WorldWideScience

Sample records for solution chemical exchange

  1. Empirical Correction for Differences in Chemical Exchange Rates in Hydrogen Exchange-Mass Spectrometry Measurements.

    Science.gov (United States)

    Toth, Ronald T; Mills, Brittney J; Joshi, Sangeeta B; Esfandiary, Reza; Bishop, Steven M; Middaugh, C Russell; Volkin, David B; Weis, David D

    2017-09-05

    A barrier to the use of hydrogen exchange-mass spectrometry (HX-MS) in many contexts, especially analytical characterization of various protein therapeutic candidates, is that differences in temperature, pH, ionic strength, buffering agent, or other additives can alter chemical exchange rates, making HX data gathered under differing solution conditions difficult to compare. Here, we present data demonstrating that HX chemical exchange rates can be substantially altered not only by the well-established variables of temperature and pH but also by additives including arginine, guanidine, methionine, and thiocyanate. To compensate for these additive effects, we have developed an empirical method to correct the hydrogen-exchange data for these differences. First, differences in chemical exchange rates are measured by use of an unstructured reporter peptide, YPI. An empirical chemical exchange correction factor, determined by use of the HX data from the reporter peptide, is then applied to the HX measurements obtained from a protein of interest under different solution conditions. We demonstrate that the correction is experimentally sound through simulation and in a proof-of-concept experiment using unstructured peptides under slow-exchange conditions (pD 4.5 at ambient temperature). To illustrate its utility, we applied the correction to HX-MS excipient screening data collected for a pharmaceutically relevant IgG4 mAb being characterized to determine the effects of different formulations on backbone dynamics.

  2. Physico-Chemical Study of the Separation of Calcium Isotopes by Chemical Exchange Between Amalgam and Salt Solutions

    International Nuclear Information System (INIS)

    Duie, P.; Dirian, G.

    1962-01-01

    In a preliminary study of the isotopic exchange between Ca amalgam and aqueous or organic solutions of Ca salts, the main parameters governing the feasibility of a separation process based on these systems such as separation factor, exchange kinetics, rate of decomposition of the amalgam were investigated. The separation factor between 40 Ca and 46 Ca was found to be of the order of 1.02. The rate of the exchange reaction is rather low for aqueous solutions, extremely low for organic solutions. The amalgam seems not to be attacked by dimethyl-formamide solutions; but it is rapidly decomposed by aqueous solutions of Ca halides. This decomposition is slow in the case of aqueous solutions of calcium formate and still slower for Ca(OH) 2 ; however, except in particular conditions, the observed rate is often much higher, owing to interfering reactions between amalgam and water vapor contained in H 2 bubbles. (authors) [fr

  3. Lithium isotope effects in chemical exchange with (2,2,1) cryptand

    International Nuclear Information System (INIS)

    Jepson, B.E.; Cairns, G.A.

    1979-01-01

    Equilibrium single-stage separation factors were determined for three lithium - (2,2,1) cryptand two-phase chemical exchange systems. The equilibrated phases consisted of an aqueous solution of a lithium salt and a chloroform solution of lithium cryptate salt complex. Lithium-6 concentrated in the organic phase in all cases, and the lithium isotope exchange rate with (2,2,1) cryptand was rapid. The separation factors were α = 1.026 +- 0.006 (LiBr exchange), α = 1.035 +- 0.003 (LiTFA), and α = 1.041 +- 0.006 (LiTFA + HTFA), where TFA represents trifluoroacetate. These values were compared with separation factors of other lithium chemical exchange systems. This work has shown that separation factors are influenced by the choice of chemical species and parameters. It has also demonstrated that significant lithium isotope effects can be obtained without a valence change of the metal exchanging between the aquo and cryptate complexes

  4. Fractal solutions of recirculation tubular chemical reactors

    International Nuclear Information System (INIS)

    Berezowski, Marek

    2003-01-01

    Three kinds of fractal solutions of model of recirculation non-adiabatic tubular chemical reactors are presented. The first kind concerns the structure of Feigenbaum's diagram on the limit of chaos. The second kind and the third one concern the effect of initial conditions on the dynamic solutions of models. In the course of computations two types of recirculation were considered, viz. the recirculation of mass (return of a part of products' stream) and recirculation of heat (heat exchange in the external heat exchanger)

  5. Investigation of Chemical Exchange at Intermediate Exchange Rates using a Combination of Chemical Exchange Saturation Transfer (CEST) and Spin-Locking methods (CESTrho)

    Science.gov (United States)

    Kogan, Feliks; Singh, Anup; Cai, Keija; Haris, Mohammad; Hariharan, Hari; Reddy, Ravinder

    2011-01-01

    Proton exchange imaging is important as it allows for visualization and quantification of the distribution of specific metabolites with conventional MRI. Current exchange mediated MRI methods suffer from poor contrast as well as confounding factors that influence exchange rates. In this study we developed a new method to measure proton exchange which combines chemical exchange saturation transfer (CEST) and T1ρ magnetization preparation methods (CESTrho). We demonstrated that this new CESTrho sequence can detect proton exchange in the slow to intermediate exchange regimes. It has a linear dependence on proton concentration which allows it to be used to quantitatively measure changes in metabolite concentration. Additionally, the magnetization scheme of this new method can be customized to make it insensitive to changes in exchange rate while retaining its dependency on solute concentration. Finally, we showed the feasibility of using CESTrho in vivo. This sequence is able to detect proton exchange at intermediate exchange rates and is unaffected by the confounding factors that influence proton exchange rates thus making it ideal for the measurement of metabolites with exchangeable protons in this exchange regime. PMID:22009759

  6. Investigation of chemical exchange at intermediate exchange rates using a combination of chemical exchange saturation transfer (CEST) and spin-locking methods (CESTrho).

    Science.gov (United States)

    Kogan, Feliks; Singh, Anup; Cai, Keija; Haris, Mohammad; Hariharan, Hari; Reddy, Ravinder

    2012-07-01

    Proton exchange imaging is important as it allows for visualization and quantification of the distribution of specific metabolites with conventional MRI. Current exchange mediated MRI methods suffer from poor contrast as well as confounding factors that influence exchange rates. In this study we developed a new method to measure proton exchange which combines chemical exchange saturation transfer and T(1)(ρ) magnetization preparation methods (CESTrho). We demonstrated that this new CESTrho sequence can detect proton exchange in the slow to intermediate exchange regimes. It has a linear dependence on proton concentration which allows it to be used to quantitatively measure changes in metabolite concentration. Additionally, the magnetization scheme of this new method can be customized to make it insensitive to changes in exchange rate while retaining its dependency on solute concentration. Finally, we showed the feasibility of using CESTrho in vivo. This sequence is able to detect proton exchange at intermediate exchange rates and is unaffected by the confounding factors that influence proton exchange rates thus making it ideal for the measurement of metabolites with exchangeable protons in this exchange regime. Copyright © 2011 Wiley Periodicals, Inc.

  7. Anion-exchange Studies of Radioactive Trace Elements in Sulphuric Acid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1963-01-15

    As part of a chemical group separation procedure used as a pretreatment in gamma spectrometric analysis, a study has been made of the adsorption from sulphuric acid solutions on strongly basic anion exchange resins, prepared in the hydroxide and the sulphate forms, of trace activities of Na, P, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Zr, Nb, Mo, Tc, Ag, Cd, In, Cs, Ba, La, Ce, Hf, Ta, W, Ir, Pa and Np. Besides adsorbing some of the trace elements in the solution, the anion exchange resin in the hydroxide form will neutralize the bulk of the sulphuric acid. This makes possible the subsequent sequential separation of chloride complexes on short anion-exchange columns by a stepwise increasing of the HCl concentration of the solution. On the basis of the results obtained in the present and earlier experiments, a new improved chemical group-separation procedure for mixtures of radioactive trace elements is outlined.

  8. Simulations of NMR pulse sequences during equilibrium and non-equilibrium chemical exchange

    International Nuclear Information System (INIS)

    Helgstrand, Magnus; Haerd, Torleif; Allard, Peter

    2000-01-01

    The McConnell equations combine the differential equations for a simple two-state chemical exchange process with the Bloch differential equations for a classical description of the behavior of nuclear spins in a magnetic field. This equation system provides a useful starting point for the analysis of slow, intermediate and fast chemical exchange studied using a variety of NMR experiments. The McConnell equations are in the mathematical form of an inhomogeneous system of first-order differential equations. Here we rewrite the McConnell equations in a homogeneous form in order to facilitate fast and simple numerical calculation of the solution to the equation system. The McConnell equations can only treat equilibrium chemical exchange. We therefore also present a homogeneous equation system that can handle both equilibrium and non-equilibrium chemical processes correctly, as long as the kinetics is of first-order. Finally, the same method of rewriting the inhomogeneous form of the McConnell equations into a homogeneous form is applied to a quantum mechanical treatment of a spin system in chemical exchange. In order to illustrate the homogeneous McConnell equations, we have simulated pulse sequences useful for measuring exchange rates in slow, intermediate and fast chemical exchange processes. A stopped-flow NMR experiment was simulated using the equations for non-equilibrium chemical exchange. The quantum mechanical treatment was tested by the simulation of a sensitivity enhanced 15 N-HSQC with pulsed field gradients during slow chemical exchange and by the simulation of the transfer efficiency of a two-dimensional heteronuclear cross-polarization based experiment as a function of both chemical shift difference and exchange rate constants

  9. Transfer Rate Edited experiment for the selective detection of Chemical Exchange via Saturation Transfer (TRE-CEST).

    Science.gov (United States)

    Friedman, Joshua I; Xia, Ding; Regatte, Ravinder R; Jerschow, Alexej

    2015-07-01

    Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates⩾30s(-1)) while simultaneously eliminating signals originating from slower (∼5s(-1)) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Transfer Rate Edited experiment for the selective detection of Chemical Exchange via Saturation Transfer (TRE-CEST)

    Science.gov (United States)

    Friedman, Joshua I.; Xia, Ding; Regatte, Ravinder R.; Jerschow, Alexej

    2015-07-01

    Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates ⩾ 30 s-1) while simultaneously eliminating signals originating from slower (∼5 s-1) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast.

  11. Advantages of chemical exchange-sensitive spin-lock (CESL) over chemical exchange saturation transfer (CEST) for hydroxyl- and amine-water proton exchange studies.

    Science.gov (United States)

    Jin, Tao; Kim, Seong-Gi

    2014-11-01

    The chemical exchange (CE) rate of endogenous hydroxyl and amine protons with water is often comparable to the difference in their chemical shifts. These intermediate exchange processes have been imaged by the CE saturation transfer (CEST) approach with low-power and long-duration irradiation. However, the sensitivity is not optimal and, more importantly, the signal is contaminated by slow magnetization transfer processes. Here, the properties of CEST signals are compared with those of a CE-sensitive spin-lock (CESL) technique irradiating at the labile proton frequency. First, using a higher power and shorter irradiation in CE-MRI, we obtain: (i) an increased selectivity to faster CE rates via a higher sensitivity to faster CEs and a lower sensitivity to slower CEs and magnetization transfer processes; and (ii) a decreased in vivo asymmetric magnetization transfer contrast measured at ±15 ppm. The sensitivity gain of CESL over CEST is higher for a higher power and shorter irradiation. Unlike CESL, CEST signals oscillate at a very high power and short irradiation. Second, time-dependent CEST and CESL signals are well modeled by analytical solutions of CE-MRI with an asymmetric population approximation, which can be used for quantitative CE-MRI and validated by simulations of Bloch-McConnell equations and phantom experiments. Finally, the in vivo amine-water proton exchange contrast measured at 2.5 ppm with ω1 = 500 Hz is 18% higher in sensitivity for CESL than CEST at 9.4 T. Overall, CESL provides better exchange rate selectivity and sensitivity than CEST; therefore, CESL is more suitable for CE-MRI of intermediate exchange protons. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Sorption behaviour of W, Hf, Lu, U, and Th on ion exchangers from HCl/H2O2 solutions. Model experiments for chemical studies of seaborgium (Sg)

    International Nuclear Information System (INIS)

    Schumann, D.; Andrassy, M.; Nitsche, H.; Misiak, R.; Schaedel, M.; Bruechle, W.; Schausten, B.; Kratz, J.V.

    1997-08-01

    In model experiments with W, Hf, Th, and U radionuclides, a chemical system was developed for the separation of seaborgium from element 104 and heavy actinides, i.e., cation exchange on DOWEX 50 x 8 from solutions containing 0.1-1.0 M HCl and 0.5-2.0 vol.% H 2 O 2 . The system should be suitable for fast on-line experiments if seaborgium exibits a non-uranium-like behaviour. Adding hydrogen peroxide to mixed HCl/HF solutions suppresses the partial sorption of W and, presumably seaborgium, on the cation exchanger. This way, the elution volume can be minimized. Prospects for anion exchange separations of group 6 from 4 elements are also briefly discussed. (orig.)

  13. Coupling between solute transport and chemical reactions models

    International Nuclear Information System (INIS)

    Samper, J.; Ajora, C.

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs

  14. Quantification of iopamidol multi-site chemical exchange properties for ratiometric chemical exchange saturation transfer (CEST) imaging of pH

    International Nuclear Information System (INIS)

    Sun, Phillip Zhe; Longo, Dario Livio; Hu, Wei; Xiao, Gang; Wu, Renhua

    2014-01-01

    pH-sensitive chemical exchange saturation transfer (CEST) MRI holds great promise for in vivo applications. However, the CEST effect depends on not only exchange rate and hence pH, but also on the contrast agent concentration, which must be determined independently for pH quantification. Ratiometric CEST MRI normalizes the concentration effect by comparing CEST measurements of multiple labile protons to simplify pH determination. Iopamidol, a commonly used x-ray contrast agent, has been explored as a ratiometric CEST agent for imaging pH. However, iopamidol CEST properties have not been solved, determination of which is important for optimization and quantification of iopamidol pH imaging. Our study numerically solved iopamidol multi-site pH-dependent chemical exchange properties. We found that iopamidol CEST MRI is suitable for measuring pH between 6 and 7.5 despite that T 1 and T 2 measurements varied substantially with pH and concentration. The pH MRI precision decreased with pH and concentration. The standard deviation of pH determined from MRI was 0.2 and 0.4 pH unit for 40 and 20 mM iopamidol solution of pH 6, and it improved to be less than 0.1 unit for pH above 7. Moreover, we determined base-catalyzed chemical exchange for 2-hydrooxypropanamido (k sw = 1.2*10 pH−4.1 ) and amide (k sw = 1.2*10 pH−4.6 ) protons that are statistically different from each other (P < 0.01, ANCOVA), understanding of which should help guide in vivo translation of iopamidol pH imaging. (paper)

  15. Safety aspects in a chemical exchange process plant

    International Nuclear Information System (INIS)

    Sharma, B.K.

    2016-01-01

    Based on a chemical exchange process involving solid liquid exchange, studies have been undertaken to enrich 10 B isotope of boron using ion exchange chromatography in which a strong base anion exchange resin in hydroxyl form is equilibrated with boric acid solution in presence of mannitol (a complexing reagent to boric acid) to enhance the acidity and hence the isotopic exchange separation factor for 10 B = 11 B exchange reaction. Using the electrochemical techniques such as pH-metry and conductimetry, the choice of a suitable complexing reagent was made amongst ethylene glycol, propylene glycol, dextrose and mannitol for cost-effective separation of isotopes of boron and monitoring of band movements using these electrochemical techniques. The optimum conditions for the regeneration of strong base anion exchange resins of type-I and type-II were determined for cost-effective separation of isotopes of boron by ion exchange chromatography. The possibility of using unspent alkali content of the effluent was also exploited. Removal of carbonate impurity from Rayon grade caustic lye (used as regenerant after dilution) and recycling of Ba(OH) 2 was studied to avoid waste disposal problems. This process is an industrially viable process. The various safety aspects followed during operation of this plant are described in this paper. (author)

  16. Spin-locking vs. chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons

    Science.gov (United States)

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2010-01-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of non-equivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolites with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: i) On-resonance SL is most sensitive to chemical exchanges in the intermediate exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. ii) Offset frequency-dependent SL and CEST spectra are very similar, and can be explained well with an SL model recently developed by Trott and Palmer. iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. iv) The asymmetry of the magnetization transfer ratio (MTRasym) is highly dependent on the choice of saturation pulse power. In the intermediate exchange regime, MTRasym becomes complicated and should be interpreted with care. PMID:21500270

  17. Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions.

    Science.gov (United States)

    Park, Sungnam; Odelius, Michael; Gaffney, Kelly J

    2009-06-04

    The structural and dynamical properties of aqueous ionic solutions influence a wide range of natural and biological processes. In these solutions, water has the opportunity to form hydrogen bonds with other water molecules and anions. Knowing the time scale with which these configurations interconvert represents a key factor to understanding the influence of molecular scale heterogeneity on chemical events in aqueous ionic solutions. We have used ultrafast IR spectroscopy and Car-Parrinello molecular dynamics (CPMD) simulations to investigate the hydrogen bond (H-bond) structural dynamics in aqueous 6 M sodium perchlorate (NaClO4) solution. We have measured the H-bond exchange dynamics between spectrally distinct water-water and water-anion H-bond configurations with 2DIR spectroscopy and the orientational relaxation dynamics of water molecules in different H-bond configurations with polarization-selective IR pump-probe experiments. The experimental H-bond exchange time correlates strongly with the experimental orientational relaxation time of water molecules. This agrees with prior observations in water and aqueous halide solutions, and has been interpreted within the context of an orientational jump model for the H-bond exchange. The CPMD simulations performed on aqueous 6 M NaClO4 solution clearly demonstrate that water molecules organize into two radially and angularly distinct structural subshells within the first solvation shell of the perchlorate anion, with one subshell possessing the majority of the water molecules that donate H-bonds to perchlorate anions and the other subshell possessing predominantly water molecules that donate two H-bonds to other water molecules. Due to the high ionic concentration used in the simulations, essentially all water molecules reside in the first ionic solvation shells. The CPMD simulations also demonstrate that the molecular exchange between these two structurally distinct subshells proceeds more slowly than the H

  18. Molecular dynamics simulations of solutions at constant chemical potential

    Science.gov (United States)

    Perego, C.; Salvalaglio, M.; Parrinello, M.

    2015-04-01

    Molecular dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a grand-canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work, we propose the Constant Chemical Potential Molecular Dynamics (CμMD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the CμMD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions and to extract growth rates and free-energy barriers.

  19. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons.

    Science.gov (United States)

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2011-05-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care. Copyright © 2010 Wiley-Liss, Inc.

  20. NMR studies of proton exchange kinetics in aqueous formaldehyde solutions.

    Science.gov (United States)

    Rivlin, Michal; Eliav, Uzi; Navon, Gil

    2014-05-01

    Aqueous solutions of formaldehyde, formalin, are commonly used for tissue fixation and preservation. Treatment with formalin is known to shorten the tissue transverse relaxation time T2. Part of this shortening is due to the effect of formalin on the water T2. In the present work we show that the shortening of water T2 is a result of proton exchange between water and the major constituent of aqueous solutions of formaldehyde, methylene glycol. We report the observation of the signal of the hydroxyl protons of methylene glycol at 2ppm to high frequency of the water signal that can be seen at low temperatures and at pH range of 6.0±1.5 and, at conditions where it cannot be observed by the single pulse experiment, it can be detected indirectly through the water signal by the chemical exchange saturation transfer (CEST) experiment. The above finding made it possible to obtain the exchange rate between the hydroxyl protons of the methylene glycol and water in aqueous formaldehyde solutions, either using the dispersion of the spin-lattice relaxation rate in the rotating frame (1/T1ρ) or, at the slow exchange regime, from the line width hydroxyl protons of methylene glycol. The exchange rate was ∼10(4)s(-1) at pH 7.4 and 37°C, the activation energy, 50.2kJ/mol and its pH dependence at 1.1°C was fitted to: k (s(-1))=520+6.5×10(7)[H(+)]+3.0×10(9)[OH(-)]. Copyright © 2014. Published by Elsevier Inc.

  1. Ion exchange removal of technetium from salt solutions

    International Nuclear Information System (INIS)

    Walker, D.D.

    1983-01-01

    Ion exchange methods for removing technetium from waste salt solutions have been investigated by the Savannah River Laboratory (SRL). These experiments have shown: Commercially available anion exchange resins show high selectivity and capacity for technetium. In column runs, 150 column volumes of salt solution were passed through an ion exchange column before 50% 99 Tc breakthrough was reached. The technetium can be eluted from the resin with nitric acid. Reducing resins (containing borohydride) work well in simple hydroxide solutions, but not in simulated salt solutions. A mercarbide resin showed a very high selectivity for Tc, but did not work well in column operation

  2. Chemical exchange rotation transfer imaging of intermediate-exchanging amines at 2 ppm.

    Science.gov (United States)

    Zu, Zhongliang; Louie, Elizabeth A; Lin, Eugene C; Jiang, Xiaoyu; Does, Mark D; Gore, John C; Gochberg, Daniel F

    2017-10-01

    Chemical exchange saturation transfer (CEST) imaging of amine protons exchanging at intermediate rates and whose chemical shift is around 2 ppm may provide a means of mapping creatine. However, the quantification of this effect may be compromised by the influence of overlapping CEST signals from fast-exchanging amines and hydroxyls. We aimed to investigate the exchange rate filtering effect of a variation of CEST, named chemical exchange rotation transfer (CERT), as a means of isolating creatine contributions at around 2 ppm from other overlapping signals. Simulations were performed to study the filtering effects of CERT for the selection of transfer effects from protons of specific exchange rates. Control samples containing the main metabolites in brain, bovine serum albumin (BSA) and egg white albumen (EWA) at their physiological concentrations and pH were used to study the ability of CERT to isolate molecules with amines at 2 ppm that exchange at intermediate rates, and corresponding methods were used for in vivo rat brain imaging. Simulations showed that exchange rate filtering can be combined with conventional filtering based on chemical shift. Studies on samples showed that signal contributions from creatine can be separated from those of other metabolites using this combined filter, but contributions from protein amines may still be significant. This exchange filtering can also be used for in vivo imaging. CERT provides more specific quantification of amines at 2 ppm that exchange at intermediate rates compared with conventional CEST imaging. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Differential multiple quantum relaxation caused by chemical exchange outside the fast exchange limit

    International Nuclear Information System (INIS)

    Wang Chunyu; Palmer, Arthur G.

    2002-01-01

    Differential relaxation of multiple quantum coherences is a signature for chemical exchange processes in proteins. Previous analyses of experimental data have used theoretical descriptions applicable only in the limit of fast exchange. Theoretical expressions for differential relaxation rate constants that are accurate outside fast exchange are presented for two-spin-system subject to two-site chemical exchange. The theoretical expressions are validated using experimental results for 15 N- 1 H relaxation in basic pancreatic trypsin inhibitor. The new theoretical expression is valuable for identification and characterization of exchange processes in proteins using differential relaxation of multiple quantum coherences

  4. Heat Exchanger Lab for Chemical Engineering Undergraduates

    Science.gov (United States)

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  5. Hydrologic exchange and chemical weathering in a proglacial watershed near Kangerlussuaq, west Greenland

    Science.gov (United States)

    Deuerling, Kelly M.; Martin, Jonathan B.; Martin, Ellen E.; Scribner, Cecilia A.

    2018-01-01

    The exchange of proglacial river water with active layer pore water could alter water chemical compositions in glacial outwash plains and oceanic solute fluxes. To evaluate effects of this exchange, we sampled Watson River and adjacent pore water during the 2013 melt season at two sandurs in western Greenland; one in Sandflugtdalen and the other near the confluence with Søndre Strømfjord. We measured temperature, specific conductivity, and head gradients between the river and bank over a week-long period at Sandflugtdalen, as well as sediment hydraulic conductivity and chemical compositions of waters from both sites. Specific conductivity of pore water is four to ten times greater than river water as solutes are concentrated from weathering reactions, cryoconcentration, and evaporation. Pore water compositions are predominantly altered by carbonate dissolution and sulfide mineral oxidation. High concentrations of HCO3 and SO4 result from solute recycling and dissolution of secondary Ca-Mg carbonate/sulfate salts initially formed by near-surface evaporation in the summer and at depth by freeze-in of the active layer and cryoconcentration in the winter. High hydraulic conductivity (10-5 to 10-4 m/s) and diurnal fluctuations of river stage during our study caused exchange of river and pore water immediately adjacent to the river channel, with a net loss of river water to the bank. Pore water >6 m from the river continuously flowed away from the river. Approximately 1-8% of the river discharge through the Sandflugtdalen was lost to the river bank during our 6.75 day study based on calculations using Darcy's Law. Although not sampled, some of this water should discharge to the river during low river stage early and late in the melt season. Elevated pore water solute concentrations in sandurs and water exchange at diurnal and seasonal frequency should impact fluxes of solutes to the ocean, although understanding the magnitude of this effect will require long

  6. Advantages of Chemical Exchange-Sensitive Spin-Lock (CESL) Over Saturation Transfer (CEST) for Hydroxyl- and Amine-Water Proton Exchange Studies

    Science.gov (United States)

    Jin, Tao; Kim, Seong-Gi

    2014-01-01

    The chemical exchange (CE) rate of endogenous hydroxyl and amine protons with water is often comparable to the difference in their chemical shifts. These intermediate exchange (IMEX) processes have been imaged by the CE saturation transfer (CEST) approach with low-power and long-duration irradiation. However, its sensitivity is not optimal, and more importantly, the signal is contaminated by slow magnetization transfer processes. Here, the property of CEST signals is compared to a CE-sensitive spin-locking (CESL) technique irradiating at the labile proton frequency. Firstly, using a higher power and shorter irradiation in CE-MRI yields i) increasing selectivity to faster chemical exchange rates by higher sensitivity to faster exchanges and less sensitivity to slower CE and magnetization transfer processes, and ii) decreasing in vivo asymmetric magnetization transfer contrast measured at ±15 ppm. The sensitivity gain of CESL over CEST is higher for a higher-power and shorter irradiation. Unlike CESL, CEST signals oscillate at a very high power and short irradiation. Secondly, time-dependent CEST and CESL signals are well modeled by analytical solutions of CE-MRI with asymmetric population approximation (CEAPA), which can be used for quantitative CE-MRI, and validated by simulations of Bloch-McConnell equations and phantom experiments. Lastly, in vivo amine-water proton exchange contrast measured at 2.5 ppm with ω1 of 500 Hz is 18% higher in sensitivity for CESL than CEST at 9.4 T. Overall, CESL provides better exchange rate selectivity and sensitivity than CEST; therefore, CESL is more suitable for CE-MRI of IMEX protons. PMID:25199631

  7. Factors contributing to troponin exchange in myofibrils and in solution.

    Science.gov (United States)

    She, M; Trimble, D; Yu, L C; Chalovich, J M

    2000-01-01

    The troponin complex in a muscle fiber can be replaced with exogenous troponin by using a gentle exchange procedure in which the actin-tropomyosin complex is never devoid of a full complement of troponin (Brenner et al. (1999) Biophys J 77: 2677-2691). The mechanism of this exchange process and the factors that influence this exchange are poorly understood. In this study, the exchange process has now been examined in myofibrils and in solution. In myofibrils under rigor conditions, troponin exchange occurred preferentially in the region of overlap between actin and myosin when the free Ca2+ concentration was low. At higher concentrations of Ca2+, the exchange occurred uniformly along the actin. Ca2+ also accelerated troponin exchange in solution but the effect of S1 could not be confirmed in solution experiments. The rate of exchange in solution was insensitive to moderate changes in pH or ionic strength. Increasing the temperature resulted in a two-fold increase in rate with each 10 degrees C increase in temperature. A sequential two step model of troponin binding to actin-tropomyosin could simulate the observed association and dissociation transients. In the absence of Ca2+ or rigor S1, the following rate constants could describe the binding process: k1 = 7.12 microM(-1) s(-1), k(-1) = 0.65 s(-1), k2 = 0.07 s(-1), k(-2) = 0.0014 s(-1). The slow rate of detachment of troponin from actin (k(-2)) limits the rate of exchange in solution and most likely contributes to the slow rate of exchange in fibers.

  8. Ligands Exchange Process on Gold Nanoparticles in Acetone Solution

    Science.gov (United States)

    Hu, C. L.; Mu, Y. Y.; Bian, Z. C.; Luo, Z. H.; Luo, K.; Huang, A. Z.

    2018-05-01

    The ligands exchange process on gold nanoparticles (GNPs) was proceeded by using hydrophobic group (PPh3) and hydrophilic group (THPO) in acetone solution. The FTIR and XPS results demonstrated that part of THPO was replaced by PPh3 which was dissolved in polar solution (acetone); the results were in accordance with the electrochemical analysis where the differential capacity decreased with increasing exchange time. After 12 h, the exchange process terminated and the final ratio of PPh3 and THPO was about 1.4: 1. This ratio remained unchanged although the PPh3 and THPO modified GNPs re-dispersed in the PPh3 acetone solution demonstrating the stable adsorption of both ligands after exchanging for 12 h. The TEM images showed that the gold nanoparticles were self-assembled from scattered to arranged morphology due to the existence of hydrophilic and hydrophobic ligands and led to Janus gold nanoparticles.

  9. Physico-Chemical Study of the Separation of Calcium Isotopes by Chemical Exchange Between Amalgam and Salt Solutions; Etude physico-chimique de la separation des isotopes du calcium par echange chimique entre amalgame et solution saline

    Energy Technology Data Exchange (ETDEWEB)

    Duie, P; Dirian, G [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-07-01

    In a preliminary study of the isotopic exchange between Ca amalgam and aqueous or organic solutions of Ca salts, the main parameters governing the feasibility of a separation process based on these systems such as separation factor, exchange kinetics, rate of decomposition of the amalgam were investigated. The separation factor between {sup 40}Ca and {sup 46}Ca was found to be of the order of 1.02. The rate of the exchange reaction is rather low for aqueous solutions, extremely low for organic solutions. The amalgam seems not to be attacked by dimethyl-formamide solutions; but it is rapidly decomposed by aqueous solutions of Ca halides. This decomposition is slow in the case of aqueous solutions of calcium formate and still slower for Ca(OH){sub 2}; however, except in particular conditions, the observed rate is often much higher, owing to interfering reactions between amalgam and water vapor contained in H{sub 2} bubbles. (authors) [French] On a fait une etude preliminaire, pour des systemes amalgame de calcium - solution aqueuse ou organique de sels de calcium, des principaux parametres pouvant intervenir dans l'application d'un procede d'echange a l'enrichissement isotopique du calcium: facteur de separation, cinetique de l'echange, cinetique de la decomposition de l'amalgame. Les facteurs de separation {sup 40}Ca-{sup 46}Ca sont de l'ordre de 1,02. L'echange est assez lent pour les solutions aqueuses, extremement lent pour les solutions organiques. La decomposition de l'amalgame est pratiquement inexistante avec les solutions dans le dimethyl- formamide, appreciable pour les solutions alcooliques, rapide pour les solutions aqueuses d'halogenures; elle est normalement lente pour les solutions aqueuses de formiate et surtout de chaux, mais la decomposition est en general acceleree par une reaction parasite entre l'amalgame et l'eau a l'etat vapeur, reaction que l'on n'evite dans des conditions tres particulieres. (auteurs)

  10. Which currency exchange regime for emerging markets?: Corner solutions under question

    Directory of Open Access Journals (Sweden)

    Allegret Jean-Pierre

    2007-01-01

    Full Text Available During the 90s, recurrent exchange rate crises in emerging markets have shown the extreme fragility of soft pegs, the so-called intermediate exchange rate regimes. As a result, numerous academic economists but also International institutions have promoted a new consensus: domestic authorities have to choose their exchange rate regime between only two solutions called corner solutions or extreme regimes: hard pegs or independent floating. This paper questions de relevance of this consensus. We stress the main advantages and costs of each corner solution. We conclude by stressing that intermediate regimes associated to an inflation targeting framework seem a better solution for emerging countries than corner solutions.

  11. Algorithms and programs for solution of static and dynamic characteristics of counterflow heat exchangers with dissociating coolant

    International Nuclear Information System (INIS)

    Nitej, N.V.; Sharovarov, G.A.

    1982-01-01

    The method of estimation of counterflow heat exchanger characteristics is presented. Mathematical description of the processes is presented by the mass, energy and pulse conservation equations for both coolants and energy conservation equation for the wall which devides them. In the presence of chemical reactions the system is supplemented by equations, characterizing the kinetics of their progress. The methods of numerical solution of static and dynamic problems have been chosen, and the computer programs on the Fortran language have been developed. The schemes of solution of both problems are so constructed, that the conservation equations are placed in the main program, and such characteristics of the coolants as properties, heat transfer and friction coefficients, the mechanism of chemical reaction are concentrated in the subprogram unit. This allows to create the single method of solution with the flow of single-phase and two-phase coolants of abovecritical and supercritical paramters. The evaluation results of three heat exchangers are given: with heating of N 2 O 4 gas phase by heat of flue gas; with cooling of N 2 O 4 supercritical parameters by water; regenerator on N 2 O 4

  12. Chemical composition and Zn bioavailability of the soil solution extracted from Zn amended variable charge soils.

    Science.gov (United States)

    Zampella, Mariavittoria; Adamo, Paola

    2010-01-01

    A study on variable charge soils (volcanic Italian and podzolic Scottish soils) was performed to investigate the influence of soil properties on the chemical composition of soil solution. Zinc speciation, bioavailability and toxicity in the soil solution were examined. The soils were spiked with increasing amounts of Zn (0, 100, 200, 400 and 1000 mg/kg) and the soil solutions were extracted using rhizon soil moisture samplers. The pH, total organic carbon (TOC), base cations, anions, total Zn and free Zn2+ in soil solution were analysed. A rapid bioassay with the luminescent bacterium Escherichia coli HB101 pUCD607 was performed to assess Zn toxicity. The influence of soil type and Zn treatments on the chemical composition of soil solution and on Zn toxicity was considered and discussed. Different trends of total and free Zn concentrations, base cations desorption and luminescence of E. coli HB101 pUCD607 were observed. The soil solution extracted from the volcanic soils had very low total and free Zn concentrations and showed specific Zn2+/Ca2+ exchange. The soil solution from the podzolic soil had much higher total and free Zn concentrations and showed no evidence of specific Zn2+/Ca2+ exchange. In comparison with the subalkaline volcanic soils, the acidic podzol showed enhanced levels of toxic free Zn2+ and consequently stronger effects on E. coli viability.

  13. Contributions of chemical and diffusive exchange to T1ρ dispersion.

    Science.gov (United States)

    Cobb, Jared Guthrie; Xie, Jingping; Gore, John C

    2013-05-01

    Variations in local magnetic susceptibility may induce magnetic field gradients that affect the signals acquired for MR imaging. Under appropriate diffusion conditions, such fields produce effects similar to slow chemical exchange. These effects may also be found in combination with other chemical exchange processes at multiple time scales. We investigate these effects with simulations and measurements to determine their contributions to rotating frame (R1ρ ) relaxation in model systems. Simulations of diffusive and chemical exchange effects on R1ρ dispersion were performed using the Bloch equations. Additionally, R1ρ dispersion was measured in suspensions of Sephadex and latex beads with varying spin locking fields at 9.4 T. A novel analysis method was used to iteratively fit for apparent chemical and diffusive exchange rates with a model by Chopra et al. Single- and double-inflection points in R1ρ dispersion profiles were observed, respectively, in simulations of slow diffusive exchange alone and when combined with rapid chemical exchange. These simulations were consistent with measurements of R1ρ in latex bead suspensions and small-diameter Sephadex beads that showed single- and double-inflection points, respectively. These observations, along with measurements following changes in temperature and pH, are consistent with the combined effects of slow diffusion and rapid -OH exchange processes. Copyright © 2012 Wiley Periodicals, Inc.

  14. Chemical reactivity of cation-exchanged zeolites

    OpenAIRE

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed by Brønsted acid sites in the hydrogen forms of zeolites, the nature of chemical reactivity, and related, the structure of the metal-containing ions in cation-exchanged zeolites remains the subject...

  15. Early history of chemical exchange isotope enrichment and lessons we learn

    International Nuclear Information System (INIS)

    Ishida, Takanobu; Ono, Yuriko

    2006-01-01

    The chemical exchange isotope enrichment process has an advantage over other isotope separation methods in that it involves two chemicals rather than one and, consequently, relatively large separation factors can be obtained. However, the chemical exchange method requires a chemical conversion of the substance enriched in the target isotope into the second substance. The idiosyncrasies of the isotope separation process by this method are pointed out using McCabe-Thiele diagram and, from them, the difficulties involved in the chemical exchange methods are itemized. Examples of the points being made are taken from the pioneering works of this field carried out by Harold C. Urey, his contemporaries, the students and the students' students. Lessons we learn from these works are discussed. (author)

  16. Study on removing nitrate from uranium solution by ion-exchange method

    International Nuclear Information System (INIS)

    Zhou Genmao

    2004-01-01

    Nitrate of low concentration can interfere with adsorption of uranyl sulfate anion on anion-exchange resins because the anion-exchange resins have a stronger affinity for nitrate in uranium solution. Nitrate can be adsorbed with a high efficiency resin, then desorbed by sodium hydroxide. The nitrate concentration is about 60 g/L in eluate. The research results show that nitrate can be recovered from uranium solution with N-3 anion-exchange resin

  17. Test procedure for anion exchange testing with Argonne 10-L solutions

    International Nuclear Information System (INIS)

    Compton, J.A.

    1995-01-01

    Four anion exchange resins will be tested to confirm that they will sorb and release plutonium from/to the appropriate solutions in the presence of other cations. Certain cations need to be removed from the test solutions to minimize adverse behavior in other processing equipment. The ion exchange resins will be tested using old laboratory solutions from Argonne National Laboratory; results will be compared to results from other similar processes for application to all plutonium solutions stored in the Plutonium Finishing Plant

  18. Nanofiltration: ion exchange system for effective surfactant removal from water solutions

    Directory of Open Access Journals (Sweden)

    I. Kowalska

    2014-12-01

    Full Text Available A system combining nanofiltration and ion exchange for highly effective separation of anionic surfactant from water solutions was proposed. The subjects of the study were nanofiltration polyethersulfone membranes and ion-exchange resins differing in type and structure. The quality of the treated solution was affected by numerous parameters, such as quality of the feed solution, membrane cut-off, resin type, dose and the solution contact time with the resin. A properly designed purification system made it possible to reduce the concentration of anionic surfactant below 1 mg L-1 from feed solutions containing surfactant in concentrations above the CMC value.

  19. Selective separation of radionuclides from nuclear waste solutions with inorganic ion exchangers

    International Nuclear Information System (INIS)

    Lehto, J.; Harjula, R.

    1999-01-01

    Nuclear industry produces and stores large volumes of radioactive waste solutions. Removal of radionuclides from the solutions is an important and challenging task for two main reasons: reductions in the volumes of solidified waste, which have to be disposed of, and reductions in the radioactive discharges into the environment. Since the radioactive elements in most waste solutions are in trace concentrations and the waste solutions contain large excesses of inactive metal ions, highly selective separation methods are needed for the removal of radionuclides. A number of inorganic ion exchange materials are very selective to key radionuclides and they can play an important role in solving these problems. The spectrum of nuclear waste solutions is rather wide considering their radionuclide contents, concentrations of interfering salts and acidity/alkalinity. Therefore, several inorganic ions exchangers are needed for the removal of most harmful radionuclides from a variety of solutions. This paper discusses the use and requirements of inorganic ion exchange materials in nuclear waste management. Special attention is paid to the novel ion exchange materials developed in the Laboratory of Radiochemistry, University of Helsinki. (orig.)

  20. Effect of hydrostatic and chemical pressure on the exchange interaction in magnetic borocarbide superconductors

    Science.gov (United States)

    Michor, H.; El-Hagary, M.; Naber, L.; Bauer, E.; Hilscher, G.

    2000-03-01

    The investigation of pair-breaking effects in magnetic rare-earth nickel borocarbide superconductors reveals a considerable increase of the magnetic exchange integral Jsf by hydrostatic as well as chemical pressure. In both, Jsf is governed by the R-C distance (or lattice constant a) and is described quantitatively by a simple phenomenological model. Thereby, just two parameters Jsf0=31 meV and ΔJsf/Δa=165 meV/Å explain well the influence of chemical pressure upon the initial depression rates of Tc in solid solutions R'1-xRxNi2B2C with R=Gd, Tb, Dy, Ho and R'=Y and Lu.

  1. Anion exchange behavior of Ti, Zr, Hf, Nb and Ta as homologues of Rf and Db in mixed HF-acetone solutions

    International Nuclear Information System (INIS)

    Aksenov, N.V.; Bozhikov, G.A.; Starodub, G.Ya.; Dmitriev, S.N.; Filosofov, D.V.; Jon Sun Jin; Radchenko, V.I.; Lebedev, N.A.; Novgorodov, A.F.

    2009-01-01

    We studied in detail the sorption behavior of Ti, Zr, Hf, Nb and Ta on AG 1 anion exchange resin in HF-acetone mixed solutions as a function of organic cosolvent and acid concentrations. Anion exchange behavior was found to be strongly acetone concentration dependent. The distribution coefficients of Ti, Zr, Hf and Nb increased and those of Ta decreased with increasing content of acetone in HF solutions. With increasing HF concentration, anion exchange equilibrium analysis indicated the formation of fluoride complexes of group-4 elements with charge -3 and Ta with charge -2. For Nb the slope of -2 increased up to -5. Optimal conditions for separation of the elements using AIX chromatography were found. Group-4 elements formed MF 7 3- (M = Ti, Zr, Hf) complexes whose sorption decreased Ti > Hf > Zr in reverse order of complex stability. This fact is of particular interest for studying ion exchange behavior of Rf compared to Ti. The advantages of studying chemical properties of Rf and Db in aqueous HF solutions mixed with organic solvents are briefly discussed

  2. Chemical and physical stability of smectites and illite in electrolyte solutions: experimental study at 150 C

    International Nuclear Information System (INIS)

    Boutiche, M.

    1995-01-01

    Chemical interactions between electrolytic solutions commonly used i drilling muds and clays have been studies under P-T conditions similar to those of drillings (150 deg C) in order to determine the eventual consequences on the stability of clay rich formations. The experimental work has been carried out using several solutions (water, NaOH (pH 8, 10, 12), KCI (0,1, 1 2 mol./l), sea water, and K 2 CO 3 ) and clay minerals with low to high amounts of swelling layers (smectite (Na, Na-Ca, Ca), mixed layered illite-smectite minerals). Run products are studied by X-ray diffraction and electronic microprobe. Smectite layers show series of mineralogical changes (cation exchange in the interlayer site, formation of non-swelling layers, hydrolysis), which, however, do not yield to the formation of new minerals, except in the case of the interaction with K 2 CO 3 at 150 deg C (zeolite crystallisation). Cation exchange in the interlayer depends on the nature of the cation, cation concentration in the solution, exchange constants, and liquid/solid ratio. In dilute solutions ( 1 mol./l), because they favour the collapse of swelling layers, and dispersion. Solutions of K 2 CO 3 at 150 deg C are at the origin of the transformation of smectite to zeolites, and high pH - highly saline solutions are rather aggressive, and would probably not stabilize the argilites. (author)

  3. Removal of Uranium by Exchanger Resins from Soil Washing Solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Han, G. S.; Kim, G. N.; Koo, D. S.; Jeong, J. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Uranyl ions in the acidic waste solution were sorbed on AM-resin resin with a high sorption efficiency, and desorbed from the resin by a batch-type washing with a 60 .deg. C heated 0.5 M Na{sub 2}CO{sub 3} solution. However, the uranium dissolved in the sulfuric acid solution was not sorbed onto the strong anion exchanger resins. Our group has developed a decontamination process with washing and electrokinetic methods for uranium-contaminated (U-contaminated) soil. However, this process generates a large amount of waste solution containing various metal ions. If the uranium selectively removed from the waste solution, a very small amount of the 2nd waste would be generated. Thus, selective sorption of uranium by ion exchange resins was examined in this study.

  4. Chemical exchange equilibria in isotope separation. Part I : Evaluation of separation factors

    International Nuclear Information System (INIS)

    Dave, S.M.

    1980-01-01

    The theory of chemical exchange equilibria as applied to the isotope separation processes and the isotope effects on equilibrium constants of different exchange reactions has come a long way since its inception by Urey and Rittenberg. An attempt has been made to bring relevant information together and present a unified approach to isotopic chemical exchange equilibrium constant evaluation and its implications to separation processes. (auth.)

  5. Position of residues in transmembrane peptides with respect to the lipid bilayer: A combined lipid NOEs and water chemical exchange approach in phospholipid bicelles

    International Nuclear Information System (INIS)

    Glover, Kerney Jebrell; Whiles, Jennifer A.; Vold, Regitze R.; Melacini, Giuseppe

    2002-01-01

    The model transmembrane peptide P16 was incorporated into small unaligned phospholipid bicelles, which provide a 'native-like' lipid bilayer compatible with high-resolution solution NMR techniques. Using amide-water chemical exchange and amide-lipid cross-relaxation measurements, the interactions between P16 and bicelles were investigated. Distinctive intermolecular NOE patterns observed in band-selective 2D-NOESY spectra of bicellar solutions with several lipid deuteration schemes indicated that P16 is preferentially interacting with the 'bilayered' region of the bicelle rather than with the rim. Furthermore, when amide-lipid NOEs were combined with amide-water chemical exchange cross-peaks of selectively 15 N-labeled P16 peptides, valuable information was obtained about the position of selected residues relative to the membrane-water interface. Specifically, three main classes were identified. Class I residues lie outside the bilayer and show amide-water exchange cross-peaks but no amide-lipid NOEs. Class II residues reside in the bilayer-water interface and show both amide-water exchange cross-peaks and amide-lipid NOEs. Class III residues are embedded within the hydrophobic core of the membrane and show no amide-water exchange cross-peaks but strong amide-lipid NOEs

  6. Solute-solvent complex switching dynamics of chloroform between acetone and dimethylsulfoxide-two-dimensional IR chemical exchange spectroscopy.

    Science.gov (United States)

    Kwak, Kyungwon; Rosenfeld, Daniel E; Chung, Jean K; Fayer, Michael D

    2008-11-06

    Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions.

  7. Thermal and chemical stabilities of some synthesized inorganic ion exchange materials

    International Nuclear Information System (INIS)

    EI-Naggar, I.M.; Abou-Mesalam, M.M.; El-Shorbagy, M.M.; Shady, S.A.

    2006-01-01

    Chromium and cerium titanate as inorganic ion exchange materials were synthesized by the reaction of potassium chromate or ammonium eerie nitrate with titanium tetrachloride with molar ratio equal unity. The crystal system of both chromium and cerium titanates were determined and set to be monoclinic and orthorhombic system's, respectively. The chemical composition of both chromium and cerium titanates was determined by X-ray fluorescence technique and based on the data obtained with other different techniques. A molecular formula for chromium and cerium titanates as Cr 2 Ti 12 O 27 . 13H 2 O and Ce 2 Ti 3 O 10 . 7.46H 2 O, respectively, was proposed. Thermal stabilities of both ion exchangers were investigated at different heating temperatures. Also the stability of chromium and cerium titanates for chemical attack was studied in different media. The data obtained showed high thermal and chemical stabilities of chromium and cerium titanate ion exchangers compared with the same group of ion exchange materials. The ion exchange capacities of chromium and cerium titanates at different heating temperature were also investigated

  8. Thermal and chemical stabilities of some synthesized inorganic ion exchange materials

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; Abou-Mesalam, M. M.; El-Shorbagy, M.M.; Shady, S.A.

    2005-01-01

    Chromium and cerium titanate as inorganic ion exchange materials were synthesized by the reaction of potassium chromate or ammonium ceric nitrate with titanium tetrachloride with molar ratio equal unity. The crystal system of both chromium and cerium titanates were determined and set to be monoclinic and orthorhombic systems, respectively. The chemical composition of both chromium and cerium titanates were determined by X-ray fluorescence technique and based on the data obtained with other different techniques. We can proposed molecular formula for chromium and cerium titanates as Cr 2 Ti 1 2O27. 13H 2 O and Ce 2 ThO10. 7.46 H 2 O, respectively. Thermal stability of both ion exchangers was investigated at different heating temperatures. Also the stability of chromium and cerium titanates for chemical attack was studied in different media. The data obtained showed high thermal and chemical stabilities of chromium and cerium titanate ion exchangers compared to the same group of ion exchange materials. The ion exchange capacities of chromium and cerium titanates at different heating temperature were investigated

  9. Chemical exchange effects in spectral line shapes

    International Nuclear Information System (INIS)

    Diaz, M.A.; Veguillas, J.

    1990-01-01

    A theory of spectral-line shapes has been extended to the case in which relaxation broadening may be influenced by reactive interactions. This extension is valid for gaseous systems in the same way it is valid for condensed media, and particularly, for such chemical mechanisms as isomerizations. The dependence of the spectral rate on the chemical exchange rate is clarified. Finally, a discussion concerning the above aspects and their applications has been included. (author)

  10. Contributions of chemical exchange to T1ρ dispersion in a tissue model.

    Science.gov (United States)

    Cobb, Jared G; Xie, Jingping; Gore, John C

    2011-12-01

    Variations in T(1ρ) with locking-field strength (T(1ρ) dispersion) may be used to estimate proton exchange rates. We developed a novel approach utilizing the second derivative of the dispersion curve to measure exchange in a model system of cross-linked polyacrylamide gels. These gels were varied in relative composition of comonomers, increasing stiffness, and in pH, modifying exchange rates. Magnetic resonance images were recorded with a spin-locking sequence as described by Sepponen et al. These measurements were fit to a mono-exponential decay function yielding values for T(1ρ) at each locking-field measured. These values were then fit to a model by Chopra et al. for estimating exchange rates. For low stiffness gels, the calculated exchange values increased by a factor of 4 as pH increased, consistent with chemical exchange being the dominant contributor to T(1ρ) dispersion. Interestingly, calculated chemical exchange rates also increased with stiffness, likely due to modified side-chain exchange kinetics as the composition varied. This article demonstrates a new method to assess the structural and chemical effects on T(1ρ) relaxation dispersion with a suitable model. These phenomena may be exploited in an imaging context to emphasize the presence of nuclei of specific exchange rates, rather than chemical shifts. Copyright © 2011 Wiley Periodicals, Inc.

  11. Enrichment of 15N and 10B isotopes by chemical exchange process

    International Nuclear Information System (INIS)

    D'Souza, A.B.; Sonwalkar, A.S.; Subrahmanyam, B.V.; Valladares, B.A.

    1994-01-01

    Many processes are available for separation of stable isotopes like distillation, chemical exchange, thermal diffusion, gaseous diffusion, centrifuge etc. Chemical exchange process is eminently suitable for separation of isotopes of light elements. Work done on separation and enrichment of two of the stable isotopes viz. 15 N and 10 B in Chemical Engineering Division is presented. 15 N is widely used as a tracer in agricultural research and 10 B is used in nuclear industry as control rod material, soluble reactor poison, neutron detector etc. The work on 15 N isotope resulted in a pilot plant, which was the only source of this material in the country for many years and later it was translated into a production plant as M/s. RCF Ltd. The work done on the ion-exchange process for enrichment of 10 B isotope which is basically a chemical exchange process, is now being updated into a pilot plant to produce enriched 10 B to be used as soluble reactor poison. (author)

  12. Report: Information Meeting / Awareness of Actors on the Chemical Information Exchange Network (CIEN)

    International Nuclear Information System (INIS)

    Senghor, Cheikh

    2015-01-01

    As part of the implementation of the Stockholm Convention, Senegal has established a Chemical Information Exchange Network. The overall objective of this meeting was to identify the various actors involved in the management of chemicals information and to study the modalities for the implementation of the chemical information exchange network in Senegal.

  13. Ion-exchange concentration of inorganic anions from aqueous solution

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2016-01-01

    Full Text Available Monitoring of natural waters in the present time - consuming process, the accuracy of which is influenced by many factors: the composition of water, the presence of impurities and "interfering" components. The water sample preparation process includes the step of concentration and separation of ions determined. The most versatile, efficient, and frequently used method is the concentration of inorganic anions from aqueous solutions by ion exchanger, which can optimize the composition of water to the optimal for identification and quantitative determination of anions. The characteristics of sorption chloride, nitrate and sulfate ions of basic anion exchange resin AВ-17 and Purolite A430 were compared in the article. The constants of protolysis of ion exchangers both AB 17 and Purolite A430 are the same and equal 0.037 ± 0,002. The value of total capacity (POE Purolite A430 was 4.3 mmol/g, AB 17 – 3.4 mmol/g. The studied ion exchangers have the same type of ionic groups – quaternary ammonium, but their number and denotes differ. The number of quaternary ammonium groups is higher in Purolite A430, respectively the number of absorbed anions of these ion exchanger is higher. The values of dynamic exchange capacity (DOE of ion exchanger Purolite A430 is higher than these values of AB-17 and equal to 1.48 ± 0.03 mmol / dm3 for chloride ion, 1.50 ± 0.03 mmol / dm3 for nitrate ion, 1.62 ± 0.03 mmol / dm3 for sulfate ion. The values of the POE and DOE of anion-exchange resins Purolite A430 and AV-17 and the characteristics of the individual sorption of chloride, nitrate, sulfate ions showed an advantage of the Purolite for the concentrationing of anions. It is found that times of anions sorption from triple-anion solutions by Purolite A430 are significantly different for different anions, and these times are close for anion-exchanger AV-17. It proves the possibility of quantitative separation and concentration by anion-exchanger Purolite A430.

  14. Current status of uranium enrichment by way of chemical exchange reactions

    International Nuclear Information System (INIS)

    El Basyouny, A.; Bechthold, H.C.; Knoechel, A.; Vollmer, H.J.

    1985-04-01

    For this report, conference proceedings, patents and other types of literature have been collected to present an account of the current status of uranium enrichment by way of chemical exchange reactions. The report further presents a new concept along with the relevant process strategy developed by the authors. The principal process of the new concept is a chemical exchange process with crown ethers, complexed or free, playing an important part in the reactions. The authors also describe their experiments carried out for establishing suitable chemical systems. (orig./PW) [de

  15. Isolation of transplutonium elements on ion exchangers from solutions of high salt concentration

    International Nuclear Information System (INIS)

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1985-01-01

    The behaviour of transplutonium elements (TPE) on cation and anion exchangers in aqueous alcoholic solutions of chlorides and nitrates of some alkali and alkaline earth metals depending on different factors: salt concentration, content of alcohol and of acid in the solution as well as the nature of a cation was studied. The data obtained were used to determine the optimal conditions of concentration of TPE on ion exchangers from solutions containing great quantities of salts. The advantages of the use of aqueous alcoholic solutions of nitric acid in the isolation of TPE are shown. (author)

  16. Removal of Ca(II) and Mg(II) from potassium chromate solution on Amberlite IRC 748 synthetic resin by ion exchange

    International Nuclear Information System (INIS)

    Yu Zhihui; Qi Tao; Qu Jingkui; Wang Lina; Chu Jinglong

    2009-01-01

    Experimental measurements have been made on the batch ion exchange of Ca(II) and Mg(II) from potassium chromate solution using cation exchanger of Amberlite IRC 748 as K + form. The ion exchange behavior of two alkaline-earth metals on the resin, depending on contact time, pH, temperature and resin dosage was studied. The adsorption isotherms were described by means of the Langmuir and Freundlich isotherms. For Ca(II) ion, the Langmuir model represented the adsorption process better than the Freundlich model. The maximum ion exchange capacity was found to be 47.21 mg g -1 for Ca(II) and 27.70 mg g -1 for Mg(II). The kinetic data were tested using Lagergren-first-order and pseudo-second-order kinetic models. Kinetic data correlated well with the pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step. Various thermodynamic parameters such as Gibbs free energy (ΔG o ), enthalpy (ΔH o ) and entropy (ΔS o ) were also calculated. These parameters showed that the ion exchange of Ca(II) and Mg(II) from potassium chromate solution was feasible, spontaneous and endothermic process in nature. The activation energy of ion-exchange (E a ) was determined as 12.34 kJ mol -1 for Ca(II) and 9.865 kJ mol -1 for Mg(II) according to the Arrhenius equation.

  17. eBgateway : a solution to reduce document exchange expenses

    Energy Technology Data Exchange (ETDEWEB)

    Demers, D. [ElectroBusiness, Calgary, AB (Canada)

    2004-07-01

    This paper provides a description of electroBusiness, a document exchange company based in Calgary. Details of the company's exchange methods in servicing multiple companies were presented. A mapping of internal systems and the different formats available for information sharing were outlined. An outdated supply exchange agreement with 10 partners was presented as the basis for a critique of earlier communications technologies and their ineffectiveness and costliness. An industry business solution, including proof-of-concept architecture and security. Advantages of the electroBusiness model included significant cost reductions and effective and up to date secure private community trading data. A list of e-Business utility exchanges was presented, including producers, technology companies as well as suppliers, contractors and distributors. Contact information was given at the end of the presentation. tabs, figs.

  18. The effect of total blood exchange with PHP solution on cardiac xenotransplantation.

    Science.gov (United States)

    Liu, H; Agishi, T; Suga, H; Hayasaka, Y; Teraoka, S; Ota, K

    1995-04-01

    Prevention of hyperacute rejection is a difficult and unsolved problem in xenotransplantation. Natural antibodies and complement activation have been known to play an important role in the xenotransplantation between discordant species pairs. In the present study, total blood exchange (TBE) was performed with pyridoxalated-hemoglobin-polyoxyethylene conjugate (PHP) solution (Ajinomoto Co., Inc., Kawasaki, Japan) before cardiac xenotransplantation in order to remove the immunoglobulins and prolong xenograft survival time. Guinea pigs and rats were used as the discordant species combination for donor and recipient. Two groups were established: Group 1, untreated control (n = 8) and Group 2, TBT with PHP solution (n = 8). The exchange blood transfusion was carried out at the rate of 15-20 ml/h utilizing PHP solution using a blood pump. After the blood exchange was processed, hematocrit (Ht) levels dropped to 4 or 5%, and a cardiac xenotransplantation was performed within 24 h. The levels of serum IgA, IgM, and IgG were decreased to less than 25, 25, and 10% of the base line, respectively, after blood exchange. A mean xenograft survival time in Group 2 was prolonged to 472 +/- 74 min and to 10.4 +/- 1.8 min in Group 1 (p < 0.01). A titer of the anti-guinea pig lymphocytotoxic antibody in rat serum was decreased to almost nil. The data from this study suggest that total blood exchange with PHP solution may be useful in preoperative removal of xenograft antibodies in xenotransplantation.

  19. Enrichment of 13C by chemical exchange between CO2 and amine carbamate in nonaqueous solvent

    International Nuclear Information System (INIS)

    Raica, Paula; Axente, D.

    2009-01-01

    Full text: Enrichment of 13 C by chemical exchange between CO 2 and amine carbamate in nonaqueous solvent has been mathematically modelled in two ways. The height equivalent to a theoretical plate and steady-state separation, based on the two models, have been obtained. If only the isotopic exchange between CO 2 gas and amine carbamate is considered, the model can estimate the process performance for pressures close to the atmospheric one and room temperature. For process analysis at pressures higher than atmospheric one and lower temperatures, a two-step model has been developed. Using the two models the effects of pressure increasing have been studied. At atmospheric pressure and 2M DNBA - methanol solution the isotope transfer rate is lower at 5 deg. C than at 25 deg. C. The isotope transfer is supported by pressure increasing according the increase of the CO 2 concentration in the amine solution. A lower temperature determines also an increase in the concentration of dissolved CO 2 and, for this reason, at 5 deg.C and higher pressures the isotope exchange reaction rate is higher than at 25 deg. C, HETP being lower with more than 100% at 5 deg. C than at 25 deg. C. (authors)

  20. Advantages of paramagnetic chemical exchange saturation transfer (CEST) complexes having slow to intermediate water exchange properties as responsive MRI agents.

    Science.gov (United States)

    Soesbe, Todd C; Wu, Yunkou; Dean Sherry, A

    2013-07-01

    Paramagnetic chemical exchange saturation transfer (PARACEST) complexes are exogenous contrast agents that have great potential to further extend the functional and molecular imaging capabilities of magnetic resonance. As a result of the presence of a central paramagnetic lanthanide ion (Ln(3+) ≠ La(3+) , Gd(3+) , Lu(3+) ) within the chelate, the resonance frequencies of exchangeable protons bound to the PARACEST agent are shifted far away from the bulk water frequency. This large chemical shift, combined with an extreme sensitivity to the chemical exchange rate, make PARACEST agents ideally suited for the reporting of significant biological metrics, such as temperature, pH and the presence of metabolites. In addition, the ability to turn PARACEST agents 'off' and 'on' using a frequency-selective saturation pulse gives them a distinct advantage over Gd(3+) -based contrast agents. A current challenge for PARACEST research is the translation of the promising in vitro results into in vivo systems. This short review article first describes the basic theory behind PARACEST contrast agents, their benefits over other contrast agents and their applications to MRI. It then describes some of the recent PARACEST research results: specifically, pH measurements using water molecule exchange rate modulation, T2 exchange contrast caused by water molecule exchange, the use of ultrashort TEs (TE < 10 µs) to overcome T2 exchange line broadening and the potential application of T2 exchange as a new contrast mechanism for MRI. Copyright © 2012 John Wiley & Sons, Ltd.

  1. A computer code simulating multistage chemical exchange column under wide range of operating conditions

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Okuno, Kenji

    1996-09-01

    A computer code has been developed to simulate a multistage CECE(Combined Electrolysis Chemical Exchange) column. The solution of basic equations can be found out by the Newton-Raphson method. The independent variables are the atom fractions of D and T in each stage for the case where H is dominant within the column. These variables are replaced by those of H and T under the condition that D is dominant. Some effective techniques have also been developed to get a set of solutions of the basic equations: a setting procedure of initial values of the independent variables; and a procedure for the convergence of the Newton-Raphson method. The computer code allows us to simulate the column behavior under a wide range of the operating conditions. Even for a severe case, where the dominant species changes along the column height, the code can give a set of solutions of the basic equations. (author)

  2. Cation exchange removal of Cd from aqueous solution by NiO

    International Nuclear Information System (INIS)

    Mahmood, T.; Saddique, M.T.; Naeem, A.; Mustafa, S.; Dilara, B.; Raza, Z.A.

    2011-01-01

    Graphical abstract: Sorption of Cd on NiO particles is described by modified Langmuir adsorption isotherms. - Abstract: Detailed adsorption experiments of Cd from aqueous solution on NiO were conducted under batch process with different concentrations of Cd, time and temperature of the suspension. The solution pH is found to play a decisive role in the metal ions precipitation, surface dissolution and adsorption of metal ions onto the NiO. Preliminary adsorption experiments show that the selectivity of NiO towards different divalent metal ions follows the trend Pb > Zn > Co > Cd, which is related to their first hydrolysis equilibrium constant. The exchange between the proton from the NiO surface and the metal from solution is responsible for the adsorption. The cation/exchange mechanism essentially remains the same for Pb, Zn, Co and Cd ions. The sorption of Cd on NiO particles is described by the modified Langmuir adsorption isotherms. The isosteric heat of adsorption (ΔH) indicates the endothermic nature of the cation exchange process. Spectroscopic analyses provide evidence that Cd is chemisorbed onto the surface of NiO.

  3. The time-dependence of exchange-induced relaxation during modulated radio frequency pulses.

    Science.gov (United States)

    Sorce, Dennis J; Michaeli, Shalom; Garwood, Michael

    2006-03-01

    The problem of the relaxation of identical spins 1/2 induced by chemical exchange between spins with different chemical shifts in the presence of time-dependent RF irradiation (in the first rotating frame) is considered for the fast exchange regime. The solution for the time evolution under the chemical exchange Hamiltonian in the tilted doubly rotating frame (TDRF) is presented. Detailed derivation is specified to the case of a two-site chemical exchange system with complete randomization between jumps of the exchanging spins. The derived theory can be applied to describe the modulation of the chemical exchange relaxation rate constants when using a train of adiabatic pulses, such as the hyperbolic secant pulse. Theory presented is valid for quantification of the exchange-induced time-dependent rotating frame longitudinal T1rho,ex and transverse T2rho,ex relaxations in the fast chemical exchange regime.

  4. Replica exchange with solute tempering: A method for sampling biological systems in explicit water

    Science.gov (United States)

    Liu, Pu; Kim, Byungchan; Friesner, Richard A.; Berne, B. J.

    2005-09-01

    An innovative replica exchange (parallel tempering) method called replica exchange with solute tempering (REST) for the efficient sampling of aqueous protein solutions is presented here. The method bypasses the poor scaling with system size of standard replica exchange and thus reduces the number of replicas (parallel processes) that must be used. This reduction is accomplished by deforming the Hamiltonian function for each replica in such a way that the acceptance probability for the exchange of replica configurations does not depend on the number of explicit water molecules in the system. For proof of concept, REST is compared with standard replica exchange for an alanine dipeptide molecule in water. The comparisons confirm that REST greatly reduces the number of CPUs required by regular replica exchange and increases the sampling efficiency. This method reduces the CPU time required for calculating thermodynamic averages and for the ab initio folding of proteins in explicit water. Author contributions: B.J.B. designed research; P.L. and B.K. performed research; P.L. and B.K. analyzed data; and P.L., B.K., R.A.F., and B.J.B. wrote the paper.Abbreviations: REST, replica exchange with solute tempering; REM, replica exchange method; MD, molecular dynamics.*P.L. and B.K. contributed equally to this work.

  5. Waste processing of chemical cleaning solutions

    International Nuclear Information System (INIS)

    Peters, G.A.

    1991-01-01

    This paper reports on chemical cleaning solutions containing high concentrations of organic chelating wastes that are difficult to reduce in volume using existing technology. Current methods for evaporating low-level radiative waste solutions often use high maintenance evaporators that can be costly and inefficient. The heat transfer surfaces of these evaporators are easily fouled, and their maintenance requires a significant labor investment. To address the volume reduction of spent, low-level radioactive, chelating-based chemical cleaning solutions, ECOSAFE Liquid Volume Reduction System (LVRS) has been developed. The LVRS is based on submerged combustion evaporator technology that was modified for treatment of low-level radiative liquid wastes. This system was developed in 1988 and was used to process 180,000 gallons of waste at Oconee Nuclear Station

  6. Cation exchange process for recovery of plutonium from laboratory solutions containing chloride

    International Nuclear Information System (INIS)

    Gray, L.W.

    1978-10-01

    A cation exchange technique was developed for the separation of plutonium from laboratory solutions containing either Pu(III) or Pu(III)--Pu(IV) mixtures in acidic solutions containing chloride ions. The procedure consists of adjusting the acid concentration to less than one molar and adjusting the valence of the plutonium ion to the (III) state, if necessary. The adjusted solution is fed to a cation exchange column and washed with distilled water to remove residual chlorides from the column. Plutonium is then eluted from the column with 5M nitric acid containing 0.34M sulfamic acid. This procedure was used to separate plutonium from 1.2M chloride solution on a production-scale column. Typical plutonium recovery was 99.97%, while greater than 96% of the original chloride was rejected

  7. Removal of plutonium from nitric acid-oxalic acid solutions using anion exchange method

    International Nuclear Information System (INIS)

    Kasar, U.M.; Pawar, S.M.; Joshi, A.R.

    1999-01-01

    An anion exchange method using Amberlyst A-26 (MP) resin was developed for removal of Pu from nitric acid-oxalic acid solutions without destroying oxalate. The method consists of sorption of Pu(IV) on Amberlyst A-26, a macroporous anion exchange resin, from nitric acid-oxalic acid medium in the presence of Al(NO 3 ) 3 . Pu(IV) breakthrough capacity of Amberlyst A-26 using synthetic feed solution was determined. (author)

  8. Kinetics of the exchange of oxygen between carbon dioxide and carbonate in aqueous solution

    International Nuclear Information System (INIS)

    Tu, C.K.; Silverman, D.N.

    1975-01-01

    A kinetic analysis of the exchange of oxygen between carbon dioxide and carbonate ion in alkaline, aqueous solutions is presented. The exchange was observed by placing 18 O-labeled carbonate, not enriched in 13 C, into solution with 13 C-enriched carbonate, not enriched in 18 O. The rate of depletion of 18 O from the 12 C-containing species and the rate of appearance of 18 O in the 13 C-containing species was measured by mass spectrometry. From these data, the second-order rate constant for the reaction between carbon dioxide and carbonate which results in the exchange of oxygen at 25 0 is 114 +- 11 M -1 sec -1 . It is emphasized that this exchange of oxygen between species of CO 2 in solution must be recognized in studies using 18 O labels to determine the fate of CO 2 in biochemical and physiological processes. (auth)

  9. The Need for Systematic Naming Software Tools for Exchange of Chemical Information

    Directory of Open Access Journals (Sweden)

    Andrey Yerin

    1999-09-01

    Full Text Available The availability of systematic names can enable the simple textual exchange of chemical structure information. The exchange of molecular structures in graphical format or connection tables has become well established in the field of cheminformatics and many structure drawing tools exist to enable this exchange. However, even with the availability of systematic naming rules, software tools to allow the generation of names from structures, and hopefully the reversal of these systematic names back to the original chemical structure, have been sorely lacking in capability and quality. Here we review the need for systematic naming as well as some of the tools and approaches being taken today in this area.

  10. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    International Nuclear Information System (INIS)

    Smith, F.; Hamm, Luther; Aleman, Sebastian; Michael, Johnston

    2008-01-01

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system

  11. Coupling between solute transport and chemical reactions models. Acoplamiento de modelos de transporte de solutos y de modelos de reacciones quimicas

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Ajora, C. (Instituto de Ciencias de la Tierra, CSIC, Barcerlona (Spain))

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs.

  12. Uranium extraction from sulfuric acid solution using anion exchange resin

    International Nuclear Information System (INIS)

    Sheta, M. E.; Abdel Aal, M. M.; Kandil, A. T.

    2012-12-01

    Uranium is currently recovered from sulfuric acid leach liquor using anion exchange resin as Amberlite IRA 402 (CT). This technology is based on fact that, uranium exists as anionic complexes. This takes place by controlling the pH of the solution, agitation time, temperature and resin to solution ratio (R/S). In this work, batch stirrer tank used for uranium extraction from sulfate medium and after extraction, elution process was done using 1M NaCl solution. After extraction and elution process, the resin was separated from the system and uranium was determined in the solution. (Author)

  13. Characterization of Chemical Exchange Using Relaxation Dispersion of Hyperpolarized Nuclear Spins.

    Science.gov (United States)

    Liu, Mengxiao; Kim, Yaewon; Hilty, Christian

    2017-09-05

    Chemical exchange phenomena are ubiquitous in macromolecules, which undergo conformational change or ligand complexation. NMR relaxation dispersion (RD) spectroscopy based on a Carr-Purcell-Meiboom-Gill pulse sequence is widely applied to identify the exchange and measure the lifetime of intermediate states on the millisecond time scale. Advances in hyperpolarization methods improve the applicability of NMR spectroscopy when rapid acquisitions or low concentrations are required, through an increase in signal strength by several orders of magnitude. Here, we demonstrate the measurement of chemical exchange from a single aliquot of a ligand hyperpolarized by dissolution dynamic nuclear polarization (D-DNP). Transverse relaxation rates are measured simultaneously at different pulsing delays by dual-channel 19 F NMR spectroscopy. This two-point measurement is shown to allow the determination of the exchange term in the relaxation rate expression. For the ligand 4-(trifluoromethyl)benzene-1-carboximidamide binding to the protein trypsin, the exchange term is found to be equal within error limits in neutral and acidic environments from D-DNP NMR spectroscopy, corresponding to a pre-equilibrium of trypsin deprotonation. This finding illustrates the capability for determination of binding mechanisms using D-DNP RD. Taking advantage of hyperpolarization, the ligand concentration in the exchange measurements can reach on the order of tens of μM and protein concentration can be below 1 μM, i.e., conditions typically accessible in drug discovery.

  14. Enrichment of {sup 15}N and {sup 10}B isotopes by chemical exchange process

    Energy Technology Data Exchange (ETDEWEB)

    D` Souza, A B; Sonwalkar, A S; Subrahmanyam, B V; Valladares, B A [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Many processes are available for separation of stable isotopes like distillation, chemical exchange, thermal diffusion, gaseous diffusion, centrifuge etc. Chemical exchange process is eminently suitable for separation of isotopes of light elements. Work done on separation and enrichment of two of the stable isotopes viz. {sup 15}N and {sup 10}B in Chemical Engineering Division is presented. {sup 15}N is widely used as a tracer in agricultural research and {sup 10}B is used in nuclear industry as control rod material, soluble reactor poison, neutron detector etc. The work on {sup 15}N isotope resulted in a pilot plant, which was the only source of this material in the country for many years and later it was translated into a production plant as M/s. RCF Ltd. The work done on the ion-exchange process for enrichment of {sup 10}B isotope which is basically a chemical exchange process, is now being updated into a pilot plant to produce enriched {sup 10}B to be used as soluble reactor poison. (author). 5 refs., 2 figs., 3 tabs.

  15. Kinetics of the exchange between fibrous manganese dioxide and Mn2+ ions in solution

    International Nuclear Information System (INIS)

    Rophael, M.W.

    1983-01-01

    The rate of exchange between fibrous manganese dioxide epsilon-MnO 2 and a 0.1 M MnSO 4 solution at 25 0 C and pH 2.0 was higher than the corresponding rate at pH 5.4. When the solid was washed with dilute acid (pH 2.0) before the exchange at pH 2.0, the results of the exchange at the two pH values were similar. When epsilon-MnO 2 was partially reduced with N 2 H 4 .H 2 O solution before the exchange, the rate of exchange was appreciably higher than that obtained for the unreduced solid. The exchange, at nearly pH 2.0, between epsilon-MnO 2 and various concentrations of Mn(NO 3 ) 2 solutions was increased to a small extent as the concentration increased tenfold. The exchange was followed by using 56 Mn-labelled MnO 2 and by measuring the β activity acquired by the Mn 2+ ion solution. The activity induced in the solid MnO 2 was produced by irradiation with thermal neutrons from a 241 Am- 9 Be laboratory neutron source. The neutron activation of manganese oxides has the following advantages: (i) a relatively high level of activity can be induced in the 55 Mn of the irradiated oxide because of its 100% abundance and its high neutron activation cross section, whereas the oxygen is unaffected; (ii) the half-life of the product 56 Mn is 9274 s which is convenient for kinetic studies; (iii) the activity produced almost decays in 24 h. (Auth.)

  16. New sorbents and ion exchangers for nuclear waste solution remediation

    International Nuclear Information System (INIS)

    Clearfield, A.; Peng, G.Z.; Cahill, R.A.; Bellinghausen, P.; Aly, H.I.; Scott, K.; Wang, J.D.

    1993-01-01

    There is now a concerted effort underway to clean up the accumulated nuclear wastes as the major sites around the country. Because of the complexity of the mixtures in the holding tanks highly specific exchangers are required to fulfill a multitude of desired tasks. These include removal of Cs + , Sr 2+ , Tc, Actinides and possible recovery of rare and precious metals. No one exchanger or sequestrant can accomplish these tasks and a variety of exchangers in a multistep process will be required. The behavior of a number of inorganic ion exchangers in a multistep process will be required. The behavior of a number of inorganic ion exchangers and new organo-inorganic exchangers towards Cs + , Sr 2+ and rare-earth ions in acid and basic media will be described. Preliminary data on the effect of high levels of sodium nitrate on the uptake of these ions will also be presented, as well as the changes observed in selectivity in simulated waste solutions. A possible separation scheme based on these data will be described

  17. Quantitation of chemical exchange rates using pulsed-field-gradient diffusion measurements

    International Nuclear Information System (INIS)

    Andrec, Michael; Prestegard, James H.

    1997-01-01

    A new approach to the quantitation of chemical exchange rates is presented, and its utility is illustrated with application to the exchange of protein amide protons with bulk water. The approach consists of a selective-inversion exchange HMQC experiment in which a short spin echo diffusion filter has been inserted into the exchange period. In this way, the kinetics of exchange are encoded directly in an apparent diffusion coefficient which is a function of the position of the diffusion filter in the pulse sequence. A detailed theoretical analysis of this experiment indicates that, in addition to the measurement of simple exchange rates, the experiment is capable of measuring the effect of mediated exchange, e.g. the transfer of magnetization from bulk water to an amide site mediated by an internal bound water molecule or a labile protein side-chain proton in fast exchange with bulk water. Experimental results for rapid water/amide exchange in acyl carrier protein are shown to be quantitatively consistent with the exchange rates measured using a selective-inversion exchange experiment

  18. Investigation of uranium sorption from carbonate solutions by different ion exchange materials

    International Nuclear Information System (INIS)

    Nekrasova, N.A.; Kudryavtseva, S.P.; Milyutin, V.V.; Chuveleva, Eh.A.; Firsova, L.A.; Gelis, V.M.

    2008-01-01

    One studied the uranium sorption from the reference carbonate solutions based on the ion-exchange resins varying in the rank. The PFA-300, the A-560, the AB-17x8 highly basic anionites and the ampholytes (S-930, S-922, S-957, ANKB-35) were shown to manifest the best sorption characteristics as to U. One determined the dependences of the static exchange capacity of the PFA-300, the A-560 and the S-922 resins as to the uranium on the carbonate solution pH, as well as the absorbed uranium desorption conditions [ru

  19. The influence of the "cage effect" on the mechanism of reversible bimolecular multistage chemical reactions in solutions.

    Science.gov (United States)

    Doktorov, Alexander B

    2015-08-21

    Manifestations of the "cage effect" at the encounters of reactants are theoretically treated by the example of multistage reactions in liquid solutions including bimolecular exchange reactions as elementary stages. It is shown that consistent consideration of quasi-stationary kinetics of multistage reactions (possible only in the framework of the encounter theory) for reactions proceeding near reactants contact can be made on the basis of the concepts of a "cage complex." Though mathematically such a consideration is more complicated, it is more clear from the standpoint of chemical notions. It is established that the presence of the "cage effect" leads to some important effects not inherent in reactions in gases or those in solutions proceeding in the kinetic regime, such as the appearance of new transition channels of reactant transformation that cannot be caused by elementary event of chemical conversion for the given mechanism of reaction. This results in that, for example, rate constant values of multistage reaction defined by standard kinetic equations of formal chemical kinetics from experimentally measured kinetics can differ essentially from real values of these constants.

  20. Determination of chemical solute transport parameters effecting radiostrontium interbed sediments

    International Nuclear Information System (INIS)

    Hemming, C.; Bunde, R.L.; Rosentreter, J.J.

    1993-01-01

    The extent to which radionuclides migrate in an aquifer system is a function of various physical, chemical, and biological processes. A measure of this migration rate is of primary concern when locating suitable storage sites for such species. Parameters including water-rock interactions, infiltration rates, chemical phase modification, and biochemical reactions all affect solute transport. While these different types of chemical reactions can influence solute transport in subsurface waters, distribution coefficients (Kd) can be send to effectively summarize the net chemical factors which dictate transport efficiency. This coefficient describes the partitioning of the solute between the solution and solid phase. Methodology used in determining and interpreting the distribution coefficient for radiostrontium in well characterized sediments will be presented

  1. Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF).

    Science.gov (United States)

    Cohen, Ouri; Huang, Shuning; McMahon, Michael T; Rosen, Matthew S; Farrar, Christian T

    2018-05-13

    To develop a fast magnetic resonance fingerprinting (MRF) method for quantitative chemical exchange saturation transfer (CEST) imaging. We implemented a CEST-MRF method to quantify the chemical exchange rate and volume fraction of the N α -amine protons of L-arginine (L-Arg) phantoms and the amide and semi-solid exchangeable protons of in vivo rat brain tissue. L-Arg phantoms were made with different concentrations (25-100 mM) and pH (pH 4-6). The MRF acquisition schedule varied the saturation power randomly for 30 iterations (phantom: 0-6 μT; in vivo: 0-4 μT) with a total acquisition time of ≤2 min. The signal trajectories were pattern-matched to a large dictionary of signal trajectories simulated using the Bloch-McConnell equations for different combinations of exchange rate, exchangeable proton volume fraction, and water T 1 and T 2 relaxation times. The chemical exchange rates of the N α -amine protons of L-Arg were significantly (P exchange using saturation power method. Similarly, the L-Arg concentrations determined using MRF were significantly (P exchange rate was well fit (R 2  = 0.9186) by a base catalyzed exchange model. The amide proton exchange rate measured in rat brain cortex (34.8 ± 11.7 Hz) was in good agreement with that measured previously with the water exchange spectroscopy method (28.6 ± 7.4 Hz). The semi-solid proton volume fraction was elevated in white (12.2 ± 1.7%) compared to gray (8.1 ± 1.1%) matter brain regions in agreement with previous magnetization transfer studies. CEST-MRF provides a method for fast, quantitative CEST imaging. © 2018 International Society for Magnetic Resonance in Medicine.

  2. DNA strand exchange catalyzed by molecular crowding in PEG solutions

    KAUST Repository

    Feng, Bobo; Frykholm, Karolin; Nordé n, Bengt; Westerlund, Fredrik

    2010-01-01

    DNA strand exchange is catalyzed by molecular crowding and hydrophobic interactions in concentrated aqueous solutions of polyethylene glycol, a discovery of relevance for understanding the function of recombination enzymes and with potential applications to DNA nanotechnology. © 2010 The Royal Society of Chemistry.

  3. Continuous desalting of refolded protein solution improves capturing in ion exchange chromatography: A seamless process.

    Science.gov (United States)

    Walch, Nicole; Jungbauer, Alois

    2017-06-01

    Truly continuous biomanufacturing processes enable an uninterrupted feed stream throughout the whole production without the need for holding tanks. We have utilized microporous anion and cation exchangers into which only salts, but not proteins, can penetrate into the pores for desalting of protein solutions, while diafiltration or dilution is usually employed for feed adjustments. Anion exchange and cation exchange chromatography columns were connected in series to remove both anions and cations. To increase operation performance, a continuous process was developed comprised of four columns. Continuous mode was achieved by staggered cycle operation, where one set of columns, consisting of one anion exchange and one cation exchange column, was loaded during the regeneration of the second set. Refolding, desalting and subsequent ion exchange capturing with a scFv as the model protein was demonstrated. The refolding solution was successfully desalted resulting in a consistent conductivity below 0.5 mS/cm from initial values of 10 to 11 mS/cm. With continuous operation process time could be reduced by 39% while productivity was increased to 163% compared to batch operation. Desalting of the protein solution resulted in up to 7-fold higher binding capacities in the subsequent ion exchange capture step with conventional protein binding resins. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrical Conductivity and Chemical Composition of Soil Solution: Comparison of Solution Samplers in Tropical Soils

    Directory of Open Access Journals (Sweden)

    Davi Lopes do Carmo

    2016-01-01

    Full Text Available ABSTRACT Soil solution samplers may have the same working principle, but they differ in relation to chemical and physical characteristics, cost and handling, and these aspects exert influence on the chemical composition of the soil solution obtained. This study was carried out to evaluate, over time, the chemical composition of solutions extracted by Suolo Acqua, with the hydrophilic membrane (HM as a standard, using soils with contrasting characteristics, and to determine the relationship between electrical conductivity (EC and concentration of ions and pH of soil solution samples. This study was carried out under laboratory conditions, using three soils samples with different clay and organic matter (OM contents. Soil solution contents of F−, Cl−, NO−3, Br−, SO42−, Na+, NH4+, K+, Mg2+, Ca2+, were analyzed, as well as inorganic, organic, and total C contents, pH, and EC, in four successive sampling times. Soil solution chemical composition extracted by the Suolo Acqua sampler is similar to that collected by the HM, but the Suolo Acqua extracted more Na+ and soluble organic C than the HM solution. Solution EC, cation and anion concentrations, and soluble C levels are higher in the soil with greater clay and OM contents (Latossolo and Cambissolo in this case. Soil solution composition varied over time, with considerable changes in pH, EC, and nutrient concentrations, especially associated with soil OM. Thus, single and isolated sampling of the soil solution must be avoided, otherwise composition of the soil solution may not be correctly evaluated. Soil solution EC was regulated by pH, as well as the sum of cation and anion concentrations, and the C contents determined in the soil liquid phase.

  5. Chemical exchange between UF6 and UF6- ion in anhydrous hydrofluoric acid

    International Nuclear Information System (INIS)

    Chatelet, J.; Luce, M.; Plurien, P.; Rigny, P.

    1975-01-01

    The chemical exchange between UF 6 and the UF 6 - ion is of potential interest for the separation of U isotopes. In this paper, results concerning the value of the separation factor and the kinetics of the homogeneous exchange are given [fr

  6. Isotopic exchange rate of sodium ions between hydrous metal oxides and aqueous solutions

    International Nuclear Information System (INIS)

    Inoue, Yasushi; Yamazaki, Hiromichi

    1991-01-01

    To elucidate the kinetics of ion-exchange reaction on hydrous metal oxide, the isotopic exchange rates of sodium ions between hydrous metal oxides such as hydrous tin (IV), niobium (V), zirconium (IV) and titanium (IV) oxides, and aqueous solutions were measured radiochemically and compared with each other. The rate of reaction cannot be understood by an unified view since the rate controlling step differs with the kind of exchangers. The rate constants relevant to each exchanger such as diffusion constants and their activation energies were also determined. (author)

  7. Chemical derivatization to enhance chemical/oxidative stability of resorcinol-formaldehyde resin

    Energy Technology Data Exchange (ETDEWEB)

    Hubler, T.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The goal of this task is to develop modified resorcinol-formaldehyde (R-F) resin to improve the chemical/oxidative stability of the resin. R-F resin is a regenerable organic ion-exchange resin that is selective for cesium ion in highly alkaline, high ionic-strength solutions. R-F resin tends to undergo chemical degradation, reducing its ability to remove cesium ion from waste solutions; the mechanistic details of these decomposition reactions are currently unknown. The approach used for this task is chemical modification of the resin structure, particularly the resorcinol ring unit of the polymer resin. This approach is based on prior characterization studies conducted at Pacific Northwest National Laboratory (PNNL) that indicated the facile chemical degradation of the resin is oxidation of the resorcinol ring to the para-quinone structure, with subsequent loss of ion-exchange sites for cesium ion. R-F resin represents an important alternative to current radiocesium remediation technology for tank wastes at both the Hanford and Savannah River sites, particularly if regenerable resins are needed.

  8. The influence of the “cage effect” on the mechanism of reversible bimolecular multistage chemical reactions in solutions

    International Nuclear Information System (INIS)

    Doktorov, Alexander B.

    2015-01-01

    Manifestations of the “cage effect” at the encounters of reactants are theoretically treated by the example of multistage reactions in liquid solutions including bimolecular exchange reactions as elementary stages. It is shown that consistent consideration of quasi-stationary kinetics of multistage reactions (possible only in the framework of the encounter theory) for reactions proceeding near reactants contact can be made on the basis of the concepts of a “cage complex.” Though mathematically such a consideration is more complicated, it is more clear from the standpoint of chemical notions. It is established that the presence of the “cage effect” leads to some important effects not inherent in reactions in gases or those in solutions proceeding in the kinetic regime, such as the appearance of new transition channels of reactant transformation that cannot be caused by elementary event of chemical conversion for the given mechanism of reaction. This results in that, for example, rate constant values of multistage reaction defined by standard kinetic equations of formal chemical kinetics from experimentally measured kinetics can differ essentially from real values of these constants

  9. The influence of the “cage effect” on the mechanism of reversible bimolecular multistage chemical reactions in solutions

    Energy Technology Data Exchange (ETDEWEB)

    Doktorov, Alexander B., E-mail: doktorov@kinetics.nsc.ru [Voevodsky Institute of Chemical Kinetics & Combustion, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia and Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2015-08-21

    Manifestations of the “cage effect” at the encounters of reactants are theoretically treated by the example of multistage reactions in liquid solutions including bimolecular exchange reactions as elementary stages. It is shown that consistent consideration of quasi-stationary kinetics of multistage reactions (possible only in the framework of the encounter theory) for reactions proceeding near reactants contact can be made on the basis of the concepts of a “cage complex.” Though mathematically such a consideration is more complicated, it is more clear from the standpoint of chemical notions. It is established that the presence of the “cage effect” leads to some important effects not inherent in reactions in gases or those in solutions proceeding in the kinetic regime, such as the appearance of new transition channels of reactant transformation that cannot be caused by elementary event of chemical conversion for the given mechanism of reaction. This results in that, for example, rate constant values of multistage reaction defined by standard kinetic equations of formal chemical kinetics from experimentally measured kinetics can differ essentially from real values of these constants.

  10. Sign of the electron exchange coupling in random radical encounter pairs in solution

    International Nuclear Information System (INIS)

    Thurnauer, M.C.; Chiu, T.M.; Trifunac, A.D.

    1985-01-01

    An important parameter in the study of reacting radical systems is the electron exchange interaction, J. The properties of interest are the sign and magnitude of J, and its functional dependence on distance between radicals. One source of information about J is from understanding the Chemically Induced Dynamic Electron Polarization (CIDEP) which is observed in the EPR spectra of reactive radical systems. For radicals reacting in solution to form new covalent bonds, it has generally been found that J O. It is suggested that F-pairs react at a separation greater than that at which spin correlated (geminate) pairs of the same radicals are formed, so that the intervening solvent molecules become involved in the exchange interaction giving rise to J>O via some sort of superexchange process. This is an interesting proposition since superexchange via solvent molecules may play a role in rates of long-distance electron transfer reactions and in the electron transfer reactions of photosynthesis. However, the model suggested runs contrary to all F-air radicals are produced. In order to clarify this important point, the authors present here a definitive study in which we examine several systems of radgenerated independently (exclusive F-pairs) by pulsed laser photolysis and pulsed radiolicals generatedysis in aqueous, alcoholic and hydrocarbon solvents

  11. Accurate Quantitation of Water-amide Proton Exchange Rates Using the Phase-Modulated CLEAN Chemical EXchange (CLEANEX-PM) Approach with a Fast-HSQC (FHSQC) Detection Scheme

    International Nuclear Information System (INIS)

    Hwang, Tsang-Lin; Zijl, Peter C.M. van; Mori, Susumu

    1998-01-01

    Measurement of exchange rates between water and NH protons by magnetization transfer methods is often complicated by artifacts, such as intramolecular NOEs, and/or TOCSY transfer from Cα protons coincident with the water frequency, or exchange-relayed NOEs from fast exchanging hydroxyl or amine protons. By applying the Phase-Modulated CLEAN chemical EXchange (CLEANEX-PM) spin-locking sequence, 135 o (x) 120 o (-x) 110 o (x) 110 o (-x) 120 o (x) 135 o (-x) during the mixing period, these artifacts can be eliminated, revealing an unambiguous water-NH exchange spectrum. In this paper, the CLEANEX-PM mixing scheme is combined with Fast-HSQC (FHSQC) detection and used to obtain accurate chemical exchange rates from the initial slope analysis for a sample of 15N labeled staphylococcal nuclease. The results are compared to rates obtained using Water EXchange filter (WEX) II-FHSQC, and spin-echo-filtered WEX II-FHSQC measurements, and clearly identify the spurious NOE contributions in the exchange system

  12. Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy.

    Science.gov (United States)

    Fayer, M D

    2009-01-01

    A wide variety of molecular systems undergo fast structural changes under thermal equilibrium conditions. Such transformations are involved in a vast array of chemical problems. Experimentally measuring equilibrium dynamics is a challenging problem that is at the forefront of chemical research. This review describes ultrafast 2D IR vibrational echo chemical exchange experiments and applies them to several types of molecular systems. The formation and dissociation of organic solute-solvent complexes are directly observed. The dissociation times of 13 complexes, ranging from 4 ps to 140 ps, are shown to obey a relationship that depends on the complex's formation enthalpy. The rate of rotational gauche-trans isomerization around a carbon-carbon single bond is determined for a substituted ethane at room temperature in a low viscosity solvent. The results are used to obtain an approximate isomerization rate for ethane. Finally, the time dependence of a well-defined single structural transformation of a protein is measured.

  13. Study of iodine-iodate isotopic exchange reaction in neutral aqueous solutions by radiotracer technique

    International Nuclear Information System (INIS)

    Tripathi, R.; Ram, K.D.

    1993-01-01

    The isotopic exchange of iodine atoms in neutral aqueous solutions of iodate ions and iodine (in KI) is found to obey the rate law R = k [IO 3 - ] 0.4 [I 2 ] 1.2 at 175 o C. The addition of neutral ionic salts, e.g. KCl and KNO 3 , in the reaction mixture showed a slight catalytic effect on the exchange rate. Further, the kinetic salt effect indicated the involvement of at least one neutral species on the rate-determining step. The activation energy in neutral aqueous solutions of iodate ions and iodine is found to be 86 ± 3 kJ mol -1 , which decreases in the presence of KCl (79 ± 3 kJ mol -1 and KNO 3 (82 + 3 kJ mol -1 ). The activation parameters, viz. free energy of activation, enthalpy of activation and entropy of activation, were also calculated. Based on these results, an association-dissociation type of reaction mechanism is proposed for this exchange reaction in neutral aqueous medium, similar to that proposed earlier for iodide-iodate isotopic exchange reaction in neutral aqueous solutions, nitrate eutectic melts and iodide-iodate melts. (author)

  14. Methylamine-hydrogen exchange Part III. Physicochemical properties of amide-amine solutions

    International Nuclear Information System (INIS)

    Srinivasa, K.; Dave, S.M.

    1983-01-01

    Different physicochemical properties of potassium methylamide/methylamine solutions have been compiled and reviewed. These properties will be quite useful in design calculations for plants based on amine-hydrogen exchange for the production of heavy water. (author)

  15. On Neglecting Chemical Exchange Effects When Correcting in Vivo 31P MRS Data for Partial Saturation

    Science.gov (United States)

    Ouwerkerk, Ronald; Bottomley, Paul A.

    2001-02-01

    Signal acquisition in most MRS experiments requires a correction for partial saturation that is commonly based on a single exponential model for T1 that ignores effects of chemical exchange. We evaluated the errors in 31P MRS measurements introduced by this approximation in two-, three-, and four-site chemical exchange models under a range of flip-angles and pulse sequence repetition times (TR) that provide near-optimum signal-to-noise ratio (SNR). In two-site exchange, such as the creatine-kinase reaction involving phosphocreatine (PCr) and γ-ATP in human skeletal and cardiac muscle, errors in saturation factors were determined for the progressive saturation method and the dual-angle method of measuring T1. The analysis shows that these errors are negligible for the progressive saturation method if the observed T1 is derived from a three-parameter fit of the data. When T1 is measured with the dual-angle method, errors in saturation factors are less than 5% for all conceivable values of the chemical exchange rate and flip-angles that deliver useful SNR per unit time over the range T1/5 ≤ TR ≤ 2T1. Errors are also less than 5% for three- and four-site exchange when TR ≥ T1*/2, the so-called "intrinsic" T1's of the metabolites. The effect of changing metabolite concentrations and chemical exchange rates on observed T1's and saturation corrections was also examined with a three-site chemical exchange model involving ATP, PCr, and inorganic phosphate in skeletal muscle undergoing up to 95% PCr depletion. Although the observed T1's were dependent on metabolite concentrations, errors in saturation corrections for TR = 2 s could be kept within 5% for all exchanging metabolites using a simple interpolation of two dual-angle T1 measurements performed at the start and end of the experiment. Thus, the single-exponential model appears to be reasonably accurate for correcting 31P MRS data for partial saturation in the presence of chemical exchange. Even in systems where

  16. Chemical exchange in biomacromolecules: Past, present, and future

    Science.gov (United States)

    Palmer, Arthur G.

    2014-01-01

    The perspective reviews quantitative investigations of chemical exchange phenomena in proteins and other biological macromolecules using NMR spectroscopy, particularly relaxation dispersion methods. The emphasis is on techniques and applications that quantify the populations, interconversion kinetics, and structural features of sparsely populated conformational states in equilibrium with a highly populated ground state. Applications to folding, mol ecular recognition, catalysis, and allostery by proteins and nucleic acids are highlighted. PMID:24656076

  17. One- and two-dimensional chemical exchange nuclear magnetic resonance studies of the creatine kinase catalyzed reaction

    International Nuclear Information System (INIS)

    Gober, J.R.

    1988-01-01

    The equilibrium chemical exchange dynamics of the creatine kinase enzyme system were studied by one- and two-dimensional 31 P NMR techniques. Pseudo-first-order reaction rate constants were measured by the saturation transfer method under an array of experimental conditions of pH and temperature. Quantitative one-dimensional spectra were collected under the same conditions in order to calculate the forward and reverse reaction rates, the K eq , the hydrogen ion stoichiometry, and the standard thermodynamic functions. The pure absorption mode in four quadrant two-dimensional chemical exchange experiment was employed so that the complete kinetic matrix showing all of the chemical exchange process could be realized

  18. Chemical deposition methods using supercritical fluid solutions

    Science.gov (United States)

    Sievers, Robert E.; Hansen, Brian N.

    1990-01-01

    A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.

  19. Chemical Exchange Saturation Transfer (CEST): what is in a name and what isn’t?

    Science.gov (United States)

    van Zijl, Peter C.M.; Yadav, Nirbhay N.

    2011-01-01

    Chemical exchange saturation transfer (CEST) imaging is a relatively new MRI contrast approach in which exogenous or endogenous compounds containing either exchangeable protons or exchangeable molecules are selectively saturated and, after transfer of this saturation, detected indirectly through the water signal with enhanced sensitivity. The focus of this review is on basic MR principles underlying CEST and similarities to and differences with conventional magnetization transfer contrast (MTC). In CEST MRI, transfer of magnetization is studied in mobile compounds instead of semisolids. Similar to MTC, CEST has contributions of both chemical exchange and dipolar cross-relaxation, but the latter can often be neglected if exchange is fast. Contrary to MTC, CEST imaging requires sufficiently slow exchange on the MR time scale to allow selective irradiation of the protons of interest. As a consequence, magnetic labeling is not limited to radio-frequency saturation but can be expanded with slower frequency-selective approaches such as inversion, gradient dephasing and frequency labeling. The basic theory, design criteria, and experimental issues for exchange transfer imaging are discussed. A new classification for CEST agents based on exchange type is proposed. The potential of this young field is discussed, especially with respect to in vivo application and translation to humans. PMID:21337419

  20. Quantitative chemical exchange saturation transfer with hyperpolarized nuclei (qHyper-CEST): sensing xenon-host exchange dynamics and binding affinities by NMR.

    Science.gov (United States)

    Kunth, M; Witte, C; Schröder, L

    2014-11-21

    The reversible binding of xenon to host molecules has found numerous applications in nuclear magnetic resonance studies. Quantitative characterization of the Xe exchange dynamics is important to understand and optimize the physico-chemical behavior of such Xe hosts, but is often challenging to achieve at low host concentrations. We have investigated a sensitive quantification technique based on chemical exchange saturation transfer with hyperpolarized nuclei, qHyper-CEST. Using simulated signals we demonstrated that qHyper-CEST yielded accurate and precise results and was robust in the presence of large amounts of noise (10%). This is of particular importance for samples with completely unknown exchange rates. Using these findings we experimentally determined the following exchange parameters for the Xe host cryptophane-A monoacid in dimethyl sulfoxide in one type of experiment: the ratio of bound and free Xe, the Xe exchange rate, the resonance frequencies of free and bound Xe, the Xe host occupancy, and the Xe binding constant. Taken together, qHyper-CEST facilitates sensitive quantification of the Xe exchange dynamics and binding to hydrophobic cavities and has the potential to analyze many different host systems or binding sites. This makes qHyper-CEST an indispensable tool for the efficient design of highly specific biosensors.

  1. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  2. Methods of uranium isotpic separation by chemical exchange chromatography

    International Nuclear Information System (INIS)

    Pena V, L.A.; Valle M, L.

    1985-01-01

    Chemical exchange chromatography as applied to isotope separation has undergone a constant development during the last few years. The results so far indicate that this method could eventually become commercially useful. This work presents a critical review of the experimental methods presently under study by principal research groups, and which have not get been compared. (Author)

  3. Modelling the transport of carbonic acid anions through anion-exchange membranes

    International Nuclear Information System (INIS)

    Nikonenko, V.; Lebedev, K.; Manzanares, J.A.; Pourcelly, G.

    2003-01-01

    Electrodiffusion of carbonate and bicarbonate anions through anion-exchange membranes (AEM) is described on the basis of the Nernst-Planck equations taking into account coupled hydrolysis reactions in the external diffusion boundary layers (DBLs) and internal pore solution. The model supposes local electroneutrality as well as chemical and thermodynamic equilibrium. The transport is considered in three layers being an anion exchange membrane and two adjoining diffusion layers. A mechanism of competitive transport of HCO 3 - and CO 3 2- anions through the membrane which takes into account Donnan exclusion of H + ions is proposed. It is predicted that the pH of the depleting solution decreases and that of the concentrating solution increases during electrodialysis (ED). Eventual deviations from local electroneutrality and local chemical equilibrium are discussed

  4. Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI.

    Science.gov (United States)

    Haris, Mohammad; Nanga, Ravi Prakash Reddy; Singh, Anup; Cai, Kejia; Kogan, Feliks; Hariharan, Hari; Reddy, Ravinder

    2012-11-01

    Creatine (Cr), phosphocreatine (PCr) and adenosine-5-triphosphate (ATP) are major metabolites of the enzyme creatine kinase (CK). The exchange rate of amine protons of CK metabolites at physiological conditions has been limited. In the current study, the exchange rate and logarithmic dissociation constant (pKa) of amine protons of CK metabolites were calculated. Further, the chemical exchange saturation transfer effect (CEST) of amine protons of CK metabolites with bulk water was explored. At physiological temperature and pH, the exchange rate of amine protons in Cr was found to be 7-8 times higher than PCr and ATP. A higher exchange rate in Cr was associated with lower pKa value, suggesting faster dissociation of its amine protons compared to PCr and ATP. CEST MR imaging of these metabolites in vitro in phantoms displayed predominant CEST contrast from Cr and negligible contribution from PCr and ATP with the saturation pulse parameters used in the current study. These results provide a new method to perform high-resolution proton imaging of Cr without contamination from PCr. Potential applications of these finding are discussed. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Americium Separations from High-Salt Solutions Using Anion Exchange

    International Nuclear Information System (INIS)

    Barr, Mary E.; Jarvinen, Gordon D.; Stark, Peter C.; Chamberlin, Rebecca M.; Bartsch, Richard A.; Zhang, Z.Y.; Zhao, W.

    2001-01-01

    The aging of the US nuclear stockpile presents a number of challenges, including the increasing radioactivity of plutonium residues due to the ingrowth of 241 Am from the β-decay of 241 Pu. We investigated parameters that affect the sorption of Am onto anion-exchange resins from concentrated effluents derived from nitric acid processing of plutonium residues. These postevaporator wastes are nearly saturated solutions of acidic nitrate salts, and americium removal is complicated by physical factors, such as solution viscosity and particulates, as well as by the presence of large quantities of competing metals and acid. Single- and double-contact batch distribution coefficients for americium and neodymium from simple and complex surrogate solutions are presented. Varied parameters include the nitrate salt concentration and composition and the nitric acid concentration. We find that under these extremely concentrated conditions, Am(III) removal efficiencies can surpass 50% per contact. Distribution coefficients for both neodymium and americium are insensitive to solution acidity and appear to be driven primarily by low water activities of the solutions

  6. Nitrate Anion Exchange in Pu-238 Aqueous Scrap Recovery Operations

    International Nuclear Information System (INIS)

    Pansoy-Hjelvik, M.E.; Silver, G.L.; Reimus, M.A.H.; Ramsey, K.B.

    1999-01-01

    Strong base, nitrate anion exchange (IX) is crucial to the purification of 238 Pu solution feedstocks with gross levels of impurities. This paper discusses the work involved in bench scale experiments to optimize the nitrate anion exchange process. In particular, results are presented of experiments conducted to (a) demonstrate that high levels of impurities can be separated from 238 Pu solutions via nitrate anion exchange and, (b) work out chemical pretreatment methodology to adjust and maintain 238 Pu in the IV oxidation state to optimize the Pu(IV)-hexanitrato anionic complex sorption to Reillex-HPQ resin. Additional experiments performed to determine the best chemical treatment methodology to enhance recovery of sorbed Pu from the resin, and VIS-NIR absorption studies to determine the steady state equilibrium of Pu(IV), Pu(III), and Pu(VI) in nitric acid are discussed

  7. Carbon isotope exchange between gaseous CO2 and thin solution films: Artificial cave experiments and a complete diffusion-reaction model

    Science.gov (United States)

    Hansen, Maximilian; Scholz, Denis; Froeschmann, Marie-Louise; Schöne, Bernd R.; Spötl, Christoph

    2017-08-01

    Speleothem stable carbon isotope (δ13C) records provide important paleoclimate and paleo-environmental information. However, the interpretation of these records in terms of past climate or environmental change remains challenging because of various processes affecting the δ13C signals. A process that has only been sparsely discussed so far is carbon isotope exchange between the gaseous CO2 of the cave atmosphere and the dissolved inorganic carbon (DIC) contained in the thin solution film on the speleothem, which may be particularly important for strongly ventilated caves. Here we present a novel, complete reaction diffusion model describing carbon isotope exchange between gaseous CO2 and the DIC in thin solution films. The model considers all parameters affecting carbon isotope exchange, such as diffusion into, out of and within the film, the chemical reactions occurring within the film as well as the dependence of diffusion and the reaction rates on isotopic mass and temperature. To verify the model, we conducted laboratory experiments under completely controlled, cave-analogue conditions at three different temperatures (10, 20, 30 °C). We exposed thin (≈0.1 mm) films of a NaHCO3 solution with four different concentrations (1, 2, 5 and 10 mmol/l, respectively) to a nitrogen atmosphere containing a specific amount of CO2 (1000 and 3000 ppmV). The experimentally observed temporal evolution of the pH and δ13C values of the DIC is in good agreement with the model predictions. The carbon isotope exchange times in our experiments range from ca. 200 to ca. 16,000 s and strongly depend on temperature, film thickness, atmospheric pCO2 and the concentration of DIC. For low pCO2 (between 500 and 1000 ppmV, as for strongly ventilated caves), our time constants are substantially lower than those derived in a previous study, suggesting a potentially stronger influence of carbon isotope exchange on speleothem δ13C values. However, this process should only have an

  8. Chemical denitration of aqueous nitrate solutions

    International Nuclear Information System (INIS)

    Burrill, K.A.

    1987-11-01

    The Plant for Active Waste Liquids (PAWL) at CRNL will immobilize in glass the fission products in waste from Mo-99 production. The nitrate ions in the waste can be destroyed by heating, but also by chemical reaction with formic acid (HCOOH). Since chemical denitration has several advantages over thermal denitration it was studied in the course of vitrification process development. Two free radical mechanisms are examined here to explain kinetic data on chemical denitration of nitric acid solutions with formic acid. One mechanism is applicable at > 1 mol/L HNO 3 and involves the formate radical (HCOO . ). The second mechanism holds at 3 and involves the hyponitrous radical (HNO . ). Mass balances for various species were written based on the law of mass action applied to the equations describing the reaction mechanism. Analytical and numerical solutions were obtained and compared. Literature data on batch denitration were used to determine some of the rate constants while others were set arbitrarily. Observed stoichiometry and trends in reactant concentrations are predicted accurately for batch data. There are no literature data to compare with the prediction of negligible induction time

  9. Molecular MRI using exogenous enzymatic sensors and endogenous chemical exchange contrast

    OpenAIRE

    Taylor, Alexander John

    2016-01-01

    Molecular magnetic resonance imaging (MRI) methods have the potential to provide detailed information regarding cellular and molecular processes at small scales within the human body. Nuclear signals from chemical samples can be probed using specialised MRI techniques, to highlight molecular contrast from particular enzymes or metabolites. The aim of the work described in this thesis is to investigate both exogenous and endogenous contrast mechanisms using fluorine MRI and chemical exchange s...

  10. Kinetics of isotopic exchange between calcium molybdate and molybdate ions in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Atun, G.; Ayar, N.; Bilgin, B. [Istanbul Univ. (Turkey). Dept. of Chemistry, Fac. of Engineering; Bodur, N.; Ayyildiz, H. [Cekmece Nuclear Research and Training Center, Istanbul (Turkey)

    2007-07-01

    The heterogeneous isotopic anion exchange kinetics and equilibria between calcium molybdate and sodium molybdate solutions have been studied by using {sup 99}Mo as tracer in batch experiments. The values of exchange ratio lower than unity suggest that rate-limiting step is particle diffusion process and the effect of re-crystallization can be neglected. The self-diffusion coefficients calculated using both Paterson's and Nernst-Plank approximations are increased by the temperature. The observed values for isotope exchange characteristics such as exchange fractions, exchanging amounts and fractional attainment of equilibrium are consistent with those of their calculated values. Activation energy and thermodynamic parameters calculated based on transition state theory indicate the existence of both energy and entropy barrier in the system. (orig.)

  11. Kinetics of isotopic exchange between calcium molybdate and molybdate ions in aqueous solution

    International Nuclear Information System (INIS)

    Atun, G.; Ayar, N.; Bilgin, B.

    2007-01-01

    The heterogeneous isotopic anion exchange kinetics and equilibria between calcium molybdate and sodium molybdate solutions have been studied by using 99 Mo as tracer in batch experiments. The values of exchange ratio lower than unity suggest that rate-limiting step is particle diffusion process and the effect of re-crystallization can be neglected. The self-diffusion coefficients calculated using both Paterson's and Nernst-Plank approximations are increased by the temperature. The observed values for isotope exchange characteristics such as exchange fractions, exchanging amounts and fractional attainment of equilibrium are consistent with those of their calculated values. Activation energy and thermodynamic parameters calculated based on transition state theory indicate the existence of both energy and entropy barrier in the system. (orig.)

  12. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    Science.gov (United States)

    Todd, Paul W. (Inventor); Jones, Alan (Inventor); Thomas, Nathan A. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  13. Variability in benthic exchange rate, depth, and residence time beneath a shallow coastal estuary

    Science.gov (United States)

    Russoniello, C. J.; Michael, H. A.; Heiss, J.

    2017-12-01

    Hydrodynamically-driven exchange of water between the water column and shallow seabed aquifer, benthic exchange, is a significant and dynamic component of coastal and estuarine fluid budgets, but wave-induced benthic exchange has not been measured in the field. Mixing between surface water and groundwater solutes promotes ecologically important chemical reactions, so quantifying benthic exchange rates, depths, and residence times, constrains estimates of coastal chemical cycling. In this study, we present the first field-based direct measurements of wave-induced exchange and compare it to exchange induced by the other primary drivers of exchange - tides, and currents. We deployed instruments in a shallow estuary to measure benthic exchange and temporal variability over an 11-day period. Differential pressure sensors recorded pressure gradients across the seabed, and up-and down-looking ADCPs recorded currents and pressures from which wave parameters, surface-water currents, and water depth were determined. Wave-induced exchange was calculated directly from 1) differential pressure measurements, and indirectly with an analytical solution based on wave parameters from 2) ADCP and 3) weather station data. Groundwater flow models were used to assess the effects of aquifer properties on benthic exchange depth and residence time. Benthic exchange driven by tidal pumping or current-bedform interaction was calculated from tidal stage variation and from ADCP-measured currents at the bed, respectively. Waves were the primary benthic exchange driver (average = 20.0 cm/d, maximum = 92.3 cm/d) during the measurement period. Benthic exchange due to tides (average = 3.7 cm/d) and current-bedform interaction (average = 6.5x10-2 cm/d) was much lower. Wave-induced exchange calculated from pressure measurements and ADCP-measured wave parameters matched well, but wind-based rates underestimated wave energy and exchange. Groundwater models showed that residence time and depth increased

  14. Evaluation of electrochemical ion exchange for cesium elution

    International Nuclear Information System (INIS)

    Bontha, J.D.; Kurath, D.E.; Surma, J.E.; Buehler, M.F.

    1996-04-01

    Electrochemical elution was investigated as an alternative method to acid elution for the desorption of cesium from loaded ion exchange resins. The approach was found to have several potential advantages over existing technologies, in particular, electrochemical elution eliminates the need for addition of chemicals to elute cesium from the ion exchange resin. Also, since, in the electrochemical elution process the eluting solution is not in direct contact with the ion exchange material, very small volumes of the eluting solution can be used in a complete recycle mode in order to minimize the total volume of the cesium elute. In addition, the cesium is eluted as an alkaline solution that does not require neutralization with caustic to meet the tank farm specifications. Other advantages include easy incorporation of the electrochemical elution process into the present cesium recovery schemes

  15. The thermodynamics of heat- and mass exchange in chemical engineering. Vol. 1. 2. rev. ed.

    International Nuclear Information System (INIS)

    Matz, G.

    1979-01-01

    The second and completely revised edition of the approved textbook 'The thermodynamics of heat- and mass exchange in chemical engineering' is devoted to students of technical and natural science disciplines as well as to practicians and scientists, which are confronted with thermodynamical problems of chemical engineering. Starting from the different phases and properties of matter, the first and the second law of thermodynamics are discussed together with many applications. After an introduction of the equilibrium state, the general principle of similarity for heat- and mass exchange is discussed, considering in particular the heat- and mass exchange in the counter flow between two phases. In a final chapter, the heat- and mass exchange between the vapor- and liquid phase is discussed, with special emphasis on problems as evaporation and drying. (orig./HK) [de

  16. Theoretical investigation on the mechanism and dynamics of oxo exchange of neptunyl(VI) hydroxide in aqueous solution.

    Science.gov (United States)

    Yang, Xia; Chai, Zhifang; Wang, Dongqi

    2015-03-21

    Four types of reaction mechanisms for the oxo ligand exchange of monomeric and dimeric neptunyl(VI) hydroxide in aqueous solution were explored computationally using density functional theory (DFT) and ab initio classical molecular dynamics. The obtained results were compared with previous studies on the oxo exchange of uranyl hydroxide, as well as with experiments. It is found that the stable T-shaped [NpO3(OH)3](3-) intermediate is a key species for oxo exchange in the proton transfer in mononuclear Path I and binuclear Path IV, similar to the case of uranyl(VI) hydroxide. Path I is thought to be the preferred oxo exchange mechanism for neptunyl(VI) hydroxide in our calculations, due to the lower activation energy (22.7 and 13.1 kcal mol(-1) for ΔG(‡) and ΔH(‡), respectively) of the overall reaction. Path II via a cis-neptunyl structure assisted by a water molecule might be a competitive channel against Path I with a mononuclear mechanism, owing to a rapid dynamical process occurring in Path II. In Path IV with the binuclear mechanism, oxo exchange is accomplished via the interaction between [NpO2(OH)4](2-) and T-shaped [NpO3(OH)3](3-) with a low activation energy for the rate-determining step, however, the overall energy required to fulfill the reaction is slightly higher than that in mononuclear Path I, suggesting a possible binuclear process in the higher energy region. The chemical bonding evolution along the reaction pathways was discussed by using topological methodologies of the electron localization function (ELF).

  17. Chemical-exchange-sensitive MRI of amide, amine and NOE at 9.4 T versus 15.2 T.

    Science.gov (United States)

    Chung, Julius Juhyun; Choi, Wonmin; Jin, Tao; Lee, Jung Hee; Kim, Seong-Gi

    2017-09-01

    Chemical exchange (CE)-sensitive MRI benefits greatly from stronger magnetic fields; however, field effects on CE-sensitive imaging have not yet been studied well in vivo. We have compared CE-sensitive Z-spectra and maps obtained at the fields of 9.4 T and 15.2 T in phantoms and rats with off-resonance chemical-exchange-sensitive spin lock (CESL), which is similar to conventional chemical exchange saturation transfer. At higher fields, the background peak at water resonance has less spread and the exchange rate relative to chemical shift decreases, thus CESL intensity is dependent on B 0 . For the in vivo amide and nuclear Overhauser enhancement (NOE) composite resonances of rat brains, intensities were similar for both magnetic fields, but effective amide proton transfer and NOE values obtained with three-point quantification or a curve fitting method were larger at 15.2 T due to the reduced spread of attenuation at the direct water resonance. When using intermediate exchange-sensitive irradiation parameters, the amine proton signal was 65% higher at 15.2 T than at 9.4 T due to a reduced ratio of exchange rate to chemical shift. In summary, increasing magnetic field provides enhancements to CE-sensitive signals in the intermediate exchange regime and reduces contamination from background signals in the slow exchange regime. Consequently, ultrahigh magnetic field is advantageous for CE-sensitive MRI, especially for amine and hydroxyl protons. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration

    Directory of Open Access Journals (Sweden)

    Jefferson Luiz de Aguiar Paes

    2014-10-01

    Full Text Available Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.

  19. Dynamics of ligand exchange and association processes in solutions of transition 3d-metal fluorides

    International Nuclear Information System (INIS)

    Nazmutdinova, G.A.; Shtyrlin, V.G.; Zakharov, A.V.; Sal'nikov, Yu.I.

    1993-01-01

    By 19 NMR in combination with ESR spectroscopy rate constants and activation parameters of fluoride-ion exchange reactions in solutions of VOF 5 3- and FeF 6 3- complexes were determined. Associative character of the studied reactions of ligand exchange is shown. Dependence of fluoride complex reactivity on the charge, electron structure of the central ion and formation of hydrogen bonds of coordinated F - ions with solvent molecules was demonstrated. Stability constants, rates of formation and dissociation of intercomplex associates in fluoride solutions were ascertained

  20. Ion exchange technology assessment report

    International Nuclear Information System (INIS)

    Duhn, E.F.

    1992-01-01

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team

  1. Rejuvenation of the anion exchanger used for uranium recovery

    International Nuclear Information System (INIS)

    Yan, T.-Y.; Espenscheid, W.F.

    1986-01-01

    The present invention is directed to improving the performance of strong base anionic exchange resins used in uranium recovery that exhibit an undesirable decrease in loading capacity and in total exchange capacity. The invention comprises treating an anionic exchange resin to remove physically adsorbed and occluded fouling agents and to remove poisons which may be chemically bound to active ion groups on the resin. The process involves treating the resin, after the uranium ion exchange stage, with an alkaline carbonate solution, preferably treating the resin with an acid eluant first. The acid treatment dissolves insoluble fouling agents which are physically occluded or adsorbed by the resin and that the weak base treatment augments that result and probably removes poisons which are physically or chemically bound to the resin

  2. Exchange-Mediated Contrast in CEST and Spin-Lock Imaging

    Science.gov (United States)

    Cobb, Jared Guthrie; Li, Ke; Xie, Jingping; Gochberg, Daniel F.; Gore, John C.

    2014-01-01

    PURPOSE Magnetic resonance images of biological media based on chemical exchange saturation transfer (CEST) show contrast that depends on chemical exchange between water and other protons. In addition, spin-lattice relaxation rates in the rotating frame (R1ρ) are also affected by exchange, especially at high fields, and can be exploited to provide novel, exchange-dependent contrast. Here, we evaluate and compare the factors that modulate the exchange contrast for these methods using simulations and experiments on simple, biologically relevant samples. METHODS Simulations and experimental measurements at 9.4T of rotating frame relaxation rate dispersion and CEST contrast were performed on solutions of macromolecules containing amide and hydroxyl exchanging protons. RESULTS The simulations and experimental measurements confirm that both CEST and R1ρ measurements depend on similar exchange parameters, but they manifest themselves differently in their effects on contrast. CEST contrast may be larger in the slow and intermediate exchange regimes for protons with large resonant frequency offsets (e.g. > 2ppm). Spin-locking techniques can produce larger contrast enhancement when resonant frequency offsets are small (exchange is in the intermediate to fast regime. The image contrasts scale differently with field strength, exchange rate and concentration. CONCLUSION CEST and R1ρ measurements provide different and somewhat complementary information about exchange in tissues. Whereas CEST can depict exchange of protons with specific chemical shifts, appropriate R1ρ dependent acquisitions can be employed to selectively portray protons of specific exchange rates. PMID:24239335

  3. Exchange-mediated contrast in CEST and spin-lock imaging.

    Science.gov (United States)

    Cobb, Jared Guthrie; Li, Ke; Xie, Jingping; Gochberg, Daniel F; Gore, John C

    2014-01-01

    Magnetic resonance images of biological media based on chemical exchange saturation transfer (CEST) show contrast that depends on chemical exchange between water and other protons. In addition, spin-lattice relaxation rates in the rotating frame (R1ρ) are also affected by exchange, especially at high fields, and can be exploited to provide novel, exchange-dependent contrast. Here, we evaluate and compare the factors that modulate the exchange contrast for these methods using simulations and experiments on simple, biologically relevant samples. Simulations and experimental measurements at 9.4 T of rotating frame relaxation rate dispersion and CEST contrast were performed on solutions of macromolecules containing amide and hydroxyl exchanging protons. The simulations and experimental measurements confirm that both CEST and R1ρ measurements depend on similar exchange parameters, but they manifest themselves differently in their effects on contrast. CEST contrast may be larger in the slow and intermediate exchange regimes for protons with large resonant frequency offsets (e.g. >2 ppm). Spin-locking techniques can produce larger contrast enhancement when resonant frequency offsets are small (exchange is in the intermediate-to-fast regime. The image contrasts scale differently with field strength, exchange rate and concentration. CEST and R1ρ measurements provide different and somewhat complementary information about exchange in tissues. Whereas CEST can depict exchange of protons with specific chemical shifts, appropriate R1ρ-dependent acquisitions can be employed to selectively portray protons of specific exchange rates. © 2013.

  4. Citropin 1.1 Trifluoroacetate to Chloride Counter-Ion Exchange in HCl-Saturated Organic Solutions: An Alternative Approach.

    Science.gov (United States)

    Sikora, Karol; Neubauer, Damian; Jaśkiewicz, Maciej; Kamysz, Wojciech

    2018-01-01

    In view of the increasing interest in peptides in various market sectors, a stronger emphasis on topics related to their production has been seen. Fmoc-based solid phase peptide synthesis, although being fast and efficient, provides final products with significant amounts of trifluoroacetate ions in the form of either a counter-ion or an unbound impurity. Because of the proven toxicity towards cells and peptide activity inhibition, ion exchange to more biocompatible one is purposeful. Additionally, as most of the currently used counter-ion exchange techniques are time-consuming and burdened by peptide yield reduction risk, development of a new approach is still a sensible solution. In this study, we examined the potential of peptide counter-ion exchange using non-aqueous organic solvents saturated with HCl. Counter-ion exchange of a model peptide, citropin 1.1 (GLFDVIKKVASVIGGL-NH 2 ), for each solvent was conducted through incubation with subsequent evaporation under reduced pressure, dissolution in water and lyophilization. Each exchange was performed four times and compared to a reference method-lyophilization of the peptide from an 0.1 M HCl solution. The results showed superior counter-ion exchange efficiency for most of the organic solutions in relation to the reference method. Moreover, HCl-saturated acetonitrile and tert -butanol provided a satisfying exchange level after just one repetition. Thus, those two organic solvents can be potentially introduced into routine peptide counter-ion exchange.

  5. On-bead combinatorial synthesis and imaging of chemical exchange saturation transfer magnetic resonance imaging agents to identify factors that influence water exchange.

    Science.gov (United States)

    Napolitano, Roberta; Soesbe, Todd C; De León-Rodríguez, Luis M; Sherry, A Dean; Udugamasooriya, D Gomika

    2011-08-24

    The sensitivity of magnetic resonance imaging (MRI) contrast agents is highly dependent on the rate of water exchange between the inner sphere of a paramagnetic ion and bulk water. Normally, identifying a paramagnetic complex that has optimal water exchange kinetics is done by synthesizing and testing one compound at a time. We report here a rapid, economical on-bead combinatorial synthesis of a library of imaging agents. Eighty different 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid (DOTA)-tetraamide peptoid derivatives were prepared on beads using a variety of charged, uncharged but polar, hydrophobic, and variably sized primary amines. A single chemical exchange saturation transfer image of the on-bead library easily distinguished those compounds having the most favorable water exchange kinetics. This combinatorial approach will allow rapid screening of libraries of imaging agents to identify the chemical characteristics of a ligand that yield the most sensitive imaging agents. This technique could be automated and readily adapted to other types of MRI or magnetic resonance/positron emission tomography agents as well.

  6. Chemical exchange effects during refocusing pulses in constant-time CPMG relaxation dispersion experiments

    International Nuclear Information System (INIS)

    Myint, Wazo; Ishima, Rieko

    2009-01-01

    In the analysis of the constant-time Carr-Purcell-Meiboom-Gill (CT-CPMG) relaxation dispersion experiment, chemical exchange parameters, such as rate of exchange and population of the exchanging species, are typically optimized using equations that predict experimental relaxation rates recorded as a function of effective field strength. In this process, the effect of chemical exchange during the CPMG pulses is typically assumed to be the same as during the free-precession. This approximation may introduce systematic errors into the analysis of data because the number of CPMG pulses is incremented during the constant-time relaxation period, and the total pulse duration therefore varies as a function of the effective field strength. In order to estimate the size of such errors, we simulate the time-dependence of magnetization during the entire constant time period, explicitly taking into account the effect of the CPMG pulses on the spin relaxation rate. We show that in general the difference in the relaxation dispersion profile calculated using a practical pulse width from that calculated using an extremely short pulse width is small, but under certain circumstances can exceed 1 s -1 . The difference increases significantly when CPMG pulses are miscalibrated

  7. Quantitative chemical exchange saturation transfer (qCEST) MRI--RF spillover effect-corrected omega plot for simultaneous determination of labile proton fraction ratio and exchange rate.

    Science.gov (United States)

    Sun, Phillip Zhe; Wang, Yu; Dai, ZhuoZhi; Xiao, Gang; Wu, Renhua

    2014-01-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute proteins and peptides as well as microenvironmental properties. However, the complexity of the CEST MRI effect, which varies with the labile proton content, exchange rate and experimental conditions, underscores the need for developing quantitative CEST (qCEST) analysis. Towards this goal, it has been shown that omega plot is capable of quantifying paramagnetic CEST MRI. However, the use of the omega plot is somewhat limited for diamagnetic CEST (DIACEST) MRI because it is more susceptible to direct radio frequency (RF) saturation (spillover) owing to the relatively small chemical shift. Recently, it has been found that, for dilute DIACEST agents that undergo slow to intermediate chemical exchange, the spillover effect varies little with the labile proton ratio and exchange rate. Therefore, we postulated that the omega plot analysis can be improved if RF spillover effect could be estimated and taken into account. Specifically, simulation showed that both labile proton ratio and exchange rate derived using the spillover effect-corrected omega plot were in good agreement with simulated values. In addition, the modified omega plot was confirmed experimentally, and we showed that the derived labile proton ratio increased linearly with creatine concentration (p plot for quantitative analysis of DIACEST MRI. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    Science.gov (United States)

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1994-11-22

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

  9. Radiation-chemical degradation of chloroform in water solutions

    International Nuclear Information System (INIS)

    Ahmadov, S.A; Gurbanov, M.A; Iskenderova, Z.I; Abdullaev, E.T; Ibadov, N.A.

    2006-01-01

    Full text: Chloroform is the major chlorine-containing compound forming at chlorination of drinking water. As our basic water resources of Kur and Araz rivers are mostly polluted along the territory of the neighbor republics their chlorination for the purpose of biological purification can result in forming of chloroform. Unfortunately, there are only poor data about containing of chloroform in drinking water in the Republic, however the particular problem is to develop new methods of drinking water purification from chloroform, taking into account the high toxicity of this compounds. Appropriate works indicate that radiation-chemical processing can mostly reduce the concentration of chloroform in drinking water. The purification degree can achieve 95-98%. This work studies the tendency of chloroform decomposition at its radiolysis processes in percentage. Taking into account the dissolvability of chloroform in water solutions it can be said that examined water solutions are homogeneous. Following advancements are studied: b Determination of radiation-chemical yield of chloroform decomposition at its various initial concentrations;Impact of adsorbed dose on pH of solutions;Formation of by-products.It is set that radiation-chemical output of chloroform decomposition is equal to 3.10-3-125 mol 100ev.

  10. Bicarbonate adsorption band of the chromatography for carbon isotope separation using anion exchangers

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Obanawa, Heiichiro; Hata, Masahisa; Sato, Katsuya

    1985-01-01

    The equilibria of bicarbonate ion between two phases were studied for the carbon isotope separation using anion exchangers. The condition of the formation of a bicarbonate adsorption band was quantitatively discussed. The formation of the adsorption band depends on the difference of S-potential which is the sum of the standard redection chemical potentials and L-potential which is the sum of the reduction chemical potential. The isotopic separation factor observed was about 1.012, independent of the concentrations of acid and alkali in the solutions. The isotopic separation factor was considered to be determined by the reaction of bicarbonate ion on anion exchangers and carbon dioxide dissolved in solutions. The enriched carbon isotope whose isotopic abundance ratio ( 13 C/ 12 C) was 1.258 was obtained with the column packed with anion exchangers. (author)

  11. Lanthanide shift reagents, binding, shift mechanisms and exchange

    International Nuclear Information System (INIS)

    Boer, J.W.M. de

    1977-01-01

    Paramagnetic lanthanide shift reagents, when added to a solution of a substrate, induce shifts in the nuclear magnetic resonance (NMR) spectrum of the substrate molecules. The induced shifts contain information about the structure of the shift reagent substrate complex. The structural information, however, may be difficult to extract because of the following effects: (1) different complexes between shift reagent and substrate may be present in solution, e.g. 1:1 and 1:2 complexes, and the shift observed is a weighed average of the shifts of the substrate nuclei in the different complexes; (2) the Fermi contact interaction, arising from the spin density at the nucleus, contributes to the induced shift; (3) chemical exchange effects may complicate the NMR spectrum. In this thesis, the results of an investigation into the influence of these effects on the NMR spectra of solutions containing a substrate and LSR are presented. The equations describing the pseudo contact and the Fermi contact shift are derived. In addition, it is shown how the modified Bloch equations describing the effect of the chemical exchange processes occurring in the systems studied can be reduced to the familiar equations for a two-site exchange case. The binding of mono- and bifunctional ethers to the shift reagent are reported. An analysis of the induced shifts is given. Finally, the results of the experiments performed to study the exchange behavior of dimethoxyethane and heptafluorodimethyloctanedionato ligands are presented

  12. Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging.

    Science.gov (United States)

    Daryaei, Iman; Pagel, Mark D

    2015-01-01

    Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a "double-agent" approach to molecular imaging. Exogenous T 2 -exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T 1 and T 2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as "secret agents" in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging.

  13. Isotopic exchange rate of cobalt ions between hydrous tin(IV) oxide and aqueous solutions

    International Nuclear Information System (INIS)

    Inoue, Yasushi; Yamazaki, Hiromichi; Itami, Akira

    1989-01-01

    The isotopic exchange rate of cobalt ions between hydrous tin(IV) oxide ion exchanger and aqueous solutions was radiochemically measured to obtain fundamental data which are useful for elucidating the ion-exchange kinetics of the material for the transition metal elements. The rate can be understood by considering that the cobalt ions were present in the exchanger as three kinds of species: (A 1 ) Free ions which can diffuse in the exchanger particles, (A 2 ) Weakly bound ions to the exchange sites which exchange rapidly with A 1 , and (B) Covalently fixed ions to the exchange sites which exchange very slowly with A 1 . At low fraction of B, the rate is controlled by the diffusion of A 1 with the effective diffusion coefficient, D eff , the values of which depend on the concentration ratios of A 2 to A 1 . When B predominates over the A species, the concentration ratios of B to A 1 affect greatly D eff . The values of D eff and their activation energy(20 kJ/mol) were also estimated

  14. Proton exchange between oxymethyl radical and acids and bases: semiempirical quantum-chemical study

    Directory of Open Access Journals (Sweden)

    Irina Pustolaikina

    2016-12-01

    Full Text Available The reactions with proton participation are widely represented in the analytical, technological and biological chemistry. Quantum-chemical study of the exchange processes in hydrogen bonding complexes will allow us to achieve progress in the understanding of the elementary act mechanism of proton transfer in hydrogen bonding chain as well as the essence of the acid-base interactions. Oxymethyl radical •CH2ОН is small in size and comfortable as a model particle that well transmits protolytic properties of paramagnetic acids having more complex structure. Quantum-chemical modeling of proton exchange reaction oxymethyl radical ∙CH2OH and its diamagnetic analog CH3OH with amines, carboxylic acids and water was carried out using UAM1 method with the help of Gaussian-2009 program. QST2 method was used for the search of transition state, IRC procedure was applied for the calculation of descents along the reaction coordinate. The difference in the structure of transition states of ∙CH2OH/ CH3OH with bases and acids has been shown. It has been confirmed that in the case of bases, consecutive proton exchange mechanism was fixed, and in the case of complexes with carboxylic acids parallel proton exchange mechanism was fixed. The similarity in the reaction behavior of paramagnetic and diamagnetic systems in the proton exchange has been found. It was suggested that the mechanism of proton exchange reaction is determined by the structure of the hydrogen bonding cyclic complex, which is, in turn, depends from the nature of the acid-base interactions partners.

  15. Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater.

    Science.gov (United States)

    Raghu, S; Ahmed Basha, C

    2007-10-22

    This paper examines the use of chemical or electrocoagulation treatment process followed by ion-exchange process of the textile dye effluent. The dye effluent was treated using polymeric coagulant (cationic dye-fixing agent) or electrocoagulation (iron and aluminum electrode) process under various conditions such as various current densities and effect of pH. Efficiencies of COD reduction, colour removal and power consumption were studied for each process. The chemical or electrochemical treatment are indented primarily to remove colour and COD of wastewater while ion exchange is used to further improve the removal efficiency of the colour, COD, Fe concentration, conductivity, alkalinity and total dissolved solids (TDS). From the results chemical coagulation, maximum COD reduction of about 81.3% was obtained at 300 mg/l of coagulant whereas in electrocoagulation process, maximum COD removal of about 92.31% (0.25 A/dm2) was achieved with energy consumption of about 19.29 k Wh/kg of COD and 80% (1A/dm(2)) COD removal was obtained with energy consumption of about 130.095 k Wh/kg of COD at iron and aluminum electrodes, respectively. All the experimental results, throughout the present study, have indicated that chemical or electrocoagulation treatment followed by ion-exchange methods were very effective and were capable of elevating quality of the treated wastewater effluent to the reuse standard of the textile industry.

  16. Determining the chemical exchange saturation transfer (CEST) behavior of citrate and spermine under in vivo conditions

    Science.gov (United States)

    Basharat, Meer; deSouza, Nandita M.; Parkes, Harold G.

    2015-01-01

    Purpose To estimate the exchange rates of labile 1H in citrate and spermine, metabolites present in prostatic secretions, to predict the size of the citrate and spermine CEST effects in vivo. Methods CEST z‐spectra were acquired at high‐field [11.7 Tesla (T)] from citrate and spermine solutions at physiological pH (6.5) using saturation power 6 μT. CEST was performed at different temperatures to determine exchange regimes (slow, intermediate or fast). For low pH solutions of spermine, exchange rates were estimated from resonance line width, fitting z‐spectra using the Bloch equations incorporating exchange, and using quantifying exchange using saturation time experiments (QUEST). These rates were extrapolated to physiological pH. Results Citrate showed little CEST effect at pH 6.5 and temperature (T) = 310 K (maximum 0.001% mM‐1), indicating fast exchange, whereas spermine showed greater CEST effects (maximum 0.2% mM‐1) indicating intermediate‐to‐fast exchange. Extrapolating data acquired from low pH spermine solutions predicts exchange rates at pH 6.5 and T of 310 K of at least 2 × 104s‐1. Conclusion Citrate and spermine show minimal CEST effects at 11.7T even using high saturation power. These effects would be much less than 2% at clinical field‐strengths due to relatively faster exchange and would be masked by CEST from proteins. Magn Reson Med 76:742–746, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26467055

  17. Treatment of Soil Decontamination Solution by the Cs{sup +} Ion Selective Ion Exchange Resin

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hui Jun; Kim, Gye Nam; Jung, Chung Hun; Oh, Won Zin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Occasionally, radioactively contaminated soils have been excavated and stored at the temporary storage facility. Cesium as a radionuclide is one of the most toxic elements and it has a long half decay life. During the operation of nuclear facility, soils near the facility would be contaminated with radioactive cesium and it will cause the deleterious effect to human body and environment. In this study, Cs{sup +} ion selective ion exchange resin was prepared by changing the functional group of commercial anion exchange resin for a ferrocyanide ion. Ion exchange capability of using the soil decontamination solution was investigated. We also performed the feasibility test of recycling the spent Cs ion selective ion exchange resin.

  18. Chemical behaviour of plutonium in aqueous chloride solutions

    International Nuclear Information System (INIS)

    Bueppelmann, K.; Kim, J.I.

    1988-06-01

    The chemical behaviour of Plutonium has been investigated in concentrated NaCl solutions in the neutral pH range. The α-radiation induced radiolysis reactions oxidize the Cl - -ion to Cl 2 , HClO, ClO - and other species, which produce a strongly oxidizing medium. Under these conditions the Pu ions of lower oxidation states are readily oxidized to Pu(VI), which then undergo depending on the pH of the solution, various chemical reactions to produce PuO 2 Cl n , PuO 2 (ClO) m or PuO 2 (OH) x species. In addition to primary radiolysis reactions taking place in NaCl solutions, the reactions leading to the PuO 2 (Cl) n and PuO 2 (ClO) m species have been characterized and quantified systematically by spectroscopic and thermodynamic evaluation. The redox and complexation reactions of Pu ions under varying NaCl concentration, specific α-activity and pH are discussed. (orig.) [de

  19. Removal of strontium ions from solutions using granulated zeolites

    International Nuclear Information System (INIS)

    Bronic, J.; Subotic, B.

    1992-01-01

    The ion-exchange process on columns filled with granulated zeolites is determined by several physico-chemical parameters. The influence of these parameters (zeolite type, concentration of exchangeable ions in solution, temperature, flow rate, etc.) on the kinetics of ion-exchange process was studied by measuring the Sr 2+ ion concentration in solution before and after passing through a column filled with various granulated zeolites (zeolite 13X, zeolite A and synthetic mordenite). Using the experimental technique of radioactive labeling by 89 Sr, the distribution of Sr 2+ ions in column fillings were also determined. From the results obtained, the optimal conditions for the most efficient removal of strontium ions from solutions using granulated zeolites can be defined. (author) 24 refs.; 9 figs

  20. Method for ion exchange purification of sodium iodide solution from heavy metals and potassium microimpurities

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Kachur, N.Ya.; Kostromina, O.N.; Ogorodnikova, A.A.; Khajnakov, S.A.

    1990-01-01

    A method of deep ion exchange purification of sodium iodide solution from heavy metals (iron, nickel, copper, lead) and potassium microimpurities is developed. The method includes multiple sorption of microimpurities on titanium phosphate with their subsequent desorption by sorbent processing with a solution with a solution of 3-6 N nitric acid, first, and then with a neutral solution of 2 % sodium thiosulfate. The given method permits to increase the purification degree of sodium iodide solution by 25-30 %. 2 tabs

  1. Kinetics of isotopic exchange between strontium polymolybdate and strontium ions in aqueous solution

    International Nuclear Information System (INIS)

    Atun, Gulten; Bilgin, Binay; Kilislioglu, Ayben

    2002-01-01

    A heterogeneous isotopic exchange reaction of strontium polymolybdate in strontium chloride solution was studied using 90 Sr as a tracer. The effects of low and high strontium chloride concentration on the rate and mechanism of the isotopic exchange reaction were investigated. It was found that, at high concentrations, the rate is independent of strontium concentration, but, at low concentrations, the rate is proportional to the strontium concentration. These results support a hypothesis that, at low concentrations, the rate is controlled by film diffusion, whereas at high concentrations it is controlled by particle diffusion. Experiments were performed at 293, 303 and 313 K. Activation energy of isotopic exchange reaction and thermodynamic parameters ΔH*, ΔS*, and ΔG* were calculated using the Arrhenius and Eyring equations. The results also indicated that recrystallization is a predominant factor in the present exchange reaction

  2. Kinetics of isotopic exchange between strontium polymolybdate and strontium ions in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Atun, Gulten E-mail: gultena@istanbul.edu.tr; Bilgin, Binay; Kilislioglu, Ayben

    2002-06-01

    A heterogeneous isotopic exchange reaction of strontium polymolybdate in strontium chloride solution was studied using {sup 90}Sr as a tracer. The effects of low and high strontium chloride concentration on the rate and mechanism of the isotopic exchange reaction were investigated. It was found that, at high concentrations, the rate is independent of strontium concentration, but, at low concentrations, the rate is proportional to the strontium concentration. These results support a hypothesis that, at low concentrations, the rate is controlled by film diffusion, whereas at high concentrations it is controlled by particle diffusion. Experiments were performed at 293, 303 and 313 K. Activation energy of isotopic exchange reaction and thermodynamic parameters {delta}H*, {delta}S*, and {delta}G* were calculated using the Arrhenius and Eyring equations. The results also indicated that recrystallization is a predominant factor in the present exchange reaction.

  3. Delay chemical master equation: direct and closed-form solutions.

    Science.gov (United States)

    Leier, Andre; Marquez-Lago, Tatiana T

    2015-07-08

    The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact with respect to the former, trajectories obtained from a delay SSA are exact representations of the underlying delay CME (DCME). However, in contrast to the CME, no closed-form solutions have so far been derived for any kind of DCME. In this paper, we describe for the first time direct and closed solutions of the DCME for simple reaction schemes, such as a single-delayed unimolecular reaction as well as chemical reactions for transcription and translation with delayed mRNA maturation. We also discuss the conditions that have to be met such that such solutions can be derived.

  4. Chemical exchange-sensitive spin-lock MRI of glucose analog 3-O-methyl-d-glucose in normal and ischemic brain.

    Science.gov (United States)

    Jin, Tao; Mehrens, Hunter; Wang, Ping; Kim, Seong-Gi

    2018-05-01

    Glucose transport is important for understanding brain glucose metabolism. We studied glucose transport with a presumably non-toxic and non-metabolizable glucose analog, 3-O-methyl-d-glucose, using a chemical exchange-sensitive spin-lock MRI technique at 9.4 Tesla. 3-O-methyl-d-glucose showed comparable chemical exchange properties with d-glucose and 2-deoxy-d-glucose in phantoms, and higher and lower chemical exchange-sensitive spin-lock sensitivity than Glc and 2-deoxy-d-glucose in in vivo experiments, respectively. The changes of the spin-lattice relaxation rate in the rotating frame (Δ R 1 ρ) in normal rat brain peaked at ∼15 min after the intravenous injection of 1 g/kg 3-O-methyl-d-glucose and almost maintained a plateau for >1 h. Doses up to 4 g/kg 3-O-methyl-d-glucose were linearly correlated with Δ R 1 ρ. In rats with focal ischemic stroke, chemical exchange-sensitive spin-lock with 3-O-methyl-d-glucose injection at 1 h after stroke onset showed reduced Δ R 1 ρ in the ischemic core but higher Δ R 1 ρ in the peri-core region compared to normal tissue, which progressed into the ischemic core at 3 h after stroke onset. This suggests that the hyper-chemical exchange-sensitive spin-lock region observed at 1 h is the ischemic penumbra at-risk of infarct. In summary, 3-O-methyl-d-glucose-chemical exchange-sensitive spin-lock can be a sensitive MRI technique to probe the glucose transport in normal and ischemic brains.

  5. Soil solution phosphorus turnover: derivation, interpretation, and insights from a global compilation of isotope exchange kinetic studies

    Science.gov (United States)

    Helfenstein, Julian; Jegminat, Jannes; McLaren, Timothy I.; Frossard, Emmanuel

    2018-01-01

    The exchange rate of inorganic phosphorus (P) between the soil solution and solid phase, also known as soil solution P turnover, is essential for describing the kinetics of bioavailable P. While soil solution P turnover (Km) can be determined by tracing radioisotopes in a soil-solution system, few studies have done so. We believe that this is due to a lack of understanding on how to derive Km from isotopic exchange kinetic (IEK) experiments, a common form of radioisotope dilution study. Here, we provide a derivation of calculating Km using parameters obtained from IEK experiments. We then calculated Km for 217 soils from published IEK experiments in terrestrial ecosystems, and also that of 18 long-term P fertilizer field experiments. Analysis of the global compilation data set revealed a negative relationship between concentrations of soil solution P and Km. Furthermore, Km buffered isotopically exchangeable P in soils with low concentrations of soil solution P. This finding was supported by an analysis of long-term P fertilizer field experiments, which revealed a negative relationship between Km and phosphate-buffering capacity. Our study highlights the importance of calculating Km for understanding the kinetics of P between the soil solid and solution phases where it is bioavailable. We argue that our derivation can also be used to calculate soil solution turnover of other environmentally relevant and strongly sorbing elements that can be traced with radioisotopes, such as zinc, cadmium, nickel, arsenic, and uranium.

  6. Thermal performance modeling of cross-flow heat exchangers

    CERN Document Server

    Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria

    2014-01-01

    This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges

  7. Study of isotopic exchange of radioactive calcium and cerium cations with y zeolites in aqueous and alcoholic solution

    Energy Technology Data Exchange (ETDEWEB)

    Guilloux, M

    1974-12-31

    Thesis. The isotopic exchange of y zeolite cations with calcium and cerium was studied. The experimental work was carried out utilizing the heterogeneous isotopic exchange between aqueous and alcoholic solutions of the cation considered and a zeolite powder containing a corresponding radioisotope. Aqueous phase exchanges demonstrate that a complex diffusion phenomenon is taking place which is capable of being decomposed into at least two distinct phases: a very slowly occurring phase representing 25 to 30% of the total exchange at ordinary temperatures and a very rapidly occurring phase. In alcoholic solutions, a rapid phase is always observed together with a slow diffusion phase although the exchange rates and diffusion coefficients may vary considerably with the nature and composition of the solvent. The results enable a hypothesis to be advanced on the ion exchange mechanism. The migration of the ions requires the crossing of two types of barrier: the large windows of the supercages (8A); the windows of the sodalite cages (2A). The two stages of the exchange kinetics can be related to these two types of barrier. (FR)

  8. Hydrogen/deuterium exchange in mass spectrometry.

    Science.gov (United States)

    Kostyukevich, Yury; Acter, Thamina; Zherebker, Alexander; Ahmed, Arif; Kim, Sunghwan; Nikolaev, Eugene

    2018-03-30

    The isotopic exchange approach is in use since the first observation of such reactions in 1933 by Lewis. This approach allows the investigation of the pathways of chemical and biochemical reactions, determination of structure, composition, and conformation of molecules. Mass spectrometry has now become one of the most important analytical tools for the monitoring of the isotopic exchange reactions. Investigation of conformational dynamics of proteins, quantitative measurements, obtaining chemical, and structural information about individual compounds of the complex natural mixtures are mainly based on the use of isotope exchange in combination with high resolution mass spectrometry. The most important reaction is the Hydrogen/Deuterium exchange, which is mainly performed in the solution. Recently we have developed the approach allowing performing of the Hydrogen/Deuterium reaction on-line directly in the ionization source under atmospheric pressure. Such approach simplifies the sample preparation and can accelerate the exchange reaction so that certain hydrogens that are considered as non-labile will also participate in the exchange. The use of in-ionization source H/D exchange in modern mass spectrometry for structural elucidation of molecules serves as the basic theme in this review. We will focus on the mechanisms of the isotopic exchange reactions and on the application of in-ESI, in-APCI, and in-APPI source Hydrogen/Deuterium exchange for the investigation of petroleum, natural organic matter, oligosaccharides, and proteins including protein-protein complexes. The simple scenario for adaptation of H/D exchange reactions into mass spectrometric method is also highlighted along with a couple of examples collected from previous studies. © 2018 Wiley Periodicals, Inc.

  9. Chemical solution deposition of functional oxide thin films

    CERN Document Server

    Schneller, Theodor; Kosec, Marija

    2014-01-01

    Chemical Solution Deposition (CSD) is a highly-flexible and inexpensive technique for the fabrication of functional oxide thin films. Featuring nearly 400 illustrations, this text covers all aspects of the technique.

  10. Ions in solution basic principles of chemical interactions

    CERN Document Server

    Burgess, J

    1999-01-01

    This outline of the principles and chemical interactions in inorganic solution chemistry delivers a course module in an area of considerable complexity. Problems with solutions and tutorial hints to test comprehension have been added as a feature to check readers' understanding and assist self-study. Exercises and projects are also provided to help readers deepen and extend their knowledge and understanding. Inorganic solution chemistry is treated thoroughly Emphasis is placed upon NMR, UV-VIS, IR Raman spectroscopy, X-ray diffraction, and such topics as acid-base behaviour, stability constants and kinetics.

  11. Theory of the formation of the electric double layer at the ion exchange membrane-solution interface.

    Science.gov (United States)

    Moya, A A

    2015-02-21

    This work aims to extend the study of the formation of the electric double layer at the interface defined by a solution and an ion-exchange membrane on the basis of the Nernst-Planck and Poisson equations, including different values of the counter-ion diffusion coefficient and the dielectric constant in the solution and membrane phases. The network simulation method is used to obtain the time evolution of the electric potential, the displacement electric vector, the electric charge density and the ionic concentrations at the interface between a binary electrolyte solution and a cation-exchange membrane with total co-ion exclusion. The numerical results for the temporal evolution of the interfacial electric potential and the surface electric charge are compared with analytical solutions derived in the limit of the shortest times by considering the Poisson equation for a simple cationic diffusion process. The steady-state results are justified from the Gouy-Chapman theory for the diffuse double layer in the limits of similar and high bathing ionic concentrations with respect to the fixed-charge concentration inside the membrane. Interesting new physical insights arise from the interpretation of the process of the formation of the electric double layer at the ion exchange membrane-solution interface on the basis of a membrane model with total co-ion exclusion.

  12. 21 CFR 864.1850 - Dye and chemical solution stains.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dye and chemical solution stains. 864.1850 Section 864.1850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1850 Dye and chemical...

  13. Retention behavior of nickel, copper, cadmium and zinc ions from aqueous solutions on silico-titanate and silico-antimonate used as inorganic ion exchange materials

    International Nuclear Information System (INIS)

    Abou-Mesalam, M.M.

    2002-01-01

    Silico-titanate (SiTi) and silico-antimonate (SiSb) have been synthesized and characterized using X-ray diffraction patterns, infrared and thermal analysis techniques. Divalent cations such as Ni 2+ , Cd 2+ , Zn 2+ and Cu 2+ in the pH range 2 to 8 have been exchanged with the exchangeable active sites of the exchangers using a batch technique. From the results obtained, the equilibrium capacities and distribution coefficient values were calculated indicating high selectivity values for Ni 2+ , Cd 2+ , Zn 2+ and Cu 2+ ions on silico-titanate and silico-antimonate compared to other titanates and antimonates. Also SiTi and SiSb show high chemical stability in H 2 O, nitric and hydrochloric acids. All these results support the suitability of the prepared materials for the removal of the toxic metals concerned from waste waters. Based on the results obtained, practical separation experiments for the above mentioned cations on SiTi and SiSb columns from aqueous waste solutions were carried out. (author)

  14. Ion-exchange properties of cesium and strontium into zeolites from sodium salt solutions

    International Nuclear Information System (INIS)

    Kanno, Takuji; Hashimoto, Hiroyuki; Ohtani, Tozo.

    1978-01-01

    The ion-exchange properties of cesium and strontium into zeolite from sodium salt solution has been studied in zeolite A, zeolite X, zeolite Y, mordenite and clinoptilolite. The distribution of cesium into mordenite from about 1 -- 2 M sodium chloride and sodium hydroxide solutions is considerably larger than that into zeolite A. The distribution coefficient for 2 M solution of sodium salts was about 300. Therefore, the separation of cesium from sodium salt solution is possible by using mordenite. The distribution of strontium into zeolites form 1 -- 2 M solutions of sodium chloride and sodium nitrate were in the order of zeolite A>zeolite X>zeolite Y asymptoticaly equals mordenite. The distribution coefficient of 230 was obtained for 1 M solutions of sodium salts. The anion in solutions had no effect on the distribution of cesium and strontium into zeolite from sodium salt solution. (author)

  15. Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gab-Jin; Bong, Soo-Yeon; Ryu, Cheol-Hwi [Hoseo University, Asan (Korea, Republic of); Lim, Soo-Gon [Energy and Machinery Korea Co., Ltd., Changwon (Korea, Republic of); Choi, Ho-Sang [Kyungil University, Gyeongsan (Korea, Republic of)

    2015-09-15

    An anion exchange membrane was prepared by the chloromethylation and the amination of polyvinyl chloride (PVC), as the base polymer. The membrane properties of the prepared anion exchange membrane, including ionic conductivity, ion exchange capacity, and water content were measured. The ionic conductivity of the prepared anion exchange membrane was in the range of 0.098x10{sup -2} -7.0x10{sup -2}S cm{sup -1}. The ranges of ion exchange capacity and water content were 1.9-3.7meq./g-dry-membrane and 35.1-63.1%, respectively. The chemical stability of the prepared anion exchange membrane was tested by soaking in 30 wt% KOH solution to determine its availability as a separator in the alkaline water electrolysis. The ionic conductivity during the chemical stability test largely did not change.

  16. Chemical analysis of bleach and hydroxide-based solutions after decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX).

    Science.gov (United States)

    Hopkins, F B; Gravett, M R; Self, A J; Wang, M; Chua, Hoe-Chee; Hoe-Chee, C; Lee, H S Nancy; Sim, N Lee Hoi; Jones, J T A; Timperley, C M; Riches, J R

    2014-08-01

    Detailed chemical analysis of solutions used to decontaminate chemical warfare agents can be used to support verification and forensic attribution. Decontamination solutions are amongst the most difficult matrices for chemical analysis because of their corrosive and potentially emulsion-based nature. Consequently, there are relatively few publications that report their detailed chemical analysis. This paper describes the application of modern analytical techniques to the analysis of decontamination solutions following decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). We confirm the formation of N,N-diisopropylformamide and N,N-diisopropylamine following decontamination of VX with hypochlorite-based solution, whereas they were not detected in extracts of hydroxide-based decontamination solutions by nuclear magnetic resonance (NMR) spectroscopy or gas chromatography-mass spectrometry. We report the electron ionisation and chemical ionisation mass spectroscopic details, retention indices, and NMR spectra of N,N-diisopropylformamide and N,N-diisopropylamine, as well as analytical methods suitable for their analysis and identification in solvent extracts and decontamination residues.

  17. DIMP: an interoperable solution for software integration and product data exchange

    Science.gov (United States)

    Wang, Xi Vincent; Xu, Xun William

    2012-08-01

    Today, globalisation has become one of the main trends of manufacturing business that has led to a world-wide decentralisation of resources amongst not only individual departments within one company but also business partners. However, despite the development and improvement in the last few decades, difficulties in information exchange and sharing still exist in heterogeneous applications environments. This article is divided into two parts. In the first part, related research work and integrating solutions are reviewed and discussed. The second part introduces a collaborative environment called distributed interoperable manufacturing platform, which is based on a module-based, service-oriented architecture (SOA). In the platform, the STEP-NC data model is used to facilitate data-exchange among heterogeneous CAD/CAM/CNC systems.

  18. Reduction of exchangeable calcium and magnesium in soil with increasing pH

    Directory of Open Access Journals (Sweden)

    Miyazawa Mário

    2001-01-01

    Full Text Available A laboratory study was conducted with soil samples and synthetic solutions to investigate possible mechanisms related with reduction in KCl exchangeable Ca and Mg with increasing pH. Increasing soil pH over 5.3 with CaCO3 added to the soil and with NaOH solution added to soil/KCl suspension increased adsorptions of Ca and Mg. The reduction of Mg was greater than Ca and was related to the concentration of soil exchangeable Al. The decreases of soluble Ca and Mg following addition of Al in synthetic solution were at pH > 7.5. The isomorphic coprecipitation reaction with Al compounds may be the most possible mechanism responsible for the decrease of exchangeable Ca and Mg with increasing pH. Possible chemical reactions are presented.

  19. Boron removal from aqueous solutions by ion-exchange resin: Column sorption-elution studies

    International Nuclear Information System (INIS)

    Koese, T. Ennil; Oztuerk, Nese

    2008-01-01

    A column sorption-elution study was carried out by using a strong base anion-exchange resin (Dowex 2 x 8) for the removal of boron from aqueous solutions. The breakthrough curve was obtained as a function of feed flow rate and the total and breakthrough capacity values of the resin were calculated. The boron on the resin was quantitatively eluted with 0.5 M HCl solution at different flow rates. Three consecutive sorption-elution-washing-regeneration-washing cycles were applied to the resin in order to investigate the reusability of the ion-exchange resin. Total capacity values remained almost the same after three sorption-elution-regeneration cycles. The Thomas and the Yoon-Nelson models were applied to experimental data to predict the breakthrough curves and to determine the characteristic column parameters required for process design. The results proved that the models would describe the breakthrough curves well

  20. Electronic structure tautomerism, and mechanism of H-D exchange in imidazole aqueous solutions

    International Nuclear Information System (INIS)

    Borisov, Yu.A.; Vorob'eva, N.P.; Abronin, I.A.; Kolomiets, A.F.

    1988-01-01

    The imidazole electronic structure in a gaseous phase is studied taking into account the influence of solvation effects in aqueous solutions. Possible mechanisms of tautomeric transformations and H-D exchange reactions with water molecules are discussed. Using the quantum chemistry methods, it is shown that the intramolecular mechanism of imidazole isomerization in the gaseous phase and the aqueous solution is unprofitable, and the intermolecular mechanism can proceed through the stage of protonated and carbene form formation

  1. Crystalline silicotitanates -- novel commercial cesium ion exchangers

    International Nuclear Information System (INIS)

    Braun, R.; Dangieri, T.J.; Fennelly, D.J.

    1996-01-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST), invented by researchers at Sandia National Laboratories and Texas A ampersand M University, has been commercialized in a joint Sandia-UOP effort. The original developmental materials exhibited high selectivity for the ion exchange of cesium, strontium, and several other radionuclides from highly alkaline solutions containing molar concentrations of Na + . The materials also showed excellent chemical and radiation stability. These CST properties made them excellent candidates for treatment of solutions such as the Hanford tank supernates and other DOE radwastes. Sandia and UOP, under a Cooperative Research and Development Agreement (CRADA), developed CSTs in the powdered form and in an engineered form suitable for column ion exchange use. A continuous-flow, column ion exchange process is expected to be used to remove Cs and other radionuclides from the Hanford supernatant. The powder material invented by Sandia and Texas A ampersand M consists of submicron-size particles. It is not designed for column ion exchange but may be used in other applications such as batch waste processing. Data are also presented confirming the excellent stability of the commercial CSTs over a broad pH range and the high radiation stability of the exchangers. In addition, data are provided that demonstrate the high physical strength and attrition resistance of IONSIV reg-sign IE-911, critical properties for column ion exchange applications

  2. Ultrasonic filtration of industrial chemical solutions

    Science.gov (United States)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  3. A New Topology of Solutions of Chemical Equations

    International Nuclear Information System (INIS)

    Risteski, Ice B.

    2013-01-01

    In this work is induced a new topology of solutions of chemical equations by virtue of point-set topology in an abstract stoichiometrical space. Subgenerators of this topology are the coefficients of chemical reaction. Complex chemical reactions, as those of direct reduction of hematite with a carbon, often exhibit distinct properties which can be interpreted as higher level mathematical structures. Here we used a mathematical model that exploits the stoichiometric structure, which can be seen as a topology too, to derive an algebraic picture of chemical equations. This abstract expression suggests exploring the chemical meaning of topological concept. Topological models at different levels of realism can be used to generate a large number of reaction modifications, with a particular aim to determine their general properties. The more abstract the theory is, the stronger the cognitive power is

  4. Swelling behavior of ion exchange resins incorporated in tri-calcium silicate cement matrix: I. Chemical analysis

    International Nuclear Information System (INIS)

    Neji, M.; Bary, B.; Le Bescop, P.; Burlion, N.

    2015-01-01

    This paper presents the first part of a theoretical and experimental work aiming at modeling the chemo-mechanical behavior of composites made up of ion exchange resins (IER) solidified in a tri-calcium silicate cement paste (C_3S). Because of ion exchange processes, the volume change of the IER may cause internal pressures leading to the degradation of the material. In this study, a predictive modeling is developed for describing the chemical behavior of such material. It is based on thermodynamic equilibria to determine the evolution of the ion exchange processes, and the potential precipitation of portlandite in the composite. In parallel, a phenomenological study has been set up to understand chemical phenomena related to the swelling mechanisms. The model created has been finally implemented in a finite elements software; the simulation of a laboratory test has been performed and the results compared to experimental data. - Highlights: • Ion exchange theory to model the swelling behavior of Ion exchange resin. • Experimental phenomenon analysis about Chemo-mechanical interaction between IER and cement paste matrix. • Chemo-Transport modeling on a composite material made with IER embedded into cement paste matrix.

  5. Model Experiments on Chemical Properties of Superheavy Elements in Aqueous Solutions

    CERN Document Server

    Szeglowski, Z

    2003-01-01

    This paper presents a brief review of model experiments on investigation of chemical properties of transactinide elements, ranging from 104 to 116. The possibilities of isolation of the nuclei of these elements from nuclear reaction products, using the ion-exchange method, are also considered.

  6. Ion-Exchange Processes and Mechanisms in Glasses

    International Nuclear Information System (INIS)

    McGrail, B.P.; Icenhower, J.P.; Darab, J.G.; Shuh, D.K.; Baer, D.R.; Shutthanandan, V.; Thevuthasan, S.; Engelhard, M.H.; Steele, J.L.; Rodriguez, E.A.; Liu, P.; Ivanov, K.E.; Booth, C.H.; Nachimuthu, P.

    2001-01-01

    Leaching of alkalis from glass is widely recognized as an important mechanism in the initial stages of glass-water interactions. Pioneering experimental studies [1-3] nearly thirty-five years ago established that alkali (designated as M + ) are lost to solution more rapidly than network-forming cations. The overall chemical reaction describing the process can be written as: (triple b ond)Si-O-M + H + → (triple b ond)Si-OH + M + (1) or (triple b ond)Si-O-M + H 3 O + → (triple b ond)Si-OH + M + + H 2 O. (2) Doremus and coworkers [4-7] fashioned a quantitative model where M + ions in the glass are exchanged for counter-diffusing H 3 O + or H + . Subsequent investigations [8], which have relied heavily on reaction layer analysis, recognized the role of H 2 O molecules in the alkali-exchange process, without minimizing the importance of charged hydrogen species. Beginning in the 1980s, however, interest in M + -H + exchange reactions in silicate glasses diminished considerably because important experimental observations showed that network hydrolysis and dissolution rates were principally controlled by the chemical potential difference between the glass and solution (chemical affinity) [9]. For nuclear waste glasses, formation of alteration products or secondary phases that remove important elements from solution, particularly Si, was found to have very large impacts on glass dissolution rates [10,11]. Consequently, recent work on glass/water interactions has focused on understanding this process and incorporating it into models [12]. The ion-exchange process has been largely ignored because it has been thought to be a short duration, secondary or tertiary process that had little or no bearing on long-term corrosion or radionuclide release rates from glasses [13]. The only significant effect identified in the literature that is attributed to alkali ion exchange is an increase in solution pH in static laboratory tests conducted at high surface area-to-volume ratios

  7. Studies of the hydrous titanium oxide ion exchanger. 4. Rate of the isotopic exchange of sodium ions between the exchanger in the Na+ form and aqueous solution

    International Nuclear Information System (INIS)

    Inoue, Yasushi; Yamazaki, Hiromichi; Kasuga, Fuminori

    1995-01-01

    The isotopic exchange rate of Na + between hydrous titanium(IV) oxides, precipitated at pH 6 and 13, in the Na + form and aqueous solution of sodium salt was determined radiochemically. The rate in the exchanger precipitated at pH 6 is controlled by the diffusion of Na + in the exchanger particles (particle diffusion). The diffusion coefficient and its activation energy are 1.9 x 10 -11 m 2 s -1 (pH 12, 5.0degC) and 29 kJ mol -1 (pH 12), respectively. The rate in the exchanger precipitated at pH 13 is also controlled by the particle diffusion. The rate is much slower than that in the other; this can be explained by assuming the existence of two kinds of independently diffusing ions (fast and slow species) in the exchanger. The diffusion coefficients are of the order of 10 -12 and 10 -13 m 2 s -1 for the fast and the slow species, respectively. Their activation energies are 48-60 kJ mol -1 at pH 12. The marked difference in kinetics between two exchanges was interpreted in terms of the difference in the acid-base property and in the microstructure of the matrix. (author)

  8. Treatment of Simulated Soil Decontamination Waste Solution by Ferrocyanide-Anion Exchange Resin Beads

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hui Jun; Kim, Min Gil; Kim, Gye Nam; Jung, Chung Hun; Park, Jin Ho; Oh, Won Zin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2005-03-15

    Preparation of ferrocyanide-anion exchange resin and adsorption test of the prepared resin on the Cs{sup -} ion were performed. Adsorption capability of the prepared resin on the Cs{sup -} ion in the simulated citric acid based soil decontamination waste solution was 4 times greater than that of the commercial cation exchange resin. Adsorption equilibrium of the prepared resin on the Cs{sup -} ion reached within 360 minutes. Adsorption capability on the Cs{sup -} ion became to decrease above the necessary Co{sup 2-} ion concentration in the experimental range. Recycling test of the spent ion exchange resin by the successive application of hydrogen peroxide and hydrazine was also performed. It was found that desorption of Cs{sup -} ion from the resin occurred to satisfy the electroneutrality condition without any degradation of the resin.

  9. Radiation-chemical degradation of chloroform in water solutions

    International Nuclear Information System (INIS)

    Ahmadov, S.A.; Gurbanov, M.A.; Iskenderova, Z.I.; Abdullayev, E.T.; Ibadov, N.A.

    2006-01-01

    Full text: Chloroform is the major chlorine-containing compound forming at chlorination of drinking water. As our basic water resources of Kur and Araz rivers are mostly polluted along the territory of the neighbour republics their chlorination for the purpose of biological purification can result in forming of chloroform. Unfortunately, there are only poor data about containing of chloroform in drinking water in the Republic, however the particular problem is to develop new methods of drinking water purification from chloroform, taking into account the high toxicity of this compounds. Appropriate works indicate that radiation-chemical processing can mostly reduce the concentration of chloroform in drinking water. The purification degree can achieve 95-98 percent. This work studies the tendency of chloroform decomposition at its radiolysis processes in water solutions. The concentration of chloroform changed in the range of 0,03-1 weight percentage. Taking into account the dissolvability of chloroform in water solutions it can be said that examined water solutions are homogeneous. Following advancements are studied: 1) Determination of radiation-chemical yield of chloroform decomposition at its various initial concentrations; 2) Impact of adsorbed dose on pH of solutions; 3) Formation of by-products. It is set that radiation-chemical output of chloroform decomposition is equal to 3 * 10 - 3 - 125 mol/100 ev. The high yield of chloroform decomposition can be connected with the chain process of oxidation with presence of dissolved oxygen. However, taking into account the fact that at its water radiolysis the yield of active particles of OH, e - aq, H-atoms does not exceed 6-7 particles/100 ev, the observed high yield can be explained only with the chain process with presence of dissolved oxygen

  10. Desalination by electrodialysis with ion-exchange membrane prepared by radiation-induced graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong-Ho; Jeong, Young Han; Ryoo, Jae Jeong; Lee, Kwang-Pill [Department of Chemistry Graduate School, Kyungpook National University, Taegu (Korea)

    2000-07-01

    Ion-exchange membranes modified with triethylamine [-N(CH{sub 2}CH{sub 3}){sub 3}] and phosphoric acid (-PO{sub 3}H) groups were prepared by radiation-induced grafting of glycidyl methacrylate (GMA) onto polyolefin nonwavon fabric (PNF) and subsequent chemical modification of poly (GMA) graft chains. The physical and chemical properties of the GMA-grafted PNF and the PNF modified with ion-exchange groups were investigated by SEM and XPS. The ion-exchange capacities of the cation- and anion-exchange membrane were 0.20 and 1.24mmol/g, respectively. The content of cation- and anion exchange group increased with increasing grafting yield (d.g.=100%). Electrical resistance of PNF modified with TEA and -PO{sub 3}H group decreased with increasing ion-exchange group capacities. Application of the graft-type ion-exchange membranes as separators for electrodialysis enabled use to reduce the time required to achieve 85.5% desalination of the 0.5M NaCl solution. (author)

  11. Study of uranium (VI) in carbonate solution by potentiometric titrations and ion-exchange

    International Nuclear Information System (INIS)

    Billon, A.

    1968-04-01

    The present work is devoted to the fixation of uranium (VI) on the conventional anion-exchange resin Dowex 2 X 8 in carbonate and hydrogen-carbonate media. Both media were successfully used for the recuperation of uranium (VI) from very dilute solutions. Equilibrium constant of the exchange [UO 2 (CO 3 ) 3 4+ ] S + 2 [CO 3 2- ] R ↔ [UO 2 (CO 3 ) 3 4- ] R + 2[CO 3 2- ] S is determined for carbonate concentration range 0.1 M to 0.6 M from partition curves. A markedly increase in the relative fixation of uranium results with: - increasing free carbonate concentration of the solution, - decreasing uranium concentration. A study in the same conditions of the fixation of molybdenum has made it possible to separate the latter from uranium by elution, the carbonate concentration being molar. It is suggested a possibility of separation on a larger scale, based upon molybdenum displacement by uranium in hydrogen-carbonate medium. (author) [fr

  12. Concentration and purification of plutonium solutions by means of ion-exchange columns

    Energy Technology Data Exchange (ETDEWEB)

    Durham, R W; Aikin, A M

    1953-02-15

    Equilibrium experiments using Dowex 50 ion-exchange resin and nitric acid solutions of Pu{sup 3+}, UO{sub 2}{sup 2+}, Fe{sup 2+} cations have yielded values for the absorption affinities for these ions. Trivalent plutonium was found to be far more strongly absorbed than UO{sub 2}{sup 2+} and Fe{sup 2+}. Column studies have shown that uranium can be completely separated from plutonium even when the initial concentration of uranium is very much greater than that of the plutonium. A plutonium concentration increase of about fifty-fold can be obtained from solutions about 10{sup -3} M in plutonium and 1.0M in nitric acid. The equation K{sub Pu}{sup 3+} = X{sub R} (1-X{sub S}){sup 3} C{sub S}{sup 2}/X{sub S} (1-X{sub R}){sup 3} C{sub R}{sup 2} for estimating the maximum amount of plutonium taken up by a column of resin of unit volume from a solution of total equivalent concentration, C{sub S} , has been shown to hold for values of C{sub S} up to 3 equivalents per litre. X{sub R}, the equivalent fraction of plutonium on the resin, is the number of equivalents of plutonium absorbed by the resin divided by the total capacity of the column. X{sub S}, the equivalent fraction of plutonium in solution, is the equivalent concentration of plutonium divided by the total equivalent concentration of cations in solution. C{sub R} is the total capacity of the resin in milli-equivalents per gram of dry resin. Recommendations have been made for the application and operation of ion-exchange columns in the Plutonium-Extraction Plant. (author)

  13. Separation of 1,3-Propanediol from Aqueous Solutions by Ion Exchange Chromatography

    Directory of Open Access Journals (Sweden)

    Rukowicz Beata

    2014-06-01

    Full Text Available 1,3-propanediol is a promising monomer with many applications and can be produced by bioconversion of renewable resources. The separation of this product from fermentation broth is a difficult task. In this work, the application of cation exchange resin for the separation of 1,3-propanediol from model aqueous solution was examined. The best effect of separation of 1,3-propanediol from glycerol using sorption method was obtained for H+ resin form, although the observed partition coefficient of 1,3-propanediol was low. On the basis of the results of the sorption of 1,3-propanediol, the ionic forms of the resin were selected and used in the next experiments (H+, Ca2+, Ag+, Na+, Pb2+, Zn2+. The best results in ion exchange chromatography were obtained for cation exchange resin in H+ and Ca2+ form. The use of smaller particle size of resin and a longer length of the column allows to obtain better separation of mixtures.

  14. Radiation-chemical behaviour of Rh(4) in perchlorate and nitrate solutions

    International Nuclear Information System (INIS)

    Vladimirova, M.V.; Khalkina, E.V.

    1994-01-01

    Kinetic of rhodium(4) reduction in the process of radiolysis in solutions of perchloric (0.6-3.2 mol/l) and nitric (2-9 mol/l) acids with rhodium (4) concentration (0.4-5)x10 -3 mol/l has been studied. Irradiation of the solutions was carried out using a 60 Co source with dose rate of 3.5 Gy/s in the absorbed dose range up to 10 4 Gy. A mechanism of radiation-chemical reduction of rhodium(4) in perchloric and nitric acid solutions in suggested, the reason for high radiation-chemical yields of reduction is discussed. 7 refs.; 9 figs.; 2 tabs

  15. Physical and chemical stability of pemetrexed in infusion solutions.

    Science.gov (United States)

    Zhang, Yanping; Trissel, Lawrence A

    2006-06-01

    Pemetrexed is a multitargeted, antifolate, antineoplastic agent that is indicated for single-agent use in locally advanced or metastatic non-small-cell lung cancer after prior chemotherapy and in combination with cisplatin for the treatment of malignant pleural mesothelioma not treatable by surgery. Currently, there is no information on the long-term stability of pemetrexed beyond 24 hours. To evaluate the longer-term physical and chemical stability of pemetrexed 2, 10, and 20 mg/mL in polyvinyl chloride (PVC) bags of dextrose 5% injection and NaCl 0.9% injection. Triplicate samples of pemetrexed were prepared in the concentrations and infusion solutions required. Evaluations for physical and chemical stability were performed initially and over 2 days at 23 degrees C protected from light and exposed to fluorescent light, and over 31 days of storage at 4 degrees C protected from light. Physical stability was assessed using turbidimetric and particulate measurement as well as visual observation. Chemical stability was evaluated by HPLC. All pemetrexed solutions remained chemically stable, with little or no loss of pemetrexed over 2 days at 23 degrees C, protected from light and exposed to fluorescent light, and over 31 days of storage at 4 degrees C, protected from light. The room temperature samples were physically stable throughout the 48 hour test period. However, pemetrexed admixtures developed large numbers of microparticulates during refrigerated storage exceeding 24 hours. Pemetrexed is chemically stable for 2 days at room temperature and 31 days refrigerated in dextrose 5% injection and NaCl 0.9% injection. However, substantial numbers of microparticulates may form in pemetrexed diluted in the infusion solutions in PVC bags, especially during longer periods of refrigerated storage. Limiting the refrigerated storage period to the manufacturer-recommended 24 hours will limit particulate formation.

  16. Chemical solution deposition techniques for epitaxial growth of complex oxides

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Koster, G.; Huijben, Mark; Rijnders, G.

    2015-01-01

    The chemical solution deposition (CSD) process is a wet-chemical process that is employed to fabricate a wide variety of amorphous and crystalline oxide thin films. This chapter describes the typical steps in a CSD process and their influence on the final microstructure and properties of films, and

  17. Characterizing Slow Chemical Exchange in Nucleic Acids by Carbon CEST and Low Spin-Lock Field R1ρ NMR Spectroscopy

    Science.gov (United States)

    Zhao, Bo; Hansen, Alexandar L.; Zhang, Qi

    2016-01-01

    Quantitative characterization of dynamic exchange between various conformational states provides essential insights into the molecular basis of many regulatory RNA functions. Here, we present an application of nucleic-acid-optimized carbon chemical exchange saturation transfer (CEST) and low spin-lock field R1ρ relaxation dispersion (RD) NMR experiments in characterizing slow chemical exchange in nucleic acids that is otherwise difficult if not impossible to be quantified by the ZZ-exchange NMR experiment. We demonstrated the application on a 47-nucleotide fluoride riboswitch in the ligand-free state, for which CEST and R1ρ RD profiles of base and sugar carbons revealed slow exchange dynamics involving a sparsely populated (p ~ 10%) and shortly lived (τ ~ 10 ms) NMR “invisible” state. The utility of CEST and low spin-lock field R1ρ RD experiments in studying slow exchange was further validated in characterizing an exchange as slow as ~60 s−1. PMID:24299272

  18. Characterizing slow chemical exchange in nucleic acids by carbon CEST and low spin-lock field R(1ρ) NMR spectroscopy.

    Science.gov (United States)

    Zhao, Bo; Hansen, Alexandar L; Zhang, Qi

    2014-01-08

    Quantitative characterization of dynamic exchange between various conformational states provides essential insights into the molecular basis of many regulatory RNA functions. Here, we present an application of nucleic-acid-optimized carbon chemical exchange saturation transfer (CEST) and low spin-lock field R(1ρ) relaxation dispersion (RD) NMR experiments in characterizing slow chemical exchange in nucleic acids that is otherwise difficult if not impossible to be quantified by the ZZ-exchange NMR experiment. We demonstrated the application on a 47-nucleotide fluoride riboswitch in the ligand-free state, for which CEST and R(1ρ) RD profiles of base and sugar carbons revealed slow exchange dynamics involving a sparsely populated (p ~ 10%) and shortly lived (τ ~ 10 ms) NMR "invisible" state. The utility of CEST and low spin-lock field R(1ρ) RD experiments in studying slow exchange was further validated in characterizing an exchange as slow as ~60 s(-1).

  19. Chemical studies on polyaniline titanotungstate as a new composite cation exchanger and its analytical applications for removal of cesium from aqueous solutions

    International Nuclear Information System (INIS)

    Ibrahim, M.K.M.

    2012-01-01

    Polyaniline titanotungstate has been synthesized by incorporation of organic polymer polyaniline into the inorganic precipitate of titanotungstate. This material was characterized using IR, X-Ray, SEM and DTA-TGA analysis. The influences of initial concentration of metal ions, particle size and temperature have been reported. The material stability was investigated in water, acids, alkaline solutions, and at high temperature up to 850 degree C. Ion-exchange capacity and distribution coefficients (K d ) for ten metal ions have been determined. It was found that the polyaniline titanotungstate has high affinity and high selectivity for Cs + . The material has high separation for Cs + ion from other metal ions. The comparison of composite (PATiW) and inorganic material (TiW) was studied and indicated that the composite material is better than the inorganic one in selectivity of Cs + . Thermodynamic parameter of Cs + exchange process, such as changes in Gibbs free energy (δG o ), enthalpy (δH o ), and entropy (δS o ) have been calculated. It was found that numerical value of δG decrease with an increase in temperature,indicating that the sorption reaction of adsorbent was spontaneous and more favorable at higher temperature. The positive value of δH o corresponds to the endothermic nature of sorption processes and suggested that chemisorptions were the predominant mechanism. A comparison of kinetic models applied to the sorption rate data of Cs + was evaluated for the pseudo first-order, pseudo second-order, homogeneous particle diffusion, shell model and intraparticle diffusion models. The results showed that Cs + is sorption onto PATiW and TiW with particle diffusion mechanism. Self diffusion coefficient (D i ), Activation energy (Ea) and entropy (δS * ) of activation were also computed from thelinearized form of Arrhenius equation. Column studies in acid and alkaline solutions were studied. A kinetic study for removal cesium from milk was investigated.

  20. Chemical uranium enrichment with ion exchanger

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Onitsuka, Hatsuki; Obanawa, Heiichiro

    1991-01-01

    The uranium enrichment by using ion-exchange has been studied and developed since 1972. The ion-exchange rate has been improved approx. 3000 times and the electron exchange reaction, which occurs with ion-exchange reaction, was also accelerated with catalyst. Flow disturbance in a ion-exchange column has been fully studied and the value of turbulence has been reduced to 150μm. These results allowed us to design a very fine separation column, in which about 10000 stages can be obtained even when the column is more than 1 m in diameter. In the course of the development, a self-regenerating reaction between the redox agents was discovered and incorporated into the process, and has resulted in a reduction of 70 % in the separation energy requirement. (author)

  1. Chemical nickel plating in tartrate solutions with borohydride reducing agent

    International Nuclear Information System (INIS)

    Plokhov, V.A.

    1986-01-01

    The authors investigate the influence of various factors on the rate of chemical nickel plating in strongly alkaline tartrate solutions with a borohydride reducing agent. After 30 min of the process of nickel plating, the final concentration of sodium borohydride decreases to 0.26 g/liter, leading to stoppage of the process. The nickel plating process can be intensified by increasing the concentration of sodium hydroxide in the solution, suppressing hydrolysis of borohydride, and also by introducing additives which suppress hydrolysis of borohydride. For chemical deposition of nickel-boron coatings from tartrate solutions the authors recommend the following composition (g/liter): nickel chloride 15-25, Rochelle salt 450-550, sodium hydroxide 140-160, sodium borohydride 0.8-1.0, thallium nitrate 0.003-0.008. The process temperature is 92-95 C, and the deposition rate is 4-6 um/h

  2. Speciation and isotopic exchangeability of nickel in soil solution.

    Science.gov (United States)

    Nolan, Annette L; Ma, Yibing; Lombi, Enzo; McLaughlin, Mike J

    2009-01-01

    Knowledge of trace metal speciation in soil pore waters is important in addressing metal bioavailability and risk assessment of contaminated soils. In this study, free Ni(2+) activities were determined in pore waters of long-term Ni-contaminated soils using a Donnan dialysis membrane technique. The pore water free Ni(2+) concentration as a percentage of total soluble Ni ranged from 21 to 80% (average 53%), and the average amount of Ni bound to dissolved organic matter estimated by Windermere Humic Aqueous Model VI was < or = 17%. These data indicate that complexed forms of Ni can constitute a significant fraction of total Ni in solution. Windermere Humic Aqueous Model VI provided reasonable estimates of free Ni(2+) fractions in comparison to the measured fractions (R(2) = 0.83 with a slope of 1.0). Also, the isotopically exchangeable pools (E value) of soil Ni were measured by an isotope dilution technique using water extraction, with and without resin purification, and 0.1 mol L(-1) CaCl(2) extraction, and the isotopic exchangeability of Ni species in soil water extracts was investigated. The concentrations of isotopically non-exchangeable Ni in water extracts were <9% of total water soluble Ni concentrations for all soils. The resin E values expressed as a percentage of the total Ni concentrations in soil showed that the labile Ni pool ranged from 0.9 to 32.4% (average 12.4%) of total soil Ni. Therefore the labile Ni pool in these well-equilibrated contaminated soils appears to be relatively small in relation to total Ni concentrations.

  3. Kinetics and mechanism of photoaccelerated isotope exchange between U(VI) and U(IV) in oxalate solutions

    International Nuclear Information System (INIS)

    Shaban, I.S.; Owreit, M.F.; Nikitenko, S.I.

    1992-01-01

    A kinetic study of thermal and photoaccelerated U(IV)-U(VI) isotope exchange has been carried out in oxalate solutions at 11-40 deg C. The rate and quantum yield were determined as a function of U(IV), U(VI) and oxalate concentration, wavelength of incident light, temperature and absorbed dose of γ-radiation. The kinetic equations for thermal and photoaccelerated exchange have been obtained. It was assumed that the mechanism of exchange involves formation of U(V) as an intermediate, followed by slow exchange between U(V) and U(IV). The isokinetic dependence confirms the identity of limiting stages for thermal and photostimulated exchange. The upper component of photoexcited T 1 level of uranyl is supposed to be the most reactive in the process of U(V) generation. It was observed that the small doses of γ-radiation evoke the acceleration of isotope exchange, however, at D>100 krad the rate of exchange is reduced to the level of thermal exchange. (author) 8 refs.; 4 figs.; 2 tabs

  4. Chemical exchange in novel spirobicyclic zwitterionic Janovsky complexes using dynamic 1H NMR spectroscopy.

    Science.gov (United States)

    Culf, A S; Cuperlović-Culf, M; Ouellette, R J

    2009-02-01

    Highly coloured Janovsky complexes have been known for over 120 years, being used in many colourimetric analytical procedures. In this present study, two novel and stable nitrocyclohexadienyl spirobicyclic, zwitterionic Janovsky anionic hydantoin sigma-complexes, rac-1,3-diisopropyl-6-nitro-2,4-dioxo-1,3-diazaspiro[4.5]deca-6,9-dien-8-ylideneazinate, ammonium internal salt (1) and 1,3-diisopropyl-2,4-dioxo-1,3-diazaspiro[4.5]deca-6,9-dien-8-ylideneazinate, ammonium internal salt (2) have been prepared and characterised by NMR, electrospray ionization mass spectrometry (ESI-MS) and UV/visible methods. For the p-mononitro-substituted complex (2), we discovered chemical exchange behaviour using 1D saturation transfer and 2D exchange spectroscopy (EXSY) (1)H NMR techniques. The coalescence temperature was determined to be 62 degrees C in d(3)-acetonitrile. Analysis of these data provided a Gibbs free energy of activation, DeltaG double dagger, of + 67 kJ mole(-1), a rate constant, k, coalescence of 220 Hz and an equilibrium constant, K(eqm), of 0.98 as estimates of the exchange process in this solvent. Of the two mechanisms proposed for this fluxional behaviour, ring opening to a substituted benzene or proton exchange, a further theoretical modelling study of 1D (1)H NMR spectra was able to confirm that simple proton exchange between the two nitrogen sites of the hydantoin ring provided an accurate simulation of the observed experimental evidence. Interestingly, the o,p-dinitro-substituted complex (1) did not show any chemical exchange behaviour up to 150 degrees C in d(3)-acetonitrile (to 75 degrees C) and d(6)-dimethyl sulfoxide (DMSO). Molecular modelling at the MM2 level suggests that steric collisions of an N-acyl isopropyl substituent of the hydantoin ring with the ortho-nitro group of the spirofused cyclohexadienyl ring prevents the proposed proton exchange mechanism occurring in this case. 2008 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.

  5. Preparation of SiO2-KCoFC composite ion-exchanger for removal of Cs in the soil decontamination waste solution

    International Nuclear Information System (INIS)

    Lee, Jung Joon; Moon, Jei kwon; Lee, Kune Woo

    2009-01-01

    The soil decontamination process has been developed for remediate the soil wastes excavated from the TRIGA research reactor sites. Even though the process was proven to be very effective for decontaminate the radioactive nuclides such as cesium and cobalt, the secondary spent solution should be treated with an appropriate method to minimize the waste volume. There are mainly two components in the spent decontamination solution of Cs and Co. The Co in the waste solution can be removed easily by precipitation under a basic condition. However, since the Cs is hardly removed by precipitation, an appropriate selective removal method should be employed. In this study, an inorganic composite ion exchanger of SiO 2 -KCoFC was prepared by sol-gel method for a removal of Cs in the decontamination waste solution. An optimum condition for a preparation of the composite ion exchanger and the adsorption performances of the prepared composite ion exchangers were evaluated

  6. Electrochemically Controlled Ion-exchange Property of Carbon Nanotubes/Polypyrrole Nanocomposite in Various Electrolyte Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Daiwon [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; Lin, Yuehe [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States

    2016-09-15

    The electrochemically controlled ion-exchange properties of multi-wall carbon nanotube (MWNT)/electronically conductive polypyrrole (PPy) polymer composite in the various electrolyte solutions have been investigated. The ion-exchange behavior, rate and capacity of the electrochemically deposited polypyrrole with and without carbon nanotube (CNT) were compared and characterized using cyclic voltammetry (CV), chronoamperometry (CA), electrochemical quartz crystal microbalance (EQCM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It has been found that the presence of carbon nanotube backbone resulted in improvement in ion-exchange rate, stability of polypyrrole, and higher anion loading capacity per PPy due to higher surface area, electronic conductivity, porous structure of thin film, and thinner film thickness providing shorter diffusion path. Chronoamperometric studies show that electrically switched anion exchange could be completed more than 10 times faster than pure PPy thin film. The anion selectivity of CNT/PPy film is demonstrated using X-ray photoelectron spectroscopy (XPS).

  7. Removal of tartrazine from aqueous solutions by strongly basic polystyrene anion exchange resins.

    Science.gov (United States)

    Wawrzkiewicz, Monika; Hubicki, Zbigniew

    2009-05-30

    The removal of tartrazine from aqueous solutions onto the strongly basic polystyrene anion exchangers of type 1 (Amberlite IRA-900) and type 2 (Amberlite IRA-910) was investigated. The experimental data obtained at 100, 200, 300 and 500 mg/dm(3) initial concentrations at 20 degrees C were applied to the pseudo-first order, pseudo-second order and Weber-Morris kinetic models. The calculated sorption capacities (q(e,cal)) and the rate constant of the first order adsorption (k(1)) were determined. The pseudo-second order kinetic constants (k(2)) and capacities were calculated from the plots of t/q(t) vs. t, 1/q(t) vs. 1/t, 1/t vs. 1/q(t) and q(t)/t vs. q(t) for type 1, type 2, type 3 and type 4 of the pseudo-second order expression, respectively. The influence of phase contact time, solution pH and temperature on tartrazine removal was also discussed. The FTIR spectra of pure anion exchangers and those loaded with tartrazine were recorded, too.

  8. Adsorption behaviour and kinetics of exchange of Zn2+ and Eu3+ ions on a composite ion exchanger

    International Nuclear Information System (INIS)

    Morcos, T.N.

    2007-01-01

    Equilibria and kinetics of exchange of both Zn2+ and Eu3+ ions on a composite ion-exchanger, cobalt hexacyanocobaltate (III) (CoHCC) incorporated in polyacrylonitrile (PAN), has been studied. The apparent capacity of CoHCC-PAN for Zn2+ and Eu3+ was determined and found to be 0.353 and 0.69 meq/g, respectively. The higher capacity for Eu3+ ions than that for Zn2+ ions is due to the higher electrostatic interaction strength of the higher charge ion with the surface. Freundlich and Langmiur adsorption isotherms were used to investigate solute (Zn2+ or Eu3+) exchange phenomenon at the liquid/solid interface. The results indicated that both Langmuir and Freundlich isotherms fit well for both Zn2+ and Eu3+. Sorption data have been also treated with the Dubinin-Radushkevich equation. The kinetics of Zn2+ or Eu3+ sorption on the composite seems to show that the reaction was proceed via two steps. The first one was fast and probably due to adsorption followed by a slow exchange reaction. In view of the data obtained on the effect of particle size and metal ion concentrations on the rate of exchange reaction, it is concluded that the mechanism for both ions was chemical control. Generally, it seems that there are two exchange sites chemically equivalent but present in pores of different sizes which lead to different degrees of dehydration of the ions sorbed on the two sites

  9. Solution exchange corrosion testing with the glass-zeolite ceramic waste form in demineralized water at 900C

    International Nuclear Information System (INIS)

    Simpson, L. J.

    1998-01-01

    A ceramic waste form of glass-bonded zeolite is being developed for the long-term disposition of fission products and transuranic elements in wastes from the U.S. Department of Energy's spent nuclear fuel conditioning activities. Solution exchange corrosion tests were performed on the ceramic waste form and its potential base constituents of glass, zeolite 5A, and sodalite as part of an effort to qualify the ceramic waste form for acceptance into the Civilian Radioactive Waste Management System. Solution exchange tests were performed at 90 C by replacing 80 to 90% of the leachate with fresh demineralized water after set time intervals. The results from these tests provide information about corrosion mechanisms and the ability of the ceramic waste form and its constituent materials to retain waste components. The results from solution exchange tests indicate that radionuclides will be preferentially retained in the zeolites without the glass matrix and in the ceramic waste form, with respect to cations like Li, K, and Na. Release results have been compared for simulated waste from candidate ceramic waste forms with zeolite 5A and its constituent materials to determine the corrosion behavior of each component

  10. Exchange reactions in the systems of alkali metal, silver and thallium, sulfates, niobates and tantalates

    International Nuclear Information System (INIS)

    Belyaev, I.N.; Lupejko, T.G.; Nalbandyan, V.B.; Abanina, E.V.

    1978-01-01

    Investigated are exchange interactions in diagonal cross sections of twenty triple mutual systems with A and A' cations and SO 4 and MO 3 anions where A and A'-Li, Na, K, Ag, Tl, M-Nb, Ta using the methods of X-ray phase, chemical and differential thermal analyses. Exchange reaction between crystal complex oxide and melted salt are effective synthesis method. These reactions in particular permitted to obtain pure AgNbO 3 , AgTaO 3 and their solid solutions at temperatures hundreds degrees lower than in displacement reactions. Equilibrium samples of AMO 3 -A'MO 3 systems, continuous or discontinuous solid solutions, compounds (except NaMO 3 -KMO 3 , and also LiTaO 3 -KTaO 3 ) are formed in exchange reactions when there is sulfate shortage. Thus, exchange reactions can be applied for solid solution synthesis, and also for phase diagram study

  11. Efficient parallel implementations of QM/MM-REMD (quantum mechanical/molecular mechanics-replica-exchange MD) and umbrella sampling: isomerization of H2O2 in aqueous solution.

    Science.gov (United States)

    Fedorov, Dmitri G; Sugita, Yuji; Choi, Cheol Ho

    2013-07-03

    An efficient parallel implementation of QM/MM-based replica-exchange molecular dynamics (REMD) as well as umbrella samplings techniques was proposed by adopting the generalized distributed data interface (GDDI). Parallelization speed-up of 40.5 on 48 cores was achieved, making our QM/MM-MD engine a robust tool for studying complex chemical dynamics in solution. They were comparatively used to study the torsional isomerization of hydrogen peroxide in aqueous solution. All results by QM/MM-REMD and QM/MM umbrella sampling techniques yielded nearly identical potentials of mean force (PMFs) regardless of the particular QM theories for solute, showing that the overall dynamics are mainly determined by solvation. Although the entropic penalty of solvent rearrangements exists in cisoid conformers, it was found that both strong intermolecular hydrogen bonding and dipole-dipole interactions preferentially stabilize them in solution, reducing the torsional free-energy barrier at 0° by about 3 kcal/mol as compared to that in gas phase.

  12. Chemical milling solution produces smooth surface finish on aluminum

    Science.gov (United States)

    Lorenzen, H. C.

    1966-01-01

    Elementary sulfur mixed into a solution of caustic soda and salts produces an etchant which will chemically mill end-grain surfaces on aluminum plate. This composition results in the least amount of thickness variation and pitting.

  13. Intraparticle diffusion of rare earths in porous ion exchanger rounding by EDTA solution

    International Nuclear Information System (INIS)

    Ling Daren; Xie Weije

    1991-01-01

    The self-diffusion of rate earth (RE) isotopes in porous cation exchangers with various radii or different pore structures rounding by EDTA solution was studied. The intraparticle effective diffusivity De was calculated by Boyd's method and Kataoka's bi-disperse pore model, and through further calculation the solid phase diffusivity Dg and macropore diffusivity Dp were also obtained. (author)

  14. Processing of indium (III solutions via ion exchange with Lewatit K-2621 resin

    Directory of Open Access Journals (Sweden)

    López Díaz-Pavón, Adrián

    2014-06-01

    Full Text Available The processing of indium(III-hydrochloric acid solutions by the cationic ion exchange Lewatit K-2621 resin has been investigated. The influence of several variables such as the hydrochloric acid and metal concentrations in the aqueous solution and the variation of the amount of resin added has been studied. Moreover, a kinetic study performed in the uptake of indium(III by Lewatit K-2621, shows that either the film-diffusion and the particle-diffusion models fit the ion exchange process onto the resin, depending upon the initial metal concentration in the aqueous solution. The loaded resin could be eluted by HCl solutions at 20 °C.Se ha investigado el tratamiento de disoluciones de ácido clorhídrico conteniendo indio(III mediante la resina de cambio catiónico Lewatit K-2621. Las variables ensayadas han sido las concentraciones de ácido y de metal en la disolución acuosa y la cantidad de resina empleada en el tratamiento de dichas disoluciones. Asimismo, se ha llevado a cabo un estudio cinético del proceso de intercambio catiónico entre el indio(III y la resina Lewatit K-2621. Este estudio muestra que el proceso de intercambio responde a un mecanismo de difusión en la disolución o en la partícula de resina dependiendo de la concentración inicial del metal en el medio acuoso. El metal cargado en la resina puede ser eluido con disoluciones de ácido clorhídrico a 20 °C.

  15. A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Vinodh, Rajangam; Ilakkiya, Arjunan; Elamathi, Swaminathan [Department of Chemistry, Anna University Chennai, Sardar Patel Road, Chennai 600025, Tamil Nadu (India); Sangeetha, Dharmalingam, E-mail: sangeetha@annauniv.ed [Department of Chemistry, Anna University Chennai, Sardar Patel Road, Chennai 600025, Tamil Nadu (India)

    2010-02-25

    We look forward for an eco-friendly hydrocarbon polymer with higher molecular weight for the preparation of an anion exchange membrane. Polystyrene ethylene butylene polystyrene (PSEBS) was chosen as the polymer matrix. The anion exchange membrane was prepared from PSEBS tri-block co-polymer and then the properties were characterized for alkaline fuel cell application. The preparation of anion exchange polymer involved two steps namely chloromethylation and quaternization. The anion exchange membrane with high conductivity has been prepared by introducing quaternary ammonium groups in to the polymer. Finally, the membrane was prepared using solution casting method. The solution casting method yields highly hydrophilic membranes with uniform structure that were suitable for electrochemical applications. The efficiency of the entrapment was monitored by swelling ratio, chemical stability and ion exchange measurement. The characteristic structural properties of the membrane were investigated by FT-IR spectroscopy and {sup 1}H NMR spectroscopy. The thermal stability of the membrane was characterized by TGA, DSC and DMA (dynamic mechanical analysis). The prepared uniform electrolyte membrane in this study has high thermal and chemical stability. The surface morphology and elemental composition of the quaternized PSEBS was determined by SEM-EDXA techniques, respectively. The measured hydroxyl ion conductivity of the synthesized alkaline PSEBS polymer electrolyte membrane showed ionic conductivity in the range of 10{sup -3} S/cm in deionized water at room temperature. It was found that the substitution provided a flexible, chemically and thermally stable membrane. Hence, the membrane will have potential application in the alkaline fuel cell.

  16. A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene: Synthesis and characterization

    International Nuclear Information System (INIS)

    Vinodh, Rajangam; Ilakkiya, Arjunan; Elamathi, Swaminathan; Sangeetha, Dharmalingam

    2010-01-01

    We look forward for an eco-friendly hydrocarbon polymer with higher molecular weight for the preparation of an anion exchange membrane. Polystyrene ethylene butylene polystyrene (PSEBS) was chosen as the polymer matrix. The anion exchange membrane was prepared from PSEBS tri-block co-polymer and then the properties were characterized for alkaline fuel cell application. The preparation of anion exchange polymer involved two steps namely chloromethylation and quaternization. The anion exchange membrane with high conductivity has been prepared by introducing quaternary ammonium groups in to the polymer. Finally, the membrane was prepared using solution casting method. The solution casting method yields highly hydrophilic membranes with uniform structure that were suitable for electrochemical applications. The efficiency of the entrapment was monitored by swelling ratio, chemical stability and ion exchange measurement. The characteristic structural properties of the membrane were investigated by FT-IR spectroscopy and 1 H NMR spectroscopy. The thermal stability of the membrane was characterized by TGA, DSC and DMA (dynamic mechanical analysis). The prepared uniform electrolyte membrane in this study has high thermal and chemical stability. The surface morphology and elemental composition of the quaternized PSEBS was determined by SEM-EDXA techniques, respectively. The measured hydroxyl ion conductivity of the synthesized alkaline PSEBS polymer electrolyte membrane showed ionic conductivity in the range of 10 -3 S/cm in deionized water at room temperature. It was found that the substitution provided a flexible, chemically and thermally stable membrane. Hence, the membrane will have potential application in the alkaline fuel cell.

  17. Error estimation and global fitting in transverse-relaxation dispersion experiments to determine chemical-exchange parameters

    International Nuclear Information System (INIS)

    Ishima, Rieko; Torchia, Dennis A.

    2005-01-01

    Off-resonance effects can introduce significant systematic errors in R 2 measurements in constant-time Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation dispersion experiments. For an off-resonance chemical shift of 500 Hz, 15 N relaxation dispersion profiles obtained from experiment and computer simulation indicated a systematic error of ca. 3%. This error is three- to five-fold larger than the random error in R 2 caused by noise. Good estimates of total R 2 uncertainty are critical in order to obtain accurate estimates in optimized chemical exchange parameters and their uncertainties derived from χ 2 minimization of a target function. Here, we present a simple empirical approach that provides a good estimate of the total error (systematic + random) in 15 N R 2 values measured for the HIV protease. The advantage of this empirical error estimate is that it is applicable even when some of the factors that contribute to the off-resonance error are not known. These errors are incorporated into a χ 2 minimization protocol, in which the Carver-Richards equation is used fit the observed R 2 dispersion profiles, that yields optimized chemical exchange parameters and their confidence limits. Optimized parameters are also derived, using the same protein sample and data-fitting protocol, from 1 H R 2 measurements in which systematic errors are negligible. Although 1 H and 15 N relaxation profiles of individual residues were well fit, the optimized exchange parameters had large uncertainties (confidence limits). In contrast, when a single pair of exchange parameters (the exchange lifetime, τ ex , and the fractional population, p a ), were constrained to globally fit all R 2 profiles for residues in the dimer interface of the protein, confidence limits were less than 8% for all optimized exchange parameters. In addition, F-tests showed that quality of the fits obtained using τ ex , p a as global parameters were not improved when these parameters were free to fit the R

  18. Kinetics of boron ions sorption from solution by inorganic anion exchanger of MNH type

    International Nuclear Information System (INIS)

    Leont'eva, G.V.

    1990-01-01

    By the method of restricted volume in case of boron excess in solution kinetics of boron sorption by inorganic anion-exchanger of the composition (Mg 0.55 Ni 0.45 )(OH) 2 has been studied. The sorption was carried out from solution containing Na + , K + , Ca 2+ , Mg 2+ , Cl - , SO 4 2- , CO 3 2- , HCO 3 at 283, 293, 303 and 313 K and pH 8.1, while the density of solution was 1225 kg/m 3 . The sorption mechanism was considered. It is shown that heterogeneity of the character of kinetic curves is caused by the change in the mechanism of limiting stages of the sorption

  19. Small Column Ion Exchange Analysis for Removal of Cesium from SRS Low Curie Salt Solutions Using Crystalline Silicotitanate (CST) Resin

    International Nuclear Information System (INIS)

    ALEMAN, SEBASTIAN

    2004-01-01

    Savannah River Technology Center (SRTC) researchers modeled ion exchange removal of cesium from dissolved salt waste solutions. The results assist in evaluating proposed configurations for an ion exchange process to remove residual cesium from low curie waste streams. A process for polishing (i.e., removing small amounts) of cesium may prove useful should supernate draining fail to meet the Low Curie Salt (LCS) target limit of 0.1 Ci of Cs-137 per gallon of salt solution. Cesium loading isotherms and column breakthrough curves for Low Curie dissolved salt solutions were computed to provide performance predictions for various column designs

  20. Effect of the chemical structure of anion exchange resin on the adsorption of humic acid: behavior and mechanism.

    Science.gov (United States)

    Shuang, Chendong; Wang, Jun; Li, Haibo; Li, Aimin; Zhou, Qing

    2015-01-01

    Polystyrenic (PS) anion-exchange resin and polyacrylic (PA) anion-exchange resin were used to investigate the effect of resin chemical structure on the adsorption of humic acid (HA). Due to the rearrangement of HA to form layers that function as barricades to further HA diffusion, PS resin exhibited 12.4 times slower kinetics for the initial adsorption rate and 8.4 times for the diffusion constant in comparison to that of the PA resin. An HA layer and a spherical cluster of HA can be observed on the surface of the PS and PA resins after adsorption, respectively. The considerable difference in HA adsorption between the PS and PA resins was due to the difference in molecule shape for interaction with different resin structures, which can essentially be explained by the hydrophobicity and various interactions of the PS resin. A given amount of HA occupies more positively charged sites and hydrophobic sites on the PS resin than were occupied by the same amount of HA on the PA resin. Increased pH resulted in an increase of HA adsorption onto the PA resin but a decrease in adsorption onto PS resin, as the non-electrostatic adsorption led to electrostatic repulsion between the HA attached to the resin and the HA dissolved in solution. These results suggest higher rates of adsorption and higher regeneration efficiency for interaction of HA with more hydrophilic anion exchange materials. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Chemicals in Household Products: Problems with Solutions

    Science.gov (United States)

    Glegg, Gillian A.; Richards, Jonathan P.

    2007-12-01

    The success of a regulatory regime in decreasing point-source emissions of some harmful chemicals has highlighted the significance of other sources. A growing number of potentially harmful chemicals have been incorporated into an expanding range of domestic household products and are sold worldwide. Tighter regulation has been proposed, and the European Commission has introduced the Regulation on the Registration, Evaluation, and Authorisation of Chemicals to address this concern. However, it is clear that in addition to the regulation, there is a potential to effect change through retailer and consumer attitudes and behaviours. Interviews were conducted with 7 key stakeholder groups to identify critical issues, which were then explored using a public survey questionnaire (1,008 respondents) and 8 subsequent focus groups. The findings demonstrated that the issue of chemicals in products is of concern to consumers for reasons of personal health rather than environmental protection. Key obstacles to the wider purchase of “green-alternative” products included perceived high cost and poor performance, lack of availability of products, and poor information concerning such products. Although improved regulation was seen as part of the solution, consumers must also play a role. It was clear from this study that consumers are not currently able to make informed choices about the chemicals they use but that they would be receptive to moving toward a more sustainable use of chemicals in the future if empowered to do so.

  2. Absorption of carbon dioxide and isotope exchange rate of carbon in a reaction system between carbon dioxide and carbamic acid

    International Nuclear Information System (INIS)

    Takeshita, Kenji; Kitamoto, Asashi

    1985-01-01

    The performance of isotope separation of carbon-13 by chemical exchange between carbon dioxide and carbamic acid was studied. The working fluid used in the study was a solution of DNBA, (C 4 H 9 ) 2 NH and n-octane mixture. Factors related to the isotope exchange rate were measured, such as the absorption rate of carbon dioxide into the solution of DNBA and n-octane, the isotope exchange rate and the separation factor in the reaction between CO 2 and carbamic acid. The absorption of CO 2 into the working fluid was the sum of chemical absorption by DNBA and physical absorption by n-octane. The absorption of carbon dioxide into the working fluid was negligible at temperatures over 90 0 C, but increased gradually at lower temperatures. Carbon dioxide was absorbed into DNBA by chemical absorption, and DNBA was converted to carbamic acid by the reaction. The reaction for synthesis and decomposition of carbamic acid was reversible. The separation factor in equilibrium reached a large value at lower temperatures. The isotope exchange rate between gas and liquid was proportional to the product of the concentration of carbamic acid and the concentration of CO 2 by physical absorption. The isotope separation of carbon by chemical exchange reaction is better operated under the conditions of lower temperature and higher pressure. (author)

  3. A comparison of chemical reference materials for solution calorimeters.

    Science.gov (United States)

    Ramos, Rita; Gaisford, Simon; Buckton, Graham; Royall, Paul G; Yff, Barbara T S; O'Neill, Michael A A

    2005-08-11

    Solution calorimeters are based on semi-adiabatic or isothermal heat-conduction principles and differ in the way they record data. They also have different measuring sensitivities and require different quantities of solute and solvent. As such, the choice of chemical test substance is not straightforward. Usually the dilution of KCl is recommended; it is possible to purchase a reference sample of KCl that has a certified enthalpy of solution and this standard material is usually used to test semi-adiabatic instruments. Here, we review the suitability of a range of chemical test substances (KCl, sucrose and Tris) for an isothermal heat-conduction solution calorimeter. It was found that KCl was not the best test material because its relatively high enthalpy of solution (DeltasolH) necessitated the use of small samples (2 mg), resulting in a relatively large standard deviation (sigman-1) in the values recorded (DeltasolH=17.14+/-0.49 kJ mol-1); furthermore, KCl data must be corrected to account for the effect of dilution, although the correction was found to be small (0.07 kJ mol-1) under the experimental conditions employed here. Sucrose appears to be a much more robust test material for isothermal heat-conduction instruments because its lower enthalpy of solution allows the use of much larger samples (20 mg), which minimises experimental errors. The DeltasolH value returned (6.14+/-0.08 kJ mol-1) is in excellent agreement with the literature. It is also cheap, readily available and requires minimal preparation although its widespread use would require the preparation of a certified reference sample.

  4. Synthesis and Characterization of Silicon Titanate as Cation Exchanger and Their Use in the Treatment of Radioactive Liquid Waste

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; Belacy, N.; Mohamed, D.A.; Abou-Mesalam, M.M.

    1999-01-01

    Anew class of inorganic ion exchanger called crystalline silicon titanates has excellent chemical and radiation stability. The materials exhibited high selectivity for the ion exchange of cesium, strontium and several other radionuclides from highly acidic solutions. The ion exchange capacity was determined for Na +, Cs +, Co 2+ and Sr 2+ ions and found to be 1.17 , 1.9, 1.38 and 1.52 meq./g, respectively. Besides, the drying temperature of silicon titanates have a profound effect on the ion exchange capacities and distribution coefficient values of the above mentioned cations. Moreover, the studied results of distribution coefficient indicating the ability of separation of these radionuclides from radwaste solutions

  5. Fluctuation theory of solutions applications in chemistry, chemical engineering, and biophysics

    CERN Document Server

    Smith, Paul E

    2013-01-01

    There are essentially two theories of solutions that can be considered exact: the McMillan-Mayer theory and Fluctuation Solution Theory (FST). The first is mostly limited to solutes at low concentrations, while FST has no such issue. It is an exact theory that can be applied to any stable solution regardless of the number of components and their concentrations, and the types of molecules and their sizes. Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics outlines the general concepts and theoretical basis of FST and provides a range of applications

  6. Perturbation of longitudinal relaxation rate in rotating frame (PLRF) analysis for quantification of chemical exchange saturation transfer signal in a transient state.

    Science.gov (United States)

    Wang, Yi; Zhang, Yaoyu; Zhao, Xuna; Wu, Bing; Gao, Jia-Hong

    2017-11-01

    To develop a novel analytical method for quantification of chemical exchange saturation transfer (CEST) in the transient state. The proposed method aims to reduce the effects of non-chemical-exchange (non-CE) parameters on the CEST signal, emphasizing the effect of chemical exchange. The difference in the longitudinal relaxation rate in the rotating frame ( ΔR1ρ) was calculated based on perturbation of the Z-value by R1ρ, and a saturation-pulse-amplitude-compensated exchange-dependent relaxation rate (SPACER) was determined with a high-exchange-rate approximation. In both phantom and human subject experiments, MTRasym (representative of the traditional CEST index), ΔR1ρ, and SPACER were measured, evaluated, and compared by altering the non-CE parameters in a transient-state continuous-wave CEST sequence. In line with the theoretical expectation, our experimental data demonstrate that the effects of the non-CE parameters can be more effectively reduced using the proposed indices (  ΔR1ρ and SPACER) than using the traditional CEST index ( MTRasym). The proposed method allows for the chemical exchange weight to be better emphasized in the transient-state CEST signal, which is beneficial, in practice, for quantifying the CEST signal. Magn Reson Med 78:1711-1723, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Numerical simulation of advective-dispersive multisolute transport with sorption, ion exchange and equilibrium chemistry

    Science.gov (United States)

    Lewis, F.M.; Voss, C.I.; Rubin, Jacob

    1986-01-01

    A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)

  8. Ion exchange for treatment of industrial effluents

    International Nuclear Information System (INIS)

    Moreno Daudinot, Aurora Maria; Ge Leyva, Midalis

    2016-01-01

    The acid leaching and ammoniacal carbonate technologies of laterite respectively, are responsible for the low quality of life of the local population, the big deforested areas due to the mining tilling, the elevated contents of solids in the air and waters, as well as the chemical contamination by metals presence, the acidity or basicity of the effluents of both industries, that arrive through the river and the bay to aquifer's mantle. The ion exchange resins allow ions separation contained in low concentrations in the solutions, where the separation of these elements for solvents, extraction or another chemical methods would be costly. Technological variants are proposed in order to reduce the impact produced on the flora and the fauna, by the liquid effluents of nickel industry, by means of ion exchange resins introduction as well as the recuperation of metals and their re incorporation to the productive process. (Author)

  9. Microfluidic curved-channel centrifuge for solution exchange of target microparticles and their simultaneous separation from bacteria.

    Science.gov (United States)

    Bayat, Pouriya; Rezai, Pouya

    2018-05-21

    One of the common operations in sample preparation is to separate specific particles (e.g. target cells, embryos or microparticles) from non-target substances (e.g. bacteria) in a fluid and to wash them into clean buffers for further processing like detection (called solution exchange in this paper). For instance, solution exchange is widely needed in preparing fluidic samples for biosensing at the point-of-care and point-of-use, but still conducted via the use of cumbersome and time-consuming off-chip analyte washing and purification techniques. Existing small-scale and handheld active and passive devices for washing particles are often limited to very low throughputs or require external sources of energy. Here, we integrated Dean flow recirculation of two fluids in curved microchannels with selective inertial focusing of target particles to develop a microfluidic centrifuge device that can isolate specific particles (as surrogates for target analytes) from bacteria and wash them into a clean buffer at high throughput and efficiency. We could process micron-size particles at a flow rate of 1 mL min-1 and achieve throughputs higher than 104 particles per second. Our results reveal that the device is capable of singleplex solution exchange of 11 μm and 19 μm particles with efficiencies of 86 ± 2% and 93 ± 0.7%, respectively. A purity of 96 ± 2% was achieved in the duplex experiments where 11 μm particles were isolated from 4 μm particles. Application of our device in biological assays was shown by performing duplex experiments where 11 μm or 19 μm particles were isolated from an Escherichia coli bacterial suspension with purities of 91-98%. We envision that our technique will have applications in point-of-care devices for simultaneous purification and solution exchange of cells and embryos from smaller substances in high-volume suspensions at high throughput and efficiency.

  10. Characterization of creatine guanidinium proton exchange by water-exchange (WEX) spectroscopy for absolute-pH CEST imaging in vitro.

    Science.gov (United States)

    Goerke, Steffen; Zaiss, Moritz; Bachert, Peter

    2014-05-01

    Chemical exchange saturation transfer (CEST) enables indirect detection of small metabolites in tissue by MR imaging. To optimize and interpret creatine-CEST imaging we characterized the dependence of the exchange-rate constant k(sw) of creatine guanidinium protons in aqueous creatine solutions as a function of pH and temperature T in vitro. Model solutions in the low pH range (pH = 5-6.4) were measured by means of water-exchange (WEX)-filtered ¹H NMR spectroscopy on a 3 T whole-body MR tomograph. An extension of the Arrhenius equation with effective base-catalyzed Arrhenius parameters yielded a general expression for k(sw) (pH, T). The defining parameters were identified as the effective base-catalyzed rate constant k(b,eff) (298.15 K) = (3.009 ± 0.16) × 10⁹  Hz l/mol and the effective activation energy E(A,b,eff)  = (32.27 ± 7.43) kJ/mol at a buffer concentration of c(buffer)  = (1/15) M. As expected, a strong dependence of k(sw) on temperature was observed. The extrapolation of the exchange-rate constant to in vivo conditions (pH = 7.1, T = 37 °C) led to the value of the exchange-rate constant k(sw)  = 1499 Hz. With the explicit function k(sw) (pH, T) available, absolute-pH CEST imaging could be realized and experimentally verified in vitro. By means of our calibration method it is possible to adjust the guanidinium proton exchange-rate constant k(sw) to any desired value by preparing creatine model solutions with a specific pH and temperature. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Theoretical calculations of the thermodynamic stability of ionic substitutions in hydroxyapatite under an aqueous solution environment

    International Nuclear Information System (INIS)

    Matsunaga, Katsuyuki; Murata, Hidenobu; Shitara, Kazuki

    2010-01-01

    Defect formation energies in materials generally depend on chemical potentials determined by a chemical equilibrium condition. In particular, an aqueous solution environment is important for biomaterials such as hydroxyapatite studied here. Therefore, a methodology to obtain ionic chemical potentials under chemical equilibrium between solid and aqueous solution was introduced, and was applied to substitutional divalent cations formed via ion exchange with Ca 2+ in hydroxyapatite. The calculated ranking of the stability of substitutional cations in HAp was in good agreement with the experimentally observed trend. The present theoretical approach would be useful to explore the thermodynamic stability of defects in materials subjected to an aqueous solution environment.

  12. The influence of plutonium concentration and solution flow rate on the effective capacity of macroporous anion exchange resin

    International Nuclear Information System (INIS)

    Marsh, S.F.; Gallegos, T.D.

    1987-07-01

    The principal aqueous process used to recover and purify plutonium at the Los Alamos Plutonium Facility is anion exchange in nitric acid. Previous studies with gel-type anion exchange resin have shown an inverse relationship between plutonium concentration in the feed solution and the optimum flow rate for this process. Because gel-type resin has been replaced with macroporous resin at Los Alamos, the relationship between plutonium concentration and solution flow rate was reexamined with the selected Lewatit MP-500-FK resin using solutions of plutonium in nitric acid and in nitric acid with high levels of added nitrate salts. Our results with this resin differ significantly from previous data obtained with gel-type resin. Flow-rate variation from 10 to 80 liters per hour had essentially no effect on the measured quantities of plutonium sorbed by the macroporous resin. However, the effect of plutonium concentration in the feed solutions was pronounced, as feed solutions that contained the highest concentrations of plutonium also produced the highest resin loadings. The most notable effect of high concentrations of dissolved nitrate salts in these solutions was an increased resin capacity for plutonium at low flow rates. 16 refs., 7 figs., 2 tabs

  13. Influence of chemical heterogeneity of solid solutions on brittleness in chromium steels

    International Nuclear Information System (INIS)

    Madyanov, S.A.; Sedov, V.K.; Apaev, B.A.

    1985-01-01

    The role of chemical heterogeneity of solid solutions in formation of mechanical properties of Kh09, Kh15, Kh20, Kh19N2G5T chromium steels has been investigated. It is established that besides the known regioA of chemical heterogeneity in the vicinity of 475 deg C exists a high-temperature region (1000-1050 deg C), where maximum heteroge=- neity of chromium distribution in solid solution, is observed. Both types of chemical heterogeneity cause essential hardening of alloys, which becomes apparent in abrupt change of capability to microplastic deformation The mechanism of occurrence of the given temper brittleness consists in carbon diffusion into microvolunes enriched in carbide-forming elements

  14. Investigation of radiation-chemical behaviour of divalent palladium in perchloric acid solutions

    International Nuclear Information System (INIS)

    Vladimirova, M.V.; Kalinina, S.V.

    1988-01-01

    Gamma-radiolysis of divalent palladium in perchloric acid solutions is studied. Absorption spectra of intermediate palladium compounds formed in the irradiated solution are taken. The analysis of literature data as well as comparative analysis of the absorption spectra obtained under irradiation of palladium (2) perchloric acid solutions with absorption spectra of palladium chlorocomplexes allows to suppose that the mentioned compounds are chlorocomplexes of palladium (2) of different composition depending on HClO 4 concentration in the initial solution and absorbed radiation dose. Radiation-chemical reduction of palladium (2) up to metal is stated to take place in the whole studied range of initial concentrations of components of the system and dose rates. Kinetic dependences of metallic palladium formation are obtained. Values of radiation-chemical yields of metallic palladium formation depending on the initial concentrations of palladium (2) and perchloric acid are given. A mechanism of radiolytic reduction of palladium (2) in the investigated system is suggested based on the experimental data, and a theoretical value of the radiation-chemical yield of palladium (2) reduction being in a good agreement with experimentally found values is calculated

  15. Surface preparation process of a uranium titanium alloy, in particular for chemical nickel plating

    International Nuclear Information System (INIS)

    Henri, A.; Lefevre, D.; Massicot, P.

    1987-01-01

    In this process the uranium alloy surface is attacked with a solution of lithium chloride and hydrochloric acid. Dissolved uranium can be recovered from the solution by an ion exchange resin. Treated alloy can be nickel plated by a chemical process [fr

  16. Acceleration of Lateral Equilibration in Mixed Lipid Bilayers Using Replica Exchange with Solute Tempering.

    Science.gov (United States)

    Huang, Kun; García, Angel E

    2014-10-14

    The lateral heterogeneity of cellular membranes plays an important role in many biological functions such as signaling and regulating membrane proteins. This heterogeneity can result from preferential interactions between membrane components or interactions with membrane proteins. One major difficulty in molecular dynamics simulations aimed at studying the membrane heterogeneity is that lipids diffuse slowly and collectively in bilayers, and therefore, it is difficult to reach equilibrium in lateral organization in bilayer mixtures. Here, we propose the use of the replica exchange with solute tempering (REST) approach to accelerate lateral relaxation in heterogeneous bilayers. REST is based on the replica exchange method but tempers only the solute, leaving the temperature of the solvent fixed. Since the number of replicas in REST scales approximately only with the degrees of freedom in the solute, REST enables us to enhance the configuration sampling of lipid bilayers with fewer replicas, in comparison with the temperature replica exchange molecular dynamics simulation (T-REMD) where the number of replicas scales with the degrees of freedom of the entire system. We apply the REST method to a cholesterol and 1,2-dipalmitoyl- sn -glycero-3-phosphocholine (DPPC) bilayer mixture and find that the lateral distribution functions of all molecular pair types converge much faster than in the standard MD simulation. The relative diffusion rate between molecules in REST is, on average, an order of magnitude faster than in the standard MD simulation. Although REST was initially proposed to study protein folding and its efficiency in protein folding is still under debate, we find a unique application of REST to accelerate lateral equilibration in mixed lipid membranes and suggest a promising way to probe membrane lateral heterogeneity through molecular dynamics simulation.

  17. Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation.

    Science.gov (United States)

    Ercan, Utku K; Smith, Josh; Ji, Hai-Feng; Brooks, Ari D; Joshi, Suresh G

    2016-02-02

    In continuation of our previous reports on the broad-spectrum antimicrobial activity of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different multidrug resistant microorganisms, we present here the chemical changes that mediate inactivation of Escherichia coli. In this study, the mechanism and products of the chemical reactions in plasma-treated NAC solution are shown. UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for chemical characterization of plasma treated NAC solution. The characterization results were correlated with the antimicrobial assays using determined chemical species in solution in order to confirm the major species that are responsible for antimicrobial inactivation. Our results have revealed that plasma treatment of NAC solution creates predominantly reactive nitrogen species versus reactive oxygen species, and the generated peroxynitrite is responsible for significant bacterial inactivation.

  18. Physical and chemical stability of proflavine contrast agent solutions for early detection of oral cancer.

    Science.gov (United States)

    Kawedia, Jitesh D; Zhang, Yan-Ping; Myers, Alan L; Richards-Kortum, Rebecca R; Kramer, Mark A; Gillenwater, Ann M; Culotta, Kirk S

    2016-02-01

    Proflavine hemisulfate solution is a fluorescence contrast agent to visualize cell nuclei using high-resolution optical imaging devices such as the high-resolution microendoscope. These devices provide real-time imaging to distinguish between normal versus neoplastic tissue. These images could be helpful for early screening of oral cancer and its precursors and to determine accurate margins of malignant tissue for ablative surgery. Extemporaneous preparation of proflavine solution for these diagnostic procedures requires preparation in batches and long-term storage to improve compounding efficiency in the pharmacy. However, there is a paucity of long-term stability data for proflavine contrast solutions. The physical and chemical stability of 0.01% (10 mg/100 ml) proflavine hemisulfate solutions prepared in sterile water was determined following storage at refrigeration (4-8℃) and room temperature (23℃). Concentrations of proflavine were measured at predetermined time points up to 12 months using a validated stability-indicating high-performance liquid chromatography method. Proflavine solutions stored under refrigeration were physically and chemically stable for at least 12 months with concentrations ranging from 95% to 105% compared to initial concentration. However, in solutions stored at room temperature increased turbidity and particulates were observed in some of the tested vials at 9 months and 12 months with peak particle count reaching 17-fold increase compared to baseline. Solutions stored at room temperature were chemically stable up to six months (94-105%). Proflavine solutions at concentration of 0.01% were chemically and physically stable for at least 12 months under refrigeration. The solution was chemically stable for six months when stored at room temperature. We recommend long-term storage of proflavine solutions under refrigeration prior to diagnostic procedure. © The Author(s) 2014.

  19. Determination of kinetic parameters of heterogeneous isotopic exchange reaction

    International Nuclear Information System (INIS)

    Huang, Ting-Chia; Tsai, Fuan-Nan

    1977-01-01

    A mathematical model has been proposed for a heterogeneous isotopic exchange reaction which involves film diffusion, surface chemical reaction and intraparticle diffusion. The exchange equation to predict the exchange fraction as a function of time for the spherical particles immersed in a solution of finite volume has been derived. The relations between the exchange fraction and dimensionless time are plotted with xi(=ak sub(f)/KD sub(e)), xi 1 (=K 1 a 2 /D sub(e)) and final fractional uptake as parameters. From the values of the kinetic parameters xi and xi 1 , the relative importance of each limiting step is discussed. Experimental results of the isotopic exchange reaction of calcium ion in both system CaCO 3 (s)/Ca 2+ (aq) and system calcium type resin Dowex 50W-X8/Ca 2+ (aq) are coincident with the theoretical equation proposed in this study. (auth.)

  20. Double cross-linked polyetheretherketone proton exchange membrane for fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2012-04-01

    Full Text Available and separating the fuel from oxidant. A polyperfluorosulfonic acid ionomer Nafion? (developed by Dupont) is the mostly used proton exchange membrane in PEMFCs, because of its high proton conductivity and excellent chemical stability [3, 4]. However, the high...-Methyl-2-pyrrolidinone. After the solution was homogenized by stirring, the polymer solution was cast on a glass Petri dish. The solvent was then removed in a vacuum oven at 130 ?C. The membrane was peeled off from the Petri dish. Thereafter...

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Study of multi-site chemical exchange in solution state by NMR: 1D .... based theoretical studies on the adsorption behaviour of (S)-Phenylsuccinic acid on silver .... Facile synthesis of novel benzotriazole derivatives and their antibacterial activities .... for corrosion control of carbon steel in nearly neutral aqueous environment.

  2. The influence of the "cage" effect on the mechanism of reversible bimolecular multistage chemical reactions proceeding from different sites in solutions.

    Science.gov (United States)

    Doktorov, Alexander B

    2016-08-28

    Manifestations of the "cage" effect at the encounters of reactants have been theoretically treated on the example of multistage reactions (including bimolecular exchange reactions as elementary stages) proceeding from different active sites in liquid solutions. It is shown that for reactions occurring near the contact of reactants, consistent consideration of quasi-stationary kinetics of such multistage reactions (possible in the framework of the encounter theory only) can be made on the basis of chemical concepts of the "cage complex," just as in the case of one-site model described in the literature. Exactly as in the one-site model, the presence of the "cage" effect gives rise to new channels of reactant transformation that cannot result from elementary event of chemical conversion for the given reaction mechanism. Besides, the multisite model demonstrates new (as compared to one-site model) features of multistage reaction course.

  3. A new cascade method for studying isotope effect in chemical exchange system without valance change

    International Nuclear Information System (INIS)

    Wen Xiaoning; Luo Wenzong

    1987-01-01

    A new cascade method for studying isotope effect in chemical exchange system without valance change is developed and described. This method is simple to use and consumes less extractant as compared with the commonly used Woodward method. It is also convenient for unstable systems

  4. Variability in Benthic Exchange Rate, Depth, and Residence Time Beneath a Shallow Coastal Estuary

    Science.gov (United States)

    Russoniello, Christopher J.; Heiss, James W.; Michael, Holly A.

    2018-03-01

    Hydrodynamically driven benthic exchange of water between the water column and shallow seabed aquifer is a significant and dynamic component of coastal and estuarine fluid budgets. Associated exchange of solutes promotes ecologically important chemical reactions, so quantifying benthic exchange rates, depths, and residence times constrains coastal chemical cycling estimates. We present the first combined field, numerical, and analytical modeling investigation of wave-induced exchange. Temporal variability of exchange was calculated with data collected by instruments deployed in a shallow estuary for 11 days. Differential pressure sensors recorded pressure gradients across the seabed, and up- and down-looking ADCPs recorded currents and pressures to determine wave parameters, surface-water currents, and water depth. Wave-induced exchange was calculated (1) directly from differential pressure measurements, and indirectly with an analytical model based on wave parameters from (2) ADCP and (3) wind data. Wave-induced exchange from pressure measurements and ADCP-measured wave parameters matched well, but both exceeded wind-based values. Exchange induced by tidal pumping and current-bed form interaction—the other primary drivers in shallow coastal waters were calculated from tidal stage variation and ADCP-measured currents. Exchange from waves (mean = 20.0 cm/d; range = 1.75-92.3 cm/d) greatly exceeded exchange due to tides (mean = 3.7 cm/d) and current-bed form interaction (mean = 6.5 × 10-2 cm/d). Groundwater flow models showed aquifer properties affect wave-driven benthic exchange: residence time and depth increased and exchange rates decreased with increasing hydraulic diffusivity (ratio of aquifer permeability to compressibility). This new understanding of benthic exchange will help managers assess its control over chemical fluxes to marine systems.

  5. Effect of textural and chemical characteristics of activated carbons on phenol adsorption in aqueous solutions

    OpenAIRE

    Vargas Diana P.; Giraldo Liliana; Moreno-Piraján Juan Carlos

    2017-01-01

    The effect of textural and chemical properties such as: surface area, pore volume and chemical groups content of the granular activated carbon and monoliths on phenol adsorption in aqueous solutions was studied. Granular activated carbon and monolith samples were produced by chemical activation. They were characterized by using N2 adsorption at 77 K, CO2 adsorption at 273 K, Boehm Titrations and immersion calorimetry in phenol solutions. Microporous materials with different pore size distribu...

  6. The Synthesis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution

    International Nuclear Information System (INIS)

    Sri Budi Harmani; Dewi Sondari; Agus Haryono

    2008-01-01

    Described in this research are the synthesis of silver nanoparticle produced by chemical reduction of silver salt (silver nitrate AgNO 3 ) solution. As a reducer, sodium citrate (C 6 H 5 O 7 Na 3 ) was used. Preparation of silver colloid is done by using chemical reduction method. In typical experiment 150 ml of 1.10 -3 M AgNO 3 solution was heated with temperature variation such as 90, 100, 110 degree of Celsius. To this solution 15 ml of 1 % trisodium citrate was added into solution drop by drop during heating. During the process, solution was mixed vigorously. Solution was heated until colour's change is evident (pale yellow solution is formed). Then it was removed from the heating element and stirred until cooled to room temperature. Experimental result showed that diameter of silver nanoparticles in colloid solution is about 28.3 nm (Ag colloid, 90 o C); 19.9 nm (Ag colloid, 100 o C)and 26.4 nm (Ag colloid, 110 o C). Characterization of the silver nanoparticle colloid conducted by using UV-Vis Spectroscopy, Particles Size Analyzer (PSA) and Scanning Electron Microscope (SEM) indicate the produced structures of silver nanoparticles. (author)

  7. Recovery of Some Radioactive Nuclides from Radioactive Waste Solution Using Silicon(IV) Antimonate as a Cation Exchanger

    International Nuclear Information System (INIS)

    Aly, H.F.; Zakaria, E.S.; El-Shorbagy, M.M.; El-Naggar, I.M.

    1999-01-01

    A new inorganic ion exchanger, silicon(IV) antimonate was prepared by dropwise addition of antimony pentachloride and sodium silicate and shows excellent thermal and chemical stability. Ion exchange selectivities of cations Na +, Cs +, Sr 2+ and Co 2+ in nitric acid media have been exchanged with protons of silicon antimonate using batch technique, from these results, distribution coefficient, selectivity was found in the order Co 2+ > Sr 2+ > Na +> Cs +. The effective separation of Cs +, Na +, Sr 2+ and Co 2+ have been achieved with column technique from nitric acid media. The values of diffusion coefficient, energy and entropy of activation of Cs +, Na +, Sr 2+ and Co 2+ on silicon antimonate matrix were determined as a particle diffusion mechanism only and the values of diffusion inside the exchanger take the order Na +> Cs +> Co 2+ > Sr 2+

  8. Application of thermodynamics to silicate crystalline solutions

    Science.gov (United States)

    Saxena, S. K.

    1972-01-01

    A review of thermodynamic relations is presented, describing Guggenheim's regular solution models, the simple mixture, the zeroth approximation, and the quasi-chemical model. The possibilities of retrieving useful thermodynamic quantities from phase equilibrium studies are discussed. Such quantities include the activity-composition relations and the free energy of mixing in crystalline solutions. Theory and results of the study of partitioning of elements in coexisting minerals are briefly reviewed. A thermodynamic study of the intercrystalline and intracrystalline ion exchange relations gives useful information on the thermodynamic behavior of the crystalline solutions involved. Such information is necessary for the solution of most petrogenic problems and for geothermometry. Thermodynamic quantities for tungstates (CaWO4-SrWO4) are calculated.

  9. Chemical systems in aqueous solutions for using in the holographic ionizing radiation

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.

    1979-01-01

    Some types of chemical systems in aqueous solutions for utilization as active media in holographic ionizing radiation dosimeter are presented. One discussed some advantages of the holographic dosimeter comparatively with another existing types. It is outlined the advantages of using aqueousss solutions as active media in holographic dosimeter. (author)

  10. Beryllium fluoride exchange rate accelerated by Mg²⁺ as discovered by ¹⁹F NMR.

    Science.gov (United States)

    Liu, Yixiang; Mao, Xi-an; Liu, Maili; Jiang, Ling

    2015-01-08

    Beryllium fluoride is widely used as a phosphoryl analogue in macromolecular studies, which are not only fluoride-sensitive but also magnesium-dependent. The beryllium fluorides are a mixture of different species including BeF3(-) and BeF4(2-) exchanging under thermodynamic equilibrium in neutral aqueous solutions. In the cases of mimicking phosphate group transfer, both beryllium fluoride and the magnesium ion are generally needed. However, the impact of magnesium on the bioactivity of beryllium fluoride is not clear. We have found by (19)F NMR spectroscopy that Mg(2+) can severely affect the chemical exchange kinetics between BeF3(-) and BeF4(2-). When the F(-) concentration is relatively low, the presence of 10.0 mM Mg(2+) can accelerate the exchange rate 3-4 fold. However, when the F(-) concentration is relatively high, the Mg(2+) effect on the chemical exchange vanishes. On the basis of these findings, we proposed a possible mechanism that BeF4(2-) and Mg(2+) form an ion pair that affects the distribution of beryllium fluoride species and thus the activity in the solution.

  11. CHMTRNS, Non-Equilibrium Chemical Transport Code

    International Nuclear Information System (INIS)

    Noorishad, J.; Carnahan, C.L.; Benson, L.V.

    1998-01-01

    1 - Description of program or function: CHMTRNS simulates solute transport for steady one-dimensional fluid flow by convection and diffusion or dispersion in a saturated porous medium based on the assumption of local chemical equilibrium. The chemical interactions included in the model are aqueous-phase complexation, solid-phase ion exchange of bare ions and complexes using the surface complexation model, and precipitation or dissolution of solids. The program can simulate the kinetic dissolution or precipitation for calcite and silica as well as irreversible dissolution of glass. Thermodynamic parameters are temperature dependent and are coupled to a companion heat transport simulator; thus, the effects of transient temperature conditions can be considered. Options for oxidation-reduction (redox) and C-13 fractionation as well as non-isothermal conditions are included. 2 - Method of solution: The governing equations for both reactive chemical and heat transport are discretized in time and space. For heat transport, the Crank-Nicolson approximation is used in conjunction with a LU decomposition and backward substitution solution procedure. To deal with the strong nonlinearity of the chemical transport equations, a generalized Newton-Raphson method is used

  12. Hydrogen exchange rate of tyrosine hydroxyl groups in proteins as studied by the deuterium isotope effect on C(zeta) chemical shifts.

    Science.gov (United States)

    Takeda, Mitsuhiro; Jee, Jungoo; Ono, Akira Mei; Terauchi, Tsutomu; Kainosho, Masatsune

    2009-12-30

    We describe a new NMR method for monitoring the individual hydrogen exchange rates of the hydroxyl groups of tyrosine (Tyr) residues in proteins. The method utilizes (2S,3R)-[beta(2),epsilon(1,2)-(2)H(3);0,alpha,beta,zeta-(13)C(4);(15)N]-Tyr, zeta-SAIL Tyr, to detect and assign the (13)C(zeta) signals of Tyr rings efficiently, either by indirect (1)H-detection through 7-8 Hz (1)H(delta)-(13)C(zeta) spin couplings or by direct (13)C(zeta) observation. A comparison of the (13)C(zeta) chemical shifts of three Tyr residues of an 18.2 kDa protein, EPPIb, dissolved in H(2)O and D(2)O, revealed that all three (13)C(zeta) signals in D(2)O appeared at approximately 0.13 ppm ( approximately 20 Hz at 150.9 MHz) higher than those in H(2)O. In a H(2)O/D(2)O (1:1) mixture, however, one of the three signals for (13)C(zeta) appeared as a single peak at the averaged chemical shifts, and the other two appeared as double peaks at exactly the same chemical shifts in H(2)O and D(2)O, in 50 mM phosphate buffer (pH 6.6) at 40 degrees C. These three peaks were assigned to Tyr-36, Tyr-120, and Tyr-30, from the lower to higher chemical shifts, respectively. The results indicate that the hydroxyl proton of Tyr-120 exchanges faster than a few milliseconds, whereas those of Tyr-30 and Tyr-36 exchange more slowly. The exchange rate of the Tyr-30 hydroxyl proton, k(ex), under these conditions was determined by (13)C NMR exchange spectroscopy (EXSY) to be 9.2 +/- 1.1 s(-1). The Tyr-36 hydroxyl proton, however, exchanges too slowly to be determined by EXSY. These profound differences among the hydroxyl proton exchange rates are closely related to their relative solvent accessibility and the hydrogen bonds associated with the Tyr hydroxyl groups in proteins.

  13. Effect of Buffers on Aqueous Solute-Exclusion Zones around Ion-Exchange Resins

    Science.gov (United States)

    Zheng, Jian-ming; Wexler, Adam

    2009-01-01

    Interaction between charged surfaces in aqueous solution is a fundamental feature of colloid science. Theoretically, surface potential falls to half its value at a distance equal to a Debye length, which is typically on the order of tens to hundreds of nanometers. This potential prevents colloids from aggregating. On the other hand, long-range surface effects have been frequently reported. Here we report additional long-range effects. We find that charged latex particles in buffer solutions are uniformly excluded from several-hundred-micron-thick shells surrounding ion-exchange beads. Exclusion is observed whether the beads are charged similarly or oppositely to the particles. Hence, electrostatic interactions between bead and microsphere do not cause particle exclusion. Rather, exclusion may be the consequence of water molecules re-orienting to produce a more ordered structure, which then excludes the particles. PMID:19185312

  14. Global changes and the air-sea exchange of chemicals

    International Nuclear Information System (INIS)

    1991-01-01

    Present and potential future changes to the global environment have important implications for marine pollution and for the air-sea exchange of both anthropogenic and natural substances. This report addresses three issues related to the potential impact of global change on the air-sea exchange of chemicals: Global change and the air-sea transfer of the nutrients nitrogen and iron. Global change and the air-sea exchange of gases. Oceanic responses to radiative and oxidative changes in the atmosphere. The deposition of atmospheric anthropogenic nitrogen has probably increased biological productivity in coastal regions along many continental margins. Atmospheric deposition of new nitrogen may also have increased productivity somewhat in mid-ocean regions. The projected future increases of nitrogen oxide emissions from Asia, Africa and South America will provide significant increases in the rate of deposition of oxidized nitrogen to the central North Pacific, the equatorial Atlantic, and the equatorial and central South Indian Oceans. Atmospheric iron may be an important nutrient in certain open regions. Future changes will likely occur if there are changing patterns of aridity and wind speed as a result of climate change. The most important future effects on surface ocean p CO2 will likely be caused by changes in ocean circulation. The pH of the ocean would decrease by ∼0.3 units for a doubling of p CO2 , reducing the capacity of the ocean to take up CO 2 . There is increasing evidence that dimethyl sulfide from the ocean is a source of cloud condensation nuclei and thus a factor controlling cloud albedo. By 2060 in the southern hemisphere reduction in total column stratospheric ozone from recent levels could reach 2 to 5% in the tropics, 10% at mid latitudes, and over 20% at 60 deg C. S. In this same time frame increases in ground-level effective UV-B radiation could reach 5%, 26% and 66%, at low, mid, and high latitudes in the southern hemisphere. Changes in

  15. Chemical derivation to enhance the chemical/oxidative stability of resorcinol-formaldehyde (R-F) resin

    International Nuclear Information System (INIS)

    Hubler, T.L.; Shaw, W.J.; Brown, G.N.; Linehan, J.C.; Franz, J.A.; Hart, T.R.; Hogan, M.O.

    1996-09-01

    Tank wastes at Hanford and SRS contain highly alkaline supernate solutions of conc. Na, K nitrates with large amounts of 137 Cs. It is desirable to remove and concentrate the highly radioactive fraction for vitrification. One candidate ion exchange material for removing the radiocesium is R-F resin. This report summarizes studies into synthesis and characterization of 4-derivatized R-F resins prepared in pursuit of more chemically/oxidatively robust resin. 85% 4-fluororesorcinol/15% phenol formaldehyde resin appears to have good stability in alkaline solution, although there may be some nucleophilic displacement reaction during synthesis; further studies are needed

  16. Isotope separation by chemical exchange process: Final technical report

    International Nuclear Information System (INIS)

    Schneider, A.

    1987-02-01

    The feasibility of a chemical exchange method for the separation of the isotopes of europium was demonstrated in the system EuCl 2 -EuCl 3 . The single stage separation factor, α, in this system is 1.001 or 1.0005 per mass unit. This value of α is comparable to the separation factors reported for the U 4+ - U 6 and U 3+ - Y 4+ systems. The separation of the ionic species was done by precipitation of the Eu 2+ ions or by extraction of the Eu 3+ ions with HDEHP. Conceptual schemes were developed for a countercurrent reflux cascades consisting of solvent extraction contractors. A regenerative electrocel, combining simultaneous europium reduction, europium oxidation with energy generation, and europium stripping from the organic phase is described. 32 refs., 22 figs., 6 tabs

  17. Electron exchange reaction in anion exchangers as observed in uranium isotope separation

    International Nuclear Information System (INIS)

    Obanawa, Heiichiro; Takeda, Kunihiko; Seko, Maomi

    1991-01-01

    The mechanism of electron exchange in an ion exchanger, as occurring between U 4+ and UO 2 2+ in uranium isotope separation, was investigated. The height of the separation unit (H q ) in the presence of metal ion catalysts, as obtained from the separation experiments, was found to be almost coincident with the theoretical value of H q as calculated on the basis of the intrasolution acceleration mechanism of the metal ion, suggesting that the electron exchange mechanism in the ion-exchanger is essentially the same as that in the solution when metal ion catalysts are present. Separation experiments with no metal ion catalyst, on the other hand, showed the electron exchange reaction in the ion exchanger to be substantially higher than that in the solution, suggesting an acceleration of the electron exchange reaction by the ion-exchanger which is due to the close existence of higher order Cl - complexes of UO 2 2+ and U 4+ in the vicinity of the ion-exchange group. (author)

  18. Chemical trend of exchange coupling in diluted magnetic II-VI semiconductors: Ab initio calculations

    Science.gov (United States)

    Chanier, T.; Virot, F.; Hayn, R.

    2009-05-01

    We have calculated the chemical trend of magnetic exchange parameters ( Jdd , Nα , and Nβ ) of Zn-based II-VI semiconductors ZnA ( A=O , S, Se, and Te) doped with Co or Mn. We show that a proper treatment of electron correlations by the local spin-density approximation (LSDA)+U method leads to good agreement between experimental and theoretical values of the nearest-neighbor exchange coupling Jdd between localized 3d spins in contrast to the LSDA method. The exchange couplings between localized spins and doped electrons in the conduction band Nα are in good agreement with experiment as well. But the values for Nβ (coupling to doped holes in the valence band) indicate a crossover from weak coupling (for A=Te and Se) to strong coupling (for A=O ) and a localized hole state in ZnO:Mn. This hole localization explains the apparent discrepancy between photoemission and magneto-optical data for ZnO:Mn.

  19. Apparatus and process for deuterium exchange

    International Nuclear Information System (INIS)

    Ergenc, M.S.

    1976-01-01

    The deuterium exchange plant is combined with an absorption refrigeration plant in order to improve the exchange process and to produce refrigeration. The refrigeration plant has a throttling means for expanding and cooling a portion of the liquid exchange medium separated in the exchange plant as well as an evaporator, in which the said liquid exchange medium is brought into heat exchange with a cold consumer device, absorption means for forming a solution of the used exchange medium and fresh water and a pump for pumping the solution into the exchange plant

  20. Physical and chemical stability of palonosetron HCl in 4 infusion solutions.

    Science.gov (United States)

    Trissel, Lawrence A; Xu, Quanyun A

    2004-10-01

    Palonosetron HCl is a selective 5-HT(3) receptor antagonist used for the prevention of chemotherapy-induced nausea and vomiting. Palonosetron HCl may be diluted in an infusion solution for administraton. Consequently, stability information is needed for palonosetron HCl admixed in common infusion solutions. To evaluate the physical and chemical stability of palonosetron HCl in concentrations of 5 and 30 microg/mL in dextrose 5% injection, NaCl 0.9% injection, dextrose 5% in NaCl 0.45% injection, and dextrose 5% in lactated Ringer's injection. Triplicate test samples of palonosetron HCl at each concentration in each diluent were tested. Samples were stored and evaluated at appropriate intervals for up to 48 hours at room temperature ( approximately 23 degrees C) and 14 days under refrigeration (4 degrees C). Physical stability was assessed using turbidimetric and particulate measurement, as well as visual inspection. Chemical stability was assessed by HPLC. All of the admixtures were initially clear and colorless when viewed in normal fluorescent room light and with a Tyndall beam. Measured turbidity and particulate content were low initially and remained low throughout the study. The drug concentration was unchanged in any of the samples at either temperature throughout the study. Palonosetron HCl is physically and chemically stable in all 4 common infusion solutions for at least 48 hours at room temperature and 14 days under refrigeration.

  1. Kinetics of isotope exchange reactions involving intra- and intermolecular reactions: 1. Rate law for a system with two chemical compounds and three exchangeable atoms

    International Nuclear Information System (INIS)

    Xuelei Chu; Ohmoto, Hiroshi

    1991-01-01

    For an isotopic exchange reaction between two compounds (X and AB) in a homogeneous system, such as a gaseous or aqueous system, where one (AB) of them possesses two exchangeable atoms in non-equivalent positions and where one intramolecular isotope exchange (A ↔ B) and two intermolecular isotope exchange reactions (X ↔ A and X ↔ B) may occur, its rate law no longer obeys a pseudo-first order rate equation described for simple two-component systems by many previous investigators. The change with time of the δ value of each of the three components (X, A, and B) in a closed and homogeneous system is a complicated function of the initial δ values of the three components, the chemical concentrations of the two compounds, and the overall rate constants of the forward and reverse reactions involving the two intermolecular and one intramolecular reactions of isotope exchanges. Also, for some one of the three components, the change of its δ value with time may not be monotonic, and the relationship of 1n (1 - F) with time may be non-linear in a plot of 1n (1 - F) vs. t. In addition, the rate law of the isotope exchange reaction in this system also provides a quantitative method to estimate the overall rate constants for the one-intra-and two intermolecular isotope exchanges and the equilibrium isotopic fractionation factors among the three components

  2. Ion Exchange Equilibrium and Kinetic Properties of Polyacrylate Films and Applications to Chemical Analysis and Environmental Decontamination

    Science.gov (United States)

    Tanner, Stephen P.

    1997-01-01

    One of the goals of the original proposal was to study how cross-linking affects the properties of an ion exchange material(IEM) developed at Lewis Research Center. However, prior to the start of this work, other workers at LERC investigated the effect of cross-linking on the properties of this material. Other than variation in the ion exchange capacity, the chemical characteristics were shown to be independent of the cross-linking agent, and the degree of cross-linking. New physical forms of the film were developed (film, supported film, various sizes of beads, and powder). All showed similar properties with respect to ion exchange equilibria but the kinetics of ion exchange depended on the surface area per unit mass; the powder form of the IEM exchanging much more rapidly than the other forms. The research performed under this grant was directed towards the application of the IEM to the analysis of metal ions at environmental concentrations.

  3. Formation of hydrotalcite in aqueous solutions and intercalation of ATP by anion exchange.

    Science.gov (United States)

    Tamura, Hiroki; Chiba, Jun; Ito, Masahiro; Takeda, Takashi; Kikkawa, Shinichi; Mawatari, Yasuteru; Tabata, Masayoshi

    2006-08-15

    The formation reaction and the intercalation of adenosine triphosphate (ATP) were studied for hydrotalcite (HT), a layered double hydroxide (LDH) of magnesium and aluminum. Hydrotalcite with nitrate ions in the interlayer (HT-NO(3)) was formed (A) by dropwise addition of a solution of magnesium and aluminum nitrates (pH ca. 3) to a sodium hydroxide solution (pH ca. 14) until the pH decreased from 14 to 10 and (B) by dropwise addition of the NaOH solution to the solution of magnesium and aluminum nitrates with pH increasing from 3 to 10. The precipitate obtained with method B was contaminated with aluminum hydroxide and the crystallinity of the product was low, possibly because aluminum hydroxide precipitates at pH 4 or 5 and remains even after HT-NO(3) forms at pH above 8. With method A, however, the precipitate was pure HT-NO(3) with increased crystallinity, since the solubility of aluminum hydroxide at pH above and around 10 is high as dissolved aluminate anions are stable in this high pH region, and there was no aluminum hydroxide contamination. The formed HT-NO(3) had a composition of [Mg(0.71)Al(0.29)(OH)(2)](NO(3))(0.29).0.58H(2)O. To intercalate ATP anions into the HT-NO(3), HT-NO(3) was dispersed in an ATP solution at pH 7. It was found that the interlayer nitrate ions were completely exchanged with ATP anions by ion exchange, and the interlayer distance expanded almost twice with a free space distance of 1.2 nm. The composition of HT-ATP was established as [Mg(0.68)Al(0.32)(OH)(2)](ATP)(0.080)0.88H(2)O. The increased distance could be explained with a calculated molecular configuration of the ATP as follows: An ATP molecule is bound to an interlayer surface with the triphosphate group, the adenosine group bends owing to its bond angles and projects into the interlayer to a height of 1 nm, and the adenosine groups aligned in the interlayer support the interlayer distance.

  4. Synthesis, characterization and applications of a new cation exchanger tamarind sulphonic acid (TSA) resin.

    Science.gov (United States)

    Singh, A V; Sharma, Naresh Kumar; Rathore, Abhay S

    2012-01-01

    A new composite cation exchanger, tamarind sulphonic acid (TSA) resin has been synthesized. The chemically modified TSA ion exchange resin has been used for the removal and preconcentration of Zn2+, Cd2+, Fe2+, Co2+ and Cu2+ ions in aqueous solution and effluent from the Laxmi steel plant in Jodhpur, India. This type of composite represents a new class of hybrid ion exchangers with good ion exchange capacity, stability, reproducibility and selectivity for toxic metal ions found in effluent from the steel industry. The characterization of the resin was carried out by determining the ion-exchange capacity, elemental analysis, pH titration, Fourier transform infrared spectra and thermal analysis. The distribution coefficients (K(d)) of toxic metal ions were determined in a reference aqueous solution and the steel plant effluent at different pH values; the absorbency of different metal ions on the TSA resin was studied for up to 10 cycles. The adsorption of different metal ions on TSA resin follows the order: Co2+ > Cu2+ > Zn2+ > Fe2+ > Cd2+. The ion exchange capacity of TSA resin is 2.87%.

  5. Optimization of heat exchanger networks using genetic algorithms

    International Nuclear Information System (INIS)

    Teyssedou, A.; Dipama, J.; Sorin, M.

    2004-01-01

    Most thermal processes encountered in the power industry (chemical, metallurgical, nuclear and thermal power stations) necessitate the transfer of large amounts of heat between fluids having different thermal potentials. A common practice applied to achieve such a requirement consists of using heat exchangers. In general, each current of fluid is conveniently cooled or heated independently from each other in the power plant. When the number of heat exchangers is large enough, however, a convenient arrangement of different flow currents may allow a considerable reduction in energy consumption to be obtained (Linnhoff and Hidmarsh, 1983). In such a case the heat exchangers form a 'Heat Exchanger Network' (HEN) that can be optimized to reduce the overall energy consumption. This type of optimization problem, involves two separates calculation procedures. First, it is necessary to optimize the topology of the HEN that will permit a reduction in energy consumption to be obtained. In a second step the power distribution across the HEN should be optimized without violating the second law of thermodynamics. The numerical treatment of this kind of problem requires the use of both discrete variables (for taking into account each heat exchanger unit) and continuous variables for handling the thermal load of each unit. It is obvious that for a large number of heat exchangers, the use of conventional calculation methods, i.e., Simplexe, becomes almost impossible. Therefore, in this paper we present a 'Genetic Algorithm' (GA), that has been implemented and successfully used to treat complex HENs, containing a large number of heat exchangers. As opposed to conventional optimization techniques that require the knowledge of the derivatives of a function, GAs start the calculation process from a large population of possible solutions of a given problem (Goldberg, 1999). Each possible solution is in turns evaluated according to a 'fitness' criterion obtained from an objective

  6. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  7. Determination of trace amounts of chemical warfare agent degradation products in decontamination solutions with NMR spectroscopy.

    Science.gov (United States)

    Koskela, Harri; Rapinoja, Marja-Leena; Kuitunen, Marja-Leena; Vanninen, Paula

    2007-12-01

    Decontamination solutions are used for an efficient detoxification of chemical warfare agents (CWAs). As these solutions can be composed of strong alkaline chemicals with hydrolyzing and oxidizing properties, the analysis of CWA degradation products in trace levels from these solutions imposes a challenge for any analytical technique. Here, we present results of application of nuclear magnetic resonance spectroscopy for analysis of trace amounts of CWA degradation products in several untreated decontamination solutions. Degradation products of the nerve agents sarin, soman, and VX were selectively monitored with substantially reduced interference of background signals by 1D 1H-31P heteronuclear single quantum coherence (HSQC) spectrometry. The detection limit of the chemicals was at the low part-per-million level (2-10 microg/mL) in all studied solutions. In addition, the concentration of the degradation products was obtained with sufficient confidence with external standards.

  8. Solvent extraction as a method of promoting uranium enrichment by chemical exchange

    International Nuclear Information System (INIS)

    Fathurrachman.

    1995-01-01

    This thesis examines a chemical exchange process for uranium enrichment using solvent extraction. The system selected is the isotope exchange for uranium species in the form of uranous and uranyl chloride complexes. Solvent extraction has been studied before by French workers for this application but little was published on this. Much of this present work is therefore novel. The equilibrium data for the extraction of U(IV) as U 4+ and U(VI) as UO 2 2+ from hydrochloric media into an organic phase containing tri-n-octylamine (TOA) in benzene is given. Benzene is used to prevent third phase formation. In 4 M HCl U(VI) was found to be very soluble in the organic phase but U(IV) was virtually insoluble. Most of the equilibrium data has been correlated by the Langmuir isotherm. This thesis also outlines the methodology that has to be used to design a plant based on this process. (author)

  9. Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy.

    Science.gov (United States)

    Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J

    2013-12-12

    The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena.

  10. Cesium removal from liquid acidic wastes with the primary focus on ammonium molybdophosphate as an ion exchanger: A literature review

    International Nuclear Information System (INIS)

    Miller, C.J.

    1995-03-01

    Many articles have been written concerning the selective removal of cesium from both acidic and alkaline defense wastes. The majority of the work performed for cesium removal from defense wastes involves alkaline feed solutions. Several different techniques for cesium removal from acidic solutions have been evaluated such as precipitation, solvent extraction, and ion exchange. The purpose of this paper is to briefly review various techniques for cesium removal from acidic solutions. The main focus of the review will be on ion exchange techniques, particularly those involving ammonium molybdophosphate as the exchanger. The pertinent literature sources are condensed into a single document for quick reference. The information contained in this document was used as an aid in determining techniques to evaluate cesium removal from the acidic Idaho Chemical Processing Plant waste matrices. 47 refs., 2 tabs

  11. Lanthanide paramagnetic probes for NMR spectroscopic studies of fast molecular conformational dynamics and temperature control. Effective six-site proton exchange in 18-crown-6 by exchange spectroscopy.

    Science.gov (United States)

    Babailov, Sergey P

    2012-02-06

    (1)H and (13)C NMR measurements are reported for the CDCl(3) and CD(2)Cl(2) solutions of [La(18-crown-6)(NO(3))(3)] (I), [Pr(18-crown-6) (NO(3))(3)] (II), [Ce(18-crown-6)(NO(3))(3)] (III), and [Nd(18-crown-6)(NO(3))(3)] (IV) complexes. Temperature dependencies of the (1)H NMR spectra of paramagnetic II-IV have been analyzed using the dynamic NMR (DNMR) methods for six-site exchange. Two types of conformational dynamic processes were identified (the first one is conditioned by interconversion of complex enantiomeric forms and pseudorotation of a macrocycle molecule upon the C(2) symmetry axis; the second one is conditioned by macrocycle molecule inversion). Application of exchange spectroscopy (2D-EXSY) of DNMR for investigation of this dynamic system (II-IV) simplifies the assignment of the NMR signals and represents the first experimental study of multisite exchange. In the present work, the methodology of paramagnetic 4f (Ce, Pr, and Nd) probe applications for the study of free-energy, enthalpy, and entropy changes in chemical exchange processes, as well as the advantages of this method in a comparison with DNMR studies of diamagnetic substances, is discussed. In particular, as a result of paramagnetic chemical shifts in 4f complexes, the range of measurable rate constants expands considerably compared to the analogous range in diamagnetic compounds. Coordination compounds investigated in the paper represent new types of thermometric NMR sensors and lanthanide paramagnetic probes for in situ temperature control in solution.

  12. Removal of nitrate from ammonium hydroxide solution containing organics by ion exchange method

    International Nuclear Information System (INIS)

    Venugopal Chetty, K.; Gamare, Jayashree S.; Vaidya, V.N.

    2004-01-01

    Removal of nitrate from ammonium hydroxide solution containing HMTA (hexamethyltetramine) and Urea was studied using indigenously available anion exchange resins. This type of waste is produced during nuclear fuel preparation by internal gelation process. The resins used are Tulsion A-27(MP) and Duolite A. 102D. The time of equilibration and capacity of the resins were determined from distribution ratios obtained by equilibrating resin with nitrate solution. The loading, washing and elution behavior of nitrate on these resins were studied using synthetic mixture having similar composition of the waste produced. Elution studies were carried out using sodium hydroxide, hydrochloric acid and ammonium chloride. The studies were also carried out at higher temperature of around 60 degC. The data was compared with that obtained using Dowex 1x4 for the same purpose. (author)

  13. Quantum theory of exchange reactions: Use of nonorthogonal bases and coordinates

    International Nuclear Information System (INIS)

    Stechel, E.B.; Schmalz, T.G.; Light, J.C.

    1979-01-01

    A general approach to quantum scattering theory of exchange reactions utilizing nonorthogonal (''over-complete'') basis sets and nonorthogonal coordinates is presented. The method is shown to resolve many of the formal and practical difficulties attending earlier theories. Although the inspiration came from the early and accurate work on the collinear H+H 2 reaction by Diestler possible applications include electron transfer processes as well as chemical exchange reactions. The mathematics is formulated in detail and the solution is presented in terms of the R-matrix propagation method preserving all the symmetries of the physical process, i.e., conservation of flux and microscopic reversibility

  14. Numerical solutions of several reflected shock-wave flow fields with nonequilibrium chemical reactions

    Science.gov (United States)

    Hanson, R. K.; Presley, L. L.; Williams, E. V.

    1972-01-01

    The method of characteristics for a chemically reacting gas is used in the construction of the time-dependent, one-dimensional flow field resulting from the normal reflection of an incident shock wave at the end wall of a shock tube. Nonequilibrium chemical reactions are allowed behind both the incident and reflected shock waves. All the solutions are evaluated for oxygen, but the results are generally representative of any inviscid, nonconducting, and nonradiating diatomic gas. The solutions clearly show that: (1) both the incident- and reflected-shock chemical relaxation times are important in governing the time to attain steady state thermodynamic properties; and (2) adjacent to the end wall, an excess-entropy layer develops wherein the steady state values of all the thermodynamic variables except pressure differ significantly from their corresponding Rankine-Hugoniot equilibrium values.

  15. An expanded conceptual framework for solution-focused management of chemical pollution in European waters.

    Science.gov (United States)

    Munthe, John; Brorström-Lundén, Eva; Rahmberg, Magnus; Posthuma, Leo; Altenburger, Rolf; Brack, Werner; Bunke, Dirk; Engelen, Guy; Gawlik, Bernd Manfred; van Gils, Jos; Herráez, David López; Rydberg, Tomas; Slobodnik, Jaroslav; van Wezel, Annemarie

    2017-01-01

    This paper describes a conceptual framework for solutions-focused management of chemical contaminants built on novel and systematic approaches for identifying, quantifying and reducing risks of these substances. The conceptual framework was developed in interaction with stakeholders representing relevant authorities and organisations responsible for managing environmental quality of water bodies. Stakeholder needs were compiled via a survey and dialogue. The content of the conceptual framework was thereafter developed with inputs from relevant scientific disciplines. The conceptual framework consists of four access points: Chemicals, Environment, Abatement and Society, representing different aspects and approaches to engaging in the issue of chemical contamination of surface waters. It widens the scope for assessment and management of chemicals in comparison to a traditional (mostly) perchemical risk assessment approaches by including abatement- and societal approaches as optional solutions. The solution-focused approach implies an identification of abatement- and policy options upfront in the risk assessment process. The conceptual framework was designed for use in current and future chemical pollution assessments for the aquatic environment, including the specific challenges encountered in prioritising individual chemicals and mixtures, and is applicable for the development of approaches for safe chemical management in a broader sense. The four access points of the conceptual framework are interlinked by four key topics representing the main scientific challenges that need to be addressed, i.e.: identifying and prioritising hazardous chemicals at different scales; selecting relevant and efficient abatement options; providing regulatory support for chemicals management; predicting and prioritising future chemical risks. The conceptual framework aligns current challenges in the safe production and use of chemicals. The current state of knowledge and implementation

  16. Characterization of mu s-ms dynamics of proteins using a combined analysis of N-15 NMR relaxation and chemical shift: Conformational exchange in plastocyanin induced by histidine protonations

    DEFF Research Database (Denmark)

    Hass, M. A. S.; Thuesen, Marianne Hallberg; Christensen, Hans Erik Mølager

    2004-01-01

    of the exchanging species can be determined independently of the relaxation rates. The applicability of the approach is demonstrated by a detailed analysis of the conformational exchange processes previously observed in the reduced form of the blue copper protein, plastocyanin from the cyanobacteria Anabaena......An approach is presented that allows a detailed, quantitative characterization of conformational exchange processes in proteins on the mus-ms time scale. The approach relies on a combined analysis of NMR relaxation rates and chemical shift changes and requires that the chemical shift...... quantitatively by the correlation between the R-ex terms and the corresponding chemical shift differences of the exchanging species. By this approach, the R-ex terms of N-15 nuclei belonging to contiguous regions in the protein could be assigned to the same exchange process. Furthermore, the analysis...

  17. Batch and column adsorption behaviors of Se(IV) and Te(IV) on organic and inorganic ion exchangers from HCl solutions

    Energy Technology Data Exchange (ETDEWEB)

    El-Sweify, Fatma H.; Abdel-Fattah, Alaa El-Din A.; Aly, Shorouk M.; Ghamry, Mohamed A. [Atomic Energy Authority, Cairo (Egypt). Hot Laboratories Center; El-Sheikh, Ragaa [Zagazig Univ. (Egypt). Chemistry Dept.

    2017-07-01

    Adsorption behaviors of Se(IV) and Te(IV) on the inorganic ion exchanger ceric tungstate (CeW) was studied under static and dynamic conditions and compared with the adsorption on the organic cation and anion exchangers Dowex-50X8 and AG-2X8, respectively. The radioactive isotopes {sup 75}Se and {sup 123m}Te were used to trace the respective elements. Some parameters affecting the adsorption were investigated under static conditions. In the case of batch technique the adsorption was studied from slightly acidic HCl as well as slightly alkaline media, i.e. at two pH-ranges. Se(IV) and Te(IV) were adsorbed on both the inorganic ion exchanger (CeW) and on AG-2X8, from slightly alkaline solutions. From the similarity of adsorption on both ion exchangers it was clear that (CeW) acts as an anion exchanger. Moreover, the obtained K{sub d}-values for the adsorption on (CeW) were much higher than those for the adsorption on the organic anion exchanger AG-2X8. Se(IV) was not adsorbed on Dowex-50X8 all over the studied pH-range whereas Te(IV) was slightly adsorbed. Loading and elution behaviors of Se(IV) and Te(IV) on columns of AG-2X8 and (CeW) were studied using solutions of HCl of different concentrations. Some good separation alternatives of Se(IV) and Te(IV) under certain conditions were achieved.

  18. Behaviour of Pu-IV with various ion exchangers in solutions containing nitric acid and oxalates

    International Nuclear Information System (INIS)

    Walter, E.; Ali, S.A.

    1982-02-01

    The distribution of Pu-IV on the ion exchangers Dowex 50W-X8, Dowex 1-X8 und Dowex Chelating Resin Al-X8 in the presence of various concentrations of nitric acid and oxalate were investigated. The results indicate that nitric acid and oxalic acid influence each other during complexation of Pu-IV with oxalate ions solutions containing nitric acid it is not possible to neglect the formation of Pu-IV nitrate complexes. The complex Pu(IV) (C 2 O 4 ) 3 2 - only is formed in solutions containing low nitric acid and high oxalic acid concentrations. The separation of Pu-IV in Dowex Chelating Resin from nitric acid solution in the presence of higher oxalate concentrations is possible, provided that the nitric acid concentration is lower than 0.25 molar [fr

  19. Evidence of mass exchange between inside and outside of sonoluminescing bubble in aqueous solution of terbium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jinfu, E-mail: liang.shi2007@163.com [School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001 (China); Chen, Weizhong, E-mail: wzchen@nju.edu.cn [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); Wang, Xun; Yang, Jing; Chen, Zhan [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China)

    2016-12-16

    Highlights: • Time-resolved spectra of SBSL were obtained for Tb{sup 3+} ions emission lines. • Mass exchange between inside and outside of SL bubble was probed via Tb{sup 3+} ions lines. • The argon rectification hypothesis was tested by time-resolved spectra of SBSL. • The rate of mass exchange inside an SBSL bubble increases with increasing sound pressure. - Abstract: Spectra of single-bubble sonoluminescence (SBSL) were obtained for Tb{sup 3+} ions emission lines from bubbles in an aqueous solution of terbium chloride (TbCl{sub 3}). The spectra provide experimental evidence to prove that an air bubble driven by strong ultrasound will not eventually become a rectified pure argon bubble, which is not as predicted by the argon rectification hypothesis. The time-resolved spectra of SBSL show a mass exchange of material such as Tb{sup 3+} ions between the inside and outside of the bubble. With increasing sound pressure, the rate of mass exchange and the SBSL intensity increases.

  20. Investigation into reaction of heterogenous isotopic exchange with gaseoUs tritium in solution for preparation labelled lipid compounds

    International Nuclear Information System (INIS)

    Shevchenko, V.P.; Myasoedov, N.F.

    1983-01-01

    The applicability of the method of heterogeneous catalytic isotopic exchange with gaseous tritium in the solution for the production of labelled lipide preparations is studied. Labelled saturated and unsaturated aliphatic acids, prostaglandins, phospholipides and sphingolipides are prepared

  1. Field experiment on multicomponent ion exchange in a sandy aquifer

    International Nuclear Information System (INIS)

    Bjerg, P.L.; Christensen, T.H.

    1990-01-01

    A field experiment is performed in a sandy aquifer in order to study ion exchange processes and multicomponent solute transport modeling. An injection of groundwater spiked with sodium and potassium chloride was performed over a continuous period of 37 days. The plume is monitored by sampling 350 filters in a spatial grid. The sampling aims at establishing compound (calcium, magnesium, potassium, sodium, chloride) breakthrough curves at various filters 15 to 100 m from the point of injection and areal distribution maps at various cross sections from 0 to 200 m from the point of injection. A three-dimensional multicomponent solute transport model will be used to model the field experiments. The chemical model includes cation exchange, precipitation, dissolution, complexation, ionic strength and the carbonate system. Preliminary results from plume monitoring show that the plume migration is relatively well controlled considering the scale and conditions of the experiment. The transverse dispersion is small causing less dilution than expected. The ion exchange processes have an important influence on the plume composition. Retardation of the injected ions is substantial, especially for potassium. Calcium exhibits a substantial peak following chloride due to release from the ion exchange sites on the sediment. (Author) (8 refs., 5 figs., tab.)

  2. A multi-species exchange model for fully fluctuating polymer field theory simulations.

    Science.gov (United States)

    Düchs, Dominik; Delaney, Kris T; Fredrickson, Glenn H

    2014-11-07

    Field-theoretic models have been used extensively to study the phase behavior of inhomogeneous polymer melts and solutions, both in self-consistent mean-field calculations and in numerical simulations of the full theory capturing composition fluctuations. The models commonly used can be grouped into two categories, namely, species models and exchange models. Species models involve integrations of functionals that explicitly depend on fields originating both from species density operators and their conjugate chemical potential fields. In contrast, exchange models retain only linear combinations of the chemical potential fields. In the two-component case, development of exchange models has been instrumental in enabling stable complex Langevin (CL) simulations of the full complex-valued theory. No comparable stable CL approach has yet been established for field theories of the species type. Here, we introduce an extension of the exchange model to an arbitrary number of components, namely, the multi-species exchange (MSE) model, which greatly expands the classes of soft material systems that can be accessed by the complex Langevin simulation technique. We demonstrate the stability and accuracy of the MSE-CL sampling approach using numerical simulations of triblock and tetrablock terpolymer melts, and tetrablock quaterpolymer melts. This method should enable studies of a wide range of fluctuation phenomena in multiblock/multi-species polymer blends and composites.

  3. Controlled growth of epitaxial CeO2 thin films with self-organized nanostructure by chemical solution method

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude

    2013-01-01

    Chemical solution deposition is a versatile technique to grow oxide thin films with self-organized nanostructures. Morphology and crystallographic orientation control of CeO2 thin films grown on technical NiW substrates by a chemical solution deposition method are achieved in this work. Based...

  4. Cost of producing U3O8 from ammonium bicarbonate in situ leach solution by the multiple-compartment ion-exchange system

    International Nuclear Information System (INIS)

    Hayashi, M.; Dolezal, H.

    1979-01-01

    The Bureau of Mines estimated the cost for a uranium ion-exchange recovery system using five grades of U 3 O 8 leach solution producing 815,570 pounds of U 3 O 8 per year from an ammonium bicarbonate in situ leach solution. The system flowsheet consisted of four unit operations: (1) Multiple-compartment ion-exchange (MCIX) absorption; (2) MCIX elution; (3) precipitation of the uranium as yellow cake, filtering, calcining, and packaging; and (4) waste disposal. The total fixed capital cost of a system treating 2,000 gallons per minute of 0.1-gram-per-liter-U 3 O 8 leach solution was estimated as $6,888,000. For a basic case of an MCIX system depreciating in 9 years, unit production cost of U 3 O 8 was $3.51 per pound. A decrease in feed solution grade from 0.4 to 0.03 gram per liter increased the production cost exponentially. Shorter depreciating periods significantly increased the production cost particularly for the lower grade feed solutions

  5. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  6. Hybrid chemical and nondestructive-analysis technique

    International Nuclear Information System (INIS)

    Hsue, S.T.; Marsh, S.F.; Marks, T.

    1982-01-01

    A hybrid chemical/NDA technique has been applied at the Los Alamos National Laboratory to the assay of plutonium in ion-exchange effluents. Typical effluent solutions contain low concentrations of plutonium and high concentrations of americium. A simple trioctylphosphine oxide (TOPO) separation can remove 99.9% of the americium. The organic phase that contains the separated plutonium can be accurately assayed by monitoring the uranium L x-ray intensities

  7. General-purpose chemical analyzer for on-line analyses of radioactive solutions

    International Nuclear Information System (INIS)

    Spencer, W.A.; Kronberg, J.W.

    1983-01-01

    An automated analyzer is being developed to perform analytical measurements on radioactive solutions on-line in a hostile environment. This General Purpose Chemical Analyzer (GPCA) samples a process stream, adds reagents, measures solution absorbances or electrode potentials, and automatically calculates the results. The use of modular components, under microprocessor control, permits a single analyzer design to carry out many types of analyses. This paper discusses the more important design criteria for the GPCA, and describes the equipment being tested in a prototype unit

  8. Mass-independent isotope effects in chemical exchange reaction

    International Nuclear Information System (INIS)

    Nishizawa, Kazushige

    2000-01-01

    Isotope effects of some elements in chemical exchange reaction were investigated by use of liquid-liquid extraction, liquid membrane or chromatographic separation. Cyclic polyether was used for every method. All polyethers used in a series of the studies were made clear that they distinguished the isotopes not only by their nuclear masses but also by their nuclear sizes and shapes. Chromium isotopes, for example, were recognized to have enrichment factors being proportional to δ 2 > which is a parameter to show field shift or the nuclear size and shape of the isotope. It follows that the chromium isotopes are separated not by their masses but by their field shift effects. Nuclear spin also played a great role to separate odd mass number isotopes from even mass number isotopes in even atomic number elements. Contribution of the nuclear spin (I=3/2) of 53 Cr to total enrichment factor, ε 53/52 = -0.00028, for 53 Cr to 52 Cr was observed to be, ε spin = -0.0025. (author)

  9. Mathematical simulation and calculation of the continuous countercurrent process of ion-exchange extraction of strontium from strongly mineralized solutions

    International Nuclear Information System (INIS)

    Nikashina, V.A.; Guryanova, L.N.; Baturova, L.L.; Venetsianov, E.V.; Ivanov, V.A.; Nikolaev, N.P.

    1993-01-01

    The program open-quotes Countercurrentclose quotes is developed for the simulation of a continuous ion-exchange extraction of strontium from strongly mineralized NaCl and CaCl 2 solutions using a KB-4 carboxylic cation-exchanger in the countercurrent columns. The program allows one to Calculate the conditions of Ca and Sr separation depending on the mode of operation at the sorption and regeneration stages, the residual Sr content on the overloaded sorbent, and the Sr separation on incompletely regenerated KB-4. It also makes it possible to find the optimal separation conditions. The program open-quotes Countercurrentclose quotes can be also used to simulate other ion-exchange processes

  10. Studies on Some Physical, Chemical and Sorption Properties of Some Inorganic ion Exchangers and Their Application to Radioactive Isotopes Removal

    International Nuclear Information System (INIS)

    El-Sweify, F.H.; Shehata, M.K.K.; El-Shazly, E.A.A.

    1999-01-01

    In the present work, amorphous zirconium phosphate, zirconium titanium phosphate and ceric tungstate have been synthesised. Solubility of the prepared ion exchangers in different media has been examined. These media were mineral acids, aqueous solutions of organic acids: oxalic, citric and tartaric as well as ammonium and potassium carbonate solutions of different molarities. I.R. analysis is applied on some samples of the prepared ion exchangers. Sorption behaviour of different metal ion species, of elements of nuclear significance on the prepared ion exchangers has been studied from aqueous media of different compositions and concentration under different experimental conditions. The studied metal ions are, Ce(III) and Eu(III), as representative for the trivalent lanthanides, Co(II), Zr(IV), Nb(V), Hf(IV), Te(IV), Ce(IV), Th(IV) and U(V I). Optimization of the conditions for the isolation and separation of the desired element species highlighted

  11. environmental studies for removal of some radioactive elements using zirconium silicate as inorganic ion exchange material

    International Nuclear Information System (INIS)

    El-Aryan, Y.F.A.

    2007-01-01

    inorganic ion exchangers have a good potential than the commonly used organic ones for removal and separation of radionuclides from irradiated nuclear fuel solutions. therefore, the main aim of this work is directed to find the optimum conditions for removal of some radionuclides such as Cs + ,Co 2+ ,and Eu 3+ by the prepared zirconium silicate as cation exchanger. the following items will be involved:-1- preparation of zirconium silicate as a cation exchanger. 2- characterization of the prepared exchanger using IR spectra, X-ray diffraction patterns, DTA and TG analyses. 3-chemical stability, capacity and equilibrium measurements will be determined on the materials using at different conditions (heating temperature and reaction temperature). 4- ion exchange isotherms. 5- breakthrough curves for removal of the investigated metal ions on the prepared exchanger under certain conditions

  12. Mathematical simulation and calculation of continuous countercurrent process of ion-exchange extraction of strontium from strongly mineralized solutions

    International Nuclear Information System (INIS)

    Nikashina, V.A.; Venitsianov, E.V.; Ivanov, V.A.; Gur'yanova, L.N.; Nikolaev, N.P.; Baturova, L.L.; Moskovskij Gosudarstvennyj Univ., Moscow

    1993-01-01

    A program 'Countercurrent' is developed for the simulation of a continuous ion-exchange extraction of strontium from the strongly mineralized solutions containing NaCl and CaCl 2 using carboxylic cation exchanger KB-4 in countercurrent columns. The use of the program allows one to calculate the consitions of Ca and Sr separation depending on the modes of operation at the stage of sorption as well as regeneration, to calculate a residual Sr content on an overloaded sorbent and Sr separation on an incompletely regenerated KB-4, and to find the optimal separation conditions

  13. Ammonium removal from high-strength aqueous solutions by Australian zeolite

    DEFF Research Database (Denmark)

    Wijesinghe, D. Thushari N; Dassanayake, Kithsiri B.; Sommer, Sven G.

    2016-01-01

    Removal of ammonium nitrogen (NH4 +-N) particularly from sources which are highly rich in nitrogen is important for addressing environmental pollution. Zeolites, aluminosilicate minerals, are commonly used as commercial adsorbents and ion-exchange medium in number of commercial applications due...... to its high adsorption capacity of ammonium (NH4 +). However, detailed investigations on NH4 + adsorption and ion exchange capacities of Australian natural zeolites are rare, particularly under higher NH4 + concentrations in the medium. Therefore, this study was conducted to determine NH4 + adsorption...... characteristics of Australian natural zeolites at high NH4 + concentrations with and without other chemical compounds in an aqueous solution. Results showed that initial NH4 + concentration, temperature, reaction time, and pH of the solution had significant effects on NH4 + adsorption capacity of zeolite...

  14. Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals

    Science.gov (United States)

    Maltseva, T. V.; Kolomiets, E. O.; Dzyazko, Yu. S.; Scherbakov, S.

    2018-02-01

    Organic-inorganic composite ion-exchangers based on anion exchange resins have been obtained. Particles of one-component and two-component modifier were embedded using the approach, which allows us to realize purposeful control of a size of the embedded particles. The approach is based on Ostwald-Freundlich equation, which was adapted to deposition in ion exchange matrix. The equation was obtained experimentally. Hydrated oxides of zirconium and iron were applied to modification, concentration of the reagents were varied. The embedded particles accelerate sorption, the rate of which is fitted by the model equation of chemical reactions of pseudo-second order. When sorption of arsenate ions from very diluted solution (50 µg dm-3) occurs, the composites show higher distribution coefficients comparing with the pristine resin.

  15. Chemical solution synthesis and ferromagnetic resonance of epitaxial thin films of yttrium iron garnet

    Science.gov (United States)

    Lucas, Irene; Jiménez-Cavero, Pilar; Vila-Fungueiriño, J. M.; Magén, Cesar; Sangiao, Soraya; de Teresa, José Maria; Morellón, Luis; Rivadulla, Francisco

    2017-12-01

    We report the fabrication of epitaxial Y3F e5O12 (YIG) thin films on G d3G a5O12 (111) using a chemical solution method. Cubic YIG is a ferrimagnetic material at room temperature, with excellent magneto-optical properties, high electrical resistivity, and a very narrow ferromagnetic resonance, which makes it particularly suitable for applications in filters and resonators at microwave frequencies. But these properties depend on the precise stoichiometry and distribution of F e3 + ions among the octahedral/tetrahedral sites of a complex structure, which hampered the production of high-quality YIG thin films by affordable chemical methods. Here we report the chemical solution synthesis of YIG thin films, with excellent chemical, crystalline, and magnetic homogeneity. The films show a very narrow ferromagnetic resonance (long spin relaxation time), comparable to that obtained from high-vacuum physical deposition methods. These results demonstrate that chemical methods can compete to develop nanometer-thick YIG films with the quality required for spintronic devices and other high-frequency applications.

  16. Chemical solution deposition: a path towards low cost coated conductors

    International Nuclear Information System (INIS)

    Obradors, X; Puig, T; Pomar, A; Sandiumenge, F; Pinol, S; Mestres, N; Castano, O; Coll, M; Cavallaro, A; Palau, A; Gazquez, J; Gonzalez, J C; Gutierrez, J; Roma, N; Ricart, S; Moreto, J M; Rossell, M D; Tendeloo, G van

    2004-01-01

    The achievement of low cost deposition techniques for high critical current YBa 2 Cu 3 O 7 coated conductors is one of the major objectives to achieve a widespread use of superconductivity in power applications. Chemical solution deposition techniques are appearing as a very promising methodology to achieve epitaxial oxide thin films at a low cost, so an intense effort is being carried out to develop routes for all chemical coated conductor tapes. In this work recent achievements will be presented towards the goal of combining the deposition of different type of buffer layers on metallic substrates based on metal-organic decomposition with the growth of YBa 2 Cu 3 O 7 layers using the trifluoroacetate route. The influence of processing parameters on the microstructure and superconducting properties will be stressed. High critical currents are demonstrated in 'all chemical' multilayers

  17. Ion exchange in HCl, NH2OH x HCl and N2H4 x 2HCl solutions

    International Nuclear Information System (INIS)

    Tohyama, Itiro; Otozai, Kiyoteru

    1977-01-01

    Distribution coefficients for 73 elements have been determined by the batch method in HCl, hydroxylamine and hydrazine solutions using strongly acidic and strongly basic exchanger resins. In general, a similar behaviour was observed. In some cases, however, the kind of onium ion was of considerable influence. Hydroxylamine and hydrazine solutions are useful as a substitute for HCl in many separations, as they are easily handled and can rapidly be decomposed by nitric acid. (orig./RB) [de

  18. Process for removing a mixture containing iodine and alkyl iodine compounds from a gas phase or aqueous solution with ion-exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, H; Mizuuchi, A; Yokoyama, F

    1968-10-04

    Iodine and alkyl iodine compounds are removed from a gas phase or aqueous solution containing salts, iodine and iodine compounds, such as the ambient gas in a reactor, if an accident should occur. The process comprises contacting the phase or solution: (a) with a hydrogen type strongly acidic cationic exchange resin, (b) with an anionic exchange resin containing quarternary ammonium and (c) with an anionic exchange resin containing free basic type tertiary amine, in this order or by reversing the order of the two anionic exchange resins. Although no problems arise in the liquid phase reaction, the ion-exchange resins in the gas phase reaction are desired in the moist state in order to stable maintain the migration speed of the materials to be removed regardless of the relative humidity of the amibent gas. In example I, Amberlite IRA-900 of 200 mm thickness as the lowermost bed, Amberlite IRA93 of 200 mm thickness as the middle bed and Amberlite 200 of 200 mm thickness as the uppermost bed were filled respectively, in a methacrylate resin cylinder with an inner diameter of 25 mm. A solution containing 15.9 mg/1 of iodine, 41.2 mg/1 of methyl iodide and 550 mg/1 of sodium carbonate flows at a rate of 15 liter/hr downward through the beds. As a result of testing, no iodine, iodine ions, iodic acid ions and methyl iodine were detected. The amount of water the beds could treat was 60 times the total quantity of the filled resins.

  19. Solution Exchange Lithography: A Versatile Tool for Sequential Surface Engineering

    Science.gov (United States)

    Pester, Christian; Mattson, Kaila; Bothman, David; Klinger, Daniel; Lee, Kenneth; Discekici, Emre; Narupai, Benjaporn; Hawker, Craig

    The covalent attachment of polymers has emerged as a viable strategy for the preparation of multi-functional surfaces. Patterned, surface-grafted polymer brushes provide spatial control over wetting, mechanical, biological or electronic properties, and allow fabrication of `intelligent' substrates which selectively adapt to their environment. However, the route towards patterned polymer brush surfaces often remains challenging, creating a demand for more efficient and less complicated fabrication strategies. We describe the design and application of a novel experimental setup to combine light-mediated and flow chemistry for the fabrication of hierarchical surface-grafted polymer brushes. Using light-mediated, surface initiated controlled radical polymerization and post-functionalization via well-established, and highly efficient chemistries, polymer brush films of previously unimaginable complexity are now shown to be accessible. This methodology allows full flexibility to exchange both lithographic photomasks and chemical environments in-situ, readily affording multidimensional thin film architectures, all from uniformly functionalized substrates.

  20. The advanced CECE process for enriching tritium by the chemical exchange method with a hydrophobic catalyst

    International Nuclear Information System (INIS)

    Kitamoto, Asashi; Shimizu, Masami; Masui, Takashi.

    1992-01-01

    The monothermal chemical exchange process with electrolysis, i.e., CECE process, was an effective method for enriching and removing tritium from tritiated water with low to middle level activity. The purpose of this study is to propose the theoretical background of the two-parameter evaluation method, which is based on a two-step isotope exchange reaction between hydrogen gas and liquid water, for improvement of the performance of a hydrophobic catalyst by a trickle bed-type column. Finally, a two-parameter method could attain the highest performance of isotope separation and the lowest liquid holdup for a trickle bed-type column. Therefore, this method will present some effective and practical procedures in scaling up a tritium enrichment process. The main aspect of the CECE process in engineering design and system evaluation was to develop the isotope exchange column with a high performance catalyst. (author)

  1. Radiocesium Removal From Synthetic Steam-Generator Cleaning Solutions. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Narbutt, H; Bartos, B [Department of Radiochemistry, Institute of Nuclear Chemistry and Technology, PL-03185 Warsaw (Poland); Taleb, H [On leave from Tajoura Nuclear Research Center, Tripoli (Libyan Arab Jamahiriya)

    1996-03-01

    Adjustment of {sup 137} Cs{sup +} on ion exchangers from aqueous solutions containing ammonia and various chelating agents was studied. The solutions simulated radioactive waste obtained after chemical cleaning of steam generators (SG) in nuclear power plants according to the technology developed by Siemens KWU and contained ammonia and one of the following chelating agents; nitrilotriacetic acid (NTA), ethylenediamine tetraacetic acid (EDTA), and ethylenediamine(EDA), to dissolve iron and/or copper corrosion deposits. The ion exchangers used were of the composite type, and consisted of powdered cobalt(II) hexacyanoferrate incorporated into beads of a phenolsulphonic resin. Another composite adsorbent with titanium hexacyanoferrate has proved to adsorb {sup 137} Cs{sup +} from the NTA and EDA solutions more effectively than commercial caesium- selective resin Lewatit DN-KR. However, because of high concentration of competitive ammonium ions at PH 7.2(at higher PH the sorbent decomposed), the removal of radiocaesium was still insufficient. 3 figs.

  2. An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    Science.gov (United States)

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  3. Isotopic studies on ligand exchange between complex and simple cyanides in water medium and in liquid hydrogen cyanide. Part 2. Radiocyanide ligand exchange study between hydrogen cyanide and octacyanotungstate(4) in water solutions of mineral acids

    International Nuclear Information System (INIS)

    Zielinski, M.

    1979-01-01

    Radiocyanide ligand exchange between potassium octacyanotungstate(4) and hydrogen cyanide in aqueous solutions of sulfuric acid and between octacyanotungstic(4) acid and hydrogen cyanide in aqueous solutions have been investigated experimentally. The observed enhancement of the rate of ligand exchange in acidic medium has been rationalized in terms of the proposed new general reaction scheme taking into account the reversible decomposition of complex cyanide at low pH, and irreversible one at high pH. The discussion on the results obtained has been carried out within the framework of derived formal kinetic equations. (author)

  4. Desirable levels of exchangeable K and Ca and their concentration in the soil solution to reduce uptake of radioactive Cs by rice plants

    International Nuclear Information System (INIS)

    Sekimoto, Hitoshi; Yamada, Takashi; Hotsuki, Tomoe; Matsuzaki, Akio; Mimura, Tetsuro

    2014-01-01

    K in the soil solution can control the uptake of radioactive Cs by rice plants, but this control is not accomplished only by K; it is affected by other ionic species. It is therefore important to investigate uptake of radioactive Cs from the perspective of the concentration of major cations such as Ca in the soil solution and the levels of exchangeable cations in the soil. To clarify the effects of K and Ca in the soil solution and of the levels of soil exchangeable cations to prevent uptake of radioactive Cs, we conducted a pot experiment and field experiments in a paddy soil in 2011 and 2012. To reduce the uptake of radioactive Cs, it was necessary to achieve a K concentration in the soil solution of 0.5 mmol L"-"1, and a Ca concentration higher than 2 mmol L"-"1 based on the results of the pot experiment. In addition, we obtained the desirable levels of exchangeable cations and the cation exchange capacity (CEC) in the soil from previous reports and the results of our field experiments. On this basis, we propose the following threshold levels for exchangeable cations and CEC in the soil as a standard: 0.53 K cmol_c kg"-"1, 18.0 Ca cmol_c kg"-"1, 2.0 Mg cmol_c kg"-"1, i.e. 25 mg K_2O 100 g"-"1, 505 mg CaO 100 g"-"1, 40 Mg O mg 100 g"-"1, and a CEC of 30 cmol_c kg"-"1. Converting these values into the corresponding levels in the soil solution, we obtained concentrations of 0.71 mmol K L"-"1, 4.22 mmol Ca L"-"1, and 1.35 mmol Mg L"-"1. These levels are within the improving standard for fertility of paddy soils in Japan. Consequently, it will be necessary to improve the fertility of paddy soils to control the uptake of radioactive Cs by rice plants. (author)

  5. Calcium isotope fractionation in ion-exchange chromatography

    International Nuclear Information System (INIS)

    Russell, W.A.; Papanastassiou, D.A.

    1978-01-01

    Significant fractionation of the isotopes of calcium has been observed during elution through short ion-exchange columns packed with Dowex 50W-X8 resin. A double isotopic tracer was used to provide correction for instrumental fractionation effects. The absolute 40 Ca/ 44 Ca ratio is determined by this method to 0.05% and provides a measure of the fractionation of all Ca isotopes. It is found that the lighter isotopes are preferentially retained by the resin, with variations in 40 Ca/ 44 Ca between the first and last fractions of up to 1.1%. An estimate of the separation factor between batch solute and resin gives epsilon = 2.1 x 10 -4 . Details of the chemical or physical mechanisms causing isotope fractionation of Li, Na, Ca, and other elements during ion-exchange chromatography are not yet clear

  6. Removal of radioruthenium from alkaline intermediate level radioactive waste solution : a laboratory investigation

    International Nuclear Information System (INIS)

    Samanta, S.K.; Theyyunni, T.K.

    1994-01-01

    Various methods were investigated in the laboratory for the removal of radioruthenium from alkaline intermediate level radioactive waste solutions of reprocessing plant origin. The methods included batch equilibration with different ion exchangers and sorbents, column testing and chemical precipitation. A column method using zinc-activated carbon mixture and a chemical precipitation method using ferrous salt along with sodium sulphite were found to be promising for plant scale application. (author). 10 refs., 3 figs., 7 tabs

  7. Ion exchange in the nuclear power industry

    International Nuclear Information System (INIS)

    Lehto, J.

    1993-01-01

    Ion exchangers are used in many fields in the nuclear power industry. At nuclear power plants, organic ion exchange resins are mainly used for the removal of ionic and particulate contaminants from the primary circuit, condensate and fuel storage pond waters. Ion exchange resins are used for the solidification of low- and medium-active nuclear waste solutions. The number of applications of zeolites, and other inorganic ion exchangers, in the separation of radionuclides from nuclear waste solutions has been increasing since the 1980s. In nuclear fuel reprocessing plants, ion exchange is used for the solidification of low- and medium-active waste solutions, as well as for the partitioning of radioactive elements for further use. (Author)

  8. Approximate method of calculation of non-equilibrium flow parameters of chemically reacting nitrogen tetroxide in the variable cross-section channels with energy exchange

    International Nuclear Information System (INIS)

    Bazhin, M.A.; Fedosenko, G.Eh.; Shiryaeva, N.M.; Mal'ko, M.V.

    1986-01-01

    It is shown that adiabatic non-equilibrium chemically reacting gas flow with energy exchange in a variable cross-section channel may be subdivided into five possible types: 1) quasi-equilibrium flow; 2) flow in the linear region of deviation from equilibrium state; 3) quasi-frozen flow; 4) flow in the linear region of deviation from frozen state; 5) non-equilibrium flow. Criteria of quasi-equilibrium and quazi-frozen flows, including factors of external action of chemically reacting gas on flow, allow to obtain simple but sufficiently reliable approximate method of calculation of flow parameters. The considered method for solving the problem of chemically reacting nitrogen tetroxide in the variable cross-section channel with energy exchange can be used for evaluation of chemical reaction kinetics on the flow parameter in the stages of axial-flow and radial-flow turbines and in another practical problems

  9. Enhanced Open-Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivity-Controlled Solution-Phase Ligand Exchange

    KAUST Repository

    Jo, Jea Woong; Kim, Younghoon; Choi, Jongmin; de Arquer, F. Pelayo Garcí a; Walters, Grant; Sun, Bin; Ouellette, Olivier; Kim, Junghwan; Proppe, Andrew H.; Quintero-Bermudez, Rafael; Fan, James; Xu, Jixian; Tan, Chih Shan; Voznyy, Oleksandr; Sargent, Edward H.

    2017-01-01

    The energy disorder that arises from colloidal quantum dot (CQD) polydispersity limits the open-circuit voltage (VOC) and efficiency of CQD photovoltaics. This energy broadening is significantly deteriorated today during CQD ligand exchange and film assembly. Here, a new solution-phase ligand exchange that, via judicious incorporation of reactivity-engineered additives, provides improved monodispersity in final CQD films is reported. It has been found that increasing the concentration of the less reactive species prevents CQD fusion and etching. As a result, CQD solar cells with a VOC of 0.7 V (vs 0.61 V for the control) for CQD films with exciton peak at 1.28 eV and a power conversion efficiency of 10.9% (vs 10.1% for the control) is achieved.

  10. Enhanced Open-Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivity-Controlled Solution-Phase Ligand Exchange

    KAUST Repository

    Jo, Jea Woong

    2017-10-09

    The energy disorder that arises from colloidal quantum dot (CQD) polydispersity limits the open-circuit voltage (VOC) and efficiency of CQD photovoltaics. This energy broadening is significantly deteriorated today during CQD ligand exchange and film assembly. Here, a new solution-phase ligand exchange that, via judicious incorporation of reactivity-engineered additives, provides improved monodispersity in final CQD films is reported. It has been found that increasing the concentration of the less reactive species prevents CQD fusion and etching. As a result, CQD solar cells with a VOC of 0.7 V (vs 0.61 V for the control) for CQD films with exciton peak at 1.28 eV and a power conversion efficiency of 10.9% (vs 10.1% for the control) is achieved.

  11. Analysis of 235U enrichment by chemical exchange in U(IV) - U(VI) system on anionite

    International Nuclear Information System (INIS)

    Raica, Paula; Axente, Damian

    2007-01-01

    Full text: A theoretical study about the 235 U enrichment by chemical exchange method in U(IV)-U(VI) system on anion-exchange resins is presented. The 235 U isotope concentration profiles along the band were numerically calculated using an accurate mathematical model and simulations were carried out for the situation of product and waste withdrawal and feed supply. By means of numerical simulation, an estimation of the migration time, necessary for a desired enrichment degree, was obtained. The required migration distance, the production of uranium 3 at.% 235 U per year and the plant configuration are calculated for different operating conditions. An analysis of the process scale for various experimental conditions is also presented. (authors)

  12. Coupled sulfur isotopic and chemical mass transfer modeling: Approach and application to dynamic hydrothermal processes

    International Nuclear Information System (INIS)

    Janecky, D.R.

    1988-01-01

    A computational modeling code (EQPSreverse arrowS) has been developed to examine sulfur isotopic distribution pathways coupled with calculations of chemical mass transfer pathways. A post processor approach to EQ6 calculations was chosen so that a variety of isotopic pathways could be examined for each reaction pathway. Two types of major bounding conditions were implemented: (1) equilibrium isotopic exchange between sulfate and sulfide species or exchange only accompanying chemical reduction and oxidation events, and (2) existence or lack of isotopic exchange between solution species and precipitated minerals, parallel to the open and closed chemical system formulations of chemical mass transfer modeling codes. All of the chemical data necessary to explicitly calculate isotopic distribution pathways is generated by most mass transfer modeling codes and can be input to the EQPS code. Routines are built in to directly handle EQ6 tabular files. Chemical reaction models of seafloor hydrothermal vent processes and accompanying sulfur isotopic distribution pathways illustrate the capabilities of coupling EQPSreverse arrowS with EQ6 calculations, including the extent of differences that can exist due to the isotopic bounding condition assumptions described above. 11 refs., 2 figs

  13. Gas-phase ion/molecule isotope-exchange reactions: methodology for counting hydrogen atoms in specific organic structural environments by chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Hunt, D.F.; Sethi, S.K.

    1980-01-01

    Ion/molecule reactions are described which facilitate exchange of hydrogens for deuteriums in a variety of different chemical environments. Aromatic hydrogens in alkylbenzenes, oxygenated benzenes, m-toluidine, m-phenylenediamine, thiophene, and several polycyclic aromatic hydrocarbons and metallocenes are exchanged under positive ion CI conditions by using either D 2 O, EtOD, or ND 3 as the reagent gas. Aromatic hydrogens, benzylic hydrogens, and hydrogens on carbon adjacent to carbonyl groups suffer exchange under negative ion CI conditions in ND 3 , D 2 O, and EtOD, respectively. A possible mechanism for the exchange process is discussed. 1 figure, 2 tables

  14. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    KAUST Repository

    Geise, Geoffrey M.

    2013-09-17

    Many salinity gradient energy technologies such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange membranes. While there is considerable interest in using thermolytic solutions such as ammonium bicarbonate (AmB) in RED processes for closed-loop conversion of heat energy to electricity, little is known about membrane performance in this electrolyte. The resistances of two commercially available cation exchange membranes in AmB were lower than their resistances in NaCl. However, the resistances of commercially available anion exchange membranes (AEMs) were much larger in AmB than in NaCl, which would adversely affect energy recovery. The properties of a series of quaternary ammonium-functionalized poly(phenylene oxide) and Radel-based AEMs were therefore examined to understand the reasons for increased resistance in AmB to overcome this performance penalty due to the lower mobility of bicarbonate, 4.59 × 10-4 cm2/(V s), compared to chloride, 7.90 × 10-4 cm2/(V s) (the dilute aqueous solution mobility ratio of HCO3 - to Cl- is 0.58). Most membrane resistances were generally consistent with the dilute solution mobilities of the anions. For a few key samples, however, increased water uptake in AmB solution reduced the ionic resistance of the polymer compared to its resistance in NaCl solution. This increased water uptake was attributed to the greater hydration of the bicarbonate ion compared to the chloride ion. The increased resistance due to the use of bicarbonate as opposed to chloride ions in AEMs can therefore be mitigated by designing polymers that swell more in AmB compared to NaCl solutions, enabling more efficient energy recovery using AmB thermolytic solutions in RED. © 2013 American Chemical Society.

  15. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    KAUST Repository

    Geise, Geoffrey M.; Hickner, Michael A.; Logan, Bruce E.

    2013-01-01

    Many salinity gradient energy technologies such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange membranes. While there is considerable interest in using thermolytic solutions such as ammonium bicarbonate (AmB) in RED processes for closed-loop conversion of heat energy to electricity, little is known about membrane performance in this electrolyte. The resistances of two commercially available cation exchange membranes in AmB were lower than their resistances in NaCl. However, the resistances of commercially available anion exchange membranes (AEMs) were much larger in AmB than in NaCl, which would adversely affect energy recovery. The properties of a series of quaternary ammonium-functionalized poly(phenylene oxide) and Radel-based AEMs were therefore examined to understand the reasons for increased resistance in AmB to overcome this performance penalty due to the lower mobility of bicarbonate, 4.59 × 10-4 cm2/(V s), compared to chloride, 7.90 × 10-4 cm2/(V s) (the dilute aqueous solution mobility ratio of HCO3 - to Cl- is 0.58). Most membrane resistances were generally consistent with the dilute solution mobilities of the anions. For a few key samples, however, increased water uptake in AmB solution reduced the ionic resistance of the polymer compared to its resistance in NaCl solution. This increased water uptake was attributed to the greater hydration of the bicarbonate ion compared to the chloride ion. The increased resistance due to the use of bicarbonate as opposed to chloride ions in AEMs can therefore be mitigated by designing polymers that swell more in AmB compared to NaCl solutions, enabling more efficient energy recovery using AmB thermolytic solutions in RED. © 2013 American Chemical Society.

  16. Uniform thin film electrode made of low-temperature-sinterable silver nanoparticles: optimized extent of ligand exchange from oleylamine to acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yung Jong; Kim, Na Rae; Lee, Changsoo; Lee, Hyuck Mo, E-mail: hmlee@kaist.ac.kr [Department of Materials Science and Engineering (Korea, Republic of)

    2017-02-15

    Lowering the sintering temperature of nanoparticles in the electrode deposition process holds both academic and industrial interest because of the potential applications of such electrodes in polymer devices and flexible electronics. In addition, achieving uniform electrode formation after ligand exchange is equally important as lowering the sintering temperature. Here, we report a simple chemical treatment by the addition of ligand-exchanging interfaces to lower the sintering temperature; we also determine the optimum extent of ligand exchange for crack-free electrode formation. First, we investigated the structural change of Ag thin films with respect to the concentration of acrylic acid (AA) solutions. Second, we used thermal analysis to evaluate the effects of changes in the sintering temperature. We observed that the resulting conductivity of the Ag patterns was only one order of magnitude lower than that of bulk Ag when the patterns were sintered at 150 °C. The simple chemical treatment developed in this work for solution-processed Ag electrode formation can be adopted for flexible electronics, which would eliminate the need for vacuum and high-temperature processes.

  17. Benthic solute exchange and carbon mineralization in two shallow subtidal sandy sediments: Effect of advective pore-water exchange

    DEFF Research Database (Denmark)

    Cook, Perran L. M.; Wenzhofer, Frank; Glud, Ronnie N.

    2007-01-01

    within the range measured in the chambers. The contribution of advection to solute exchange was highly variable and dependent on sediment topography. Advective processes also had a pronounced influence on the in situ distribution of O-2 within the sediment, with characteristic two-dimensional patterns...... of O-2 distribution across ripples, and also deep subsurface O-2 pools, being observed. Mineralization pathways were predominantly aerobic when benthic mineralization rates were low and advective pore-water flow high as a result of well-developed sediment topography. By contrast, mineralization...... proceeded predominantly through sulfate reduction when benthic mineralization rates were high and advective pore-water flow low as a result of poorly developed topography. Previous studies of benthic mineralization in shallow sandy sediments have generally ignored these dynamics and, hence, have overlooked...

  18. Development of Electrically Switched Ion Exchange Process for Selective Ion Separations

    International Nuclear Information System (INIS)

    Rassat, Scot D.; Sukamto, Johanes H.; Orth, Rick J.; Lilga, Michael A.; Hallen, Richard T.

    1999-01-01

    The electrically switched ion exchange (ESIX) process, being developed at Pacific Northwest National Laboratory, provides an alternative separation method to selectively remove ions from process and waste streams. In the ESIX process, in which an electroactive ion exchange film is deposited onto a high surface area electrode, uptake and elution are controlled directly by modulating the electrochemical potential of the film. This paper addresses engineering issues necessary to fully develop ESIX for specific industrial alkali cation separation challenges. The cycling and chemical stability and alkali cation selectivity of nickel hexacyanoferrate (NiHCF) electroactive films were investigated. The selectivity of NiHCF was determined using cyclic voltammetry and a quartz crystal microbalance to quantify ion uptake in the film. Separation factors indicated a high selectivity for cesium and a moderate selectivity for potassium in high sodium content solutions. A NiHCF film with improved redox cycling and chemical stability in a simulated pulp mill process stream, a targeted application for ESIX, was also prepared and tested

  19. Climatic, biological, and land cover controls on the exchange of gas-phase semivolatile chemical pollutants between forest canopies and the atmosphere.

    Science.gov (United States)

    Nizzetto, Luca; Perlinger, Judith A

    2012-03-06

    An ecophysiological model of a structured broadleaved forest canopy was coupled to a chemical fate model of the air-canopy exchange of gaseous semivolatile chemicals to dynamically assess the short-term (hours) and medium term (days to season) air-canopy exchange and the influence of biological, climatic, and land cover drivers on the dynamics of the air-canopy exchange and on the canopy storage for airborne semivolatile pollutants. The chemical fate model accounts for effects of short-term variations in air temperature, wind speed, stomatal opening, and leaf energy balance, all as a function of layer in the canopy. Simulations showed the potential occurrence of intense short/medium term re-emission of pollutants having log K(OA) up to 10.7 from the canopy as a result of environmental forcing. In addition, relatively small interannual variations in seasonally averaged air temperature, canopy biomass, and precipitation can produce relevant changes in the canopy storage capacity for the chemicals. It was estimated that possible climate change related variability in environmental parameters (e.g., an increase of 2 °C in seasonally averaged air temperature in combination with a 10% reduction in canopy biomass due to, e.g., disturbance or acclimatization) may cause a reduction in canopy storage capacity of up to 15-25%, favoring re-emission and potential for long-range atmospheric transport. On the other hand, an increase of 300% in yearly precipitation can increase canopy sequestration by 2-7% for the less hydrophobic compounds.

  20. Accuracy in the quantification of chemical exchange saturation transfer (CEST) and relayed nuclear Overhauser enhancement (rNOE) saturation transfer effects.

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Feng; Li, Hua; Xu, Junzhong; Gochberg, Daniel F; Gore, John C; Zu, Zhongliang

    2017-07-01

    Accurate quantification of chemical exchange saturation transfer (CEST) effects, including dipole-dipole mediated relayed nuclear Overhauser enhancement (rNOE) saturation transfer, is important for applications and studies of molecular concentration and transfer rate (and thereby pH or temperature). Although several quantification methods, such as Lorentzian difference (LD) analysis, multiple-pool Lorentzian fits, and the three-point method, have been extensively used in several preclinical and clinical applications, the accuracy of these methods has not been evaluated. Here we simulated multiple-pool Z spectra containing the pools that contribute to the main CEST and rNOE saturation transfer signals in the brain, numerically fit them using the different methods, and then compared their derived CEST metrics with the known solute concentrations and exchange rates. Our results show that the LD analysis overestimates contributions from amide proton transfer (APT) and intermediate exchanging amine protons; the three-point method significantly underestimates both APT and rNOE saturation transfer at -3.5 ppm (NOE(-3.5)). The multiple-pool Lorentzian fit is more accurate than the other two methods, but only at lower irradiation powers (≤1 μT at 9.4 T) within the range of our simulations. At higher irradiation powers, this method is also inaccurate because of the presence of a fast exchanging CEST signal that has a non-Lorentzian lineshape. Quantitative parameters derived from in vivo images of rodent brain tumor obtained using an irradiation power of 1 μT were also compared. Our results demonstrate that all three quantification methods show similar contrasts between tumor and contralateral normal tissue for both APT and the NOE(-3.5). However, the quantified values of the three methods are significantly different. Our work provides insight into the fitting accuracy obtainable in a complex tissue model and provides guidelines for evaluating other newly developed

  1. Chemical and radiation stability of a proprietary cesium ion exchange material manufactured from WWL membrane and SuperLig reg-sign 644

    International Nuclear Information System (INIS)

    Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Berry, P.K.

    1996-09-01

    Pretreatment of nuclear process wastes for ion exchange removal of Cs and other radionuclides is one way to minimize amount of high-level radioactive waste at Hanford. This study evaluated Cs-selective SuperLig reg-sign 644 (IBC Advanced Technologies, American Fork UT) entrapped in a proprietary WWL web membrane (3M) for chemical/radiation stability in simulated caustic neutralized current acid waste (NCAW), 0.5M HNO 3 , water, and air. After exposure up to 2.0E+09 rad, the material was evaluated for Cs uptake in 5M sodium NCAW simulants with varying Cs contents. Radiolytic stability appears to be sufficient for ion exchange pretreatment of radioactive Cs: essentially no decrease in Cs selectivity or loading (Kd) was observed during 60 Cs gamma irradiation in water or 0.5M HNO 3 up to 1.0E+09 rad. Cs Kd decreased by a factor of 2 after 2.0E+09 rad exposure. Cs Kd did not change during irradiation in 5M NCAW or ambient air up to 1.0E+08 rad, but decreased by more than an order of magnitude between 1.0E+08 and 2.0E+09 rad (not typical of process conditions). Chemical stability under caustic conditions is lower than in air or under neutral/acidic conditions. Results indicate that this material is less stable in caustic solution irrespective of radiation exposure. Samples of the membrane retained their physical form throughout the entire experiment and were only slightly brittle after exposure to 2.0E+09 rad. (The material evaluated was a finely ground (400 mesh) particulate engineered to form a polymeric fiber (WWL), not the macroscopic form of SuperLig reg-sign 644 resin (20 to 50 mesh).)

  2. Design of common heat exchanger network for batch processes

    International Nuclear Information System (INIS)

    Anastasovski, Aleksandar

    2014-01-01

    Heat integration of energy streams is very important for the efficient energy recovery in production systems. Pinch technology is a very useful tool for heat integration and maximizing energy efficiency. Creating of heat exchangers network as a common solution for systems in batch mode that will be applicable in all existing time slices is very difficult. This paper suggests a new methodology for design of common heat exchanger network for batch processes. Heat exchanger network designs were created for all determined repeatable and non-repeatable time periods – time slices. They are the basis for creating the common heat exchanger network. The common heat exchanger network as solution, satisfies all heat-transfer needs for each time period and for every existing combination of selected streams in the production process. This methodology use split of some heat exchangers into two or more heat exchange units or heat exchange zones. The reason for that is the multipurpose use of heat exchangers between different pairs of streams in different time periods. Splitting of large heat exchangers would maximize the total heat transfer usage of heat exchange units. Final solution contains heat exchangers with the minimum heat load as well as the minimum need of heat transfer area. The solution is applicable for all determined time periods and all existing stream combinations. - Highlights: •Methodology for design of energy efficient systems in batch processes. •Common Heat Exchanger Network solution based on designs with Pinch technology. •Multipurpose use of heat exchangers in batch processes

  3. Application to ion exchange study of an interferometry method

    International Nuclear Information System (INIS)

    Platzer, R.

    1960-01-01

    The numerous experiments carried out on ion exchange between clay suspensions and solutions have so far been done by studying the equilibrium between the two phases; by this method it is very difficult to obtain the kinetic properties of the exchange reactions. At method consisting of observation with an interferential microscope using polarised white light shows up the variations in concentration which take place during the ion exchange between an ionic solution and a montmorillonite slab as well as between an ionic solution and a grain of organic ion exchanger. By analysing the results it will be possible to compare the exchange constants of organic ion exchangers with those of mineral ion exchangers. (author) [fr

  4. Interaction of Brilliant Blue dye solution with soil and its effect on mobility of compounds around the zones of preferenial flows at spruce stand

    Directory of Open Access Journals (Sweden)

    Bebej Juraj

    2017-06-01

    Full Text Available We performed field experiment with 10 g l−1 concentration of Brilliant Blue solutes in 100 l of water sprinkling on 1 × 1 m surface of the Dystric Cambisol. Consequently, four vertical profiles were exposed at experimental plot after 2 hours (CUT 2, 24 hours (CUT 24, 27 hours (CUT 27 and after 504 hours (CUT 504 in order to analyse spatiotemporal interactions among the BB solution (Na-salts, soil exchangeable complex and fine earth soil (% samples extracted from both the high and low coloured zones located around the optically visualised macropore preferred flow (PF zones. The concentration changes were quantifying via soil profiles not affected by BB (termed as REF located in the close vicinity of experimental plot. Observed changes in pH (H2O, chemical composition of fineearth soil, as well as in concentration of Na+ in soil exchangeable complex to suggest, the BB dye solution didn’t represent an inert tracer, but compounds strongly involved in reaction with surrounding soils. Recorded chemical trends seems to be the result both the competitive processes between the Na+ of BB dye solution and composition of surrounding soil exchangeable complex, as well and the spatial-temporal controlled mechanism of dye solution transfer in soil.

  5. Rheology and physical-chemical characteristics of the solutions of the medicines

    International Nuclear Information System (INIS)

    Urakov, A; Urakova, N

    2015-01-01

    In the laboratory studied the dynamics of rheology of water solutions with plasma- inflammatory and antiseptic funds when mixing them with blood, plasma and pus under the influence of the following physical and chemical factors of local interaction: gravity, specific gravity, temperature, relative viscosity, internal pressure, sparkling water, total concentration of the ingredients, surface activity, volume of acid and osmotic activity of medicines. Found that the rheology of biological liquids improve hyperthermic, highly alkaline and highly carbonated solution medicines. For the dilution of pus, dense festering mass of sulfur plugs and tear stones invited to apply heated to +39 – +42°C with aqueous solution of 0.5 – 3% hydrogen peroxide and 0.5 – 10% sodium bicarbonate saturated with carbon dioxide to excess pressure 0.2 ATM. (paper)

  6. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 1: Cesium Exchange Capacity of a 15-cm3 Column and Dynamic Stability of the Exchange Media

    International Nuclear Information System (INIS)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-01-01

    Bench-scale column tests were performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution representative of liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). An engineered form of CST ion exchanger, known as IONSIVtm IE-911 (UOP, Mt Laurel, NJ, USA), was tested in 15 cm3 columns at a flow rate of 5 bed volumes per hour. These experiments showed the ion exchange material to have reasonable selectivity and capacity for removing cesium from the complex chemical matrix of the solution. However, previous testing indicated that partial neutralization of the feed stream was necessary to increase the stability of the ion exchange media. Thus, in these studies, CST degradation was determined as a function of throughput in order to better assess the stability characteristics of the exchanger for potential future waste treatment applications. Results of these tests indicate that the degradation of the CST reaches a maximum very soon after the acidic feed is introduced to the column and then rapidly declines. Total dissolution of bed material did not exceed 3% under the experimental regime used

  7. Flexible Exchange of Farming Device Data

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Pedersen, Torben Bach

    2011-01-01

    A new trend in the farming business is to replace conventional farming devices with computerized farming devices. Accordingly, numerous computer-based farming devices for logging, processing and exchanging data have recently been installed on moving farm machinery such as tractors. The exchange o......-directional data exchange as well as efficient requirements change management through a graphical user interface. The paper also demonstrates the use of the proposed solution based on a farming case study and open source technologies....... and systems to exchange data based on a predefined set of rules. In consequence, many hand-coded data exchange solutions have been developed in the farming business. Although efforts regarding incorporating data exchange standards have been made, their actual usage so far has been limited, due to the fact...

  8. Spectrally Undiscerned Isomers Might Lead to Erroneous Determination of Water Exchange Rates of paraCEST Eu(III) Agents.

    Science.gov (United States)

    Cakić, Nevenka; Tickner, Ben; Zaiss, Moritz; Esteban-Gómez, David; Platas-Iglesias, Carlos; Angelovski, Goran

    2017-07-17

    We report a detailed study of the solution structure and water exchange rate of a Eu(III) complex with the cyclen-based ligand L 1 , containing (S)-2-(2-acetamido)-3-(4-(trifluoromethyl)phenyl)propanoate pendant arms at positions 1 and 7 of the cyclen ring and acetylglycinate pendants at positions 4 and 10. The EuL 1 complex was characterized by a combination of NMR and luminescence spectroscopy and density functional theory (DFT) calculations. The chemical exchange saturation transfer (CEST) spectra obtained at different temperatures and saturation powers present a CEST signal attributed to the coordinated water molecule. However, the spectra recorded at low temperatures (10 °C) and low saturation powers revealed the presence of two different species with coordinated water molecules having very similar chemical shifts. Determination of the water exchange rates of the coordinated water molecules was carried out by using the Bloch four-pool model that accounts for the presence of these isomers, and this model was compared to conventional methods for CEST quantification, namely the Omega plot and QUESP (quantification of exchange rate as a function of saturation power), which assume the presence of a single CEST active species. The results indicated that only the four-pool Bloch equations provide reasonable water exchange rates and activation parameters. Solution NMR studies and DFT calculations indicated that the two isomers present in solution correspond to the SS-Δ(λλλλ) and SS-Λ(δδδδ) isomers, which present capped square-antiprismatic (SAP) coordination environments. Additional NMR studies on the EuL 2 and EuL 3 complexes, which present four (S)-2-(2-acetamido)-3-(4-(trifluoromethyl)phenyl)propanoate or acetylglycinate pendant arms, respectively, confirm the results obtained for EuL 1 .

  9. Ion exchange behaviour of citrate and EDTA anions on strong and weak base organic ion exchangers

    International Nuclear Information System (INIS)

    Askarieh, M.M.; White, D.A.

    1988-01-01

    The exchange of citrate and EDTA ions with two strong base and two weak base exchangers is considered. Citrate and EDTA analysis for this work was performed using a colorimetric method developed here. The ions most selectively exchanged on the resins are H 2 cit - and H 2 EDTA 2- , though EDTA is generally less strongly sorbed on strong base resins. In contact with weak base resins, deprotonation of the resin occurs during ion exchange with a noticeable drop in solution pH. Although EDTA sorption can be reversed by nitric acid, citrate ions are significantly held on the resin at low pH. The exchange of citrate can be made reversible if bicarbonate is added to the initial solutions. Alkaline regeneration of exchangers loaded with EDTA proved to be very effective. (author)

  10. Exchangeable hydrogen explains the pH of spodosol Oa horizons

    Science.gov (United States)

    Ross, D.S.; David, M.B.; Lawrence, G.B.; Bartlett, R.J.

    1996-01-01

    The chemistry of extremely acid Oa horizons does not conform to traditional pH, Al, and base saturation relationships. Results from two separate studies of northeastern U.S. forested soils were used to investigate relationships between pH in water or dilute salt solutions and other soil characteristics. In Oa horizons with pH below 4, soil pH in dilute CaCl2 solution was correlated with exchangeable H+ measured either by titration (r = -0.88, P = 0.0001, n = 142) or by electrode (r = -0.89, P = 0.0001, n = 45). Exchangeable H+ expressed as a percentage of the cation-exchange capacity (CEC) was linear with pH and showed similar slopes for data from both studies. For all samples, pHw = 4.21 - 1.80 x H+/CEC (R2 = 0.69, n = 194). The reciprocal of the H+/CEC ratio is base saturation with Al added to the bases. Because of the low pH, exchangeable Al does not appear to behave as an acid. Exchangeable H+ remains an operationally defined quantity because of the difficulty in separating exchange and hydrolysis reactions. In a variety of neutral-salt extractants, concentration of H+ were correlated with 0.1 M BaCl2-exchangeable H+ (r > 0.91, P = 0.0001, n = 26) regardless of the strength of the extract. Nine successive extractions with 0.33 mM CaCl2 removed more H+ than was removed by single batch extractions with either 1 M KCl or 0.1 M BaCl2 (average H+ of 70, 43, and 49 mmol kg-1, respectively for 26 samples). The data showed little difference in the chemical behavior of Oa horizons from a variety of geographical sites and vegetation types.

  11. Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics

    Science.gov (United States)

    Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; ur Rehman, Aziz

    2015-01-01

    The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) were calculated for the adsorption of congo red, indicating an exothermic process. PMID:28793430

  12. Epitaxial ternary nitride thin films prepared by a chemical solution method

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongmei [Los Alamos National Laboratory; Feldmann, David M [Los Alamos National Laboratory; Wang, Haiyan [TEXAS A& M; Bi, Zhenxing [TEXAS A& M

    2008-01-01

    It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

  13. Thermodynamic study on the adsorption of strontium on polyantimonic acid exchanger

    International Nuclear Information System (INIS)

    Li Mingyu; Chen Jing; Wang Jianchen; Zhao Jing

    2007-01-01

    The adsorption of strontium on the polyantimonic acid adsorbent was studied. The equilibrium data for the adsorption of strontium on polyantimonic acid exchanger from aqueous solutions were obtained and correlated with Langmuir-type and Freundlich-type isotherm equation within the temperature range of 293-323 K and the experimental concentration range. Freundlich adsorption isotherms and the isosteric enthalpy indicate that the adsorption of strontium on polyantimonic acid is an endothermic process from aqueous solutions. The enthalpy, free energy, and entropy of adsorption were calculated. The results indicate that the adsorption process is a complex interaction of physical and chemical processes. The adsorption behaviors were reasonably explained. (authors)

  14. Minimizing Back Exchange in the Hydrogen Exchange-Mass Spectrometry Experiment

    Science.gov (United States)

    Walters, Benjamin T.; Ricciuti, Alec; Mayne, Leland; Englander, S. Walter

    2012-12-01

    The addition of mass spectrometry (MS) analysis to the hydrogen exchange (HX) proteolytic fragmentation experiment extends powerful HX methodology to the study of large biologically important proteins. A persistent problem is the degradation of HX information due to back exchange of deuterium label during the fragmentation-separation process needed to prepare samples for MS measurement. This paper reports a systematic analysis of the factors that influence back exchange (solution pH, ionic strength, desolvation temperature, LC column interaction, flow rates, system volume). The many peptides exhibit a range of back exchange due to intrinsic amino acid HX rate differences. Accordingly, large back exchange leads to large variability in D-recovery from one residue to another as well as one peptide to another that cannot be corrected for by reference to any single peptide-level measurement. The usual effort to limit back exchange by limiting LC time provides little gain. Shortening the LC elution gradient by 3-fold only reduced back exchange by ~2 %, while sacrificing S/N and peptide count. An unexpected dependence of back exchange on ionic strength as well as pH suggests a strategy in which solution conditions are changed during sample preparation. Higher salt should be used in the first stage of sample preparation (proteolysis and trapping) and lower salt (<20 mM) and pH in the second stage before electrospray injection. Adjustment of these and other factors together with recent advances in peptide fragment detection yields hundreds of peptide fragments with D-label recovery of 90 % ± 5 %.

  15. Minimizing back exchange in the hydrogen exchange-mass spectrometry experiment.

    Science.gov (United States)

    Walters, Benjamin T; Ricciuti, Alec; Mayne, Leland; Englander, S Walter

    2012-12-01

    The addition of mass spectrometry (MS) analysis to the hydrogen exchange (HX) proteolytic fragmentation experiment extends powerful HX methodology to the study of large biologically important proteins. A persistent problem is the degradation of HX information due to back exchange of deuterium label during the fragmentation-separation process needed to prepare samples for MS measurement. This paper reports a systematic analysis of the factors that influence back exchange (solution pH, ionic strength, desolvation temperature, LC column interaction, flow rates, system volume). The many peptides exhibit a range of back exchange due to intrinsic amino acid HX rate differences. Accordingly, large back exchange leads to large variability in D-recovery from one residue to another as well as one peptide to another that cannot be corrected for by reference to any single peptide-level measurement. The usual effort to limit back exchange by limiting LC time provides little gain. Shortening the LC elution gradient by 3-fold only reduced back exchange by ~2%, while sacrificing S/N and peptide count. An unexpected dependence of back exchange on ionic strength as well as pH suggests a strategy in which solution conditions are changed during sample preparation. Higher salt should be used in the first stage of sample preparation (proteolysis and trapping) and lower salt (<20 mM) and pH in the second stage before electrospray injection. Adjustment of these and other factors together with recent advances in peptide fragment detection yields hundreds of peptide fragments with D-label recovery of 90% ± 5%.

  16. Exchangeable fraction of elements in alluvial sediments under waste disposal site (Zagreb, Croatia)

    International Nuclear Information System (INIS)

    Vertacnik, A.; Barisic, D.; Musani, Lj.; Prohic, E.; Juracic, M.

    1997-01-01

    Concentrations of Ag, Ba, Cd, Ce, Cs, Co, Cr, Eu, Fe, Rb, Sc, Sr, Th, and Zn exchangeable fractions were determined in alluvial sediments at waste disposal site area in the vicinity of water-well field. Samples have been'leached with 0.5M NH 4 Cl at a sample/solution ratio of 1:20 during 24 hours without shaking. INAA of dry NH 4 Cl residues show that the concentrations of exchangeable elements determined in the most of the sediments below the wastes have natural levels. Ag, Ba and Sr are readily exchangeable; Rb, Cs and Zn have lower exchangeability, while Cd, Ce, Th, Sc, Eu, Cr, Fe and Co are rather immobile. Extremely high total and exchangeable silver concentration was found at 6.5-6.8 meters below waste in the aerated layer occasionally under the water table. Exchangeable concentrations in deeper water-bearing sediment layers are not elevated. Due to this, one can presume that the upper sediment layers act as chemical filter generally preventing the infiltration from overlying wastes into water-bearing layers. (author)

  17. Development and properties of crystalline silicotitanate (CST) ion exchangers for radioactive waste applications

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.E.; Brown, N.E.

    1997-04-01

    Crystalline silicotitanates (CSTs) are a new class of ion exchangers that were jointly invented by researchers at Sandia National Laboratories and Texas A&M University. One particular CST, known as TAM-5, is remarkable for its ability to separate parts-per-million concentrations of cesium from highly alkaline solutions (pH> 14) containing high sodium concentrations (>5M). It is also highly effective for removing cesium from neutral and acidic solutions, and for removing strontium from basic and neutral solutions. Cesium isotopes are fission products that account for a large portion of the radioactivity in waste streams generated during weapons material production. Tests performed at numerous locations with early lab-scale TAM-5 samples established the material as a leading candidate for treating radioactive waste volumes such as those found at the Hanford site in Washington. Thus Sandia developed a Cooperative Research and Development Agreement (CRADA) partnership with UOP, a world leader in developing, commercializing, and supplying adsorbents and associated process technology to commercialize and further develop the material. CSTs are now commercially available from UOP in a powder (UOP IONSIV{reg_sign} IE-910 ion exchanger) and granular form suitable for column ion exchange operations (UOP IONSIV{reg_sign} IE-911 ion exchanger). These materials exhibit a high capacity for cesium in a wide variety of solutions of interest to the Department of Energy, and they are chemically, thermally, and radiation stable. They have performed well in tests at numerous sites with actual radioactive waste solutions, and are being demonstrated in the 100,000 liter Cesium Removal Demonstration taking place at Oak Ridge National Laboratory with Melton Valley Storage Tank waste. It has been estimated that applying CSTs to the Hanford cleanup alone will result in a savings of more than $300 million over baseline technologies.

  18. Development and properties of crystalline silicotitanate (CST) ion exchangers for radioactive waste applications

    International Nuclear Information System (INIS)

    Miller, J.E.; Brown, N.E.

    1997-04-01

    Crystalline silicotitanates (CSTs) are a new class of ion exchangers that were jointly invented by researchers at Sandia National Laboratories and Texas A ampersand M University. One particular CST, known as TAM-5, is remarkable for its ability to separate parts-per-million concentrations of cesium from highly alkaline solutions (pH> 14) containing high sodium concentrations (>5M). It is also highly effective for removing cesium from neutral and acidic solutions, and for removing strontium from basic and neutral solutions. Cesium isotopes are fission products that account for a large portion of the radioactivity in waste streams generated during weapons material production. Tests performed at numerous locations with early lab-scale TAM-5 samples established the material as a leading candidate for treating radioactive waste volumes such as those found at the Hanford site in Washington. Thus Sandia developed a Cooperative Research and Development Agreement (CRADA) partnership with UOP, a world leader in developing, commercializing, and supplying adsorbents and associated process technology to commercialize and further develop the material. CSTs are now commercially available from UOP in a powder (UOP IONSIV reg-sign IE-910 ion exchanger) and granular form suitable for column ion exchange operations (UOP IONSIV reg-sign IE-911 ion exchanger). These materials exhibit a high capacity for cesium in a wide variety of solutions of interest to the Department of Energy, and they are chemically, thermally, and radiation stable. They have performed well in tests at numerous sites with actual radioactive waste solutions, and are being demonstrated in the 100,000 liter Cesium Removal Demonstration taking place at Oak Ridge National Laboratory with Melton Valley Storage Tank waste. It has been estimated that applying CSTs to the Hanford cleanup alone will result in a savings of more than $300 million over baseline technologies

  19. Chemical Speciation and Bond Lengths of Organic Solutes by Core-Level Spectroscopy: pH and Solvent Influence on p-Aminobenzoic Acid.

    Science.gov (United States)

    Stevens, Joanna S; Gainar, Adrian; Suljoti, Edlira; Xiao, Jie; Golnak, Ronny; Aziz, Emad F; Schroeder, Sven L M

    2015-05-04

    Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO-LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs and σ* shape resonances in the NEXAFS spectra. This provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute-solvent interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Orientation control of chemical solution deposited LaNiO3 thin films

    International Nuclear Information System (INIS)

    Ueno, Kengo; Yamaguchi, Toshiaki; Sakamoto, Wataru; Yogo, Toshinobu; Kikuta, Koichi; Hirano, Shin-ichi

    2005-01-01

    High quality LaNiO 3 (LNO) thin films with preferred orientation could be synthesized on Pt/Ti/SiO 2 /Si substrates at 700 deg. C using the chemical solution deposition method. The homogeneous and stable LNO precursor solutions were prepared using lanthanum isopropoxide and nickel (II) acetylacetonate in a mixed solvent of absolute ethanol and 2-methoxyethanol. The oriented LNO thin films exhibit metallic electro-conduction, and their resistivity at room temperature is sufficiently low for making them an alternative electrode material for functional ceramic thin films

  1. Gas exchange and organic solutes in forage sorghum genotypes grown under different salinity levels

    Directory of Open Access Journals (Sweden)

    Daniela S. Coelho

    Full Text Available ABSTRACT Adaptation of plants to saline environments depends on the activation of mechanisms that minimize the effects of excess ions on vital processes, such as photosynthesis. The objective of this study was to evaluate the leaf gas exchange, chlorophyll, and organic solute in ten genotypes of forage sorghum irrigated with solutions of different salinity levels. The experiment was conducted in a randomized block design, in a 10 x 6 factorial arrangement, with three replications, using ten genotypes - F305, BRS-655, BRS-610, Volumax, 1.015.045, 1.016.005, 1.016.009, 1.016.013, 1.016.015 and 1.016.031 - and six saline solutions, with electrical conductivity (ECw of 0, 2.5, 5.0, 7.5, 10 and 12.5 dS m-1. The photosynthetic activity in forage sorghum plants reduces with increasing salinity, and this response was found in the ten genotypes evaluated. The chlorophyll and protein contents were not affected by salinity, whereas carbohydrates and amino acid contents increased with increasing ECw. Soluble sugars are essential for osmoregulation of forage sorghum due to its high content in leaves.

  2. Chemical effects associated to (n, γ) nuclear reactions in diluted aqueous solutions of liquid or frozen organic halogenides

    International Nuclear Information System (INIS)

    Bermudez Rodriguez, I.M.

    1985-09-01

    Chemical effects associated to nuclear transformation 37 Cl (n, γ) 38 Cl or 127 I (n, γ) 128 I in solid or liquid aqueous solutions of ethyl iodide, trichloro-ethylene, thyroxine or DDT irradiated in a nuclear reactor are studied. The retention of radiohalogen under its initial chemical shape decrease with solute concentration in liquid phase but is almost constant with solute dilution in the solid phase. Potential applications in neutron activation analysis evidencing halogenated molecules in irradiated media are discussed. 57 refs [fr

  3. Differences in the peritoneal transport of water, solutes and proteins between dialysis with two- and with three-litre exchanges

    NARCIS (Netherlands)

    Krediet, R. T.; Boeschoten, E. W.; Struijk, D. G.; Arisz, L.

    1988-01-01

    In eight, CAPD patients who either had insufficient results of dialysis treatment (six) or loss of ultrafiltration (two) on a normal scheme (4 X 2-1), the effects of a 3-1 dialysate exchange on the in situ intraperitoneal volume, solute mass transfer, and mass transfer area coefficients were

  4. Root-induced Changes in the Rhizosphere of Extreme High Yield Tropical Rice: 2. Soil Solution Chemical Properties

    Directory of Open Access Journals (Sweden)

    Mitsuru Osaki

    2012-09-01

    Full Text Available Our previous studies showed that the extreme high yield tropical rice (Padi Panjang produced 3-8 t ha-1 without fertilizers. We also found that the rice yield did not correlate with some soil properties. We thought that it may be due to ability of root in affecting soil properties in the root zone. Therefore, we studied the extent of rice root in affecting the chemical properties of soil solution surrounding the root zone. A homemade rhizobox (14x10x12 cm was used in this experiment. The rhizobox was vertically segmented 2 cm interval using nylon cloth that could be penetrated neither root nor mycorrhiza, but, soil solution was freely passing the cloth. Three soils of different origins (Kuin, Bunipah and Guntung Papuyu were used. The segment in the center was sown with 20 seeds of either Padi Panjang or IR64 rice varieties. After emerging, 10 seedlings were maintained for 5 weeks. At 4 weeks after sowing, some chemical properties of the soil solution were determined. These were ammonium (NH4+, nitrate (NO3-, phosphorus (P and iron (Fe2+ concentrations and pH, electric conductivity (EC and oxidation reduction potential (ORP. In general, the plant root changed solution chemical properties both in- and outside the soil rhizosphere. The patterns of changes were affected by the properties of soil origins. The release of exudates and change in ORP may have been responsible for the changes soil solution chemical properties.

  5. Chemical dosimetry at less than 1000 rad: aqueous trimesic acid solutions

    International Nuclear Information System (INIS)

    Matthews, R.W.; Wilson, J.G.

    1981-01-01

    Aqueous solutions of trimesic acid were investigated for possible use as a chemical dosimeter. In aerated 10 -2 M sulphuric acid solution containing 10 -3 M trimesic acid, a highly fluorescent product is formed with its maximum fluorescence at 450nm when excited by 350nm light. The product has fluorescence characteristics very similar to quinine in 0.05 M sulphuric acid. The fluorescence intensity is linear with dose in the range 1-1000 rad and a precision of +-2% was obtained from a number of runs. Solutions are stable for at least several days before and after irradiation. The yield is little affected by moderate changes in trimesic acid concentration, oxygen concentration, water purity, energy of radiation and irradiation temperature. The small dependence of the yield on dose rate and the effect of measurement temperature on the fluorescence signal have been quantified. The most significant factor affecting the fluorescence signal is the hydrogen ion concentration of the solution. In aerated neutral and alkaline (pH 10) solutions, hydroxytrimesic acid (HTMA) is formed with G(HTMA) equal to 2.07 +- 0.04 and 2.21 +- 0.04, for 10 -3 M trimesate. In these solutions, G(HTMA) increases appreciably with increase in the trimesate concentration. The main fluorescent product formed in irradiated acid solutions was not identified but it was not HTMA. (author)

  6. Ion exchange removal of cesium from Hanford tank waste supernates with SuperLigR 644 resin

    International Nuclear Information System (INIS)

    Hassan, N.M.; McCabe, D.J.; King, W.D.; Hamm, L.L.

    2002-01-01

    SuperLig R 644 ion exchange resin is currently being evaluated for cesium ( 137 Cs) removal from radioactive Hanford tank waste supernates as part of the River Protection Project. Testing was performed with actual Hanford tank wastes of widely different compositions using two identical ion exchange columns connected in series each containing approximately 5.5-6.5 ml of SuperLig R 644 resin. The ion exchange columns utilized the same resin material that was eluted between the column tests. This was done to demonstrate the performance of the SuperLig R 644 resin for cesium removal from waste samples of different compositions, determine the loading and elution profiles, and to validate design assumptions for full-scale column performances. Decontaminated product solutions generated at the same operating temperature and constant residence times (bed volumes per hour) exhibited the same chemical compositions as their feed samples. The compositions of eluate solutions were generally as expected with the exception of uranium and total organic carbon, which where concentrated by the resin. Development of a pretreatment method for the SuperLig R 644 resin has been critical to successful column operation with different waste solutions. (author)

  7. Steric effects in peptide and protein exchange with activated disulfides.

    Science.gov (United States)

    Kerr, Jason; Schlosser, Jessica L; Griffin, Donald R; Wong, Darice Y; Kasko, Andrea M

    2013-08-12

    Disulfide exchange is an important bioconjugation tool, enabling chemical modification of peptides and proteins containing free cysteines. We previously reported the synthesis of a macromer bearing an activated disulfide and its incorporation into hydrogels. Despite their ability to diffuse freely into hydrogels, larger proteins were unable to undergo in-gel disulfide exchange. In order to understand this phenomenon, we synthesized four different activated disulfide-bearing model compounds (Mn = 300 Da to 10 kDa) and quantified their rate of disulfide exchange with a small peptide (glutathione), a moderate-sized protein (β-lactoglobulin), and a large protein (bovine serum albumin) in four different pH solutions (6.0, 7.0, 7.4, and 8.0) to mimic biological systems. Rate constants of exchange depend significantly on the size and accessibility of the thiolate. pH also significantly affects the rate of reaction, with the faster reactions occurring at higher pH. Surprisingly, little difference in exchange rates is seen between macromolecular disulfides of varying size (Mn = 2 kDa - 10 kDa), although all undergo exchange more slowly than their small molecule analogue (MW = 300 g/mol). The maximum exchange efficiencies (% disulfides exchanged after 24 h) are not siginificantly affected by thiol size or pH, but somewhat affected by disulfide size. Therefore, while all three factors investigated (pH, disulfide size, and thiolate size) can influence the exchange kinetics and extent of reaction, the size of the thiolate and its accessibility plays the most significant role.

  8. Solution-gated graphene transistors for chemical and biological sensors.

    Science.gov (United States)

    Yan, Feng; Zhang, Meng; Li, Jinhua

    2014-03-01

    Graphene has attracted much attention in biomedical applications for its fascinating properties. Because of the well-known 2D structure, every atom of graphene is exposed to the environment, so the electronic properties of graphene are very sensitive to charged analytes (ions, DNA, cells, etc.) or an electric field around it, which renders graphene an ideal material for high-performance sensors. Solution-gated graphene transistors (SGGTs) can operate in electrolytes and are thus excellent candidates for chemical and biological sensors, which have been extensively studied in the recent 5 years. Here, the device physics, the sensing mechanisms, and the performance of the recently developed SGGT-based chemical and biological sensors, including pH, ion, cell, bacterial, DNA, protein, glucose sensors, etc., are introduced. Their advantages and shortcomings, in comparison with some conventional techniques, are discussed. Conclusions and challenges for the future development of the field are addressed in the end. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Waste separation and pretreatment using crystalline silicotitanate ion exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tadros, M.E.; Miller, J.E. [Sandia National Lab., Albuquerque, NM (United States); Anthony, R.G. [Texas A& M Univ., College Station, TX (United States)

    1997-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CSTs) has been developed jointly by Sandia National Laboratories and Texas A&M University to selectively remove Cs and other radionuclides from a wide spectrum of radioactive defense wastes. The CST exhibits high selectivity and affinity for Cs and Sr under a wide range of conditions. Tests show it can remove part-per-million concentrations of Cs{sup +} from highly alkaline, high-sodium simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. The materials exhibit ion exchange properties based on ionic size selectivity. Specifically, crystalline lattice spacing is controlled to be highly selective for Cs ions even in waste streams containing very high (5 to 10 M) concentrations of sodium. The CST technology is being demonstrated with actual waste at several DOE facilities. The use of inorganic ion exchangers. The inorganics are more resistant to chemical, thermal, and radiation degradation. Their high selectivities result in more efficient operations offering the possibility of a simple single-pass operation. In contrast, regenerable organic ion exchangers require additional processing equipment to handle the regeneration liquids and the eluant with the dissolved Cs.

  10. Physico-chemical stability of eribulin mesylate containing concentrate and ready-to-administer solutions.

    Science.gov (United States)

    Spindeldreier, Kirsten; Thiesen, Judith; Lipp, Hans-Peter; Krämer, Irene

    2014-06-01

    The aim of this study was to determine the stability of commercially available eribulin mesylate containing injection solution as well as diluted ready-to-administer solutions stored under refrigeration or at room temperature. Stability was studied by a novel developed stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) assay with ultraviolet detection (detection wavelength 200 nm). Triplicate test solutions of eribulin mesylate containing injection concentrate (0.5 mg/mL) and with 0.9% sodium chloride solution diluted ready-to-administer preparations (0.205 mg/mL eribulin mesylate in polypropylene (PP) syringes, 0.020 mg/mL eribulin mesylate in polypropylene/polyethylene (PE) bags) were stored protected from light either at room temperature (25) or under refrigeration (2-8). Samples were withdrawn on day 0 (initial), 1, 3, 5, 7, 14, 21 and 28 of storage and assayed. Physical stability was determined by measuring the pH value once a week and checking for visible precipitations or colour changes. The stability tests revealed that concentrations of eribulin mesylate remained unchanged over a period of 28 days irrespective of concentration, container material or storage temperature. Neither colour changes nor visible particles have been observed. The pH value varied slightly over time but remained in the stability favourable range of 5-9. Eribulin mesylate injection (0.5 mg/mL) is physico-chemically stable over a period of 28 days after first puncture of the vial. After dilution with 0.9% NaCl vehicle solution, ready-to-administer eribulin mesylate injection solutions (0.205 mg/mL in PP syringe) and infusion solutions (0.02 mg/mL in prefilled PP/PE bags) are physico-chemically stable for a period of at least four weeks either refrigerated or stored at room temperature. For microbiological reasons storage under refrigeration is recommended.

  11. Probing dynamics and mechanism of exchange process of quaternary ammonium dimeric surfactants, 14-s-14, in the presence of conventional surfactants.

    Science.gov (United States)

    Liu, Jun; Jiang, Yan; Chen, Hong; Mao, Shi Zhen; Du, You Ru; Liu, Mai Li

    2012-12-27

    In this Article, we investigated effects of different types of conventional surfactants on exchange dynamics of quaternary ammonium dimeric surfactants, with chemical formula C(14)H(29)N(+)(CH(3))(2)- (CH(2))(s)-N(+)(CH(3))(2)C(14)H(29)·2Br(-), or 14-s-14 for short. Two nonionic surfactants, TritonX-100 (TX-100) and polyethylene glycol (23) laurylether (Brij-35), and one cationic surfactant, n-tetradecyltrimethyl ammonium bromide (TTAB), and one ionic surfactant, sodium dodecyl sulfate (SDS) were chosen as typical conventional surfactants. Exchange rates of 14-s-14 (s = 2, 3, and 4) between the micelle form and monomer in solution were detected by two NMR methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). Results show that the nonionic surfactants (TX-100 and Brij-35), the cationic surfactant (TTAB), and the ionic surfactant (SDS) respectively accelerated, barely influenced, and slowed the exchange rate of 14-s-14. The effect mechanism was investigated by the self-diffusion experiment, relaxation time measurements (T(2)/T(1)), the fluorescence experiment (I(1)/I(3)) and observed chemical shift variations. Results reveal that, nonionic conventional surfactants (TX-100 and Brij-35) loosened the molecule arrangement and decreased hydrophobic interactions in the micelle, and thus accelerated the exchange rate of 14-s-14. The cationic conventional surfactant (TTAB) barely changed the molecule arrangement and thus barely influenced the exchange rate of 14-s-14. The ionic conventional surfactant (SDS) introduced the electrostatic attraction effect, tightened the molecule arrangement, and increased hydrophobic interactions in the micelle, and thus slowed down the exchange rate of 14-s-14. Additionally, the two-step exchange mechanism of 14-s-14 in the mixed solution was revealed through interesting variation tendencies of exchange rates of 14-s-14.

  12. Predicting Hyporheic Exchange of Water and Solutes in Streams on the Basis of a Priori Estimates of Stream Physical Characteristics

    Science.gov (United States)

    Stone, S. H.; Harvey, J.; Packman, A.; Worman, A.

    2005-12-01

    It is very important to accurately model solute transport in rivers in order to analyze contaminant transport, water quality, and a variety of ecological processes. The purpose of this research is to determine the physical characteristics of a stream or river that are sufficient to predict hyporheic exchange and downstream solute transport. In the fall of 2004, we conducted a bromide tracer injection and made physical measurements in Sugar Creek, a small agricultural stream in northwestern Indiana. As is typical for small mid-western agricultural streams, Sugar Creek has been ditched and straightened, and subsequent downcutting through glacial sediments and slumpage of bank sediments composed of finer grain sizes has created a stream of intermediate complexity. In order to relate the observed solute transport to more basic physical characteristics of the stream, we determined the bathymetry of Sugar Creek over a wide range of scales (centimeters to decameters), and measured velocity profiles, the water elevation surface profile, hydraulic conductivity via in situ measurements, and bed sediment grain size distributions throughout the study reach. Our most detailed topographic measurements revealed fine scale bed variations with wavelengths on the order of ten centimeters, while surveying of the entire study reach characterized large scale meanders with wavelengths on the order of five meters. The distribution of wavelengths influences the driving forces that cause solute to enter the bed and banks. Hydraulic conductivity determines the resistance to flow of stream water through the (meander) stream banks and streambed. We used a scaling approach to relate the geometric and hydrogeologic characteristics of the stream to solute transport and also applied a new analytical solution for the subsurface flows resulting from topographic variations over a wide range of spatial scales. These models captured the main features of the observed solute transport. The greatest

  13. Ion-exchange properties of natural mordenite

    International Nuclear Information System (INIS)

    Chelishchev, N.F.; Volodin, V.F.

    1977-01-01

    Ion exchange properties are studied of natural mordenite Si(Al=4.75) exhibiting adequate mechanical characteristics and sufficient resistance to high temperature acids. Consideration is given to the pattern of exchange ions distribution among mordenite and chloride solutions of K, Cs, Rb, Sr. Mordenite shows sharp selectivity towards large alkali metal cations, particularly Cs + . In these processes the exchange isotherms are characterized by the constant selectivity towards a counterion. For the Sr 2+ -2Na + exchange the isotherm shows a change of selectivity after a definite counterion concentration has been reached in the solution. Correlation between the exchange thermodynamic constants makes it possible to propose the following range of mordenite selectivity towards the cations under study: Cs>Rb>K>Na>Sr

  14. Method of heat decomposition for chemical decontaminating resin waste

    International Nuclear Information System (INIS)

    Kikuchi, Akira.

    1988-01-01

    Purpose: To make resin wastes into non-deleterious state, discharge them into a resin waste storage tank of existent radioactive waste processing facility and store and dispose them. Constitution: In the processing of chemical decontaminating resin wastes, iron exchange resins adsorbing chemical decontaminating agents comprising a solution of citric acid, oxalic acid, formic acid and EDTA alone or as a mixture of them are heated to dry, thermally decomposed and then separated from the ion exchange resins. That is, the main ingredients of the chemical decontaminating agents are heat-decomposed when heated and dried at about 250 deg C in air and converted into non-toxic gases such as CO, CO 2 , NO, NO 2 or H 2 O. Further, since combustion or carbonization of the basic materials for the resin is not caused at such a level of temperature, the resin wastes removed with organic acid and chelating agents are transferred to an existent resin waste storage tank and stored therein. In this way, facility cost and radiation exposure can remarkably be decreased. (Kamimura, M.)

  15. Treatment method for stabilization of radioactive exchange resin

    International Nuclear Information System (INIS)

    Hideo, Oni; Takashi, Miyake; Hitoshi, Miyamoto; Toshio, Funakoshi; Yuzo, Inagaki.

    1988-01-01

    This is a method for eluting radioactive nuclides from a radioactive ion exchange resin in which it has been absorbed. First, the Cs in this resin is extracted using a neutral salt solution which contains Na + . The Cs that has been transferred to the neutral salt solution is absorbed and expelled by inorganic ion exchangers. Then the Co, Fe, Mn and Sr in said resin are eluted using an acidic solution; the Co, Fe, Mn and Sr that have been transferred to the acidic solution are separated from that solution by means of a diffusion dialysis vat. This process is a unique characteristic of this ion exchange resin treatment method. 1 fig

  16. Ion-exchanger ultraviolet spectrophotometry for uranium(VI)

    International Nuclear Information System (INIS)

    Waki, H.; Korkisch, J.

    1983-01-01

    A sensitive method based on solid-phase spectrophotometry has been developed for the microdetermination of uranium(VI) in water samples. Uranium is sorbed on the anion-exchanger QAE-Sephadex from thiocyanate solution and the absorbance of the exchanger is measured at 300 nm. This method is about 30 times more sensitive than solution spectrophotometry. Absorption spectra of various metals in the anion-exchanger phase are presented and their interferences discussed. A procedure for the cation-exchange separation of uranium from accompanying elements before spectral measurement of uranium is proposed. (author)

  17. A mathematical model for chemical reactions with actinide elements in the aqueous nitric acid solution: REACT

    International Nuclear Information System (INIS)

    Tachimori, Shoichi

    1990-02-01

    A mathematical model of chemical reactions with actinide elements: REACT code, was developed to simulate change of valency states of U, Pu and Np in the aqueous nitric acid solution. Twenty seven rate equations for the redox reactions involving some reductants, disproportionation reactions, and radiolytic growth and decay reaction of nitrous acid were programmed in the code . Eight numerical solution methods such as Porsing method to solve the rate equations were incorporated parallel as options depending on the characteristics of the reaction systems. The present report gives a description of the REACT code, e.g., chemical reactions and their rate equations, numerical solution methods, and some examples of the calculation results. A manual and a source file of the program was attached to the appendix. (author)

  18. Ion Exchange Kinetics of some Heavy Metals from Aqueous Solutions onto Poly(Acrylic Acid-Acrylo nitrle) Potassium Titanate

    International Nuclear Information System (INIS)

    El-Shorbagy, M.M.; El-Sadek, A.A.

    2012-01-01

    Composite inorganic-organic absorbers represent a group of inorganic ion exchangers modified using binding organic materials for preparation of larger size particles heaving higher granular strength. Such modification of originally powdered or microcrystalline inorganic ion exchangers makes their application in peaked beds possible-modified polyacrylonitrile (PAN) has been used as a universal binding polymer for a number of inorganic ion exchangers. The kinetic of ion exchange and sorption capacity of such composite absorbers is not influenced by the binding polymer mentioned above. These composites have been tested for separation and concentration of various contaminants from aqueous solutions. Their high selectivity and sorption efficiency are advantageous for treatment of various industrial waste waters. Removal of natural or artificial and the heavy metals, Pb, Cd and Zn ions. the influence of initial metal ion concentration and ph on metal ion removal has been studied. The process was found to follow a first order rate kinetics. The intra-particle diffusion of ions through pores in the adsorbent was to be the main rate limiting step. The selectivity order towards the ions was Pb(II) > Cd(II) > Zn(II)

  19. Multi-species Ionic Diffusion in Concrete with Account to Interaction Between Ions in the Pore Solution and the Cement Hydrates

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2007-01-01

    results concerning the multi-species action during chloride penetration. In the model the chemical interaction between ions in solids and in pore solution is assumed governed by simple ion exchange processes only. The drawback using this approach is that the chemical part is lacking important physical...... relevance in terms of standard solubility thermodynamics. On the other hand the presented model is capable of accurately simulate the well documented peak behavior of the chloride profiles and the measured high content of calcium ions in pore solution under conditions when also chlorides is present...

  20. Brahmaputra river basin groundwater: Solute distribution, chemical evolution and arsenic occurrences in different geomorphic settings

    Directory of Open Access Journals (Sweden)

    Swati Verma

    2015-09-01

    New hydrological insights for the region: Most groundwater solutes of RCD and YA terrains were derived from both silicate weathering and carbonate dissolution, while silicate weathering process dominates the solute contribution in OA groundwater. Groundwater samples from all terrains are postoxic with mean pe values between Fe(III and As(V–As(III reductive transition. While, reductive dissolution of (Fe–MnOOH is the dominant mechanism of As mobilization in RCD and YA aquifers, As in OA and PD aquifers could be mobilized by combined effect of pH dependent sorption and competitive ion exchange. The present study focuses on the major ion chemistry as well as the chemistry of the redox sensitive solutes of the groundwater in different geomorphic settings and their links to arsenic mobilization in groundwater.

  1. Chemical solution deposition of YBCO thin film by different polymer additives

    International Nuclear Information System (INIS)

    Wang, W.T.; Li, G.; Pu, M.H.; Sun, R.P.; Zhou, H.M.; Zhang, Y.; Zhang, H.; Yang, Y.; Cheng, C.H.; Zhao, Y.

    2008-01-01

    A polymer-assisted chemical solution deposition approach has been proposed for the preparation of YBCO thin film. Different additives like PVB (polyvinyl butyral), PEG (polyethylene glycol) and PVP (polyvinylpyrrolidone) have been used to adjust the final viscosity of the precursor solution and thus the film formation. In this fluorine-free approach, YBCO has been deposited on single crystal substrates with metal acetates being starting materials. Biaxially textured YBCO thin films have been obtained. However, different additives lead to different microstructure. Dense, smooth and crack-free YBCO film prepared with PVB as additive yields sharp superconducting transition around T c = 90 K as well as high J c (0 T, 77 K) over 3 MA/cm 2

  2. Chemical solution deposition of YBCO thin film by different polymer additives

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.T.; Li, G.; Pu, M.H.; Sun, R.P.; Zhou, H.M.; Zhang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, H. [Department of Physics, Peking University, Beijing 100871 (China); Yang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia); Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia)], E-mail: yzhao@swjtu.edu.cn

    2008-09-15

    A polymer-assisted chemical solution deposition approach has been proposed for the preparation of YBCO thin film. Different additives like PVB (polyvinyl butyral), PEG (polyethylene glycol) and PVP (polyvinylpyrrolidone) have been used to adjust the final viscosity of the precursor solution and thus the film formation. In this fluorine-free approach, YBCO has been deposited on single crystal substrates with metal acetates being starting materials. Biaxially textured YBCO thin films have been obtained. However, different additives lead to different microstructure. Dense, smooth and crack-free YBCO film prepared with PVB as additive yields sharp superconducting transition around T{sub c} = 90 K as well as high J{sub c} (0 T, 77 K) over 3 MA/cm{sup 2}.

  3. Correlation and prediction of ion exchange equilibria on weak-acid resins by means of the surface complex formation model

    International Nuclear Information System (INIS)

    Horst, J.

    1988-11-01

    The present work summarizes investigations of the equilibrium of the exchange of protons, copper, zinc, calcium, magnesium and sodium ions on two weak-acid exchange resins in hydrochloric and carbonic acid bearing solutions at 25 0 C. The description of the state of equilibrium between resin and solution is based on the individual chemical equilibria which have to be adjusted simultaneously. The equilibrium in the liquid phase is described by the mass action law and the condition of electroneutrality using activity coefficients calculated according to the theory of Debye and Hueckel. The exchange equilibria are described by means of a surface complex formation model, which was developed by Davis, James and Leckie for activated aluminia and which has been applied to weak-acid resins. The model concept assumes the resin as a plane surface in which the functional groups are distributed uniformly. (orig./RB) [de

  4. Effect of textural and chemical characteristics of activated carbons on phenol adsorption in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Vargas Diana P.

    2017-12-01

    Full Text Available The effect of textural and chemical properties such as: surface area, pore volume and chemical groups content of the granular activated carbon and monoliths on phenol adsorption in aqueous solutions was studied. Granular activated carbon and monolith samples were produced by chemical activation. They were characterized by using N2 adsorption at 77 K, CO2 adsorption at 273 K, Boehm Titrations and immersion calorimetry in phenol solutions. Microporous materials with different pore size distribution, surface area between 516 and 1685 m2 g−1 and pore volumes between 0.24 and 0.58 cm3 g−1 were obtained. Phenol adsorption capacity of the activated carbon materials increased with increasing BET surface area and pore volume, and is favored by their surface functional groups that act as electron donors. Phenol adsorption capacities are in ranged between 73.5 and 389.4 mg · g−1.

  5. Chemical changes in groundwater and their reaction rates

    International Nuclear Information System (INIS)

    Talma, A.S.

    1981-01-01

    The evolution of the major ion concentrations of groundwater (Na, K, Ca, Mg, HCO 3 , SO 4 , Cl and NO 3 ) can be described as the consequence of a number of competing chemical reactions. With the aid of the naturally occuring radioactive and stable isotopes some of these reactions can be separated, identified and followed in space and time. In some field studies, especialy of artesian water, the rates of reactions can be estimated. A number of processes observed in South African sandstones aquifers are discussed and the variable reaction rates demonstrated. Reactions that can be identified include carbonate solution, chemical weathering, salt leaching, cation exchange and redox processes

  6. Catalytic destruction of perchlorate in ferric chloride and hydrochloric acid solution with control of temperature, pressure and chemical reagents

    Science.gov (United States)

    Gu, Baohua; Cole, David R.; Brown, Gilbert M.

    2004-10-05

    A method is described to decompose perchlorate in a FeCl.sub.3 /HCl aqueous solution such as would be used to regenerate an anion exchange resin used to remove perchlorate. The solution is mixed with a reducing agent, preferably an organic alcohol and/or ferrous chloride, and can be heated to accelerate the decomposition of perchlorate. Lower temperatures may be employed if a catalyst is added.

  7. A Security Solution for IEEE 802.11's Ad-hoc Mode:Password-Authentication and Group Diffie-Hellman Key Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel, Bresson; Olivier, Chevassut; David, Pointcheval

    2005-10-01

    The IEEE 802 standards ease the deployment of networkinginfrastructures and enable employers to accesscorporate networks whiletraveling. These standards provide two modes of communication calledinfrastructure and ad-hoc modes. A security solution for the IEEE802.11's infrastructure mode took several years to reach maturity andfirmware are still been upgraded, yet a solution for the ad-hoc modeneeds to be specified. The present paper is a first attempt in thisdirection. It leverages the latest developments in the area ofpassword-based authentication and (group) Diffie-Hellman key exchange todevelop a provably-secure key-exchange protocol for IEEE 802.11's ad-hocmode. The protocol allows users to securely join and leave the wirelessgroup at time, accommodates either a single-shared password orpairwise-shared passwords among the group members, or at least with acentral server; achieves security against dictionary attacks in theideal-hash model (i.e. random-oracles). This is, to the best of ourknowledge, the first such protocol to appear in the cryptographicliterature.

  8. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments.

    Science.gov (United States)

    Zhou, Jinyuan; Wilson, David A; Sun, Phillip Zhe; Klaus, Judith A; Van Zijl, Peter C M

    2004-05-01

    The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low-concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange-dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent-exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail. Copyright 2004 Wiley-Liss, Inc.

  9. Exchange Reactions. Proceedings of the Symposium on Exchange Reactions

    International Nuclear Information System (INIS)

    1965-01-01

    The mechanisms and kinetics of chemical reactions are of great interest to chemists. The study of exchange reactions in particular helps to shed light on the dynamics of chemical change, providing an insight into the structures and the reactivities of the chemical species involved. The main theme of this meeting was the subject of oxidation-reduction reactions in which the net result is the transfer of one or more electrons between the different oxidation states of the same element. Other studies reported included the transfer of protons, atoms, complex ligands or organic radicals between molecules. Heterogeneous exchange, which is of importance in many cases of catalytic action, was also considered. For a long time isotopic tracers have formed the most convenient means of studying exchange reactions and today a considerable amount of work continues to be done with their aid. Consequently, several papers presented at this Symposium reported on work carried out by purely radiochemical tracer methods. In recognition, however, of the important role which nuclear magnetic resonance and electron spin resonance play in this field, in particular in the study of fast reactions, a number of reports on investigations in which these techniques had been used was included in the programme. By kind invitation of the United States Government the Symposium on Exchange Reactions was held from 31 May to 4 June at the Brookhaven National Laboratory, Upton, Long Island, N.Y., USA. It was attended by 46 participants from nine countries and one inter-governmental organization. The publication of these Proceedings makes the contents of the papers and the discussion available to a wider audience

  10. Influence of alkaline (PH 8.3-12.0) and saline solutions on chemical, mineralogical and physical properties of two different bentonites - batch experiments at 25 deg. C

    International Nuclear Information System (INIS)

    Heikola, Tiina; Vuorinen, Ulla; Kumpulainen, Sirpa; Kiviranta, Leena; Korkeakoski, Petri

    2012-01-01

    solutions were ultra-filtered in order to remove possible colloids. The solution chemistry was determined using ICP-AES, FAAS, ion chromatography, titration and HR-ICP-MS. Mineralogical changes in bentonite were studied by XRD, Rietveld refinement, Fourier transform infrared spectroscopy and quantitative Greene-Kelly testing. Chemical composition of bentonite was determined using ICP-AES, loss on ignition, and combustion. The ratio of iron species (Fe 2+ /Fe 3+ ) was examined titrimetrically. The amounts of soluble sulphate and chloride were studied using ion chromatography. The amount of poorly crystalline iron and silicate phases was studied by citrate-bicarbonate-dithionite and sodium carbonate extractions. Cation exchange capacity of bentonite was measured spectroscopically at 620 nm from supernatant after Cu(II)-triethylenetetramine absorption. The amount of exchangeable cations was determined with ICP-AES and FAAS after NH 4 Cl extraction. Also the swelling pressure of bulk bentonite was measured. In the beginning the pH of the leaching solutions (pH 9.7, 11.3 and 12.0) was observed to decrease quite dramatically after each renewal when contacted with bentonite, while no clear changes were observed in the reference water, pH 8.3. This decrease of pH values, after the leaching solution exchange, gradually diminished during the experiment. A slight overall increase in the pH values during the experiment was observed in both high-pH solutions (11.3 and 12.0). The solution chemistry results showed that Ca was accumulated in all samples, but especially in pH 12.0. Small amounts of silica were released throughout the experiment, except in pH 12.0, where the release occurred only in the first couple of days. Most of SO 4 , Mg, and K were dissolved within the first couple of days in all samples, except in the Ca-bentonite pH 12.0, which showed constant release of small amounts of K throughout the experiment. pH 11.3 and pH 12.0 of both bentonites showed continuous dissolution

  11. [Chemical Exchange Saturation Transfer Imaging of Creatine Metabolites: a 3.0 T MRI Pilot].

    Science.gov (United States)

    Guo, Ying-kun; Li, Zhen-lin; Rong, Yu; Xia, Chun-chao; Zhang, Li-zhi; Peng, Wan-ling; Liu, Xi; Xu, Hua-yan; Zhang, Ti-jiang; Zuo, Pan-li; Schmitt, Benjamin

    2016-03-01

    To determine the feasibility of using chemical exchange saturation transfer (CEST) imaging to measure creatine (Cr) metabolites with 3.0 T MR. Phantoms containing different concentrations of Cr under various pH conditions were studied with CEST sequence on 3.0 T MR imaging. CEST effect and Z spectra were analyzed. Cr exhibited significant CEST effect (± 1.8 ppm, F = 99.08, P 3.0 T MR imaging, and positive correlation was found between the signal intensity and concentration of Cr (r = 0.963, P 3.0 T MR imaging. Creatine concentrations and pH influence CEST effect.

  12. Murmanite and lomonosovite as Ag-selective ionites: kinetics and products of ion exchange in aqueous AgNO3 solutions

    Science.gov (United States)

    Lykova, Inna S.; Chukanov, Nikita V.; Kazakov, Anatoliy I.; Tarasov, Viktor P.; Pekov, Igor V.; Yapaskurt, Vasiliy O.; Chervonnaya, Nadezhda A.

    2013-09-01

    Products and kinetics of ion exchange of heterophyllosilicate minerals lomonosovite and murmanite with aqueous AgNO3 solutions under low-temperature conditions have been studied using scanning electron microscopy, electron microprobe analysis, single-crystal X-ray diffraction, infrared spectroscopy, 23Na nuclear magnetic resonance spectroscopy and dynamic calorimetry. Both minerals show strong affinity for silver in cation exchange. Simplified formulae of Ag-exchanged forms of murmanite and lomonosovite are (Ag3.0Ca0.5Na0.5) (Ti,Nb,Mn,Fe)3.7-4 (Si2O7)2O4·4(H2O,OH) and (Ag8.2Na1.2Ca0.3) (Ti,Nb,Mn,Fe)3.9-4 (Si2O7)2 (PO4)1.9O4· xH2O, respectively. The reaction of ion exchange for murmanite follows the first-order kinetic model up to ca. 70-80 % conversion. The rate of the process is described by the equation k(h-1) = 107.64±0.60 exp[-(12.2 ± 0.9)·103/RT]. The average heat release value in the temperature range 39.4-72 °C is 230 J g-1. The cation exchange is limited by processes in solid state, most probably binding of silver.

  13. Microsoft® Exchange Server 2010 Inside Out

    CERN Document Server

    Redmond, Tony

    2010-01-01

    Dive into Exchange Server 2010 and SP1-and discover how to really put your messaging solutions to work! This well-organized and in-depth reference packs all the details you need to deploy and manage Exchange 2010, including hundreds of timesaving solutions, expert tips, and workarounds.Topics include preparing for the deployment of Exchange 2010; new features of Service Pack 1; using Remote PowerShell and the Exchange Management Shell; understanding how the new Role Based Access Control (RBAC) permissions model works and how to customize it to your requirements; the new high availability mode

  14. Chemical properties of some elements in a molten lithium chloride, potassium chloride eutectic (1962)

    International Nuclear Information System (INIS)

    Molina, R.

    1961-12-01

    The increasing use of molten media especially in chemical preparations and for certain technological applications, has made it more necessary to have a knowledge of the chemical properties of elements in these solvents. Structural studies on molten solutions show the existence of certain species such as ions and complexes known to exist in aqueous solutions. This fact, together with certain experiments on chemical reactions in molten media has led us to establish a comparison between these media and aqueous solutions. We wish to show that the same fundamental phenomena occur in these media as are found in the chemistry of aqueous solutions and that this makes it possible to predict certain reactions. We have taken as examples the chemical properties of vanadium, uranium and sulphur in a LiCl-KCl eutectic melted at 480 deg. C. The first problem is to identify the various degrees of oxidation of these elements existing in the solvent chosen. We have tried to resolve it by comparing the absorption spectra obtained in aqueous solution and in the molten eutectic. We consider the possibilities of this method in a chapter on absorption spectrophotometry in the LiCl-KCl eutectic. During the study of the chemical properties we stress the various methods of displacing the equilibria: complex formation, variation of the oxidation-reduction properties with complex formation. The complexes of the O 2- ion are considered in particular. The study of the exchange of this particle is facilitated by the use of a classification of some of its complexes which we call the pO 2- scale by analogy with the pH scale; the value pO 2- is defined by the relationship: pO 2- = log O 2- Similarly, the use of apparent potential diagrams pO 2- makes it possible to predict and to interpret reactions involving the simultaneous exchange of electrons and O 2- ions between the various degrees of oxidation of the same element. It is possible, by studying some reactions of this type between two elements

  15. Differential Mobility Spectrometry-Hydrogen Deuterium Exchange (DMS-HDX) as a Probe of Protein Conformation in Solution.

    Science.gov (United States)

    Zhu, Shaolong; Campbell, J Larry; Chernushevich, Igor; Le Blanc, J C Yves; Wilson, Derek J

    2016-06-01

    Differential mobility spectrometry (DMS) is an ion mobility technique that has been adopted chiefly as a pre-filter for small- to medium-sized analytes (DMS-field asymmetric waveform ion mobility spectroscopy (FAIMS)-the application of DMS to intact biomacromolecules remains largely unexplored. In this work, we employ DMS combined with gas-phase hydrogen deuterium exchange (DMS-HDX) to probe the gas-phase conformations generated from proteins that were initially folded, partially-folded, and unfolded in solution. Our findings indicate that proteins with distinct structural features in solution exhibit unique deuterium uptake profiles as function of their optimal transmission through the DMS. Ultimately we propose that DMS-HDX can, if properly implemented, provide rapid measurements of liquid-phase protein structural stability that could be of use in biopharmaceuticals development. Graphical Abstract ᅟ.

  16. Concept development of exchange liquid regeneration

    International Nuclear Information System (INIS)

    Mader, D.L.

    1985-08-01

    Concepts are described for regeneration of the intermediate liquid used for isotope exchange in indirect laser isotope separation processes where the laser operates on a process gas distinct from the feed stream. The specific case of regeneration of an exchange liquid consisting of water, sodium hydroxide, and dimethyl sulfoxide for a process to separate deuterium from hydrogen using laser irradiation of trifluoromethane gas is developed. A water feed stream is converted to steam which rises in a chemical process column where it redeuterates a descending flow of exchange liquid without causing significant changes in its chemical composition

  17. Effects of Pig Slurry Application and Crops on Phosphorus Content in Soil and the Chemical Species in Solution

    Directory of Open Access Journals (Sweden)

    Lessandro De Conti

    2015-06-01

    Full Text Available The application of pig slurry rates and plant cultivation can modify the soil phosphorus (P content and distribution of chemical species in solution. The purpose of this study was to evaluate the total P, available P and P in solution, and the distribution of chemical P species in solution, in a soil under longstanding pig slurry applications and crop cultivation. The study was carried out in soil columns with undisturbed structure, collected in an experiment conducted for eight years in the experimental unit of the Universidade Federal de Santa Maria (UFSM, Santa Maria (RS. The soil was an Argissolo Vermelho distrófico arênico (Typic Hapludalf, subjected to applications of 0, 20, 40, and 80 m3 ha-1 pig slurry. Soil samples were collected from the layers 0-5, 5-10, 10-20, 20-30, 30-40, and 40-60 cm, before and after black oat and maize grown in a greenhouse, for the determination of available P, total P and P in the soil solution. In the solution, the concentration of the major cations, anions, dissolved organic carbon (DOC, and pH were determined. The distribution of chemical P species was determined by software Visual Minteq. The 21 pig slurry applications increased the total P content in the soil to a depth of 40 cm, and the P extracted by Mehlich-1 and from the solution to a depth of 30 cm. Successive applications of pig slurry changed the balance between the solid and liquid phases in the surface soil layers, increasing the proportion of the total amount of P present in the soil solution, aside from changing the chemical species in the solution, reducing the percentage complexed with Al and increasing the one complexed with Ca and Mg in the layers 0-5 and 5-10 cm. Black oat and maize cultivation increased pH in the solution, thereby increasing the proportion of HPO42- and reducing H2PO4- species.

  18. Performance test of miniature heat exchangers with microchannels

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Koh, Deuk Yong

    2005-01-01

    Etched microchannel heat exchanger, a subfield within MEMS, has high heat flux capability. This capability makes microchannels well-suited for a wide variety of application of cooling and chemical reaction. In this study, counter flow type miniature heat exchangers, which have flat metal plates with chemically etched microchannels, were manufactured by brazing method. Four type of the heat exchangers, which have straight microchannels, wavy shape microchannels, pin-fin channels and serpentine shape microchannels, were investigated to compare their thermal and hydraulic performance. Gas to gas heat exchange experiments were performed to measure the pressure drop and effectiveness of the heat exchangers at given gas flow rates and temperature difference

  19. Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen

    Science.gov (United States)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2012-10-01

    Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and

  20. Use of new tandem cation/anion exchange system with clinical-scale generators provides high specific volume solutions of technetium-99m and rhenium-188

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Beets, A.L.; Mirzadeh, S.; Guhlke, S.

    1998-01-01

    In this paper we describe the first application of our simple and inexpensive post-elution tandem cation/anion exchange column system which is based on generator elution with salts of weak acids such as ammonium acetate instead of saline solution to provide very high specific volume solutions of technetium-99m and rhenium-188 from clinical-scale molybdenum-99/technetium-99m generator prepared from low specific activity (n,y) molybdenum-99, and tungsten-188/rhenium-188 generators, respectively. Initial passage of the bolus through a strong cation exchange cartridge converts the ammonium acetate to acetic acid which is essentially not ionized at the acidic pH, allowing specific subsequent amine-type (QMA SepPak TM ) anion exchange cartridge column trapping of the microscopic levels of the pertechnetate or perrhenate. Subsequent elution of the anion cartridge with a small volume ( 500 mCi/mL) from the alumina-based tungsten-188/rhenium-188 generator. (author)

  1. Study of isotopic exchange reactions of azidothymidine with tritium

    International Nuclear Information System (INIS)

    Sidorov, G.V.; Zverkov, Yu.B.; Myasoedov, N.F.

    2003-01-01

    Different reactions of isotopic exchange of azidothymidine (3 - azido-3 - desoxythymidine) with tritium, such as solid- and liquid-phase catalytic isotopic exchange with gaseous tritium and isotopic exchange in solution with tritium water, are investigated. It is determined that catalytic reactions of azidothymidine with gaseous tritium in solution lead to practically full reduction of azido group up to amino group. In reactions of solid-phase catalytic hydrogenation this process takes place too and 3 - azido-3 - desoxythymidine yield is from 20 to 70 %. Molar radioactivity of labelled with tritium azidothymidine prepared in reactions of solid-phase catalytic isotopic exchange with gaseous tritium and so by isotopic exchange in solution with tritium water does not exceed 0.5 Cu/mmol [ru

  2. Viscous-shock-layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous-shock-layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially-symmetric flow fields. Solutions were obtained using an implicit finite-difference scheme and results are presented for hypersonic flow over spherically-blunted cone configurations at freestream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  3. Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  4. Magnetic isotope effect and theory of atomic orbital hybridization to predict a mechanism of chemical exchange reactions.

    Science.gov (United States)

    Epov, Vladimir N

    2011-08-07

    A novel approach is suggested to investigate the mechanisms of chemical complexation reactions based on the results of Fujii with co-workers; they have experimentally observed that several metals and metalloids demonstrate mass-independent isotope fractionation during the reactions with the DC18C6 crown ether using solvent-solvent extraction. In this manuscript, the isotope fractionation caused by the magnetic isotope effect is used to understand the mechanisms of chemical exchange reactions. Due to the rule that reactions are allowed for certain electron spin states, and forbidden for others, magnetic isotopes show chemical anomalies during these reactions. Mass-independent fractionation is suggested to take place due to the hyperfine interaction of the nuclear spin with the electron spin of the intermediate product. Moreover, the sign of the mass-independent fractionation is found to be dependent on the element and its species, which is also explained by the magnetic isotope effect. For example, highly negative mass-independent isotope fractionation of magnetic isotopes was observed for reactions of DC18C6 with SnCl(2) species and with several Ru(III) chloro-species, and highly positive for reactions of this ether with TeCl(6)(2-), and with several Cd(II) and Pd(II) species. The atomic radius of an element is also a critical parameter for the reaction with crown ether, particularly the element ions with [Kr]4d(n)5s(m) electron shell fits the best with the DC18C6 crown ring. It is demonstrated that the magnetic isotope effect in combination with the theory of orbital hybridization can help to understand the mechanism of complexation reactions. The suggested approach is also applied to explain previously published mass-independent fractionation of Hg isotopes in other types of chemical exchange reactions. This journal is © the Owner Societies 2011

  5. Study of kinetics, equilibrium and isotope exchange in ion exchange systems Pt. 6

    International Nuclear Information System (INIS)

    Plicka, J.; Stamberg, K.; Cabicar, J.; Gosman, A.

    1986-01-01

    The description of kinetics of ion exchange in ternary system was based upon three Nernst-Planck equations, each of them describing the particle diffusion flux of a given counterion as an independent process. For experimental verification, the strongly acidic cation exchanger OSTION KS 08 the shallow-bed technique, and 0.2 mol x dm -3 aqueous nitrate solutions were chosen. The kinetics of ion exchange in the system of cations Na + - Mg 2+ - UO 2 2+ was studied. The values of diffusion coefficients obtained by evaluating of kinetics of isotope exchange and binary ion exchange were used for calculation. The comparison of calculated exchange rate curves with the experimental ones was made. It was found that the exchanging counterions were affected by each other. (author)

  6. Transparent conducting oxide films of group V doped titania prepared by aqueous chemical solution deposition

    International Nuclear Information System (INIS)

    Elen, Ken; Capon, Boris; De Dobbelaere, Christopher; Dewulf, Daan; Peys, Nick; Detavernier, Christophe; Hardy, An; Van Bael, Marlies K.

    2014-01-01

    Transparent conducting oxide (TCO) films of titania doped with vanadium (V), niobium (Nb) and tantalum (Ta) are obtained by aqueous Chemical Solution Deposition (CSD). The effect of the dopant on the crystallization and microstructure of the resulting films is examined by means of X-ray diffraction and electron microscopy. During annealing of the thin films, in-situ characterization of the crystal structure and sheet resistance is carried out. Niobium doped anatase films, obtained after annealing in forming gas, show a resistivity of 0,28 Ohm cm, which is the lowest resistivity reported for a solution deposited anatase-based TCO so far. Here, we demonstrate that aqueous CSD may provide a strategy for scalable TCO production in the future. - Highlights: • Aqueous chemical solution deposition of doped titanium dioxide • Doping delays the phase transition from anatase to rutile • Lowest resistivity after doping with niobium and annealing in Forming Gas • Transparency higher than 80% in the visible range of optical spectrum

  7. Transparent conducting oxide films of group V doped titania prepared by aqueous chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Elen, Ken [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Strategisch Initiatief Materialen (SIM), SoPPoM Program (Belgium); Capon, Boris [Strategisch Initiatief Materialen (SIM), SoPPoM Programm (Belgium); Coating and Contacting of Nanostructures, Ghent University, Krijgslaan 281 S1, B-9000 Ghent (Belgium); De Dobbelaere, Christopher [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Dewulf, Daan [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Peys, Nick [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw, Kapeldreef 75, B-3001 Heverlee (Belgium); Detavernier, Christophe [Coating and Contacting of Nanostructures, Ghent University, Krijgslaan 281 S1, B-9000 Ghent (Belgium); Hardy, An [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Van Bael, Marlies K., E-mail: marlies.vanbael@uhasselt.be [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium)

    2014-03-31

    Transparent conducting oxide (TCO) films of titania doped with vanadium (V), niobium (Nb) and tantalum (Ta) are obtained by aqueous Chemical Solution Deposition (CSD). The effect of the dopant on the crystallization and microstructure of the resulting films is examined by means of X-ray diffraction and electron microscopy. During annealing of the thin films, in-situ characterization of the crystal structure and sheet resistance is carried out. Niobium doped anatase films, obtained after annealing in forming gas, show a resistivity of 0,28 Ohm cm, which is the lowest resistivity reported for a solution deposited anatase-based TCO so far. Here, we demonstrate that aqueous CSD may provide a strategy for scalable TCO production in the future. - Highlights: • Aqueous chemical solution deposition of doped titanium dioxide • Doping delays the phase transition from anatase to rutile • Lowest resistivity after doping with niobium and annealing in Forming Gas • Transparency higher than 80% in the visible range of optical spectrum.

  8. The Secure Information Exchange (SIX) Project at the OPCW

    International Nuclear Information System (INIS)

    Gulay, M.; Milenkovic, G.

    2015-01-01

    The Chemical Weapons Convention (CWC) entered into force in 1997 and the member states of the Organisation for the Prohibition of Chemical Weapons (OPCW) have obligations for making declarations under various articles of the convention. These declarations could contain confidential information and until recently the only mechanism to submit confidential information to the OPCW Technical Secretariat was through physical delivery by the permanent representatives of the member states which introduced delays in the exchange of information in general. In 2012, the Technical Secretariat initiated a strategic project to establish a secure electronic transmission channel that could be used as an alternative option for the exchange of information between the Technical Secretariat and the member states. The Secure Information Exchange (SIX) Project has been given priority by the Director-General and it received support from the member states. A core project team comprising representatives of the main business unit, the office of legal affairs, IT security and implementation teams were established. Following a feasibility study and with continuous communication with the representatives of the member states, the pilot phase of the project was completed successfully in 2013. In the near future, the project will go live and the member states and the Technical Secretariat will benefit from this key initiative. This paper aims to provide an overview of the project: the solution approach, data gathered in order to assess the delays in communication through traditional means, IT security and implementation issues as well as the legal considerations. (author)

  9. Test procedure for cation exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction

  10. Production of 13C by chemical exchange reaction between amine carbamate and carbon dioxide in a solvent-carrier system

    International Nuclear Information System (INIS)

    Ghate, M.R.; Taylor, T.I.

    1975-01-01

    The chemical exchange reaction between amine carbamate and CO 2 has been investigated for the purpose of using it as a practical method to concentrate 13 C. The effects of solvent, concentration of amines, catalysts, flow rate, and diameter of the column have been studied for a number of amines. Of the solutions studied, di-n-butylamine (DNBA) in triethylamine (TEA) as a solvent proved to be the most favorable for use in the preparation of highly enriched 13 C. The overall separations obtained as a function of the concentration of DNBA using 2.5 cm i.d. x 100 cm column ranged from 2.05 at 1 M to 1.69 at 2.84 M. For 2 M DNBA the maximum separation was 1.94. At this concentration of DNBA the overall separation as a function of flow rate ranged from 1.94 at 0.845 ml/cm 2 -min to 1.31 at 2.9 ml/cm 2 -min. Neither the rate of exchange nor the overall separations were improved by use of catalysts. Increasing the diameter twofold resulted in little or no loss in overall separations. On the basis of the properties of the system and the data obtained with respect to the above variables, design calculations were made for a six-stage tapered cascade. These calculations were based on a flow of 40 ml/min of 2 M DNBA in TEA, giving a maximum transport of 7.1 x 10 -3 mmole/min or a maximum production rate of 130 mg 13 C/day. The cascade was operated for about 5 months during which period gram quantities of 67 percent 13 C were produced

  11. Optimization of 7-T Chemical Exchange Saturation Transfer Parameters for Validation of Glycosaminoglycan and Amide Proton Transfer of Fibroglandular Breast Tissue

    NARCIS (Netherlands)

    Dula, Adrienne N.; Dewey, Blake E.; Arlinghaus, Lori R.; Williams, Jason M.; Klomp, DWJ; Yankeelov, Thomas E.; Smith, Seth

    Purpose: To (a) implement simulation-optimized chemical exchange saturation transfer (CEST) measurements sensitive to amide proton transfer (APT) and glycosaminoglycan (GAG) hydroxyl proton transfer effects in the human breast at 7 T and (b) determine the reliability of these techniques for

  12. Study of ion exchange equilibrium and determination of heat of ion exchange by ion chromatography

    International Nuclear Information System (INIS)

    Liu Kailu; Yang Wenying

    1996-01-01

    Ion chromatography using pellicularia ion exchange resins and dilute solution can be devoted to the study of ion exchange thermodynamics and kinetics. Ion exchange equilibrium equation was obtained, and examined by the experiments. Based on ion exchange equilibrium, the influence of eluent concentration and resin capacity on adjusted retention volumes was examined. The effect of temperature on adjusted retention volumes was investigated and heats of ion exchange of seven anions were determined by ion chromatography. The interaction between anions and skeleton structure of resins were observed

  13. Solution of operational problems utilization of an EX-IRT-2000 heat exchanger

    International Nuclear Information System (INIS)

    Razak, Abdu

    1986-01-01

    The Bandung TRIGA Mark II Reactor has been successfully operated for 21 years, especially in low power operation or as neutron sources for various experiments. Most of the operating time, approximately 80% of routine operation, was dedicated for radio-isotope production. During routine operation for radio-isotope production, the reactor could not be operated at full power. The reactor was operated at 60% of the maximum power (1 MWth) due to the inability of the original heat exchanger to operate properly. The reason is that slack deposition was built-up on the secondary side of the heat exchanger. Therefore, it reduced the coefficient of heat transfer considerably. To solve the problems, a set of heat exchanger including the pump was installed In parallel with the original unit. The heat exchanger was an IRT-2000 Reactor Heat exchanger which was collected from the abandoned IRT-2000 Project. The heat exchanger has capacity of 1.25 MW. The new heat exchanger could reduced the outlet temperature of the primary coolant Into 42 deg. C. While the original-heat exchanger at the worst condition and at 600 kW of power reach outlet temperature 49 deg. C. The IRT Heat Exchanger is a counter flow heat exchanger. (author)

  14. Solution of operational problems utilization of an EX-IRT-2000 heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Razak, Abdu [Research Centre for Nuclear Techniques, National Atomic Energy Agency (Indonesia)

    1986-07-01

    The Bandung TRIGA Mark II Reactor has been successfully operated for 21 years, especially in low power operation or as neutron sources for various experiments. Most of the operating time, approximately 80% of routine operation, was dedicated for radio-isotope production. During routine operation for radio-isotope production, the reactor could not be operated at full power. The reactor was operated at 60% of the maximum power (1 MWth) due to the inability of the original heat exchanger to operate properly. The reason is that slack deposition was built-up on the secondary side of the heat exchanger. Therefore, it reduced the coefficient of heat transfer considerably. To solve the problems, a set of heat exchanger including the pump was installed In parallel with the original unit. The heat exchanger was an IRT-2000 Reactor Heat exchanger which was collected from the abandoned IRT-2000 Project. The heat exchanger has capacity of 1.25 MW. The new heat exchanger could reduced the outlet temperature of the primary coolant Into 42 deg. C. While the original-heat exchanger at the worst condition and at 600 kW of power reach outlet temperature 49 deg. C. The IRT Heat Exchanger is a counter flow heat exchanger. (author)

  15. Searching for an Appropriate Exchange Rate Regime

    Directory of Open Access Journals (Sweden)

    Yunjong Wang

    2001-06-01

    Full Text Available This paper attempts to survey current debates on the choice of exchange rate regime in emerging market economies. The issue of choosing an appropriate exchange rate regime is being actively discussed since the recent Asian crisis. As a lesson from the recent crises, one widely shared conclusion is that soft peg exchange rate regimes are extremely vulnerable in a world of volatile capital movements. Consequently, new orthodoxy based on the impossible trinity hypothesis favours two corner solutions ― greater flexibility or credible institutional assurance, like a currency board system or dollarization. Nevertheless, questions whether such corner solutions are adequate for developing countries are rising of late. "Fear of floating" is still conspicuous in many developing countries having adopted nominally a free-floating exchange rate regime. Developing countries are sensitive to exchange rate fluctuations because the cost of exchange rate volatility is greater than the benefit when compared to developed countries. Monitoring bands is a compromise solution, but it still needs further enhancement of estimation techniques for fundamental equilibrium exchange rates in order to make those estimation results more workable in practice. Other alternatives include the creation of soft peg of the G-3 currencies. Despite counterarguments, the stability of G-3 currencies could prove to be beneficial to emerging market economies.

  16. Regenerating ion-exchangers used in uranium recovery

    International Nuclear Information System (INIS)

    Yan, T.; Espenscheid, W.F.

    1984-01-01

    The process claimed restores the ion exchange capacity of a strong base anion exchange resin used for recovering uranium from solutions used to leach uranium from subterranean formations. The resin is eluted with hydrochloric acid to remove uranium in the form of uranyl carbonate anions. It is then washed with a solution containing 0.5 to 100 g/l of sodium carbonate, sodium bicarbonate, or mixtures of both carbonate and bicarbonate until it is free of materials which are either soluble in the solution or react with the solution

  17. Imaging of endogenous exchangeable proton signals in the human brain using frequency labeled exchange transfer imaging.

    Science.gov (United States)

    Yadav, Nirbhay N; Jones, Craig K; Hua, Jun; Xu, Jiadi; van Zijl, Peter C M

    2013-04-01

    To image endogenous exchangeable proton signals in the human brain using a recently reported method called frequency labeled exchange transfer (FLEX) MRI. As opposed to labeling exchangeable protons using saturation (i.e., chemical exchange saturation transfer, or CEST), FLEX labels exchangeable protons with their chemical shift evolution. The use of short high-power frequency pulses allows more efficient labeling of rapidly exchanging protons, while time domain acquisition allows removal of contamination from semi-solid magnetization transfer effects. FLEX-based exchangeable proton signals were detected in human brain over the 1-5 ppm frequency range from water. Conventional magnetization transfer contrast and the bulk water signal did not interfere in the FLEX spectrum. The information content of these signals differed from in vivo CEST data in that the average exchange rate of these signals was 350-400 s(-1) , much faster than the amide signal usually detected using direct saturation (∼30 s(-1) ). Similarly, fast exchanging protons could be detected in egg white in the same frequency range where amide and amine protons of mobile proteins and peptides are known to resonate. FLEX MRI in the human brain preferentially detects more rapidly exchanging amide/amine protons compared to traditional CEST experiments, thereby changing the information content of the exchangeable proton spectrum. This has the potential to open up different types of endogenous applications as well as more easy detection of rapidly exchanging protons in diaCEST agents or fast exchanging units such as water molecules in paracest agents without interference of conventional magnetization transfer contrast. Copyright © 2013 Wiley Periodicals, Inc.

  18. Deposition and characteristics of PbS thin films by an in-situ solution chemical reaction process

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Junna; Ji, Huiming; Wang, Jian; Zheng, Xuerong; Lai, Junyun; Liu, Weiyan; Li, Tongfei [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Ma, Yuanliang; Li, Haiqin; Zhao, Suqin [College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining 810007 (China); Jin, Zhengguo, E-mail: zhgjin@tju.edu.cn [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2015-09-01

    Preferential oriented and uniform PbS thin films were deposited by a room temperature in-situ solution chemical reaction process, in which the lead nitrate as precursor in a form of thin solid films from lead precursor solution was used to react with ammonium sulfide ethanol solution. Influence of 1-butanol addition in the lead precursor solution, Pb:S molar ratios in the separate cationic and anionic solutions, deposition cycle numbers and annealing treatment in Ar atmosphere on structure, morphology, chemical composition and optical absorption properties of the deposited PbS films were investigated based on X-ray diffraction, field emission scanning electron microscopy, energy dispersive spectrometer, atomic force microscopy, selected area electron diffraction, UV–vis, near infrared ray and fourier transform infrared spectroscopy measurements. The results showed that the deposited PbS thin films had a cubic structure and highly preferred orientation along with the plane (100). The deposition rate of single-layer was stable, about 30 nm in thickness per deposition cycle. - Highlights: • Time-efficiency synthetic method for the preparation of lead sulfide (PbS) films • Effect of 1-butanol addition into cationic precursor solution is discussed. • Growth rate of the PbS films is stable at about 30 nm per cycle.

  19. Exact solutions for chemical bond orientations from residual dipolar couplings

    International Nuclear Information System (INIS)

    Wedemeyer, William J.; Rohl, Carol A.; Scheraga, Harold A.

    2002-01-01

    New methods for determining chemical structures from residual dipolar couplings are presented. The fundamental dipolar coupling equation is converted to an elliptical equation in the principal alignment frame. This elliptical equation is then combined with other angular or dipolar coupling constraints to form simple polynomial equations that define discrete solutions for the unit vector(s). The methods are illustrated with residual dipolar coupling data on ubiquitin taken in a single anisotropic medium. The protein backbone is divided into its rigid groups (namely, its peptide planes and C α frames), which may be solved for independently. A simple procedure for recombining these independent solutions results in backbone dihedral angles φ and ψ that resemble those of the known native structure. Subsequent refinement of these φ-ψ angles by the ROSETTA program produces a structure of ubiquitin that agrees with the known native structure to 1.1 A C α rmsd

  20. Chemical and physical compatibility of an intravenous solution of epinephrine with calcium chloride.

    Science.gov (United States)

    Weeks, Phillip A; Teng, Yang; Wu, Lei; Sun, Mary; Yang, Zhen; Chow, Diana S-L

    2014-01-01

    An infusion of epinephrine combined with calcium chloride has been used historically as an intravenous inotropic solution to support critically ill heart failure patients with severe cardiogenic shock. There is no reliable data on the stability of this solution beyond three hours. This study was conducted to evaluate the chemical and physical compatibility of epinephrine (0.032 mg/mL) combined with calcium chloride (4 mg/mL) in a solution for intravenous administration up to 26 hours at room temperature. The chemical stability of epinephrine was monitored by measuring epinephrine concentrations using high-performance liquid chromatography. The physical compatibility of the mixture was determined by measuring spectrophotometric absorbance between 400 to 700 nm. Absorbance greater than 0.010 AU was considered an indicator of the presence of precipitation. The results showed epinephrine with calcium chloride was stable together in normal saline up to 26 hours at room temperature, irrespective of exposure to light. The absorbance of epinephrine throughout the study was less than 0.010 AU, indicating no significant precipitation. Conclusions indicate that epinephrine (0.032 mg/mL) combined with calcium chloride (4 mg/mL) in normal saline at room temperature is acceptably stable up to 26 hours for intravenous administration.

  1. Quantitative chemical exchange saturation transfer (qCEST) MRI - omega plot analysis of RF-spillover-corrected inverse CEST ratio asymmetry for simultaneous determination of labile proton ratio and exchange rate.

    Science.gov (United States)

    Wu, Renhua; Xiao, Gang; Zhou, Iris Yuwen; Ran, Chongzhao; Sun, Phillip Zhe

    2015-03-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to labile proton concentration and exchange rate, thus allowing measurement of dilute CEST agent and microenvironmental properties. However, CEST measurement depends not only on the CEST agent properties but also on the experimental conditions. Quantitative CEST (qCEST) analysis has been proposed to address the limitation of the commonly used simplistic CEST-weighted calculation. Recent research has shown that the concomitant direct RF saturation (spillover) effect can be corrected using an inverse CEST ratio calculation. We postulated that a simplified qCEST analysis is feasible with omega plot analysis of the inverse CEST asymmetry calculation. Specifically, simulations showed that the numerically derived labile proton ratio and exchange rate were in good agreement with input values. In addition, the qCEST analysis was confirmed experimentally in a phantom with concurrent variation in CEST agent concentration and pH. Also, we demonstrated that the derived labile proton ratio increased linearly with creatine concentration (P analysis can simultaneously determine labile proton ratio and exchange rate in a relatively complex in vitro CEST system. Copyright © 2015 John Wiley & Sons, Ltd.

  2. An expanded conceptual framework for solution-focused management of chemical pollution in European waters

    NARCIS (Netherlands)

    Munthe, John; Brorström-Lundén, Eva; Rahmberg, Magnus; Posthuma, Leo; Altenburger, Rolf; Brack, Werner; Bunke, Dirk; Engelen, Guy; Gawlik, Bernd Manfred; van Gils, Jos; Herráez, David López; Rydberg, Tomas; Slobodnik, Jaroslav; van Wezel, Annemarie

    2017-01-01

    Background: This paper describes a conceptual framework for solutions-focused management of chemical contaminants built on novel and systematic approaches for identifying, quantifying and reducing risks of these substances. Methods: The conceptual framework was developed in interaction with

  3. A model of fluid and solute exchange in the human: validation and implications.

    Science.gov (United States)

    Bert, J L; Gyenge, C C; Bowen, B D; Reed, R K; Lund, T

    2000-11-01

    In order to understand better the complex, dynamic behaviour of the redistribution and exchange of fluid and solutes administered to normal individuals or to those with acute hypovolemia, mathematical models are used in addition to direct experimental investigation. Initial validation of a model developed by our group involved data from animal experiments (Gyenge, C.C., Bowen, B.D., Reed, R.K. & Bert, J.L. 1999b. Am J Physiol 277 (Heart Circ Physiol 46), H1228-H1240). For a first validation involving humans, we compare the results of simulations with a wide range of different types of data from two experimental studies. These studies involved administration of normal saline or hypertonic saline with Dextran to both normal and 10% haemorrhaged subjects. We compared simulations with data including the dynamic changes in plasma and interstitial fluid volumes VPL and VIT respectively, plasma and interstitial colloid osmotic pressures PiPL and PiIT respectively, haematocrit (Hct), plasma solute concentrations and transcapillary flow rates. The model predictions were overall in very good agreement with the wide range of experimental results considered. Based on the conditions investigated, the model was also validated for humans. We used the model both to investigate mechanisms associated with the redistribution and transport of fluid and solutes administered following a mild haemorrhage and to speculate on the relationship between the timing and amount of fluid infusions and subsequent blood volume expansion.

  4. Radiation-chemical behaviour of neptunium ions in nitric acid solutions in the presence of curium-244

    International Nuclear Information System (INIS)

    Frolova, L.M.; Frolov, A.A.; Vasil'ev, V.Ya.

    1984-01-01

    Radiation-chemical behaviour of neptunium ions in nitric acid solutions is studied under the action of intensive internal alpha-irradiation conditioned by curium nuclides. In 0.3-1.1 mol/l solutions of nitric acid radiation-chemical oxidation of neptunium (4) and reduction of neptunium (6) is obeyed to the first order law of reaction rate in respect to neptunium concentration. Effective constants of neptunium (4) oxidation rates and neptuniumi(6) reduction rates are not dependent on neptunium ion in1tial concentration and increase with a growth of a dose rate of alpha-irradiation of solution. In equilibrium only neptunium (5) and neptunium (6) are present in solutions with HNO 3 concentration less than 1 mol/l. In more concentrated solutions equilibrium between sexa-, penta- and tetravalent neptunium forms is established. Equilibrium concentrations of neptunium valent forms are not dependent on neptunium initial oxidation state under the same initial conditions (dose rate, neptunium concentration and acidity. It is shown form experimental data that under the action of alpha-irradiation neptunium (5) both is oxidated to neptunium (6) and is reduced to neptunium (4)

  5. Study on CexLa1-xO2 Buffer Layer used in Coated Conductors by Chemical Solution Method

    DEFF Research Database (Denmark)

    Zhao, Yue; Suo, Hongli; Grivel, Jean-Claude

    2009-01-01

    Developing multi-functional single buffer layer is one of the most important challenges for simplification of coated conductors configuration. Ladoped CeO2 films were prepared by chemical solution method. And surface morphology and texture quality of the La-doped CeO2 films were investigated...... method. It suggects that Ce0.9La0.1O2 film prepared by chemical solution route have a promising prospect for the simplification of coated conductors configuration....

  6. Influence of lanthanum on the physico-chemical properties of solid solutions GeS0.5Se0.5

    International Nuclear Information System (INIS)

    Murquzov, M.I.; Alekperov, A.S.; Bayramov, R.B.

    2010-01-01

    By the methods of physical-chemical analysis (X-ray, MSA, as well as measurement of microhardness and density determination) the influence of La on the physico-chemical properties of solid solutions (GeS 0 .5Se 0 .5) 1 -x(La) x was studied and its microdiagram was plotted. At room temperature the GeS 0 .5Se 0 .5 based solid solution extent 4 at. percent of La. The dependence of lanthane microhardness was studied

  7. Ion exchange properties of carboxylate bagasse

    International Nuclear Information System (INIS)

    Nada, A.M.A.; Hassan, M.L.

    2005-01-01

    Bagasse fibers were chemically modified using three different reactions: esterification using monochloro acetic acid, esterification using succinic anhydride, and oxidation using sodium periodate and sodium chlorite to prepare cation exchanger bearing carboxylic groups. Bagasse was crosslinked using epichlorohydrin before chemical modification to avoid loss of its constituents during the chemical modification. The structure of the prepared derivatives was proved using Fourier transform infrared (FTIR) and chemical methods. The ability of the prepared bagasse cation exchangers to adsorb heavy metal ions (Cu +2 , Ni +2 , Cr +3 , Fe +3 ), on a separate basis or in a mixture of them, at different metal ion concentration was tested. Thermal stability of the different bagasse derivative was studied using thermogravimetric analysis (TGA)

  8. Study of oxalic acid effect on equilibrium and kinetics of isotopic exchange between penta- and hexavalent neptunium in nitric acid solutions

    International Nuclear Information System (INIS)

    Nikitenko, S.I.; Ionnikova, N.I.

    1989-01-01

    Spectrophotometry at 25 deg C and ionic force μ=1.0 mol/l (KNO 3 +HNO 3 ) was used to show that at HNO 3 concentration 0.1-1.0 mol/l H 2 C 2 O 4 introduction to nitric acid solutions of Np 5+ in the presence of nitrite-ion resulted in the shift of equilibrium between Np 5+ and Np 6+ to the side of Np 6+ accumulation. The presence of H 2 C 2 O 4 at HNO 3 concentration > 1.0 mol/l doesn't affect the equilibrium position. The values of nominal equilibrium constant at different HNO 3 and H 2 C 2 O 4 concentrations were calculated. It was found that isotope exchange ( 239 Np/ 237 Np) between Np 5+ and Np 6+ in oxalate solutions proceeded more slowly than in oxalate absence. Rate constants of isotope exchange calculated at 9 deg C, μ=1.0 mol/l (KNO 3 ), H 2 C 2 O 4 concentration 0.01 mol/l and pH=2.2 and 3.5 are equal to 0.49x10 3 and 0.67x10 2 l/mol·min respectively. Mechanism of isotope exchange including electron transport between Np 5+ and Np 6+ oxalate complexes is suggested

  9. Chemical and radiation stability of SuperLig reg-sign 644, resorcinol-formaldehyde, and CS-100 cesium ion exchange materials

    International Nuclear Information System (INIS)

    Brown, G.N.; Adami, S.R.; Bray, L.A.

    1995-09-01

    At the request of the Initial Pretreatment Module Project within Westinghouse Hanford Company, Pacific Northwest Laboratory (PNL) conducted this study for the Efficient Separations and Processing Crosscutting Program (ESP) under the task ''Develop and Test Sorbents.'' The purpose of the study was to assess and compare the chemical and radiolytic stability of several cesium-selective ion exchange materials in simulated alkaline Hanford tank waste matrices. Pretreatment of nuclear process wastes to remove of cesium and other radionuclides by ion exchange was proposed previously as one method of minimizing the amount of high-level radioactive waste at Hanford. In this study, PNL evaluated three cesium-selective materials SuperLig reg-sign 644, resorcinol-formaldehyde (R-F), and CS-100 for chemical and radiation stability in 1 M NaOH and a simulated neutralized current acid waste (NCAW). The objective of the study is to investigate the stability of the newly produced SuperLig reg-sign 644 under a variety of conditions in an attempt to simulate and predict the degradation process. The following specific conclusions and recommendations resulted from the study

  10. Chemical and radiation stability of SuperLig{reg_sign}644, resorcinol-formaldehyde, and CS-100 cesium ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.N.; Adami, S.R.; Bray, L.A. [and others

    1995-09-01

    At the request of the Initial Pretreatment Module Project within Westinghouse Hanford Company, Pacific Northwest Laboratory (PNL) conducted this study for the Efficient Separations and Processing Crosscutting Program (ESP) under the task ``Develop and Test Sorbents.`` The purpose of the study was to assess and compare the chemical and radiolytic stability of several cesium-selective ion exchange materials in simulated alkaline Hanford tank waste matrices. Pretreatment of nuclear process wastes to remove of cesium and other radionuclides by ion exchange was proposed previously as one method of minimizing the amount of high-level radioactive waste at Hanford. In this study, PNL evaluated three cesium-selective materials SuperLig{reg_sign}644, resorcinol-formaldehyde (R-F), and CS-100 for chemical and radiation stability in 1 M NaOH and a simulated neutralized current acid waste (NCAW). The objective of the study is to investigate the stability of the newly produced SuperLig{reg_sign}644 under a variety of conditions in an attempt to simulate and predict the degradation process. The following specific conclusions and recommendations resulted from the study.

  11. KDP Aqueous Solution-in-Oil Microemulsion for Ultra-Precision Chemical-Mechanical Polishing of KDP Crystal

    Directory of Open Access Journals (Sweden)

    Hui Dong

    2017-03-01

    Full Text Available A novel functional KH2PO4 (KDP aqueous solution-in-oil (KDP aq/O microemulsion system for KDP crystal ultra-precision chemical-mechanical polishing (CMP was prepared. The system, which consisted of decanol, Triton X-100, and KH2PO4 aqueous solution, was available at room temperature. The functional KDP aq/O microemulsion system was systematically studied and applied as polishing solution to KDP CMP technology. In this study, a controlled deliquescent mechanism was proposed for KDP polishing with the KDP aq/O microemulsion. KDP aqueous solution, the chemical etchant in the polishing process, was caged into the micelles in the microemulsion, leading to a limitation of the reaction between the KDP crystal and KDP aqueous solution only if the microemulsion was deformed under the effect of the external force. Based on the interface reaction dynamics, KDP aqueous solutions with different concentrations (cKDP were applied to replace water in the traditional water-in-oil (W/O microemulsion. The practicability of the controlled deliquescent mechanism was proved by the decreasing material removal rate (MRR with the increasing of the cKDP. As a result, the corrosion pits on the KDP surface were avoided to some degree. Moreover, the roughnesses of KDP with KDP aq/O microemulsion (cKDP was changed from 10 mM to 100 mM as polishing solutions were smaller than that with the W/O microemulsion. The smallest surface root-mean-square roughness of 1.5 nm was obtained at a 30 mmol/L KDP aq solution, because of the most appropriate deliquescent rate and MRR.

  12. Heat exchanger cleaning

    International Nuclear Information System (INIS)

    Gatewood, J.R.

    1980-01-01

    A survey covers the various types of heat-exchange equipment that is cleaned routinely in fossil-fired generating plants, the hydrocarbon-processing industry, pulp and paper mills, and other industries; the various types, sources, and adverse effects of deposits in heat-exchange equipment; some details of the actual procedures for high-pressure water jetting and chemical cleaning of some specific pieces of equipment, including nuclear steam generators. (DN)

  13. Separation of In (III)and Cd(II) Using Zirconium Vanadate As Inorganic Ion Exchanger

    International Nuclear Information System (INIS)

    Massoud, A.; Abou El Nour, F.

    2012-01-01

    In this work, zirconium vanadate as inorganic ion exchanger was chemically synthesized using homogeneous precipitation technique. The obtained zirconium vanadate was mixed with Indium ions to determine its capacity in aqueous solution using batch experiment. Ion exchange capacity of various metal ions was investigated. Effects of ph, initial concentration, weight of the sorbent and contact time on the adsorption of metals were studied. Chromatographic column methods were applied for separation of indium and cadmium. A fixed bed column of zirconium vanadate was successfully used for separation of indium and cadmium. The recovery percentage of both metal ions was about 98.4% using 2 M HCl and citrate buffer ph 3.5, respectively.

  14. Crystal chemical analysis of formation of solid solutions on the basis of compounds with garnet structure

    International Nuclear Information System (INIS)

    Kuz'micheva, G.M.; Kozlikin, S.N.

    1989-01-01

    Crystal chemical formulas permitting to evaluate the character of changes in interatomic distances during isomorphous substitution and, hence, the probability of formation of internal solid solutions and successive isomorphous substitution, are presented. The possibility of formation of introduction solid solutions is considered, using as an example Sc, Y oxides, rare earths with garnet structure

  15. Chemical solution deposition of CaCu 3 Ti 4 O 12 thin film

    Indian Academy of Sciences (India)

    CaCu3Ti4O12 (CCTO) thin film was successfully deposited on boron doped silica substrate by chemical solution deposition and rapid thermal processing. The phase and microstructure of the deposited films were studied as a function of sintering temperature, employing X-ray diffractometry and scanning electron ...

  16. Preparation of H3-labelled methyl ethers of saturated fatty acids by heterogeneous catalytic isotope exchange in solution with gaseous tritium

    International Nuclear Information System (INIS)

    Shevchenko, V.P.; Myasoedov, N.F.

    1980-01-01

    A simple method of preparing 3 H-labelled methyl ethers of saturated fatty acids in the dioxane solution using the method of isotopic heterogenous catalytic exchange with gaseous tritium, is suggested. 3 H-labelled natural fatty acids (C 12 -C 18 ) are prepared by alkaline hydrolysis [ru

  17. No oxygen isotope exchange between water and APS-sulfate at surface temperature: Evidence from quantum chemical modeling and triple-oxygen isotope experiments

    Science.gov (United States)

    Kohl, Issaku E.; Asatryan, Rubik; Bao, Huiming

    2012-10-01

    In both laboratory experiments and natural environments where microbial dissimilatory sulfate reduction (MDSR) occurs in a closed system, the δ34S ((34S/32S)sample/(34S/32S)standard - 1) for dissolved SO42- has been found to follow a typical Rayleigh-Distillation path. In contrast, the corresponding δ18O ((18O/16O)sample/(18O/16O)standard) - 1) is seen to plateau with an apparent enrichment of between 23‰ and 29‰ relative to that of ambient water under surface conditions. This apparent steady-state in the observed difference between δ18O and δ18OO can be attributed to any of these three steps: (1) the formation of adenosine-5'-phosphosulfate (APS) from ATP and SO42-, (2) oxygen exchange between sulfite (or other downstream sulfoxy-anions) and water later in the MDSR reaction chain and its back reaction to APS and sulfate, and (3) the re-oxidation of produced H2S or precursor sulfoxy-anions to sulfate in environments containing Fe(III) or O2. This study examines the first step as a potential pathway for water oxygen incorporation into sulfate. We examined the structures and process of APS formation using B3LYP/6-31G(d,p) hybrid density functional theory, implemented in the Gaussian-03 program suite, to predict the potential for oxygen exchange. We conducted a set of in vitro, enzyme-catalyzed, APS formation experiments (with no further reduction to sulfite) to determine the degree of oxygen isotope exchange between the APS-sulfate and water. Triple-oxygen-isotope labeled water was used in the reactor solutions to monitor oxygen isotope exchange between water and APS sulfate. The formation and hydrolysis of APS were identified as potential steps for oxygen exchange with water to occur. Quantum chemical modeling indicates that the combination of sulfate with ATP has effects on bond strength and symmetry of the sulfate. However, these small effects impart little influence on the integrity of the SO42- tetrahedron due to the high activation energy required for

  18. Radiolytic effect on the chemical state of iodine in aqueous solution

    International Nuclear Information System (INIS)

    Shiraishi, H.; Kimiya, T.; Ohmae, M.; Ishigure, K.

    1988-01-01

    The oxidation state of iodine dissolved in an aqueous solution is easily changed in the presence of radiation field. Hence, it is essential to take the radiolytic effect into account when one is to estimate chemical forms of iodine after being released into the containment under an LOCA condition. This paper summarizes results of γ-radiolysis experiments on aqueous solutions containing iodine species, which have been carried out to extend the previously reported study on the same system. Variation in iodine product distribution with time has been examined as before, utilizing a flow system under irradiation. Attention has been paid to the effect of oxygen, to that of an initial oxidation state of iodine, and to the influence of temperature. Some kinetic analysis on the system was also undertaken

  19. The sodium-calcium exchanger is a mechanosensitive transporter.

    Science.gov (United States)

    Reeves, John P; Abdellatif, Maha; Condrescu, Madalina

    2008-03-15

    This report describes the influence of fluid flow and osmotically induced volume changes on Na(+)-Ca(2+) exchange (NCX) activity in transfected CHO cells. Exchange activity was measured as Na(+)-dependent Ca(2+) or Ba(2+) fluxes using the fluorescent probe fura-2. When exchange activity was initiated by superfusing Ba(2+)-containing solutions over the cells for a 20 s interval, a high rate of Ba(2+) uptake was observed while the solution was being applied but the rate of Ba(2+) uptake declined > 10-fold when the solution flow ceased. Ba(2+) efflux in exchange for extracellular Na(+) or Ca(2+) (Ba(2+)-Ca(2+) exchange) was similarly biphasic. During NCX-mediated Ca(2+) uptake, a rapid increase in cytosolic [Ca(2+)] to a peak value occurred, followed by a decline in [Ca(2+)](i) to a lower steady-state value after solution flow ceased. When NCX activity was initiated by an alternate procedure that minimized the duration of solution flow, the rapid phase of Ba(2+) influx was greatly reduced in magnitude and Ca(2+) uptake became nearly monophasic. Solution superfusion did not produce any obvious changes in cell shape or volume. NCX-mediated Ba(2+) and Ca(2+) influx were also sensitive to osmotically induced changes in cell volume. NCX activity was stimulated in hypotonic media and inhibited in hypertonic media; the osmotically induced changes in activity occurred within seconds and were rapidly reversible. We conclude that NCX activity is modulated by both solution flow and osmotically induced volume changes.

  20. Single-crystal Structure of Cd2+-exchanged Zeolite Y (FAU, Si/Al = 1.56), |Cd27.5(Cd8O4)2.5|[Si117Al75O384]-FAU

    International Nuclear Information System (INIS)

    Seo, Sung Man; Lim, Woo Taik

    2012-01-01

    The cations are quite mobile and may usually be exchanged by other cations. Ion exchange is the most important method for the modification of the physical and chemical properties of zeolites for use as catalysts, sorbents, and molecular sieves. The results of ion exchange into zeolites from aqueous solution are usually not simple. Often only a fraction of the original cations can be replaced, and attempts to overcome this may reveal a relatively sharp upper limit to exchange. When acetate salt of metal cations dissolves in water for exchange solution, metal hydroxide ions occurred. It can be exchanged for Na + ions into zeolite framework, leading to over exchange. The catalytic activity of Cd 2+ -exchanged zeolite Y for the formation of acetonitrile was studied for comparison with activated alumina (Al 2 O 3 ) and also examined for the formation of acetonitrile from ethane and ammonia. Its catalytic activity had much higher than that of Al 2 O 3 . It was found to be essentially inactive for the formation of acetonitrile from ethylamine

  1. Use of a new tandem cation/anion exchange system with clinical-scale generators provides high specific volume solutions of technetium-99m and rhenium-188

    International Nuclear Information System (INIS)

    Knapp, F.R. Jr.; Beets, A.L.; Mirzadeh, S.; Guhlke, S.; Univ. of Bonn

    1998-03-01

    In this paper the authors describe the first application of a simple and inexpensive post elution tandem cation-anion exchange column system which is based on generator elution with salts of weak acids such as ammonium acetate instead of saline solution to provide very high specific volume solutions of technetium-99m and rhenium-188 from clinical scale molybdenum-99/technetium-99m generator prepared from low specific activity (n,y) molybdenum-99, and tungsten-188/rhenium-188 generators, respectively. Initial passage of the bolus through a strong cation exchange cartridge converts the ammonium acetate to acetic acid which is essentially not ionized at the acidic pH, allowing specific subsequent amine type (QMA SepPak trademark) anion exchange cartridge column trapping of the microscopic levels of the pertechnetate or perrhenate. Subsequent elution of the anion cartridge with a small volume ( 500 mCi/mL) from the alumina-based tungsten-188/rhenium-188 generator

  2. Chemical dosimetry by UV spectrophotometry of aqueous ascorbic acid solutions

    International Nuclear Information System (INIS)

    Alian, A.; El-Assay, N.B.; Abdel-Rehim, F.; Amin, N.E.; McLaughlin, W.L.; Roushdy, H.

    1984-01-01

    The decrease in the ultraviolet absorption of aqueous solutions of ascorbic acid brought about by large doses of gamma radiation has been investigated as a means of developing a new chemical dosimeter. Because of spontaneous ring opening under various conditions after dissolution in water, some additives were examined as possible stabilizers against such denaturing of aqueous ascorbic acid. At an ascorbic acid concentration of 10 -4 M, either 1 to 2% glycine or 0.2 M NaCl was found to be a good stabilizer. A mechanism of radiation chemistry has been proposed based on hydroxyl radical and hydroxyl adduct intermediates, leading to dehydroascorbic acid through the ascorbate complex. The optimum dosimeter solution covers an absorbed dose range approx. 50 to 350 Gy, when measured at 264 nm wavelength. The G-values for dehydroascorbic acid production were determined to be 2.94 +- 0.33 and 2.43 +- 0.11 (100 eV) -1 , with glycine and NaCl used respectively as stabilizers. (author)

  3. Comparison of Nonequilibrium Solution Algorithms Applied to Chemically Stiff Hypersonic Flows

    Science.gov (United States)

    Palmer, Grant; Venkatapathy, Ethiraj

    1995-01-01

    Three solution algorithms, explicit under-relaxation, point implicit, and lower-upper symmetric Gauss-Seidel, are used to compute nonequilibrium flow around the Apollo 4 return capsule at the 62-km altitude point in its descent trajectory. By varying the Mach number, the efficiency and robustness of the solution algorithms were tested for different levels of chemical stiffness.The performance of the solution algorithms degraded as the Mach number and stiffness of the flow increased. At Mach 15 and 30, the lower-upper symmetric Gauss-Seidel method produces an eight order of magnitude drop in the energy residual in one-third to one-half the Cray C-90 computer time as compared to the point implicit and explicit under-relaxation methods. The explicit under-relaxation algorithm experienced convergence difficulties at Mach 30 and above. At Mach 40 the performance of the lower-upper symmetric Gauss-Seidel algorithm deteriorates to the point that it is out performed by the point implicit method. The effects of the viscous terms are investigated. Grid dependency questions are explored.

  4. A Chemical Eight Group Separation Method for Routine Use in Gamma Spectrometric Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1961-04-15

    A method for the separation of chemical elements in 8 groups suitable for gamma spectrometric analysis has been developed. One group of elements is separated by distillation during dissolution of the sample. The other groups are obtained by means of short ion exchange columns coupled in series An anion exchange column saturated with chloride ions separates chloride complexes, peroxides and other anions from a 3-n HCl + 0.3 % H{sub 2}O{sub 2} sample solution. Some of the chloride complexes are eluted with 0.1-n HCl + 0.3 % H{sub 2}O{sub 2} and subsequently adsorbed as cations on a cation exchange column in hydrogen form. A few eluted elements which do not form cations in this case are found in the effluent. Elements passing the anion exchange column in chloride form without adsorption are separated from a H{sub 2}O solution as citrate complexes, hydroxides, cations and hexametaphosphate complexes. This is done by coupling in series two anion exchange columns subsequently in citrate and hydroxide form and followed by a cation exchanger in sodium form. A mixed bed column ends the series. The behaviour in the separation series of most elements forming gamma emitting isotopes with half lives exceeding 10 minutes on irradiation with thermal neutrons has been studied. The method has been used, routinely for one year.

  5. Chemical Exchange Saturation Transfer in Chemical Reactions: A Mechanistic Tool for NMR Detection and Characterization of Transient Intermediates.

    Science.gov (United States)

    Lokesh, N; Seegerer, Andreas; Hioe, Johnny; Gschwind, Ruth M

    2018-02-07

    The low sensitivity of NMR and transient key intermediates below detection limit are the central problems studying reaction mechanisms by NMR. Sensitivity can be enhanced by hyperpolarization techniques such as dynamic nuclear polarization or the incorporation/interaction of special hyperpolarized molecules. However, all of these techniques require special equipment, are restricted to selective reactions, or undesirably influence the reaction pathways. Here, we apply the chemical exchange saturation transfer (CEST) technique for the first time to NMR detect and characterize previously unobserved transient reaction intermediates in organocatalysis. The higher sensitivity of CEST and chemical equilibria present in the reaction pathway are exploited to access population and kinetics information on low populated intermediates. The potential of the method is demonstrated on the proline-catalyzed enamine formation for unprecedented in situ detection of a DPU stabilized zwitterionic iminium species, the elusive key intermediate between enamine and oxazolidinones. The quantitative analysis of CEST data at 250 K revealed the population ratio of [Z-iminium]/[exo-oxazolidinone] 0.02, relative free energy +8.1 kJ/mol (calculated +7.3 kJ/mol), and free energy barrier of +45.9 kJ/mol (ΔG ⧧ calc. (268 K) = +42.2 kJ/mol) for Z-iminium → exo-oxazolidinone. The findings underpin the iminium ion participation in enamine formation pathway corroborating our earlier theoretical prediction and help in better understanding. The reliability of CEST is validated using 1D EXSY-build-up techniques at low temperature (213 K). The CEST method thus serves as a new tool for mechanistic investigations in organocatalysis to access key information, such as chemical shifts, populations, and reaction kinetics of intermediates below the standard NMR detection limit.

  6. Physico-chemical laws governing solid-liquid interaction

    International Nuclear Information System (INIS)

    Schweich, D.

    1984-01-01

    Physico-chemical interactions between solutes in the aqueous phase and a natural solid are described in terms of four types of mechanisms: linear or non-linear adsorption, ion-exchange, precipitation/dissolution, and chemical reaction. Emphasis is placed on the qualitative differences in behaviour implicit in these mechanisms, attention being drawn to the respective roles of thermodynamics and kinetics. On the quantitative plane, simple theoretical models (and ones that can be used) are presented in parallel to experimental protocols necessary for measuring the interaction parameters. It is pointed out, in particular, that the concept of the distribution coefficient (Ksub(d)) is only an empirical approach to problems which could easily be 'debunked' by means of more realistic, yet at the same time simple, models. (author)

  7. Thinning of CIGS solar cells: Part I: Chemical processing in acidic bromine solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bouttemy, M.; Tran-Van, P. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Gerard, I., E-mail: gerard@chimie.uvsq.fr [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Hildebrandt, T.; Causier, A. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Pelouard, J.L.; Dagher, G. [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), route de Nozay 91460 Marcoussis (France); Jehl, Z.; Naghavi, N. [Institut de Recherche et Developpement sur l' Energie Photovoltaique (IRDEP -UMR 7174 CNRS/EDF/Chimie-ParisTech), 6 quai Watier, 78401 Chatou (France); Voorwinden, G.; Dimmler, B. [Wuerth Elektronik Research GmbH, Industriestr. 4, 70565 Stuttgart (Germany); Powalla, M. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung (ZSW), Industriestr. 6, 70565 Stuttgart (Germany); Guillemoles, J.F. [Institut de Recherche et Developpement sur l' Energie Photovoltaique (IRDEP -UMR 7174 CNRS/EDF/Chimie-ParisTech), 6 quai Watier, 78401 Chatou (France); Lincot, D. [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), route de Nozay 91460 Marcoussis (France); Etcheberry, A. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France)

    2011-08-31

    CIGSe absorber was etched in HBr/Br{sub 2}/H{sub 2}O to prepare defined thicknesses of CIGSe between 2.7 and 0.5 {mu}m. We established a reproducible method of reducing the absorber thickness via chemical etching. We determine the dissolution kinetics rate of CIGSe using trace analysis by graphite furnace atomic absorption spectrometry of Ga and Cu. The roughness of the etching surface decreases during the first 500 nm of the etching to a steady state value of the root-mean-square roughness near 50 nm. X-ray photoelectron spectroscopy analyses demonstrate an etching process occurring with a constant chemical composition of the treated surface acidic bromine solutions provide a controlled chemical thinning process resulting in an almost flat surface and a very low superficial Se{sup 0} enrichment.

  8. Effects of As/P exchange on InAs/lnP (100) quantum dots formation by metalorganic chemical vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S; Tan, H H; Jagadish, C [The Australian National University, ACT (Australia). Research School of Physical Sciences and Engineering, Department of Electronic Materials Engineering

    2005-07-01

    Full text: Self-assembled InAs/lnP quantum dots (QDs) are very promising active materials for QD lasers and semiconductor amplifiers for optical fiber communications (1.3-1.55 mm). However the main challenge associated with this material system is the As/P exchange reaction which degrades the structural and optical properties of the QDs. In this talk, we will show the effect of growing a thin spacer layer of GaAs or InGaAs prior to the deposition of the InAs QDs by metalorganic chemical vapor deposition. Not only the effect of As/P exchange is suppressed or minimized but the bandgap of the QDs could be tuned too. Copyright (2005) Australian Institute of Physics.

  9. Synthetic inorganic ion-exchange materials

    International Nuclear Information System (INIS)

    Abe, M.

    1979-01-01

    Exchange isotherms for hydrogen ion/alkali metal ions have been measured at 20 and 40 0 C, with a solution ionic strength of 0.1, in crystalline antimonic(V) acid as a cation-exchanger. The isotherms showed S-shaped curves for the systems of H + /Na + , H + /K + , H + /Rb + and H + /Cs + , but not for H + /Li + exchange. The selectivity coefficients (logarithm scale) vs equivalent fraction of alkali metal ions in the exchanger give linear functions for all systems studied. The selectivity sequences are shown. Overall and hypothetical (zero loading) thermodynamic equilibrium constants were evaluated for these ion-exchange reactions. (author)

  10. Investigation of the oxidation states of Pu isotopes in a hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.H. [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, P. O. Box 105, Yuseong, Daejeon 305-353 (Korea, Republic of)], E-mail: mhlee@kaeri.re.kr; Kim, J.Y.; Kim, W.H.; Jung, E.C.; Jee, K.Y. [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, P. O. Box 105, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2008-12-15

    The characteristics of the oxidation states of Pu in a hydrochloric acid solution were investigated and the results were applied to a separating of Pu isotopes from IAEA reference soils. The oxidation states of Pu(III) and Pu(IV) were prepared by adding hydroxylamine hydrochloride and sodium nitrite to a Pu stock solution, respectively. Also, the oxidation state of Pu(VI) was adjusted with concentrated HNO{sub 3} and HClO{sub 4}. The stability of the various oxidation states of plutonium in a HCl solution with elapsed time after preparation were found to be in the following order: Pu(III){approx}Pu(VI)>Pu(IV)>Pu(V). The chemical recoveries of Pu(IV) in a 9 M HCl solution with an anion exchange resin were similar to those of Pu(VI). This method for the determination of Pu isotopes with an anion exchange resin in a 9 M HCl medium was applied to IAEA reference soils where the activity concentrations of {sup 239,240}Pu and {sup 238}Pu in IAEA-375 and IAEA-326 were consistent with the reference values reported by the IAEA.

  11. Hydrolysis of Zr(4) with formation of mono- and polynuclear hydroxocomplexes in solutions

    International Nuclear Information System (INIS)

    Davydov, Yu.P.; Zabrodskij, V.N.

    1987-01-01

    The state of Zr(4) has been studied in the wide range of H + -ions concentrations (10 -3 -3.0 mol/l) and in the wide range of Zr(4) concentrations (10 -13 -10 -12 mol/l) in the solution using a set of such physical-chemical methods as spectrophotometry, ion exchange, dialysis, centrifugation. The conditions of formation of hydrated cations, monochange, dialysis, centrifugation. The conditions of formation of hydrated cations, mono- and polynuclear hydrocomplexes, colloidal-size particles have been determined. The thermodynamic stability of ZrOH 3+ and Zr(OH) 2 2+ complexes has been determined by the ion exchange and spectrophotometry methods

  12. Non-equilibrium mass transfer absorption model for the design of boron isotopes chemical exchange column

    International Nuclear Information System (INIS)

    Bai, Peng; Fan, Kaigong; Guo, Xianghai; Zhang, Haocui

    2016-01-01

    Highlights: • We propose a non-equilibrium mass transfer absorption model instead of a distillation equilibrium model to calculate boron isotopes separation. • We apply the model to calculate the needed column height to meet prescribed separation requirements. - Abstract: To interpret the phenomenon of chemical exchange in boron isotopes separation accurately, the process is specified as an absorption–reaction–desorption hybrid process instead of a distillation equilibrium model, the non-equilibrium mass transfer absorption model is put forward and a mass transfer enhancement factor E is introduced to find the packing height needed to meet the specified separation requirements with MATLAB.

  13. Mastering Microsoft Exchange Server 2013

    CERN Document Server

    Elfassy, David

    2013-01-01

    The bestselling guide to Exchange Server, fully updated for the newest version Microsoft Exchange Server 2013 is touted as a solution for lowering the total cost of ownership, whether deployed on-premises or in the cloud. Like the earlier editions, this comprehensive guide covers every aspect of installing, configuring, and managing this multifaceted collaboration system. It offers Windows systems administrators and consultants a complete tutorial and reference, ideal for anyone installing Exchange Server for the first time or those migrating from an earlier Exchange Server version.Microsoft

  14. Chemical solution deposition of CaCu3Ti4O12 thin film

    Indian Academy of Sciences (India)

    Administrator

    CaCu3Ti4O12; thin film; chemical solution deposition; dielectric properties. 1. Introduction. The CaCu3Ti4O12. (CCTO) compound has recently attracted considerable ... and Kelvin probe force microscopy (Chung et al 2004). Intrinsic .... SEM images of CCTO thin films as a function of sintering temperature. silicon based ...

  15. Mixed matrix microporous hollow fibers with ion-exchange functionality

    NARCIS (Netherlands)

    Kiyono, R.; Kiyono, R.; Koops, G.H.; Wessling, Matthias; Strathmann, H.

    2004-01-01

    Heterogeneous hollow fiber membranes with cation exchange functionality are prepared using a wet spinning technique. The spinning dope solutions are prepared by dispersing finely ground cation ion-exchange resin (CER) particles in an N-methyl pyrrolidone solution of polysulfone (PSF). The polymer

  16. Microspectroscopic imaging of solution plasma: How do its physical properties and chemical species evolve in atmospheric-pressure water vapor bubbles?

    Science.gov (United States)

    Yui, Hiroharu; Banno, Motohiro

    2018-01-01

    In this article, we review the development of scientific instruments for obtaining information on the evolution of physical properties and chemical species of solution plasma (SP). When a pulsed high voltage is applied between electrodes immersed in an aqueous solution, SP is formed in water vapor bubbles transiently generated in the solution under atmospheric pressure. To clarify how SP emerges in water vapor bubbles and is sustained in solutions, an instrument with micrometer spatial resolution and nanosecond temporal resolution is required. To meet these requirements, a microscopic system with a custom-made optical discharge cell was newly developed, where the working distance between the SP and the microscopic objective lens was minimized. A hollow electrode equipped in the discharge cell also enabled us to control the chemical composition in water vapor bubbles. To study the spatial and temporal evolutions of chemical species in micrometer and nano- to microsecond regions, a streak camera with a spectrometer and a CCD detector with a time-gated electronic device were combined with the microscope system. The developed instrument is expected to contribute to providing a new means of developing new schemes for chemical reactions and material syntheses.

  17. Carboxylic acid exchangers in analytical chemistry

    International Nuclear Information System (INIS)

    Venkateswarlu, Ch.

    1976-01-01

    The literature on the use of carboxylic acid exchangers in inorganic analytical chemistry is reviewed. It is classified under two heads, based on the ionic form in which the exchanger is employed, viz., the salt form and the acid form. In the salt form, the separations reported in the beginning are mostly carried out in alkaline medium, employing ammonia and its derivatives as complexing agents to hold cations in solution. This was followed by the use of ammonium ion as an eluent from heavy weakly or neutral solutions. There are a few separations reported making use of EDTA as eluent. It appears that separation of some anions from cations can be achieved with greater ease with these exchangers than with sulphonic acid type. Contary to the general belief, carboxylic acid exchangers are used in H + form to achieve some analytical separations of cations of interest. These exchangers exhibit better sorption of some cations in presence of complexing agents containing basic nitrogen as a donor. In fact, a careful study of these exchangers with different matrices might yield really selective exchangers, than the chelating ones known commercially. From the separation cited, carboxylic acid exchangers appear to have greater potentialities in their applications, than what is normally expected. (author)

  18. Outlook for ion exchange

    International Nuclear Information System (INIS)

    Kunin, R.

    1977-01-01

    This paper presents the history and theory of ion exchange technology and discusses the usefulness of ion exchange resins which found broad applications in chemical operations. It is demonstrated that the theory of ion exchange technology seems to be moving away from the physical chemist back to the polymer chemist where it started originally. This but confronted the polymer chemists with some knotty problems. It is pointed out that one has still to learn how to use ion exchange materials as efficiently as possible in terms of the waste load that is being pumped into the environment. It is interesting to note that, whereas ion exchange is used for abating pollution, it is also a polluter. One must learn how to use ion exchange as an antipollution device, and at the same time minimize its polluting properties

  19. Hydrolysis of Methylal Catalyzed by Ion Exchange Resins in Aqueous Media

    Science.gov (United States)

    He, Gaoyin; Dai, Fangfang; Shi, Midong; Li, Qingsong; Yu, Yingmin

    2018-05-01

    In the present work, the chemical equilibrium and kinetics of methylal (PODE1) hydrolysis catalyzed by ion-exchange resin in aqueous solutions were investigated. The study covers temperatures between 333.15 and 363.15 K at various starting compositions covering (PODE1 + MeOH)/water molar ratio ranges from 0.5 to 1.5 in a time scale. On the basis of the experimental results, a mole fraction-based model of the chemical equilibrium and a pseudohomogeneous model are proposed to fit data based on true amount of monomeric formaldehyde. It has been demonstrated that the hydrolysis of PODE1 is slightly endothermic with the enthalpy 8.19 kJ/mol and the rate determining step. Finally, a feed-forward artificial neural networks (ANN) model is developed to model the concentration change of methanol in aqueous solutions. The results showed that the predicted data from designed ANN model were in good agreement with the experimental data with the coefficient ( R 2) of 0.98. Designed ANN provides a reliable method for modeling the hydrolysis reaction of methylal (PODE1).

  20. Rapid and Efficient Collection of Platinum from Karstedt's Catalyst Solution via Ligands-Exchange-Induced Assembly.

    Science.gov (United States)

    Yang, Gonghua; Wei, Yanlong; Huang, Zhenzhu; Hu, Jiwen; Liu, Guojun; Ou, Ming; Lin, Shudong; Tu, Yuanyuan

    2018-02-21

    Reported herein is a novel strategy for the rapid and efficient collection of platinum from Karstedt's catalyst solution. By taking advantage of a ligand-exchange reaction between alkynols and the 1,3-divinyltetramethyldisiloxane ligand (M Vi M Vi ) that coordinated with platinum (Pt(0)), the Karstedt's catalyst particles with a size of approximately 2.5 ± 0.7 nm could be reconstructed and assembled into larger particles with a size of 150 ± 35 nm due to the hydrogen bonding between the hydroxyl groups of the alkynol. In addition, because the silicone-soluble M Vi M Vi ligand of the Karstedt's catalyst was replaced by water-soluble alkynol ligands, the resultant large particles were readily dispersed in water, resulting in rapid, efficient, and complete collection of platinum from the Karstedt's catalyst solutions with platinum concentrations in the range from ∼20 000 to 0.05 ppm. Our current strategy not only was used for the rapid and efficient collection of platinum from the Karstedt's catalyst solutions, but it also enabled the precise evaluation of the platinum content in the Karstedt's catalysts, even if this platinum content was extremely low (i.e., 0.05 ppm). Moreover, these platinum specimens that were efficiently collected from the Karstedt's catalyst solutions could be directly used for the evaluation of platinum without the need for pretreatment processes, such as calcination and digestion with hydrofluoric acid, that were traditionally used prior to testing via inductively coupled plasma mass spectrometry in conventional methods.

  1. Biodegradation of ion-exchange media

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Clinton, J.H.; Cowdery, S.R.

    1988-08-01

    Ion-exchange media, both bead resins and powdered filter media, are used in nuclear power plants to remove radioactivity from process water prior to reuse or environmental discharge. Since the ion- exchange media are made from synthetic hydrocarbon-based polymers, they may be susceptible to damage from biological activity. The purpose of this study was to investigate some of the more basic aspects of biodegradation of ion-exchange media, specifically to evaluate the ability of microorganisms to utilize the ion-exchange media or materials sorbed on them as a food source. The ASTM-G22 test, alone and combined with the Bartha Pramer respirometric method, failed to indicate the biodegradability of the ion-exchange media. The limitation of these methods was that they used a single test organism. In later phases of this study, a mixed microbial culture was grown from resin waste samples obtained from the BNL High Flux Beam Reactor. These microorganisms were used to evaluate the susceptibility of different types of ion-exchange media to biological attack. Qualitative assessments of biodegradability were based on visual observations of culture growths. Greater susceptibility was associated with increased turbidity in solution indicative of bacterial growth, and more luxuriant fungal mycelial growth in solution or directly on the ion-exchange resin beads. 21 refs., 9 figs., 18 tabs

  2. Chapter 11. Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.; Culver, Gene

    1998-01-01

    Most geothermal fluids, because of their elevated temperature, contain a variety of dissolved chemicals. These chemicals are frequently corrosive toward standard materials of construction. As a result, it is advisable in most cases to isolate the geothermal fluid from the process to which heat is being transferred. The task of heat transfer from the geothermal fluid to a closed process loop is most often handled by a plate heat exchanger. The two most common types used in geothermal applications are: bolted and brazed. For smaller systems, in geothermal resource areas of a specific character, downhole heat exchangers (DHEs) provide a unique means of heat extraction. These devices eliminate the requirement for physical removal of fluid from the well. For this reason, DHE-based systems avoid entirely the environmental and practical problems associated with fluid disposal. Shell and tube heat exchangers play only a minor role in low-temperature, direct-use systems. These units have been in common use in industrial applications for many years and, as a result, are well understood. For these reasons, shell and tube heat exchangers will not be covered in this chapter.

  3. Ionic Diffusion and Kinetic Homogeneous Chemical Reactions in the Pore Solution of Porous Materials with Moisture Transport

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2009-01-01

    Results from a systematic continuum mixture theory will be used to establish the governing equations for ionic diffusion and chemical reactions in the pore solution of a porous material subjected to moisture transport. The theory in use is the hybrid mixture theory (HMT), which in its general form......’s law of diffusion and the generalized Darcy’s law will be used together with derived constitutive equations for chemical reactions within phases. The mass balance equations for the constituents and the phases together with the constitutive equations gives the coupled set of non-linear differential...... general description of chemical reactions among constituents is described. The Petrov – Galerkin approach are used in favour of the standard Galerkin weighting in order to improve the solution when the convective part of the problem is dominant. A modified type of Newton – Raphson scheme is derived...

  4. Influence of lanthanium atoms on the physico-chemical properties of GeS0,5Se0,5 solid solutions

    International Nuclear Information System (INIS)

    Murguzov, M.I.; Alakbarov, A.S.; Bayramov, R.B.

    2010-01-01

    By the methods of physical-chemical analysis (DTA, X-ray, MSA, as well as measurement of microhardness and density determination) the influence of La on the physico-chemical properties of solid solutions (GeS 0 ,5Se 0 ,5) 1 -x(La) x was studied and its microdiagram was plotted. At room temperature the GeS 0 ,5Se 0 ,5 based solid solid solution extent to 4 at. percent La. The dependence of lanthane microhardness was studied

  5. On Neglecting Chemical Exchange When Correcting in Vivo 31P MRS Data for Partial Saturation: Commentary on: ``Pitfalls in the Measurement of Metabolite Concentrations Using the One-Pulse Experiment in in Vivo NMR''

    Science.gov (United States)

    Ouwerkerk, Ronald; Bottomley, Paul A.

    2001-04-01

    This article replies to Spencer et al. (J. Magn. Reson.149, 251-257, 2001) concerning the degree to which chemical exchange affects partial saturation corrections using saturation factors. Considering the important case of in vivo31P NMR, we employ differential analysis to demonstrate a broad range of experimental conditions over which chemical exchange minimally affects saturation factors, and near-optimum signal-to-noise ratio is preserved. The analysis contradicts Spencer et al.'s broad claim that chemical exchange results in a strong dependence of saturation factors upon M0's and T1 and exchange parameters. For Spencer et al.'s example of a dynamic 31P NMR experiment in which phosphocreatine varies 20-fold, we show that our strategy of measuring saturation factors at the start and end of the study reduces errors in saturation corrections to 2% for the high-energy phosphates.

  6. Thermochemical stability of Soviet macroporous sulfonated cation-exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rukhlyada, N.N.; Plotnikova, V.P.; Roginskaya, B.S.; Znamenskii, Yu.P.; Zavodovskaya, A.S.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the influence of macroporosity on the thermochemical stability of sulfonated cation-exchangers. The investigations were carried out on commercial macroporous sulfonated cation-exchangers based on styrene-divinylbenzene copolymers. Study of the thermochemical stability of macroporous sulfonated cation-exchangers in dilute hydrogen peroxide solutions showed that the type of macroporosity has virtually no influence on their stability. The determining factor in thermal stability of macroporous cation-exchangers, as of the gel type, is the degree of cross-linking of the polymer matrix. The capacity loss of macroporous cation-exchangers during oxidative thermolysis is caused by destruction of the macromolecular skeleton and elution of fragments of polar chains containing sulfo groups into the solution.

  7. Gadolinium-hydrogen ion exchange of zirconium phosphate

    Science.gov (United States)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  8. Enrichment of 15N and 18O by chemical exchange reactions between nitrogen oxides (NO, NO2) and aqueous nitric acid

    International Nuclear Information System (INIS)

    Abrudean, M.; Axente, D.; Baldea, A.

    1981-01-01

    The enrichment of 15 N and 18 O by chemical exchange in the NO, NO 2 -H 2 O, HNO 3 system is described. A laboratory experimental plant and a cascade for producing the two isotopes has been used. The production plant consists of two exchange columns for 15 N separation and two 18 O separation columns feeded with nitrogen oxides, depleted of 15 N, from the top of the first 15 N separation column. The by-products nitric acid and sulphuric acid, both depleted of 15 N and 18 O, are of commercial interest. (author)

  9. Ion exchange separation of minor elements from iron for the analysis of S/G sludge

    International Nuclear Information System (INIS)

    Park, Kyoung Kyun; Choi, Kwang Soon; Kim, Jong Goo

    2005-01-01

    The chemical data of minor elements in steam generator sludge could give information about the contamination sources such as a system corrosion, an intrusion of chemicals, etc. The major component of sludge is iron. Iron of a high concentration in a measuring solution worsens the determination limit of the minor elements in a spectroscopic atom analysis. Moreover, iron has so many absorption or emission bands in a wide wavelength range that it has a spectroscopic interference on the atomic spectroscopy of various minor elements such as B, Pb, etc. Thus, the quantitative separation of minor elements from the iron matrix is essential for their determination. Gas sublimation, co-precipitation, solvent extraction and ion exchange are used for this separation. Ion exchange chromatography is applied to the separation of specific minor elements. Ion exchange method has an advantage from the point of experimental space, waste production, and number of elements when applyed to radioactive samples. This presentation describes the results of a separation of some minor elements(Al, B, Ba, Ca, Cd, Co, Cr, Cu, Gd, Mg, Mn, Mo, Nd, Ni, P, Pb, Si, Sn, Sr, Ti, V, Yb, Zn and Zr) from synthetic iron samples by anionic and cationic exchange methods for the purpose of analyzing them in the S/G sludge from a power plant

  10. Comparison of the distribution of some thallium chemical species in mice

    International Nuclear Information System (INIS)

    Petitjean, Francoise.

    Scintigraphic images obtained after injection of radioactive thallium show a strong uptake on the kidneys but also on the intestines, which means that quantitative interpretation of the kidney images is troubled by the superposition of these organs. This study is an attempt to find a chemical form of thallium tending less to fix on the intestinal mucous membrane but keeping its affinity for the medullary zone of the kidney. Various agents forming stable complexes with the metal were investigated. Radiothallium is generally used in the chemical form of monovalent thallium chloride. However the degree of oxidation I is unsuitable for stable complex formation and therefore trivalent thallium was also used. Separation of Tl(I) and Tl(III) with ion exchange resin showed the instability of trivalent chloride at low concentration and when the solution is more than 2 hours old the trivalent thallium solutions injected are 10 -5 M. Calculation of the complex formation constants revealed the absence or formation of monovalent thallium complexes. In all monovalent thallium solutions (with or without carrier, with EDTA or HEDTA) the predominant chemical species is Tl + . In the case of trivalent thallium three solutions with carrier were used; the predominant species is TlCl 6 3- when the solution contains Cl - and EDTA and TlEDTA when Cl - , NO 3 - and EDTA are present. These solutions were injected intraveinously into mice in order to study the radiothallium distribution in the kidney and intestine by comparison with that of TlCl while the chemical species varied from one preparation to another no great difference in the radiothallium distribution was observed [fr

  11. Effect of blastfurnace slag addition to Portland cement for cationic exchange resins encapsulation

    Directory of Open Access Journals (Sweden)

    Stefan L.

    2013-07-01

    Full Text Available In the nuclear industry, cement-based materials are extensively used to encapsulate spent ion exchange resins (IERs before their final disposal in a repository. It is well known that the cement has to be carefully selected to prevent any deleterious expansion of the solidified waste form, but the reasons for this possible expansion are not clearly established. This work aims at filling the gap. The swelling pressure of IERs is first investigated as a function of ions exchange and ionic strength. It is shown that pressures of a few tenths of MPa can be produced by decreases in the ionic strength of the bulk solution, or by ion exchanges (2Na+ instead of Ca2+, Na+ instead of K+. Then, the chemical evolution of cationic resins initially in the Na+ form is characterized in CEM I (Portland cement and CEM III (Portland cement + blastfurnace slag cements at early age and an explanation is proposed for the better stability of CEM III material.

  12. Improved AMOLED with aligned poly-Si thin-film transistors by laser annealing and chemical solution treatments

    International Nuclear Information System (INIS)

    Wu, G.M.; Chen, C.N.; Feng, W.S.; Lu, H.C.

    2009-01-01

    Low-temperature polycrystalline silicon (LTPS) thin-film transistors (TFT) were prepared for the active-matrix organic light-emitting displays (AMOLED). The excimer laser annealing (ELA) recrystallization technique was employed with a chemical solution treatment process to improve the TFT characteristic uniformity and the AMOLED display image quality. The characteristics of the poly-Si array thin films were influenced by XeCl ELA optic module design, TFT device channel direction, and laser irradiation overlap ratio. The ELA system module provided aligned poly-Si grain size of 0.3 μm by the homogenization lens design. The chemical solution treatment process included a dilute HF solution (DHF), ozone (O 3 ) water, and buffer oxide etching solution (BOE). The PMOS TFT showed better field effect mobility of 87.6 cm 2 /V s, and the threshold voltage was -1.35 V. The off current (I off ) was 1.25x10 -11 A, and the on/off current ratio was 6.27x10 6 . In addition, the image quality of the AMOLED display was highly improved using the 2T1C structure design without any compensation circuit.

  13. Ph responsive permeability and Ion- exchange characteristics of (PE/EPDM)-g-PMAA membranes

    International Nuclear Information System (INIS)

    El- Awady, M.M.; El-Awady, N.I.; Eissa, A.M.

    2005-01-01

    Chemical grafting of methacrylic acid (MAA) on low density exchange membranes for recovery of different cations from their solutions was investigated. When the dialysis permeability of two solutes (glucose + urea) through the membrane were tested at different ph values and compared, glucose was found to be less efficient than urea for permeation through the membrane. The permeability response of such solute was noticed only at higher ph value (ph 8). The grafted film (membrane) with graft yield of 185% is experimentally adequate to permeate all molecules with radius of lower than 4.3 x 10 polyethylene blended with EPDM with a ratio (90/10) films was carried out using sodium bisulphite as initiator. Factors affecting grafting and the properties of the grafted films were studied in details and showed improved hydrophilic properties, good thermal stability and nearly unaffected strength properties which make them acceptable for practical uses.In the present work, the possibility of practical uses of such grafted films as ph-responsive membranes in a dialysis process and as ion--7 mm. Grafted membranes in different forms (COOH-form), (Na-methacrylate form) and (K methacrylate- form) were prepared to evaluate the membranes uptake selectivity to different mono, di-and trivalent cations from their solutions. The results obtained showed very good efficiency of the prepared membranes as compared with the values obtained for the commercial cation exchange resin (Dowex)

  14. Microfluidic chemical reaction circuits

    Science.gov (United States)

    Lee, Chung-cheng [Irvine, CA; Sui, Guodong [Los Angeles, CA; Elizarov, Arkadij [Valley Village, CA; Kolb, Hartmuth C [Playa del Rey, CA; Huang, Jiang [San Jose, CA; Heath, James R [South Pasadena, CA; Phelps, Michael E [Los Angeles, CA; Quake, Stephen R [Stanford, CA; Tseng, Hsian-rong [Los Angeles, CA; Wyatt, Paul [Tipperary, IE; Daridon, Antoine [Mont-Sur-Rolle, CH

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  15. Back-exchange: a novel approach to quantifying oxygen diffusion and surface exchange in ambient atmospheres.

    Science.gov (United States)

    Cooper, Samuel J; Niania, Mathew; Hoffmann, Franca; Kilner, John A

    2017-05-17

    A novel two-step Isotopic Exchange (IE) technique has been developed to investigate the influence of oxygen containing components of ambient air (such as H 2 O and CO 2 ) on the effective surface exchange coefficient (k*) of a common mixed ionic electronic conductor material. The two step 'back-exchange' technique was used to introduce a tracer diffusion profile, which was subsequently measured using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The isotopic fraction of oxygen in a dense sample as a function of distance from the surface, before and after the second exchange step, could then be used to determine the surface exchange coefficient in each atmosphere. A new analytical solution was found to the diffusion equation in a semi-infinite domain with a variable surface exchange boundary, for the special case where D* and k* are constant for all exchange steps. This solution validated the results of a numerical, Crank-Nicolson type finite-difference simulation, which was used to extract the parameters from the experimental data. When modelling electrodes, D* and k* are important input parameters, which significantly impact performance. In this study La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ (LSCF6428) was investigated and it was found that the rate of exchange was increased by around 250% in ambient air compared to high purity oxygen at the same pO 2 . The three experiments performed in this study were used to validate the back-exchange approach and show its utility.

  16. Study of kinetics, equilibrium and isotope exchange in ion exchange systems Pt. 4

    International Nuclear Information System (INIS)

    Stamberg, K.; Plicka, J.; Calibar, J.; Gosman, A.

    1985-01-01

    The kinetics of ion exchange in the Nasup(+)-Mgsup(2+)-strongly acidic cation exchanger system in a batch stirred reactor was studied. The samples of exchangers OSTION KS (containing DVB in the range of 1.5 - 12%) and AMBERLITE IR 120 for experimental work were used; the concentration of the aqueous nitrate solution was always 0.2M. The Nernst-Planck equation for description of diffusion of ions in a particle was used. The values of diffusion coefficients of magnesium ions in the exchangers and their dependence on the content of DVB were obtained by evaluating the experimental data and using the self-diffusion coefficients of sodium. (author)

  17. Test procedure for anion exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    Plutonium from stored nitrate solutions will be sorbed onto anion exchange resins and converted to storable plutonium dioxide. Useful information will be simultaneously gained on the thermal stability and ion exchange capacity of four commercially available anion exchange resins over several years and under severe degradative conditions. This information will prove useful in predicting the safe and efficient lifetimes of these resins

  18. Trade rules and exchange rate misalignments: in search for a WTO solution

    Directory of Open Access Journals (Sweden)

    Vera Thorstensen

    2014-09-01

    Full Text Available The debate on the link between trade rules and rules on exchange rates is raising the attention of experts on international trade law and economics. The main purpose of this paper is to analyze the impacts of exchange rate misalignments on tariffs as applied by the WTO - World Trade Organization. It is divided into five sections: the first one explains the methodology used to determine exchange rate misalignments and also presents its results for Brazil, U.S. and China; the second summarizes the methodology applied to calculate the impacts of exchange rate misalignments on the level of tariff protection through an exercise of "misalignment tariffication"; the third examines the effects of exchange rate variations on tariffs and their consequences for the multilateral trading system; the fourth one creates a methodology to estimate exchange rates against a currency of the World and a proposal to deal with persistent and significant misalignments related to trade rules. The conclusions are present in the last section.

  19. CATION EXCHANGE METHOD FOR THE RECOVERY OF PROTACTINIUM

    Science.gov (United States)

    Studier, M.H.; Sullivan, J.C.

    1959-07-14

    A cation exchange prccess is described for separating protactinium values from thorium values whereby they are initially adsorbed together from an aqueous 0.1 to 2 N hydrochloric acid on a cation exchange resin in a column. Then selectively eluting the thorium by an ammonium sulfate solution and subsequently eluting the protactinium by an oxalate solution.

  20. Imaging in Vivo Extracellular pH with a Single Paramagnetic Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agent

    Directory of Open Access Journals (Sweden)

    Guanshu Liu

    2012-01-01

    Full Text Available The measurement of extracellular pH (pHe has potential utility for cancer diagnoses and for assessing the therapeutic effects of pH-dependent therapies. A single magnetic resonance imaging (MRI contrast agent that is detected through paramagnetic chemical exchange saturation transfer (PARACEST was designed to measure tumor pHe throughout the range of physiologic pH and with magnetic resonance saturation powers that are not harmful to a mouse model of cancer. The chemical characterization and modeling of the contrast agent Yb3+-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid, 10-o-aminoanilide (Yb-DO3A-oAA suggested that the aryl amine of the agent forms an intramolecular hydrogen bond with a proximal carboxylate ligand, which was essential for generating a practical chemical exchange saturation transfer (CEST effect from an amine. A ratio of CEST effects from the aryl amine and amide was linearly correlated with pH throughout the physiologic pH range. The pH calibration was used to produce a parametric pH map of a subcutaneous flank tumor on a mouse model of MCF-7 mammary carcinoma. Although refinements in the in vivo CEST MRI methodology may improve the accuracy of pHe measurements, this study demonstrated that the PARACEST contrast agent can be used to generate parametric pH maps of in vivo tumors with saturation power levels that are not harmful to a mouse model of cancer.

  1. Studies on inorganic exchanger: zirconium antimonate

    International Nuclear Information System (INIS)

    Dash, A.; Balasubramanian, K.R.

    1992-01-01

    The inorganic exchanger zirconium antimonate has been prepared and its characteristics evaluated. A method has been developed for the separation of 90 Sr and 144 Ce from fission products solution using this exchanger. (author). 23 refs., 18 f igs., 9 tabs

  2. Chemical bonding and the equilibrium composition of Grignard reagents in ethereal solutions.

    Science.gov (United States)

    Henriques, André M; Barbosa, André G H

    2011-11-10

    A thorough analysis of the electronic structure and thermodynamic aspects of Grignard reagents and its associated equilibrium composition in ethereal solutions is performed. Considering methylmagnesium halides containing fluorine, chlorine, and bromine, we studied the neutral, charged, and radical species associated with their chemical equilibrium in solution. The ethereal solvents considered, tetrahydrofuran (THF) and ethyl ether (Et(2)O), were modeled using the polarizable continuum model (PCM) and also by explicit coordination to the Mg atoms in a cluster. The chemical bonding of the species that constitute the Grignard reagent is analyzed in detail with generalized valence bond (GVB) wave functions. Equilibrium constants were calculated with the DFT/M06 functional and GVB wave functions, yielding similar results. According to our calculations and existing kinetic and electrochemical evidence, the species R(•), R(-), (•)MgX, and RMgX(2)(-) must be present in low concentration in the equilibrium. We conclude that depending on the halogen, a different route must be followed to produce the relevant equilibrium species in each case. Chloride and bromide must preferably follow a "radical-based" pathway, and fluoride must follow a "carbanionic-based" pathway. These different mechanisms are contrasted against the available experimental results and are proven to be consistent with the existing thermodynamic data on the Grignard reagent equilibria.

  3. Chemical effects induced by dissolving γ-irradiated alkali halides in aqueous nitrate, permanganate and chromate solutions

    International Nuclear Information System (INIS)

    Phansalkar, V.K.; Bapat, L.; Ravishankar, D.

    1982-01-01

    Dissolution of γ-irradiated alkali halides in aqueous solutions of sodium nitrate, potassium permanganate and potassium chromate at neutral pH induces chemical changes leading to the formation of NO 2 - in nitrate, Mn(IV) and Cr(III) species in permanganate and chromate solutions, respectively. Further, the studies on nitrate and permanganate systems show that the amount of NO 2 - and Mn(IV) formed grows by increasing the dose of γ-irradiation of the salt and the amount of irradiated salt. Moreover, the extent of chemical changes effected by irradiated chlorides has been found to be more than that of bromides. The mesh size of the irradiated salt and the presence of scavengers like I - and methanol in the system, affects the yield of NO 2 - . (author)

  4. Cesium absorption from acidic solutions using ammonium molybdophosphate on a polyacrylonitrile support (AMP-PAN)

    International Nuclear Information System (INIS)

    Miller, C.J.; Olson, A.L.; Johnson, C.K.

    1995-01-01

    Recent efforts at the Idaho Chemical Processing Plant (ICPP) have included evaluation of cesium removal technologies as applied to ICPP acidic radioactive waste streams. Ammonium molybdophosphate (AMP) immobilized on a polyacrylonitrile support (AMP-PAN) has been studied as an ion exchange agent for cesium removal from acidic waste solutions. Capacities, distribution coefficients, elutability, and kinetics of cesium-extraction have been evaluated. Exchange breakthrough curves using small columns have been determined from 1M HNO 3 and simulated waste solutions. The theoretical capacity of AMP is 213 g Cs/kg AMP. The average experimental capacity in batch contacts with various acidic solutions was 150 g Cs/kg AMP. The measured cesium distribution coefficients from actual waste solutions were 3287 mL/g for dissolved zirconia calcines, and 2679 mL/g for sodium-bearing waste. The cesium in the dissolved alumina calcines was analyzed for; however, the concentration was below analytical detectable limits resulting in inconclusive results. The reaction kinetics are very rapid (2-10 minutes). Cesium absorption appears to be independent of acid concentration over the range tested (0.1 M to 5 M HNO 3 )

  5. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar

    2007-01-01

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively

  6. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  7. Combined LAURA-UPS solution procedure for chemically-reacting flows. M.S. Thesis

    Science.gov (United States)

    Wood, William A.

    1994-01-01

    A new procedure seeks to combine the thin-layer Navier-Stokes solver LAURA with the parabolized Navier-Stokes solver UPS for the aerothermodynamic solution of chemically-reacting air flowfields. The interface protocol is presented and the method is applied to two slender, blunted shapes. Both axisymmetric and three dimensional solutions are included with surface pressure and heat transfer comparisons between the present method and previously published results. The case of Mach 25 flow over an axisymmetric six degree sphere-cone with a noncatalytic wall is considered to 100 nose radii. A stability bound on the marching step size was observed with this case and is attributed to chemistry effects resulting from the noncatalytic wall boundary condition. A second case with Mach 28 flow over a sphere-cone-cylinder-flare configuration is computed at both two and five degree angles of attack with a fully-catalytic wall. Surface pressures are seen to be within five percent with the present method compared to the baseline LAURA solution and heat transfers are within 10 percent. The effect of grid resolution is investigated and the nonequilibrium results are compared with a perfect gas solution, showing that while the surface pressure is relatively unchanged by the inclusion of reacting chemistry the nonequilibrium heating is 25 percent higher. The procedure demonstrates significant, order of magnitude reductions in solution time and required memory for the three dimensional case over an all thin-layer Navier-Stokes solution.

  8. The effect of loading solution and dissolution media on release of Diclofenac from ion exchange resins

    Directory of Open Access Journals (Sweden)

    "Atyabi F

    2002-07-01

    Full Text Available Drugs can be loaded on ion exchange resins in order to control their release. Loading of diclofenac sodium on the resin beads not only sustain its release but also reduce its gastrointestinal mucosal injury. In this study the effect of loading solution and concentration of diclofenac in loading solution on total amount of drug loaded on the resin beads (Amberlite IRA-900 and the release characteristic of drug in different media were examined. Results showed that diclofenac resin complex did not release their drug content in simulated gastric fluid but released it in simulated intestinal fluid independent of exposure time in acidic conditions. The effect of a number of parameters such as ionic strength and pH on the release characteristic of drug - resin complexes were also examined. Results showed that although ionic strength is an important factor, drug release is more affected by the pH of the media. NO ABSTRACT

  9. Microsoft Exchange Server 2013 design, deploy and deliver an enterprise messaging solution

    CERN Document Server

    Winters, Nathan; Blank, Nicolas

    2013-01-01

    Successfully deploy a top-quality Exchange messaging service Rolling out a major messaging service with Microsoft Exchange Server 2013 requires that you not only understand the functionality of this exciting new release, but that you fully grasp all aspects of the larger Exchange server ecosystem as well. This practical book is your best field guide to it all. Written for administrators and consultants in the trenches, this innovative new guide begins with key concepts of Microsoft Exchange Server 2013 and then moves through the recommended practices and processes that are neces

  10. A Two-Level Undercut-Profile Substrate for Chemical-Solution-Based Filamentary Coated Conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Lundeman, Jesper H.; Hansen, Jørn B.

    2016-01-01

    . In the present study, the 2LUPS concept is applied to a commercial cube-textured Ni-5at.% W tape, and the surface of the 2LUPS coated with two Gd2Zr2O7 buffer layers using chemical solution deposition is examined. Except for narrow regions near the edge of upper plateaus, the plateaus are found to be covered...

  11. Radiation deterioration of ion-exchange Nafion N117CS membranes

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Hiroki, Akihiro; Tamada, Masao; Isobe, Kanetsugu; Yamanishi, Toshihiko

    2010-01-01

    The cation-exchange Nafion N117 membranes swelling in electrolyte solution were irradiated with γ-rays or electron beams at various doses up to 1500 kGy in the temperature range from room temperature to 343 K to obtain detailed information on the effect of ion-exchange on the radiation deterioration in mechanical properties and ion-exchange capacity. Considerable deterioration in mechanical properties was observed when the Nafion membranes swelling in electrolyte solution were irradiated. A reason is the promotion of degradation with oxygen molecules produced by the irradiation of electrolyte solution. The concentration of electrolyte solution influenced strongly the radiation deterioration in mechanical properties. Keeping the concentration of metal ions to be negligible is important when electrolyzed highly radioactive solution in the light of the durability of polyperfluorosulfonic acid (PFSA) membrane. A sort of cation in electrolyte solution negligibly influenced radiation deterioration in mechanical properties. A sort of anion in electrolyte solution had negligible effect on radiation deterioration in mechanical properties and ion-exchange capacity. The discrepancy in the radiation deterioration in mechanical properties of Nafion membranes swelling in NaCl solution was observed between the specimens irradiated with γ-rays and electron beams. This discrepancy can be explained from the low diffusivity of oxygen from bulk into the membrane.

  12. Extraction and derivatization of chemical weapons convention relevant aminoalcohols on magnetic cation-exchange resins.

    Science.gov (United States)

    Singh, Varoon; Garg, Prabhat; Chinthakindi, Sridhar; Tak, Vijay; Dubey, Devendra Kumar

    2014-02-14

    Analysis and identification of nitrogen containing aminoalcohols is an integral part of the verification analysis of chemical weapons convention (CWC). This study was aimed to develop extraction and derivatization of aminoalcohols of CWC relevance by using magnetic dispersive solid-phase extraction (MDSPE) in combination with on-resin derivatization (ORD). For this purpose, sulfonated magnetic cation-exchange resins (SMRs) were prepared using magnetite nanoparticles as core, styrene and divinylbenzene as polymer coat and sulfonic acid as acidic cation exchanger. SMRs were successfully employed as extractant for targeted basic analytes. Adsorbed analytes were derivatized with hexamethyldisilazane (HMDS) on the surface of extractant. Derivatized (silylated) compounds were analyzed by GC-MS in SIM and full scan mode. The linearity of the method ranged from 5 to 200ngmL(-1). The LOD and LOQ ranged from 2 to 6ngmL(-1) and 5 to 19ngmL(-1) respectively. The relative standard deviation for intra-day repeatability and inter-day intermediate precision ranged from 5.1% to 6.6% and 0.2% to 7.6% respectively. Recoveries of analytes from spiked water samples from different sources varied from 28.4% to 89.3%. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Passivation of mechanically polished, chemically etched and anodized zirconium in various aqueous solutions: Impedance measurements

    International Nuclear Information System (INIS)

    Abo-Elenien, G.M.; Abdel-Salam, O.E.

    1987-01-01

    Zirconium and its alloys are finding increasing applications especially in water-cooled nuclear reactors. Because of the fact that zirconium is electronegative (E 0 = -1.529V) its corrosion resistance in aqueous solutions is largely determined by the existence of a thin oxide film on its surface. The structure and properties of this film depend in the first place on the method of surface pre-treatment. This paper presents an experimental study of the nature of the oxide film on mechanically polished, chemically etched and anodized zirconium. Ac impedance measurements carried out in various acidic, neutral and alkaline solutions show that the film thickness depends on the method of surface pre-treatment and the type of electrolyte solution. The variation of the potential and impedance during anodization of zirconium at low current density indicates that the initial stages of polarization consist of oxide build-up at a rate dependent on the nature of the electrode surface and the electrolyte. Oxygen evolution commences at a stage where oxide thickening starts to decline. The effect of frequency on the measured impedance indicates that the surface reactivity, and hence the corrosion rate, decreases in the following order: mechanically polished > chemically etched > anodized

  14. Dissolution of synthetic uranium dibutyl phosphate deposits in oxidizing and reducing chemical formulations

    International Nuclear Information System (INIS)

    Rufus, A.L.; Sathyaseelan, V.S.; Narasimhan, S.V.; Velmurugan, S.

    2013-01-01

    Graphical abstract: SEM of the U-DBP coated stainless steel coupon before and after exposure to chemical formulation containing acid permanganate at 80 °C. -- Highlights: •Combination of oxidation and reduction processes efficiently dissolves U-DBP deposits. •NP and NAC formulations are compatible with SS-304. •Dissolved uranium and added chemicals are effectively removed via ion exchangers. -- Abstract: Permanganate and nitrilotriacetic acid (NTA) based dilute chemical formulations were evaluated for the dissolution of uranium dibutyl phosphate (U-DBP), a compound that deposits over the surfaces of nuclear reprocessing plants and waste storage tanks. A combination of an acidic, oxidizing treatment (nitric acid with permanganate) followed by reducing treatment (NTA based formulation) efficiently dissolved the U-DBP deposits. The dissolution isotherm of U-DBP in its as precipitated form followed a logarithmic fit. The same chemical treatment was also effective in dissolving U-DBP coated on the surface of 304-stainless steel, while resulting in minimal corrosion of the stainless steel substrate material. Investigation of uranium recovery from the resulting decontamination solutions by ion exchange with a bed of mixed anion and cation resins showed quantitative removal of uranium

  15. Dissolution of synthetic uranium dibutyl phosphate deposits in oxidizing and reducing chemical formulations

    Energy Technology Data Exchange (ETDEWEB)

    Rufus, A.L.; Sathyaseelan, V.S.; Narasimhan, S.V.; Velmurugan, S., E-mail: svelu@igcar.gov.in

    2013-06-15

    Graphical abstract: SEM of the U-DBP coated stainless steel coupon before and after exposure to chemical formulation containing acid permanganate at 80 °C. -- Highlights: •Combination of oxidation and reduction processes efficiently dissolves U-DBP deposits. •NP and NAC formulations are compatible with SS-304. •Dissolved uranium and added chemicals are effectively removed via ion exchangers. -- Abstract: Permanganate and nitrilotriacetic acid (NTA) based dilute chemical formulations were evaluated for the dissolution of uranium dibutyl phosphate (U-DBP), a compound that deposits over the surfaces of nuclear reprocessing plants and waste storage tanks. A combination of an acidic, oxidizing treatment (nitric acid with permanganate) followed by reducing treatment (NTA based formulation) efficiently dissolved the U-DBP deposits. The dissolution isotherm of U-DBP in its as precipitated form followed a logarithmic fit. The same chemical treatment was also effective in dissolving U-DBP coated on the surface of 304-stainless steel, while resulting in minimal corrosion of the stainless steel substrate material. Investigation of uranium recovery from the resulting decontamination solutions by ion exchange with a bed of mixed anion and cation resins showed quantitative removal of uranium.

  16. Grafted wood pulp containing quaternary ammonium group and its application in the removal of different anions from aqueous solution

    International Nuclear Information System (INIS)

    Sokker, H.H.

    2005-01-01

    Network wood pulp based on acrylonitrile has been chemically modified through different reactions to obtain group capable of anion exchange. Graft copolymerization of acrylonitrile onto wood pulp was carried out by using gamma-radiation 60 Co. Factors affecting the grafting process e.g radiation dose and monomer concentration were investigated.The chemical modification of cyano groups were carried out by reaction with ethanol amine producing oxazoline group followed by quaternization of tertiary amine by reaction with benzyl chloride producing quaternary ammonium salt. The grafted and modified wood pulp were characterized by FTIR, SEM and TGA.Qualitative experiments of adsorption were conducted to evaluate the modified wood pulp on fixing sulfate, phosphate,nitrate and dichromate from aqueous solution using batch extractions. Based on the results obtained, it may be concluded that it is possible to modify chemically wood pulp containing cyano groups by different routes for its usage as anion exchanger

  17. Application of radioactive tracers in upgradation of industrial grade ion exchange resin (Amberlite IRA-400)

    International Nuclear Information System (INIS)

    Lokhande, R.S.; Singare, P.U.

    1998-01-01

    The exchange rates of ion exchange are determined by application of 131 I as a tracer isotope. The exchange study carried out in this investigation deals with understanding the effectiveness of ion exchange resin (in iodide form) Amberlite IRA-400 at different concentrations of potassium iodide solution (electrolyte) with temperature of solution varying from 27-48 degC by keeping amount of ion exchange resin constant (1.0 g). The exchange study is also carried out by varying amount of ion exchange resins, for fixed temperature (27.0 degC) and for fixed concentration of potassium iodide solution (0.005 M). (author)

  18. Ray effects in the discrete-ordinate solution for surface radiation exchange

    Energy Technology Data Exchange (ETDEWEB)

    Liou, B T [Dept. of Mechanical Engineering, National Cheng Kung Univ., Tainan (Taiwan, Province of China); Wu, C Y [Dept. of Mechanical Engineering, National Cheng Kung Univ., Tainan (Taiwan, Province of China)

    1997-04-01

    A study of the application of the discrete-ordinate method (DOM) with remedy for the ray effects to the solution of surface radiation exchange is presented in this paper. The remedy for the ray effects is achieved by dividing the radiative intensity into the attenuated incident and the medium emitting components. To demonstrate the application of the technique, this work considers radiative heat transfer in a two-dimensional cylindrical enclosure filled with a nearly transparent medium. The results obtained by the present DOM are in excellent agreement with those by the radiosity/irradiation method. (orig.). With 4 figs., 3 tabs. [Deutsch] In der Arbeit wird ein Weg aufgezeigt, wie die Stoerstrahlungseffekte bei Anwendung der Methode der diskreten Ordinaten auf die Berechnung des Energietausches zwischen Oberflaechenstrahlern vermieden werden koennen. Dies laesst sich durch Aufspaltung der Strahlungsintensitaet in die abgeschwaechte einfallende und die vom Medium emittierte Komponente erreichen. Als Beispiel fuer die Anwendung dieses Verfahrens dient der Waermeaustausch durch Strahlung in einem zweidimensionalen zylindrischen Behaeltnis, das mit einem nahezu transparenten Medium befuellt ist. Die mit der modifizierten Methode erhaltenen Ergebnisse stimmen ausgezeichnet mit jenen nach dem klassischen Brutto-Verfahren ueberein. (orig.)

  19. Behavior of neutral solutes in pressurized flow driven electrochromatography using a mixed stationary phase of ODS and anion-exchange.

    Science.gov (United States)

    Kitagawa, Shinya; Tsuda, Takao

    2003-05-02

    The behavior of neutral sample solutes in pressurized flow driven electrochromatography using a mixed stationary phase, which consisted of ODS and anion-exchange (ODS-SAX), was studied. Applications of both positive and negative voltage on a column induced increases in retention factors of sample solutes. The direction of an electroosmotic flow under applications of positive and negative voltage were the same, therefore, the sign of the surface charge density under positive and negative voltage was opposite. We proposed a new equation for the relationship between applied voltage and surface charge density, and the practical electroosmotic flow conformed to this equation. Studying the electroosmotic flow using our proposed equation revealed that the applied negative voltage accelerates the protonation of the quaternary ammonium group and dissociation of the silanol group on packing materials. The retention behavior of a neutral solute was affected by the existence of the charged functional groups. We propose that this phenomenon is applicable to the control of the retention behavior of a sample solute using an electric field.

  20. Atmospheric-pressure electric discharge as an instrument of chemical activation of water solutions

    Science.gov (United States)

    Rybkin, V. V.; Shutov, D. A.

    2017-11-01

    Results of experimental studies and numerical simulations of physicochemical characteristics of plasmas generated in different types of atmospheric-pressure discharges (pulsed streamer corona, gliding electric arc, dielectric barrier discharge, glow-discharge electrolysis, diaphragmatic discharge, and dc glow discharge) used to initiate various chemical processes in water solutions are analyzed. Typical reactor designs are considered. Data on the power supply characteristics, plasma electron parameters, gas temperatures, and densities of active particles in different types of discharges excited in different gases and their dependences on the external parameters of discharges are presented. The chemical composition of active particles formed in water is described. Possible mechanisms of production and loss of plasma particles are discussed.

  1. Ionic Exchange Study of Ternary Glass Membrane (AgI-PbS-As2S3)System in Solution Using Radioisotope Tracers

    International Nuclear Information System (INIS)

    Dawed, E. M.

    2004-01-01

    Glass-formation region was determined for the system AgI-PbS-As 2 S 3 in a large range of composition (from 12-64 mol. % AgI). The homogeneous glasses of AgI-PbS-As 2 S 3 system were chosen for the study. The electrical conductivity of the glasses was measured as a function of temperature and composition by the complex impedance diagram method. At 298 K, the conductivity reached a maximum value of 3.388 x 10 -3 Ω -1 cm -1 for glass containing the highest mole % of AgI. According to the ion conductivity parameters, two glass groups were observed and classified as: ionic conductors (12-50 mol. %, AgI) and super-ionic conductors (50-64 mol. % AgI). Conductivity measurements led to a decrease in the resistivity by eight orders of magnitude on increasing the concentration of AgI. Such a result made the ternary glass AgI-PbS-As 2 S 3 system a proper model to study the ionic processes of membrane surfaces. Ionic exchange processes between the glass membranes and the solutions were studied by the incorporation of radioactive indicators: silver-110 m ( 110m Ag) and cadmium- 115 m (115 mCd) radioisotopes in the form of silver and cadmium nitrate solutions respectively. In the present paper, data on the density, conductivity, and ionic exchange processes of the studied system are given. The conductivity and ionic exchange parameters are also graphically illustrated. (author)

  2. Uranium isotope separation using styrene cation exchangers

    International Nuclear Information System (INIS)

    Kahovec, J.

    1980-01-01

    The separation of 235 U and 238 U isotopes is carried out either by simple isotope exchange in the system uranium-cation exchanger (sulphonated styrene divinylbenzene resin), or by combination of isotope exchange in a uranium-cation exchanger (Dowex 50, Amberlite IR-120) system and a chemical reaction. A review is presented of elution agents used, the degree of cation exchanger cross-linking, columns length, and 235 U enrichment. The results are described of the isotope effect study in a U(IV)-U(VI)-cation exchanger system conducted by Japanese and Romanian authors (isotope exchange kinetics, frontal analysis, reverse (indirect) frontal analysis). (H.S.)

  3. Distribution of 14 elements from two solutions simulating Hanford HLW Tank 102-SY (acid-dissolved sludge and acidified supernate) on four cation exchange resins and five anion exchange resins having different functional groups

    International Nuclear Information System (INIS)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1995-01-01

    As part of the Tank Waste Remediation System program at Los Alamos, we evaluated a series of cation exchange and anion exchange resins for their ability to remove hazardous components from radioactive high-level waste (HLW). The anion exchangers were Reillex TM HPQ, a polyvinyl pyridine resin, and four strong-base polystyrene resins having trimethyl, tri ethyl, tri propyl, and tributyl amine as their respective functional groups. The cation exchange resins included Amberlyst TM 15 and Amberlyst tM XN-1010 with sulfonic acid functionality, Duolite TM C-467 with phosphonic acid functionality, and poly functional Diphonix TM with di phosphonic acid, sulfonic acid, and carboxylic acid functionalities. We measured the distributions of 14 elements on these resins from solutions simulating acid-dissolved sludge (pH 0.6) and acidified supernate (pH 3.5) from underground storage tank 102-SY at the Hanford Reservation near Richland, Washington, USA. To these simulants, we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U, Pu, and Am), and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr). For each of the 252 element/resin/solution combinations, distribution coefficients (Kds) were measured for dynamic contact periods of 30 minutes, 2 hours, and 6 hours to obtain information about sorption kinetics from these complex media. Because we measured the sorption of many different elements, the tabulated results indicate which unwanted elements are most likely to interfere with the sorption of elements of special interest. On the basis of these 756 measured Kd values, we conclude that some of the tested resins appear suitable for partitioning hazardous components from Hanford HLW. (author). 10 refs., 11 tabs

  4. Sorption behaviour of uranium and thorium on cryptomelane-type hydrous manganese dioxide from aqueous solution

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; El-Absy, M.A.; Abdel-Hamid, M.M.; Aly, H.F.

    1993-01-01

    The kinetics of sorption of uranium and thorium from aqueous nitrate solutions on cryptomelane-type hydrous manganese dioxide (CRYMO) was studied. The exchange of uranium is particle diffusion controlled while that of thorium is chemical reaction at the exchange sites. Sorption of uranium and thorium by CRYMO has been also studied as a function of metal concentrations and temperature. The sorption of both cations is found to be an endothermic process and increases markedly with temperature between 30 and 60 degree C. The sorption results have been analysed by the langmuir adsorption isotherm over the entire range of uranium and thorium concentrations investigated. 35 refs., 8 figs., 5 tabs

  5. Comparative study of ZnSe thin films deposited from modified chemical bath solutions with ammonia-containing and ammonia-free precursors

    International Nuclear Information System (INIS)

    Chen Liangyan; Zhang Daoli; Zhai Guangmei; Zhang Jianbing

    2010-01-01

    Ammonia is one of the complexing agents which are the most commonly used in the precursors of ZnSe thin films by chemical bath deposition, but its high volatility may be harmful to human beings and environments. In our experiments, ZnSe films were obtained from modified chemical solutions with ammonia-containing and ammonia-free precursors. X-ray diffraction, field-emission scanning electron microscope (FSEM), and absorption spectrum were applied to investigate the microstructure, morphology and optical properties of the samples obtained from both growth conditions, which were investigated in this work. The ammonia-free chemical bath deposited ZnSe films showed comparable properties with the ammonia-containing ones, indicating that ZnSe films from ammonia-free chemical solution may be preferred buffer layer in thin film solar cells with less environmental contamination.

  6. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-02-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.

  7. KEMOD: A mixed chemical kinetic and equilibrium model of aqueous and solid phase geochemical reactions

    International Nuclear Information System (INIS)

    Yeh, G.T.; Iskra, G.A.

    1995-01-01

    This report presents the development of a mixed chemical Kinetic and Equilibrium MODel in which every chemical species can be treated either as a equilibrium-controlled or as a kinetically controlled reaction. The reaction processes include aqueous complexation, adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction, and acid/base reactions. Further development and modification of KEMOD can be made in: (1) inclusion of species switching solution algorithms, (2) incorporation of the effect of temperature and pressure on equilibrium and rate constants, and (3) extension to high ionic strength

  8. NMR determination of chemically related metals in solution as a new method of inorganic analysis

    International Nuclear Information System (INIS)

    Fedorov, L.A.

    1989-01-01

    An NMR spectroscopic method for the determination of chemically related metals in solution is suggested. The metals are determined in complexes with specially selected polydentate ligands. Structural requirements to ligands, analytical properties and general limits of the application of the method are discussed. (orig.)

  9. Chromatography of actinides on anion-exchange paper, behaviour of the elements U, Np Pu Am in acid, aqueous and alcohol-water solutions

    International Nuclear Information System (INIS)

    Collin, Michel

    1969-01-01

    A preliminary study of actinide migration on ion exchange paper has been carried out on trace amounts with a view to subsequent application in micro-analysis. The first tests have made it possible to define the factors having an effect on the migrational velocities of aqueous and alcohol-water solutions of HCl and HNO 3 . The behaviour, of actinides has then been studied in non-saline acid solutions. The results obtained for each element separately are interesting from the point of view of their mutual separation. This analytical technique has finally been applied successfully to the migration of 300 μg of uranium deposited from a 1 ml volume of solution. (author) [fr

  10. Study on complexed lead and cadmium ions removal from aqueous solutions by means of ion exchange method

    International Nuclear Information System (INIS)

    Dudzinska, M.

    1992-01-01

    The possibility of simultaneous removal of heavy metal ions and organic chelates from waste water has been studied. The experimental work has been preceded by extensive theoretical considerations and calculations of physico-chemical parameters of the process for model and real waste water systems. The negative influence of the presence of sulfate anions on cadmium and lead complexes removal in ion exchange process has been experimentally proved. In the systems free of sulfate anions or when their concentrations were low, the purification process conducted on Amberlite IRA-68 was very effective for cadmium and lead complexes removal. 112 refs, 78 figs, 15 tabs

  11. Studies of cation exchange for the isolation and concentration of trace level components of complex aqueous mixtures

    International Nuclear Information System (INIS)

    Kaczvinsky, J.R. Jr.

    1984-01-01

    Trace level organic bases are concentrated from aqueous solution by cation exchange on a column of sulfonated macroreticular XAD-4 resin. Washing of the column with organic solvents removes neutrals and acids. Ammonia gas is introduced into the column prior to elution of the basic organics with either methanol or ether containing ammonia. After solvent evaporation, the concentrated sample is analyzed by gas chromatography. Recoveries of over 85% are found with at least one of the eluents for over 50 bases tested at levels < 1 ppm. Improved recoveries and reproducibility are seen over a simple ether extraction procedure. Samples of river water, shale oil process water, and supernatant from an agricultural chemical disposal pit are analyzed. Preliminary studies of functionalized poly(styrene-divinylbenzene)s, coated exchangers, and liquid ion exchangers as possible approaches to nuclear waste decontamination are performed

  12. Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions

    International Nuclear Information System (INIS)

    Ahmadpour, A.; Zabihi, M.; Tahmasbi, M.; Bastami, T. Rohani

    2010-01-01

    In the present investigation, three different solid wastes namely almond green hull, eggplant hull, and moss were initially treated and used as adsorbents for the adsorption of strontium ion from aqueous solutions. Adsorbent types and chemical treatments are proved to have effective roles on the adsorption of Sr(II) ion. Among the three adsorbents, almond green hull demonstrated strong affinity toward strontium ion in different solutions. The effectiveness of this new adsorbent was studied in batch adsorption mode under a variety of experimental conditions such as: different chemical treatments, various amounts of adsorbent, and initial metal-ion concentration. The optimum doses of adsorbent for the maximum Sr(II) adsorption were found to be 0.2 and 0.3 g for 45 and 102 mg L -1 solutions, respectively. High Sr(II) adsorption efficiencies were achieved only in the first 3 min of adsorbent's contact time. The kinetics of Sr(II) adsorption on almond green hull was also examined and it was observed that it follows the pseudo second-order behavior. Both Langmuir and Freundlich models well predicted the experimental adsorption isotherm data. The maximum adsorption capacity on almond green hull was found to be 116.3 mg g -1 . The present study also confirmed that these low cost agriculture byproducts could be used as efficient adsorbents for the removal of strontium from wastewater streams.

  13. Tritium labelled nucleotides: Heterogeneous metal catalyzed exchange labelling of ATP with tritium gas

    International Nuclear Information System (INIS)

    Jaiswal, D.K.; Morimoto, H.; Williams, P.G.; Wemmer, D.E.

    1991-09-01

    Adenosine 5' triphosphate (ATP) in aqueous solution has been labeled by exchange with tritium gas in the presence of palladium oxide catalyst. Comparison with our experiments using Pd/BaSO 4 as the catalyst shows that we have obtained product with higher specific activity and improved chemical purity. 3 H NMR spectroscopy of the tritiated ATP shows labelling in both the C-8 and C-2 positions, and the integral ratio of these positions was found to vary from 3:1 to 1:1 under different reaction conditions. 5 refs., 1 fig., 2 tabs

  14. Effect of organic solvents on dissolution process of mechano-chemically activated molybdenum by inorganic acid solutions

    International Nuclear Information System (INIS)

    Shevtsova, I.Ya.; Chernyak, A.S.; Khal'zov, A.A.

    1992-01-01

    The process of chemical dissolution of mechanochemically activated and nonactivated molybdenite by inorganic acid solutions in certain organic solvents of different nature was considered. It is shown that the highest extraction of molybdenum in solution is achieved in the presence of nitric acid. The dissociation constant of the acid used in the given organic solvent does not affect molybdenite solubility. When dissolving molybdenite by solutions of nitric acid in carbonic acids, alcohols and esters, the solubility of the concentrate depends on the length of hydrocarbon chain of the organic solvent and dispersion degree of mineral source material

  15. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    using two soils with different content of organic carbon (f(oc) of 1.5 and 6.5%, respectively). A quadruple blind test of the ER-V system using glass beads in stead of soil showed an acceptable recovery (65-85%) of all of the 11 VOCs tested. Only for the most volatile compound (heptane, K-H similar...... to 80) an unacceptable recovery was found (9%). The contact time needed for obtaining chemical equilibrium was tested in the ER-H system by performing five test with different duration (1, 2, 4, 7 and 19 days) using the low organic carbon soil. Seven days of contact time appeared sufficient...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...

  16. Physical and chemical stability of reconstituted and diluted dexrazoxane infusion solutions.

    Science.gov (United States)

    Zhang, Yan-Ping; Myers, Alan L; Trinh, Van A; Kawedia, Jitesh D; Kramer, Mark A; Benjamin, Robert S; Tran, Hai T

    2014-02-01

    Dexrazoxane is used clinically to prevent anthracycline-associated cardiotoxicity. Hydrolysis of dexrazoxane prior to reaching the cardiac membranes severely hampers its mode of action; therefore, degradation during the preparation and administration of intravenous dexrazoxane admixtures demands special attention. Moreover, the ongoing national shortage of one dexrazoxane formulation in the United States has forced pharmacies to dispense other commercially available dexrazoxane products. However, the manufacturers' limited stability data restrict the flexibility of dexrazoxane usage in clinical practice. The aims of this study are to determine the physical and chemical stability of reconstituted and diluted solutions of two commercially available dexrazoxane formulations. The stability of two dexrazoxane products, brand and generic name, in reconstituted and intravenous solutions stored at room temperature without light protection in polyvinyl chloride bags was determined. The concentrations of dexrazoxane were measured at predetermined time points up to 24 h using a validated reversed phase high-performance liquid chromatography with ultraviolet detection assay. Brand (B-) and generic (G-) dexrazoxane products, reconstituted in either sterile water or 0.167 M sodium lactate (final concentration of 10 mg/mL), were found stable for at least to 8 h. Infusion solutions of B-dexrazoxane, prepared according to each manufacturer's directions, were stable for at least 24 h and 8 h at 1 mg/mL and 3 mg/mL, respectively. Infusion solutions of G-dexrazoxane, prepared in either 5% dextrose or 0.9% sodium chloride following the manufacturer's guidelines, were also stable for at least 24 h and 8 h at 1 mg/mL and 3 mg/mL, respectively. All tested solutions were found physically stable up to 24 h at room temperature. The stability of dexrazoxane infusion solutions reported herein permits advance preparation of dexrazoxane intravenous admixtures, facilitating

  17. Formation of by-products at radiation - chemical treatment of water solutions of chloroform

    International Nuclear Information System (INIS)

    Ahmedov, S.A.; Abdullayev, E.T.; Gurbanov, M.A.; Gurbanov, A.H.; Ibadov, N.A.

    2006-01-01

    Full text: Radiation-chemical treatment is considered as a perspective method of water purification from chloroform. It provides the high level of purification (98 percent) of water solutions from chloroform and other chlorine-containing compounds. Meanwhile, other chlorine-containing products can be formed during the process of chloroform degradation and as a result of it the quality of water can change. This work studies the formation of by-products of γ-radiolysis of water solutions at various initial contents of chloroform. Dichlormethane and tetrachlorethane are identified as by-products. It is shown that at high contents of chloroform after certain adsorbed dose the forming products are reducing till their full disappearing. At small contents of chloroform in the studied interval of doses di-chlor-methane is forming. Differences of dose dependences of by-products at various contents of chloroform can be connected with the transition from radical mechanism to chain reaction at high concentrations of chloroform in solutions saturated by oxygen. pH-solutions also reduces during the radiation till pH=1, although this reduction also depends on initial concentration of chloroform. Essential change of pH occurs only at the radiolysis of water solutions containing chloroform ≥0,2 percent. And at radiating of 0,03 percent solution pH reduces only till 4 - 4,5

  18. Fear of Floating: Exchange Rate Flexibility Indices

    OpenAIRE

    Reinhart, Carmen

    2001-01-01

    Many emerging market countries have suffered financial crises. One view blames soft pegs for these crises. Adherents to that view suggest that countries move to corner solutions--hard pegs or floating exchange rates. We analyze the behavior of exchange rates, reserves, and interest rates to assess whether there is evidence that country practice is moving toward corner solutions. We focus on whether countries that claim they are floating are indeed doing so. We find that countries that say th...

  19. Isotopic exchange reaction between barium ion and tri barium phosphate

    International Nuclear Information System (INIS)

    Bilgin, G.B.; Cetin, I.

    1982-01-01

    Heterogeneous exchange reaction of tri barium phosphate in barium chloride solution has been studied using 133 Ba as a tracer. The results show that the exchange fraction increases as barium chloride concentration increases for different mole ratio of the exchange ion on the solid surface and in the solution. The phenomenon was studied with respect to the previous treatment of the precipitate leading to different crystal sizes and the effect of reaction time. (author)

  20. Computational Protocols for Prediction of Solute NMR Relative Chemical Shifts. A Case Study of L-Tryptophan in Aqueous Solution

    DEFF Research Database (Denmark)

    Eriksen, Janus J.; Olsen, Jógvan Magnus H.; Aidas, Kestutis

    2011-01-01

    to the results stemming from the conformations extracted from the MM conformational search in terms of replicating an experimental reference as well as in achieving the correct sequence of the NMR relative chemical shifts of L-tryptophan in aqueous solution. We find this to be due to missing conformations......In this study, we have applied two different spanning protocols for obtaining the molecular conformations of L-tryptophan in aqueous solution, namely a molecular dynamics simulation and a molecular mechanics conformational search with subsequent geometry re-optimization of the stable conformers...... using a quantum mechanically based method. These spanning protocols represent standard ways of obtaining a set of conformations on which NMR calculations may be performed. The results stemming from the solute–solvent configurations extracted from the MD simulation at 300 K are found to be inferior...

  1. Global changes and the air-sea exchange of chemicals. Reports and studies. No. 48

    Energy Technology Data Exchange (ETDEWEB)

    GESAMP-IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution

    1992-12-31

    Present and future changes to global environment have implications for marine pollution and for air-sea exchange of both anthropogenic and natural substances. This report addresses 3 issues related to potential impact of global change on air-sea exchange of chemicals: Global change and air-sea transfer of nutrients nitrogen and iron. Global change and air-sea exchange of gases. Oceanic responses to radiative and oxidative changes in atmosphere. Deposition of atmospheric anthropogenic nitrogen has probably increased bio- productivity in coastal regions along continental margins. Atmospheric deposition of new nitrogen may also have increased productivity somewhat in mid-ocean regions. Projected future increases of N oxide emissions from Asia, Africa and South America will increase the rate of deposition of oxidized nitrogen to central North Pacific, equatorial Atlantic, and equatorial and central South Indian Oceans. Atmospheric iron may be an important nutrient in certain open regions. Future changes will likely occur from changed aridity and wind speed as a result of climate change. The most important future effects on surface ocean p{sub CO2} will likely be caused by changes in ocean circulation. The pH of ocean would decrease by {approx}0.3 units for a doubling of p{sub CO2}, reducing the capacity of the ocean to take up CO{sub 2}. There is evidence that dimethyl sulfide from ocean is a source of cloud condensation nuclei and thus a factor controlling cloud albedo. By 2060 in the southern hemisphere reduction in total column stratospheric ozone from recent levels could reach 2 to 5% in the tropics, 10% at mid latitudes, and over 20% at 60 deg C. S. Increases in ground-level effective UV-B radiation could also reach 5%, 26% and 66%, at low, mid, and high latitudes in southern hemisphere. Changes in photochemical processes in the surface waters of the ocean could also happen.

  2. Chemical degradation of 3H-labeled substance P in tris buffer solution

    International Nuclear Information System (INIS)

    Higa, T.; Desiderio, D.M.

    1988-01-01

    Substance P (SP) is an important neuropeptide that has been implicated in several physiological processes, and it is necessary to devise an analytical procedure to measure endogenous SP with a combination of high sensitivity and maximum molecular specificity. However, the unique chemical nature of SP (polarity, chemical stability, ease of oxidation, peptide bond lability) plays a significant role in its analysis, such as in receptor assays, immunoassays, chromatography, and mass spectrometry. In this study, we evaluated in polypropylene and glass assay tubes the effects on the recovery and stability of tritiated SP ([3H]SP) of several pertinent experimental parameters such as buffer, pH, multiple freeze-thaw cycles, and incubation temperature and time. Bovine serum albumin (BSA) effectively reduced the absorption of [3H]SP to polypropylene and glass tube surfaces. Following multiple (6X) freeze-thaw cycles of solutions in BSA-precoated tubes, the recovery of radioactive [3H]SP remained high (greater than 75%) after the last cycle, whereas recovery was minimal in uncoated or siliconized glass tubes. A high level of radioactivity recovery was maintained for 14 days of storage of [3H]SP in triethylamine formate (TEAF) solution in BSA-precoated tubes at 4 and -20 degrees C, but decreased at 37 degrees C to less than 80% in only 3 h. Following storage in Tris-HCl (pH 7.4) buffer, a combination of HPLC and mass spectrometric analyses revealed that a significant amount of peptide bond cleavage occurred to produce the two peptides ArgProLys (RPK) and ArgProLysProGlnGln (RPKPQQ), with only a small amount of remaining intact SP. That decomposition was not observed in triethylamine formate TEAF (pH 3.14) buffer solutions

  3. Comparison of chemical solution deposition systems for the fabrication of lead zirconate titanate thin films

    International Nuclear Information System (INIS)

    Lecarpentier, F.; Daglish, M.; Kemmitt, T.

    2001-01-01

    Ferroelectric thin films of lead zirconate titanate Pb(Zr x Ti 1-x )O 3 (PZT) were prepared from five chemical solution deposition (CSD) systems, namely methoxyethanol, citrate, diol, acetic acid and triethanolamine. Physical characteristics of the solutions, processing parameters and physical and electrical properties of the films were used to assess the relative advantages and disadvantages of the different chemical systems. All the CSD systems decomposed to produce single phase perovskite PZT at temperatures above 650 deg C. Thin film deposition was influenced by the specific characteristics of each system such as wetting on the substrate and viscosity. Distinct precursor effects on the thin film crystallinity and electrical performance were revealed. The diol route yielded films with the highest crystallite size, highest permittivity and lowest loss tangent. The relative permittivity exhibited by films made by the other routes were 25% to 35% lower at equivalent thicknesses. Copyright (2001) The Australian Ceramic Society

  4. Hydroxy protons as structural probes to reveal hydrogen bonding properties of polyols in aqueous solution by NMR spectroscopy

    Science.gov (United States)

    Oruc, Gizem; Varnali, Tereza; Bekiroglu, Somer

    2018-05-01

    The solution properties of ethylene glycol (ethane-1,2-diol), glycerol (propane-1,2,3-triol), erythritol ((2R,3S)-butane-1,2,3,4-tetraol), D-xylitol ((2R,3r,4S)-pentane-1,2,3,4,5-pentaol), D-mannitol ((2R,3R,4R,5R)-hexane-1,2,3,4,5,6-hexaol), and D-sorbitol ((2S,3R,4R,5R)-hexane-1,2,3,4,5,6-hexaol), constituting a subgroup of polyalcohols/polyols of maximum six carbon atoms have been investigated using 1H NMR chemical shifts, coupling constants, temperature coefficients, and chemical exchange rates of hydroxy protons in aqueous medium. Relative within a molecule, minimum two-fold difference in rate of exchange values and higher temperature dependence of chemical shifts of the hydroxy protons on terminal carbon atoms confirm that sustainable hydrogen bonding interactions is accentuated for the hydroxyl groups on secondary carbons. Compared to the primary carbons i.e. terminal ones, the hydroxy protons on second and third carbon atoms exhibit much lower rate of exchange and smaller temperature coefficients, indicating that they are further involved in transient hydrogen bonding interactions. Scalar 3JOH,CH-couplings ranging between 3.9 and 7.2 Hz imply that the hydroxyl groups are practically in free rotation regime. Examination of the chemical shift differences with respect to the shift of glycol hydroxy proton reveals that the disparity between terminal and inner hydroxyl groups disclosed by the exchange rates and temperature coefficients is sustained with the exception of 0.003 and 0.053 ppm for O(3)H of mannitol and O(5)H of sorbitol respectively. The experimental findings have been augmented by quantum chemical calculations targeting theoretical NMR chemical shifts, as well as the conformational analysis of the structures.

  5. Chemical nonequilibrium Navier-Stokes solutions for hypersonic flow over an ablating graphite nosetip

    Science.gov (United States)

    Chen, Y. K.; Henline, W. D.

    1993-01-01

    The general boundary conditions including mass and energy balances of chemically equilibrated or nonequilibrated gas adjacent to ablating surfaces have been derived. A computer procedure based on these conditions was developed and interfaced with the Navier-Stokes solver for predictions of the flow field, surface temperature, and surface ablation rates over re-entry space vehicles with ablating Thermal Protection Systems (TPS). The Navier-Stokes solver with general surface thermochemistry boundary conditions can predict more realistic solutions and provide useful information for the design of TPS. A test case with a proposed hypersonic test vehicle configuration and associated free stream conditions was developed. Solutions with various surface boundary conditions were obtained, and the effect of nonequilibrium gas as well as surface chemistry on surface heating and ablation rate were examined. The solutions of the GASP code with complete ablating surface conditions were compared with those of the ASC code. The direction of future work is also discussed.

  6. Ion-Isotopic Exchange Reaction Kinetics using Anion Exchange Resins Dowex 550A LC and Indion-930A

    Directory of Open Access Journals (Sweden)

    P.U. Singare

    2014-06-01

    Full Text Available The present paper deals with the characterization of ion exchange resins Dowex 550A LC and Indion-930A based on kinetics of ion-isotopic exchange reactions for which the short lived radioactive isotopes 131I and 82Br were used as a tracers. The study was performed for different concentration of ionic solution varying from 0.001 mol/L to 0.004 mol/L and temperature in the range of 30.0 °C to 45.0 °C. The results indicate that as compared to bromide ion-isotopic exchange reaction, iodide exchange reaction take place at the faster rate. For both the ion-isotopic exchange reactions, under identical experimental conditions, the values of specific reaction rate increases with increase in the ionic concentration and decreases with rise in temperature. It was observed that at 35.00C, 1.000 g of ion exchange resins and 0.002 mol/L labeled iodide ion solution for iodide ion-isotopic exchange reaction, the values of specific reaction rate (min-1, amount of ion exchanged (mmol, initial rate of ion exchange (mmol/min and log Kd were 0.270, 0.342, 0.092 and 11.8 respectively for Dowex 550A LC resin, which was higher than the respective values of 0.156, 0.241, 0.038 and 7.4 as that obtained for Indion-930A resins. From the results, it appears that Dowex 550A LC resins show superior performance over Indion-930A resins under identical experimental conditions.

  7. Recovery of gold with ion exchange resin from leaching solution by acidothioureation. Ion kokan jushiho ni yoru ryusan sansei chio nyoso kinshinshutsueki kara no kin no kaishu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nakahiro, Y.; Ninae, M.; Kusaka, E.; Wakamatsu, T. (Kyoto University, Kyoto (Japan). Faculty of Engineering); Horio, Y. (Yamaha Co. Ltd., Tokyo (Japan))

    1991-12-25

    Recovery of gold with ion exchange resin from leaching solution by acidothioureation, and elution of gold from ion exchange resin with gold were studied experimentally. As the result of batch adsorption experiments of Au(TU){sub 2}{sup +} into various kinds of ion exchange resins, strong acidic cation exchange resin was most suitable, and gold was fully adsorbed into such resin in the pH range from 1.2 to 2.0 without any effects of thiourea in the leaching solution on adsorption of gold. As the result of batch elution experiments in various kinds of eluates, copper was eluted in HNO{sub 3}(1 N) + H{sub 2}O{sub 2}(1wt%) elute, both iron and zinc in NH{sub 4}NO{sub 3}(0.5 M) elute, and gold in Na{sub 2}S{sub 2} O{sub 3}(0.05 M) elute resulting in the recovery of gold. As the result of column elution experiments, Amberlite 200C was most effective among some ion exchangers used for recovery of Au(CS(NH{sub 2}){sub 2}){sub 2}{sup +}. 16 refs., 15 figs.

  8. Proton exchange membrane fuel cell for cooperating households: A convenient combined heat and power solution for residential applications

    International Nuclear Information System (INIS)

    Cappa, Francesco; Facci, Andrea Luigi; Ubertini, Stefano

    2015-01-01

    In this paper we compare the technical and economical performances of a high temperature proton exchange membrane fuel cell with those of an internal combustion engine for a 10 kW combined heat and power residential application. In a view of social innovation, this solution will create new partnerships of cooperating families aiming to reduce the energy consumption and costs. The energy system is simulated through a lumped model. We compare, in the Italian context, the total daily operating cost and energy savings of each system with respect to the separate purchase of electricity from the grid and production of the thermal energy through a standard boiler. The analysis is carried out with the energy systems operating with both the standard thermal tracking and an optimized management. The latter is retrieved through an optimization methodology based on the graph theory. We show that the internal combustion engine is much more affected by the choice of the operating strategy with respect to the fuel cell, in terms long term profitability. Then we conduct a net present value analysis with the aim of evidencing the convenience of using a high temperature proton exchange membrane fuel cell for cogeneration in residential applications. - Highlights: • Fuel cells are a feasible and economically convenient solution for residential CHP. • Control strategy is fundamental for the economical performance of a residential CHP. • Flexibility is a major strength of the fuel cell CHP.

  9. Determination of Gibbs energies of formation in aqueous solution using chemical engineering tools.

    Science.gov (United States)

    Toure, Oumar; Dussap, Claude-Gilles

    2016-08-01

    Standard Gibbs energies of formation are of primary importance in the field of biothermodynamics. In the absence of any directly measured values, thermodynamic calculations are required to determine the missing data. For several biochemical species, this study shows that the knowledge of the standard Gibbs energy of formation of the pure compounds (in the gaseous, solid or liquid states) enables to determine the corresponding standard Gibbs energies of formation in aqueous solutions. To do so, using chemical engineering tools (thermodynamic tables and a model enabling to predict activity coefficients, solvation Gibbs energies and pKa data), it becomes possible to determine the partial chemical potential of neutral and charged components in real metabolic conditions, even in concentrated mixtures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Highly porous polytriazole ion exchange membranes cast from solutions in non-toxic cosolvents

    KAUST Repository

    Chisca, Stefan

    2017-04-04

    The development of highly functionalized porous materials for protein separation is important for biotech processes. We report the preparation of highly porous polytriazole with sulfonic acid functionalization. The resulting ion exchange membranes are selective for protein adsorption. The starting material was a hydroxyl-functionalized polytriazole, which is an advantageous platform for further modification. The polymer was dissolved in a mixture of 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) and dimethyl carbonate (DMC), which can be both considered green solvents. The polymer solubilization was only possible due to an interesting effect of cosolvency, which is discussed, based in phase diagrams. Membranes were prepared by solution casting, followed by immersion in a non-solvent bath. We then grafted sulfone groups on the membranes, by reacting the hydroxyl groups with 1,3-propane sultone and 1,4-butane sultone. Lysozyme adsorption was successfully evaluated. Membranes modified with 1,4-butane sultone adsorbed more protein than those with 1,3-propane sultone.

  11. Measurement of cation exchange capacity (CEC) on natural zeolite by percolation method

    Science.gov (United States)

    Wiyantoko, Bayu; Rahmah, Nafisa

    2017-12-01

    The cation exchange capacity (CEC)measurement has been carried out in natural zeolite by percolation method. The natural zeolite samples used for cation exchange capacity measurement were activated beforehand with physical activation and chemical activation. The physically activated zeolite was done by calcination process at 600 °C for 4 hours. The natural zeolite was activated chemically by using sodium hydroxide by refluxing process at 60-80 °C for 3 hours. In summary, cation exchange capacity (CEC) determination was performed by percolation, distillation and titration processes. Based on the measurement that has been done, the exchange rate results from physical activated and chemical activated of natural zeolite were 181.90cmol (+)/kg and 901.49cmol (+)/kg respectively.

  12. Synthesis, dehydration studies, and cation-exchange behavior of a new phase of niobium(V) phosphate

    International Nuclear Information System (INIS)

    Qureshi, M.; Ahmad, A.; Shakeel, N.A.; Gupta, A.P.

    1986-01-01

    Twenty-three samples of niobium(V) phosphate have been synthesized under different conditions using niobium sulfate and phosphoric acid solutions. The amorphous sample having the ion-exchange capacity of 1.06 mEq g -1 and niobium to phosphorus mole ratio of 0.670 was studied in detail for its cation-exchange behavior. Molar distribution coefficients for 25 cations have been studied on this gel at pH 1,2,3, and 5.5. Four quantitative separations of Mg 2+ -Ca 2+ , Mg 2+ -Ba 2+ , Zn 2+ -Cd 2+ , and Bi 3+ -Zn 2+ have successfully been achieved on it. The properties of this sample have been compared with those of niobium arsenate, niobium antimonate, and niobium molybdate. A tentative structural formula is proposed for this sample of niobium phosphate on the basis of chemical composition, cation-exchange capacity, pH-titration, IR spectra, T.G.A., water absorption, and heat treatment data. (author)

  13. Testing and modelling the performance of inorganic exchangers for radionuclide removal from aqueous nuclear waste

    International Nuclear Information System (INIS)

    Harjula, R.; Lehto, J.; Paajanen, A.; Saarinen, L.

    1997-01-01

    Three different inorganic sorbents/ion exchangers have been tested in this work. Granular hexacyanoferrate-based ion exchanger was developed for Cs removal from radioactive liquid waste at NPPs. It was tested for Cs removal from waste solutions containing different complexing agents and detergents. Radiation stability and thermal stability test has shown, that this sorbent can be used for treatment of medium-active waste treatment. Active carbon materials were tested for Co removal from liquid waste effluents at NPPs. It was found that 60 Co cannot be removed from the evaporator concentrates with reasonable efficiency and a combined process with up-stream precipitation step is needed for better Co separation efficiency. Granular modified titanium oxide was tested for 90 Sr removal from the waste effluents and showed very high efficiency. A mathematical model was developed to analyze ion exchange performance in feeds of different chemical and radiochemical compositions. (author). 9 refs, 7 figs, 3 tabs

  14. Assessment of surface reactivity of thorium oxide in conditions close to chemical equilibrium by isotope exchange {sup 229}Th/{sup 232}Th method

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki-Muresan, Tomo; Perrigaud, Katy; Vandenborre, Johan; Ribet, Solange; Grambow, Bernd [Nantes Univ., CNRS/IN2P3 (France). SUBATECH Unite Mixte de Recherche 6457; Takamasa, Inai [TOKAI Univ., Kanagawa (Japan)

    2017-08-01

    This work aims to assess the solubility and the surface reactivity of crystallized thorium at pH 3.0 in presence of three types of solids: synthesized powder at 1300 C, crushed kernel, and intact kernel. In this study, the kernel is composed by the core solid from high temperature reactors (HTR) sphere particles. The originality of this work consisted in following in a sequential order the kinetic of dissolution, the surface reactivity in presence of isotope tracer {sup 229}Th, and its desorption process. Long time experiments (634 days) allowed to get deeper understanding on the behavior of the surface reactivity in contact with the solution. Solubility values are ranging from 0.3 x 10{sup -7} mol.L{sup -1} to 3 x 10{sup -7} mol.L{sup -1} with a dissolution rate of 10{sup -6}-10{sup -4} g.m{sup -2} day{sup -1}. PHREEQC modeling showed that crystallized ThO{sub 2}(cr, 20 nm) phase controls the equilibrium in solution. Isotope exchange between {sup 229}Th and {sup 232}Th indicated that well-crystallized phase exist as an inert surface regarding to the absence of exchange between surface solid and solution.

  15. A study on dry decontamination using ion exchange polymer

    International Nuclear Information System (INIS)

    Jung, Ki Jung; Ahn, Byung Gil

    1997-12-01

    Through the project of A study on dry decontamination using ion exchange polymer , the followings were investigated. 1. Highly probable decontamination technologies for the decontamination were investigated. 2. Development of gel type decontamination agent using ion-exchange resin powder (mixed type) as an ion exchanger. 3. Manufacturing of contaminated specimens (5 kinds) with Cs-137 solution and dust / Cs-137 solution. 4. Decontamination performance evaluation of the manufactured agent. 5. Analysis of composition (XRF) and the structure of surface of specimens (optic micrography). (author). 20 refs., 11 figs

  16. Kinetics of ethylenediaminetetraacetate exchange of americium (3) with copper (2) in aqueous solution

    International Nuclear Information System (INIS)

    Nikitenko, S.I.; Martynenko, L.I.; Pechurova, N.I.

    1985-01-01

    By the method of spectrophotometry exchange kinetics in the AmA - -Cu 2+ , where A 4- -ethylenediaminetetraacetate, is studied. The values of exchange rate constants and thermodynamic activation parameters have been found. It is shown that exchange of central ions is rialized according to the dissociative mechanism with formation of intermediate protonated complexes and according to the associative mechanism with formation of binuclear intermediates. The exchange mechanisms identity for AmA - and LnA - , where Ln 3+ -RE cations of cerium subgroup is proved. It is assumed that values of activation entropy in exchange processes are determined by the radius of the leaving cation and of activation enthalpy - by the peculiarities of the electronic structure

  17. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  18. Mechanistic study on exchange between labeled cyanide and nitriles

    International Nuclear Information System (INIS)

    Hussain, Munir; Chaney, J.E.; Digenis, G.A.; Layton, W.J.

    1985-01-01

    The potential of a clean, rapid exchange between the nitrile function of mandelonitrile and cyanide was examined for the preparation of labeled mandelonitrile which could be subsequently rapidly reduced with borane to labeled phenylethanolamine (PEOH). The mandelonitrile exchange (CN-CN) was studied using [ 13 C]-NaCN with crown ethers in THF, monitoring the results with 13 C-NMR. A large increase in the intensity of the signal due to [ 13 C]-nitrile was observed. The exchange was also carried out using [ 14 C]-NaCN, and the exchanged nitrile was reduced to [ 14 C]-PEOH. The chemical yield for the reduction of [ 14 C]-mandelonitrile to [ 14 C]-PEOH was 60% and the overall radio-chemical yield of the cyanide-exchange and borane reduction (based on [ 14 C]-NaCN used) was 20%. Mechanisms are proposed which were found to be consistent with results of cyanide exchange of appropriately selected nitriles. (author)

  19. Kinetics and exchange mechanism of Zn2+and Eu3+ ions on tin and zirconium silicates as a cation exchange materials

    International Nuclear Information System (INIS)

    Zakaria, E.S.; Ali, I.M.; Aly, H.F.

    2005-01-01

    Tin and zirconium silicates have been prepared with Sn/Si and Zr/Si molar ratios of 1 and 0.75, respectively. Kinetics and exchange studies of Zn 2+ and Eu 3+ ions on the prepared stannous and zirconium silicates have been carried out as a function of reaction temperature, particle diameters, solution concentration of the exchanging cations from water and alcohol-water mixture. The capacity of the exchangers for the studied cations from alcohol-water mixture was found higher than in pure aqueous solutions. The rate of exchange was dependent on particle diameters and independent on concentration of metal ions. The kinetic and thermodynamic parameters, vis. effective diffusion coefficients, activation energies and entropies of activation have been evaluated. Negative values of entropy, enthalpy and free energy of activation for Zn 2+ /M + and Eu 3+ /H + on both exchangers have been recorded at different conditions

  20. Isotope exchange reaction of tritium on precious metal catalyst based on cation-exchanged mordenite for blanket tritium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori, E-mail: kawamura.yoshinori@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Hayashi, Takumi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Yamanishi, Toshihiko [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Precious metal catalyst based on cation-exchanged mordenite was prepared. • Isotope exchange reaction between H{sub 2} and HTO on the catalyst was investigated. • The order of entire reaction is not clear, but it is the first-order reaction as for HTO. • Effect of exchanged cation may appear as the difference of the surface area of catalyst. - Abstract: It is known that the chemical forms of tritium released from a ceramic breeder blanket are hydrogen form and water form. To recover tritiated water vapor, adoption of dryer that is packed column of synthetic zeolite has been proposed. On the other hand, synthetic zeolite is often used as a support of precious metal catalyst. Such catalysts usually have a capability of hydrogen isotope exchange between gas and water vapor. If this catalyst is used to dryer, the dryer may obtain a preferable function for tritium recovery by isotopic exchange reaction. To assess such functions, reaction rate should be estimated. The results of water adsorption experiment on cation-exchanged mordenite-type zeolite suggested the possibility that state of adsorbed water varied by exchanged cation. So, in this work, precious metal catalyst based on cation-exchanged mordenite was prepared, and the reaction rate of chemical exchange between hydrogen and tritiated water was investigated under temperature range between 30 °C and 80 °C by the steady-state approximation. In the case of platinum on Na-mordenite, the reaction between gaseous hydrogen and tritiated water vapor was almost expressed as first-order reaction concerning tritiated water vapor concentration.