and electrophoretic deposition has been investigated in the metal-semiconductor-metal (MSM) configuration. A significant variation in the crystallinity, surface morphology, and photoresponse characteristics of ZnO thin film with change in growth kinetics suggest that the presence of defect centers and their density govern the photodetector relaxation properties. A relatively low density of traps compared to the true quantum yield is found very crucial for the realization of practical ZnO thin film based ultraviolet (UV) photodetector.

  8. A comparative study of ultraviolet photoconductivity relaxation in zinc oxide (ZnO) thin films deposited by different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Harish Kumar; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)

    2012-05-15

    Photoresponse characteristics of ZnO thin films deposited by three different techniques namely rf diode sputtering, rf magnetron sputtering, and electrophoretic deposition has been investigated in the metal-semiconductor-metal (MSM) configuration. A significant variation in the crystallinity, surface morphology, and photoresponse characteristics of ZnO thin film with change in growth kinetics suggest that the presence of defect centers and their density govern the photodetector relaxation properties. A relatively low density of traps compared to the true quantum yield is found very crucial for the realization of practical ZnO thin film based ultraviolet (UV) photodetector.

  9. ''FIXBOX'' - a new technique for the reliable conditioning of plutonium waste solutions

    International Nuclear Information System (INIS)

    Bruchertseifer, H.; Sommer, E.; Steinemann, M.; Bart, G.

    1994-01-01

    ''FIXBOX'' - A new technique and facility for the conditioning of plutonium waste solutions has been developed and brought into operation in the Hot-laboratory at PSI, for the solidification of the waste from the research programmes. The facility is situated in glove-boxes for handling alpha activity and gamma-shielded for conditioning of fission product-containing waste. This report gives a brief description of the FIXBOX facility, the procedure and the first results of the cementation of plutonium waste solutions. As a result of this solidification, the actinide waste is homogeneous and strongly bound in the cement. The presence of gluconic acid and other complexing agents in the waste solution will not disturb this process. (author) figs., tabs., refs

  10. Solution of the finite Milne problem in stochastic media with RVT Technique

    Science.gov (United States)

    Slama, Howida; El-Bedwhey, Nabila A.; El-Depsy, Alia; Selim, Mustafa M.

    2017-12-01

    This paper presents the solution to the Milne problem in the steady state with isotropic scattering phase function. The properties of the medium are considered as stochastic ones with Gaussian or exponential distributions and hence the problem treated as a stochastic integro-differential equation. To get an explicit form for the radiant energy density, the linear extrapolation distance, reflectivity and transmissivity in the deterministic case the problem is solved using the Pomraning-Eddington method. The obtained solution is found to be dependent on the optical space variable and thickness of the medium which are considered as random variables. The random variable transformation (RVT) technique is used to find the first probability density function (1-PDF) of the solution process. Then the stochastic linear extrapolation distance, reflectivity and transmissivity are calculated. For illustration, numerical results with conclusions are provided.

  11. Surface engineering of biaxial Gd2Zr2O7 thin films deposited on Ni–5at%W substrates by a chemical solution method

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude; Liu, Min

    2012-01-01

    crystal structure along the film thickness observed by a transmission electron microscope. On the basis of the enhanced understanding of the crystallization processes, we demonstrate a possibility of engineering the surface morphology and texture in the film deposited on technical substrates using...... a chemical solution deposition route....

  12. Dynamical scaling in polymer solutions investigated by the neutron spin echo technique

    International Nuclear Information System (INIS)

    Richter, D.; Ewen, B.

    1979-01-01

    Chain dynamics in polymer solutions was investigated by means of the recently developed neutron spin echo spectroscopy. - By this technique, it was possible for the first time to verify unambiguously the scaling predictions of the Zimm model in the case of single chain behaviour and to observe the cross over to many chain behaviour. The segmental diffusion of single chains exhibits deviations from a simple exponential law, indicating the importance of memory effects. (orig.) [de

  13. Selective separation of Cu, Zn, and As from solution by flotation techniques

    International Nuclear Information System (INIS)

    Stalidis, G.A.; Matis, K.A.; Lazaridis, N.K.

    1989-01-01

    The selective precipitation and flotation of copper, zinc, and arsenic ions from dilute aqueous solutions were investigated. Phase separation was accomplished effectively by the dissolved-air technique for the production of fine gas bubbles, and a short-chain xanthate was applied as the collector for copper ions, dialkyl-dithiocarbamate for zinc, and ferric sulfate for the pentavalent arsenic. The procedures followed were ion flotation for copper and zinc, and adsorbing colloid flotation for arsenic (without a surfactant)

  14. Accès à l'eau : des solutions techniques et sociales aident des ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Grâce à la modélisation par ordinateur faisant appel à des techniques de pointe et à la consultation des collectivités, l'organisme bolivien Agua Sustentable a trouvé des solutions politiques à des conflits qui auraient pu s'avérer désastreux au sujet de l'accès à l'eau. Cet organisme de recherche subventionné par le CRDI a ...

  15. Heating effect of substrate of pulsed laser ablation deposition technique towards the orientation of carbon microstructure

    International Nuclear Information System (INIS)

    Choy, L.S.; Irmawati Ramli; Noorhana Yahya; Abdul Halim Shaari

    2009-01-01

    Full text: Carbon thin film has been successfully deposited by second harmonic Nd:YAG pulsed laser ablation deposition, PLAD. The topology and morphology of the deposited layers was studied by scanning electron microscopy (SEM) whereas emission dispersion X-ray (EDX) was used to determine the existence of elements that constitutes the microstructure. Substrate heated at 500 degree Celsius during the laser ablation showed the most homogenous lollipop microstructure as compared to mainly pillars of microstructure ablated at lower substrate temperature. It is found that this also avoid further diffusion of carbon into catalyst in forming iron carbide. (author)

  16. Numerical solution of large nonlinear boundary value problems by quadratic minimization techniques

    International Nuclear Information System (INIS)

    Glowinski, R.; Le Tallec, P.

    1984-01-01

    The objective of this paper is to describe the numerical treatment of large highly nonlinear two or three dimensional boundary value problems by quadratic minimization techniques. In all the different situations where these techniques were applied, the methodology remains the same and is organized as follows: 1) derive a variational formulation of the original boundary value problem, and approximate it by Galerkin methods; 2) transform this variational formulation into a quadratic minimization problem (least squares methods) or into a sequence of quadratic minimization problems (augmented lagrangian decomposition); 3) solve each quadratic minimization problem by a conjugate gradient method with preconditioning, the preconditioning matrix being sparse, positive definite, and fixed once for all in the iterative process. This paper will illustrate the methodology above on two different examples: the description of least squares solution methods and their application to the solution of the unsteady Navier-Stokes equations for incompressible viscous fluids; the description of augmented lagrangian decomposition techniques and their application to the solution of equilibrium problems in finite elasticity

  17. Growing barium hexaferrite (BaFe{sub 12}O{sub 19}) thin films using chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Budiawanti, Sri, E-mail: awanty77@yahoo.com [Graduate Program of Materials Science, Department of Physics, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Faculty of Teacher Training and Education, Sebelas Maret University (Indonesia); Soegijono, Bambang [Multiferroic Laboratory, Department of Physics, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia)

    2016-04-19

    Barium hexaferrite (BaFe{sub 12}O{sub 19}, or simply known as BaM) thin films has been recognized as a potential candidate for microwave-based devices, magnetic recording media and data storage. To grow BaM thin films, chemical solution deposition is conducted using the aqueous solution of metal nitrates, which involves spin coatings on Si substrates. Furthermore, Thermal Gravimeter Analysis (TGA), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM) are applied to evaluate the decomposition behavior, structure, morphology, and magnetic properties of BaM thin films. Additionally, the effects of number of layers variation are also investigated. Finally, magnetic properties analysis indicates the isotropic nature of the films.

  18. Growing barium hexaferrite (BaFe_1_2O_1_9) thin films using chemical solution deposition

    International Nuclear Information System (INIS)

    Budiawanti, Sri; Soegijono, Bambang

    2016-01-01

    Barium hexaferrite (BaFe_1_2O_1_9, or simply known as BaM) thin films has been recognized as a potential candidate for microwave-based devices, magnetic recording media and data storage. To grow BaM thin films, chemical solution deposition is conducted using the aqueous solution of metal nitrates, which involves spin coatings on Si substrates. Furthermore, Thermal Gravimeter Analysis (TGA), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM) are applied to evaluate the decomposition behavior, structure, morphology, and magnetic properties of BaM thin films. Additionally, the effects of number of layers variation are also investigated. Finally, magnetic properties analysis indicates the isotropic nature of the films.

  19. CRACK2 - Modelling calcium carbonate deposition from bicarbonate solution in cracks in concrete

    International Nuclear Information System (INIS)

    Brodersen, K.

    2003-03-01

    The numerical CRACK2 model simulates precipitation of calcite from calcium bicarbonate solution (e.g. groundwater) passing through cracks in concrete or other cementitious materials. A summary of experimental work is followed by a detailed description of the model. Hydroxyl ions are transported by diffusion in pore systems in columns of cementitious materials. The hydroxyl is precipitating calcite from a flow of bicarbonate solution in a crack connecting the ends of a row of such columns. The cementitious material is simulated as calcium hydroxide mixed with inert material but with sodium hydroxide dissolved in the pore solution. Diffusive migration of cesium as radioactive isotope is also considered. Electrical interaction of the migrating ions is taken into account. Example calculations demonstrate effects of parameter variations on distribution of precipitated calcite in the crack and on the composition of the outflowing solution, which can be compared directly with experimental results. Leaching behavior of sodium can be used to tune the model to experimental observations. The calcite is mostly precipitated on top of the original crack surface and may under certain circumstances fill the crack. The produced thin layers of low porosity calcite act as a diffusion barrier limiting contact between cement and solution. Pore closure mechanisms in such layers are discussed. Implications for safety assessment of radioactive waste disposal are shortly mentioned. The model is also relevant for conventional uses of concrete. (au)

  20. Evaluation of Co-rich manganese deposits by image analysis and photogrammetric techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Yamazaki, T.; Sharma, R.; Tsurusaki, K.

    Stereo-seabed photographs of Co-rich manganese deposits on a mid-Pacific seamount, were analysed using an image analysis software for coverage estimation and size classification of nodules, and a photogrammetric software for calculation of height...

  1. The response of soil solution chemistry in European forests to decreasing acid deposition

    DEFF Research Database (Denmark)

    Johnson, James; Pannatier, Elisabeth Graf; Carnicelli, Stefano

    2018-01-01

    to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Altot) and dissolved organic carbon were determined for the period 1995–2012. Plots...... with at least 10 years of observations from the ICP Forests monitoring network were used. Trends were assessed for the upper mineral soil (10–20 cm, 104 plots) and subsoil (40–80 cm, 162 plots). There was a large decrease in the concentration of sulphate () in soil solution; over a 10‐year period (2000...... over the entire dataset. The response of soil solution acidity was nonuniform. At 10–20 cm, ANC increased in acid‐sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40–80 cm, ANC remained unchanged in acid‐sensitive soils (base...

  2. Optimization of the Automated Spray Layer-by-Layer Technique for Thin Film Deposition

    Science.gov (United States)

    2010-06-01

    air- pumped spray-paint cans 17,18 to fully automated systems using high pressure gas .7’ 19 This work uses the automated spray system previously...spray solutions were delivered by ultra high purity nitrogen gas (AirGas) regulated to 25psi, except when examining air pressure effects . The PAH solution...polyelectrolyte solution feed tube, the resulting Venturi effect causes the liquid solution to be drawn up into the airbrush nozzle, where it is

  3. High quality aluminide and thermal barrier coatings deposition for new and service exposed parts by CVD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pedraza, F.; Tuohy, C.; Whelan, L.; Kennedy, A.D. [SIFCO Turbine Components, Carrigtwohill, Cork (Ireland)

    2004-07-01

    In this work, the performance of CVD aluminide coatings is compared to that of coatings deposited by the classical pack cementation technique using standard SIFCO procedures. The CVD coatings always seem to behave better upon exposure to isothermal and cyclic oxidation conditions. This is explained by a longer term stability of CVD coatings, with higher Al amounts in the diffusion zone and less refractory element precipitation in the additive layer. The qualities of Pt/Al coatings by out-of-pack and CVD are also compared as a previous step for further thermal barrier coating deposition. As an example, YSZ thermal barrier coatings are deposited by MO-CVD on Pt/Al CVD bond coats rendering adherent and thick coatings around the surface of turbine blades. This process under development does not require complex manipulation of the component to be coated. (orig.)

  4. Atmospheric deposition of trace elements around Ulan Bator city studied by moss and lichen biomonitoring technique and INAA

    International Nuclear Information System (INIS)

    Ganbold, G.; Gehrbish, Sh.; Tsehndehehkhuu, Ts.; Gundorina, S.F.; Frontas'eva, M.V.; Ostrovnaya, T.M.; Pavlov, S.S.

    2005-01-01

    For the first time the moss and lichen biomonitoring technique has been applied to air pollution in Mongolia (Ulan-Bator, the capital city). INAA at the IBR-2 reactor has made it possible to determine the content of 35 elements in moss and lichen biomonitors. Samples collected at sites located 10-15 km from the center of Ulan-Bator were analyzed by Instrumental Neutron Activation Analysis (INAA) using epithermal neutrons. The mosses (Rhytidium rugosum, Thuidium abietinum, Entodon concinnus) and lichens (Cladonia stellaris, Parmelia separata) were used to study the atmospheric deposition of trace elements. It was shown that the suggested types of mosses could be used as suitable biomonitors to estimate the concentration levels of heavy metals and trace elements in Ulan-Bator atmospheric deposition. The results are compared to the data of atmospheric deposition of some European countries

  5. Atmospheric Deposition of Trace Elements Around Ulan-Bator City Studied by Moss and Lichen Biomonitoring Technique and INAA

    CERN Document Server

    Ganbold, G; Gundorina, S F; Frontasyeva, M V; Ostrovnaya, T M; Pavlov, S S; Tsendeekhuu, T

    2005-01-01

    For the first time the moss and lichen biomonitoring technique has been applied to air pollution in Mongolia (Ulan-Bator, the capital city). INAA at the IBR-2 reactor has made it possible to determine the content of 35 elements in moss and lichen biomonitors. Samples collected at sites located 10-15 km from the center of Ulan-Bator were analyzed by Instrumental Neutron Activation Analysis (INAA) using epithermal neutrons. The mosses (\\textit{Rhytidium rugosum}, \\textit{Thuidium abietinum}, \\textit{Entodon concinnus}) and lichens (\\textit{Cladonia stellaris}, \\textit{Parmelia separata}) were used to study the atmospheric deposition of trace elements. It was shown that the suggested types of mosses could be used as suitable biomonitors to estimate the concentration levels of heavy metals and trace elements in Ulan-Bator atmospheric deposition. The results are compared to the data of atmospheric deposition of some European countries.

  6. Suppression of hydrogenated carbon film deposition by scavenger techniques and their application to the tritium inventory control of fusion devices

    International Nuclear Information System (INIS)

    Tabares, F.L.; Tafalla, D.; Tanarro, I.; Herrero, V.J.; Islyaikin, A.; Maffiotte, C.

    2002-01-01

    The well-known radical and ion scavenger techniques of application in amorphous hydrogenated carbon film deposition studies are investigated in relation to the mechanism of tritium and deuterium co-deposition in carbon-dominated fusion devices. A particularly successful scheme results from the injection of nitrogen into methane/hydrogen plasmas for conditions close to those prevailing in the divertor region of present fusion devices. A complete suppression of the a-C : H film deposition has been achieved for N 2 /CH 4 ratios close to one in methane (5%)/hydrogen DC plasma. The implications of these findings in the tritium retention control in future fusion reactors are addressed. (author). Letter-to-the-editor

  7. Corrosion behaviour of the UO2 pellet in corrosive solutions using electrochemical Technique

    International Nuclear Information System (INIS)

    Taftanzani, A.; Sucipto; Lahagu, F.; Irianto, B.

    1996-01-01

    The UO 2 electrodes has been made from the local product of UO 2 pellets. The corrosion behaviour of the UO 2 pellets is affected by solution, by pH value and by concentration of salt solution. Investigation into corrosion behaviour of UO 2 electrodes have been carried out in saturated salt solutions using electrochemical technique. The saturated solutions have been made from salts NaCl, Na 2 CO 3 , Na 2 SO 4 and Na 3 PO 4 . The pH value have been done over range 1 pH 10 and the salt concentration (C) over range 0,001 mol/l C 1,0 mol/l, Na 2 CO 3 solution produced the lowest corrosion rates of UO 2 pellets. Those rates were relative constant in the range of pH = 4 - 8. The results indicate an influence of the Na 2 CO 3 concentrations on the corrosions on the corrosion rate, and the lowest rates occur in 0,10 mol/l Na 2 CO 3 . The lowest corrosion rate was 0.3388 mil/year in 0.10 mol/l Na 2 CO 3 by pH = 4. (author)

  8. Flow shop scheduling decisions through Techniques for Order Preference by Similarity to an Ideal Solution (TOPSIS

    Directory of Open Access Journals (Sweden)

    Arun Gupta

    2016-07-01

    Full Text Available The flow-shop scheduling problem (FSP has been widely studied in the literature and having a very active research area. Over the last few decades, a number of heuristic/meta-heuristic solution techniques have been developed. Some of these techniques offer excellent effectiveness and efficiency at the expense of substantial implementation efforts and being extremely complicated. This paper brings out the application of a Multi-Criteria Decision Making (MCDM method known as techniques for order preference by similarity to an ideal solution (TOPSIS using different weighting schemes in flow-shop environment. The objective function is identification of a job sequence which in turn would have minimum makespan (total job completion time. The application of the proposed method to flow shop scheduling is presented and explained with a numerical example. The results of the proposed TOPSIS based technique of FSP are also compared on the basis of some benchmark problems and found compatible with the results obtained from other standard procedures.

  9. Controlling the quality of nanocrystalline silicon made by hot-wire chemical vapor deposition by using a reverse H2 profiling technique

    NARCIS (Netherlands)

    Li, H. B. T.; Franken, R.H.; Stolk, R.L.; van der Werf, C.H.M.; Rath, J.K.; Schropp, R.E.I.

    2008-01-01

    Hydrogen profiling, i.e., decreasing the H2 dilution during deposition, is a well-known technique to maintain a proper crystalline ratio of the nanocrystalline (nc-Si:H) absorber layers of plasma-enhanced chemical vapor-deposited (PECVD) thin film solar cells. With this technique a large increase in

  10. Novel GIMS technique for deposition of colored Ti/TiO₂ coatings on industrial scale

    Directory of Open Access Journals (Sweden)

    Zdunek Krzysztof

    2016-03-01

    Full Text Available The aim of the present paper has been to verify the effectiveness and usefulness of a novel deposition process named GIMS (Gas Injection Magnetron Sputtering used for the flrst time for deposition of Ti/TiO₂ coatings on large area glass Substrates covered in the condition of industrial scale production. The Ti/TiO₂ coatings were deposited in an industrial System utilizing a set of linear magnetrons with the length of 2400 mm each for covering the 2000 × 3000 mm glasses. Taking into account the speciflc course of the GIMS (multipoint gas injection along the magnetron length and the scale of the industrial facility, the optical coating uniformity was the most important goal to check. The experiments on Ti/TiO₂ coatings deposited by the use of GIMS were conducted on Substrates in the form of glass plates located at the key points along the magnetrons and intentionally non-heated during any stage of the process. Measurements of the coatings properties showed that the thickness and optical uniformity of the 150 nm thick coatings deposited by GIMS in the industrial facility (the thickness differences on the large plates with 2000 mm width did not exceed 20 nm is fully acceptable form the point of view of expected applications e.g. for architectural glazing.

  11. Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites

    Science.gov (United States)

    Gaël, Dumont; Tanguy, Robert; Nicolas, Marck; Frédéric, Nguyen

    2017-10-01

    In this study, we tested the ability of geophysical methods to characterize a large technical landfill installed in a former sand quarry. The geophysical surveys specifically aimed at delimitating the deposit site horizontal extension, at estimating its thickness and at characterizing the waste material composition (the moisture content in the present case). The site delimitation was conducted with electromagnetic (in-phase and out-of-phase) and magnetic (vertical gradient and total field) methods that clearly showed the transition between the waste deposit and the host formation. Regarding waste deposit thickness evaluation, electrical resistivity tomography appeared inefficient on this particularly thick deposit site. Thus, we propose a combination of horizontal to vertical noise spectral ratio (HVNSR) and multichannel analysis of the surface waves (MASW), which successfully determined the approximate waste deposit thickness in our test landfill. However, ERT appeared to be an appropriate tool to characterize the moisture content of the waste, which is of prior information for the organic waste biodegradation process. The global multi-scale and multi-method geophysical survey offers precious information for site rehabilitation studies, water content mitigation processes for enhanced biodegradation or landfill mining operation planning.

  12. Comprehensive geophysical survey technique in exploration for deep-buried hydrothermal type uranium deposits in Xiangshan volcanic basin, China

    International Nuclear Information System (INIS)

    Ke, D.

    2014-01-01

    According to recent drilling results, uranium mineralization has been found underground more than 1000 m deep in the Xiangshan volcanic basin, in where uranium exploration has been carried out for over 50 years. This paper presents a comprehensive geophysical survey technique, including audio magnetotelluric method (AMT), high resolution ground magnetic and radon survey, which aim to prospect deep-buried and concealed uranium deposits in Xiangshan volcanic basin. Based on research and application, a comprehensive geophysical technique consisting of data acquisition, processing and interpretation has been established. Concealed rock and ore-controlling structure buried deeper than 1000 m can be detected by using this technique. Moreover, one kind of anti-interference technique of AMT survey is presented, which can eliminate the interference induced by the high-voltage power lines. Result of AMT in Xiangshan volcanic basin is demonstrated as high-low-high mode, which indicates there are three layers in geology. The upper layer with high resistivity is mainly the react of porphyroclastic lava. The middle layer with low resistivity is metamorphic schists or dellenite whereas the lower layer with high resistivity is inferred as granite. The interface between middle and lower layer is recognized as the potential zone for occurrence of uranium deposits. According to the corresponding relation of the resistivity and magnetic anomaly with uranium ore bodies, the tracing model of faults and interfaces between the different rocks, and the forecasting model of advantageous area for uranium deposits have been established. In terms of the forecasting model, some significant sections for uranium deposits were delineated in the west of the Xiangshan volcanic basin. As a result, some achievements on uranium prospecting have been acquired. High grade economic uranium ore bodies have been found in several boreholes, which are located in the forecasted zones. (author)

  13. Phase Evolution of YBa2Cu3O7-x films by all-chemical solution deposition route for coated conductors

    DEFF Research Database (Denmark)

    Yue, Zhao; Tang, Xiao; Wu, Wei

    2014-01-01

    In order to understand the all-chemical-solution-deposition (CSD) processes for manufacturing coated conductors, we investigated the phase evolution of YBa2Cu3O7 (YBCO) films deposited by a low-fluorine metal-organic solution deposition (LF-MOD) method on CSD derived Ce0.9La0.1O2/Gd2Zr2O7/Ni......W. It is shown that the phase transition from the pyrolyzed film to fully converted YBCO film in the LF-MOD process is similar to that in typical trifluoroacetates-metal organic deposition (TFA-MOD) processes even though the amount of TFA in the solution is reduced by almost one half compared with typical TFA...

  14. Rapid processing method for solution deposited YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dawley, J.T.; Clem, P.G.; Boyle, T.J.; Ottley, L.M.; Overmyer, D.L.; Siegal, M.P

    2004-02-01

    YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) films, deposited on buffered metal substrates, are the primary candidate for second-generation superconducting (SC) wires, with applications including expanded power grid transmission capability, compact motors, and enhanced sensitivity magnetic resonance imaging. Feasibility of manufacturing such superconducting wires is dependent on high processing speed, often a limitation of vapor and solution-based YBCO deposition processes. In this work, YBCO films were fabricated via a new diethanolamine-modified trifluoroacetic film solution deposition method. Modifying the copper chemistry of the YBCO precursor solution with diethanolamine enables a hundredfold decrease in the organic pyrolysis time required for MA/cm{sup 2} current density (J{sub c}) YBCO films, from multiple hours to {approx}20 s in atmospheric pressure air. High quality, {approx}0.2 {mu}m thick YBCO films with J{sub c} (77 K) values {>=}2 MA/cm{sup 2} at 77 K are routinely crystallized from these rapidly pyrolyzed films deposited on LaAlO{sub 3}. This process has also enabled J{sub c} (77 K)=1.1 MA/cm{sup 2} YBCO films via 90 m/h dip-coating on Oak Ridge National Laboratory RABiTS textured metal tape substrates. This new YBCO solution deposition method suggests a route toward inexpensive and commercializable {approx}$10/kA m solution deposited YBCO coated conductor wires.

  15. Chemical solution deposition method of fabricating highly aligned MgO templates

    Science.gov (United States)

    Paranthaman, Mariappan Parans [Knoxville, TN; Sathyamurthy, Srivatsan [Knoxville, TN; Aytug, Tolga [Knoxville, TN; Arendt, Paul N [Los Alamos, NM; Stan, Liliana [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2012-01-03

    A superconducting article includes a substrate having an untextured metal surface; an untextured barrier layer of La.sub.2Zr.sub.2O.sub.7 or Gd.sub.2Zr.sub.2O.sub.7 supported by and in contact with the surface of the substrate; a biaxially textured buffer layer supported by the untextured barrier layer; and a biaxially textured superconducting layer supported by the biaxially textured buffer layer. Moreover, a method of forming a buffer layer on a metal substrate includes the steps of: providing a substrate having an untextured metal surface; coating the surface of the substrate with a barrier layer precursor; converting the precursor to an untextured barrier layer; and depositing a biaxially textured buffer layer above and supported by the untextured barrier layer.

  16. Optical properties of As2S3 layers deposited from solutions

    Czech Academy of Sciences Publication Activity Database

    Matějec, Vlastimil; Pedlíková, Jitka; Bartoň, Ivo; Zavadil, Jiří; Kostka, Petr

    2016-01-01

    Roč. 431, Januar (2016), s. 47-51 ISSN 0022-3093 R&D Projects: GA ČR GAP106/12/2384 Institutional support: RVO:67985882 ; RVO:67985891 Keywords : Dip and spin coating * Arsenic sulfide * Solution in n-propylamine or ethylenediamine Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; JH - Ceramics, Fire-Resistant Materials and Glass (USMH-B) Impact factor: 2.124, year: 2016

  17. Properties of NiO thin films deposited by chemical spray pyrolysis using different precursor solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cattin, L. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France); Reguig, B.A.; Khelil, A. [Universite d' Oran Es-Senia, LPCM2E (Algeria); Morsli, M. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France); Benchouk, K. [Universite d' Oran Es-Senia, LPCM2E (Algeria); Bernede, J.C. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France)], E-mail: Jean-Christian.Bernede@univ-nantes.fr

    2008-07-15

    NiO thin films have been deposited by chemical spray pyrolysis using a perfume atomizer to grow the aerosol. The influence of the precursor, nickel chloride hexahydrate (NiCl{sub 2}.6H{sub 2}O), nickel nitrate hexahydrate (Ni(NO{sub 3}){sub 2}.6H{sub 2}O), nickel hydroxide hexahydrate (Ni(OH){sub 2}.6H{sub 2}O), nickel sulfate tetrahydrate (NiSO{sub 4}.4H{sub 2}O), on the thin films properties has been studied. In the experimental conditions used (substrate temperature 350 deg. C, precursor concentration 0.2-0.3 M, etc.), pure NiO thin films crystallized in the cubic phase can be achieved only with NiCl{sub 2} and Ni(NO{sub 3}){sub 2} precursors. These films have been post-annealed at 425 deg. C for 3 h either in room atmosphere or under vacuum. If all the films are p-type, it is shown that the NiO films conductivity and optical transmittance depend on annealing process. The properties of the NiO thin films annealed under room atmosphere are not significantly modified, which is attributed to the fact that the temperature and the environment of this annealing is not very different from the experimental conditions during spray deposition. The annealing under vacuum is more efficient. This annealing being proceeded in a vacuum no better than 10{sup -2} Pa, it is supposed that the modifications of the NiO thin film properties, mainly the conductivity and optical transmission, are related to some interaction between residual oxygen and the films.

  18. Synthesis of 2D Metal Chalcogenide Thin Films through the Process Involving Solution-Phase Deposition.

    Science.gov (United States)

    Giri, Anupam; Park, Gyeongbae; Yang, Heeseung; Pal, Monalisa; Kwak, Junghyeok; Jeong, Unyong

    2018-04-24

    2D metal chalcogenide thin films have recently attracted considerable attention owing to their unique physicochemical properties and great potential in a variety of applications. Synthesis of large-area 2D metal chalcogenide thin films in controllable ways remains a key challenge in this research field. Recently, the solution-based synthesis of 2D metal chalcogenide thin films has emerged as an alternative approach to vacuum-based synthesis because it is relatively simple and easy to scale up for high-throughput production. In addition, solution-based thin films open new opportunities that cannot be achieved from vacuum-based thin films. Here, a comprehensive summary regarding the basic structures and properties of different types of 2D metal chalcogenides, the mechanistic details of the chemical reactions in the synthesis of the metal chalcogenide thin films, recent successes in the synthesis by different reaction approaches, and the applications and potential uses is provided. In the last perspective section, the technical challenges to be overcome and the future research directions in the solution-based synthesis of 2D metal chalcogenides are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structural and electrical characterizations of BiFeO{sub 3} capacitors deposited by sol–gel dip coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Cetinkaya, Ali Osman, E-mail: cetinkayaaliosman@gmail.com [Physics Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Center for Nuclear Radiation Detector Research and Applications, 14280 Bolu (Turkey); Kaya, Senol; Aktag, Aliekber [Physics Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Center for Nuclear Radiation Detector Research and Applications, 14280 Bolu (Turkey); Budak, Erhan [Chemistry Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Yilmaz, Ercan [Physics Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Center for Nuclear Radiation Detector Research and Applications, 14280 Bolu (Turkey)

    2015-09-01

    Bismuth ferrite (BiFeO{sub 3}) thin films were deposited by sol–gel dip coating (SGDC) technique on Si-P(100) and glass substrates to investigate the structural and electrical characteristics. The aluminum (Al) metal contacts were formed on the samples deposited on the Si-P(100) to fabricate metal-oxide-semiconductor (MOS) capacitors. The fabricated MOS structures were characterized electrically by capacitance–voltage (C–V) and conductance–voltage (G/ω–V) measurements. The structural characterizations were performed by X-ray diffraction technique and scanning electron microscopy. The compositions of the films were investigated by energy-dispersive X-ray spectroscopy. The results exhibit that pure rhombohedral perovskite phase films were fabricated without any elemental contamination. Average grain sizes of the BiFeO{sub 3} deposited on silicon and glass wafers were found to be about 34,50 and 30,00 nm, respectively. In addition, while the thin films deposited on glass substrate exhibit porous surface, those deposited on Si-P(100) wafers exhibit dense microstructure with a homogenous surface. Moreover, the C–V and G/ω–V characteristics are sensitive to applied voltage frequency due to frequency dependent charges (N{sub ss}) and series resistance (R{sub s}). The peak values of R{sub s} have been decreased from 2,6 kΩ to 40 Ω, while N{sub ss} is varied from 6,57 × 10{sup 12} to 3,68 × 10{sup 12} eV{sup −1} cm{sup −2} with increasing in frequency. Consequently, pure phase polycrystalline BiFeO{sub 3} thin films were fabricated successfully by SGDC technique and BiFeO{sub 3} dielectric layer exhibits stable insulation characteristics. - Highlights: • Bismuth ferrite thin films were deposited onto silicon and glass substrates by sol–gel. • Structural and electrical properties of fabricated films have been investigated. • Pure rhombohedral perovskite phase films without any contamination were deposited. • Series resistance and interface

  20. Optoelectronic properties of cadmium sulfide thin films deposited by thermal evaporation technique

    International Nuclear Information System (INIS)

    Ali, N.; Iqbal, M.A.; Hussain, S.T.; Waris, M.; Munair, S.A.

    2011-01-01

    The substrate temperature in depositions of thin films plays a vital role in the characteristics of deposited films. We studied few characteristics of cadmium sulphide thin film deposited at different temperature (150 deg. C- 300 deg. C) on corning 7059 glass substrate. We measured transmittance, absorbance, band gap and reflectance via UV spectroscopy. It was found that the transmittance for 300 nm to 1100 nm was greater than 80%. The resistivity and mobility was calculated by Vander Pauw method which were 10-80 cm and 2-60 cm/sup 2/V/sup -1/S/sup -1/ respectively. The thermoelectric properties of the film were measured by hot and cold probe method which shows the N-type nature of the film. (author)

  1. Synthesis of dense nano cobalt-hydroxyapatite by modified electroless deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Zaheruddin, K., E-mail: zaheruddin@unimap.edu.my; Rahmat, A., E-mail: azmirahmat@unimap.edu.my; Shamsul, J. B., E-mail: sbaharin@unimap.edu.my; Mohd Nazree, B. D., E-mail: nazree@unimap.edu.my; Aimi Noorliyana, H., E-mail: aimiliyana@unimap.edu.my [School of Materials Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi Universiti Malaysia Perlis, Taman Muhibbah, Jejawi 02600 Arau Perlis (Malaysia)

    2016-07-19

    Cobalt-hydroxyapatite (Co-HA) composites was successfully prepared by simple electroless deposition process of Co on the surface of hydroxyapatite (HA) particles. Co deposition was carried out in an alkaline bath with sodium hypophosphite as a reducing agent. The electroless process was carried out without sensitization and activation steps. The deposition of Co onto HA was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The Co-HA composite powder was compacted and sintered at 1250°C. The Co particles were homogeneously dispersed in the HA matrix after sintering and the mechanical properties of composites was enhanced to 100 % with 3 % wt Co and gradually decreased at higher Co content.

  2. Spatial Distributions of Potassium, Solutes, and Their Deposition Rates in the Growth Zone of the Primary Corn Root 1

    Science.gov (United States)

    Silk, Wendy Kuhn; Hsiao, Theodore C.; Diedenhofen, Ulrike; Matson, Christina

    1986-01-01

    Densities of osmoticum and potassium were measured as a function of distance from the tip of the primary root of Zea mays L. (cv WF9 × mo17). Millimeter segments were excised and analyzed for osmotic potential by a miniaturized freezing point depression technique, and for potassium by flame spectrophotometry. Local deposition rates were estimated from the continuity equation with values for density and growth velocity. Osmotic potential was uniform, −0.73 ± 0.05 megapascals, throughout the growth zone of well-watered roots. Osmoticum deposition rate was 260 μosmoles per gram fresh weight per hour. Potassium density fell from 117 micromoles per gram in the first mm region to 48 micromoles per gram at the base of the growth zone. Potassium deposition rates had a maximum of 29 micromoles per gram per hour at 3.5 millimeters from the tip and were positive (i.e. potassium was being added to the tissue) until 8 millimeters from the tip. The results are discussed in terms of ion relations of the growing zone and growth physics. PMID:16665121

  3. Electrochemical performances of proton-conducting SOFC with La-Sr-Fe-O cathode fabricated by electrophoretic deposition techniques

    International Nuclear Information System (INIS)

    Asamoto, Makiko; Miyake, Shinji; Yonei, Yuka; Yamaura, Hiroyuki; Yahiro, Hidenori

    2009-01-01

    The electrochemical performances of Proton-conducting SOFC with La 0.7 Sr 0.3 FeO 3 (LSF) cathode fabricated by the electrophoretic deposition (EPD) technique were investigated. The EPD technique provided the uniform layer of LSF cathode with constant thickness and can easily control the thickness by changing an applied voltage. The power density of the SOFC cell was dependent on the thickness of LSF cathode. The activation energy was measured to elucidate the rate-determining step for LSF cathode reaction. (author)

  4. Bridge flap technique as a single-step solution to mucogingival problems: A case series

    Directory of Open Access Journals (Sweden)

    Vivek Gupta

    2011-01-01

    Full Text Available Shallow vestibule, gingival recession, inadequate width of attached gingiva (AG and aberrant frenum pull are an array of mucogingival problems for which several independent and effective surgical solutions are reported in the literature. This case series reports the effectiveness of the bridge flap technique as a single-step surgical entity for increasing the depth of the vestibule, root coverage, increasing the width of the AG and solving the problem of abnormal frenum pull. Eight patients with 18 teeth altogether having Millers class I, II or III recession along with problems of shallow vestibule, inadequate width of AG and with or without frenum pull underwent this surgical procedure and were followed-up till 9 months post-operatively. The mean root coverage obtained was 55% and the mean average gain in width of the AG was 3.5 mm. The mean percentage gain in clinical attachment level was 41%. The bridge flap technique can be an effective single-step solution for the aforementioned mucogingival problems if present simultaneously in any case, and offers considerable advantages over other mucogingival surgical techniques in terms of simplicity, limited chair-time for the patient and the operator, single surgical intervention for manifold mucogingival problems and low morbidity because of the absence of palatal donor tissue.

  5. Gold nanoparticles prepared by electro-exploding wire technique in aqueous solutions

    Science.gov (United States)

    Kumar, Lalit; Kapoor, Akanksha; Meghwal, Mayank; Annapoorni, S.

    2016-05-01

    This article presents an effective approach for the synthesis of Au nanoparticles via an environmentally benevolent electro-exploding wire (EEW) technique. In this process, Au nanoparticles evolve through the plasma generated from the parent Au metal. Compared to other typical chemical methods, electro-exploding wire technique is a simple and economical technique which normally operates in water or organic liquids under ambient conditions. Efficient size control was achieved using different aqueous medium like (1mM) NaCl, deionized water and aqueous solution of sodium hydroxide (NaOH, pH 9.5) using identical electro-exploding conditions. The gold nanoparticles exhibited the UV-vis absorption spectrum with a maximum absorption band at 530 nm, similar to that of gold nanoparticles chemically prepared in a solution. The mechanism of size variation of Au nanoparticles is also proposed. The results obtained help to develop methodologies for the control of EEW based nanoparticle growth and the functionalization of nanoparticle surfaces by specific interactions.

  6. Characterization of nanostructured photosensitive cadmium sulphide thin films grown by SILAR deposition technique

    International Nuclear Information System (INIS)

    Ubale, A.U.; Bargal, A.N.

    2010-01-01

    This paper reports the preparation of photosensitive nanostructured CdS thin films by successive ionic layer adsorption and reaction (SILAR) method at room temperature. To obtain good quality CdS thin films, preparative conditions such as concentration of cationic and anionic precursors, adsorption and rinsing time durations etc. are optimized. The structural, optical and electrical characterizations of the as-deposited and annealed CdS thin films were carried out using X-ray diffraction, scanning electron microscopy, optical absorption and electrical resistivity methods. The photoconductivity studies showed that the annealed films are more than that photosensitive. The TEP measurement shows that deposited films are of n-type. (author)

  7. TPR system: a powerful technique to monitor carbon nanotube formation during chemical vapour deposition

    International Nuclear Information System (INIS)

    Tristao, Juliana Cristina; Moura, Flavia Cristina Camilo; Lago, Rochel Montero; Sapag, Karim

    2010-01-01

    In this work, a TPR (Temperature Programmed Reduction) system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition), The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al 2 O 3 and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields. (author)

  8. Study of micelle formation in solutions of alkylammonium carboxylates in apolar solvents by positron annihilation techniques

    International Nuclear Information System (INIS)

    Fucugauchi, L.A.; Djermouni, B.; Handel, E.D.; Ache, H.J.

    1979-01-01

    The positron annihilation technique was applied to the study of the self-association process in solutions of alkylammonium carboxylates in apolar solvents, such as cyclohexane and benzene. The results indicate that the positronium formation probability responds very sensitively to changes in the microenvironment in these solutions. A distinct cooperative effect of the solution resulting in abrupt changes in the number of thermal ortho-positronium atoms formed was observed and studied as a function of the length and structure of the hydrocarbon chain in the cationic and anionic parts of the surfactant molecules. While the chain length in the cationic portion of the surfactant seems to have little effect on the positronium formation probability, distinct differences can be observed when the structure of the carboxylate is changed. Furthermore, a profound effect in the physical property of the solutions was recognized when cyclohexane was replaced by benzene as a solvent. The results are discussed in terms of the existing models for self-association. 4 figures

  9. Polyaniline (PANI) modified bentonite by plasma technique for U(VI) removal from aqueous solution

    Science.gov (United States)

    Liu, Xinghao; Cheng, Cheng; Xiao, Chengjian; Shao, Dadong; Xu, Zimu; Wang, Jiaquan; Hu, Shuheng; Li, Xiaolong; Wang, Weijuan

    2017-07-01

    Polyaniline (PANI) modified bentonite (PANI/bentonie) was synthesized by plasma induced polymerization of aniline on bentonite surface, and applied to uptake of uranium(VI) ions from aqueous solution. The as-synthesized PANI/bentonie was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). Batch adsorption technique was utilized to investigate the adsorption of U(VI) on bentonite and PANI/bentonite. The adsorption of U(VI) (10 mg/L) on PANI/bentonite surface is fairly depend on solution pH, ionic strength, and temperature in solution. The modified PANI on PANI/bentonite surface significantly enhances its adsorption capability for U(VI). The presence of humic acid (HA) can sound enhance U(VI) adsorption on PANI/bentonite at pH 6.5. According to the thermodynamic parameters, the adsorption of U(VI) on PANI/bentonite surface is a spontaneous and endothermic process. The results highlight the application of PANI/bentonite composites as candidate material for the uptake of trace U(VI) from aqueous solution.

  10. Functional Micrococcus lysodeikticus layers deposited by laser technique for the optical sensing of lysozyme.

    Science.gov (United States)

    Dinca, Valentina; Zaharie-Butucel, Diana; Stanica, Luciana; Brajnicov, Simona; Marascu, Valentina; Bonciu, Anca; Cristocea, Andra; Gaman, Laura; Gheorghiu, Mihaela; Astilean, Simion; Vasilescu, Alina

    2018-02-01

    Whole cell optical biosensors, made by immobilizing whole algal, bacterial or mammalian cells on various supports have found applications in several fields, from ecology and ecotoxicity testing to biopharmaceutical production or medical diagnostics. We hereby report the deposition of functional bacterial layers of Micrococcus lysodeikticus (ML) via Matrix-Assisted Pulsed Laser Evaporation (MAPLE) on poly(diallyldimethylamonium) (PDDA)-coated-glass slides and their application as an optical biosensor for the detection of lysozyme in serum. Lysozyme is an enzyme upregulated in inflammatory diseases and ML is an enzymatic substrate for this enzyme. The MAPLE-deposited bacterial interfaces were characterised by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier-Transformed Infrared Spectroscopy (FTIR), Raman and optical microscopy and were compared with control interfaces deposited via layer-by-layer on the same substrate. After MAPLE deposition and coating with graphene oxide (GO), ML-modified interfaces retained their functionality and sensitivity to lysozyme's lytic action. The optical biosensor detected lysozyme in undiluted serum in the clinically relevant range up to 10μgmL -1 , in a fast and simple manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Fabrication and characterization of In2S3 thin films deposited by thermal evaporation technique

    International Nuclear Information System (INIS)

    Timoumi, A.; Bouzouita, H.; Kanzari, M.; Rezig, B.

    2005-01-01

    Indium sulphide, In 2 S 3 , thin films present an alternative to conventional CdS films as buffer layer for CIS-based thin film solar cells. The objective is to eliminate toxic cadmium for environmental reasons. Indium sulphide is synthesized and deposited by single source vacuum thermal evaporation method on glass substrates. The films are analyzed by X-ray diffraction (XRD) and spectrophotometric measurements. They have a good crystallinity, homogeneity and adhesion. The X-ray diffraction analysis confirmed the initial amorphous nature of the deposited InS film and phase transition into crystalline In 2 S 3 formed upon annealing at free air for 250 deg. C substrate temperature for 2 h. The optical constants of the deposited films were obtained from the analysis of the experimental recorded transmission and reflectance spectral data over the wavelength range of 300-1800 nm. We note that the films annealed at 250 deg. C for 2 h show a good homogeneity with 80% transmission. An analysis of the optical absorption data of the deposited films revealed an optical direct band gap energy in the range of 2.0-2.2 eV

  12. Fabrication of Antireflection Nanodiamond Particle Film by the Spin Coating Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available Diamond-based antireflective (AR coatings were fabricated using a spin coating of diamond suspension at room temperature as nucleation enhancement procedure and microwave plasma enhanced chemical vapour deposition. Various working pressures were used to investigate their effect on the optical characterization of the as-deposited diamond films. Scanning electron microscopy (SEM and atomic forced microscopy (AFM were employed to analyze the surface properties of the diamond films. Raman spectra and transmission electron microscopy (TEM also were used for analysis of the microstructure of the films. The results showed that working pressure had a significant effect on thickness, surface roughness, and wettability of the as-deposited diamond films. Deposited under 35 Torr or working pressure, the film possessed a low surface roughness of 13.8 nm and fine diamond grain sizes of 35 nm. Reflectance measurements of the films also were carried out using UV-Vis spectrometer and revealed a low reflectance value of the diamond films. The achievement demonstrated feasibility of the proposed spin-coating procedure for large scale production and thus opens up a prospect application of diamond film as an AR coating in industrial optoelectronic device.

  13. Diamond-coated three-dimensional GaN micromembranes: effect of nucleation and deposition techniques

    Czech Academy of Sciences Publication Activity Database

    Ižák, Tibor; Vanko, G.; Babchenko, Oleg; Potocký, Štěpán; Marton, M.; Vojs, M.; Choleva, P.; Kromka, Alexander

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2585-2590 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GP14-16549P Institutional support: RVO:68378271 Keywords : diamond film * GaN micromembranes * microwave chemical vapour deposition * polymer-based nucleation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.522, year: 2015

  14. Effect of Si ion irradiation on polycrystalline CdS thin film grown from novel photochemical deposition technique

    International Nuclear Information System (INIS)

    Soundeswaran, S.; Senthil Kumar, O.; Ramasamy, P.; Kabi Raj, D.; Avasthi, D.K.; Dhanasekaran, R.

    2005-01-01

    CdS thin films have been deposited from aqueous solution by photochemical reactions. The solution contains Cd(CH 3 COO) 2 and Na 2 S 2 O 3 , and pH is controlled in an acidic region by adding H 2 SO 4 . The solution is illuminated with light from a high-pressure mercury-arc lamp. CdS thin films are formed on a glass substrate by the heterogeneous nucleation and the deposited thin films have been subjected to high-energy Si ion irradiations. Si ion irradiation has been performed with an energy of 80 MeV at fluences of 1x10 11 , 1x10 12 , 1x10 13 and 1x10 14 ions/cm 2 using tandem pelletron accelerator. The irradiation-induced changes in CdS thin films are studied using XRD, Raman spectroscopy and photoluminescence. Broadening of the PL emission peak were observed with increasing irradiation fluence, which could be attributed to the band tailing effect of the Si ion irradiation. The lattice disorder takes place at high Si ion fluences

  15. Fe3O4/γ-Fe2O3 nanoparticle multilayers deposited by the Langmuir-Blodgett technique for gas sensors application.

    Science.gov (United States)

    Capone, S; Manera, M G; Taurino, A; Siciliano, P; Rella, R; Luby, S; Benkovicova, M; Siffalovic, P; Majkova, E

    2014-02-04

    Fe3O4/γ-Fe2O3 nanoparticles (NPs) based thin films were used as active layers in solid state resistive chemical sensors. NPs were synthesized by high temperature solution phase reaction. Sensing NP monolayers (ML) were deposited by Langmuir-Blodgett (LB) techniques onto chemoresistive transduction platforms. The sensing ML were UV treated to remove NP insulating capping. Sensors surface was characterized by scanning electron microscopy (SEM). Systematic gas sensing tests in controlled atmosphere were carried out toward NO2, CO, and acetone at different concentrations and working temperatures of the sensing layers. The best sensing performance results were obtained for sensors with higher NPs coverage (10 ML), mainly for NO2 gas showing interesting selectivity toward nitrogen oxides. Electrical properties and conduction mechanisms are discussed.

  16. Structural properties of perovskite films on zinc oxide nanoparticles-reduced graphene oxide (ZnO-NPs/rGO) prepared by electrophoretic deposition technique

    Science.gov (United States)

    Bahtiar, Ayi; Nurazizah, Euis Siti; Latiffah, Efa; Risdiana, Furukawa, Yukio

    2018-02-01

    Perovskite solar cells highly believed as next generation solar cells to replace currently available inorganic silicon solar cells due to their high power conversion efficiency and easy processing to thin films using solution processing techniques. Performance and stability, however still need to be improved for mass production and widely used for public electricity generation. Perovskite solar cells are commonly deposited on Titanium Dioxide (TiO2) film as an effective electron transport layer (ETL). We used Zinc Oxide nanoparticles (ZnO-NPs) as ETL in perovskite solar cells due to the low temperature required for crystallization and can be formed into different shapes of nanostructures. However, perovskite film can easily degrade into insulating lead iodide due to deprotonation of the methylammoniumcation at the surface of ZnO-NPs, in particular when it stored in ambient air with high relative humidity. The degradation of perovskite layer is therefore needed to be overcome. Here, we capped ZnO-NPs with reduced graphene oxide (rGO) to overcome the degradation of perovskite film where ZnO-NPs is synthesized by sol-gel method. The average nanoparticle size of ZnO is 15 nm. ZnO-NPs and ZnO-NPs-rGO films are prepared using electrophoretic deposition technique, which can produce large area with good homogeneity and high reproducibility. The stability of perovskite layer can significantly be improved by capping ZnO with rGO, which is indicated by absence of color change of perovskite after storage for 5 (five) days in ambient air with relative humidity above 95%. Moreover, the X-Ray Diffaction peaks of perovskite film are more preserved when deposited on ZnO/rGO film than using only ZnO film. We strongly believe, by capping ZnO film with rGO, both the performance and stability of perovskite solar cells can be improved significantly.

  17. An accurate technique for the solution of the nonlinear point kinetics equations

    International Nuclear Information System (INIS)

    Picca, Paolo; Ganapol, Barry D.; Furfaro, Roberto

    2011-01-01

    A novel methodology for the solution of non-linear point kinetic (PK) equations is proposed. The technique is based on a piecewise constant approximation of PK system of ODEs and explicitly accounts for reactivity feedback effects, through an iterative cycle. High accuracy is reached by introducing a sub-mesh for the numerical evaluation of integrals involved and by correcting the source term to include the non-linear effect on a finer time scale. The use of extrapolation techniques for convergence acceleration is also explored. Results for adiabatic feedback model are reported and compared with other benchmarks in literature. The convergence trend makes the algorithm particularly attractive for applications, including in multi-point kinetics and quasi-static frameworks. (author)

  18. Characterization of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316 L by varying laser energy

    International Nuclear Information System (INIS)

    Khandelwal, Himanshu; Singh, Gurbhinder; Agrawal, Khelendra; Prakash, Satya; Agarwal, R.D.

    2013-01-01

    Highlights: ► Hydroxyapatite coating was successfully deposited on stainless steel substrate by pulse laser deposition at different energy levels (i.e. 300 mJ and 500 mJ, respectively). ► Variation in laser energy affects the surface characteristic of hydroxyapatite coating (particle size, surface roughness, uniformity, Ca/P ratio). ► Laser energy between 300 mJ and 500 mJ is the optimal choice for obtaining ideal Ca/P ratio. - Abstract: Hydroxyapatite is an attractive biomaterial mainly used in bone and tooth implants because it closely resembles human tooth and bone mineral and has proven to be biologically compatible with these tissues. In spite of this advantage of hydroxyapatite it has also certain limitation like inferior mechanical properties which do not make it suitable for long term load bearing applications; hence a lot of research is going on in the development of hydroxyapatite coating over various metallic implants. These metallic implants have good biocompatibility and mechanical properties. The aim of the present work is to deposit hydroxyapatite coating over stainless steel grade 316 L by pulse laser deposition technique by varying laser energy. To know the effect of this variation, the coatings were than characterized in detail by X-ray diffraction, finite emission-scanning electron microscope, atomic force microscope and energy dispersive X-ray spectroscopy.

  19. [Rapid measurement of trace mercury in aqueous solutions with optical-electrical dual pulse LIBS technique].

    Science.gov (United States)

    Zhang, Qian; Xiong, Wei; Chen, Yu-Qi; Li, Run-Hua

    2011-02-01

    A wood slice was used as absorber to transfer liquid sample to solid sample in order to solve the problems existing in directly analyzing aqueous solutions with laser-induced breakdown spectroscopy (LIBS). An optical-electrical dual pulse LIBS (OEDP-LIBS) technique was first used to enhance atomic emission of mercury in laser-induced plasma. The calibration curves of mercury were obtained by typical single pulse LIBS and OEDP-LIBS techniques. The limit of detection (LOD) of mercury in these two techniques reaches 2.4 and 0.3 mg x L(-1), respectively. Under current experimental conditions, the time-integrated a tomic emission of mercury at 253.65 nm was enhanced 50 times and the LOD of mercury was improved by one order, if comparing OEDP-LIBS to single pulse LIBS. The required time for a whole analysis process is less than 5 minutes. As the atomic emission of mercury decays slowly while increasing the delay time between electrical pulse and laser pulse, increasing the electrical pulse width can further enhance the time integrated intensity of mercury emission and improve the detection sensitivity of mercury by OEDP-LIBS technique.

  20. Antimicrobial activities of CuO films deposited on Cu foils by solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ekthammathat, Nuengruethai [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun, E-mail: ttpthongtem@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai, E-mail: schthongtem@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-07-15

    Monoclinic CuO thin films on Cu foils were successfully synthesized by a simple wet chemical method in alkaline solution with the pH of 13 at room temperature for different lengths of time. The as-synthesized thin films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Formation mechanism of the phase and morphologies was also discussed according to the experimental results. In this research, assemblies of pure CuO nanospindles with different orientations containing in the thin film synthesized for 2 weeks with 400 nm and 413 nm violet emissions showed better antimicrobial activity against S. aureus than E. coli.

  1. Antimicrobial activities of CuO films deposited on Cu foils by solution chemistry

    International Nuclear Information System (INIS)

    Ekthammathat, Nuengruethai; Thongtem, Titipun; Thongtem, Somchai

    2013-01-01

    Monoclinic CuO thin films on Cu foils were successfully synthesized by a simple wet chemical method in alkaline solution with the pH of 13 at room temperature for different lengths of time. The as-synthesized thin films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Formation mechanism of the phase and morphologies was also discussed according to the experimental results. In this research, assemblies of pure CuO nanospindles with different orientations containing in the thin film synthesized for 2 weeks with 400 nm and 413 nm violet emissions showed better antimicrobial activity against S. aureus than E. coli.

  2. Improvement in fatigue property for a PZT ferroelectric film device with SRO electrode film prepared by chemical solution deposition

    International Nuclear Information System (INIS)

    Miyazaki, H.; Miwa, Y.; Suzuki, H.

    2007-01-01

    PZT films with (1 0 0) and (1 1 0) orientation were prepared by spin coating using the chemical solution deposition (CSD) method on an SRO/Si or a Pt/Ti/SiO 2 /Si substrate. The remnant polarization and the saturation polarization of the PZT/SRO/Si film were 21 and 35 μC/cm 2 , and those of the PZT/Pt/Ti/SiO 2 /Si film were 20 and 31 μC/cm 2 . The remnant polarization of the PZT/SRO/Si film maintained more than 10 8 switching cycles, and the fatigue property was observed for the PZT film fabricated on the Pt/Ti/SiO 2 /Si electrode

  3. Stacking layered structure of polymer light emitting diodes prepared by evaporative spray deposition using ultradilute solution for improving carrier balance

    International Nuclear Information System (INIS)

    Aoki, Youichi; Shakutsui, Masato; Fujita, Katsuhiko

    2009-01-01

    Polymer light-emitting diodes (PLEDs) with staking layered structures are prepared by the evaporative spray deposition using ultradilute solution (ESDUS) method, which has enabled forming a polymer layer onto another polymer layer even if both polymers are soluble in a solvent used for the preparation. By this method, polymers having various HOMO and LUMO levels can be stacked as a hole transport layer, an emitting layer and an electron transport layer as commonly employed in small molecule-based organic light emitting diodes. Here we demonstrated that a PLED having a tri-layer structure using three kinds of polymers showed significant improvement in quantum efficiency compared with those having a single or bi-layer structure of corresponding polymers.

  4. A new technique in constructing closed-form solutions for nonlinear PDEs appearing in fluid mechanics and gas dynamics

    Directory of Open Access Journals (Sweden)

    Panayotounakos D. E.

    1996-01-01

    Full Text Available We develop a new unique technique in constructing closed-form solutions for several nonlinear partial differential systems appearing in fluid mechanics and gas dynamics. The obtained solutions include fewer arbitrary functions than needed for general solutions, fact that permits us to specify them according to the initial state, or the geometry, of each specific problem under consideration. In order to apply the before mentioned technique we construct closed-form solutions concerning the gas-dynamic equations with constant pressure, the dynamic equations of an ideal gas in isentropic flow, and the two-dimensional incompressible boundary layer flow.

  5. Higher lung deposition with Respimat® Soft Mist™ Inhaler than HFA-MDI in COPD patients with poor technique

    Directory of Open Access Journals (Sweden)

    Peter Brand

    2008-08-01

    Full Text Available Peter Brand1, Bettina Hederer2, George Austen3, Helen Dewberry3, Thomas Meyer41RWTH, Aachen, Germany; 2Boehringer Ingelheim, Ingelheim, Germany; 3Boehringer Ingelheim, Bracknell, UK; 4Inamed Research, Gauting, GermanyAbstract: Aerosols delivered by Respimat® Soft Mist™ Inhaler (SMI are slower-moving and longer-lasting than those from pressurized metered-dose inhalers (pMDIs, improving the efficiency of pulmonary drug delivery to patients. In this four-way cross-over study, adults with chronic obstructive pulmonary disease (COPD and with poor pMDI technique received radiolabelled Berodual® (fenoterol hydrobromide 50 µg/ipratropium bromide 20 µg via Respimat® SMI or hydrofluoroalkane (HFA-MDI (randomized order on test days 1 and 2, with no inhaler technique training. The procedure was repeated on test days 3 and 4 after training. Deposition was measured by gamma scintigraphy. All 13 patients entered (9 males, mean age 62 years; FEV1 46% of predicted inhaled too fast at screening (peak inspiratory flow rate [IF]: 69–161 L/min. Whole lung deposition was higher with Respimat® SMI than with pMDI for untrained (37% of delivered dose vs 21% of metered dose and trained patients (53% of delivered vs 21% of metered dose (pSign-Test = 0.15; pANOVA< 0.05. Training also improved inhalation profiles (slower average and peak IF as well as longer breath-hold time. Drug delivery to the lungs with Respimat® SMI is more efficient than with pMDI, even with poor inhaler technique. Teaching patients to hold their breath as well as to inhale slowly and deeply increased further lung deposition using Respimat® SMI.Keywords: chronic obstructive pulmonary disease, drug delivery, inhalation, metered-dose inhaler, poor inhalation technique, training

  6. Identification of sources of tar balls deposited along the Goa coast, India, using fingerprinting techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Suneel, V.; Vethamony, P.; Zakaria, M.P.; Naik, B.G.; Prasad, K.V.

    . Christensen et al (2007) reviewed the practical aspects of chemometrics for oil spill fingerprinting and provided a basis for the use of chemometric 3    methods in tiered oil spill fingerprinting. Biomarker compounds such as isoprenoid alkanes, hopanes... deposited along the Malaysian beaches. Low molecular weight/high molecular weight ratios (L/H) of both alkanes and PAHs together are useful in categorizing the weathering effects of tar balls (Chandru et al., 2008). However, in cases...

  7. Thick CrN/NbN multilayer coating deposited by cathodic arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Juliano Avelar; Tschiptschin, Andre Paulo; Souza, Roberto Martins, E-mail: antschip@usp.br [Universidade de Sao Paulo (USP), SP (Brazil); Lima, Nelson Batista de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-01-15

    The production of tribological nanoscale multilayer CrN/NbN coatings up to 6 μm thick by Sputtering/HIPIMS has been reported in literature. However, high demanding applications, such as internal combustion engine parts, need thicker coatings (>30 μm). The production of such parts by sputtering would be economically restrictive due to low deposition rates. In this work, nanoscale multilayer CrN/NbN coatings were produced in a high-deposition rate, industrial-size, Cathodic Arc Physical Vapor Deposition (ARC-PVD) chamber, containing three cathodes in alternate positions (Cr/ Nb/Cr). Four 30 μm thick NbN/CrN multilayer coatings with different periodicities (20, 10, 7.5 and 4 nm) were produced. The coatings were characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The multilayer coating system was composed of alternate cubic rock salt CrN and NbN layers, coherently strained due to lattice mismatch. The film grew with columnar morphology through the entire stratified structure. The periodicities adopted were maintained throughout the entire coating. The 20 nm periodicity coating showed separate NbN and CrN peaks in the XRD patterns, while for the lower periodicity (≤10nm) coatings, just one intermediate lattice (d-spacing) was detected. An almost linear increase of hardness with decreasing bilayer period indicates that interfacial effects can dominate the hardening mechanisms. (author)

  8. Deposition of waste kaolin in aluminum alloy by electrolytic plasma technique

    International Nuclear Information System (INIS)

    Palinkas, Fabiola Bergamasco da Silva Marcondes; Antunes, Maria Lucia Pereira; Cruz, Nilson Cristino; Rangel, Elidiane Cipriano; Souza, Jose Antonio da Silva

    2016-01-01

    Full text: Kaolin is a widely explored mineral for various industrial purposes and its processing generates up to 90% of waste, corresponding to 500 thousand tons annually. The Deposition of Kaolin residue on aluminum alloys by electrolytic plasma has objective of a valorization of the residue. It was evaluated the mineralogical composition by X-ray diffraction (XRD), using PANalytical diffractometer X'Pert Pro. The scanning electron microscopy (SEM) and the spectrometry of dispersive of energy (EDS) evaluated the morphology and elementary chemical composition by microscope scanning electron JEOL JSM-6010LA. The Infrared Spectroscopy (FTIR) has used a Spectrometer the Perkin-Elmer 1760X FT-IR with spectral range 4000-400 cm -1 . XRD results indicate peaks of kaolinite as the main constituent. The morphology of the particles correspond to pseudo-hexagonal lamellar crystals characteristic of kaolinite, analysis by EDS allows to identify the composition of the particles as Al and Si. The samples were deposited at concentrations of 5, 10 and 15 mg of the residue and each concentration were considered deposition times of 5, 10 and 15 minutes. Tests evaluate the films as the wettability, chemical composition, morphology, mechanical strength and corrosion resistance. Results indicate the presence of kaolinite, alumina and mullite in the obtained coatings. (author)

  9. Preparation, characterization and optical properties of Gadolinium doped ceria thin films by pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Nagaraju, P.; Vijaya Kumar, Y.; Vishnuvardhan Reddy, C.; Ramana Reddy, M.V.; Phase, D.M; Raghavendra Reddy, V.

    2013-01-01

    The growth of Gadolinium doped ceria thin films with controlled surface structure for device quality applications presents a significant problem for experimental investigation. In the present study gadolinium doped cerium oxide thin films were prepared by pulsed laser deposition (PLD) and were studied for their surface structure evaluation in relation to the optimized operating conditions during the stage of film preparation. The deposition was made with gadolinium concentration of 10 mole% to ceria pellets. The films were deposited on quartz substrate in the presence of oxygen partial pressure of 1.5 x 10 -3 torr using KrF Excimer laser with laser energy 220 mJ at a substrate temperature 700℃. The effect of annealing temperature on 10 mole% GDC thin film was investigated. The film thickness was measured by using AMBIOS make XP-l stylus profiler. As prepared and annealed thin films were characterized for crystallinity, particle size and orientation by using G.I.XRD. The films were characterized using atomic force microscopy (AFM). The AFM results gave a consistent picture of the evolution of GDC film surface morphologies and microstructures in terms of surface roughness, grain distribution and mean grain size. The optical transmittance spectra was used to determine the optical constants such as optical band gap, refractive index, extinction coefficient of as prepared and annealed thin films. (author)

  10. Real-time kinetic modeling of YSZ thin film roughness deposited by e-beam evaporation technique

    International Nuclear Information System (INIS)

    Galdikas, A.; Cerapaite-Trusinskiene, R.; Laukaitis, G.; Dudonis, J.

    2008-01-01

    In the present study, the process of yttrium-stabilized zirconia (YSZ) thin films deposition on optical quartz (SiO 2 ) substrates using e-beam deposition technique controlling electron gun power is analyzed. It was found that electron gun power influences the non-monotonous kinetics of YSZ film surface roughness. The evolution of YSZ thin film surface roughness was analyzed by a kinetic model. The model is based on the rate equations and includes processes of surface diffusion of the adatoms and the clusters, nucleation, growth and coalescence of islands in the case of thin film growth in Volmer-Weber mode. The analysis of the experimental results done by modeling explains non-monotonous kinetics and dependence of the surface roughness on the electron gun power. A good quantitative agreement with experimental results is obtained taking into account the initial roughness of the substrate surface and the amount of the clusters in the flux of evaporated material.

  11. Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide

    Directory of Open Access Journals (Sweden)

    Domenico Melisi

    2014-11-01

    Full Text Available In this paper, a spray technique is used to perform low temperature deposition of multi-wall carbon nanotubes on semi-insulating gallium arsenide in order to obtain photodectors. A dispersion of nanotube powder in non-polar 1,2-dichloroethane is used as starting material. The morphological properties of the deposited films has been analysed by means of electron microscopy, in scanning and transmission mode. Detectors with different layouts have been prepared and current–voltage characteristics have been recorded in the dark and under irradiation with light in the range from ultraviolet to near infrared. The device spectral efficiency obtained from the electrical characterization is finally reported and an improvement of the photodetector behavior due to the nanotubes is presented and discussed.

  12. Studying the electrochemical deposition process of molybdenum from aqueous solution of molybdate ions

    Directory of Open Access Journals (Sweden)

    Samira Fikret Cafarova

    2016-02-01

    Full Text Available In this study, the tracing of the electroreduction process of molybdate ions in aqueous media at different conditions is achieved for obtaining molybdenum metal in a simple and easy way. The kinetics and the mechanism of the electroreduction of molybdate ions are studied using cathodic polarization technique. It is observed that, the speed of the electroreduction process depends on the speed of the change of the cathodic potential sweep as well as on the temperature of the electrodeposition bath. Moreover, it is observed that, at the potential range from the stationary potential (Est = 0.25V to −0.7 V, the electroreduction of molybdate ions occurs into two steps. Moreover it is observed that, after −0.7 V the electroreduction process of molybdate is accompanying with evolution of hydrogen.

  13. Noninvasive radioisotopic technique for detection of platelet deposition in mitral valve prostheses and quantitation of visceral microembolism in dogs

    International Nuclear Information System (INIS)

    Dewanjee, M.K.; Fuster, V.; Rao, S.A.; Forshaw, P.L.; Kaye, M.P.

    1983-01-01

    A noninvasive technique has been developed in the dog model for imaging, with a gamma camera, the platelet deposition on Bjoerk-Shiley mitral valve prostheses early postoperatively. At 25 hours after implantation of the prosthesis and 24 hours after intravenous administration of 400 to 500 microCi of platelets labeled with indium-111, the platelet deposition in the sewing ring and perivalvular cardiac tissue can be clearly delineated in a scintiphotograph. An in vitro technique was also developed for quantitation of visceral microemboli in brain, lungs, kidneys, and other tissues. Biodistribution of the labeled platelets was quantitated, and the tissue/blood radioactivity ratio was determined in 22 dogs in four groups: unoperated normal dogs, sham-operated dogs, prosthesis-implanted dogs, and prosthesis-implanted dogs treated with dipyridamole before and aspirin and dipyridamole immediately after operation. Fifteen to 20% of total platelets were consumed as a consequence of the surgical procedure. On quantitation, we found that platelet deposition on the components of the prostheses was significantly reduced in prosthesis-implanted animals treated with dipyridamole and aspirin when compared with prosthesis-implanted, untreated dogs. All prosthesis-implanted animals considered together had a twofold to fourfold increase in tissue/blood radioactivity ratio in comparison with unoperated and sham-operated animals, an indication that the viscera work as filters and trap platelet microemboli that are presumably produced in the region of the mitral valve prostheses. In the dog model, indium-111-labeled platelets thus provide a sensitive marker for noninvasive imaging of platelet deposition on mechanical mitral valve prostheses, in vitro evaluation of platelet microembolism in viscera, in vitro quantitation of surgical consumption of platelets, and evaluation of platelet-inhibitor drugs

  14. Modification of the morphology and optical properties of SnS films using glancing angle deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Sazideh, M.R., E-mail: Mohammadrezasazideh@gmail.com [Thin Film Lab., Faculty of Physics, Semnan University, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of); Dizaji, H. Rezagholipour, E-mail: hrgholipour@semnan.ac.ir [Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of); Ehsani, M.H., E-mail: mhe_ehsani@yahoo.com [Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of); Moghadam, R. Zarei, E-mail: r.zarei1991@gmail.com [Thin Film Lab., Faculty of Physics, Semnan University, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of)

    2017-05-31

    Highlights: • SnS thin films produced by thermal evaporation method using glancing angle deposition technique. • At α = 85° the layers show a considerable change in effective refractive index (Δn = 1.7) at near-IR spectral range. • FESEM images showed drastic changes in the structure and morphology of individual nano-plates as a function of incident angle deposition. - Abstract: Tin sulfide (SnS) films were prepared by thermal evaporation method using Glancing Angle Deposition (GLAD) technique at zero and different oblique incident flux angles (α = 45°, 55°, 65°, 75° and 85°). The physical properties of prepared films were systematically investigated. The X-ray diffraction analysis indicated that the film deposited at α = 0° formed as single phase with an orthorhombic structure. However, the layers became amorphous at α = 45°, 55°, 65°, 75° and 85°. Beside the appearance of amorphous feature in the film prepared at α higher than zero, Sn{sub 2}S{sub 3} phase was also observed. The top and cross-sectional field emission scanning electron microscope (FESEM) images of the samples showed noticeable changes in the structure and morphology of individual nano-plates as a function of incident angle. The band gap and refractive index values of the films were calculated by optical transmission measurements. The optical band-gap values were observed to increase with increasing the incident flux angle. This can be due to presence of Sn{sub 2}S{sub 3} phase observed in the samples produced at α values other than zero. The effective refractive index and porosity exhibit an opposite evolution as the incident angle α rises. At α = 85° the layers show a considerable change in effective refractive index (Δn = 1.7) at near-IR spectral range.

  15. Technique for controllable vapor-phase deposition of 1-nitro(14C)pyrene and other polycyclic aromatic hydrocarbons onto environmental particulate matter

    International Nuclear Information System (INIS)

    Lucas, S.V.; Lee, K.W.; Melton, C.W.; Lewtas, J.; Ball, L.M.

    1991-01-01

    To produce environmental particles fortified with a polycyclic aromatic hydrocarbon (PAH) for toxicology studies, an experimental apparatus was devised for deposition of the desired chemical species onto particles in a controlled and reproducible manner. The technique utilized consists of dispersion of the particles on a gaseous stream at a controlled rate, thermal vaporization of a solution of PAH, delivery of the vaporized PAH into the aerosol of particles at a controlled rate, subsequent condensation of the PAH onto the particles, and final recovery of the coated particles. The effectiveness of this approach was demonstrated by vapor-coating a 14 C-labeled PAH (1-nitro( 14 C)-pyrene) onto diesel engine exhaust particles that had previously been collected by tunnel dilution sampling techniques. Using the 14 C label as a tracer, the coated particles were characterized with respect to degree of coating, integrity of particle structure and absence of chemical decomposition of the coating substrate. The study demonstrates that the described method provides a controllable means for depositing a substance uniformly and with a high coating efficiency onto aerosolized particles. The technique was also used to vapor-coat benzo(a)pyrene onto diesel engine exhaust and urban ambient air particulate matter, and 2-nitrofluoranthene onto urban ambient air particulate matter. Coating efficiencies of about 400 micrograms/g particulate matter were routinely obtained on a single coating run, and up to 1200 micrograms/g (1200 ppm) were achieved after a second pass through the process. The coated particles were subsequently utilized in biological fate, distribution and metabolism studies

  16. A combination between Laplace transformation technique and numerical approximations to the Fokker-Planck equation solutions

    International Nuclear Information System (INIS)

    Monticelli, Cintia O.; Wortmann, Sergio; Segatto, Cynthia F.

    2005-01-01

    In this work is obtained a hybrid solution to the Fokker-Planck equation with energy dependency, very used in ion implantation problems. The main idea relies on the application of Laplace transform in the energy variable, and finite-difference in the spatial variable and in the angular variable. This procedure leads to a symbolic matrix problem for the transformed energy. To solve this system, is needed to do the Laplace inverse of the (sI+A) matrix, where s is a complex parameter, I is the identity matrix and A is a square matrix that was proceeded from the finite-difference in the spatial variable and in the angular variable. The matrix A is not defective, then is taken decomposition of A in a sum of two others matrices, where one is defective. It leads a iterative inversion method, similar the source fixed method combined with the diagonalization method, then is obtained the values to the angular flux. Hereafter we can to determine the energy deposited into the electronic system and in the nuclear system of the target. To comprove the results obtained, the simulation of implantation of B into Si at energies ranging from 1 KeV to 50 MeV was carried out and compared with the results by software SRIM2003. (author)

  17. A safeguards verification technique for solution homogeneity and volume measurements in process tanks

    International Nuclear Information System (INIS)

    Suda, S.; Franssen, F.

    1987-01-01

    A safeguards verification technique is being developed for determining whether process-liquid homogeneity has been achieved in process tanks and for authenticating volume-measurement algorithms involving temperature corrections. It is proposed that, in new designs for bulk-handling plants employing automated process lines, bubbler probes and thermocouples be installed at several heights in key accountability tanks. High-accuracy measurements of density using an electromanometer can now be made which match or even exceed analytical-laboratory accuracies. Together with regional determination of tank temperatures, these measurements provide density, liquid-column weight and temperature gradients over the fill range of the tank that can be used to ascertain when the tank solution has reached equilibrium. Temperature-correction algorithms can be authenticated by comparing the volumes obtained from the several bubbler-probe liquid-height measurements, each based on different amounts of liquid above and below the probe. The verification technique is based on the automated electromanometer system developed by Brookhaven National Laboratory (BNL). The IAEA has recently approved the purchase of a stainless-steel tank equipped with multiple bubbler and thermocouple probes for installation in its Bulk Calibration Laboratory at IAEA Headquarters, Vienna. The verification technique is scheduled for preliminary trials in late 1987

  18. Effect of complexing agent TEA: The structural, morphological, topographical and optical properties of FexSx nano thin films deposited by SILAR technique

    International Nuclear Information System (INIS)

    Manikandan, K.; Mani, P.; Surendra Dilip, C.; Valli, S.; Fermi Hilbert Inbaraj, P.; Joseph Prince, J.

    2014-01-01

    Iron sulfide thin films (Fe x S x ) (x = 0.05 M, 0.10 M, 0.15 M, 0.20 M and 0.25 M) were deposited by SILAR method from equimolar and equivolume aqueous solutions of ferrous nitrate and sodium sulfide with the addition of complexing agent TEA. The structural, morphological and optical characteristics of the films were derived from X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV–vis spectral techniques. The mixed characteristics (crystalline and amorphous) of the deposited films and the increasing crystalline qualities with the concentrations were understood from the XRD analysis. The grain sizes and roughness of the films were decreases with the increasing concentration and also at the higher concentration films are shown by the same images presence of hexagonal like crystallite structure. The influence of complexing agent TEA on the surface roughness and morphological properties are confirmed by the atomic force microscope (AFM) results. The effect of increasing substrate concentration on the absorption and transmission measurements and its impact on the optical band-gap energy were enumerated from the UV–vis analysis.

  19. Effect of complexing agent TEA: The structural, morphological, topographical and optical properties of Fe{sub x}S{sub x} nano thin films deposited by SILAR technique

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, K., E-mail: 1984manikandan@gmail.com [Department of Physics, Anna University BIT Campus, Tiruchirappalli 620 024, Tamilnadu (India); Mani, P. [Department of Physics, Anna University BIT Campus, Tiruchirappalli 620 024, Tamilnadu (India); Surendra Dilip, C. [Department of Chemistry, Anna University BIT Campus, Tiruchirappalli 620 024, Tamilnadu (India); Valli, S. [Department of Physics, M.I.E.T. Arts and Science College, Tiruchirappalli 620 007, Tamilnadu (India); Fermi Hilbert Inbaraj, P.; Joseph Prince, J. [Department of Physics, Anna University BIT Campus, Tiruchirappalli 620 024, Tamilnadu (India)

    2014-01-01

    Iron sulfide thin films (Fe{sub x}S{sub x}) (x = 0.05 M, 0.10 M, 0.15 M, 0.20 M and 0.25 M) were deposited by SILAR method from equimolar and equivolume aqueous solutions of ferrous nitrate and sodium sulfide with the addition of complexing agent TEA. The structural, morphological and optical characteristics of the films were derived from X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV–vis spectral techniques. The mixed characteristics (crystalline and amorphous) of the deposited films and the increasing crystalline qualities with the concentrations were understood from the XRD analysis. The grain sizes and roughness of the films were decreases with the increasing concentration and also at the higher concentration films are shown by the same images presence of hexagonal like crystallite structure. The influence of complexing agent TEA on the surface roughness and morphological properties are confirmed by the atomic force microscope (AFM) results. The effect of increasing substrate concentration on the absorption and transmission measurements and its impact on the optical band-gap energy were enumerated from the UV–vis analysis.

  20. Synthesis and characterization of nanoporous strontium-doped lanthanum cobaltite thin film using metal organic chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun-Sik [Department of Mechanical Convergence Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Young-Beom, E-mail: ybkim@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2016-01-29

    By employing strontium as a dopant of lanthanum cobaltite (LaCoO{sub 3}), strontium-doped lanthanum cobaltite (La{sub 1−x}Sr{sub x}CoO{sub 3−δ}, LSC) thin film was fabricated using a metal organic chemical solution deposition (MOCSD) method. Lanthanum nitrate hexahydrate [La(NO{sub 3}){sub 3}6H{sub 2}O], strontium acetate [Sr(CH{sub 3}COO){sub 2}], and cobalt acetate tetrahydrate [Co(CH{sub 3}COO){sub 2}4H{sub 2}O] were used as precursors. The coating process was performed through a spin coating method on a substrate, which were then heat treated under various temperature conditions. Electrical properties, microstructures, and crystalline structures with respect to sintering temperature were analyzed. According to these analyses, the change in surface morphology, phase shift, and conductive properties were closely related, which could explain their respective behaviors. Furthermore, sintered strontium-doped lanthanum perovskite oxides showed various conductivities according to the amount of dopant. With the molar ratio of strontium that is stoichiometrically equivalent to lanthanum (La{sub 0.5}Sr{sub 0.5}CoO{sub 3−δ}) thin film showed the best conductivity in the sintering temperature range of 650–700 °C, with perovskite phases formed at this temperature condition. As the electrically conductive properties of the thin film are a function of thickness, the films were coated several times to a thickness of approximately 300 nm, with the lowest resistivity (approximately 9.06 × 10{sup −4} Ω cm) observed at the optimized sintering temperature and solution composition. - Highlights: • LSC thin film was fabricated by metal organic chemical solution deposition (MOCSD). • The film shows good agreement on the electrical conductivity of LSC by conventional methods. • The properties of LSC film are influenced by the surface morphology and crystalline phase. • Optimal molar ratio of strontium for the highest conductivity was investigated.

  1. Technique for large-scale structural mapping at uranium deposits i in non-metamorphosed sedimentary cover rocks

    International Nuclear Information System (INIS)

    Kochkin, B.T.

    1985-01-01

    The technique for large-scale construction (1:1000 - 1:10000), reflecting small amplitude fracture plicate structures, is given for uranium deposits in non-metamorphozed sedimentary cover rocks. Structure drill log sections, as well as a set of maps with the results of area analysis of hidden disturbances, structural analysis of iso-pachous lines and facies of platform mantle horizons serve as sour ce materials for structural mapplotting. The steps of structural map construction are considered: 1) structural carcass construction; 2) reconstruction of structure contour; 3) time determination of structure initiation; 4) plotting of an additional geologic load

  2. Characterization of ZnO:SnO{sub 2} (50:50) thin film deposited by RF magnetron sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Cynthia, S. R.; Sanjeeviraja, C.; Ponmudi, S. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi-630004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi-630004 (India)

    2016-05-06

    Zinc oxide (ZnO) and tin oxide (SnO{sub 2}) thin films have attracted significant interest recently for use in optoelectronic application such as solar cells, flat panel displays, photonic devices, laser diodes and gas sensors because of their desirable electrical and optical properties and wide band gap. In the present study, thin films of ZnO:SnO{sub 2} (50:50) were deposited on pre-cleaned microscopic glass substrate by RF magnetron sputtering technique. The substrate temperature and RF power induced changes in structural, surface morphological, compositional and optical properties of the films have been studied.

  3. In Situ Synthesis and Characterization of Fe-Based Metallic Glass Coatings by Electrospark Deposition Technique

    Science.gov (United States)

    Burkov, Alexander A.; Pyachin, S. A.; Ermakov, M. A.; Syuy, A. V.

    2017-02-01

    Crystalline FeWMoCrBC electrode materials were prepared by conventional powder metallurgy. Metallic glass (MG) coatings were produced by electrospark deposition onto AISI 1035 steel in argon atmosphere. X-ray diffraction and scanning electron microscopy verified the amorphous structure of the as-deposited coatings. The coatings have a thickness of about 40 microns and a uniform structure. The results of dry sliding wear tests against high-speed steel demonstrated that Fe-based MG coatings had a lower friction coefficient and more than twice the wear resistance for 20 km sliding distance with respect to AISI 1035 steel. High-temperature oxidation treatment of the metal glass coatings at 1073 K in air for 12 h revealed that the oxidation resistance of the best coating was 36 times higher than that for bare AISI 1035 steel. These findings are expected to broaden the applications of electrospark Fe-based MG as highly protective and anticorrosive coatings for mild steel.

  4. A comparison of nodular defect seed geometeries from different deposition techniques

    International Nuclear Information System (INIS)

    Stolz, C.J.; Tench, R.J.; Kozlowski, M.R.; Fornier, A.

    1995-01-01

    A focused ion-beam milling instrument commonly utilized in the semiconductor industry for failure analysis and IC repair, is capable of cross-sectioning nodular defects. Utilizing the instrument's scanning on beam, high-resolution imaging of the seeds that initiate nodular defect growth is possible. In an attempt to understand the origins of these seeds, HfO 2 /SiO 2 and Ta 2 O 5 /SiO 2 coatings were prepared by a variety of coating vendors and different deposition processes including e-beam, magnetron sputtering, and ion beam sputtering. By studying the shape, depth, and composition of the seed, inferences of its origin can be drawn. The boundaries between the nodule and thin film provide insight into the mechanical stability of the nodule. Significant differences in the seed composition, geometry of nodular growth and mechanical stability of the defects for sputtered versus e-beam coatings are reported. Differences in seed shape were also observed from different coating vendors using e-beam deposition of HfO 2 /SiO 2 coatings

  5. Measurement of LHCD edge power deposition through modulation techniques on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Faust, I. C.; Brunner, D.; LaBombard, B.; Parker, R. R.; Baek, S. G.; Chilenksi, M. A.; Hubbard, A.; Hughes, J. W.; Terry, J. L.; Shiraiwa, S.; Walk, J. R.; Wallace, G. M.; Whyte, D. G. [MIT Plasma Science and Fusion Center, Cambridge, MA USA (United States); Edlund, E. [Princeton Plasma Physics Laboratory, Princeton, NJ USA (United States)

    2015-12-10

    The efficiency of LHCD on Alcator C-Mod drops exponentially with line average density. At reactor relevant densities (> 1 · 1020 [m{sup −3}]) no measurable current is driven. While a number of causes have been suggested, no specific mechanism has been shown to be responsible for the loss of current drive at high density. Fast modulation of the LH power was used to isolate and quantify the LHCD deposition within the plasma. Measurements from these plasmas provide unique evidence for determining a root cause. Modulation of LH power in steady plasmas exhibited no correlated change in the core temperature. A correlated, prompt response in the edge suggests that the loss in efficiency is related to a edge absorption mechanism. This follows previous results which found the generation of n{sub ||}-independent SOL currents. Multiple Langmuir probe array measurements of the conducted heat conclude that the lost power is deposited near the last closed flux surface. The heat flux induced by LH waves onto the outer divertor is calculated. Changes in the neutral pressure, ionization and hard X-ray emission at high density highlight the importance of the active divertor in the loss of efficiency. Results of this study implicate a mechanism which may occur over multiple passes, leading to power absorption near the LCFS.

  6. In-Situ Synchrotron X-ray Study of the Phase and Texture Evolution of Ceria and Superconductor Films Deposited by Chemical Solution Method

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude; He, Dong

    2012-01-01

    In situ synchrotron x-ray diffraction is used to study the phase and texture formation of ceria based films and superconductor films deposited by the chemical solution method on technical substrates. Combined analysis using in situ synchrotron x-ray diffraction, thermogravimetry/differential ther......In situ synchrotron x-ray diffraction is used to study the phase and texture formation of ceria based films and superconductor films deposited by the chemical solution method on technical substrates. Combined analysis using in situ synchrotron x-ray diffraction, thermogravimetry...

  7. On the use of the Lie group technique for differential equations with a small parameter: Approximate solutions and integrable equations

    International Nuclear Information System (INIS)

    Burde, G.I.

    2002-01-01

    A new approach to the use of the Lie group technique for partial and ordinary differential equations dependent on a small parameter is developed. In addition to determining approximate solutions to the perturbed equation, the approach allows constructing integrable equations that have solutions with (partially) prescribed features. Examples of application of the approach to partial differential equations are given

  8. Fabrication and characterisation of ligand-functionalised ultrapure monodispersed metal nanoparticle nanoassemblies employing advanced gas deposition technique

    Science.gov (United States)

    Geremariam Welearegay, Tesfalem; Cindemir, Umut; Österlund, Lars; Ionescu, Radu

    2018-02-01

    Here, we report for the first time the fabrication of ligand-functionalised ultrapure monodispersed metal nanoparticles (Au, Cu, and Pt) from their pure metal precursors using the advanced gas deposition technique. The experimental conditions during nanoparticle formation were adjusted in order to obtain ultrafine isolated nanoparticles on different substrates. The morphology and surface analysis of the as-deposited metal nanoparticles were investigated using scanning electron microscopy, x-ray diffraction and Fourier transform infra-red spectroscopy, which demonstrated the formation of highly ordered pure crystalline nanoparticles with a relatively uniform size distribution of ∼10 nm (Au), ∼4 nm (Cu) and ∼3 nm (Pt), respectively. A broad range of organic ligands containing thiol or amine functional groups were attached to the nanoparticles to form continuous networks of nanoparticle-ligand nanoassemblies, which were characterised by scanning electron microscopy and x-ray photoelectron spectroscopy. The electrical resistance of the functional nanoassemblies deposited in the gap spacing of two microfabricated parallel Au electrodes patterned on silicon substrates ranged between tens of kΩ and tens of MΩ, which is suitable for use in many applications including (bio)chemical sensors, surface-enhanced Raman spectroscopy and molecular electronic rectifiers.

  9. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding.

    Science.gov (United States)

    Goffin, N J; Higginson, R L; Tyrer, J R

    2016-12-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure.

  10. Applying Lean Techniques to Reduce Intravenous Waste Through Premixed Solutions and Increasing Production Frequency.

    Science.gov (United States)

    Lin, Alex C; Penm, Jonathan; Ivey, Marianne F; Deng, Yihong; Commins, Monica

    This study aims to use lean techniques and evaluate the impact of increasing the use of premixed IV solutions and increased IV production frequency on IV waste. Study was conducted at a tertiary hospital pharmacy department in three phases. Phase I included evaluation of IV waste when IV production occurred three times a day and eight premixed IV products were used. Phase II increased the number of premixed IV products to 16. Phase III then increased IV production to five times a day. During Phase I, an estimate of 2,673 IV doses were wasted monthly, accounting for 6.14% of overall IV doses. This accounted for 688 L that cost $60,135. During Phase II, the average monthly IV wastage reduced significantly to 1,069 doses (2.84%), accounting for 447 L and $34,003. During Phase III, the average monthly IV wastage was further decreased to 675 doses (1.69%), accounting for 78 L and $3,431. Hence, a potential annual saving of $449,208 could result from these changes. IV waste was reduced through the increased use of premixed solutions and increasing IV production frequency.

  11. Solution Procedure for Transport Modeling in Effluent Recharge Based on Operator-Splitting Techniques

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available The coupling of groundwater movement and reactive transport during groundwater recharge with wastewater leads to a complicated mathematical model, involving terms to describe convection-dispersion, adsorption/desorption and/or biodegradation, and so forth. It has been found very difficult to solve such a coupled model either analytically or numerically. The present study adopts operator-splitting techniques to decompose the coupled model into two submodels with different intrinsic characteristics. By applying an upwind finite difference scheme to the finite volume integral of the convection flux term, an implicit solution procedure is derived to solve the convection-dominant equation. The dispersion term is discretized in a standard central-difference scheme while the dispersion-dominant equation is solved using either the preconditioned Jacobi conjugate gradient (PJCG method or Thomas method based on local-one-dimensional scheme. The solution method proposed in this study is applied to the demonstration project of groundwater recharge with secondary effluent at Gaobeidian sewage treatment plant (STP successfully.

  12. Deposit of thin films of nitrided amorphous carbon using the laser ablation technique

    International Nuclear Information System (INIS)

    Rebollo, P.B.; Escobar A, L.; Camps C, E.; Haro P, E.; Camacho L, M.A.; Muhl S, S.

    2000-01-01

    It is reported the synthesis and characterization of thin films of amorphous carbon (a-C) nitrided, deposited by laser ablation in a nitrogen atmosphere at pressures which are from 4.5 x 10 -4 Torr until 7.5 x 10 -2 Torr. The structural properties of the films are studied by Raman spectroscopy obtaining similar spectra at the reported for carbon films type diamond. The study of behavior of the energy gap and the ratio nitrogen/carbon (N/C) in the films, shows that the energy gap is reduced when the nitrogen incorporation is increased. It is showed that the refraction index of the thin films diminish as nitrogen pressure is increased, indicating the formation of graphitic material. (Author)

  13. Age determination of recent cave deposits using excess Pb-210 - A new technique

    Science.gov (United States)

    Baskaran, M.; Iliffe, Thomas M.

    1993-04-01

    We show that speleothems contain high concentrations of excess Pb-210 and that this Pb-210 excess can be successfully employed to obtain growth rates of speleothems deposited during the last 100 years. Of two specimens analyzed, a tubular 'soda straw' stalactite yielded a longitudinal growth rate of 1.1 mm/yr, while a normal icicle-shaped stalactite had a lateral growth rate of 0.028 mm/yr. The mass growth rates of these two speleothems (149 and 78 mg/yr respectively) are comparable within a factor of two. Studies of fine-scale variations in the isotopic composition of recent speleothems will help to corroborate the validity of palaeoclimate records obtained using longer lived isotopes and extending back into Pleistocene.

  14. Electrospray-deposition of graphene electrodes: a simple technique to build high-performance supercapacitors.

    Science.gov (United States)

    Tang, Huaichao; Yang, Cheng; Lin, Ziyin; Yang, Quanhong; Kang, Feiyu; Wong, Ching Ping

    2015-05-28

    Here we report an electrostatic spray deposition method to prepare three-dimensional porous graphene electrodes for supercapacitor applications. The symmetric supercapacitor exhibits excellent specific capacitance (366 F g(-1) at 1 A g(-1) in 6 M KOH) and long cycle life (108% capacitance retention up to 40 000 cycles). Moreover, the energy densities of the organic and aqueous electrolyte based supercapacitors reach 22.9 and 8.1 Wh kg(-1) when the power densities are 119.2 and 15.4 kW kg(-1), respectively. Compared with the previously reported graphene based supercapacitors, the improved properties could be attributed to the excellent three-dimensional open porous electrode structure, which is favorable for the ion diffusion and electron transport. In addition, this method provides a simple electrode-fabrication route without the involvement of conducting additives and binders. It may find vast applications in thin and miniaturized energy storage scenarios.

  15. Thin films of NdFeB deposited by PLD technique

    International Nuclear Information System (INIS)

    Constantinescu, C.; Scarisoreanu, N.; Moldovan, A.; Dinescu, M.; Petrescu, L.; Epureanu, G.

    2007-01-01

    Neodymium-iron-boron (NdFeB) is a material with important magnetic properties, mostly used in permanent magnet fabrication. Thin layers of NdFeB are needed for miniaturization in electrical engineering, electronics and for high-tech devices. In this paper we applied pulsed lased deposition (PLD) in vacuum for obtaining thin films of NdFeB from stoichiometric targets. The influence of different buffer layers and of the laser parameters (wavelength and fluence) on the NdFeB structures, composition and magnetic properties have been investigated. The obtained structures were characterized by atomic force microscopy (AFM) and optical microscopy. Vibrating sample magnetometry (VSM) has been performed for specific magnetic characterization

  16. Thin films of NdFeB deposited by PLD technique

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, C. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO-077125 Magurele, Bucharest (Romania); Scarisoreanu, N. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO-077125 Magurele, Bucharest (Romania); Moldovan, A. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO-077125 Magurele, Bucharest (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO-077125 Magurele, Bucharest (Romania)]. E-mail: dinescum@ifin.nipne.ro; Petrescu, L. [Department of Electrical Engineering, ' Politehnica' University of Bucharest, 313 Spl. Independentei, 060042 Bucharest (Romania); Epureanu, G. [Department of Electrical Engineering, ' Politehnica' University of Bucharest, 313 Spl. Independentei, 060042 Bucharest (Romania)

    2007-07-31

    Neodymium-iron-boron (NdFeB) is a material with important magnetic properties, mostly used in permanent magnet fabrication. Thin layers of NdFeB are needed for miniaturization in electrical engineering, electronics and for high-tech devices. In this paper we applied pulsed lased deposition (PLD) in vacuum for obtaining thin films of NdFeB from stoichiometric targets. The influence of different buffer layers and of the laser parameters (wavelength and fluence) on the NdFeB structures, composition and magnetic properties have been investigated. The obtained structures were characterized by atomic force microscopy (AFM) and optical microscopy. Vibrating sample magnetometry (VSM) has been performed for specific magnetic characterization.

  17. Evaluation and study of advanced optical contamination, deposition, measurement, and removal techniques. [including computer programs and ultraviolet reflection analysis

    Science.gov (United States)

    Linford, R. M. F.; Allen, T. H.; Dillow, C. F.

    1975-01-01

    A program is described to design, fabricate and install an experimental work chamber assembly (WCA) to provide a wide range of experimental capability. The WCA incorporates several techniques for studying the kinetics of contaminant films and their effect on optical surfaces. It incorporates the capability for depositing both optical and contaminant films on temperature-controlled samples, and for in-situ measurements of the vacuum ultraviolet reflectance. Ellipsometer optics are mounted on the chamber for film thickness determinations, and other features include access ports for radiation sources and instrumentation. Several supporting studies were conducted to define specific chamber requirements, to determine the sensitivity of the measurement techniques to be incorporated in the chamber, and to establish procedures for handling samples prior to their installation in the chamber. A bibliography and literature survey of contamination-related articles is included.

  18. Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology

    Directory of Open Access Journals (Sweden)

    Stefano Razza

    2016-09-01

    Full Text Available To bring perovskite solar cells to the industrial world, performance must be maintained at the photovoltaic module scale. Here we present large-area manufacturing and processing options applicable to large-area cells and modules. Printing and coating techniques, such as blade coating, slot-die coating, spray coating, screen printing, inkjet printing, and gravure printing (as alternatives to spin coating, as well as vacuum or vapor based deposition and laser patterning techniques are being developed for an effective scale-up of the technology. The latter also enables the manufacture of solar modules on flexible substrates, an option beneficial for many applications and for roll-to-roll production.

  19. Comparative study on substitution effects in BiFeO{sub 3} thin films fabricated on FTO substrates by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xu; Tan, Guoqiang, E-mail: tan3114@163.com; Hao, Hangfei; Ren, Huijun

    2013-10-01

    Pure BiFeO{sub 3} (BFO), BiFe{sub 0.97}Co{sub 0.03}O{sub 3−δ} (BFCO) and Bi{sub 0.90}Gd{sub 0.10}Fe{sub 0.97}Co{sub 0.03}O{sub 3−δ} (BGFCO) thin films were successfully deposited on FTO substrates by chemical solution deposition technique. The field emission scanning electron microscope reveals that the surface morphology of the BGFCO thin film becomes more compact and uniform than that of the other two films. A slight lattice distortion is created in the BFCO thin film, whereas 10% Gd doping gives rise to tetragonal phase transition and (1 1 0) preferentially oriented film texture for the BGFCO thin film, as evidenced by Raman scattering spectra and X-ray diffraction analyses. X-ray photoelectron spectroscopy analyses clarify that Co-doping results in the increase of oxygen vacancy concentration in the BFCO film, while further introduction of Gd into the BFCO lattice can decrease oxygen vacancy concentration, and the concentrations of Fe{sup 2+} ions in the BFCO and BGFCO thin films are less than that in the BFO counterpart. The BFCO film shows the improved remanent polarization (P{sub r}) of 11.2 μC/cm{sup 2} compared with that of 1.4 μC/cm{sup 2} for the BFO film. The high breakdown strength, low leakage current density in the high electric filed, improved dielectric properties as well as the increased stereochemical activity of Bi ion lone electron pair of the BGFCO thin film all together contribute to the giant P{sub r} of 139.6 μC/cm{sup 2} at room temperature.

  20. Organic-inorganic field effect transistor with SnI-based perovskite channel layer using vapor phase deposition technique

    Science.gov (United States)

    Matsushima, Toshinori; Yasuda, Takeshi; Fujita, Katsuhiko; Tsutsui, Tetsuo

    2003-11-01

    High field-effect hole mobility of (formula available in paper)and threshold voltage is -3.2 V) in organic-inorganic layered perovskite film (formula available in paper)prepared by a vapor phase deposition technique have been demonstrated through the octadecyltrichlorosilane treatment of substrate. Previously, the (formula available in paper)films prepared on the octadecyltrichlorosilane-covered substrates using a vapor evaporation showed not only intense exciton absorption and photoluminescence in the optical spectroscopy but also excellent crystallinity and large grain structure in X-ray and atomic force microscopic studies. Especially, the (formula available in paper)structure in the region below few nm closed to the surface of octadecyltrichlorosilane monolayer was drastically improved in comparison with that on the non-covered substrate. Though our initial (formula available in paper)films via a same sequence of preparation of (formula available in paper)and octadecyltrichlorosilane monolayer did not show the field-effect properties because of a lack of spectral, structural, and morphological features. The unformation of favorable (formula available in paper)structure in the very thin region, that is very important for the field-effect transistors to transport electrons or holes, closed to the surface of non-covered (formula available in paper)dielectric layer was also one of the problems for no observation of them. By adding further optimization and development, such as deposition rate of perovskite, substrate heating during deposition, and tuning device architecture, with hydrophobic treatment, the vacuum-deposited (formula available in paper)have achieved above-described high performance in organic-inorganic hybrid transistors.

  1. Inhaled corticosteroid metered-dose inhalers: how do variations in technique for solutions versus suspensions affect drug distribution?

    Science.gov (United States)

    Robinson, Christie A; Tsourounis, Candy

    2013-03-01

    To assess the literature that evaluates how variations in metered-dose inhaler (MDI) technique affect lung distribution for inhaled corticosteroids (ICSs) formulated as MDI suspensions and solutions. PubMed (up to November 2012) and Cochrane Library (up to November 2012) were searched using the terms metered-dose inhalers, HFA 134a, Asthma/*drug therapy, and inhaled corticosteroids. In addition, reference citations from publications identified were reviewed. All articles in English from the data sources that assessed MDI technique comparing total lung distribution (TLD) of MDI solutions or suspensions formulated with ICSs were included in the review. Five relevant studies were identified. Five controlled studies compared how variations in MDI technique affect TLD for ICS MDI solutions with suspensions. MDI solutions resulted in greater TLD compared with larger particle MDI suspensions. Delayed or early inspiration upon device actuation of MDI solutions resulted in less TLD than coordinated actuation, but with a 3- to 4-times greater TLD than MDI suspensions inhaled using a standard technique. A sixth study evaluated inspiratory flow rates (IFR) for small, medium, and large particles. Rapid and slow IFRs resulted in similar TLD for small particles, while far fewer particles reached the airways with medium and large particles at rapid, rather than slow, IFRs. Based on the literature evaluated, standard MDI technique should be used for ICS suspensions. ICS MDI solutions can provide a higher average TLD than larger-particle ICS suspensions using standard technique, discoordinated inspiration and medication actuation timing, or rapid and slow IFRs. ICS MDI solutions allow for a more forgiving technique, which makes them uniquely suitable options for patients with asthma who have difficultly with MDI technique.

  2. Determination of boron in aqueous solutions by solid state nuclear track detectors technique, using a filtered neutron beam

    International Nuclear Information System (INIS)

    Moraes, M.A.P.V. de; Pugliesi, R.; Khouri, M.T.F.C.

    1985-11-01

    The solid state nuclear track detectors technique has been used for determination of boron in aqueous solutions, using a filtered neutron beam. The particles tracks from the 10 B(n,α)Li 7 reaction were registered in the CR-39 film, chemically etched in a (30%) KOH solution 70 0 C during 90 minutes. The obtained results showed the usefulness of this technique for boron determination in the ppm range. The inferior detectable limit was 9 ppm. The combined track registration efficiency factor K has been evaluated in the solutions, for the CR-39 detector and its values is K= (4,60 - + 0,06). 10 -4 cm. (Author) [pt

  3. A solution for future designs using techniques from vernacular architecture in southern Iran

    Science.gov (United States)

    Mirahmadi, Fatima; Altan, Hasim

    2018-02-01

    Nowadays in modern life, every technology and technique for comfortable life is available. People with low income, in other words, with low levels of economic power, can also have those facilities to stay warm in winter and stay cool in summer. Many years back when there were no advanced systems for human needs, passive strategies played a big role in peoples' lives. This paper concentrates on a small city in Iran that had used special strategies to solve peoples' environmental issues. The city is called Evaz, which is located in the Fars region of Iran with distance around 20 km from Gerash city and 370 km from south east of Shiraz. Evaz receives minimum rainfall, which is the reason why water is limited in this area and therefore, cisterns (water storage) had been used for many years that is studied in more detail in this paper. In summers, the climate is hot and dry, sometimes the external temperatures reaching around 46 °C during the day. Although the winters are typically cold and likewise dry, moderate climate is available in Evaz during autumn and spring. This study identifies some of the past strategies and describes them in detail with analysis for transformation and connections with the modern and traditional fundamentals. Furthermore, the study develops some solutions utilizing a combination of both modern and traditional techniques in design to suggest better and more effective ways to save energy, and at the same time to remain sustainable for the future.

  4. Applications of prospecting geochemical techniques to the search for and to the study of uranium deposits in metropolitan France

    International Nuclear Information System (INIS)

    Grimbert, Arnold

    1957-01-01

    After having recalled facts which leaded the CEA to use new geochemical techniques for the prospecting of uranium deposits through sampling and analysis of soils and waters, the author describes the organisation and methods implemented for this prospecting activity: team composition for sampling and analysis, role of each engineer and technician in the prospecting stages (preliminary study, routine prospecting, result interpretation), sampling and analysis processes. He also reports campaigns of geochemical prospecting: study of the La Chapelle Largeau deposit (objectives, geological context, preliminary study, routine prospecting, study of geochemical anomalies), tactical research on Verneix indices (study of radioactivity anomaly discovered by radio-prospecting), strategical searches in a non prospected area in the South of Avallon. The author discusses the issues of efficiency and cost price of this geochemical prospecting technique in soils and in waters. Appendices present the equipment and operation modality for soil sampling, and for soil sample preparation, and principles, equipment and products for soil analysis and for water analysis [fr

  5. Carbon thin films deposited by the magnetron sputtering technique using cobalt, copper and nickel as buffer-layers

    International Nuclear Information System (INIS)

    Costa e Silva, Danilo Lopes

    2015-01-01

    In this work, carbon thin films were produced by the magnetron sputtering technique using single crystal substrates of alumina c-plane (0001) and Si (111) and Si (100) substrates, employing Co, Ni and Cu as intermediate films (buffer-layers). The depositions were conducted in three stages, first with cobalt buffer-layers where only after the production of a large number of samples, the depositions using cooper buffer-layers were carried out on Si substrates. Then, depositions were performed with nickel buffer layers using single-crystal alumina substrates. The crystallinity of the carbon films was evaluated by using the technique of Raman spectroscopy and, then, by X-ray diffraction (XRD). The morphological characterization of the films was performed by scanning electron microscopy (SEM and FEG-SEM) and high-resolution transmission electron microscopy (HRTEM). The XRD peaks related to the carbon films were observed only in the results of the samples with cobalt and nickel buffer-layers. The Raman spectroscopy showed that the carbon films with the best degree of crystallinity were the ones produced with Si (111) substrates, for the Cu buffers, and sapphire substrates for the Ni and Co buffers, where the latter resulted in a sample with the best crystallinity of all the ones produced in this work. It was observed that the cobalt has low recovering over the alumina substrates when compared to the nickel. Sorption tests of Ce ions by the carbon films were conducted in two samples and it was observed that the sorption did not occur probably because of the low crystallinity of the carbon films in both samples. (author)

  6. A TOTAL MANUFACTURING SOLUTIONS TECHNIQUE TO SELECT APPROPRIATE IMPROVEMENT STRATEGY: CASE STUDY OF A FOOTWEAR FACTORY

    Directory of Open Access Journals (Sweden)

    Gezahegn Tesfaye

    2014-09-01

    Full Text Available The Government of Ethiopia is promoting the manufacturing sector to join the global market in a large scale. Due to its comparative advantages, the Ethiopian leather and leather products industry have been given due attention. To fully utilize such advantages, the country shifted its export items from hides/skins to footwear products. Nevertheless, the performance of the leather sector in general and footwear sub-sector in particular is far below the desired standards. The improvement strategies applied hitherto were mainly to tackle a small portion of their total problems. If the Ethiopian footwear companies have to become globally competitive, their entire business spectrum has to be assessed and appropriate improvement strategies must be selected. In this research, we used a Total manufacturing solutions (TMS technique to identify areas of improvement and improvement strategy of one of Ethiopian footwear companies. For this purpose, we conducted two surveys using structured questionnaire. The first survey was to test the TMS technique against the context of footwear industry. The result proved that the original TMS model can be used to measure the performance of footwear companies. The second survey was done to identify company's total problems, map its current position and select appropriate improvement strategy. The result revealed that the company has company-wide problems and its current position is a plodder. For plodders which have company-wide problems, the improvement strategy must include aggressive application of BPR; and the implementation of best practices to develop workers skills that encourages networking and promotion, a market-led manufacturing strategy, employee involvement and team work cultures. According to the findings of this research, we suggested that a BPR technique followed by a continuous improvement programme could be an appropriate improvement strategy for this company. The company requires long-term improvement

  7. Effect of Coating Thickness on the Properties of TiN Coatings Deposited on Tool Steels Using Cathodic Arc Pvd Technique

    Science.gov (United States)

    Mubarak, A.; Akhter, Parvez; Hamzah, Esah; Mohd Toff, Mohd Radzi Hj.; Qazi, Ishtiaq A.

    Titanium nitride (TiN) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The study concentrated on cathodic arc physical vapor deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MDs) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester, and pin-on-disc machine, were used to analyze and quantify the following properties and parameters: surface morphology, thickness, hardness, adhesion, and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MDs produced during the etching stage, protruded through the TiN film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 μm showed the most stable trend of COF versus sliding distance.

  8. Comparative study of CdTe sources used for deposition of CdTe thin films by close spaced sublimation technique

    Directory of Open Access Journals (Sweden)

    Wagner Anacleto Pinheiro

    2006-03-01

    Full Text Available Unlike other thin film deposition techniques, close spaced sublimation (CSS requires a short source-substrate distance. The kind of source used in this technique strongly affects the control of the deposition parameters, especially the deposition rate. When depositing CdTe thin films by CSS, the most common CdTe sources are: single-crystal or polycrystalline wafers, powders, pellets or pieces, a thick CdTe film deposited onto glass or molybdenum substrate (CdTe source-plate and a sintered CdTe powder. In this work, CdTe thin films were deposited by CSS technique from different CdTe sources: particles, powder, compact powder, a paste made of CdTe and propylene glycol and source-plates (CdTe/Mo and CdTe/glass. The largest deposition rate was achieved when a paste made of CdTe and propylene glycol was used as the source. CdTe source-plates led to lower rates, probably due to the poor heat transmission, caused by the introduction of the plate substrate. The results also showed that compacting the powder the deposition rate increases due to the better thermal contact between powder particles.

  9. Development of a fluorine-free chemical solution deposition route for rare-earth cuprate superconducting tapes and its application to reel-to-reel processing

    DEFF Research Database (Denmark)

    Tang, Xiao

    temperature, REBCO (RE= rare earth) has some evident advantages compared to other high-temperature superconductors in retaining high current densities under strong magnetic fields, thus REBCO high temperature superconducto rs have significant potential for high field engineering applications. Compared...... to Pulsed Laser Deposition (PLD) and Chemical Vapor Deposition (CVD), the trifluoroacetate metal-organic deposition (TFA-MOD) route is more promising for producing REBCO superconducting films, owing to the high-Jc, high reproducibility, and low cost of this technique, which doesn't require any high vacuum...... on the microstructure and performance of FF-MOD derived YBCO films was investigated. Chapter 9 is the summary of the thesis....

  10. Atomic force microscopy and Langmuir–Blodgett monolayer technique to assess contact lens deposits and human meibum extracts

    Directory of Open Access Journals (Sweden)

    Sarah Hagedorn

    2015-07-01

    Conclusions: MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity.

  11. Nanostructured ZnO thin films by chemical bath deposition in basic aqueous ammonia solutions for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Chu, J.B.; Huang, S.M.; Zhang, D.W.; Bian, Z.Q.; Li, X.D.; Sun, Z. [East China Normal University, Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, Shanghai (China); Yin, X.J. [Singapore Polytechnic, Advanced Materials Technology Center, Singapore (Singapore)

    2009-06-15

    This paper presents further insights and observations of the chemical bath deposition (CBD) of ZnS thin films using an aqueous medium involving Zn-salt, ammonium sulfate, aqueous ammonia, and thiourea. Results on physical and chemical properties of the grown layers as a function of ammonia concentration are reported. Physical and chemical properties were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDX), and X-ray diffraction (XRD). Rapid growth of nanostructured ZnO films on fluorine-doped SnO{sub 2} (FTO) glass substrates was developed. ZnO films crystallized in a wurtzite hexagonal structure and with a very small quantity of Zn(OH){sub 2} and ZnS phases were obtained for the ammonia concentration ranging from 0.75 to 2.0 M. Flower-like and columnar nanostructured ZnO films were deposited in two ammonia concentration ranges, respectively: one between 0.75 and 1.0 M and the other between 1.4 and 2.0 M. ZnS films were formed with a high ammonia concentration of 3.0 M. The formation mechanisms of ZnO, Zn(OH){sub 2}, and ZnS phases were discussed in the CBD process. The developed technique can be used to directly and rapidly grow nanostructured ZnO film photoanodes. Annealed ZnO nanoflower and columnar nanoparticle films on FTO substrates were used as electrodes to fabricate the dye sensitized solar cells (DSSCs). The DSSC based on ZnO-nanoflower film showed an energy conversion efficiency of 0.84%, which is higher compared to that (0.45%) of the cell being constructed using a photoanode of columnar nanoparticle ZnO film. The results have demonstrated the potential applications of CBD nanostructured ZnO films for photovoltaic cells. (orig.)

  12. Electric characterization of GaAs deposited on porous silicon by electrodeposition technique

    International Nuclear Information System (INIS)

    Lajnef, M.; Chtourou, R.; Ezzaouia, H.

    2010-01-01

    GaAs thin films were synthesized on porous Si substrate by the electrodeposition technique. The X-ray diffraction studies showed that the as-grown films were crystallised in mixed phase nature orthorhombic and cubic of GaAs. The GaAs film was then electrically characterized using current-voltage (I-V) and capacitance-voltage (C-V) techniques by the way of Al/GaAs Schottky junctions. The electric analysis allowed us to determine the n factor and the barrier height φ b0 parameters of Al/GaAs Schottky junctions. The (C-V) characteristics were recorded at frequency signal 1 MHz in order to identify the effect of the surface states on the behaviour of the capacitance of the device.

  13. Electric characterization of GaAs deposited on porous silicon by electrodeposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Lajnef, M., E-mail: Mohamed.lajnef@yahoo.fr [Laboratoire de Photovoltaique et de Semi-conducteurs, Centre de Recherche et des Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia); Chtourou, R.; Ezzaouia, H. [Laboratoire de Photovoltaique et de Semi-conducteurs, Centre de Recherche et des Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia)

    2010-03-01

    GaAs thin films were synthesized on porous Si substrate by the electrodeposition technique. The X-ray diffraction studies showed that the as-grown films were crystallised in mixed phase nature orthorhombic and cubic of GaAs. The GaAs film was then electrically characterized using current-voltage (I-V) and capacitance-voltage (C-V) techniques by the way of Al/GaAs Schottky junctions. The electric analysis allowed us to determine the n factor and the barrier height {phi}{sub b0} parameters of Al/GaAs Schottky junctions. The (C-V) characteristics were recorded at frequency signal 1 MHz in order to identify the effect of the surface states on the behaviour of the capacitance of the device.

  14. Application of physical separation techniques for waste utilization and management - case studies from Indian uranium deposits

    International Nuclear Information System (INIS)

    Anand Rao, K.; Sreenivas, T.

    2013-01-01

    The importance of physical beneficiation techniques in metallurgical industry showed gradual decline due to decreasing ore grades and very-fine size dissemination of valuable minerals in the host matrix. However, this technology regained prominence in recent past due to their utility in resource recycle, waste utilization, waste treatment and environmental remediation. Hybrid processes combined with physical, chemical and biological technology is now developing such that the idea of sustainable development is implemented. The uranium ore processing industry has always been under intense public scanner for some of the apprehensions, chiefly radioactivity, inspite of its immense energy delivering potential. Besides this, the chemical compounds formed due to gangue mineral reactivity and their carry-over to tailings pond added further owes. However, conscious scientific efforts are being made to contain these hazards to permissible levels by application of various remedial methods of which the physical separation techniques too are quite prominent

  15. Nuclear techniques for in situ evaluation of coal and mineral deposits

    International Nuclear Information System (INIS)

    Borsaru, M.

    1993-01-01

    This paper reviews developments in in situ analysis of minerals and coal by nuclear borehole logging. Developments in the oil, gas and uranium industries are not discussed in the present paper unless they have direct applications in the mineral industry (e.g. multi-element analysis and development of spectral litho-density tools). The review covers techniques developed mostly in the last decade and is based on work published in North America, Europe and Australia. (author)

  16. Hydrogen ratios and profiles in deposited amorphous and polycrystalline films and in metals using nuclear techniques

    International Nuclear Information System (INIS)

    Benenson, R.E.; Feldman, L.C.; Bagley, B.G.

    1980-01-01

    Plasma- and chemical vapor deposited films containing hydrogen, Si, B and O, but of unknown thickness and stoichiometry have been assigned concentration ratios through a combination of H-profiling using the 1 H( 15 N,αγ) 12 C(4.43 MeV) reaction and RBS analysis. Relatively intense 15 N ++ beams exceeding the 6.38 MeV resonance energy have been obtained from a 3.75 MeV accelerator with a commercial ion source and terminal analysis. A discussion is given of the method of obtaining film concentration ratios in some representative cases. A search was made for H at the SiO 2 -Si interface. Some preliminary investigations have been made on the H concentration in several metals as supplied: Nb, V, Ta, Al, Ni, OFHC Cu, Ti, Mo and steel and on the effect of acid dips in loading H. Hydrogen in acid-loaded steel migrated under the influence of the probing 15 N beam, but relaxed back when the beam was removed. (orig.)

  17. Identification of sources of tar balls deposited along the Goa coast, India, using fingerprinting techniques

    International Nuclear Information System (INIS)

    Suneel, V.; Vethamony, P.; Zakaria, M.P.; Naik, B.G.; Prasad, K.V.S.R.

    2013-01-01

    Highlights: ► This is first fingerprinting study in India on identification of source of tar balls. ► Tar balls were formed from tanker-wash spills and they resemble floating tar ball. ► δ 13 C values of Bombay High crude oil and the present tar balls do not match. ► Compound specific stable carbon isotope analysis confirmed the source of tar balls. ► Source is confirmed as the South East Asian Crude Oil and not the Bombay High crude. -- Abstract: Deposition of tar balls along the coast of Goa, India is a common phenomenon during the southwest monsoon. Representative tar ball samples collected from various beaches of Goa and one Bombay High (BH) crude oil sample were subjected to fingerprint analysis based on diagnostic ratios of n-alkane, biomarkers of pentacyclic tri-terpanes and compound specific stable carbon isotope (δ 13 C) analysis to confirm the source. The results were compared with the published data of Middle East Crude Oil (MECO) and South East Asian Crude Oil (SEACO). The results revealed that the tar balls were from tanker-wash derived spills. The study also confirmed that the source is not the BH, but SEACO. The present study suggests that the biomarkers of alkanes and hopanes coupled with stable carbon isotope analysis act as a powerful tool for tracing the source of tar balls, particularly when the source specific biomarkers fail to distinguish the source

  18. Numerical Simulation of Molten Flow in Directed Energy Deposition Using an Iterative Geometry Technique

    Science.gov (United States)

    Vincent, Timothy J.; Rumpfkeil, Markus P.; Chaudhary, Anil

    2018-06-01

    The complex, multi-faceted physics of laser-based additive metals processing tends to demand high-fidelity models and costly simulation tools to provide predictions accurate enough to aid in selecting process parameters. Of particular difficulty is the accurate determination of melt pool shape and size, which are useful for predicting lack-of-fusion, as this typically requires an adequate treatment of thermal and fluid flow. In this article we describe a novel numerical simulation tool which aims to achieve a balance between accuracy and cost. This is accomplished by making simplifying assumptions regarding the behavior of the gas-liquid interface for processes with a moderate energy density, such as Laser Engineered Net Shaping (LENS). The details of the implementation, which is based on the solver simpleFoam of the well-known software suite OpenFOAM, are given here and the tool is verified and validated for a LENS process involving Ti-6Al-4V. The results indicate that the new tool predicts width and height of a deposited track to engineering accuracy levels.

  19. Numerical Simulation of Molten Flow in Directed Energy Deposition Using an Iterative Geometry Technique

    Science.gov (United States)

    Vincent, Timothy J.; Rumpfkeil, Markus P.; Chaudhary, Anil

    2018-03-01

    The complex, multi-faceted physics of laser-based additive metals processing tends to demand high-fidelity models and costly simulation tools to provide predictions accurate enough to aid in selecting process parameters. Of particular difficulty is the accurate determination of melt pool shape and size, which are useful for predicting lack-of-fusion, as this typically requires an adequate treatment of thermal and fluid flow. In this article we describe a novel numerical simulation tool which aims to achieve a balance between accuracy and cost. This is accomplished by making simplifying assumptions regarding the behavior of the gas-liquid interface for processes with a moderate energy density, such as Laser Engineered Net Shaping (LENS). The details of the implementation, which is based on the solver simpleFoam of the well-known software suite OpenFOAM, are given here and the tool is verified and validated for a LENS process involving Ti-6Al-4V. The results indicate that the new tool predicts width and height of a deposited track to engineering accuracy levels.

  20. High performance GdBa{sub 2}Cu{sub 3}O{sub 7-z} film preparation by non-fluorine chemical solution deposition approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.T.; Pu, M.H.; Wang, W.W. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhang, H. [Department of Physics, Peking University, Beijing 100871 (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)] [Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia); Zhao, Y., E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)] [Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia)

    2011-11-15

    Biaxially textured GdBa{sub 2}Cu{sub 3}O{sub 7}-z films with Tc above 93 K have been prepared on (0 0 l) by non-fluorine CSD approach. Nanoparticles with homogeneous distribution are introduced into the GdBCO films as effective pinning centers. A high Jc (77 K, 0 T) of 2.28 MA/cm{sup 2} with slow decreasing Jc-B behavior is observed in the films. Biaxially textured GdBa{sub 2}Cu{sub 3}O{sub 7-z} (GdBCO) films with T{sub c} above 93 K have been prepared on (0 0 l) LaAlO{sub 3} substrate by self-developed non-fluorine polymer-assisted chemical solution deposition (PA-CSD) approach. The GdBCO films show smooth and crack-free morphology. Many nanoscale particles with homogeneous distribution are observed in the GdBCO films, which have not been observed yet in the YBa{sub 2}Cu{sub 3}O{sub 7-z} (YBCO) films prepared by the same processing technique. Besides a high J{sub c} (77 K, 0 T) of 2.28 MA/cm{sup 2}, the optimized GdBCO films show a better J{sub c}-B behavior and an improved high-field J{sub c}, compared to the YBCO films.

  1. Sm-doped CeO2 single buffer layer for YBCO coated conductors by polymer assisted chemical solution deposition (PACSD) method

    International Nuclear Information System (INIS)

    Li, G.; Pu, M.H.; Sun, R.P.; Wang, W.T.; Wu, W.; Zhang, X.; Yang, Y.; Cheng, C.H.; Zhao, Y.

    2008-01-01

    An over 150 nm thick Sm 0.2 Ce 0.8 O 1.9-x (SCO) single buffer layer has been deposited on bi-axially textured NiW (2 0 0) alloy substrate. Highly in-plane and out-of-plane oriented, dense, smooth and crack free SCO single layer has been obtained via a polymer-assisted chemical solution deposition (PACSD) approach. YBCO thin film has been deposited equally via a PACSD route on the SCO-buffered NiW, the as grown YBCO yielding a sharp transition at T c0 = 87 K as well as J c (0 T, 77 K) ∼ 1 MA/cm 2 . These results indicates that RE (lanthanides other than Ce) doping may be an effective approach to improve the critical thickness of solution derived CeO 2 film, which renders it a promising candidate as single buffer layer for YBCO coated conductors

  2. Superconducting Dy1-x(Gd,Yb)xBa2Cu3O7-δ thin films made by Chemical Solution Deposition

    DEFF Research Database (Denmark)

    Opata, Yuri Aparecido; Wulff, Anders Christian; Hansen, Jørn Otto Bindslev

    2016-01-01

    Dy1-x(Gd or Yb)xBa2Cu3O7-δ samples were prepared using chemical solution deposition (CSD), based on trifluoroacetate metal-organic decomposition (MOD) methods. X-ray diffraction results demonstrated the formation of the RE123 superconducting phase with a strong in-plane and out-of-plane texture. c...

  3. SrAl12O19 thin films by chemical solution deposition and their use as buffer layers for oriented growth of hexagonal ferrites

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Uhrecký, Róbert; Kaščáková, Dorota; Kužel, R.; Holý, V.; Dopita, M.

    2016-01-01

    Roč. 616, OCT (2016), s. 228-237 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GA14-18392S Institutional support: RVO:61388980 Keywords : Chemical solution deposition * Hexagonal aluminates * Hexagonal ferrites Subject RIV: CA - Inorganic Chemistry Impact factor: 1.879, year: 2016

  4. M-type ferrites as template layers for the growth of oriented Y-type ferrites through chemical solution deposition method

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Uhrecký, Róbert; Kaščáková, Dorota; Slušná, Michaela; Dopita, M.; Kužel, R.

    2016-01-01

    Roč. 36, č. 13 (2016), s. 3173-3183 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GA14-18392S Institutional support: RVO:61388980 Keywords : Chemical solution deposition * Hexagonal ferrites * Lattice misfit * Seed layer * Thin films Subject RIV: CA - Inorganic Chemistry Impact factor: 3.411, year: 2016

  5. Improving chemical solution deposited YBa 2Cu 3O 7- δ film properties via high heating rates

    Science.gov (United States)

    Siegal, M. P.; Dawley, J. T.; Clem, P. G.; Overmyer, D. L.

    2003-12-01

    The superconducting and structural properties of YBa 2Cu 3O 7- δ (YBCO) films grown from chemical solution deposited (CSD) metallofluoride-based precursors improve by using high heating rates to the desired growth temperature. This is due to avoiding the nucleation of undesirable a-axis grains at lower temperatures, from 650 to 800 °C in p(O 2)=0.1%. Minimizing time spent in this range during the temperature ramp of the ex situ growth process depresses a-axis grain growth in favor of the desired c-axis orientation. Using optimized conditions, this results in high-quality YBCO films on LaAlO 3(1 0 0) with Jc(77 K) ∼ 3 MA/cm 2 for films thicknesses ranging from 60 to 140 nm. In particular, there is a dramatic decrease in a-axis grains in coated-conductors grown on CSD Nb-doped SrTiO 3(1 0 0) buffered Ni(1 0 0) tapes.

  6. Improved growth of solution-deposited thin films on polycrystalline Cu(In,Ga)Se{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Witte, Wolfram; Hariskos, Dimitrios [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), 70565, Stuttgart (Germany); Abou-Ras, Daniel [Helmholtz-Zentrum Berlin fuer Materialien und Energie, 14109, Berlin (Germany)

    2016-04-15

    CdS and Zn(O,S) grown by chemical bath deposition (CBD) are well established buffer materials for Cu(In,Ga)Se{sub 2} (CIGS) solar cells. As recently reported, a non-contiguous coverage of CBD buffers on CIGS grains with {112} surfaces can be detected, which was explained in terms of low surface energies of the {112} facets, leading to deteriorated wetting of the chemical solution on the CIGS surface. In the present contribution, we report on the effect of air annealing of CIGS thin films prior to the CBD of CdS and Zn(O,S) layers. In contrast to the growth on the as-grown CIGS layers, these buffer lay- ers grow densely on the annealed CIGS layer, even on grains with {112} surfaces. We explain the different growth behavior by increased surface energies of CIGS grains due to the annealing step, i.e., due to oxidation of the CIGS surface. Reference solar cells were processed and completed by i-ZnO/ZnO:Al layers for CdS and by (Zn,Mg)O/ZnO:Al for Zn(O,S) buffers. For solar cells with both, CdS and Zn(O,S) buffers, air-annealed CIGS films with improved buffer coverage resulted in higher power-conversion efficiencies, as compared with the devices containing as-grown CIGS layers. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Surface modeling and chemical solution deposition of SrO(SrTiO3)n Ruddlesden-Popper phases

    International Nuclear Information System (INIS)

    Zschornak, M.; Gemming, S.; Gutmann, E.; Weissbach, T.; Stoecker, H.; Leisegang, T.; Riedl, T.; Traenkner, M.; Gemming, T.; Meyer, D.C.

    2010-01-01

    Strontium titanate (STO) is a preferred substrate material for functional oxide growth, whose surface properties can be adjusted through the presence of Ruddlesden-Popper (RP) phases. Here, density functional theory (DFT) is used to model the (1 0 0) and (0 0 1) surfaces of SrO(SrTiO 3 ) n RP phases. Relaxed surface structures, electronic properties and stability relations have been determined. In contrast to pure STO, the near-surface SrO-OSr stacking fault can be employed to control surface roughness by adjusting SrO and TiO 2 surface rumpling, to stabilize SrO termination in an SrO-rich surrounding or to increase the band gap in the case of TiO 2 termination. RP thin films have been epitaxially grown on (0 0 1) STO substrates by chemical solution deposition. In agreement with DFT results, the fraction of particular RP phases n = 1-3 changes with varying heating rate and molar ratio Sr:Ti. This is discussed in terms of bulk formation energy.

  8. Effect of temperature and humidity on electrical properties of organic semiconductor orange dye films deposited from solution

    International Nuclear Information System (INIS)

    Karimov, K.S.; Babadzhanov, A.; Turaeva, M.A.; Marupov, R.; Ahmed, M.M.; Khalid, F.A.; Khan, M.N.; Zakaullah, Kh.; Moiz, S.A.

    2003-01-01

    In this study the effect of temperature and humidity on electrical properties of organic semiconductor orange dye (OD) have been examined. Thin films of OD (C/sub 17/H/sub 17/N/sub 5/O/sub 2/) were deposited from 10 wt. % aqueous solution on gold and conductive glass (SnO/sub 2/) substrates. The films were grown at room temperature under normal gravity conditions, i.e., 1 g and in a spin coater up to an angular speed of 1000 RPM. Two different types of structures: surface Ga/OD/Au and sandwich AVOD/SnO/sub 2/ were fabricated and their DC and low frequency AC characteristics were evaluated for the temperature range 30-70 deg. C at ambient humidity of 50-80 %. It was observed that the sandwich structure of OD films show rectification behavior whilst the conductivity of all devices are temperature and humidity dependent. Observed room temperature activation energy for OD films was 0.30 eV which showed an increase up to 0.51 eV as a function of temperature. It was found that certain sandwich structures are more sensitive to humidity than others and the observed resistance to humidity ratio for Au/OD/Au was 5.4 whereas for Au/OD/Ga samples it was 5.0. (author)

  9. Polymer-assisted metal deposition (PAMD): a full-solution strategy for flexible, stretchable, compressible, and wearable metal conductors.

    Science.gov (United States)

    Yu, You; Yan, Casey; Zheng, Zijian

    2014-08-20

    Metal interconnects, contacts, and electrodes are indispensable elements for most applications of flexible, stretchable, and wearable electronics. Current fabrication methods for these metal conductors are mainly based on conventional microfabrication procedures that have been migrated from Si semiconductor industries, which face significant challenges for organic-based compliant substrates. This Research News highlights a recently developed full-solution processing strategy, polymer-assisted metal deposition (PAMD), which is particularly suitable for the roll-to-roll, low-cost fabrication of high-performance compliant metal conductors (Cu, Ni, Ag, and Au) on a wide variety of organic substrates including plastics, elastomers, papers, and textiles. This paper presents i) the principles of PAMD, and how to use it for making ii) flexible, stretchable, and wearable conductive metal electrodes, iii) patterned metal interconnects, and d) 3D stretchable and compressible metal sponges. A critical perspective on this emerging strategy is also provided. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Visualization Technique for Accessing Solution Pool in Interactive Methods of Multiobjective Optimization

    OpenAIRE

    Filatovas, Ernestas; Podkopaev, Dmitry; Kurasova, Olga

    2015-01-01

    Interactive methods of multiobjective optimization repetitively derive Pareto optimal solutions based on decision maker’s preference information and present the obtained solutions for his/her consideration. Some interactive methods save the obtained solutions into a solution pool and, at each iteration, allow the decision maker considering any of solutions obtained earlier. This feature contributes to the flexibility of exploring the Pareto optimal set and learning about the op...

  11. Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Predoi, D.; Ciobanu, C.S. [National Institute for Physics of Materials, P.O. Box MG 07, Bucharest, Magurele (Romania); Radu, M.; Costache, M.; Dinischiotu, A. [Molecular Biology Center, University of Bucharest, 91-95 Splaiul Independentei, 76201, Bucharest 5 (Romania); Popescu, C.; Axente, E.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Gyorgy, E., E-mail: egyorgy@cin2.es [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Consejo Superior de Investigaciones Cientificas, Centre d' Investigacions en Nanociencia i Nanotecnologia (CSIC-CIN2), Campus UAB, 08193 Bellaterra (Spain)

    2012-02-01

    Iron oxide nanoparticles were prepared by chemical co-precipitation method. The nanoparticles were mixed with dextran in distilled water. The obtained solutions were frozen in liquid nitrogen and used as targets during matrix assisted pulsed laser evaporation for the growth of hybrid, iron oxide nanoparticles-dextran thin films. Fourier Transform Infrared Spectroscopy and X-ray diffraction investigations revealed that the obtained films preserve the structure and composition of the initial, non-irradiated iron oxide-dextran composite material. The biocompatibility of the iron oxide-dextran thin films was demonstrated by 3-(4.5 dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide-based colorimetric assay, using human liver hepatocellular carcinoma cells. - Highlights: Black-Right-Pointing-Pointer Hybrid, dextran-iron oxide nanoparticles and thin films. Black-Right-Pointing-Pointer Laser immobilization. Black-Right-Pointing-Pointer Biocompatibility of dextran-iron oxide nanoparticles.

  12. Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications

    International Nuclear Information System (INIS)

    Predoi, D.; Ciobanu, C.S.; Radu, M.; Costache, M.; Dinischiotu, A.; Popescu, C.; Axente, E.; Mihailescu, I.N.; Gyorgy, E.

    2012-01-01

    Iron oxide nanoparticles were prepared by chemical co-precipitation method. The nanoparticles were mixed with dextran in distilled water. The obtained solutions were frozen in liquid nitrogen and used as targets during matrix assisted pulsed laser evaporation for the growth of hybrid, iron oxide nanoparticles-dextran thin films. Fourier Transform Infrared Spectroscopy and X-ray diffraction investigations revealed that the obtained films preserve the structure and composition of the initial, non-irradiated iron oxide-dextran composite material. The biocompatibility of the iron oxide-dextran thin films was demonstrated by 3-(4.5 dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide-based colorimetric assay, using human liver hepatocellular carcinoma cells. - Highlights: ► Hybrid, dextran-iron oxide nanoparticles and thin films. ► Laser immobilization. ► Biocompatibility of dextran-iron oxide nanoparticles.

  13. A graphical technique for distinguishing plant material and soil from atmospheric deposition in biomonitors

    International Nuclear Information System (INIS)

    Rahn, K.A.

    2000-01-01

    The paper explores the limits to which a new graphical technique can distinguish the various hierarchical levels of sources of trace elements within biomonitors. When applied to data from Portuguese lichens, it appears to resolve four levels of sources, from plant material down to individual types of pollution. Careful factor analysis appears to offer very similar results, being weaker than the graphical method in some aspects and stronger in others. As a result, it now seems possible to determine sources for elements in lichens with better precision and confidence than was available previously. (author)

  14. Soft x-ray-controlled dose deposition in yeast cells: techniques, model, and biological assessment

    Science.gov (United States)

    Milani, Marziale; Batani, Dimitri; Conti, Aldo; Masini, Alessandra; Costato, Michele; Pozzi, Achille; Turcu, I. C. Edmond

    1996-12-01

    A procedure is presented to release soft x-rays onto yeast cell membrane allegedly damaging the resident enzymatic processes connected with fermentation. The damage is expected to be restricted to regulating fermentation processes without interference with respiration. By this technique fermentation is followed leading to CO2 production, and respiration resulting in global pressure measurements. A solid state pressure sensor system has been developed linked to a data acquisition system. Yeast cells cultures have been investigated at different concentrations and with different nutrients. A non-monotone response in CO2 production as a function of the delivered x-ray dose is observed.

  15. Deposition and release kinetics of nano-TiO2 in saturated porous media: Effects of solution ionic strength and surfactants

    International Nuclear Information System (INIS)

    Godinez, Itzel G.; Darnault, Christophe J.G.; Khodadoust, Amid P.; Bogdan, Dorin

    2013-01-01

    The aggregation, transport and deposition kinetics (i.e. attachment and release) of TiO 2 nanoparticles (nano-TiO 2 ) were investigated as a function of ionic strength and the presence of anionic (sodium dodecylbenzene sulfonate, SDBS) and non-ionic (Triton X-100) surfactants in 100% critical micelle concentration (CMC). The electrolyte concentration of the suspensions dictated the kinetic stability of nano-TiO 2 thus influencing the transport and retention of the nanoaggregates in the saturated porous medium. With increasing ionic strength, the interaction between approaching nano-TiO 2 and nano-TiO 2 already deposited onto collectors surfaces seemed to be more favorable than the interaction between approaching nano-TiO 2 and bare collectors surfaces. The abrupt and gradual reduction in electrolyte concentration during the flushing cycles of the column experiments induced the release of previously deposited nano-TiO 2 suggesting attachment of nano-TiO 2 through secondary energy minimum. Highlights: ► This study focuses on aggregation, transport and deposition kinetics of nano-TiO 2 . ► Ionic strength and surfactants impact nano-TiO 2 transport in saturated porous media. ► Previously deposited nano-TiO 2 serve as preferential sites for subsequent deposition. ► Changes in solution chemistry cause nanodeposits to release a portion of nano-TiO 2 . -- Previously deposited nano-TiO 2 serve as preferential sites for subsequent deposition and changes in solution chemistry cause nanodeposits to release a portion of nano-TiO 2

  16. [Effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter in soil solution in a young Cunninghamia lanceolata plantation.

    Science.gov (United States)

    Yuan, Xiao Chun; Chen, Yue Min; Yuan, Shuo; Zheng, Wei; Si, You Tao; Yuan, Zhi Peng; Lin, Wei Sheng; Yang, Yu Sheng

    2017-01-01

    To study the effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter (DOM) in the forest soil solution from the subtropical Cunninghamia lanceolata plantation, using negative pressure sampling method, the dynamics of DOM in soil solutions from 0-15 and 15-30 cm soil layer was monitored for two years and the spectroscopic features of DOM were analyzed. The results showed that nitrogen deposition significantly reduced the concentration of dissolved organic carbon (DOC), and increased the aromatic index (AI) and the humic index (HIX), but had no significant effect on dissolved organic nitrogen (DON) concentration in both soil layers. There was obvious seasonal variation in DOM concentration of the soil solution, which was prominently higher in summer and autumn than in spring and winter.Fourier-transform infrared (FTIR) absorption spectrometry indicated that the DOM in forest soil solution had absorption peaks in the similar position of six regions, being the highest in wave number of 1145-1149 cm -1 . Three-dimensional fluorescence spectra indicated that DOM was mainly consisted of protein-like substances (Ex/Em=230 nm/300 nm) and microbial degradation products (Ex/Em=275 nm/300 nm). The availability of protein-like substances from 0-15 cm soil layer was reduced in the nitrogen treatments. Nitrogen deposition significantly reduced the concentration of DOC in soil solution, maybe largely by reducing soil pH, inhibiting soil carbon mineralization and stimulating plant growth. In particular, the decline of DOC concentration in the surface layer was due to the production inhibition of the protein-like substances and carboxylic acids. Short-term nitrogen deposition might be beneficial to the maintenance of soil fertility, while the long-term accumulation of nitrogen deposition might lead to the hard utilization of soil nutrients.

  17. Kinetic study of formic acid oxidation on Ti/IrO{sub 2} electrodes prepared using the spin coating deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Fierro, Stephane, E-mail: stephane.fierro@epfl.c [Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, ISIC-EPFL, CH-1015 Lausanne (Switzerland); Comninellis, Christos [Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, ISIC-EPFL, CH-1015 Lausanne (Switzerland)

    2010-09-30

    In the first part of this paper, IrO{sub 2} electrodes produced by thermal decomposition of H{sub 2}IrCl{sub 6} precursor were manufactured using the spin coating deposition technique, where centrifugal forces spread the precursor solution with simultaneous evaporation of the solvent on the rotating Ti substrate. It was found using this technique, that it is possible to obtain thin and uniform IrO{sub 2} coatings with controlled loadings. The influence of the concentration of iridium salt in the precursor solution (c{sub 0}) as well as the influence of the rotation speed at which the substrate spins ({omega}) on the IrO{sub 2} loading have been studied using voltammetric charge measurements. From these results, a simple relation has been proposed for the estimation of the IrO{sub 2} loading for a given c{sub 0} and {omega}. In the second part of this paper and from measurements performed using different IrO{sub 2} loadings and formic acid concentrations, the kinetic parameters of the oxidation of formic acid have been quantitatively determined using a model that involves the redox couple IrO{sub 3}/IrO{sub 2} as mediator of this reaction. Furthermore, using the kinetic parameters obtained together with the Nernst equation and the I-V curves of the supporting electrolyte (1 M HClO{sub 4}), theoretical I-V curves could be constructed for different concentrations of formic acid and different IrO{sub 2} loadings.

  18. Critical assessment of the deposition based dosimetric technique for radon/thoron decay products

    International Nuclear Information System (INIS)

    Mayya, Y.S.

    2010-01-01

    Inhalation doses due to radon ( 222 Rn) and thoron ( 220 Rn) are predominantly contributed by their decay products and not due to the gases themselves. Decay product measurements are being carried out essentially by either short-term active measurement like by air-sampling on a substrate followed by alpha or beta counting or by continuous active monitoring techniques based on silicon barrier detector. However, due to non-availability of satisfactory passive measurement techniques for the progeny species, it has been a usual practice to estimate the long time averaged progeny concentration from measured gas concentration using an assumed equilibrium factor. To be accurate, one is required to measure the equilibrium factor in situ along with the gas concentration. This being not practical, the assigned equilibrium factor (0.4 for indoor and 0.8 for outdoor for 222 Rn) approach has been an inevitable, though uncertain, part of the dosimetric strategies in both occupational and public domains. Further, in the case of thoron decay products however, equilibrium factor is of far more questionable validity. Thus, there is a need to shift from gas based dosimetric paradigm to that based on direct detection of progeny species

  19. Atmospheric heavy metal deposition in Northern Vietnam: Hanoi and Thainguyen case study using the moss biomonitoring technique, INAA and AAS.

    Science.gov (United States)

    Viet, Hung Nguyen; Frontasyeva, Marina Vladimirovna; Thi, Thu My Trinh; Gilbert, Daniel; Bernard, Nadine

    2010-06-01

    The moss technique is widely used to monitor atmospheric deposition of heavy metals in many countries in Europe, whereas this technique is scarcely used in Asia. To implement this international reliable and cheap methodology in the Asian countries, it is necessary to find proper moss types typical for the Asian environment and suitable for the biomonitoring purposes. Such a case study was undertaken in Vietnam for assessing the environmental situation in strongly contaminated areas using local species of moss Barbula indica. The study is focused on two areas characterized by different pollution sources: the Hanoi urban area and the Thainguyen metallurgical zone. Fifty-four moss samples were collected there according to standard sampling procedure adopted in Europe. Two complementary analytical techniques, atomic absorption spectrometry (AAS) and instrumental neutron activation analysis (INAA), were used for determination of elemental concentrations in moss samples. To characterize the pollution sources, multivariate statistical analysis was applied. A total of 38 metal elements were determined in the moss by the two analytical techniques. The results of descriptive statistics of metal concentration in moss from the city center and periphery of Hanoi determined by AAS are presented. The similar results for moss from Thainguyen province determined by INAA and AAS are given also. A comparison of mean elemental concentrations in moss of this work with those in different environmental conditions of other authors provides reasonable information on heavy metal atmospheric deposition levels. Factor loadings and factor scores were used to identify and apportion contamination sources at the sampling sites. The values of percentage of total of factors show two highly different types of pollution in the two examined areas-the Hanoi pollution composition with high portion of urban-traffic activity and soil dust (62%), and the one of Thainguyen with factors related to industrial

  20. Ferroelectrics onto silicon prepared by chemical solution deposition methods: from the thin film to the self-assembled systems

    Directory of Open Access Journals (Sweden)

    Calzada, M. L.

    2006-06-01

    Full Text Available The work of the authors during the last years on ferroelectric thin and ultra-thin films deposited by Chemical Solution Deposition (CSD onto silicon based substrates is reviewed in this paper. Ferroelectric layers integrated with silicon substrates have potential use in the new micro/nanoelectronic devices. Two hot issues are here considered: 1 the use of low processing temperatures of the ferroelectric film, with the objective of not producing any damage on the different elements of the device heterostructure, and 2 the downscaling of the ferroelectric material with the aim of achieving the high densities of integration required in the next generation of nanoelectronic devices. The UV-assisted Rapid Thermal Processing has successfully been used in our laboratory for the fabrication of ferroelectric films at low temperatures. Preliminary results on the CSD preparation of nanosized ferroelectric structures are shown.

    Este artículo revisa el trabajo realizado por los autores durante los últimos años sobre lámina delgada y ultra-delgada ferroeléctrica preparada mediante el depósito químico de disoluciones (CSD sobre substratos de silicio. Las películas ferroeléctricas integradas con silicio tienen potenciales usos en los nuevos dispositivos micro/nanoelectrónicos. Dos aspectos claves son aquí considerados: 1 el uso de bajas temperaturas de procesado de la lámina ferroeléctrica, con el fin de no dañar los diferentes elementos que forman la heteroestructura del dispositivo y 2 la disminución de tamaño del material ferroeléctrico con el fin de conseguir las altas densidades de integración requeridas en la próxima generación de dispositivos nanoelectróncos. Los procesos térmicos rápidos asistidos con irradiación UV se están usando en nuestro laboratorio para conseguir la fabricación del material ferroeléctrico a temperaturas bajas compatibles con la tecnología del silicio. Se muestran resultados preliminares sobre

  1. Incompressible Navier-Stokes and parabolized Navier-Stokes solution procedures and computational techniques

    Science.gov (United States)

    Rubin, S. G.

    1982-01-01

    Recent developments with finite-difference techniques are emphasized. The quotation marks reflect the fact that any finite discretization procedure can be included in this category. Many so-called finite element collocation and galerkin methods can be reproduced by appropriate forms of the differential equations and discretization formulas. Many of the difficulties encountered in early Navier-Stokes calculations were inherent not only in the choice of the different equations (accuracy), but also in the method of solution or choice of algorithm (convergence and stability, in the manner in which the dependent variables or discretized equations are related (coupling), in the manner that boundary conditions are applied, in the manner that the coordinate mesh is specified (grid generation), and finally, in recognizing that for many high Reynolds number flows not all contributions to the Navier-Stokes equations are necessarily of equal importance (parabolization, preferred direction, pressure interaction, asymptotic and mathematical character). It is these elements that are reviewed. Several Navier-Stokes and parabolized Navier-Stokes formulations are also presented.

  2. Watermarking Techniques Using Least Significant Bit Algorithm for Digital Image Security Standard Solution- Based Android

    Directory of Open Access Journals (Sweden)

    Ari Muzakir

    2017-05-01

    Full Text Available Ease of deployment of digital image through the internet has positive and negative sides, especially for owners of the original digital image. The positive side of the ease of rapid deployment is the owner of that image deploys digital image files to various sites in the world address. While the downside is that if there is no copyright that serves as protector of the image it will be very easily recognized ownership by other parties. Watermarking is one solution to protect the copyright and know the results of the digital image. With Digital Image Watermarking, copyright resulting digital image will be protected through the insertion of additional information such as owner information and the authenticity of the digital image. The least significant bit (LSB is one of the algorithm is simple and easy to understand. The results of the simulations carried out using android smartphone shows that the LSB watermarking technique is not able to be seen by naked human eye, meaning there is no significant difference in the image of the original files with images that have been inserted watermarking. The resulting image has dimensions of 640x480 with a bit depth of 32 bits. In addition, to determine the function of the ability of the device (smartphone in processing the image using this application used black box testing. 

  3. Studies of implicit and explicit solution techniques in transient thermal analysis of structures

    International Nuclear Information System (INIS)

    Adelman, H.M.; Haftka, R.T.; Robinson, J.C.

    1982-08-01

    Studies aimed at an increase in the efficiency of calculating transient temperature fields in complex aerospace vehicle structures are reported. The advantages and disadvantages of explicit and implicit algorithms are discussed and a promising set of implicit algorithms with variable time steps, known as GEARIB, is described. Test problems, used for evaluating and comparing various algorithms, are discussed and finite element models of the configurations are described. These problems include a coarse model of the Space Shuttle wing, an insulated frame test article, a metallic panel for a thermal protection system, and detailed models of sections of the Space Shuttle wing. Results generally indicate a preference for implicit over explicit algorithms for transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures). The effects on algorithm performance of different models of an insulated cylinder are demonstrated. The stiffness of the problem is highly sensitive to modeling details and careful modeling can reduce the stiffness of the equations to the extent that explicit methods may become the best choice. Preliminary applications of a mixed implicit-explicit algorithm and operator splitting techniques for speeding up the solution of the algebraic equations are also described

  4. Studies of implicit and explicit solution techniques in transient thermal analysis of structures

    Science.gov (United States)

    Adelman, H. M.; Haftka, R. T.; Robinson, J. C.

    1982-01-01

    Studies aimed at an increase in the efficiency of calculating transient temperature fields in complex aerospace vehicle structures are reported. The advantages and disadvantages of explicit and implicit algorithms are discussed and a promising set of implicit algorithms with variable time steps, known as GEARIB, is described. Test problems, used for evaluating and comparing various algorithms, are discussed and finite element models of the configurations are described. These problems include a coarse model of the Space Shuttle wing, an insulated frame tst article, a metallic panel for a thermal protection system, and detailed models of sections of the Space Shuttle wing. Results generally indicate a preference for implicit over explicit algorithms for transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures). The effects on algorithm performance of different models of an insulated cylinder are demonstrated. The stiffness of the problem is highly sensitive to modeling details and careful modeling can reduce the stiffness of the equations to the extent that explicit methods may become the best choice. Preliminary applications of a mixed implicit-explicit algorithm and operator splitting techniques for speeding up the solution of the algebraic equations are also described.

  5. Techniques to limit gaseous releases in case of reactor accident. Choice criteria - present solutions

    International Nuclear Information System (INIS)

    Billard, Francois; Lavie, Jean-Marie

    1964-10-01

    Within the frame of the study of radiological risks associated with a reactor accident in order to define the required responses, this study comprises, on the one hand, an analysis of the different accident types in order to select typical accidents, and on the other hand, a site-based analysis to define the maximum admissible radioactivity release for a given site. The determination of minimum required coefficient of risk reduction results from a compromise between the choice of reactor configuration type and the efficiency of purification devices, while taking into account minimum characteristics of the enclosure mechanical strength, local release conditions, and nature of gaseous effluents to be processed. After a review of available containment techniques, the author applies this analysis method to the different French reactor types. He gives a brief description of adopted solutions for the most typical French reactors in terms of characteristics of venting and filtration devices. As data quality is a crucial requirement, the author outlines the need for further studies regarding fission product emission and transfer, the purification of gaseous effluents and their diffusion in the atmosphere [fr

  6. Atmospheric deposition of heavy metals in transilvanian plateau of romania studied by the moss bio monitoring Technique employing nuclear and related analytical Techniques and gis technology

    International Nuclear Information System (INIS)

    Lucaciu, Adriana; Craciun, L.; Cuculeanu, V.; Eseanu, D.

    2001-01-01

    This paper presents data for 39 elements of 69 moss samples (Hypnum cupressiforme) collected in the Transilvanian Plateau of Romania. This results have obtained in the framework of the project Atmospheric Deposition of Heavy Metals in Rural and Urban Areas of Romania Studied by the Moss Bio monitoring Technique Employing Nuclear and Related Analytical Techniques and GIS Technology carried out under the auspices of the International Atomic Energy Agency, Vienna.The samples collected have been analyzed by ENAA with the exception of Cu, Cd, and Pb which were determined by AAS. IAEA certified materials were used to ensure the quality of the measurements. The regional concentration variations of selected elements are presented in the form of maps constructed by GIS technology. Extremely high values are observed for elements such as Cu, Zn, As and Sb in parts of this territory affected by local metal industries. The levels are among the highest observed in the world, and could be partly responsible for the unfortunate health situation in some of these areas

  7. Enhancement of the optical and electrical properties of ITO thin films deposited by electron beam evaporation technique

    Science.gov (United States)

    Ali, H. M.; Mohamed, H. A.; Mohamed, S. H.

    2005-08-01

    Indium tin oxide (ITO) is widely utilized in numerous industrial applications due to its unique combined properties of transparency to visible light and electrical conductivity. ITO films were deposited on glass substrates by an electron beam evaporation technique at room temperature from bulk samples, with different thicknesses. The film with 1500 Å thick was selected to perform annealing in the temperature range of 200 400 °C and annealing for varying times from 15 to 120 min at 400 °C. The X-ray diffraction of the films was analyzed in order to investigate its dependence on thickness, and annealing. Electrical and optical measurements were also carried out. Transmittance, optical energy gap, refractive index, carrier concentration, thermal emissivity and resistivity were investigated. It was found that the as-deposited films with different thicknesses were highly absorbing and have relatively poor electrical properties. The films become opaque with increasing the film thickness. After thermal annealing, the resistance decreases and a simultaneous variation in the optical transmission occurs. A transmittance value of 85.5% in the IR region and 82% in the visible region of the spectrum and a resistivity of 2.8 × 10-4 Ω Cm were obtained at annealing temperature of 400 °C for 120 min.

  8. Characteristics of the streak clays of the hyacinth gold deposit by the techniques of DRX and AT

    International Nuclear Information System (INIS)

    Trueba Gaetano, R.; Cabrera Diaz, I.; Casanova Gomez, A.; Aguila Terry, A.; Martinez Montalvo, A.; Canel Carreras, L.; Rodriguez Garcia, J. C.; Alonso Perez, J. A.

    2016-01-01

    It is exposed the investigative work of the mineralogical characteristics of different types of clays present in the veins of the Oro Jacinto deposit through the use of XRD and TA analytical techniques, supported by a study of particle size in the range of 2 mm to 63 μm. Significant feature of these samples is that being crushed they generated high content of fine material below 0.074 mm. This size particles range is presented between 17.68% and 50.78% of samples volume, majority particles being smaller than 0.063 mm, this interstratificated fine material with different types of clay makes the fraction below 74 μm present characteristics of clayey material. The results of XRD analysis and comparative Thermo gravimetric that are achieved for samples of 'Jacinto' gold vein deposit indicate that the clays presented in the fine fractions are: chlorite-montmorillonite; illite; hidromoscovite and muscovite, which turned out to be higher in samples of the grain B eatriz . During the ores formation process of the veins S ur Elena , it is evident that the hydrothermal fluids that led to the formation of the rocks, experienced greater degree of alteration during its transformation into argillite, which is manifested in three mineralogical regularities: Low crystallinity of the chlorite-montmorillonite clay. Transformation of muscovite - hidromoscovite into illite. Presence of abundant calcite in some samples. Higher concentrations of iron oxides (goethite). (Author)

  9. Estimates of soil erosion and deposition of cultivated soil of Nakhla watershed, Morocco, using 137Cs technique and calibration models

    International Nuclear Information System (INIS)

    Bouhlassa, S.; Moukhchane, M.; Aiachi, A.

    2000-01-01

    Despite the effective threat of erosion, for soil preservation and productivity in Morocco, there is still only limited information on rates of soil loss involved. This study is aimed to establish long-term erosion rates on cultivated land in the Nakhla watershed located in the north of the country, using 137 Cs technique. Two sampling strategies were adopted. The first is aimed at establishing areal estimates of erosion, whereas the second, based on a transect approach, intends to determine point erosion. Twenty-one cultivated sites and seven undisturbed sites apparently not affected by erosion or deposition were sampled to 35 cm depth. Nine cores were collected along the transect of 149 m length. The assessment of erosion rates with models varying in complexity from the simple Proportional Model to more complex Mass Balance Models which attempts to include the processes controlling the redistribution of 137 Cs in soil, enables us to demonstrate the significance of soil erosion problem on cultivated land. Erosion rates rises up to 50 t ha -1 yr -1 . The 137 Cs derived erosion rates provide a reliable representation of water erosion pattern in the area, and indicate the importance of tillage process on the redistribution of 137 Cs in soil. For aggrading sites a Constant Rate Supply (CRS) Model had been adapted and introduced to estimate easily the depositional rate. (author) [fr

  10. Microstructural, nanomechanical, and microtribological properties of Pb thin films prepared by pulsed laser deposition and thermal evaporation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Broitman, Esteban, E-mail: esbro@ifm.liu.se [Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping (Sweden); Flores-Ruiz, Francisco J. [Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping, Sweden and Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Querétaro, Querétaro 76230 (Mexico); Di Giulio, Massimo [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Gontad, Francisco; Lorusso, Antonella; Perrone, Alessio [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce, Italy and INFN-Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy)

    2016-03-15

    In this work, the authors compare the morphological, structural, nanomechanical, and microtribological properties of Pb films deposited by thermal evaporation (TE) and pulsed laser deposition (PLD) techniques onto Si (111) substrates. Films were investigated by scanning electron microscopy, surface probe microscopy, and x-ray diffraction in θ-2θ geometry to determine their morphology, root-mean-square (RMS) roughness, and microstructure, respectively. TE films showed a percolated morphology with densely packed fibrous grains while PLD films had a granular morphology with a columnar and tightly packed structure in accordance with the zone growth model of Thornton. Moreover, PLD films presented a more polycrystalline structure with respect to TE films, with RMS roughness of 14 and 10 nm, respectively. Hardness and elastic modulus vary from 2.1 to 0.8 GPa and from 14 to 10 GPa for PLD and TE films, respectively. A reciprocal friction test has shown that PLD films have lower friction coefficient and wear rate than TE films. Our study has demonstrated for first time that, at the microscale, Pb films do not show the same simple lubricious properties measured at the macroscale.

  11. A note on the solution of general Falkner-Skan problem by two novel semi-analytical techniques

    Directory of Open Access Journals (Sweden)

    Ahmed Khidir

    2015-12-01

    Full Text Available The aim of this paper is to give a presentation of two new iterative methods for solving non-linear differential equations, they are successive linearisation method and spectral homotopy perturbation method. We applied these techniques on the non-linear boundary value problems of Falkner-Skan type. The methods used to find a recursive former for higher order equations that are solved using the Chebyshev spectral method to find solutions that are accurate and converge rapidly to the full numerical solution. The methods are illustrated by progressively applying the technique to the Blasius boundary layer equation, the Falkner-Skan equation and finally, the magnetohydrodynamic (MHD Falkner-Skan equation. The solutions are compared to other methods in the literature such as the homotopy analysis method and the spectral-homotopy analysis method with focus on the accuracy and convergence of this new techniques.

  12. In situ, real-time thickness measurement techniques for bath-deposited CdS thin films on Cu(In,Ga)Se2

    International Nuclear Information System (INIS)

    Mann, Jonathan R.; Noufi, Rommel

    2012-01-01

    A technique has been developed that can measure the thickness of a 30–70 nm thin film of cadmium sulfide on a Cu(In,Ga)Se 2 substrate, in real time, as it grows in a chemical bath. The technique does not damage the film, and can be used to monitor batch depositions and roll-to-roll depositions with equal accuracy. The technique is based on reflectance spectroscopy through the chemical bath. - Highlights: ► Reflection spectra were collected during the chemical bath deposition of CdS. ► Two algorithms were generated to extract film thickness from each spectrum. ► Two conventional techniques were used to independently verify CdS film thicknesses. ► The accuracies of the algorithms are within 7% of the actual thicknesses. ► The algorithms offer in situ, real time thicknesses through the chemical bath.

  13. Annealing effects on the structural and optical properties of vanadium oxide film obtained by the hot-filament metal oxide deposition technique (HFMOD)

    Energy Technology Data Exchange (ETDEWEB)

    Scarminio, Jair; Silva, Paulo Rogerio Catarini da, E-mail: scarmini@uel.br, E-mail: prcsilva@uel.br [Universidade Estadual de Londrina (UEL), PR (Brazil). Departamento de Fisica; Gelamo, Rogerio Valentim, E-mail: rogelamo@gmail.com [Universidade Federal do Triangulo Mineiro (UFTM), Uberaba, MG (Brazil); Moraes, Mario Antonio Bica de, E-mail: bmoraes@mailhost.ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2017-01-15

    Vanadium oxide films amorphous, nonstoichiometric and highly absorbing in the optical region were deposited on ITO-coated glass and on silicon substrates, by the hot-filament metal oxide deposition technique (HFMOD) and oxidized by ex-situ annealing in a furnace at 200, 300, 400 and 500 deg C, under an atmosphere of argon and rarefied oxygen. X-ray diffraction, Raman and Rutherford backscattering spectroscopy as well as optical transmission were employed to characterize the amorphous and annealed films. When annealed at 200 and 300 deg C the as-deposited opaque films become transparent but still amorphous. Under treatments at 400 and 500 deg C a crystalline nonstoichiometric V{sub 2}O{sub 5} structure is formed. All the annealed films became semiconducting, with their optical absorption coefficients changing with the annealing temperature. An optical gap of 2.25 eV was measured for the films annealed at 400 and 500 deg C. The annealing in rarefied oxygen atmosphere proved to be a useful and simple ex-situ method to modulate the structural and optical properties of vanadium oxide films deposited by HFMOD technique. This technique could be applied to other amorphous and non-absorbing oxide films, replacing the conventional and sometimes expensive method of modulate desirable film properties by controlling the film deposition parameters. Even more, the HFMOD technique can be an inexpensive alternative to deposit metal oxide films. (author)

  14. Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis

    KAUST Repository

    Maher, R. C.

    2013-07-30

    Raman spectroscopy is a powerful characterization tool for improving the understanding of solid oxide fuel cells (SOFCs), capable of providing direct, molecularly specific information regarding the physical and chemical processes occurring within functional SOFCs in real time. In this paper we give a summary of the technique itself and highlight ex situ and in situ studies that are particularly relevant for SOFCs. This is followed by a case study of carbon formation on SOFC Ni-based anodes exposed to carbon monoxide (CO) using both ex situ and in situ Raman spectroscopy combined with computational simulations. In situ measurements clearly show that carbon formation is significantly reduced for polarized SOFCs compared to those held at open circuit potential (OCP). Ex situ Raman mapping of the surfaces showed clear variations in the rate of carbon formation across the surface of polarized anodes. Computational simulations describing the geometry of the cell showed that this is due to variations in gas access. These results demonstrate the ability of Raman spectroscopy in combination with traditional characterization tools, to provide detailed understanding of critical processes occurring within functional SOFCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mapping sediment deposite on tank FB-901 using neutron back scattering technique

    International Nuclear Information System (INIS)

    Wibisono; Sugiharto; Zulkifli Lubis; Phyu Phyu Aung Myint; Thin Moe Hlaing

    2016-01-01

    Tank FB-901 is storage tank for temporary material production with a diameter 11 m and a high 12 m. This tank has been use about 10 years so it is suspected there is sediment in it. Neutron back scattering technique has been used to detected the level of sediment inside so it can be seen the volume of liquid properly and avoid problem in the nozzle outlet. AmBe neutron source with activity one Curie shoot into the tank to enable back scattering intensity from material. Measurement using He-3 detector, radiation counter Ludlum model 2200 scaler ratemeter and mechanical motor controlled by computer. Investigation were taken at around the tank from the bottom to the top on each step 50 mm height 8000 mm. Scan determined the distance between 500 mm and measurement time 3 seconds to each sample point. Investigation found the sediment level average 1000 mm by 1500 mm highest and lowest level 100 mm. Fluctuating liquid level observed maximum of 7800 mm and average of 7000 mm. Cleaning tank advised to avoid blockage of the nozzle and material volume is measured accurately. (author)

  16. Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis

    KAUST Repository

    Maher, R. C.; Duboviks, V.; Offer, G. J.; Kishimoto, M.; Brandon, N. P.; Cohen, L. F.

    2013-01-01

    Raman spectroscopy is a powerful characterization tool for improving the understanding of solid oxide fuel cells (SOFCs), capable of providing direct, molecularly specific information regarding the physical and chemical processes occurring within functional SOFCs in real time. In this paper we give a summary of the technique itself and highlight ex situ and in situ studies that are particularly relevant for SOFCs. This is followed by a case study of carbon formation on SOFC Ni-based anodes exposed to carbon monoxide (CO) using both ex situ and in situ Raman spectroscopy combined with computational simulations. In situ measurements clearly show that carbon formation is significantly reduced for polarized SOFCs compared to those held at open circuit potential (OCP). Ex situ Raman mapping of the surfaces showed clear variations in the rate of carbon formation across the surface of polarized anodes. Computational simulations describing the geometry of the cell showed that this is due to variations in gas access. These results demonstrate the ability of Raman spectroscopy in combination with traditional characterization tools, to provide detailed understanding of critical processes occurring within functional SOFCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thermoluminescence properties of undoped diamond films deposited using HF CVD technique

    Directory of Open Access Journals (Sweden)

    Paprocki K.

    2018-03-01

    Full Text Available Natural diamond has been considered as a perspective material for clinical radiation dosimetry due to its tissuebiocompatibility and chemical inertness. However, the use of natural diamond in radiation dosimetry has been halted by the high market price. The recent progress in the development of CVD techniques for diamond synthesis, offering the capability of growing high quality diamond layers, has renewed the interest in using this material in radiation dosimeters having small geometricalsizes. Polycrystalline CVD diamond films have been proposed as detectors and dosimeters of β and α radiation with prospective applications in high-energy photon dosimetry. In this work, we present a study on the TL properties of undoped diamond film samples grown by the hot filament CVD (HF CVD method and exposed to β and α radiation. The glow curves for both types of radiation show similar character and can be decomposed into three components. The dominant TL peaks are centered at around 610 K and exhibit activation energy of the order of 0.90 eV.

  18. Geophysical techniques for exploration of concealed uranium deposits in the Gwalior basin

    International Nuclear Information System (INIS)

    Choudhary, Kalpan; Singh, R.B.

    2004-01-01

    There is no direct geophysical method for the exploration of concealed uranium ore. Scope of geophysics for this in the Gwalior basin comprises delineating the basement topography, demarcation or zones of intense fracturing intersecting the unconformities and to identify the presence of carbonaceous rocks, specially in the graben-like structures. These geophysical problems have been successfully solved in other places by employing IP, resistivity, SP and gravity techniques for basement mapping, identification of fracture zone/shear zone, delineation of electrical conductors like carbonaceous rocks and sulphides. Three such case histories are presented here that include: a). basement and shear/fracture zone mapping in the Vindhyan basin north of Son-Narmada lineament, b). delineation of conductive zone (proved to be carbon phyllite) in the Mahakoshal Group of Kanhara area of Sonbhadra district, UP and c). Identification of a conductive zone, proved to be sulphide body, within the Mahakoshal group in the Gurharpahar area of Sidhi and Sonbhadra districts of MP and UP respectively. In the context of exploration for concealed uranium in the Gwalior basin, it is suggested to employ IP, resistivity, SP, gravity and magnetic methods for delineation of conductive zones like carbonaceous rocks, basement topography, including the graben like structures, fracture zone, geological boundaries and demarcation of the basin boundary. (author)

  19. Experimental setup for producing tungsten coated graphite tiles using plasma enhanced chemical vapor deposition technique for fusion plasma applications

    International Nuclear Information System (INIS)

    Chauhan, Sachin Singh; Sharma, Uttam; Choudhary, K.K.; Sanyasi, A.K.; Ghosh, J.; Sharma, Jayshree

    2013-01-01

    Plasma wall interaction (PWI) in fusion grade machines puts stringent demands on the choice of materials in terms of high heat load handling capabilities and low sputtering yields. Choice of suitable material still remains a challenge and open topic of research for the PWI community. Carbon fibre composites (CFC), Beryllium (Be), and Tungsten (W) are now being considered as first runners for the first wall components of future fusion machines. Tungsten is considered to be one of the suitable materials for the job because of its superior properties than carbon like low physical sputtering yield and high sputter energy threshold, high melting point, fairly high re-crystallization temperature, low fuel retention capabilities, low chemical sputtering with hydrogen and its isotopes and most importantly the reparability with various plasma techniques both ex-situ and in-situ. Plasma assisted chemical vapour deposition is considered among various techniques as the most preferable technique for fabricating tungsten coated graphite tiles to be used as tokamak first wall and target components. These coated tiles are more favourable compared to pure tungsten due to their light weight and easier machining. A system has been designed, fabricated and installed at SVITS, Indore for producing tungsten coated graphite tiles using Plasma Enhanced Chemical Vapor Deposition (PE-CVD) technique for Fusion plasma applications. The system contains a vacuum chamber, a turbo-molecular pump, two electrodes, vacuum gauges, mass analyzer, mass flow controllers and a RF power supply for producing the plasma using hydrogen gas. The graphite tiles will be put on one of the electrodes and WF6 gas will be inserted in a controlled manner in the hydrogen plasma to achieve the tungsten-coating with WF6 dissociation. The system is integrated at SVITS, Indore and a vacuum of the order of 3*10 -6 is achieved and glow discharge plasma has been created to test all the sub-systems. The system design with

  20. pplication of Fractal Technique for Analysis of Geophysical - Geochemical Databases in Tekieh Pb-Zn Ore Deposit (SE of Arak

    Directory of Open Access Journals (Sweden)

    Seyed Reza Mehrnia

    2017-02-01

    Full Text Available Introduction Tekieh Lead-Zinc ore deposit that is located in the Sanandaj-Sirjan structural zone has been recognized as one of the most important mineralized regions in Malayer-Isfahan metallogenic sub-state, south east of Arak (Momenzadeh and Ziseman, 1981. Carbonate host units have been developed along (or across the Vishan-Tekieh anticline as the main structure extended in NW-SE trends (Annells et al, 1985. According to geochemical investigations (Salehi, 2004, the element content of the mineralized regions has originated from Alpine post-volcanisms and subsequently it has migrated toward early Cretaceous formations (dolomitic limestones among several hypogenic stages (Torkashvand et a.2009. Also echelon type structures consisting of folded systems and inversed faulting of structures are the most common features in western and eastern parts of ore deposit regions (Annells et al, 1985. Syngenetic enrichments beside limited (rarely developed epigenetic mineralization have been known as two main phases which are closely relevant to ore forming processes in the massive lenses and vein type occurrences, respectively (Momenzadeh and Ziseman, 1981. Material and Methods In this research, two statistical techniques that consist of classical and fractal equations (Mandelbrot, 2005 were applied in geochemical (Torkashvand et al., 2009 and geophysical (Jafari, 2007 databases for obtaining the linear and nonlinear distributions of geochemical elements (Tekieh Pb-Zn content in association with resistivity variations and induction polarization measurements (Calagari, 2010. According to linear statistical techniques (Torkashvand et al., 2009, the main central parameters such as mean, median and mode in addition to variances and standard deviations as distribution tendencies could be used for obtaining the regression coefficients of the databases. However, in fractal statistics, a reliable regression between geoelectrical - geochemical anomalies should be

  1. Dense CdS thin films on fluorine-doped tin oxide coated glass by high-rate microreactor-assisted solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yu-Wei, E-mail: suyuweiwayne@gmail.com [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97330 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States); Ramprasad, Sudhir [Energy Processes and Materials Division, Pacific Northwest National Laboratory, Corvallis, OR 9730 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States); Han, Seung-Yeol; Wang, Wei [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97330 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States); Ryu, Si-Ok [School of Display and Chemical Engineering, Yeungnam University, 214-1 Dae-dong, Gyeonsan, Gyeongbuk 712-749 (Korea, Republic of); Palo, Daniel R. [Barr Engineering Co., Hibbing, MN 55747 (United States); Paul, Brian K. [School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97330 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States); Chang, Chih-hung [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97330 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States)

    2013-04-01

    Continuous microreactor-assisted solution deposition is demonstrated for the deposition of CdS thin films on fluorine-doped tin oxide (FTO) coated glass. The continuous flow system consists of a microscale T-junction micromixer with the co-axial water circulation heat exchanger to control the reacting chemical flux and optimize the heterogeneous surface reaction. Dense, high quality nanocrystallite CdS thin films were deposited at an average rate of 25.2 nm/min, which is significantly higher than the reported growth rate from typical batch chemical bath deposition process. Focused-ion-beam was used for transmission electron microscopy specimen preparation to characterize the interfacial microstructure of CdS and FTO layers. The band gap was determined at 2.44 eV by UV–vis absorption spectroscopy. X-ray photon spectroscopy shows the binding energies of Cd 3d{sub 3/2}, Cd 3d{sub 5/2}, S 2P{sub 3/2} and S 2P{sub 1/2} at 411.7 eV, 404.8 eV, 162.1 eV and 163.4 eV, respectively. - Highlights: ► CdS films deposited using continuous microreactor-assisted solution deposition (MASD) ► Dense nanocrystallite CdS films can be reached at a rate of 25.2 [nm/min]. ► MASD can approach higher film growth rate than conventional chemical bath deposition.

  2. Synthesis of core/shell ZnO/ZnSe nanowires using novel low cost two-steps electrochemical deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Ghoul, M., E-mail: ghoulmed2009@yahoo.fr [Laboratoire Photovoltaïque, Centre de Recherches et des Technologies de l' Energie Technopole BorjCedria, Bp 95, Hammammlif 2050 (Tunisia); Braiek, Z. [Laboratoire Photovoltaïque, Centre de Recherches et des Technologies de l' Energie Technopole BorjCedria, Bp 95, Hammammlif 2050 (Tunisia); Brayek, A. [Laboratoire Photovoltaïque, Centre de Recherches et des Technologies de l' Energie Technopole BorjCedria, Bp 95, Hammammlif 2050 (Tunisia); ITODYS, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR – 7086, 75205 Paris (France); Ben Assaker, I.; Khalifa, N.; Ben Naceur, J.; Souissi, A.; Lamouchi, A. [Laboratoire Photovoltaïque, Centre de Recherches et des Technologies de l' Energie Technopole BorjCedria, Bp 95, Hammammlif 2050 (Tunisia); Ammar, S. [ITODYS, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR – 7086, 75205 Paris (France); Chtourou, R. [Laboratoire Photovoltaïque, Centre de Recherches et des Technologies de l' Energie Technopole BorjCedria, Bp 95, Hammammlif 2050 (Tunisia)

    2015-10-25

    This work highlights the original use of a two-step electrochemical deposition protocol to grow ZnO/ZnSe core/shell nanowires on a Sn-doped In{sub 2}O{sub 3} (ITO)/glass substrate. The good alignment of the nanowires is verified by the scanning electron microscopy characterization technique in addition to the surface roughness after the ZnSe electrodeposition on the ZnO nanowires lateral facets. The X-ray diffraction patterns and Raman spectra allow estimating that ZnO has grown along the wurtzite (W) structure c-axis. The presence of the type-II interfacial transition between the valence band of ZnSe and the conduction band of ZnO was confirmed by UV–visible spectroscopy. It was proved that the absorbed energy of the developed nanostructures is extended to the near infrared which is well recommended for the photovoltaic applications. - Graphical abstract: Fabrication of the ZnO–ZnSe core–shell nanowires through a solution based all-electrochemical approach, and their application as photoanodes in photoelectrochemical water splitting cells. - Highlights: • Deposition of ZnO/ZnSe nanowires by two steps electrodeposition method. • The morphology studies show the formation of ZnO/ZnSe core/Shell nanowires. • XRD and Raman spectroscopy confirm the presence of the wurtzite ZnO and blende ZnSe junction. • Optical properties demonstrate the evidence type-II interfacial transition between the two semiconductors.

  3. Effects of radical scavengers on aqueous solutions exposed to heavy-ion irradiation using the liquid microjet technique

    Science.gov (United States)

    Nomura, Shinji; Tsuchida, Hidetsugu; Furuya, Ryousuke; Miyahara, Kento; Majima, Takuya; Itoh, Akio

    2015-12-01

    The effects of the radical scavenger ascorbic acid on water radiolysis are studied by fast heavy-ion irradiation of aqueous solutions of ascorbic acid, using the liquid microjet technique under vacuum. To understand the reaction mechanisms of hydroxyl radicals in aqueous solutions, we directly measure secondary ions emitted from solutions with different ascorbic acid concentrations. The yield of hydronium secondary ions is strongly influenced by the reaction between ascorbic acid and hydroxyl radicals. From analysis using a simple model considering chemical equilibria, we determine that the upper concentration limit of ascorbic acid with a radical scavenger effect is approximately 70 μM.

  4. Effects of radical scavengers on aqueous solutions exposed to heavy-ion irradiation using the liquid microjet technique

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Shinji [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Tsuchida, Hidetsugu, E-mail: tsuchida@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan); Furuya, Ryousuke; Miyahara, Kento [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Majima, Takuya; Itoh, Akio [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan)

    2015-12-15

    The effects of the radical scavenger ascorbic acid on water radiolysis are studied by fast heavy-ion irradiation of aqueous solutions of ascorbic acid, using the liquid microjet technique under vacuum. To understand the reaction mechanisms of hydroxyl radicals in aqueous solutions, we directly measure secondary ions emitted from solutions with different ascorbic acid concentrations. The yield of hydronium secondary ions is strongly influenced by the reaction between ascorbic acid and hydroxyl radicals. From analysis using a simple model considering chemical equilibria, we determine that the upper concentration limit of ascorbic acid with a radical scavenger effect is approximately 70 μM.

  5. Effects of radical scavengers on aqueous solutions exposed to heavy-ion irradiation using the liquid microjet technique

    International Nuclear Information System (INIS)

    Nomura, Shinji; Tsuchida, Hidetsugu; Furuya, Ryousuke; Miyahara, Kento; Majima, Takuya; Itoh, Akio

    2015-01-01

    The effects of the radical scavenger ascorbic acid on water radiolysis are studied by fast heavy-ion irradiation of aqueous solutions of ascorbic acid, using the liquid microjet technique under vacuum. To understand the reaction mechanisms of hydroxyl radicals in aqueous solutions, we directly measure secondary ions emitted from solutions with different ascorbic acid concentrations. The yield of hydronium secondary ions is strongly influenced by the reaction between ascorbic acid and hydroxyl radicals. From analysis using a simple model considering chemical equilibria, we determine that the upper concentration limit of ascorbic acid with a radical scavenger effect is approximately 70 μM.

  6. Multigrid techniques for nonlinear eigenvalue probems: Solutions of a nonlinear Schroedinger eigenvalue problem in 2D and 3D

    Science.gov (United States)

    Costiner, Sorin; Taasan, Shlomo

    1994-01-01

    This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.

  7. Trends of atmospheric deposition of trace elements in Macedonia studied by the moss biomonitoring technique.

    Science.gov (United States)

    Barandovski, Lambe; Frontasyeva, Marina V; Stafilov, Trajče; Sajn, Robert; Pavlov, Sergey; Enimiteva, Vangelica

    2012-01-01

    In 2002 and 2005 the moss biomonitoring technique was applied to air pollution studies in the Republic of Macedonia in the framework of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops under the auspices of the United Nations Economic Commission for Europe (UNECE-ICP Vegetation) Convention on Long-Range Transboundary Air Pollution (LRTAP). In August 2005 samples of the terrestrial mosses Homolothecium lutescens and Hypnum cupressiforme were collected at 72 sites evenly distributed over the territory of the country, in accordance with the sampling strategy of the European moss survey programme. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Sb, I, Cs, Ba, La, Ce, Sm, Eu, Tb, Dy Hf, Ta, W, Hg, Pb, Th, and U) were determined by instrumental epithermal neutron activation analysis and atomic absorption spectrometry. Principal component analysis was used to identify and characterize different pollution sources. Distributional maps were prepared to point out the regions most affected by pollution and to relate this to known sources of contamination. A few areas, as in 2002, are experiencing particular environmental stress: Veles, Skopje, Tetovo, Radoviš and Kavadarci-Negotino, whereas the agricultural regions in the south, south-west, and south-east show median European values for most elements of mainly pollution origin. A significant increase in the content of Ni is noticed in the 2005 moss survey compared with 2002, due to the increased production of the ferro-nickel smelter in Kavadarci. A higher content of Cd, Hg, and Pb in 2005 relative to 2002 can be explained by pollution from the lead-zinc smelter in Veles, as well as the pollution that comes from the open slag waste dump of this smelter. Protection activities on the dump of slag from the former ferrochromium smelter located near Tetovo resulted in a lower content of Cr in the 2005 moss

  8. The effect of reduced atmospheric deposition on soil and soil solution chemistry at a site subjected to long-term acidification, Nacetín, Czech Republic.

    Science.gov (United States)

    Oulehle, Filip; Hofmeister, Jenýk; Cudlín, Pavel; Hruska, Jakub

    2006-11-01

    During the 1990s the emissions of SO(2) fell dramatically by about 90% in the Czech Republic; the measured throughfall deposition of sulphur to a spruce forest at Nacetín in the Ore Mts. decreased from almost 50 kg ha(-1) in 1994 to 15 kg ha(-1) in 2005. The throughfall flux of Ca decreased from 17 kg ha(-1) in 1994 to 9 kg ha(-1) in 2005; no change was observed for Mg. The deposition of nitrogen ranged between 15 and 30 kg ha(-1) with no statistically significant trend in the period 1994-2005. The desorption of previously stored sulphur and the decrease of Ca deposition are the main factors controlling the recovery of soil solution. The pH of the soil solution at a depth of 30 cm remains unchanged, and the Al concentration decreased from 320 micromol l(-1) in 1997 to 140 micromol l(-1) in 2005. The enhanced leaching of base cations relative to no acidified conditions has continued, although the Ca concentration decreased from 110 microeq l(-1) in 1997 to 25 microeq l(-1) in 2005 in the mineral soil solution at 30 cm depth. This dramatic change was not observed for Mg concentration in soil solution, because its deposition remained stable during the observed period. Similar patterns were observed in the deeper soil solution at 90 cm. The reduction in Ca availability resulted in lower uptake by tree assimilatory tissues, measured as concentration in needles. Since 2005, the leaching of nitrate observed in soil solution at 30 cm depth has disappeared. By 2003 a similar situation occurred at 90 cm. Higher incorporation into the trees after 1997 could be an important factor. With respect to the formerly high sulphur deposition and consequently released aluminium, which could have negatively influenced the biotic immobilization driven by microbes and fungi, the recovery may have positively impacted and therefore improved retention in the ecosystem during recent years. The delay in the successful retention of nitrogen in the ecosystem was probably caused by the high

  9. X-ray scattering of calcite thin films deposited by atomic layer deposition: Studies in air and in calcite saturated water solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Hudak, Michael R.; Lerner, Allan [Earth and Environmental Sciences Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Grubbs, Robert K. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); Wang, Shanmin [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Zhang, Zhan; Karapetrova, Evguenia [Advance Photon Source, Argonne National Laboratory, 9700S Cass Ave, Argonne, IL 60439 (United States); Hickmott, Donald [Earth and Environmental Sciences Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Majewski, Jaroslaw, E-mail: jarek@lanl.gov [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2014-08-28

    Carbonates are one of the most abundant groups of minerals in earth systems and are important in many geological settings and industrial processes. Calcite (CaCO{sub 3}) thin films produced by atomic layer deposition offer a method to evaluate the surficial properties of carbonates as well as interactions at the carbonate–fluid interface. Using synchrotron X-ray reflectivity and X-ray diffraction, these films are observed to be porous, polycrystalline, and have crystallites oriented with the major (104) calcite cleavage plane parallel to the surface of the z-cut single crystal quartz substrate. An Al{sub 2}O{sub 3} buffer layer, present between quartz and the calcite film, does not affect the as-deposited film, but does influence how the films reorganize in contact with fluid. Without a buffer layer, calcite reorients its crystallites to have populations of (006) and (030) parallel to the substrate, while those with an Al{sub 2}O{sub 3} buffer layer become more amorphous. Amorphous films may represent an analog to amorphous calcium carbonate and provide insights into that material's thermophysical behavior. Due to a higher percentage of pore spaces available for fluid infiltration, films deposited at higher temperature make the calcite thin films more susceptible to amorphization. These films are chemically similar, but structurally dissimilar to bulk natural calcite. Nevertheless, they can be a complementary system to traditional single crystal X-ray surface scattering studies on carbonates, particularly for important but less common minerals, to evaluate mineral–fluid interfacial interactions. - Highlights: • Atomic layer deposition (ALD) used to produce calcite films. • Calcite film orientation and crystallinity depend on ALD parameters. • ALD calcite films can be both crystalline and amorphous. • Interaction of water with films can re-orient or amorphize the films. • ALD calcite films may be useful to study carbonate–fluid interfacial

  10. X-ray scattering of calcite thin films deposited by atomic layer deposition: Studies in air and in calcite saturated water solution

    International Nuclear Information System (INIS)

    Wang, Peng; Hudak, Michael R.; Lerner, Allan; Grubbs, Robert K.; Wang, Shanmin; Zhang, Zhan; Karapetrova, Evguenia; Hickmott, Donald; Majewski, Jaroslaw

    2014-01-01

    Carbonates are one of the most abundant groups of minerals in earth systems and are important in many geological settings and industrial processes. Calcite (CaCO 3 ) thin films produced by atomic layer deposition offer a method to evaluate the surficial properties of carbonates as well as interactions at the carbonate–fluid interface. Using synchrotron X-ray reflectivity and X-ray diffraction, these films are observed to be porous, polycrystalline, and have crystallites oriented with the major (104) calcite cleavage plane parallel to the surface of the z-cut single crystal quartz substrate. An Al 2 O 3 buffer layer, present between quartz and the calcite film, does not affect the as-deposited film, but does influence how the films reorganize in contact with fluid. Without a buffer layer, calcite reorients its crystallites to have populations of (006) and (030) parallel to the substrate, while those with an Al 2 O 3 buffer layer become more amorphous. Amorphous films may represent an analog to amorphous calcium carbonate and provide insights into that material's thermophysical behavior. Due to a higher percentage of pore spaces available for fluid infiltration, films deposited at higher temperature make the calcite thin films more susceptible to amorphization. These films are chemically similar, but structurally dissimilar to bulk natural calcite. Nevertheless, they can be a complementary system to traditional single crystal X-ray surface scattering studies on carbonates, particularly for important but less common minerals, to evaluate mineral–fluid interfacial interactions. - Highlights: • Atomic layer deposition (ALD) used to produce calcite films. • Calcite film orientation and crystallinity depend on ALD parameters. • ALD calcite films can be both crystalline and amorphous. • Interaction of water with films can re-orient or amorphize the films. • ALD calcite films may be useful to study carbonate–fluid interfacial interactions

  11. Photoluminescence of nc-Si:Er thin films obtained by physical and chemical vapour deposition techniques: The effects of microstructure and chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Cerqueira, M.F., E-mail: fcerqueira@fisica.uminho.p [Departamento de Fisica, Universidade do Minho, Campus de Gualtar 4710-057 Braga (Portugal); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, Via Orabona n.4-70126 Bari (Italy); Stepikhova, M. [Institute for Physics of Microstructures RAS, 603600 Nizhnij Novgorod GSP-105 (Russian Federation); Alpuim, P.; Andres, G. [Departamento de Fisica, Universidade do Minho, Campus de Gualtar 4710-057 Braga (Portugal); Kozanecki, A. [Polish Academy of Sciences, Institute of Physics, PL-02668, Warsaw (Poland); Soares, M.J.; Peres, M. [Departamento de Fisica, Universidade de Aveiro, Campus de Santiago, 3700 Aveiro (Portugal)

    2009-08-31

    Erbium doped nanocrystalline silicon (nc-Si:Er) thin films were produced by reactive magnetron rf sputtering and by Er ion implantation into chemical vapor deposited Si films. The structure and chemical composition of films obtained by the two approaches were studied by micro-Raman scattering, spectroscopic ellipsometry and Rutherford backscattering techniques. Variation of deposition parameters was used to deposit films with different crystalline fraction and crystallite size. Photoluminescence measurements revealed a correlation between film microstructure and the Er{sup 3+} photoluminescence efficiency.

  12. Study of Sb/SnO{sub 2} bi-layer films prepared by ion beam sputtering deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-Min [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Huang, Chun-Chieh [Department of Electrical Engineering, Cheng Shiu University, No. 840, Chengcing Road, Niaosong Township, Kaohsiung 833, Taiwan, ROC (China); Kuo, Jui-Chao [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Huang, Jow-Lay, E-mail: jlh888@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan, ROC (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2014-11-03

    In the present work, bi-layer thin films of Sb/SnO{sub 2} were produced on unheated glass substrates using ion beam sputtering (IBS) technique without post annealing treatment. The thickness of Sb layers was varied from 2 to 10 nm and the Sb layers were deposited on SnO{sub 2} layers having thicknesses of 40 nm to 115 nm. The effect of thickness was studied on the morphological, electrical and optical properties. The Sb/SnO{sub 2} bi-layer resulted in lowering the electrical resistivity as well as reducing the optical transmittance. However, the optical and electrical properties of the bi-layer films were mainly influenced by the thickness of Sb layers due to progressive transfer in structures from aggregate to continuous films. The bi-layer films show the electrical resistivity of 1.4 × 10{sup −3} Ω cm and an optical transmittance of 26% for Sb film having 10 nm thickness. - Highlights: • Bi-layer Sb/SnO{sub 2} structures were synthesized by ion beam sputtering (IBS) technique. • The 6 nm-thick Sb film is a transition region in this study. • The conductivity of the bi-layer films is increased as Sb thickness increases. • The transmittance of the bi-layer films is decreased as Sb thickness increases.

  13. Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7-//sub delta/ thin films grown by a simple spray deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.; Koren, G.; Giess, E.A.; Moore, N.R.; O' Sullivan, E.J.M.; Cooper, E.I.

    1988-01-11

    The preparation of high T/sub c/ superconducting thin films of Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7-//sub delta/ on (100) single crystals of MgO, ZrO/sub 2/ with 9% Y/sub 2/O/sub 3/ (yttria stabilized zirconia, or YSZ), and SrTiO/sub 3/ using a simple spray deposition technique is described. Typical film growth procedure involves (a) the spraying of a stoichiometric solution of the nitrate precursors on the heated substrate (180 /sup 0/C), (b) prebaking in air of the sprayed film (20 min at 500 /sup 0/C), and (c) oven annealing of the film under flowing O/sub 2/ (900--950 /sup 0/C followed by slow cooling to 200 /sup 0/C in about 3 h). X-ray diffraction analysis of the films after each of the growing steps mentioned above shows primarily the presence of crystalline phases of the nitrates, the oxides, and the orthorhombic superconducting phase, respectively. Resistivity versus temperature measurements show that the onset and completion of the superconductive transition occur at 92 and 87 K, respectively, in films on YSZ substrate; at 95 and 80 K, respectively, in films on SrTiO/sub 3/ substrate; and at 82 and 77 K, respectively, in films on MgO substrate.

  14. Characterization of Ultra thin chromium layers deposited ou to SiO2 using the Le-PIXE and the RB S techniques

    International Nuclear Information System (INIS)

    Zahraman, K.; Nsouli, B.; Roumie, M.

    2007-01-01

    In this paper, we demonstrate the ability of the Le-PIXE (Low Energy PIXE) technique, using proton energies < 1 MeV, for the monitoring of the thickness and the thickness uniformity of ultra thin (0.5 nm < t < 20 nm) chromium layers deposited onto quartz substrates. Chromium is a good candidate for obtaining conductive ultra thin layers on insulator substrates such as quartz (SiO2). The resistivity of such layers is highly related to the quality of the deposited chromium film. In order to optimize the deposition process, there is a need for rapid and accurate monitoring of such films (film thickness, thickness uniformity over a big surface...). The acquisition time needed to obtain results with less than 3-4 % precision was 5 minutes for the thinnest layers. The validation for the use of the Le-PIXE technique was checked by means of conventional RB S technique.

  15. Measurement of resistance to solute transport across surfactant-laden interfaces using a Fluorescence Recovery After Photobleaching (FRAP) technique

    Science.gov (United States)

    Browne, Edward P.; Nivaggioli, Thierry; Hatton, T. Alan

    1994-01-01

    A noninvasive fluorescence recovery after photobleaching (FRAP) technique is under development to measure interfacial transport in two phase systems without disturbing the interface. The concentration profiles of a probe solute are measured in both sides of the interface by argon-ion laser, and the system relaxation is then monitored by a microscope-mounted CCD camera.

  16. The Identification of Reasons, Solutions, and Techniques Informing a Theory-Based Intervention Targeting Recreational Sports Participation

    Science.gov (United States)

    St Quinton, Tom; Brunton, Julie A.

    2018-01-01

    Purpose: This study is the 3rd piece of formative research utilizing the theory of planned behavior to inform the development of a behavior change intervention. Focus groups were used to identify reasons for and solutions to previously identified key beliefs in addition to potentially effective behavior change techniques. Method: A purposive…

  17. Determination of the free ion concentration of trace metals in soil solution using a soil column Donnan membrane technique

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2001-01-01

    Accurate measurement of the free metal ion is difficult, especially for trace metals present in very small concentrations (less than micromolar) in natural systems. The recently developed Donnan membrane technique can measure the concentrations in solution in the presence of inorganic and organic

  18. Comparative study of ZnSe thin films deposited from modified chemical bath solutions with ammonia-containing and ammonia-free precursors

    International Nuclear Information System (INIS)

    Chen Liangyan; Zhang Daoli; Zhai Guangmei; Zhang Jianbing

    2010-01-01

    Ammonia is one of the complexing agents which are the most commonly used in the precursors of ZnSe thin films by chemical bath deposition, but its high volatility may be harmful to human beings and environments. In our experiments, ZnSe films were obtained from modified chemical solutions with ammonia-containing and ammonia-free precursors. X-ray diffraction, field-emission scanning electron microscope (FSEM), and absorption spectrum were applied to investigate the microstructure, morphology and optical properties of the samples obtained from both growth conditions, which were investigated in this work. The ammonia-free chemical bath deposited ZnSe films showed comparable properties with the ammonia-containing ones, indicating that ZnSe films from ammonia-free chemical solution may be preferred buffer layer in thin film solar cells with less environmental contamination.

  19. Fabrication of Lead-Free Bi0.5Na0.5TiO3 Thin Films by Aqueous Chemical Solution Deposition

    Directory of Open Access Journals (Sweden)

    Mads Christensen

    2017-02-01

    Full Text Available Piezoelectric ceramics are widely used in actuator applications, and currently the vast majority of these devices are based on Pb ( Zr , Ti O 3 , which constitutes environmental and health hazards due to the toxicity of lead. One of the most promising lead-free material systems for actuators is based on Bi 0 . 5 Na 0 . 5 TiO 3 (BNT, and here we report on successful fabrication of BNT thin films by aqueous chemical solution deposition. The precursor solution used in the synthesis is based on bismuth citrate stabilized by ethanolamine, NaOH , and a Ti-citrate prepared from titanium tetraisopropoxide and citric acid. BNT thin films were deposited on SrTiO 3 and platinized silicon substrates by spin-coating, and the films were pyrolized and annealed by rapid thermal processing. The BNT perovskite phase formed after calcination at 500 °C in air. The deposited thin films were single phase according to X-ray diffraction, and the microstructures of the films shown by electron microscopy were homogeneous and dense. Decomposition of the gel was thoroughly investigated, and the conditions resulting in phase pure materials were identified. This new aqueous deposition route is low cost, robust, and suitable for development of BNT based thin film for actuator applications.

  20. Extending the Constant Coefficient Solution Technique to Variable Coefficient Ordinary Differential Equations

    Science.gov (United States)

    Mohammed, Ahmed; Zeleke, Aklilu

    2015-01-01

    We introduce a class of second-order ordinary differential equations (ODEs) with variable coefficients whose closed-form solutions can be obtained by the same method used to solve ODEs with constant coefficients. General solutions for the homogeneous case are discussed.

  1. UV Laser Photolytic Solution Deposition of α-Fe/Polyoxocarbosilane/Carbon Nanocomposite and Evolution to α-Fe2O3/Polyoxocarbosilane/Carbon Nanocomposite

    Czech Academy of Sciences Publication Activity Database

    Pola, Josef; Maryško, Miroslav; Vorlíček, Vladimír; Bakardjieva, Snejana; Šubrt, Jan; Bastl, Zdeněk; Ouchi, A.

    2008-01-01

    Roč. 199, 2-3 (2008), s. 156-164 ISSN 1010-6030 R&D Projects: GA AV ČR IAA400720619 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z10100521; CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : Fe(II) acetylacetonate * Fe composite * laser solution deposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.362, year: 2008

  2. Preparation and characterization of Bi2Sr2CaCu2O8+δ thin films on MgO single crystal substrates by chemical solution deposition

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Kepa, Katarzyna; Hlásek, T.

    2013-01-01

    Bi2Sr2CaCu2O8 thin films have been deposited on MgO single crystal substrates by spin-coating a solution based on 2-ethylhexanoate precursors. Pyrolysis takes place between 200°C and 450°C and is accompanied by the release of 2-ethylhexanoic acid, CO2 and H2O vapour. Highly c-axis oriented Bi2Sr2Ca...

  3. Highly uniform resistive switching properties of amorphous InGaZnO thin films prepared by a low temperature photochemical solution deposition method.

    Science.gov (United States)

    Hu, Wei; Zou, Lilan; Chen, Xinman; Qin, Ni; Li, Shuwei; Bao, Dinghua

    2014-04-09

    We report on highly uniform resistive switching properties of amorphous InGaZnO (a-IGZO) thin films. The thin films were fabricated by a low temperature photochemical solution deposition method, a simple process combining chemical solution deposition and ultraviolet (UV) irradiation treatment. The a-IGZO based resistive switching devices exhibit long retention, good endurance, uniform switching voltages, and stable distribution of low and high resistance states. Electrical conduction mechanisms were also discussed on the basis of the current-voltage characteristics and their temperature dependence. The excellent resistive switching properties can be attributed to the reduction of organic- and hydrogen-based elements and the formation of enhanced metal-oxide bonding and metal-hydroxide bonding networks by hydrogen bonding due to UV irradiation, based on Fourier-transform-infrared spectroscopy, X-ray photoelectron spectroscopy, and Field emission scanning electron microscopy analysis of the thin films. This study suggests that a-IGZO thin films have potential applications in resistive random access memory and the low temperature photochemical solution deposition method can find the opportunity for further achieving system on panel applications if the a-IGZO resistive switching cells were integrated with a-IGZO thin film transistors.

  4. Patterning titania with the conventional and modified micromolding in capillaries technique from sol–gel and dispersion solutions

    Directory of Open Access Journals (Sweden)

    Sajid Ullah Khan and Johan E ten Elshof

    2012-01-01

    Full Text Available We report TiO2 patterns obtained by a soft-lithographic technique called 'micromolding in capillaries' using sol–gel and dispersion solutions. A comparison between patterning with a sol–gel and dispersion solutions has been performed. The patterns obtained from sol–gel solutions showed good adhesion to the substrate and uniform shapes, but large shrinkage, whereas those obtained from dispersion solution had high solid content, but exhibited poor adhesion and non-uniform shapes. A fabrication method of a layer-by-layer structured pattern is also demonstrated. This type of pattern may find application in sensors, waveguides and other photonics elements. The occurrence of an undesirable residue layer, which hinders the fabrication of isolated patterns, is highlighted and a method of prevention is suggested.

  5. Improving optical properties of silicon nitride films to be applied in the middle infrared optics by a combined high-power impulse/unbalanced magnetron sputtering deposition technique.

    Science.gov (United States)

    Liao, Bo-Huei; Hsiao, Chien-Nan

    2014-02-01

    Silicon nitride films are prepared by a combined high-power impulse/unbalanced magnetron sputtering (HIPIMS/UBMS) deposition technique. Different unbalance coefficients and pulse on/off ratios are applied to improve the optical properties of the silicon nitride films. The refractive indices of the Si3N4 films vary from 2.17 to 2.02 in the wavelength ranges of 400-700 nm, and all the extinction coefficients are smaller than 1×10(-4). The Fourier transform infrared spectroscopy and x-ray diffractometry measurements reveal the amorphous structure of the Si3N4 films with extremely low hydrogen content and very low absorption between the near IR and middle IR ranges. Compared to other deposition techniques, Si3N4 films deposited by the combined HIPIMS/UBMS deposition technique possess the highest refractive index, the lowest extinction coefficient, and excellent structural properties. Finally a four-layer coating is deposited on both sides of a silicon substrate. The average transmittance from 3200 to 4800 nm is 99.0%, and the highest transmittance is 99.97% around 4200 nm.

  6. A new technique to preserve raw materials of ancient monuments against the humidity and its test using 22Na labeled solutions

    International Nuclear Information System (INIS)

    Martinez, G.L.; Navarrete, J.M.

    2007-01-01

    Erosion caused by external factors such as wind, rain, sunlight and temperature changes is considerable in raw materials used to build pre-hispanic monuments. However, there does exist an internal destruction factor even stronger: the humidity coming from the soil, which goes up by capillarity, depositing soluble salts on the walls surface. Therefore, one way to find some figure related to the specific capillarity or porosity shown by each raw material, is to obtain small prism-shaped pieces cut out from the large debris fallen down spontaneously from ancient walls due to internal humidity. Once these small samples are placed in contact with a 22 Na labeled solution during a given time, at the same geometrical conditions, dried overnight, conditioned either in test tubes or wrapped into polyethylene and detected in a well type 3' x 3' scintillation detector, the counts accumulated per time and weight units are a measure of the relative porosity shown by each material. In order to pull down this porosity, the samples are impregnated with a gelatin solution (50 g/l) at 60-80 deg C plus food preservatives such as potassium sorbate (2.5%) and sodium benzoate (2.5%). When gelatin begins to be formed 3 hours later and the samples look humid and brilliant, they are impregnated with formaldehyde solution (38%), and their absorption rate is dramatically reduced overnight (75-100%), which can be proven when samples are tested by making use of the 22 Na labeled solution. This technique has been applied at real scale in some pre-hispanic monuments. Ancient raw materials seems to be much more compact and well preserved during one limited period of time (10 to 13 months). Treatment is unnoticeable and reversible, and it may be applied periodically. (author)

  7. Measurement of the thermal diffusivity and speed of sound of hydrothermal solutions via the laser-induced grating technique

    International Nuclear Information System (INIS)

    Butenhoff, T.J.

    1994-01-01

    Hydrothermal processing is being developed as a method for organic destruction for the Hanford Site in Washington. Hydrothermal processing refers to the redox reactions of chemical compounds in supercritical or near-supercritical aqueous solutions. In order to design reactors for the hydrothermal treatment of complicated mixtures found in the Hanford wastes, engineers need to know the thermophysical properties of the solutions under hydrothermal conditions. The author used the laser-induced grating technique to measure the thermal diffusivity and speed of sound of hydrothermal solutions. In this non-invasive optical technique, a transient grating is produced in the hydrothermal solution by optical absorption from two crossed time-coincident nanosecond laser pulses. The grating is probed by measuring the diffraction efficiency of a third laser beam. The grating relaxes via thermal diffusion, and the thermal diffusivity can be determined by measuring the decay of the grating diffraction efficiency as a function of the pump-probe delay time. In addition, intense pump pulses produce counterpropagating acoustic waves that appear as large undulations in the transient grating decay spectrum. The speed of sound in the sample is simply the grating fringe spacing divided by the undulation period. The cell is made from a commercial high pressure fitting and is equipped with two diamond windows for optical access. Results are presented for dilute dye/water solutions with T = 400 C and pressures between 20 and 70 MPa

  8. Advancements in artificial heart valve disks using nano-sized thin films deposited by CVD and sol-gel techniques

    International Nuclear Information System (INIS)

    Kousar, Y.; Ali, N.; Neto, V.F.; Mei, S.; Gracio, J.

    2003-01-01

    Pyrolytic carbon (PyC) is widely used in manufacturing commercial artificial heart valve disks (HVD). Although, PyC is commonly used in HVD, it is not the best material for this application since its blood compatibility is not ideal for prolonged clinical use. As a result thrombosis often occurs and the patients are required to take anti- coagulation drugs on a regular basis in order to minimise the formation of thrombosis. However, the anti-coagulation therapy gives rise to some detrimental side effects in patients. Therefore, it is extremely urgent that newer and more technically advanced materials with better surface and bulk properties are developed. In this paper, we report the mechanical properties of PyC-HVD, namely, strength, wear resistance and coefficient of friction. The strength of the material was assessed using Brinell indentation tests. Furthermore, wear resistance and the coefficient of friction values were obtained from the pin-on-disk testing. The micro-structural properties of PyC were characterized using XRD, Raman spectroscopy and SEM analysis. Also, in this paper we report the preparation of free standing nanocrystalline diamond films (FSND) using the time-modulated chemical vapor deposition (TMCVD) process. Furthermore, the sol-gel technique was used to uniformly coat PyC-HVD with dense, nanocrystalline-titanium oxide (nc-TiO/sub 2/) coatings. The as-grown nc-TiO/sub 2/ coatings were characterized for microstructure using SEM and XRD analysis. (author)

  9. Structural and surface morphological studies of long chain fatty acid thin films deposited by Langmuir-Blodgett technique

    Energy Technology Data Exchange (ETDEWEB)

    Das, Nayan Mani, E-mail: nayanmanidas3@gmail.com [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India); Roy, Dhrubojyoti [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India); Gupta, Mukul [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India); Gupta, P.S. [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India)

    2012-12-15

    In the present work we aim to study the structural and surface morphological characteristics of divalent cation (cadmium ion, Cd{sup 2+}) induced thin mono- to multilayer films of fatty acids such as arachidic acid and stearic acid prepared by the Langmuir-Blodgett (LB) technique. These ultra thin films of various numbers of layers were studied by X-ray diffraction (XRD), X-ray reflectivity (XRR) and Atomic Force Microscopy (AFM). In this specific Y-type deposition, it was found that as the individual layer thickness increases, the corresponding layer by layer interfacial electron density of the thin films decreases. Since the fatty acid chain tries to maintain its minimum value of cross-sectional area, tilting occurs with respect to its nearest neighbor. The tilt angle calculated for 9 layers of cadmium arachidate (CdA{sub 2}) and cadmium stearate (CdSt{sub 2}) are 18 Degree-Sign and 19.5 Degree-Sign , respectively. An asymmetric air gap of thickness {approx}3 A was also seen between the tail parts of 2 molecular chains. The RMS roughness and average height factors calculated through AFM studies show non-uniform surface morphology of both CdA{sub 2} and CdSt{sub 2}, although the calculated topographic variations were found to have more irregularity in case of CdSt{sub 2} than in case of CdA{sub 2}.

  10. Growth of InAs Quantum Dots on Germanium Substrate Using Metal Organic Chemical Vapor Deposition Technique

    Directory of Open Access Journals (Sweden)

    Tyagi Renu

    2009-01-01

    Full Text Available Abstract Self-assembled InAs quantum dots (QDs were grown on germanium substrates by metal organic chemical vapor deposition technique. Effects of growth temperature and InAs coverage on the size, density, and height of quantum dots were investigated. Growth temperature was varied from 400 to 450 °C and InAs coverage was varied between 1.40 and 2.35 monolayers (MLs. The surface morphology and structural characteristics of the quantum dots analyzed by atomic force microscope revealed that the density of the InAs quantum dots first increased and then decreased with the amount of InAs coverage; whereas density decreased with increase in growth temperature. It was observed that the size and height of InAs quantum dots increased with increase in both temperature and InAs coverage. The density of QDs was effectively controlled by growth temperature and InAs coverage on GaAs buffer layer.

  11. Preparation of SrIrO{sub 3} thin films by using metal-organic aerosol deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Esser, Sebastian; Schneider, Melanie; Moshnyaga, Vasily; Gegenwart, Philipp [1. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)

    2013-07-01

    The interplay between spin-orbit coupling and electronic correlations could lead to interesting novel states in iridium oxide materials. We focus on the perovskite phase of SrIrO{sub 3} because Moon et al. [1] showed by using optical spectroscopy and first-principles calculations that the last member of the Ruddlesden-Popper series Sr{sub n+1}Ir{sub n}O{sub 3n+1} (n = ∞) is close to the Mott transition. By using metal-organic aerosol deposition technique we have grown SrIrO{sub 3} thin films on (111)-oriented SrTiO{sub 3} substrates. The cubic symmetry of the SrTiO{sub 3} substrate ensured that the SrIrO{sub 3} thin film grew in the monoclinic perovskite phase. The X-ray diffraction results suggest that SrIrO{sub 3} thin films in perovskite structure were obtained and these show out of plane epitaxy with monoclinic (002){sub m}-orientation. The temperature dependence of the electrical resistivity of these SrIrO{sub 3} thin films were investigated and metallic behavior was observed down to 50 K.

  12. A Comparative Study of Three Different Chemical Vapor Deposition Techniques of Carbon Nanotube Growth on Diamond Films

    Directory of Open Access Journals (Sweden)

    Betty T. Quinton

    2013-01-01

    Full Text Available This paper compares between the methods of growing carbon nanotubes (CNTs on diamond substrates and evaluates the quality of the CNTs and the interfacial strength. One potential application for these materials is a heat sink/spreader for high-power electronic devices. The CNTs and diamond substrates have a significantly higher specific thermal conductivity than traditional heat sink/spreader materials making them good replacement candidates. Only limited research has been performed on these CNT/diamond structures and their suitability of different growth methods. This study investigates three potential chemical vapor deposition (CVD techniques for growing CNTs on diamond: thermal CVD (T-CVD, microwave plasma-enhanced CVD (MPE-CVD, and floating catalyst thermal CVD (FCT-CVD. Scanning electron microscopy (SEM and high-resolution transmission electron microscopy (TEM were used to analyze the morphology and topology of the CNTs. Raman spectroscopy was used to assess the quality of the CNTs by determining the ID/IG peak intensity ratios. Additionally, the CNT/diamond samples were sonicated for qualitative comparisons of the durability of the CNT forests. T-CVD provided the largest diameter tubes, with catalysts residing mainly at the CNT/diamond interface. The MPE-CVD process yielded non uniform defective CNTs, and FCT-CVD resulted in the smallest diameter CNTs with catalyst particles imbedded throughout the length of the nanotubes.

  13. Biomonitoring of heavy metal deposition in the south Ural region: some preliminary results obtained by nuclear and related techniques

    International Nuclear Information System (INIS)

    Frontas'eva, M.V.; Steinnes, E.; Lyapunov, S.M.; Cherchintsev, V.D.; Smirnov, L.I.

    1999-01-01

    The first results are reported from the analysis of feather mosses used to study heavy metal atmospheric deposition in the vicinity of Magnitogorsk, the center of the steel industry in Russia. Moss samples collected at sites 30 km to the north-west of the industry were analyzed by instrumental neutron activation analysis using epithermal neutrons (ENAA), Results for a total of 38 elements are reported, including Pb, Cd, and Cu determined by atomic absorption spectroscopy (AAS). The element concentrations in moss samples from this work are compared with relevant literature data for strongly polluted areas in Central and Northern Europe and background values from Norway obtained by the same biomonitoring technique. The concentrations of Sb in the examined area are the highest ever reported for mosses, and also levels of Fe, Cr, and V are found to be particularly high. A scanning electron microscope connected to an XRF analyzer (SEM-XRF) was used to examine the surface of the moss samples. Photographs of identified iron spherules along with other aerosol particles made at magnification of 3500 to 5000 times and corresponding XRF analyses verifying the nature of typical particles are presented

  14. Oriented growth of Sr n+1Ti n O3n+1 Ruddlesden-Popper phases in chemical solution deposited thin films

    International Nuclear Information System (INIS)

    Gutmann, Emanuel; Levin, Alexandr A.; Reibold, Marianne; Mueller, Jan; Paufler, Peter; Meyer, Dirk C.

    2006-01-01

    Oriented thin films of perovskite-related Sr n +1 Ti n O 3 n +1 Ruddlesden-Popper phases (n=1, 2, 3) were grown on (001) single-crystalline SrTiO 3 substrates. Preparation of the films was carried out by wet chemical deposition from metalorganic Sr-Ti solutions (rich in Sr) and subsequent conversion into the crystalline state by thermal treatment in air atmosphere at a maximum temperature of 700 deg. C. Solutions were prepared by a modified Pechini method. The films were investigated by wide-angle X-ray scattering and high-resolution transmission electron microscopy. The phase content of powders prepared from the dried solutions and annealed under similar conditions differed from that present in the films, i.e. only polycrystalline SrTiO 3 was detected together with oxides of Ti and Sr. - Graphical abstract: Cross-sectional image of an oriented chemical solution deposited thin film obtained by high-resolution transmission electron microscopy. Periodical spacings corresponding to SrTiO 3 substrate (right) and Sr 2 TiO 4 Ruddlesden-Popper phase (n=1) film region (left) are marked

  15. A comparative study of the electrical properties of Pd/ZnO Schottky contacts fabricated using electron beam deposition and resistive/thermal evaporation techniques

    International Nuclear Information System (INIS)

    Mtangi, W.; Auret, F. D.; Janse van Rensburg, P. J.; Coelho, S. M. M.; Legodi, M. J.; Nel, J. M.; Meyer, W. E.; Chawanda, A.

    2011-01-01

    A systematic investigation to check the quality of Pd Schottky contacts deposited on ZnO has been performed on electron beam (e-beam) deposited and resistively/thermally evaporated samples using current-voltage, IV, and conventional deep level transient spectroscopy (DLTS) measurements. Room temperature IV measurements reveal the dominance of pure thermionic emission on the resistively evaporated contacts, while the e-beam deposited contacts show the dominance of generation recombination at low voltages, -10 A at a reverse voltage of 1.0 V whereas the e-beam deposited contacts have reverse currents of the order of 10 -6 A at 1.0 V. Average ideality factors have been determined as (1.43 ± 0.01) and (1.66 ± 0.02) for the resistively evaporated contacts and e-beam deposited contacts, respectively. The IV barrier heights have been calculated as (0.721 ± 0.002) eV and (0.624 ± 0.005) eV for the resistively evaporated and e-beam deposited contacts, respectively. Conventional DLTS measurements reveal the presence of three prominent defects in both the resistive and e-beam contacts. Two extra peaks with energy levels of 0.60 and 0.81 eV below the conduction band minimum have been observed in the e-beam deposited contacts. These have been explained as contributing to the generation recombination current that dominates at low voltages and high leakage currents. Based on the reverse current at 1.0 V, the degree of rectification, the dominant current transport mechanism and the observed defects, we conclude that the resistive evaporation technique yields better quality Schottky contacts for use in solar cells and ultraviolet detectors compared to the e-beam deposition technique. The 0.60 eV has been identified as possibly related to the unoccupied level for the doubly charged oxygen vacancy, V o 2+ .

  16. Non-vacuum, single-step conductive transparent ZnO patterning by ultra-short pulsed laser annealing of solution-deposited nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daeho; Pan, Heng; Kim, Eunpa; Grigoropoulos, Costas P. [University of California, Department of Mechanical Engineering, Berkeley, CA (United States); Ko, Seung Hwan [Korea Advanced Institute of Science and Technology (KAIST), Department of Mechanical Engineering, Daejeon (Korea, Republic of); Park, Hee K. [AppliFlex LLC, Sunnyvale, CA (United States)

    2012-04-15

    A solution-processable, high-concentration transparent ZnO nanoparticle (NP) solution was successfully synthesized in a new process. A highly transparent ZnO thin film was fabricated by spin coating without vacuum deposition. Subsequent ultra-short-pulsed laser annealing at room temperature was performed to change the film properties without using a blanket high temperature heating process. Although the as-deposited NP thin film was not electrically conductive, laser annealing imparted a large conductivity increase and furthermore enabled selective annealing to write conductive patterns directly on the NP thin film without a photolithographic process. Conductivity enhancement could be obtained by altering the laser annealing parameters. Parametric studies including the sheet resistance and optical transmittance of the annealed ZnO NP thin film were conducted for various laser powers, scanning speeds and background gas conditions. The lowest resistivity from laser-annealed ZnO thin film was about 4.75 x 10{sup -2} {omega} cm, exhibiting a factor of 10{sup 5} higher conductivity than the previously reported furnace-annealed ZnO NP film and is even comparable to that of vacuum-deposited, impurity-doped ZnO films within a factor of 10. The process developed in this work was applied to the fabrication of a thin film transistor (TFT) device that showed enhanced performance compared with furnace-annealed devices. A ZnO TFT performance test revealed that by just changing the laser parameters, the solution-deposited ZnO thin film can also perform as a semiconductor, demonstrating that laser annealing offers tunability of ZnO thin film properties for both transparent conductors and semiconductors. (orig.)

  17. Theoretical and experimental study of a calorimetric technique for measuring energy deposition in materials caused by complex pile irradiation

    International Nuclear Information System (INIS)

    Mas, P.; Sciers, P.; Droulers, Y.

    1962-01-01

    Calorimetric methods may be used to measure gamma fluxes greater than 10 6 r/h near the cores of swimming pool reactors. The theory, design, and properties of isothermal calorimeters are discussed, and experimental results obtained with two types are presented. Measurement of energy deposition in materials and the long term integration of energy depositions are other uses of these devices. Results of measurements on heat deposition in steel and water are given. Fluxes were also measured. (authors) [fr

  18. Composition and structural study of solution-processed Zn(S,O,OH) thin films grown using H{sub 2}O{sub 2} based deposition route

    Energy Technology Data Exchange (ETDEWEB)

    Buffière, M., E-mail: marie.buffiere@imec.be [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); 44Solar, 14 rue Kepler, 44240 La Chapelle-sur-Erdre (France); Gautron, E. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Hildebrandt, T. [Institut de Recherche et Développement sur l' Energie Photovoltaïque (IRDEP)-UMR 7174 EDF-CNRS-ENSCP, 6 quai Watier-78401 Chatou Cedex (France); Harel, S.; Guillot-Deudon, C.; Arzel, L. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Naghavi, N. [Institut de Recherche et Développement sur l' Energie Photovoltaïque (IRDEP)-UMR 7174 EDF-CNRS-ENSCP, 6 quai Watier-78401 Chatou Cedex (France); Barreau, N. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Kessler, J. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); 44Solar, 14 rue Kepler, 44240 La Chapelle-sur-Erdre (France)

    2013-05-01

    Recent results have revealed that the low deposition time issue of chemical bath deposited (CBD) Zn(S,O,OH) buffer layer used in Cu(In,Ga)Se{sub 2} (CIGSe) solar cells could be resolved using H{sub 2}O{sub 2} as an additive in the chemical bath solution. Although the use of this additive does not hinder the electrical properties of the resulting Zn(S,O,OH)-buffered CIGSe solar cells, the impact of H{sub 2}O{sub 2} on the Zn(S,O,OH) properties remains unclear. The present contribution aims at determining the chemical composition and the microstructure of Zn(S,O,OH) film deposited by CBD using the alternative deposition bath containing the standard zinc sulfate, thiourea, ammonia but also H{sub 2}O{sub 2} additive. Both X-ray photoemission spectroscopy and energy dispersive X-ray spectroscopy analyses reveal higher sulfur content in alternatively deposited Zn(S,O,OH), since the first step growth of the layer. According to transmission electron microscopy analyses, another consequence of the higher deposition rate achieved when adding H{sub 2}O{sub 2} in the bath is the modification of the absorber/buffer interface. This could be explained by the enhancement of the cluster growth mechanism of the layer. - Highlights: ► The Zn(S,O,OH) layer composition can vary with the chemical bath process used. ► The alternative process leads to a faster incorporation of sulfur in the layer. ► No ZnS epitaxial layer has been found at absorber/alternative buffer interface. ► The use of H{sub 2}O{sub 2} enhances the cluster-by-cluster growth mechanism.

  19. Development of numerical solution techniques in the KIKO3D code

    International Nuclear Information System (INIS)

    Panka, Istvan; Kereszturi, Andras; Hegedus, Csaba

    2005-01-01

    The paper describes the numerical methods applied in KIKO3D three-dimensional reactor dynamics code and present a new, more effective method (Bi-CGSTAB) for accelerating the large sparse matrix equation solution. The convergence characteristics were investigated in a given macro time step of a Control Rod Ejection transient. The results obtained by the old GMRES and new Bi-CGSTAB methods are compared. It is concluded that the real relative errors of the solutions obtained by GMRES or Bi - CGSTAB algorithms are in fact closer together than the estimated relative errors. The KIKO3D-Bi-CGSTAB method converges safely and it is 7-12 % faster than the old KIKO3D-GMRES solution (Authors)

  20. Separation and Concentration of Succinic Adic from Multicomponent Aqueous Solutions by Nanofiltration Technique

    Directory of Open Access Journals (Sweden)

    Antczak Jerzy

    2014-06-01

    Full Text Available This paper applies the determined suitability of nanofiltration (NF membrane separation for selective isolation and concentration of succinic acid from aqueous solutions which are post-fermentation multicomponent fluids. The study analyzed the influence of concentration and the pH of the separated solutions on the efficiency and selectivity of NF process that runs in a module equipped with a ceramic membrane. Moreover, the effect of applied trans-membrane pressure on the retention of succinic acid and sodium succinate has been studied. The investigations have shown that in the used NF module the retention of succinic acid salt is equal almost 50% in the case of a three-component model solution, although the degree of retention depends on both the transmembrane pressure and the initial concentration of separated salt.

  1. Comparison of in situ polymerization and solution-dispersion techniques in the preparation of Polyimide/Montmorillonite (MMT) Nanocomposites.

    Science.gov (United States)

    Ahmad, Mansor Bin; Gharayebi, Yadollah; Salit, Mohd Sapuan; Hussein, Mohd Zobir; Shameli, Kamyar

    2011-01-01

    In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3',4,4'-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique.

  2. On the solution of two-point linear differential eigenvalue problems. [numerical technique with application to Orr-Sommerfeld equation

    Science.gov (United States)

    Antar, B. N.

    1976-01-01

    A numerical technique is presented for locating the eigenvalues of two point linear differential eigenvalue problems. The technique is designed to search for complex eigenvalues belonging to complex operators. With this method, any domain of the complex eigenvalue plane could be scanned and the eigenvalues within it, if any, located. For an application of the method, the eigenvalues of the Orr-Sommerfeld equation of the plane Poiseuille flow are determined within a specified portion of the c-plane. The eigenvalues for alpha = 1 and R = 10,000 are tabulated and compared for accuracy with existing solutions.

  3. removal of hazardous pollutants from industrial waste solutions using membrane techniques

    International Nuclear Information System (INIS)

    Selim, Y.T.M.

    2001-01-01

    the removal of hazardous pollutants from industrial waste solutions is of essential demand field for both scientific and industrial work. the present work includes detailed studies on the possible use of membrane technology especially liquid emulsion membrane for the removal of hazardous pollutants such as; cadmium , cobalt , lead, copper and uranium from different industrial waste solution . this research can be applied for mixed waste problems. the work carried out in this thesis is presented in three main chapters, namely introduction, experimental and results and discussion

  4. A new multi-step technique with differential transform method for analytical solution of some nonlinear variable delay differential equations.

    Science.gov (United States)

    Benhammouda, Brahim; Vazquez-Leal, Hector

    2016-01-01

    This work presents an analytical solution of some nonlinear delay differential equations (DDEs) with variable delays. Such DDEs are difficult to treat numerically and cannot be solved by existing general purpose codes. A new method of steps combined with the differential transform method (DTM) is proposed as a powerful tool to solve these DDEs. This method reduces the DDEs to ordinary differential equations that are then solved by the DTM. Furthermore, we show that the solutions can be improved by Laplace-Padé resummation method. Two examples are presented to show the efficiency of the proposed technique. The main advantage of this technique is that it possesses a simple procedure based on a few straight forward steps and can be combined with any analytical method, other than the DTM, like the homotopy perturbation method.

  5. Sm-doped CeO{sub 2} single buffer layer for YBCO coated conductors by polymer assisted chemical solution deposition (PACSD) method

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Pu, M.H.; Sun, R.P.; Wang, W.T.; Wu, W.; Zhang, X.; Yang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia)], E-mail: yzhao@home.swjtu.edu.cn

    2008-10-20

    An over 150 nm thick Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} (SCO) single buffer layer has been deposited on bi-axially textured NiW (2 0 0) alloy substrate. Highly in-plane and out-of-plane oriented, dense, smooth and crack free SCO single layer has been obtained via a polymer-assisted chemical solution deposition (PACSD) approach. YBCO thin film has been deposited equally via a PACSD route on the SCO-buffered NiW, the as grown YBCO yielding a sharp transition at T{sub c0} = 87 K as well as J{sub c}(0 T, 77 K) {approx} 1 MA/cm{sup 2}. These results indicates that RE (lanthanides other than Ce) doping may be an effective approach to improve the critical thickness of solution derived CeO{sub 2} film, which renders it a promising candidate as single buffer layer for YBCO coated conductors.

  6. Demonstration of a Solution Film Leak Test Technique and Equipment for the S00645 Canister Closure

    International Nuclear Information System (INIS)

    Cannell, G.R.

    1999-01-01

    The purpose of this effort was to demonstrate that the SFT technique, when adapted to a DWPF canister nozzle, is capable of detecting leaks not meeting the Waste Acceptance Product Specifications (WAPS) acceptance criterion

  7. A new structural technique for examining ion-neutral association in aqueous solution

    Czech Academy of Sciences Publication Activity Database

    Mason, Philip E.; Neilson, G. W.; Price, D. L.; Saboungi, M. L.; Brady, J. W.

    2013-01-01

    Roč. 160, 07 January (2013), s. 161-170 ISSN 1359-6640 Grant - others:NIH(US) GM63018 Institutional support: RVO:61388963 Keywords : aqueous solutions * neutron diffraction * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.194, year: 2013

  8. Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques

    Science.gov (United States)

    Q.Q. Wang; Z. He; Z. Zhu; Y.-H.P. Zhang; Y. Ni; X.L. Luo; J.Y. Zhu

    2012-01-01

    Cellulose accessibilities of a set of hornified lignocellulosic substrates derived by drying the never dried pretreated sample and a set of differently pretreated lodgepople pine substrates, were evaluated using solute exclusion and protein adsorption methods. Direct measurements of cellulase adsorption onto cellulose surface of the set of pretreated substrates were...

  9. Influence of acidic atmospheric deposition on soil solution composition in the Daniel Boone National Forest, Kentucky, USA

    Science.gov (United States)

    C.D. Barton; A.D. Karathanasis; G. Chalfant

    2002-01-01

    Acid atmosperic depositoin may enter an environmental ecosystem in a variety of forms and pathways, but the most common components include sulfuric and nitric acids formed when rainwater interacts with sulfur (SO3) and nitrogen (NO3) emmissions. For many soils and watersheds sensitive to acid deposition, the predominant...

  10. Development of a dual-tracer real-time particle dry-deposition measurement technique for simple and complex terrain

    International Nuclear Information System (INIS)

    Sehmel, G.A.; Hodgson, W.H.; Campbell, J.A.

    1979-01-01

    Detectors are being developed and tested for measuring the airborne concentrations of lithium particles and SF 6 gas in real time. The airborne lithium detector will be used for real-time measurements of both particle dry-deposition velocities and resuspension rates. Both the lithium and SF 6 detectors will be used for measuring dry deposition in field experiments

  11. Comparison of three Stark problem solution techniques for the bounded case

    Science.gov (United States)

    Hatten, Noble; Russell, Ryan P.

    2015-01-01

    Three methods of obtaining solutions to the Stark problem—one developed by Lantoine and Russell using Jacobi elliptic and related functions, one developed by Biscani and Izzo using Weierstrass elliptic and related functions, and one developed by Pellegrini, Russell, and Vittaldev using and Taylor series extended to the Stark problem—are compared qualitatively and quantitatively for the bounded motion case. For consistency with existing available code for the series solution, Fortran routines of the Lantoine method and Biscani method are newly implemented and made available. For these implementations, the Lantoine formulation is found to be more efficient than the Biscani formulation in the propagation of a single trajectory segment. However, for applications for which acceptable accuracy may be achieved by orders up to 16, the Pellegrini series solution is shown to be more efficient than either analytical method. The three methods are also compared in the propagation of sequentially connected trajectory segments in a low-thrust orbital transfer maneuver. Separate tests are conducted for discretizations between 8 and 96 segments per orbit. For the series solution, the interaction between order and step size leads to computation times that are nearly invariable to discretization for a given truncation error tolerance over the tested range of discretizations. This finding makes the series solution particularly attractive for mission design applications where problems may require both coarse and fine discretizations. Example applications include the modeling of low-thrust propulsion and time-varying perturbations—problems for which the efficient propagation of relatively short Stark segments is paramount because the disturbing acceleration generally varies continuously.

  12. Performance of Erbium-doped TiO2 thin film grown by physical vapor deposition technique

    Science.gov (United States)

    Lahiri, Rini; Ghosh, Anupam; Dwivedi, Shyam Murli Manohar Dhar; Chakrabartty, Shubhro; Chinnamuthu, P.; Mondal, Aniruddha

    2017-09-01

    Undoped and Erbium-doped TiO2 thin films (Er:TiO2 TFs) were fabricated on the n-type Si substrate using physical vapour deposition technique. Field emission scanning electron microscope showed the morphological change in the structure of Er:TiO2 TF as compared to undoped sample. Energy dispersive X-ray spectroscopy (EDX) confirmed the Er doping in the TiO2 thin film (TF). The XRD and Raman spectrum showed the presence of anatase phase TiO2 and Er2O3 in the Er:TiO2 TF. The Raman scattering depicted additional number of vibrational modes for Er:TiO2 TF due to the presence of Er as compared to the undoped TiO2 TF. The UV-Vis absorption measurement showed that Er:TiO2 TF had approximately 1.2 times more absorption over the undoped TiO2 TF in the range of 300-400 nm. The main band transition, i.e., the transition between the oxygen (2p) state and the Ti (3d) state was obtained at 3.0 eV for undoped TiO2 and at 3.2 eV for Er:TiO2 TF, respectively. The photo responsivity measurement was done on both the detectors, where Er:TiO2 TF detector showed better detectivity ( D *), noise equivalent power and temporal response as compared to undoped detector under ultra-violet illumination.

  13. Conformal, planarizing and bridging AZ5214-E layers deposited by a 'draping' technique on non-planar III V substrates

    Science.gov (United States)

    Eliás, P.; Strichovanec, P.; Kostic, I.; Novák, J.

    2006-12-01

    A draping technique was tested for the deposition of positive-tone AZ5214-E photo-resist layers on non-planar (1 0 0)-oriented III-V substrates, which had a variety of three-dimensional (3D) topographies micromachined in them that consisted, e.g., of mesa ridges confined to side facets with variable tilt, inverted pyramidal holes and stubs confined to perpendicular side facets. All objects were sharp-edged. In each draping experiment, an AZ5214-E sheet was (1) formed floating on the water surface, (2) lowered onto a non-planar substrate and (3) draped over it during drying to form either self-sustained, or conformal, or planarizing layers over the non-planar substrates. The draping process is based on the depression of the glass transition temperature Tg of AZ5214-E material induced by penetrant water molecules that interact with AZ5214-E. During the process, the molecules are initially trapped under an AZ5214-E sheet and then transported out through the sheet via permeation. The water-AZ5214-E interaction modifies the stiffness κ of the sheet. The magnitude of the effect depends on temperature T and on partial water vapour pressure difference p(T, P, κ): the net effect is that Tg = f(C(T, P), p(T, P, κ)) is lowered as the concentration C of water increases with T and p, where P is the permeability of the sheet. The interaction depressed the Tg of the sheets as low as or lower than 53 °C for 6 µm thick sheets. At room temperature T Tg, the sheet becomes rubbery and mouldable by adhesion and capillary forces. As a result, it can either contour or planarize the topography depending on its geometry and thickness of the sheet.

  14. Optimizing the deposition of hydrogen evolution sites on suspended semiconductor particles using on-line photocatalytic reforming of aqueous methanol solutions.

    Science.gov (United States)

    Busser, G Wilma; Mei, Bastian; Muhler, Martin

    2012-11-01

    The deposition of hydrogen evolution sites on photocatalysts is a crucial step in the multistep process of synthesizing a catalyst that is active for overall photocatalytic water splitting. An alternative approach to conventional photodeposition was developed, applying the photocatalytic reforming of aqueous methanol solutions to deposit metal particles on semiconductor materials such as Ga₂O₃ and (Ga₀.₆ Zn₀.₄)(N₀.₆O₀.₄). The method allows optimizing the loading of the co-catalysts based on the stepwise addition of their precursors and the continuous online monitoring of the evolved hydrogen. Moreover, a synergetic effect between different co-catalysts can be directly established. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Development of a technique for the on line determination of uranium in solution by gamma ray spectroscopy

    International Nuclear Information System (INIS)

    Singh, Sarabjit; Ramaswami, A.; Gill, Jatinder Singh

    2005-02-01

    A technique based on gamma ray spectrometry has been developed for the continuous monitoring of uranium in the solution form. Simulated container and support system was designed and fabricated for the development of an efficiency calibration curve and to find the detection limit for the estimation of uranium using 185.7 keV ( 235 U) gamma ray. The system was calibrated for its counting efficiency using HPGe detector system, in a standard source mount to detector geometry. The sensitivity of the detection system and counting time for low-level estimation of uranium has also been established. The detection limit of the monitor is ∼10 mg of uranium per litre of the solution. In order to correct for the density variation of the solution experiment was carried to study the variation of count rate of 185.7 ke V gamma ray of 235 U as a function of the density of the solution. This report gives the details of the development of a continuous monitor for the determination of uranium in the solution streams. (author)

  16. Biosensor Applications of MAPLE Deposited Lipase

    Directory of Open Access Journals (Sweden)

    Valeria Califano

    2014-10-01

    Full Text Available Matrix Assisted Pulsed Laser Evaporation (MAPLE is a thin film deposition technique derived from Pulsed Laser Deposition (PLD for deposition of delicate (polymers, complex biological molecules, etc. materials in undamaged form. The main difference of MAPLE technique with respect to PLD is the target: it is a frozen solution or suspension of the (guest molecules to be deposited in a volatile substance (matrix. Since laser beam energy is mainly absorbed by the matrix, damages to the delicate guest molecules are avoided, or at least reduced. Lipase, an enzyme catalyzing reactions borne by triglycerides, has been used in biosensors for detection of β-hydroxyacid esters and triglycerides in blood serum. Enzymes immobilization on a substrate is therefore required. In this paper we show that it is possible, using MAPLE technique, to deposit lipase on a substrate, as shown by AFM observation, preserving its conformational structure, as shown by FTIR analysis.

  17. Application of natural dyes in textile industry and the treatment of dye solutions using electrolytic techniques

    OpenAIRE

    Abouamer, Karima Massaud

    2008-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 25/02/2008. Anodic oxidation of a commercial dye, methylene blue (MB), from aqueous solutions using an electrochemical cell is reported. Data are provided on the effects of eight different types of supporting electrolytes, concentration of electrolytes, initial dye concentration, current and electrolytic time on the percentage removal of methylene blue. Anodic oxidation was found to be effect...

  18. The numerical solution of thawing process in phase change slab using variable space grid technique

    Directory of Open Access Journals (Sweden)

    Serttikul, C.

    2007-09-01

    Full Text Available This paper focuses on the numerical analysis of melting process in phase change material which considers the moving boundary as the main parameter. In this study, pure ice slab and saturated porous packed bed are considered as the phase change material. The formulation of partial differential equations is performed consisting heat conduction equations in each phase and moving boundary equation (Stefan equation. The variable space grid method is then applied to these equations. The transient heat conduction equations and the Stefan condition are solved by using the finite difference method. A one-dimensional melting model is then validated against the available analytical solution. The effect of constant temperature heat source on melting rate and location of melting front at various times is studied in detail.It is found that the nonlinearit